WO2007091308A1 - Method for securing terminal of electric double layer capacitor - Google Patents

Method for securing terminal of electric double layer capacitor Download PDF

Info

Publication number
WO2007091308A1
WO2007091308A1 PCT/JP2006/302139 JP2006302139W WO2007091308A1 WO 2007091308 A1 WO2007091308 A1 WO 2007091308A1 JP 2006302139 W JP2006302139 W JP 2006302139W WO 2007091308 A1 WO2007091308 A1 WO 2007091308A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
electrode
current collector
double layer
electric double
Prior art date
Application number
PCT/JP2006/302139
Other languages
French (fr)
Japanese (ja)
Inventor
Yong Wook Lee
Sung Hyun Yoon
Original Assignee
Kitagawa Seiki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Seiki Kabushiki Kaisha filed Critical Kitagawa Seiki Kabushiki Kaisha
Priority to PCT/JP2006/302139 priority Critical patent/WO2007091308A1/en
Priority to US11/816,367 priority patent/US7766473B2/en
Publication of WO2007091308A1 publication Critical patent/WO2007091308A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a terminal fixing device for fixing a terminal to an electrode of a take-off electric double layer capacitor formed in a cylindrical shape by winding a pair of sheet-like electrodes around a predetermined axis. On the way.
  • An electrical double layer capacitor (Electric Double Layer Capacitor, EDLC) is a capacitor that stores electrical energy using an electrical double layer phenomenon formed at the interface between a solid and an electrolyte.
  • Electric double-layer capacitors have high-density energy rapid charge and discharge characteristics, and are widely used as an auxiliary power source or main power source for mobile communication devices and portable electronic products such as notebook computers. ing.
  • Such an electric double layer capacitor is generally formed by overlapping a pair of sheet-like electrodes via an ion permeable separator.
  • the electrode is impregnated with a liquid electrolyte, and the ions of the electrolyte move between the two electrode sheets through the separator to realize the charge and discharge functions as a capacitor.
  • the electrode sheet, the separator and the electrolyte are enclosed in a case to prevent the leakage of the electrolyte.
  • Such an electric double layer capacitor may be used in various shapes depending on the application.
  • FIG. 1 is a perspective view showing a weft type electric double layer capacitor having a structure in which an electrode sheet, a separator and an electrolyte are enclosed in a cylindrical case.
  • a pair of electrode sheets 1 and 1 are stacked via a separator 2 and wound around a predetermined axis as a cylindrical shape.
  • the cylindrical electrode sheet 1 and the separator 2 are enclosed in a cylindrical case 4 together with an electrolyte.
  • a separator 2 is also provided on the outer surface of the electrode sheet 1 which will be positioned on the outside during winding. As well as preventing contact with the inner surface of the electrode sheet 1, contact between the outer surface of the electrode sheet 2 and the inner surface of the case 4 is prevented.
  • each of the electrode sheets 1, 1 is connected to a lead wire 6 through terminals 5, 5 described later.
  • the lead wire 6 also projects the case 4 force toward the outside of the case 4.
  • the case 4 is a cylindrical (i.e., cup-like) member with one end open and the other end closed, and the lead wires 6, 6 extend through the open end of the case 4 to the outside of the case 4 .
  • FIG. 2 is a cross-sectional view of the electrode sheet 1 of the skimming type electric double layer capacitor.
  • the electrode sheet 1 has a structure in which an electrode material layer lb is formed on at least one side of a metal current collector la.
  • the electrode material layer lb is mainly made of a porous conductive material such as activated carbon.
  • the storage function of the electric double layer capacitor is such that a layer of ions is formed on the surface of the electrode material layer lb. Therefore, in order to enhance the charge storage performance of the electric double layer capacitor, it is preferable to form an electrode material layer lb on both sides of the metal current collector la.
  • the electrode material layer lb is formed by applying a slurry-like electrode material to a metal current collector la, which is a mesh or a foil, and drying it.
  • a procedure for joining a terminal to an electrode in a conventional skimming type electric double layer capacitor will be described with reference to FIG. 3 to FIG.
  • the partial electrode force layer lb on the surface of the electrode 1 is removed to expose the metal current collector la.
  • Terminal 5 is fixed to this part.
  • the region where the electrode material layer is removed is defined as a terminal junction region.
  • the terminal 5 is placed on one surface side A1 of the terminal bonding region.
  • the terminal 5 is a metal flaky member, and the lead wire 6 extends from one end thereof.
  • the pin P is passed from the terminal 5 toward the metal current collector la. Let through. At this time, a kind of burring force will be performed by penetrating the pin. As a result, on the other surface side A2 of the terminal bonding region, as shown in FIG. 6, the cylindrical portions lp and 5p in which the metal current collector la and the terminal 5 are partially raised are formed. .
  • FIG. 7 is a cross-sectional view of the metal current collector la and the terminal 5 after the tubular portion is folded.
  • the cylindrical portion lp is crimped between the metal current collector la around the cylindrical portion lp and the cylindrical portion 5c so that the terminal 5 is fixed to the metal current collector la. It is fixed.
  • the terminal is fixed to the metal current collector by force. Therefore, the conventional configuration has the following problems.
  • the size of the hole formed by the pin P is within 0.5 mm, and the width of the pressed area is Is about a fraction of that, that is, about 0.1 to 0.2 mm. For this reason, there is a possibility that the joining by caulking may come off due to the vibration or impact applied to the terminal in the post-process such as trimming of the electrode sheet and storage in the case.
  • the electrode material layer lb must be removed from both sides of the electrode sheet. That is, although it is only on one side of the metal current collector that the terminals are fixed, it is necessary to remove the electrode material on both sides of the electrode sheet. Since the storage performance of the electric double layer capacitor is determined by the amount of the electrode material, removing the double-sided electrode material will impair the storage performance of the capacitor.
  • the present invention enables the miniaturization of a capacitor in which the internal resistance of the capacitor whose terminals come off the electrodes is low and the variation thereof is small.
  • the terminal of an electric double layer capacitor The purpose is to provide a fixing method.
  • the terminal (7) is brought into contact with the area (lc) where the electrode material layer of the electrode (1) is not applied.
  • the terminal is fixed to the metal current collector by fusing the metal current collector and a part of the terminal. For this reason, the terminal is out of contact with the metal current collector. Further, since the bonding is performed by the fusion bonding, the resistance of the bonding portion can be reduced and the variation thereof can be suppressed. As a result, it is possible to keep the internal resistance of the capacitor low and to suppress the variation.
