WO2007091300A1 - Proportional solenoid valve - Google Patents

Proportional solenoid valve Download PDF

Info

Publication number
WO2007091300A1
WO2007091300A1 PCT/JP2006/302041 JP2006302041W WO2007091300A1 WO 2007091300 A1 WO2007091300 A1 WO 2007091300A1 JP 2006302041 W JP2006302041 W JP 2006302041W WO 2007091300 A1 WO2007091300 A1 WO 2007091300A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron core
peripheral surface
core
movable
fixed
Prior art date
Application number
PCT/JP2006/302041
Other languages
French (fr)
Japanese (ja)
Inventor
Takemi Kato
Kouichi Teraki
Original Assignee
Koganei Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koganei Corporation filed Critical Koganei Corporation
Priority to JP2007557692A priority Critical patent/JP4612059B2/en
Priority to PCT/JP2006/302041 priority patent/WO2007091300A1/en
Publication of WO2007091300A1 publication Critical patent/WO2007091300A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • F16K31/0658Armature and valve member being one single element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats

Definitions

  • the present invention relates to a proportional solenoid valve for steplessly changing the flow rate and pressure of compressed air and liquid flowing in a flow path.
  • Proportional solenoid valves are used in pneumatic control circuits to control the flow rate and pressure of compressed air flowing in a flow path in a stepless manner.
  • the proportional solenoid valve includes a valve body that adjusts the valve opening degree of the fluid passage that constitutes the pneumatic control circuit, and a solenoid that generates a magnetic force corresponding to the drive current supplied to the coil.
  • a spring force in the direction of closing or opening the fluid flow path is applied to the valve body of the proportional solenoid valve by the spring member, and the valve body is sized by the magnetic force generated in the solenoid by piled on the spring force. In response, the opening of the fluid flow path is changed steplessly.
  • a fixed iron core that is, a core
  • a movable iron core that is, a plunger
  • a valve body is provided in the movable iron core.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-324788
  • the valve opening is controlled by the drive current supplied to the coil, the flow rate and pressure of the fluid should be controlled with high accuracy if the drive current and the valve opening can be matched with high accuracy. Can do. However, depending on the axial position of the movable core, the distance between the base end surface of the movable core and the distal end surface of the fixed core opposite to the movable core changes, so that there is a gap between the fixed core and the movable core. The acting magnetic force changes depending on the position of the movable iron core. For this reason, the valve opening set by the stroke of the movable iron core is constant against changes in the drive current. In other words, linearity cannot be obtained between the drive current and the valve opening.
  • a concave portion is formed at the distal end portion of the fixed core, and the small diameter portion formed at the proximal end portion of the movable core is inserted into the concave portion, whereby the distal end portion of the fixed core and the proximal end portion of the movable core are pivoted. It has been found that if the overlap is partly in the direction, a magnetic field transverse to the radial direction is formed in the overlapped part, and the linearity between the drive current and the valve opening is improved. However, some pneumatic actuators and hydraulic actuators require proportional solenoid valves with more sufficient linearity.
  • An object of the present invention is to provide a high-accuracy proportional solenoid valve in which the amount of change in valve opening changes linearly with the amount of change in drive current supplied to a coil.
  • the proportional solenoid valve of the present invention includes a coil in which a fixed iron core is fixed, a movable iron core that is slidably incorporated in the inside of the coil coaxially with the fixed iron core, and is movable. It is provided at the tip of the iron core and is disposed between the movable iron core and the fixed iron core, and a valve body that contacts the valve seat and adjusts the communication opening degree between the primary flow path and the secondary flow path.
  • a proportional electromagnetic valve having a spring member for biasing the valve body to an initial position, wherein a concave portion is formed at a distal end portion of the fixed iron core, and a base end portion of the movable iron core is formed on an inner peripheral surface of the concave portion.
  • a fitting portion formed with an outer peripheral surface facing through a gap is formed at the proximal end portion of the movable core, and a tapered surface having a small diameter toward the distal end surface is formed on the outer peripheral surface of the distal end portion of the fixed core.
  • the base end portion of the movable core is connected to the fitting portion and is directed to the tip end portion of the movable core.
  • a tapered surface having a large diameter is formed, and the inner peripheral surface of the fixed iron core is inclined in a direction of increasing the diameter toward the distal end surface, while the outer peripheral surface of the fitting portion is directed toward the proximal end surface. Inclination is made in the direction of the small diameter, and the inclination angle of the outer peripheral surface is inclined larger than the inclination angle of the inner peripheral surface.
  • the inclination angle of the outer peripheral surface is 5 degrees, and the inclination angle of the inner peripheral surface is 4 degrees.
  • a depth dimension of an opposing surface which is a bottom surface of the concave portion of the fixed iron core is 2.5 mm.
  • the inner peripheral surface of the concave portion of the fixed iron core is inclined in the direction of increasing the diameter toward the distal end surface, while the outer peripheral surface of the fitting portion of the movable core is decreased in diameter toward the proximal end surface.
  • the amount of change in the valve opening is controlled in the coil by inclining the inclination angle of the outer peripheral surface of the fitting portion of the movable core larger than the inclination angle of the inner peripheral surface of the concave portion of the fixed core.
  • the amount of change in the supplied drive current can be changed linearly, and the operating characteristics of the proportional solenoid valve can be made highly accurate.
  • the operating characteristics can be improved, and the depth dimension of the recess is 2.5 mm.
  • the operating characteristics can be enhanced.
  • FIG. 1 is a perspective view showing a proportional solenoid valve according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a cross-sectional view taken along line BB in FIG.
  • FIG. 4 is a partially enlarged sectional view of FIG.
  • FIG. 5 is a partially enlarged cross-sectional view of FIG. 4 with the compression coil spring removed.
  • FIG. 6 (A) to (F) are characteristic diagrams showing the operating characteristics of the proportional solenoid valve.
  • the proportional solenoid valve 10 has a flow path block 11 and a solenoid 12 attached to the flow path block 11, and a fastening plate 13 fixed to the solenoid 12 is screwed to the flow path block 11. By doing so, the solenoid 12 is attached to the flow path block 11.
  • the flow path block 11 is formed of a substantially rectangular parallelepiped metal material.
  • the flow path block 11 includes a primary side flow path or primary port 14 and a secondary side flow path or secondary flow path.
  • the secondary port 15 is formed coaxially with the longitudinal direction.
  • the primary side port 14 communicates with the central portion of the valve chamber 16 via a communication hole 17, and the secondary side port 15 communicates with the outer periphery of the valve chamber 16 via a communication hole 18.
  • the periphery of the opening on the valve chamber 16 side of the communication hole 17 is a valve seat 19, and the inner diameter T of the communication hole 17 is the inner diameter of the valve seat 19! /.
  • the solenoid 12 has a solenoid assembly 22 covered with a resin mold body 21.