  • the bonding is performed by fusion bonding, the height of the bonding portion can be kept substantially uniform. As a result, it becomes possible to minimize the variation in dimensions of the electrode after being wound up, and it is possible to reduce the size of the case for housing the electrode. Furthermore, unlike fixed by pressure, it is possible to reduce the size of the terminal which requires no hole in the terminal and the metal current collector. As a result, the size of the electrode after being wound up can be made smaller.
  • the electrode substance (lb) is removed from a part of the electrode (1) to form an area (lc) to be in contact with the terminal (7) in the abutting step.
  • the system may further include a removal step.
  • the amount of electrode material per metal current collector can be increased.
  • the metal current collector (la) and the terminal (7) be formed of the same material.
  • the melting step irradiates at least a portion (7w) of the terminal (7) with a laser so that at least a portion (7w) of the terminal (7) and at least a portion of the metal current collector (la) lw) may be heated.
  • the melting step heats at least a portion (7w) of the terminal (7) and at least a portion (lw) of the metal current collector (la) by exposing at least a portion (7w) of the terminal (7) to the discharge arc.
  • the melting step may be performed by applying an electric current between at least a portion (7w) of the terminal (7) and at least a portion (lw) of the metal current collector (1a) to form at least a portion (7w) of the terminal (7).
  • the melting step involves heating at least a portion (7w) of the terminal (7) and at least a portion (lw) of the metal current collector (la) by series welding.
  • At least a portion (7w) of the terminal (7) and at least a portion (7w) of the terminal (7) may be configured to include a diffusion step of pressurizing at least a part (lw) of the metal current collector (la) in contact with the metal current collector (la) to bond the atoms of both.
  • the diffusion step bonds both atoms by applying micro-vibration while pressing at least a portion (7w) of the terminal (7) and at least a portion (lw) of the metal current collector (la).
  • FIG. 1 is an exploded perspective view with a part cut away of a conventional and a shear-type electric double layer capacitor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of electrodes of the electric double layer capacitor of the prior art and the embodiment of the present invention.
  • Fig. 3 is a perspective view showing a step of removing electrode material of a conventional skimming type electric double layer capacitor.
  • FIG. 4 is a perspective view showing a step of mounting a terminal on an electrode of a conventional skimming type electric double layer capacitor.
  • FIG. 5 is a perspective view showing a step of forming a hole in a metal current collector and a terminal of a conventional skimming type electric double layer capacitor.
  • FIG. 6 is a perspective view showing a step of forming a hole in a metal current collector and a terminal of a conventional skimming type electric double layer capacitor.
  • Fig. 7 is a cross-sectional view of the terminal and the metal current collector after the terminals of the conventional skimming type electric double layer capacitor are pressed to the metal current collector.
  • FIG. 8 is a perspective view showing a step of removing an electrode material of the weft type electric double layer capacitor of the present embodiment.
  • FIG. 9 is a perspective view showing a step of removing an electrode material of the weft type electric double layer capacitor of the present embodiment.
  • FIG. 8 is a cross-sectional view of the electrode 1 before the terminal 7 is attached.
  • the electrode material layer lb on one side of the electrode 1 is removed to form a terminal junction area lc in which the metal current collector la is exposed. That is, the electrode material layer lb is removed from the opposite surface of the terminal junction region lc.
  • the metal current collector la is a thin plate-like member made of metal such as aluminum, nickel, stainless steel, etc., preferably aluminum fluoride.
  • the electrode material layer lb is formed by applying a slurry mainly composed of activated carbon to the metal current collector la and drying it.
  • the terminal 7 is placed on the terminal bonding area lc.
  • FIG. 9 is a perspective view showing a state in which the terminal 7 is placed on the terminal bonding area lc.
  • the terminal 7 is a flaky member made of metal, and is preferably formed of the same metal as the metal current collector.
  • the point that the lead wire 6 extends to the terminal 7 is the same as the terminal 5 (FIG. 1, FIG. 4, etc.) in the conventional example.
  • the thickness of the terminal 7 is smaller than the thickness of the electrode material layer lb.
  • spots lw and 7w are fused by cooling terminal 7 and electrode 1 at room temperature.
  • the terminal 7 is fixed to the electrode 1 by the above procedure.
  • the terminal 7 is fixed to the metal current collector 1 a by fusing the metal current collector la and the portions 1 w and 7 w of the terminal 7. Therefore, the terminal 7 is less likely to come off the metal current collector la. Further, since the bonding is performed by fusion bonding, the resistance of the bonding portion can be reduced and the variation thereof can be suppressed. As a result, while maintaining the internal resistance of the capacitor 10 low, it is possible to suppress the variation.
  • the bonding is performed by fusion bonding, the height of the bonding portion can be maintained substantially uniform. As a result, it becomes possible to minimize the variation in the dimensions of the electrode 1 after being wound up, and it is possible to reduce the size of the case 4 for housing the electrode.
  • the thickness of the terminal 7 is smaller than the thickness of the surrounding electrode material layer lb. Furthermore, it is possible to reduce the size of the terminal 7 which does not need to be machined by drilling or the like in the terminal 7 and the metal current collector la. As a result, the wound electrode 1 has a substantially cylindrical shape and can pack more electrodes in the limited space in the case 4.
  • the dimensions of the terminals can be reduced as described above. Furthermore, in the present embodiment, removal of the electrode material layer lb is performed on only one side of the electrode 1. As a result, the amount of the electrode material layer 1b to be removed can be suppressed, and an electric double layer capacitor with higher storage performance can be realized.
  • laser welding is performed by irradiating the spot 7w with a laser to melt it;
  • known welding methods such as arc welding for exposure to plasma arc for melting, resistance welding for pressing the spot 7w of the terminal 7 against the spot lw of the metal current collector 1 and heating by passing an electric current between the two are used. It can be done.
  • series welding in which spots lw and 7w are fused by pressing an electrode of different polarity against multiple spots 7w and applying an electric current between these electrodes.
  • the spot 7w may be pressed against the spot lw and pressed to combine the two atoms by diffusion. Good. Also in this case, the same effect as obtained by heating and fusing the spot lw of the metal current collector la and the spot 7w of the terminal 7 can be obtained.
  • pressing spot 7w against spot lw and pressing it it is possible to join both more quickly and firmly by applying vibration to both by ultrasonic waves etc. (Ultrasonic welding).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

A method for securing a terminal (7) to an electrode (1) of a winding electric double layer capacitor (10) which is formed tubularly by winding a pair of sheet-like electrodes (1) about a predetermined axis. The method for securing a terminal of an electric double layer capacitor comprises a step for butting the terminal (7) against a region (1c) of the electrodes (1) where an electrode substance layer is not applied, a step for thermally melting at least a portion (7w) of the terminal (7) and at least a portion (1w) of a metal current collector (1a) in contact with at least the portion (7w) of the terminal (7) by heating both of them, and a step for cooling at least the portion (7w) of the terminal (7) and at least the portion (1w) of a metal current collector (1a) after melting and bonding them.

Description

明 細 書  Specification
電気二重層コンデンサの端子固定方法  Terminal fixing method of electric double layer capacitor
技術分野  Technical field
[0001] 本発明は、一対のシート状の電極を所定の軸を中心に巻き取ることによって円筒状 に形成される卷取型電気二重層コンデンサの電極に、端子を固定する為の端子固 定方法に関する。  The present invention relates to a terminal fixing device for fixing a terminal to an electrode of a take-off electric double layer capacitor formed in a cylindrical shape by winding a pair of sheet-like electrodes around a predetermined axis. On the way.
発明の開示  Disclosure of the invention
[0002] 電気二重層コンデンサ(Electric Double Layer Capacitor、 EDLC)は、固体 と電解質間の界面に形成される電気二重層現象を利用して、電気エネルギーを蓄積 するコンデンサである。電気二重層コンデンサは、高密度エネルギーの急速充電、 及び、放電特性を有しており、移動通信機器やノートブックパソコン等の携帯用電子 製品の補助電源、又は、主電源として広範隨こ利用されている。  An electrical double layer capacitor (Electric Double Layer Capacitor, EDLC) is a capacitor that stores electrical energy using an electrical double layer phenomenon formed at the interface between a solid and an electrolyte. Electric double-layer capacitors have high-density energy rapid charge and discharge characteristics, and are widely used as an auxiliary power source or main power source for mobile communication devices and portable electronic products such as notebook computers. ing.
[0003] このような電気二重層コンデンサは、一般に一対のシート状の電極をイオン透過性 のセパレータを介して重ね合わせることによって形成される。電極には液状の電解質 が含浸されており、電解質のイオンがセパレータを介して両電極シート間を移動する ことによって、コンデンサとしての充電及び放電機能が実現される。また、電解質の漏 出を防ぐ為に電極シート、セパレータ、電解質は、ケース内に封入される。  Such an electric double layer capacitor is generally formed by overlapping a pair of sheet-like electrodes via an ion permeable separator. The electrode is impregnated with a liquid electrolyte, and the ions of the electrolyte move between the two electrode sheets through the separator to realize the charge and discharge functions as a capacitor. In addition, the electrode sheet, the separator and the electrolyte are enclosed in a case to prevent the leakage of the electrolyte.
[0004] このような電気二重層コンデンサは、その用途に応じて様々な形状のものが使用さ れうる。例えば、コイン状のケース内に電極シート、セパレータ、電解質が封入されて いるもの、あるいは円筒状のケース内に電極シート、セパレータ、電解質が封入され ているものなどがある。 [0004] Such an electric double layer capacitor may be used in various shapes depending on the application. For example, there are a coin-shaped case in which an electrode sheet, a separator, an electrolyte is enclosed, and a cylindrical case in which an electrode sheet, a separator, an electrolyte is enclosed, and the like.
[0005] 図 1は、円筒状のケース内に電極シート、セパレータ、電解質が封入されている構 造の卷取型電気二重層コンデンサを示す斜視図である。図 1の構成においては、一 対の電極シート 1、 1がセパレータ 2を介して重ね合わされたもの力 所定の軸を中心 に巻き取られて円筒状の形状となっている。この円筒形状の電極シート 1及びセパレ ータ 2が、電解質と共に円筒形状のケース 4内に封入されている。なお、巻き取り時に 外側に位置することになる電極シート 1の外側の面にも、セパレータ 2が設けられてお り、電極シート 1の内側の面との接触を防止すると共に、電極シート 2の外側の面とケ ース 4の内面との接触を防止している。 FIG. 1 is a perspective view showing a weft type electric double layer capacitor having a structure in which an electrode sheet, a separator and an electrolyte are enclosed in a cylindrical case. In the configuration of FIG. 1, a pair of electrode sheets 1 and 1 are stacked via a separator 2 and wound around a predetermined axis as a cylindrical shape. The cylindrical electrode sheet 1 and the separator 2 are enclosed in a cylindrical case 4 together with an electrolyte. A separator 2 is also provided on the outer surface of the electrode sheet 1 which will be positioned on the outside during winding. As well as preventing contact with the inner surface of the electrode sheet 1, contact between the outer surface of the electrode sheet 2 and the inner surface of the case 4 is prevented.
[0006] 電極シート 1、 1のそれぞれは、後述の端子 5、 5を介してリード線 6と接続されている 。リード線 6は、ケース 4の外側に向かってケース 4力も突出している。ここで、ケース 4 は一端開放、他端閉塞の円筒形状 (すなわちコップ状の形状)の部材であり、リード 線 6、 6はケース 4の開放端を通過してケース 4の外に伸びている。なお、巻き取られ た電極シート 1およびセパレータ 2がケース 4内に挿入された後、ケース 4の開放端は 絶縁性のガスケット 3によって封鎖される。この時、リード線 6、 6はガスケット 3を貫通 するようになっている。 Each of the electrode sheets 1, 1 is connected to a lead wire 6 through terminals 5, 5 described later. The lead wire 6 also projects the case 4 force toward the outside of the case 4. Here, the case 4 is a cylindrical (i.e., cup-like) member with one end open and the other end closed, and the lead wires 6, 6 extend through the open end of the case 4 to the outside of the case 4 . After the wound electrode sheet 1 and the separator 2 are inserted into the case 4, the open end of the case 4 is sealed by the insulating gasket 3. At this time, the lead wires 6, 6 pass through the gasket 3.
[0007] 図 2は卷取型電気二重層コンデンサの電極シート 1の断面図である。一般に、電極 シート 1は金属集電体 laの少なくとも片面に電極物質層 lbを形成した構成となって いる。電極物質層 lbは、活性炭等の多孔質の導電性材料を主原料としている。電気 二重層コンデンサの蓄電機能は電極物質層 lbの表面にイオンの層が形成されるも のである。このため、電気二重層コンデンサの蓄電性能を高めるためには、金属集電 体 laの両面に電極物質層 lbを形成することが好ましい。なお、一般に、電極物質層 lbは、メッシュもしくはフオイルである金属集電体 laに、スラリー状の電極物質を塗布 し、これを乾燥させること〖こよって形成される。  FIG. 2 is a cross-sectional view of the electrode sheet 1 of the skimming type electric double layer capacitor. In general, the electrode sheet 1 has a structure in which an electrode material layer lb is formed on at least one side of a metal current collector la. The electrode material layer lb is mainly made of a porous conductive material such as activated carbon. The storage function of the electric double layer capacitor is such that a layer of ions is formed on the surface of the electrode material layer lb. Therefore, in order to enhance the charge storage performance of the electric double layer capacitor, it is preferable to form an electrode material layer lb on both sides of the metal current collector la. Generally, the electrode material layer lb is formed by applying a slurry-like electrode material to a metal current collector la, which is a mesh or a foil, and drying it.
[0008] 従来の卷取型電気二重層コンデンサにおいて、電極に端子を接合する手順を図 3 〜図 7を参照して説明する。まず、図 3に図示されているように、電極 1の表面の一部 分力 電極物質層 lbを除去して、金属集電体 laを露出させる。この部分に端子 5が 固定される。以下、電極物質層が除去された領域を端子接合領域と定義する。なお 、後述する固定処理の特性上、端子接合領域においては、電極 1の両面 (すなわち 、端子 5が取り付けられる部分とその裏面)から電極物質層 lbを除去する必要がある  A procedure for joining a terminal to an electrode in a conventional skimming type electric double layer capacitor will be described with reference to FIG. 3 to FIG. First, as illustrated in FIG. 3, the partial electrode force layer lb on the surface of the electrode 1 is removed to expose the metal current collector la. Terminal 5 is fixed to this part. Hereinafter, the region where the electrode material layer is removed is defined as a terminal junction region. In addition, it is necessary to remove the electrode material layer lb from both surfaces of the electrode 1 (that is, the portion to which the terminal 5 is attached and the back surface thereof) in the terminal bonding region due to the characteristics of fixation processing described later.