  • the solenoid assembly 22 is provided integrally with the cylindrical portion 23a and both ends thereof.
  • a bobbin 23 having flanges 23b and 23c is provided, and a coil 24 is attached to the outside of the bobbin 23.
  • the bobbin 23 is incorporated in the magnetic frame 25, and the magnetic frame 25 is formed by bending a steel plate into a quadrilateral shape and forming a front wall 25a, a rear wall 25b, and upper and lower end walls 25c, 25d.
  • the cross section has a quadrilateral shape.
  • the bobbin 23 is assembled in the magnetic frame 25 with its flange 23b in contact with the inner surface of the end wall 25c and the flange 23c in contact with the inner surface of the end wall 25d.
  • the bobbin 23 is fixed to the magnetic frame 25 by a magnetic ring 27 fitted in a through hole 26 formed in the end walls 25c and 25d.
  • a printed circuit board 29 to which two power supply terminals 28a and 28b are fixed is disposed on the front wall 25a of the magnetic frame 25, and both ends of the coil 24 are connected to the printed circuit board 29.
  • the printed circuit board 29 is provided with a wiring pattern for electrically connecting both ends of the coil 24 to the power supply terminals 28a and 28b.
  • a ground terminal 30 bent in an L shape is disposed on the surface of the printed circuit board 29, and an engagement piece 30 a that engages with an engagement hole of the magnetic frame 25 is provided on the ground terminal 30.
  • the printed circuit board 29 and the ground terminal 30 are fixed to the magnetic frame 25 by screw members 31.
  • a male screw portion 31 a that is fastened to a screw hole formed in the magnetic frame 25 is provided at the base end portion of the screw member 31, and a screw hole 33 that opens to the exposed surface 32 at the tip is formed. It is formed at the tip of the screw member 31.
  • the solenoid assembly 22 has the coil 24 and the magnetic frame 25 attached to the bobbin 23.
  • the solenoid assembly 22 is placed in a mold for resin molding and melted.
  • the solenoid 12 having the solenoid assembly 22 and the resin mold body 21 can be manufactured by filling the mold in the mold. During resin molding, the exposed surface 32 of the screw member 31 is brought into contact with the inner surface of the mold, thereby preventing the solenoid assembly 22 from being displaced in the mold.
  • a proportional solenoid valve having a magnetic frame 25 without a resin mold body 21 as a case may be used.
  • the power supply terminals 28a, 28b and the grounding terminal 30 protrude from the front surface of the solenoid 12, and a connector 34 is attached to the rubber seal member at the terminals 28a, 28b, 30. It is designed to be installed via 35.
  • the connector 34 is provided with power supply cables 36a, 36b and a ground cable 37. When the terminals 28a, 28b, 30 are inserted into the four sides of the connector 34, the terminals 28a, 28b, 30 to Cape Nore 36a, 36b, 37 Each is electrically connected.
  • a through hole 38 is formed in the connector 34, and a screw member 39 that is screwed into a screw hole 33 formed in the screw member 31 is attached to the through hole 38 in the connector 34. It is becoming possible.
  • a fixed iron core 40 is incorporated in the solenoid 12, and the fixed iron core 40 is fixed to the solenoid 12 by a nut 41 screwed to the base end portion of the fixed iron core 40.
  • a non-magnetic stainless steel guide tube 42 is fixed to the fixed core 40 !.
  • a movable iron core 43 is incorporated coaxially with the fixed iron core 40 so as to be movable in the axial direction, and a compression coil spring 44, that is, a spring member is incorporated between the fixed iron core 40 and the movable iron core 43. This is happening.
  • the tip of the compression coil spring 44 is accommodated in an accommodation hole 43 a formed in the movable iron core 43.
  • the movable iron core 43 is equipped with a wear ring 45 that is in sliding contact with the inner peripheral surface of the guide tube 42.
  • the tip of the movable iron core 43 contacts the valve seat 19 formed in the flow path block 11.
  • a poppet type valve element 46 is attached.
  • the valve opening is set according to the distance that the valve body 46 is piled up by the spring force and moves away from the valve seat 19. Therefore, when the solenoid valve 10 is energized to the coil 24 with the initial position when the valve body 46 is in contact with the valve seat 19 when the valve body 46 is in contact with the valve seat 19, the valve body 46 is separated from the valve seat 19 and opened. It becomes a valve state.
  • the fixed iron core 40 is formed of a hollow member, and an adjustment screw 47 that contacts the end of the compression coil spring 44 is provided in the hollow hole 40a of the fixed iron core 40 in order to adjust the spring force of the compression coil spring 44.
  • the male screw 4 7a of the adjusting screw 47 is screwed to the female screw 40b formed in the fixed iron core 40. Therefore, the spring force applied to the movable iron core 43 by the compression coil spring 44 is adjusted by rotating the adjusting screw 47 to change the axial position of the adjusting screw 47 with respect to the fixed iron core 40.
  • the movable core 43 is formed with a communication hole 48 for communicating the gap between the movable core 43 and the fixed core 40 with the valve chamber 16, and the pressure in the valve chamber 16 applied to the movable core 43 is as follows.
  • the valve opening of the proportional solenoid valve 10 is controlled by changing the drive current value, and the drive current
  • the drive voltage pulse width is changed by PWM control.
  • the drive current value is controlled by PWM control
  • the movable iron core 43 is driven in the axial direction with slight vibration, and the primary side port 14 is changed to the secondary side port by changing the drive current.
  • the valve body 46 comes into contact with the valve seat 19 by the spring force and the fluid flow is cut off.
  • a fixed side taper surface 51 whose outer diameter becomes smaller as it faces the annular front end surface 50 is formed at the front end of the fixed iron core 40.
  • a recess 52 is formed in the center, and a spacer 53 that also has a nonmagnetic material force is provided in the recess 52.
  • the spacer 53 is in contact with the facing surface 54 that is the bottom surface of the recess 52.
  • the outer diameter of the fixed core 40 is Dl
  • the outer diameter of the tip 50 is D2
  • the inner diameter of the tip 50 is D3
  • the depth of the recess 52 is P.
  • Spacer 53 has a thickness dimension of R.
  • a fitting portion 55 is formed at the base end portion of the movable core 43 so as to enter the recess 52 of the fixed core 40 through a gap.
  • the fitting portion 55 has an outer peripheral surface 57 that overlaps the inner peripheral surface 56 of the recess 52 via a gap, and the base end surface 58 of the movable core 43 is opposed to the opposing surface 54 of the recess 52 of the fixed core 40. In this state, the movable iron core 43 moves in the guide tube 42 in the axial direction.
  • the movable iron core 43 is formed with a movable-side taper surface 59 whose outer diameter increases toward the tip end side of the movable iron core 43 connected to the fitting portion 55, and this taper surface 59 is fixed. It faces the taper surface 51 of the iron core 40.