[0009] 次いで、図 4に図示されているように、端子接合領域の一面側 A1に端子 5を載置 する。図示されているように、端子 5は金属製の薄片状の部材であり、その一端からリ ード線 6が伸びている。 Next, as illustrated in FIG. 4, the terminal 5 is placed on one surface side A1 of the terminal bonding region. As shown, the terminal 5 is a metal flaky member, and the lead wire 6 extends from one end thereof.
[0010] 次いで、図 5に示されているように、端子 5から金属集電体 laに向力つてピン Pを貫 通させる。この時、ピンを貫通させることによって一種のバーリング力卩ェが行われるこ とになる。この結果、端子接合領域の他面側 A2では、図 6に示されるように、金属集 電体 la及び端子 5の一部分が筒状に盛り上がった筒状部 lp、 5pが形成されることに なる。 Then, as shown in FIG. 5, the pin P is passed from the terminal 5 toward the metal current collector la. Let through. At this time, a kind of burring force will be performed by penetrating the pin. As a result, on the other surface side A2 of the terminal bonding region, as shown in FIG. 6, the cylindrical portions lp and 5p in which the metal current collector la and the terminal 5 are partially raised are formed. .
[0011] 次いで、端子接合領域の他面側 A2から筒状部 lp、 5pをプレスして筒状部 lp、 5p の折り返しを行う。図 7は、筒状部の折り返しが行われた後の金属集電体 la及び端 子 5の断面図である。この結果、筒状部 lpの周囲の金属集電体 laと、筒状部 5cとの 間に筒状部 lpがはさまれるようにかしめられることになり、金属集電体 laに端子 5が 固定される。  Next, the cylindrical portions lp, 5p are pressed from the other surface side A2 of the terminal bonding region to fold the cylindrical portions lp, 5p. FIG. 7 is a cross-sectional view of the metal current collector la and the terminal 5 after the tubular portion is folded. As a result, the cylindrical portion lp is crimped between the metal current collector la around the cylindrical portion lp and the cylindrical portion 5c so that the terminal 5 is fixed to the metal current collector la. It is fixed.
[0012] 以上のように、従来は、力しめによって端子を金属集電体に固定していた。このた め、従来の構成においては、以下の問題があった。  As described above, conventionally, the terminal is fixed to the metal current collector by force. Therefore, the conventional configuration has the following problems.
[0013] 第 1に、力しめによって端子の固定が行われる力 コンデンサの寸法上の制約から 、ピン Pによって形成される穴の寸法は 0. 5mm以内であり、力しめられている領域の 幅はその数分の 1程度、すなわち 0. 1〜0. 2mm程度である。このため、電極シート の卷取りやケースへの収納といった後工程時に端子に加わる振動や衝撃によって、 カシメによる接合がはずれる可能性があった。  First, due to the dimensional constraints of the force capacitor in which the terminals are fixed by force, the size of the hole formed by the pin P is within 0.5 mm, and the width of the pressed area is Is about a fraction of that, that is, about 0.1 to 0.2 mm. For this reason, there is a possibility that the joining by caulking may come off due to the vibration or impact applied to the terminal in the post-process such as trimming of the electrode sheet and storage in the case.
[0014] 第 2に、微小領域にて力しめられているので、コンデンサの内部抵抗が高くなる傾 向になり、また、コンデンサの内部抵抗のばらつきが大きいという問題がある。  [0014] Second, since pressure is applied in a minute area, there is a problem that the internal resistance of the capacitor tends to increase, and the variation in internal resistance of the capacitor is large.
[0015] 第 3に、力しめによって端子の固定が行われる力 かしめ後の筒状部 5pの高さは不 均一なものとなりやすい、という問題がある。このため、巻き取られた後の電極の形状 にばらつきが生じる。従って、電極が納められるケースの寸法は、このばらつきを考慮 して十分に大きくとる必要があり、結果として、コンデンサ全体の体積を増大させるこ とになる。  [0015] Third, there is a problem that the height of the cylindrical portion 5p after the force caulking that the terminal is fixed by the force tends to be nonuniform. This causes variations in the shape of the electrode after being wound up. Therefore, the dimensions of the case in which the electrode is housed must be sufficiently large in consideration of this variation, resulting in an increase in the volume of the entire capacitor.
[0016] 第 4に、力しめを行う際に端子及び金属集電体に穴を開ける必要があるが、穴の寸 法および端子の寸法が小さすぎると穴の形成によって生じる亀裂が端子の端部まで 達してしまい、力しめの強度が低下してしまう可能性がある。このため、端子の寸法を 十分に大きく取る必要がある。従って、端子の寸法が大きくなるため、端子が固定さ れた電極シートを巻き取って形成されたコンデンサの寸法が大きくなるという問題が あった。 [0016] Fourth, it is necessary to make a hole in the terminal and the metal current collector when performing compression, but if the size of the hole and the size of the terminal are too small, the crack caused by the formation of the hole will be the end of the terminal. It may reach to the end and the strength of the pressure may decrease. Therefore, it is necessary to make the terminal dimensions sufficiently large. Therefore, since the dimensions of the terminals increase, there arises a problem that the dimensions of the capacitor formed by winding up the electrode sheet to which the terminals are fixed increase. there were.
[0017] 第 5に、力しめによって固定を行うためには、電極シートの両面から電極物質層 lb を除去しなければならない。すなわち、端子を固定するのは金属集電体の片面のみ であるにも関わらず、電極シートの両面力 電極物質を除去する必要があるということ である。電気二重層コンデンサの蓄電性能は電極物質の量によって決まるため、両 面力 電極物質を除去することによってコンデンサの蓄電性能が損なわれることにな る。  [0017] Fifth, to achieve fixation by pressure, the electrode material layer lb must be removed from both sides of the electrode sheet. That is, although it is only on one side of the metal current collector that the terminals are fixed, it is necessary to remove the electrode material on both sides of the electrode sheet. Since the storage performance of the electric double layer capacitor is determined by the amount of the electrode material, removing the double-sided electrode material will impair the storage performance of the capacitor.
[0018] 上記の問題を解決する為、本発明は、端子が電極からはずれにくぐコンデンサの 内部抵抗が低く且つそのばらつきが少なぐさらにコンデンサの小型化を可能とする 、電気二重層コンデンサの端子固定方法を提供することを目的とする。  [0018] In order to solve the above-mentioned problems, the present invention enables the miniaturization of a capacitor in which the internal resistance of the capacitor whose terminals come off the electrodes is low and the variation thereof is small. The terminal of an electric double layer capacitor The purpose is to provide a fixing method.
[0019] 上記の目的を達成する為、本発明の電気二重層コンデンサの端子固定方法は、電 極(1)の電極物質層が塗布されていない領域(lc)に端子 (7)を当接させる当接ステ ップと、端子 (7)の少なくとも一部分 (7w)と、端子 (7)の少なくとも一部分 (7w)と接 触している金属集電体(la)の少なくとも一部分(lw)とを加熱して両者を溶融させる 溶融ステップと、端子 (7)の少なくとも一部分 (7w)及び金属集電体(la)の少なくとも 一部分(lw)が溶融した後に両者を冷却してこれらを融着させる冷却ステップと、を 有する。  In order to achieve the above object, according to the terminal fixing method of the electric double layer capacitor of the present invention, the terminal (7) is brought into contact with the area (lc) where the electrode material layer of the electrode (1) is not applied. Contacting step, at least a portion (7w) of the terminal (7), and at least a portion (lw) of the metal current collector (la) in contact with at least a portion (7w) of the terminal (7) Heating to melt both of them, a melting step, cooling at least a portion (7w) of the terminal (7) and at least a portion (lw) of the metal current collector (la) and cooling them together to fuse them And a cooling step.
[0020] 上記のように、本発明の構成によれば、金属集電体と端子の一部同士が融着され ることによって端子が金属集電体に固定されるようになっている。このため、端子が金 属集電体からはずれに《なっている。また、融着によって接合がなされるため、接合 部の抵抗は小さぐ且つそのばらつきを抑えることができる。この結果、コンデンサの 内部抵抗を低く保つと共に、そのばらつきを抑えることが可能である。  As described above, according to the configuration of the present invention, the terminal is fixed to the metal current collector by fusing the metal current collector and a part of the terminal. For this reason, the terminal is out of contact with the metal current collector. Further, since the bonding is performed by the fusion bonding, the resistance of the bonding portion can be reduced and the variation thereof can be suppressed. As a result, it is possible to keep the internal resistance of the capacitor low and to suppress the variation.
[0021] また、融着によって接合がなされるため、接合部の高さはほぼ均一に保たれる。こ の結果、巻き取られた後の電極の寸法のばらつきを小さく抑えることが可能となり、電 極を納めるケースの大きさを小さくすることが可能となる。さらに、力しめによる固定と は異なり、端子及び金属集電体に穴を開ける必要がなぐ端子の寸法を小さく抑える ことが可能となる。この結果、巻き取られた後の電極の大きさをより小さくすることがで きる。 [0022] 当接ステップを実施する前に、電極(1)の一部分から電極物質層 (lb)を除去して 当接ステップにて端子 (7)と当接する領域(lc)を形成する電極物質除去ステップを さらに有する構成としてもょ ヽ。 In addition, since the bonding is performed by fusion bonding, the height of the bonding portion can be kept substantially uniform. As a result, it becomes possible to minimize the variation in dimensions of the electrode after being wound up, and it is possible to reduce the size of the case for housing the electrode. Furthermore, unlike fixed by pressure, it is possible to reduce the size of the terminal which requires no hole in the terminal and the metal current collector. As a result, the size of the electrode after being wound up can be made smaller. Before carrying out the abutting step, the electrode substance (lb) is removed from a part of the electrode (1) to form an area (lc) to be in contact with the terminal (7) in the abutting step. The system may further include a removal step.
[0023] このような構成とすると、金属集電体一枚当たりの電極物質の量をより多くとることが できる。  With such a configuration, the amount of electrode material per metal current collector can be increased.
[0024] また、金属集電体(la)と、端子(7)とは同じ材料にて形成されている、構成とするこ とが望ましい。  Further, it is desirable that the metal current collector (la) and the terminal (7) be formed of the same material.
[0025] また、溶融ステップは、端子(7)の少なくとも一部分(7w)にレーザを照射することに よって、端子 (7)の少なくとも一部分 (7w)及び金属集電体(la)の少なくとも一部分( lw)を加熱してもよい。或いは、溶融ステップは、端子(7)の少なくとも一部分(7w) を放電アークに曝すことによって、端子(7)の少なくとも一部分 (7w)及び金属集電 体(la)の少なくとも一部分(lw)を加熱してもよい。或いは、溶融ステップは、端子(7 )の少なくとも一部分 ( 7w)と金属集電体( 1 a)の少なくとも一部分( lw)との間に電流 を流すことによって、端子(7)の少なくとも一部分 (7w)及び金属集電体(la)の少な くとも一部分(lw)を加熱してもよい。或いは、溶融ステップは、シリーズ溶接によって 端子 (7)の少なくとも一部分 (7w)及び金属集電体 (la)の少なくとも一部分 (lw)を カロ熱してちょい。  In addition, the melting step irradiates at least a portion (7w) of the terminal (7) with a laser so that at least a portion (7w) of the terminal (7) and at least a portion of the metal current collector (la) lw) may be heated. Alternatively, the melting step heats at least a portion (7w) of the terminal (7) and at least a portion (lw) of the metal current collector (la) by exposing at least a portion (7w) of the terminal (7) to the discharge arc. You may Alternatively, the melting step may be performed by applying an electric current between at least a portion (7w) of the terminal (7) and at least a portion (lw) of the metal current collector (1a) to form at least a portion (7w) of the terminal (7). And at least a portion (lw) of the metal current collector (la) may be heated. Alternatively, the melting step involves heating at least a portion (7w) of the terminal (7) and at least a portion (lw) of the metal current collector (la) by series welding.
[0026] また、端子と金属集電体を加熱する溶融ステップ及びこれらを冷却する冷却ステツ プの代わりに、端子(7)の少なくとも一部分 (7w)と、端子(7)の少なくとも一部分 (7w )と接触している金属集電体(la)の少なくとも一部分(lw)とを加圧して両者の原子 を結合させる拡散ステップを有する構成としてもよい。例えば、拡散ステップは、端子 (7)の少なくとも一部分 (7w)及び金属集電体(la)の少なくとも一部分(lw)を加圧 しながらび微小振動を加えることによって両者の原子を結合させる。  Also, instead of the melting step for heating the terminal and the metal current collector and the cooling step for cooling them, at least a portion (7w) of the terminal (7) and at least a portion (7w) of the terminal (7) It may be configured to include a diffusion step of pressurizing at least a part (lw) of the metal current collector (la) in contact with the metal current collector (la) to bond the atoms of both. For example, the diffusion step bonds both atoms by applying micro-vibration while pressing at least a portion (7w) of the terminal (7) and at least a portion (lw) of the metal current collector (la).
図面の簡単な説明  Brief description of the drawings
[0027] [図 1]従来及び本発明の実施の形態の卷取型電気二重層コンデンサの一部切り欠 いた分解斜視図である。  FIG. 1 is an exploded perspective view with a part cut away of a conventional and a shear-type electric double layer capacitor according to an embodiment of the present invention.
[図 2]従来及び本発明の実施の形態の電気二重層コンデンサの電極の断面図であ る。 [図 3]従来の卷取型電気二重層コンデンサの電極力 電極物質を除去するステップ を示す斜視図である。 FIG. 2 is a cross-sectional view of electrodes of the electric double layer capacitor of the prior art and the embodiment of the present invention. [Fig. 3] Fig. 3 is a perspective view showing a step of removing electrode material of a conventional skimming type electric double layer capacitor.
[図 4]従来の卷取型電気二重層コンデンサの電極に端子を載置するステップを示す 斜視図である。  FIG. 4 is a perspective view showing a step of mounting a terminal on an electrode of a conventional skimming type electric double layer capacitor.
[図 5]従来の卷取型電気二重層コンデンサの金属集電体と端子に穴を形成するステ ップを示す斜視図である。  FIG. 5 is a perspective view showing a step of forming a hole in a metal current collector and a terminal of a conventional skimming type electric double layer capacitor.
[図 6]従来の卷取型電気二重層コンデンサの金属集電体と端子に穴を形成するステ ップを示す斜視図である。  FIG. 6 is a perspective view showing a step of forming a hole in a metal current collector and a terminal of a conventional skimming type electric double layer capacitor.
[図 7]従来の卷取型電気二重層コンデンサの端子を金属集電体に力しめた後の端子 及び金属集電体の断面図である。  [Fig. 7] Fig. 7 is a cross-sectional view of the terminal and the metal current collector after the terminals of the conventional skimming type electric double layer capacitor are pressed to the metal current collector.
[図 8]本実施形態の卷取型電気二重層コンデンサの電極力 電極物質を除去するス テツプを示す斜視図である。  FIG. 8 is a perspective view showing a step of removing an electrode material of the weft type electric double layer capacitor of the present embodiment.
[図 9]本実施形態の卷取型電気二重層コンデンサの電極力 電極物質を除去するス テツプを示す斜視図である。  FIG. 9 is a perspective view showing a step of removing an electrode material of the weft type electric double layer capacitor of the present embodiment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 以下、図面を参照して本発明の実施の形態につき説明する。本実施形態における 電気二重層コンデンサ 10の全体的な構成は、図 1に示した従来のものと同様である 為、説明は省略する。また、本実施形態において、前述の従来例と同等の機能を有 する部分にっ 、ては、図 1〜7に記載のものと同様の符号を付与して 、る。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. The overall configuration of the electric double layer capacitor 10 in the present embodiment is the same as that of the conventional one shown in FIG. Further, in the present embodiment, parts having the same functions as those of the above-described conventional example are given the same reference numerals as those shown in FIGS.