  • the portion where the tapered surface 59 is formed and the fitting portion 55 are formed at the base end portion of the movable iron core 43.
  • the outer diameter of the movable iron core 43 is dl
  • the outer diameter of the base end face 58 is d2
  • the inner diameter of the base end face 58 that is, the inner diameter of the receiving hole 43a for accommodating the compression coil spring 44 is d3. It has become.
  • the inner peripheral surface 56 of the recess 52 formed at the distal end portion of the fixed core 40 is inclined so that the inner diameter increases toward the distal end surface 50, and the inclination angle is ⁇ . .
  • the outer peripheral surface 57 of the fitting portion 55 of the movable core 43 is inclined so that the outer diameter decreases toward the base end surface 58, and the inclination angle is ex 2.
  • the angle ex 2 is set larger than the inclination angle oc 1.
  • the inclination angle of the taper surface 51 on the fixed side of the fixed iron core 40 is ⁇ 1
  • the inclination angle of the movable side taper surface 59 of the movable iron core 43 is ⁇ 2.
  • FIG. 2 shows that the valve body 46 provided at the tip of the movable iron core 43 comes into contact with the valve seat 19 by the spring force of the compression coil spring 44 and the flow path in the flow path block 11 is closed.
  • the initial state is shown.
  • the coil 24 is energized in this state, the fixed iron core 40 and the movable iron core 43 are excited, and the movable iron core 43 moves to the fixed iron core 40 with a spring force, and the valve body 46 moves to the valve seat.
  • the fluid flows from the primary side port 14 toward the secondary side port 15 away from 1 9.
  • the valve opening degree set between the valve body 46 and the valve seat 19 gradually increases.
  • the position at which the valve body 46 is separated by a predetermined distance is the maximum valve opening, and the flow rate of the fluid flowing from the primary side port 14 to the secondary side port 15 becomes almost constant without increasing even if the valve body 46 is further away.
  • the maximum stroke of the valve body 46 that is the maximum flow rate is a value corresponding to the inner diameter T of the valve seat 19.
  • the maximum stroke S of the valve body 46 with the maximum valve opening is set to about 1.5 mm in consideration of variation in dimensions because the illustrated inner diameter of the valve seat 19 is 2 mm.
  • the movable iron core 43 is shown by a solid line as a position corresponding to when the valve body 46 is in contact with the valve seat 19, and the movable iron core 43 is fixed to the position of the maximum stroke S shown by the two-dot chain line.
  • the valve opening becomes maximum.
  • the position of this maximum stroke S is set so that the base end surface 58 of the movable iron core 43 does not come into contact with the spacer 53. If the movable iron core 43 moves further, the base end surface 58 will be non-magnetic spacer. Therefore, it is possible to prevent the base end face 58 from directly colliding with the fixed iron core 40.
  • the magnetic force that is axial thrust from the fixed iron core 40 to the movable iron core 43 largely depends on the strength of the magnetic field formed in the axial direction between both iron cores. of In the region where the inner peripheral surface 56 and the outer peripheral surface 57 of the fitting portion 55 of the movable iron core 43 overlap, the magnetic field crosses in the radial direction, and the movable iron core 43 is sucked toward the fixed iron core 40 in the axial direction. It does not contribute to the thrust force, but becomes a reactive magnetic field.
  • the fixed iron core 40 has a fixed-side taper surface 51 inclined at an angle ⁇ 1 so as to have a small diameter toward the front-end surface 50 and a concave portion 52 formed at the front-end portion.
  • a fitting portion 55 is formed at the base end portion of the movable core 43 so as to enter the inner peripheral surface 56 of the concave portion 52 of the movable core 43 through a gap, and the movable iron is connected to the outer peripheral surface 57 of the fitting portion 55.
  • a movable side taper surface 59 inclined at an angle ⁇ 2 is formed so as to increase in diameter toward the tip of the core 43.
  • the inclination angle ⁇ 2 of the outer peripheral surface 57 of the movable iron core 43 is set so that the inclination angle ⁇ beam of the inner peripheral surface 56 of the fixed iron core 40 is also large.
  • the inclination angle a 2 of the outer circumferential surface 57 is set to the inner circumferential surface 56. If the tilt angle is set to be greater than the inclination angle a 1, the ineffective magnetic field increases even when the movable core 43 approaches the fixed core 40, so that the attractive force that can be held by the movable core 43 from the fixed core 40 is kept constant. Is done.
  • the inclination angle a2 of the outer peripheral surface 57 is set to be larger than the inclination angle ⁇ beam of the inner peripheral surface 56, the outer peripheral edge of the base end surface 58 becomes inward as the movable core 43 approaches the fixed core 40. Even if the movable iron core 43 is slightly vibrated by the drive current, the fitting portion 55 is prevented from coming into contact with the inner peripheral surface 56. As a result, the amount of change in the drive current value supplied to the coil 24 and the opening of the valve body 46 change linearly, and a highly accurate proportional solenoid valve is obtained.
  • FIGS. 6 (A) to 6 (F) are characteristic diagrams showing the operating characteristics of the proportional solenoid valve of the present invention.
  • Figure 6 (A) to FIG. 6 (F) show Examples 1 to 6.
  • the inclination angle ex 1 of the inner peripheral surface 56 is 4 degrees
  • the inclination angle ⁇ 2 of the outer peripheral surface 57 is ⁇ .
  • the beam was also set to 1 degree, 5 degrees.
  • the outer diameter D1 of the fixed iron core 40 was set to 12 mm
  • the outer diameter D2 of the tip face 50 was set to 9.5 mm
  • the inner diameter D3 of the tip face 50 was set to 9 mm.
  • the outer diameter of the movable core 43 was set to 11.3 mm for dl, the outer diameter of the base end face 58 was set to 8.2 mm, and the inner diameter d3 of the base end face 58 was set to 4 mm.
  • the tilt angle ⁇ 2 is 45 degrees in each example.
  • the inclination angle ⁇ 1 of the taper surface 51 was set to 25 degrees, and in Examples 4 to 6, the inclination angle ⁇ 1 of the taper surface 51 was set to 30 degrees.
  • the depth dimension ⁇ ⁇ of the recess 52 is changed to 2.5, 3.0, and 3.5, and the movable core 43 is in contact with the spacer 53 when the movable core 43 contacts the spacer 53.
  • the thickness of the spacer 53 was made to correspond to the depth dimension P of the recess 52 so that the distance between the base end face 58 and the facing face 54 of the fixed iron core 40 was lmm.
  • the depth dimension of the recess 52 is changed to 2.5, 3.0, and 3.5, and the movable core 43 when the movable core 43 contacts the spacer 53 is changed.
  • the thickness of the spacer 53 was made to correspond to the depth dimension P of the recess 52 so that the distance between the base end surface 58 of the core and the facing surface 54 of the fixed core 40 was lmm.
  • Fig. 6 shows that in each of Examples 1 to 6, three types of drive currents of 300 mA, 200 mA, and 100 mA were supplied, and the movable iron core 43 had a base end surface 58 of 0.3 mm from the spacer 53.
  • the movable core 43 was moved from the distant position to a position 1.5 mm away, and the relationship between the drive current and the attractive force acting on the movable core 43 was measured for each 0.1 mm.
  • the base end face 58 is 0.3 mm away from the spacer 53
  • the base end face 58 is 1.3 mm away from the facing face 54
  • the base end face 58 is 0.8 mm away from the spacer 53
  • the end face 58 is 1. 8 mm away from the opposing face 54 force.
  • valve body 46 comes into contact with the valve seat 19 and the movable iron core 43 moves from the closed state toward the fixed iron core 40, so that the valve body 46 is fully opened. 1. Omm force etc.
  • the depth dimension P of the recess 52 is 2.5 mm, and the inclination angle ⁇ 1 is 2
  • proportional solenoid valve 10 with optimum operating characteristics is obtained.
  • the measured value force is that the inclination angle ⁇ 1 is preferably 25 degrees.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.
  • the proportional solenoid valve 10 shown in the figure can be similarly applied to the proportional solenoid valve used in the hydraulic pressure circuit used in the pneumatic circuit.
  • a fluid pressure circuit such as a pneumatic circuit
  • a proportional solenoid valve for controlling the flow rate and pressure of fluid.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

A proportional solenoid valve (10) comprises a coil (24) to which a fixed core (40) is secured, a movable core (43) which is assembled inside the coil (24) so as to be coaxially with the fixed core (40) and movably in the axial direction, and a valve element (46) provided at the end of the movable core (43). The movable core (43) includes a compression coil spring (44) for biasing the valve element (46) to the initial position. A recessed part (52) is formed at the tip end of the fixed core (40), and a fitting part (55) which has an outer peripheral surface (57) facing the inner peripheral surface (56) of the recessed part (52) through a clearance is formed at the proximal end of the movable core (43). The inner peripheral surface (56) of the fixed core (40) is tilted in the direction along which the diameter is increased toward the distal end face, and the outer peripheral surface of the fitting part (55) is tilted in the direction along which that the diameter is reduced toward the proximal end face. The tilt angle (α2) of the outer peripheral surface (57) is larger than the tilt angle (α1) of the inner peripheral surface (56).

Description

明 細 書  Specification
比例電磁弁  Proportional solenoid valve
技術分野  Technical field
[0001] 本発明は、流路内を流れる圧縮空気や液体の流量や圧力を無段階に変化させる ための比例電磁弁に関する。  [0001] The present invention relates to a proportional solenoid valve for steplessly changing the flow rate and pressure of compressed air and liquid flowing in a flow path.
背景技術  Background art
[0002] 空気圧制御回路には流路内を流れる圧縮空気の流量や圧力を無段階に制御する ために比例電磁弁が使用されている。比例電磁弁は空気圧制御回路を構成する流 体流路のバルブ開度を調整する弁体と、コイルに供給される駆動電流に応じた磁力 を発生させるソレノイドとを有している。比例電磁弁の弁体にはばね部材により流体 流路を閉じる方向または開く方向のばね力が加えられており、ばね力に杭してソレノ イドに発生する磁力により弁体は磁力の大きさに応じて流体流路の開度を無段階に 変化させる。  [0002] Proportional solenoid valves are used in pneumatic control circuits to control the flow rate and pressure of compressed air flowing in a flow path in a stepless manner. The proportional solenoid valve includes a valve body that adjusts the valve opening degree of the fluid passage that constitutes the pneumatic control circuit, and a solenoid that generates a magnetic force corresponding to the drive current supplied to the coil. A spring force in the direction of closing or opening the fluid flow path is applied to the valve body of the proportional solenoid valve by the spring member, and the valve body is sized by the magnetic force generated in the solenoid by piled on the spring force. In response, the opening of the fluid flow path is changed steplessly.
[0003] 比例電磁弁のコイル内部には、特許文献 1に記載されるように、固定鉄心つまりコ ァと可動鉄心つまりプランジャとが組み込まれ、可動鉄心には弁体が設けられている 。コイルに通電すると、コイルの外側に配置される磁気フレームを介して固定鉄心と 可動鉄心は励磁されて、可動鉄心はばね力に抗して固定鉄心に向けて軸方向に駆 動され、弁開度が制御される。  [0003] As described in Patent Document 1, a fixed iron core, that is, a core, and a movable iron core, that is, a plunger, are incorporated in a coil of a proportional solenoid valve, and a valve body is provided in the movable iron core. When the coil is energized, the fixed iron core and the movable iron core are excited through a magnetic frame arranged outside the coil, and the movable iron core is driven axially toward the fixed iron core against the spring force to open the valve. The degree is controlled.
特許文献 1:特開 2004— 324788号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2004-324788
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 弁開度はコイルに供給される駆動電流によって制御されるので、駆動電流と弁開度 とを高精度で対応させるようにできれば、流体の流量や圧力を高 、精度で制御する ことができる。し力しながら、可動鉄心の軸方向の位置に応じて、可動鉄心の基端面 とこれに対向する固定鉄心の先端面との間の距離が変化するので、固定鉄心と可動 鉄心との間に作用する磁力が可動鉄心の位置により変化することになる。このため、 可動鉄心のストロークにより設定されるバルブ開度は、駆動電流の変化に対して一定 とはならず、駆動電流とバルブ開度との間に直線性が得られなくなる。 [0004] Since the valve opening is controlled by the drive current supplied to the coil, the flow rate and pressure of the fluid should be controlled with high accuracy if the drive current and the valve opening can be matched with high accuracy. Can do. However, depending on the axial position of the movable core, the distance between the base end surface of the movable core and the distal end surface of the fixed core opposite to the movable core changes, so that there is a gap between the fixed core and the movable core. The acting magnetic force changes depending on the position of the movable iron core. For this reason, the valve opening set by the stroke of the movable iron core is constant against changes in the drive current. In other words, linearity cannot be obtained between the drive current and the valve opening.
[0005] 固定鉄心の先端部に凹部を形成し、可動鉄心の基端部に形成された小径部を凹 部内に入り込ませることにより、固定鉄心の先端部と可動鉄心の基端部とを軸方向に 一部オーバーラップさせると、オーバーラップした部分において径方向に横断する磁 界が形成されることになり、駆動電流と弁開度との間の直線性が向上することが判明 しているが、空気圧作動機器や液体圧作動機器によっては、より十分な直線性を持 つた比例電磁弁が求められている。  [0005] A concave portion is formed at the distal end portion of the fixed core, and the small diameter portion formed at the proximal end portion of the movable core is inserted into the concave portion, whereby the distal end portion of the fixed core and the proximal end portion of the movable core are pivoted. It has been found that if the overlap is partly in the direction, a magnetic field transverse to the radial direction is formed in the overlapped part, and the linearity between the drive current and the valve opening is improved. However, some pneumatic actuators and hydraulic actuators require proportional solenoid valves with more sufficient linearity.