[0029] 以下、本実施形態において電極 1に端子 5を固定する手順につき、図 8、 9を用い て説明する。図 8は、端子 7が取り付けられる前の電極 1の断面図である。図 8に示さ れているように、本実施形態においては、電極 1の片面の電極物質層 lbのみが除去 されて金属集電体 laが露出した端子接合領域 lcが形成されている。すなわち、端 子接合領域 lcの反対側の面からは電極物質層 lbは除去されて 、な 、。  Hereinafter, the procedure for fixing the terminal 5 to the electrode 1 in the present embodiment will be described with reference to FIGS. FIG. 8 is a cross-sectional view of the electrode 1 before the terminal 7 is attached. As shown in FIG. 8, in this embodiment, only the electrode material layer lb on one side of the electrode 1 is removed to form a terminal junction area lc in which the metal current collector la is exposed. That is, the electrode material layer lb is removed from the opposite surface of the terminal junction region lc.
[0030] ここで、金属集電体 laはアルミニウム、ニッケル、ステンレス綱等の金属からなる薄 片状の部材であり、好ましくはアルミニウムフオイルである。また、電極物質層 lbは、 この金属集電体 laに活性炭を主成分とするスラリーを塗布して、これを乾燥させるこ とによって形成される。 [0031] 次いで、この端子接合領域 lcに端子 7を載置する。図 9は、端子接合領域 lcに端 子 7を載置した状態を示す斜視図である。端子 7は、金属製の薄片状の部材であり、 好ましくは金属集電体と同一の金属にて形成される。端子 7にはリード線 6が伸びて いる点は、従来例における端子 5 (図 1、図 4等)と同様である。また、図 9に示されて いるように、端子 7の厚さは、電極物質層 lbの厚さよりも小さくなつている。 Here, the metal current collector la is a thin plate-like member made of metal such as aluminum, nickel, stainless steel, etc., preferably aluminum fluoride. The electrode material layer lb is formed by applying a slurry mainly composed of activated carbon to the metal current collector la and drying it. Next, the terminal 7 is placed on the terminal bonding area lc. FIG. 9 is a perspective view showing a state in which the terminal 7 is placed on the terminal bonding area lc. The terminal 7 is a flaky member made of metal, and is preferably formed of the same metal as the metal current collector. The point that the lead wire 6 extends to the terminal 7 is the same as the terminal 5 (FIG. 1, FIG. 4, etc.) in the conventional example. Also, as shown in FIG. 9, the thickness of the terminal 7 is smaller than the thickness of the electrode material layer lb.
[0032] 次いで、端子 7上の複数のスポット 7wをカ卩熱して、このスポット 7wと、このスポット 7 wと当接している端子接合領域 lc上の複数のスポット lwとを溶融させる。次いで、端 子 7及び電極 1を室温で冷却することによって、スポット lwと 7wとは融着する。  Then, the plurality of spots 7 w on the terminals 7 are heated to melt the spots 7 w and the plurality of spots 1 w on the terminal junction area lc in contact with the spots 7 w. Next, spots lw and 7w are fused by cooling terminal 7 and electrode 1 at room temperature.
[0033] 以上のような手順で端子 7は電極 1に固定される。本実施形態においては、金属集 電体 laと端子 7の一部 lw、 7w同士が融着されることによって端子 7が金属集電体 1 aに固定されるようになっている。このため、端子 7が金属集電体 laからはずれにくく なっている。また、融着によって接合がなされるため、接合部の抵抗は小さぐ且つそ のばらつきを抑えることができる。この結果、コンデンサ 10の内部抵抗を低く保つと共 に、そのばらつきを抑えることが可能である。  The terminal 7 is fixed to the electrode 1 by the above procedure. In the present embodiment, the terminal 7 is fixed to the metal current collector 1 a by fusing the metal current collector la and the portions 1 w and 7 w of the terminal 7. Therefore, the terminal 7 is less likely to come off the metal current collector la. Further, since the bonding is performed by fusion bonding, the resistance of the bonding portion can be reduced and the variation thereof can be suppressed. As a result, while maintaining the internal resistance of the capacitor 10 low, it is possible to suppress the variation.
[0034] また、融着によって接合がなされるため、接合部の高さはほぼ均一に保たれる。こ の結果、巻き取られた後の電極 1の寸法のばらつきを小さく抑えることが可能となり、 電極を納めるケース 4の大きさを小さくすることが可能となる。特に、本実施形態にお いては、端子 7の厚さを周囲の電極物質層 lbの厚さよりも小さく構成している。さらに 、端子 7及び金属集電体 laに穴開け等の機械加工を行う必要がなぐ端子 7の寸法 を小さく抑えることが可能となる。この結果、巻き取られた電極 1はほぼ円筒形状とな り、ケース 4内の限られたスペース内により多くの電極を詰め込むことができるようにな る。  Further, since the bonding is performed by fusion bonding, the height of the bonding portion can be maintained substantially uniform. As a result, it becomes possible to minimize the variation in the dimensions of the electrode 1 after being wound up, and it is possible to reduce the size of the case 4 for housing the electrode. In particular, in the present embodiment, the thickness of the terminal 7 is smaller than the thickness of the surrounding electrode material layer lb. Furthermore, it is possible to reduce the size of the terminal 7 which does not need to be machined by drilling or the like in the terminal 7 and the metal current collector la. As a result, the wound electrode 1 has a substantially cylindrical shape and can pack more electrodes in the limited space in the case 4.
[0035] また、上記のように、本実施形態によれば、前述のように端子の寸法を小さくするこ とができる。さらに、本実施形態においては、電極物質層 lbの除去が行われるのは 電極 1の片面のみである。この結果、除去する電極物質層 lbの量を抑えることが可 能となり、より蓄電性能の高い電気二重層コンデンサが実現される。  Also, as described above, according to the present embodiment, the dimensions of the terminals can be reduced as described above. Furthermore, in the present embodiment, removal of the electrode material layer lb is performed on only one side of the electrode 1. As a result, the amount of the electrode material layer 1b to be removed can be suppressed, and an electric double layer capacitor with higher storage performance can be realized.
[0036] また、金属集電体 laのスポット lwと端子 7のスポット 7wを加熱 '融着する方法として は、スポット 7wにレーザを照射して溶融させるレーザ溶接、スポット 7wを放電アーク 又はプラズマアークに曝して溶融させるアーク溶接、端子 7のスポット 7wを金属集電 体 1のスポット lwに押し当てて両者の間に電流を流して加熱する抵抗溶接など、既 知の溶接手法が利用され得る。また、複数箇所のスポット 7wに極性の異なる電極を 押し当てて、これらの電極間に電流を流し、スポット lwと 7wを融着するシリーズ溶接 を禾 IJ用してもよ ヽ。 Also, as a method of heating and fusing the spot lw of the metal current collector la and the spot 7w of the terminal 7, laser welding is performed by irradiating the spot 7w with a laser to melt it; Alternatively, known welding methods such as arc welding for exposure to plasma arc for melting, resistance welding for pressing the spot 7w of the terminal 7 against the spot lw of the metal current collector 1 and heating by passing an electric current between the two are used. It can be done. In addition, it is possible to use series welding in which spots lw and 7w are fused by pressing an electrode of different polarity against multiple spots 7w and applying an electric current between these electrodes.
また、金属集電体 laのスポット lwと端子 7のスポット 7wを加熱 '融着する代わりに、 スポット 7wをスポット lwに押し当てて加圧し、拡散現象によって両者の原子を結合さ せる構成としてもよい。この場合も、金属集電体 laのスポット lwと端子 7のスポット 7w を加熱'融着する構成と同等の効果が得られる。なお、スポット 7wをスポット lwに押 し当てて加圧する際に、超音波等によって両者にさらに振動をカ卩えることによって、よ り迅速且つ強固に両者を接合することが可能である (超音波溶接)。  Also, instead of heating and fusing the spot lw of the metal current collector la and the spot 7w of the terminal 7, the spot 7w may be pressed against the spot lw and pressed to combine the two atoms by diffusion. Good. Also in this case, the same effect as obtained by heating and fusing the spot lw of the metal current collector la and the spot 7w of the terminal 7 can be obtained. In addition, when pressing spot 7w against spot lw and pressing it, it is possible to join both more quickly and firmly by applying vibration to both by ultrasonic waves etc. (Ultrasonic welding).