[0006] 本発明の目的は、弁開度の変化量がコイルに供給される駆動電流の変化量に直 線的に変化する高精度の比例電磁弁を提供することにある。  An object of the present invention is to provide a high-accuracy proportional solenoid valve in which the amount of change in valve opening changes linearly with the amount of change in drive current supplied to a coil.
課題を解決するための手段  Means for solving the problem
[0007] 本発明の比例電磁弁は、固定鉄心が内部に固定されるコイルと、前記コイルの内 部に前記固定鉄心と同軸状に軸方向に摺動自在に組み込まれる可動鉄心と、前記 可動鉄心の先端に設けられるとともに、弁座に接触して一次側流路と二次側流路と の連通開度を調整する弁体と、前記可動鉄心と前記固定鉄心との間に配置され前 記弁体を初期位置に付勢するばね部材とを有する比例電磁弁であって、前記固定 鉄心の先端部に凹部を形成する一方、前記可動鉄心の基端部に前記凹部の内周 面に隙間を介して対向する外周面が形成された嵌合部を前記可動鉄心の基端部に 形成し、前記固定鉄心の先端部の外周面に先端面に向けて小径となるテーパ面を 形成する一方、前記可動鉄心の基端部に前記嵌合部から連なり前記可動鉄心の先 端部に向けて大径となるテーパ面を形成し、前記固定鉄心の前記内周面を先端面 に向けて大径となる方向に傾斜させる一方、前記嵌合部の前記外周面を基端面に 向けて小径となる方向に傾斜させるとともに、前記外周面の傾斜角度を前記内周面 の傾斜角度よりも大きく傾斜させることを特徴とする。  [0007] The proportional solenoid valve of the present invention includes a coil in which a fixed iron core is fixed, a movable iron core that is slidably incorporated in the inside of the coil coaxially with the fixed iron core, and is movable. It is provided at the tip of the iron core and is disposed between the movable iron core and the fixed iron core, and a valve body that contacts the valve seat and adjusts the communication opening degree between the primary flow path and the secondary flow path. A proportional electromagnetic valve having a spring member for biasing the valve body to an initial position, wherein a concave portion is formed at a distal end portion of the fixed iron core, and a base end portion of the movable iron core is formed on an inner peripheral surface of the concave portion. A fitting portion formed with an outer peripheral surface facing through a gap is formed at the proximal end portion of the movable core, and a tapered surface having a small diameter toward the distal end surface is formed on the outer peripheral surface of the distal end portion of the fixed core. On the other hand, the base end portion of the movable core is connected to the fitting portion and is directed to the tip end portion of the movable core. A tapered surface having a large diameter is formed, and the inner peripheral surface of the fixed iron core is inclined in a direction of increasing the diameter toward the distal end surface, while the outer peripheral surface of the fitting portion is directed toward the proximal end surface. Inclination is made in the direction of the small diameter, and the inclination angle of the outer peripheral surface is inclined larger than the inclination angle of the inner peripheral surface.
[0008] 本発明の比例電磁弁においては、前記外周面の傾斜角度は 5度であり、前記内周 面の傾斜角度は 4度であることを特徴とする。  [0008] In the proportional solenoid valve of the present invention, the inclination angle of the outer peripheral surface is 5 degrees, and the inclination angle of the inner peripheral surface is 4 degrees.
[0009] 本発明の比例電磁弁においては、前記固定鉄心の前記凹部の底面である対向面 の深さ寸法は 2. 5mmであることを特徴とする。  [0009] In the proportional solenoid valve of the present invention, a depth dimension of an opposing surface which is a bottom surface of the concave portion of the fixed iron core is 2.5 mm.
発明の効果 [0010] 本発明によれば、固定鉄心の凹部の内周面を先端面に向けて大径となる方向に傾 斜させる一方、可動鉄心の嵌合部の外周面を基端面に向けて小径となる方向に傾 斜させるとともに、可動鉄心の嵌合部の外周面の傾斜角度を固定鉄心の凹部の内周 面の傾斜角度よりも大きく傾斜させることにより、弁開度の変化量をコイルに供給され る駆動電流の変化量に対し直線的に変化させることができ、比例電磁弁の作動特性 を高精度とすることができる。特に、可動鉄心の固定鉄心の外周面の傾斜角度を 5度 とし内周面の傾斜角度を 4度とすることにより、作動特性を高めることができ、さらに、 凹部の深さ寸法を 2. 5mmとすることにより作動特性を高めることができる。 The invention's effect [0010] According to the present invention, the inner peripheral surface of the concave portion of the fixed iron core is inclined in the direction of increasing the diameter toward the distal end surface, while the outer peripheral surface of the fitting portion of the movable core is decreased in diameter toward the proximal end surface. And the amount of change in the valve opening is controlled in the coil by inclining the inclination angle of the outer peripheral surface of the fitting portion of the movable core larger than the inclination angle of the inner peripheral surface of the concave portion of the fixed core. The amount of change in the supplied drive current can be changed linearly, and the operating characteristics of the proportional solenoid valve can be made highly accurate. In particular, by setting the inclination angle of the outer peripheral surface of the fixed core of the movable iron core to 5 degrees and the inclination angle of the inner peripheral surface to 4 degrees, the operating characteristics can be improved, and the depth dimension of the recess is 2.5 mm. Thus, the operating characteristics can be enhanced.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]本発明の一実施の形態である比例電磁弁を示す斜視図である。 FIG. 1 is a perspective view showing a proportional solenoid valve according to an embodiment of the present invention.
[図 2]図 1における A— A線断面図である。  FIG. 2 is a cross-sectional view taken along line AA in FIG.
[図 3]図 2における B—B線断面図である。  FIG. 3 is a cross-sectional view taken along line BB in FIG.
[図 4]図 2の一部拡大断面図である。  4 is a partially enlarged sectional view of FIG.
[図 5]圧縮コイルばねを取り除いた状態における図 4の一部拡大断面図である。  FIG. 5 is a partially enlarged cross-sectional view of FIG. 4 with the compression coil spring removed.
[図 6] (A)〜 (F)は、比例電磁弁の作動特性を示す特性線図である。  [FIG. 6] (A) to (F) are characteristic diagrams showing the operating characteristics of the proportional solenoid valve.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、本発明の実施の形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0013] 図 1に示すように、比例電磁弁 10は、流路ブロック 11とこれに取り付けられるソレノ イド 12とを有し、ソレノイド 12に固定される締結プレート 13を流路ブロック 11にねじ止 めすることによりソレノイド 12は流路ブロック 11に取り付けられている。流路ブロック 1 1はほぼ直方体の金属材料により形成されており、図 3に示されるように、流路ブロッ ク 11には一次側流路つまり一次側ポート 14と、二次側流路つまり二次側ポート 15と が長手方向に同軸状に形成されている。一次側ポート 14は弁室 16の中心部に連通 孔 17を介して連通され、二次側ポート 15は弁室 16の外周部に連通孔 18を介して連 通されている。連通孔 17の弁室 16側の開口部周囲は弁座 19となっており、連通孔 1 7の内径 Tは弁座 19の内径となって!/、る。 As shown in FIG. 1, the proportional solenoid valve 10 has a flow path block 11 and a solenoid 12 attached to the flow path block 11, and a fastening plate 13 fixed to the solenoid 12 is screwed to the flow path block 11. By doing so, the solenoid 12 is attached to the flow path block 11. The flow path block 11 is formed of a substantially rectangular parallelepiped metal material. As shown in FIG. 3, the flow path block 11 includes a primary side flow path or primary port 14 and a secondary side flow path or secondary flow path. The secondary port 15 is formed coaxially with the longitudinal direction. The primary side port 14 communicates with the central portion of the valve chamber 16 via a communication hole 17, and the secondary side port 15 communicates with the outer periphery of the valve chamber 16 via a communication hole 18. The periphery of the opening on the valve chamber 16 side of the communication hole 17 is a valve seat 19, and the inner diameter T of the communication hole 17 is the inner diameter of the valve seat 19! /.
[0014] 図 2に示すように、ソレノイド 12は榭脂モールド体 21により覆われるソレノイド組立 体 22を有している。ソレノイド組立体 22は円筒部 23aとこれの両端に一体に設けられ たフランジ 23b, 23cとを備えたボビン 23を有し、ボビン 23の外側にはコイル 24が卷 き付けられている。ボビン 23は磁気フレーム 25の内部に組み込まれており、磁気フ レーム 25は鉄製の板材を四辺形に折り曲げカ卩ェすることにより、正面壁 25a、背面 壁 25bおよび上下の端壁 25c, 25dとを有する断面四辺形となっている。ボビン 23は そのフランジ 23bが端壁 25cの内面に接触し、フランジ 23cが端壁 25dの内面に接触 した状態となって磁気フレーム 25内に組み込まれる。ボビン 23は端壁 25c, 25dに 形成された貫通孔 26に嵌合する磁気リング 27により磁気フレーム 25に固定される。 As shown in FIG. 2, the solenoid 12 has a solenoid assembly 22 covered with a resin mold body 21. The solenoid assembly 22 is provided integrally with the cylindrical portion 23a and both ends thereof. A bobbin 23 having flanges 23b and 23c is provided, and a coil 24 is attached to the outside of the bobbin 23. The bobbin 23 is incorporated in the magnetic frame 25, and the magnetic frame 25 is formed by bending a steel plate into a quadrilateral shape and forming a front wall 25a, a rear wall 25b, and upper and lower end walls 25c, 25d. The cross section has a quadrilateral shape. The bobbin 23 is assembled in the magnetic frame 25 with its flange 23b in contact with the inner surface of the end wall 25c and the flange 23c in contact with the inner surface of the end wall 25d. The bobbin 23 is fixed to the magnetic frame 25 by a magnetic ring 27 fitted in a through hole 26 formed in the end walls 25c and 25d.
[0015] 磁気フレーム 25の正面壁 25aには、 2つの給電端子 28a, 28bが固定されたプリン ト基板 29が配置され、プリント基板 29にはコイル 24の両端部が接続されるようになつ ており、プリント基板 29にはコイル 24の両端部をそれぞれの給電端子 28a, 28bに 電気的に接続するための配線パターンが設けられている。プリント基板 29の表面に は L字形状に折り曲げられたアース端子 30が配置され、このアース端子 30には磁気 フレーム 25の係合孔に係合する係合片 30aが設けられている。プリント基板 29とァ ース端子 30は磁気フレーム 25にねじ部材 31により固定されている。  [0015] A printed circuit board 29 to which two power supply terminals 28a and 28b are fixed is disposed on the front wall 25a of the magnetic frame 25, and both ends of the coil 24 are connected to the printed circuit board 29. The printed circuit board 29 is provided with a wiring pattern for electrically connecting both ends of the coil 24 to the power supply terminals 28a and 28b. A ground terminal 30 bent in an L shape is disposed on the surface of the printed circuit board 29, and an engagement piece 30 a that engages with an engagement hole of the magnetic frame 25 is provided on the ground terminal 30. The printed circuit board 29 and the ground terminal 30 are fixed to the magnetic frame 25 by screw members 31.
[0016] 図 2に示すようにねじ部材 31の基端部には磁気フレーム 25に形成されたねじ孔に 締結される雄ねじ部 31aが設けられ、先端の露出面 32に開口するねじ孔 33がねじ 部材 31の先端部に形成されている。このように、ソレノイド組立体 22はボビン 23に卷 き付けられたコイル 24と磁気フレーム 25とを有しており、ソレノイド組立体 22を榭脂 成形用の金型内に配置して溶融榭脂を金型内に充填することによりソレノイド組立体 22と榭脂モールド体 21とを有するソレノイド 12を製造することができる。榭脂成形時 には、ねじ部材 31の露出面 32を金型内面に接触させることにより金型内でのソレノィ ド組立体 22のずれが防止される。ただし、榭脂モールド体 21を設けることなぐ磁気 フレーム 25をケースとした比例電磁弁としても良い。  As shown in FIG. 2, a male screw portion 31 a that is fastened to a screw hole formed in the magnetic frame 25 is provided at the base end portion of the screw member 31, and a screw hole 33 that opens to the exposed surface 32 at the tip is formed. It is formed at the tip of the screw member 31. Thus, the solenoid assembly 22 has the coil 24 and the magnetic frame 25 attached to the bobbin 23. The solenoid assembly 22 is placed in a mold for resin molding and melted. The solenoid 12 having the solenoid assembly 22 and the resin mold body 21 can be manufactured by filling the mold in the mold. During resin molding, the exposed surface 32 of the screw member 31 is brought into contact with the inner surface of the mold, thereby preventing the solenoid assembly 22 from being displaced in the mold. However, a proportional solenoid valve having a magnetic frame 25 without a resin mold body 21 as a case may be used.