Claims

請求の範囲 The scope of the claims
[1] シート状の金属集電体 (la)の少なくとも片側に電極物質層(lb)が形成された構造 を有する電気二重層コンデンサ(10)の電極に金属製の端子(7)を固定する方法で あって、  [1] A metal terminal (7) is fixed to an electrode of an electric double layer capacitor (10) having a structure in which an electrode material layer (lb) is formed on at least one side of a sheet metal current collector (la) Method,
前記電極(1)の前記電極物質層が塗布されて!ヽな ヽ領域(lc)に前記端子(7)を 当接させる当接ステップと、  The electrode material layer of the electrode (1) is applied! An abutment step of bringing the terminal (7) into abutment with a small heel region (lc);
前記端子 (7)の少なくとも一部分 (7w)と、前記端子 (7)の該少なくとも一部分 (7w )と接触している前記金属集電体(la)の少なくとも一部分(lw)とを加熱して両者を 溶融させる溶融ステップと、  Heating at least a portion (7w) of the terminal (7) and at least a portion (lw) of the metal current collector (la) in contact with the at least a portion (7w) of the terminal (7); Melting step to melt the
前記端子 (7)の該少なくとも一部分 (7w)及び前記金属集電体(la)の該少なくとも 一部分(lw)が溶融した後に両者を冷却してこれらを融着させる冷却ステップと、 を有する、電気二重層コンデンサの端子固定方法。  After the at least one portion (7w) of the terminal (7) and the at least one portion (lw) of the metal current collector (la) melt, a cooling step of cooling the two and fusing them together; How to fix the terminal of double layer capacitor.
[2] 前記当接ステップを実施する前に、前記電極(1)の一部分力も前記電極物質層(1 b)を除去して前記当接ステップにて前記端子 (7)と当接する領域(lc)を形成する電 極物質除去ステップをさらに有する、ことを特徴とする請求項 1に記載の電気二重層 コンデンサの端子固定方法。 [2] Before carrying out the contact step, a partial force of the electrode (1) also removes the electrode material layer (1b) to contact the terminal (7) in the contact step (lc) The method for fixing terminals of an electric double layer capacitor according to claim 1, further comprising an electrode material removing step of forming the electrode.
[3] 前記電極 (1)は、金属集電体 (la)の両面に電極物質層 (lb)が形成された構造と なっており、前記電極物質除去ステップにおいては、電極(1)の片面の一部分のみ から電極物質層(lb)を除去する、ことを特徴とする請求項 2に記載の電気二重層コ ンデンサの端子固定方法。 [3] The electrode (1) has a structure in which an electrode material layer (lb) is formed on both sides of a metal current collector (la), and in the electrode material removing step, one surface of the electrode (1) is removed. The method according to claim 2, characterized in that the electrode material layer (lb) is removed only from a part of the electrode.
[4] 前記端子は金属の薄片であり、前記端子(7)の厚さは電極物質層(lb)の厚さより も小さい、ことを特徴とする請求項 2に記載の電気二重層コンデンサの端子固定方法 [4] The terminal of an electric double layer capacitor according to claim 2, wherein the terminal is a thin piece of metal, and the thickness of the terminal (7) is smaller than the thickness of the electrode material layer (lb). Fixing method
[5] 前記金属集電体(la)と、前記端子 (7)とは同じ材料にて形成されている、ことを特 徴とする請求項 1に記載の電気二重層コンデンサの端子固定方法。 [5] The method for fixing a terminal of an electric double layer capacitor according to claim 1, characterized in that the metal current collector (la) and the terminal (7) are formed of the same material.
[6] 前記溶融ステップは、前記端子 (7)の該少なくとも一部分 (7w)にレーザを照射す ることによって、前記端子 (7)の該少なくとも一部分 (7w)及び前記金属集電体(la) の該少なくとも一部分(lc)を加熱する、ことを特徴とする請求項 1から 5のいずれかに 記載の電気二重層コンデンサの端子固定方法。 [6] The melting step includes irradiating the at least a portion (7w) of the terminal (7) with a laser to produce the at least a portion (7w) of the terminal (7) and the metal current collector (la). The method according to any one of claims 1 to 5, characterized in that the at least one portion (lc) of is heated. The terminal fixing method of the electric double layer capacitor as described.
[7] 前記溶融ステップは、前記端子(7)の該少なくとも一部分 (7w)を放電アーク又は プラズマアークに曝すことによって、前記端子(7)の該少なくとも一部分(7w)及び前 記金属集電体(la)の該少なくとも一部分(lw)を加熱する、ことを特徴とする請求項 1から 5のいずれかに記載の電気二重層コンデンサの端子固定方法。  [7] The melting step includes exposing the at least a portion (7w) of the terminal (7) to a discharge arc or a plasma arc to form the at least a portion (7w) of the terminal (7) and the metal current collector. The method for fixing terminals of an electric double layer capacitor according to any one of claims 1 to 5, characterized in that the at least one portion (lw) of (la) is heated.
[8] 前記溶融ステップは、前記端子 (7)の該少なくとも一部分 (7w)と前記金属集電体( la)の該少なくとも一部分(lw)との間に電流を流すことによって、前記端子(7)の該 少なくとも一部分 (7w)及び前記金属集電体 (la)の該少なくとも一部分 (lw)を加熱 する、ことを特徴とする請求項 1から 5のいずれかに記載の電気二重層コンデンサの 端子固定方法。  [8] The melting step includes flowing the current between the at least a portion (7w) of the terminal (7) and the at least a portion (lw) of the metal current collector (la) to obtain the terminal (7). The terminal of an electric double layer capacitor according to any one of claims 1 to 5, characterized in that the at least one portion (7w) of the) and the at least one portion (lw) of the metal current collector (la) are heated. How to fix.
[9] 前記溶融ステップは、シリーズ溶接によって前記端子(7)の該少なくとも一部分 (7 w)及び前記金属集電体(la)の該少なくとも一部分(lw)を加熱する、ことを特徴と する請求項 8に記載の電気二重層コンデンサの端子固定方法。  [9] The melting step is characterized in that the at least one portion (7 w) of the terminal (7) and the at least a portion (lw) of the metal current collector (la) are heated by series welding. The terminal fixing method of the electric double layer capacitor of item 8.
[10] シート状の金属集電体 (la)の少なくとも片側に電極物質層(lb)が形成された構造 を有する電気二重層コンデンサ(10)の電極に金属製の端子(7)を固定する方法で あって、  [10] A metal terminal (7) is fixed to an electrode of an electric double layer capacitor (10) having a structure in which an electrode material layer (lb) is formed on at least one side of a sheet metal current collector (la). Method,
前記電極の前記電極物質層 (lb)が塗布されて ヽな ヽ領域(lc)に前記端子(7)を 当接させる当接ステップと、  An abutting step of applying the electrode material layer (lb) of the electrode and bringing the terminal (7) into contact with a small area (lc);
前記端子 (7)の少なくとも一部分 (7w)と、前記端子 (7)の該少なくとも一部分 (7w )と接触している前記金属集電体(la)の少なくとも一部分(lw)とを加圧して両者の 原子を結合させる拡散ステップと、  Pressing at least a portion (7w) of the terminal (7) and at least a portion (lw) of the metal current collector (la) in contact with the at least a portion (7w) of the terminal (7) A diffusion step to combine the atoms of
を有する、電気二重層コンデンサの端子固定方法。  A method of fixing terminals of an electric double layer capacitor, comprising:
[11] 前記当接ステップを実施する前に、前記電極(1)の一部分力も前記電極物質層(1 b)を除去して前記当接ステップにて前記端子 (7)と当接する領域(lc)を形成する電 極物質除去ステップをさらに有する、ことを特徴とする請求項 10に記載の電気二重 層コンデンサの端子固定方法。 [11] Before carrying out the contact step, a partial force of the electrode (1) also removes the electrode material layer (1b) to contact the terminal (7) in the contact step (lc) The method of fixing a terminal of an electric double layer capacitor according to claim 10, further comprising the step of: removing an electrode material forming the electrode.
[12] 前記電極 (1)は、金属集電体 (la)の両面に電極物質層 (lb)が形成された構造を 有し、前記電極物質除去ステップにおいては、電極(1)の片面の一部分のみ力 電 極物質層(lb)を除去する、ことを特徴とする請求項 11に記載の電気二重層コンデ ンサの端子固定方法。 [12] The electrode (1) has a structure in which an electrode material layer (lb) is formed on both sides of a metal current collector (la), and in the electrode material removing step, one surface of the electrode (1) is removed. Only part of the power The method for fixing terminals of an electric double layer capacitor according to claim 11, characterized in that an electrode material layer (lb) is removed.
[13] 前記端子(7)は金属の薄片であり、前記端子(7)の厚さは電極物質層 (lb)の厚さ よりも小さ 、、ことを特徴とする請求項 11に記載の電気二重層コンデンサの端子固定 方法。  [13] The electricity according to claim 11, characterized in that the terminal (7) is a thin piece of metal, and the thickness of the terminal (7) is smaller than the thickness of the electrode material layer (lb). How to fix the terminal of double layer capacitor.
[14] 前記金属集電体(la)と、前記端子 (7)とは同じ材料にて形成されている、ことを特 徴とする請求項 1に記載の電気二重層コンデンサの端子固定方法。  [14] The method for fixing a terminal of an electric double layer capacitor according to claim 1, characterized in that the metal current collector (la) and the terminal (7) are formed of the same material.
[15] 前記拡散ステップは、前記端子 (7)の該少なくとも一部分 (7w)及び前記金属集電 体(la)の該少なくとも一部分(lw)を加圧しながら微小振動を加えることによって両 者の原子を結合させる、ことを特徴とする請求項 10から 14のいずれかに記載の電気 二重層コンデンサの端子固定方法。  [15] The diffusion step is performed by applying a micro vibration while pressurizing the at least a portion (7w) of the terminal (7) and the at least a portion (lw) of the metal current collector (la). The terminal fixing method of the electric double layer capacitor according to any one of claims 10 to 14, characterized in that
PCT/JP2006/302139 2005-02-18 2006-02-08 Method for securing terminal of electric double layer capacitor WO2007091308A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/302139 WO2007091308A1 (en) 2006-02-08 2006-02-08 Method for securing terminal of electric double layer capacitor
US11/816,367 US7766473B2 (en) 2005-02-18 2006-02-08 Inkjet recording device and inkjet recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/302139 WO2007091308A1 (en) 2006-02-08 2006-02-08 Method for securing terminal of electric double layer capacitor