[0017] 図 1に示すように、ソレノイド 12の正面には給電端子 28a, 28bとアース端子 30と力 S 突出しており、これらの端子 28a, 28b, 30にはコネクタ 34がゴム製のシール部材 35 を介して装着されるようになっている。コネクタ 34には給電ケーブル 36a, 36bとァー スケーブル 37とが設けられ、それぞれの端子 28a, 28b, 30をコネクタ 34に設けられ た四咅に挿人させると、それぞれの端子 28a, 28b, 30はケープノレ 36a, 36b, 37に それぞれ電気的に接続される。コネクタ 34をソレノイド 12に締結するために、コネクタ 34には貫通孔 38が形成され、コネクタ 34にはねじ部材 31に形成されたねじ孔 33に ねじ止めされるねじ部材 39が貫通孔 38に取り付けられるようになつている。 As shown in FIG. 1, the power supply terminals 28a, 28b and the grounding terminal 30 protrude from the front surface of the solenoid 12, and a connector 34 is attached to the rubber seal member at the terminals 28a, 28b, 30. It is designed to be installed via 35. The connector 34 is provided with power supply cables 36a, 36b and a ground cable 37. When the terminals 28a, 28b, 30 are inserted into the four sides of the connector 34, the terminals 28a, 28b, 30 to Cape Nore 36a, 36b, 37 Each is electrically connected. In order to fasten the connector 34 to the solenoid 12, a through hole 38 is formed in the connector 34, and a screw member 39 that is screwed into a screw hole 33 formed in the screw member 31 is attached to the through hole 38 in the connector 34. It is becoming possible.
[0018] 図 2に示すように、ソレノイド 12には固定鉄心 40が組み込まれ、固定鉄心 40の基 端部にねじ止めされるナット 41により固定鉄心 40はソレノイド 12に固定されるように なっている。固定鉄心 40には図 2および図 4に示すように、非磁性であるステンレス 製のガイドチューブ 42が固定されて!、る。このガイドチューブ 42の中には軸方向に 移動自在に可動鉄心 43が固定鉄心 40と同軸状に組み込まれるとともに固定鉄心 4 0と可動鉄心 43との間には圧縮コイルばね 44つまりばね部材が組み込まれようにな つている。圧縮コイルばね 44は可動鉄心 43に形成された収容孔 43a内に先端部が 収容されている。 As shown in FIG. 2, a fixed iron core 40 is incorporated in the solenoid 12, and the fixed iron core 40 is fixed to the solenoid 12 by a nut 41 screwed to the base end portion of the fixed iron core 40. Yes. As shown in FIGS. 2 and 4, a non-magnetic stainless steel guide tube 42 is fixed to the fixed core 40 !. In this guide tube 42, a movable iron core 43 is incorporated coaxially with the fixed iron core 40 so as to be movable in the axial direction, and a compression coil spring 44, that is, a spring member is incorporated between the fixed iron core 40 and the movable iron core 43. This is happening. The tip of the compression coil spring 44 is accommodated in an accommodation hole 43 a formed in the movable iron core 43.
[0019] 可動鉄心 43にはガイドチューブ 42の内周面に摺動接触するウエアリング 45が装 着され、可動鉄心 43の先端部には、流路ブロック 11に形成された弁座 19に接触す るポペットタイプの弁体 46が取り付けられている。弁体 46がばね力に杭して弁座 19 から離れる距離に応じて弁開度が設定される。したがって、この比例電磁弁 10は、弁 体 46が弁座 19に接触する閉弁時を初期位置として、コイル 24に通電すると、ばね 力に杭して弁体 46が弁座 19から離れて開弁状態となる。  [0019] The movable iron core 43 is equipped with a wear ring 45 that is in sliding contact with the inner peripheral surface of the guide tube 42. The tip of the movable iron core 43 contacts the valve seat 19 formed in the flow path block 11. A poppet type valve element 46 is attached. The valve opening is set according to the distance that the valve body 46 is piled up by the spring force and moves away from the valve seat 19. Therefore, when the solenoid valve 10 is energized to the coil 24 with the initial position when the valve body 46 is in contact with the valve seat 19 when the valve body 46 is in contact with the valve seat 19, the valve body 46 is separated from the valve seat 19 and opened. It becomes a valve state.
[0020] 固定鉄心 40は中空部材により形成されており、圧縮コイルばね 44のばね力を調整 するために、圧縮コイルばね 44の端部に接触する調整ねじ 47が固定鉄心 40の中空 孔 40aに組み込まれ、固定鉄心 40に形成された雌ねじ 40bに調整ねじ 47の雄ねじ 4 7aがねじ結合されている。したがって、調整ねじ 47を回転させて固定鉄心 40に対す る調整ねじ 47の軸方向位置を変化させることによって圧縮コイルばね 44により可動 鉄心 43に加えられるばね力が調整される。可動鉄心 43には可動鉄心 43と固定鉄心 40との間の隙間と弁室 16とを連通させるために連通孔 48が形成されており、可動鉄 心 43に加えられる弁室 16内の圧力は連通孔 48を介して可動鉄心 43の両端面に加 わる。つまり、可動鉄心 43に軸方向にカ卩わる圧力は相殺されるので、可動鉄心 43に は弁室 16内の圧力による軸方向推力は加わらな!/、。  The fixed iron core 40 is formed of a hollow member, and an adjustment screw 47 that contacts the end of the compression coil spring 44 is provided in the hollow hole 40a of the fixed iron core 40 in order to adjust the spring force of the compression coil spring 44. The male screw 4 7a of the adjusting screw 47 is screwed to the female screw 40b formed in the fixed iron core 40. Therefore, the spring force applied to the movable iron core 43 by the compression coil spring 44 is adjusted by rotating the adjusting screw 47 to change the axial position of the adjusting screw 47 with respect to the fixed iron core 40. The movable core 43 is formed with a communication hole 48 for communicating the gap between the movable core 43 and the fixed core 40 with the valve chamber 16, and the pressure in the valve chamber 16 applied to the movable core 43 is as follows. It is added to both end faces of the movable iron core 43 through the communication hole 48. In other words, since the axial pressure acting on the movable core 43 is canceled out, the axial thrust due to the pressure in the valve chamber 16 is not applied to the movable core 43! /.
[0021] 比例電磁弁 10の弁開度は駆動電流値を変化させることにより制御され、駆動電流 は駆動電圧のパルス幅を PWM制御によって変化される。このように、 PWM制御に よって駆動電流値を制御すると、可動鉄心 43は微振動しながら軸方向に駆動される ことになり、駆動電流を変化させることにより、一次側ポート 14から二次側ポート 15に 流れる圧縮空気や液体の圧力や流量が調整され、駆動電流値が所定値以下となる と、ばね力によって弁体 46が弁座 19に接触して流体の流れが遮断される。 [0021] The valve opening of the proportional solenoid valve 10 is controlled by changing the drive current value, and the drive current The drive voltage pulse width is changed by PWM control. In this way, when the drive current value is controlled by PWM control, the movable iron core 43 is driven in the axial direction with slight vibration, and the primary side port 14 is changed to the secondary side port by changing the drive current. When the pressure and flow rate of the compressed air and liquid flowing through 15 are adjusted and the drive current value becomes a predetermined value or less, the valve body 46 comes into contact with the valve seat 19 by the spring force and the fluid flow is cut off.
[0022] 図 4および図 5に示されるように、固定鉄心 40の先端部には、環状の先端面 50に 向力うに従って外径が小径となる固定側のテーパ面 51が形成されるとともに中心部 に凹部 52が形成され、凹部 52内には非磁性材料力もなるスぺーサ 53が設けられて いる。このスぺーサ 53は凹部 52の底面である対向面 54に接触している。図 5に示す ように、固定鉄心 40の外径寸法は Dl、先端面 50の外径寸法は D2、先端面 50の内 径寸法は D3、凹部 52の深さ寸法は Pとなっており、スぺーサ 53の厚み寸法は Rとな つている。 As shown in FIG. 4 and FIG. 5, a fixed side taper surface 51 whose outer diameter becomes smaller as it faces the annular front end surface 50 is formed at the front end of the fixed iron core 40. A recess 52 is formed in the center, and a spacer 53 that also has a nonmagnetic material force is provided in the recess 52. The spacer 53 is in contact with the facing surface 54 that is the bottom surface of the recess 52. As shown in Figure 5, the outer diameter of the fixed core 40 is Dl, the outer diameter of the tip 50 is D2, the inner diameter of the tip 50 is D3, and the depth of the recess 52 is P. Spacer 53 has a thickness dimension of R.
[0023] 一方、可動鉄心 43の基端部には固定鉄心 40の凹部 52内に隙間を介して入り込 む嵌合部 55が形成されている。この嵌合部 55は、凹部 52の内周面 56に隙間を介し てオーバーラップする外周面 57を有し、可動鉄心 43の基端面 58が固定鉄心 40の 凹部 52の対向面 54に対向した状態となって、可動鉄心 43は軸方向にガイドチュー ブ 42内を移動する。  On the other hand, a fitting portion 55 is formed at the base end portion of the movable core 43 so as to enter the recess 52 of the fixed core 40 through a gap. The fitting portion 55 has an outer peripheral surface 57 that overlaps the inner peripheral surface 56 of the recess 52 via a gap, and the base end surface 58 of the movable core 43 is opposed to the opposing surface 54 of the recess 52 of the fixed core 40. In this state, the movable iron core 43 moves in the guide tube 42 in the axial direction.
[0024] 可動鉄心 43には嵌合部 55に連なって可動鉄心 43の先端部側に向かうに従って 外径が大径となる可動側のテーパ面 59が形成されており、このテーパ面 59は固定 鉄心 40のテーパ面 51に対向して 、る。このようにテーパ面 59が形成された部分と嵌 合部 55とが可動鉄心 43の基端部に形成されている。図 5に示すように、可動鉄心 43 の外径寸法は dl、基端面 58の外径寸法は d2、基端面 58の内径寸法つまり圧縮コィ ルばね 44を収容する収容孔 43aの内径は d3となっている。  [0024] The movable iron core 43 is formed with a movable-side taper surface 59 whose outer diameter increases toward the tip end side of the movable iron core 43 connected to the fitting portion 55, and this taper surface 59 is fixed. It faces the taper surface 51 of the iron core 40. Thus, the portion where the tapered surface 59 is formed and the fitting portion 55 are formed at the base end portion of the movable iron core 43. As shown in Fig. 5, the outer diameter of the movable iron core 43 is dl, the outer diameter of the base end face 58 is d2, and the inner diameter of the base end face 58, that is, the inner diameter of the receiving hole 43a for accommodating the compression coil spring 44 is d3. It has become.
[0025] 固定鉄心 40の先端部に形成された凹部 52の内周面 56は、先端面 50に向けて内 径が大きくなるように傾斜しており、その傾斜角度は α ΐとなっている。これに対して可 動鉄心 43の嵌合部 55の外周面 57は、基端面 58に向けて外径が小さくなるように傾 斜しており、その傾斜角度は ex 2となっており、傾斜角度 ex 2は傾斜角度 oc 1よりも大き く設定されている。さらに、固定鉄心 40の固定側のテーパ面 51の傾斜角度は θ 1と なっており、可動鉄心 43の可動側のテーパ面 59の傾斜角度は Θ 2となっている。 [0025] The inner peripheral surface 56 of the recess 52 formed at the distal end portion of the fixed core 40 is inclined so that the inner diameter increases toward the distal end surface 50, and the inclination angle is αΐ. . On the other hand, the outer peripheral surface 57 of the fitting portion 55 of the movable core 43 is inclined so that the outer diameter decreases toward the base end surface 58, and the inclination angle is ex 2. The angle ex 2 is set larger than the inclination angle oc 1. Furthermore, the inclination angle of the taper surface 51 on the fixed side of the fixed iron core 40 is θ 1 The inclination angle of the movable side taper surface 59 of the movable iron core 43 is Θ2.
[0026] 図 2は、可動鉄心 43の先端に設けられた弁体 46が圧縮コイルばね 44のばね力に より弁座 19に接触して流路ブロック 11内の流路が閉じられて 、る初期状態を示して いる。この状態のもとでコイル 24に通電すると、固定鉄心 40と可動鉄心 43が励磁さ れて、可動鉄心 43は固定鉄心 40に向けてばね力に杭して移動し、弁体 46は弁座 1 9から離れて一次側ポート 14から二次側ポート 15に向けて流体が流れることになる。 弁体 46が弁座 19から離れるに従って、弁体 46と弁座 19との間により設定される弁 開度は徐々に大きくなる。弁体 46が所定距離だけ離れた位置が弁開度最大となり、 それ以上離れても一次側ポート 14から二次側ポート 15に流れる流体流量は増加す ることなくほぼ一定となる。この流量最大値となる弁体 46の最大ストロークは、弁座 19 の内径 Tに対応した値となる。  FIG. 2 shows that the valve body 46 provided at the tip of the movable iron core 43 comes into contact with the valve seat 19 by the spring force of the compression coil spring 44 and the flow path in the flow path block 11 is closed. The initial state is shown. When the coil 24 is energized in this state, the fixed iron core 40 and the movable iron core 43 are excited, and the movable iron core 43 moves to the fixed iron core 40 with a spring force, and the valve body 46 moves to the valve seat. The fluid flows from the primary side port 14 toward the secondary side port 15 away from 1 9. As the valve body 46 moves away from the valve seat 19, the valve opening degree set between the valve body 46 and the valve seat 19 gradually increases. The position at which the valve body 46 is separated by a predetermined distance is the maximum valve opening, and the flow rate of the fluid flowing from the primary side port 14 to the secondary side port 15 becomes almost constant without increasing even if the valve body 46 is further away. The maximum stroke of the valve body 46 that is the maximum flow rate is a value corresponding to the inner diameter T of the valve seat 19.
[0027] 弁開度が最大となる弁体 46の最大ストローク Sは、図示する弁座 19の内径が 2mm であるので、寸法のバラツキを考慮して約 1. 5mmに設定されている。図 5において、 可動鉄心 43は弁体 46が弁座 19に接触しているときに対応した位置として実線で示 されており、可動鉄心 43が二点鎖線で示す最大ストローク Sの位置まで固定