Publications (1)

Publication Number Publication Date
WO2007091308A1 true WO2007091308A1 (en) 2007-08-16

Family

ID=38344916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302139 WO2007091308A1 (en) 2005-02-18 2006-02-08 Method for securing terminal of electric double layer capacitor

Country Status (1)

Country Link
WO (1) WO2007091308A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164164A (en) * 2007-12-28 2009-07-23 Elna Co Ltd Process for fabricating electrode element and electrochemical device for storage equipped with electrode element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5570019A (en) * 1978-11-20 1980-05-27 Matsushita Electric Ind Co Ltd Aluminum electrolytic condenser
JPH0468512A (en) * 1990-07-10 1992-03-04 Elna Co Ltd Electric double layer capacitor
JPH05185244A (en) * 1991-12-27 1993-07-27 Seiwa Seisakusho:Kk Welding method for aluminum foil
JPH0955344A (en) * 1995-08-11 1997-02-25 Elna Co Ltd Manufacture of electric double layer capacitor element
JPH11347742A (en) * 1998-06-12 1999-12-21 Honda Motor Co Ltd Superposed arc welding method for aluminum work
JP2001118751A (en) * 1999-10-18 2001-04-27 Tokin Corp Electric double layered capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5570019A (en) * 1978-11-20 1980-05-27 Matsushita Electric Ind Co Ltd Aluminum electrolytic condenser
JPH0468512A (en) * 1990-07-10 1992-03-04 Elna Co Ltd Electric double layer capacitor
JPH05185244A (en) * 1991-12-27 1993-07-27 Seiwa Seisakusho:Kk Welding method for aluminum foil
JPH0955344A (en) * 1995-08-11 1997-02-25 Elna Co Ltd Manufacture of electric double layer capacitor element
JPH11347742A (en) * 1998-06-12 1999-12-21 Honda Motor Co Ltd Superposed arc welding method for aluminum work
JP2001118751A (en) * 1999-10-18 2001-04-27 Tokin Corp Electric double layered capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164164A (en) * 2007-12-28 2009-07-23 Elna Co Ltd Process for fabricating electrode element and electrochemical device for storage equipped with electrode element

Similar Documents

Publication Publication Date Title
EP2355208B1 (en) Electrical energy storage device
JP4401065B2 (en) Secondary battery and manufacturing method thereof
JP4588331B2 (en) Square battery and manufacturing method thereof
JP4768912B2 (en) Method for manufacturing coin-type battery
JP2005183332A (en) Battery
JP6931460B2 (en) Batteries and battery manufacturing methods
KR102236759B1 (en) Battery and method of manufacturing battery
JP6964268B2 (en) Battery module and its manufacturing method
JP3888434B2 (en) Battery manufacturing method
JP2023089036A (en) Terminal for secondary battery and method for manufacturing terminal for secondary battery
JP5229440B2 (en) Electrochemical devices
JP2000164195A (en) Nonaqueous electrolyte secondary battery
JP2001052756A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP3707945B2 (en) Cylindrical battery
WO2007091308A1 (en) Method for securing terminal of electric double layer capacitor
JP2001291506A (en) Sealed type battery
JPH07226197A (en) Battery
WO2015054949A1 (en) Power capacitor and manufacturing method thereof
JP2000082641A (en) Electric double-layer capacitor
JP7285817B2 (en) SEALED BATTERY AND METHOD OF MANUFACTURING SEALED BATTERY
JP7402202B2 (en) Terminal components and terminal component manufacturing method
JPWO2018235768A1 (en) Storage element
JP2008140581A (en) Battery
WO2007043145A1 (en) Chip type electric double layer capacitor and production method therefor
JP2004281236A (en) Battery pack of flat unit cell

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11816367

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP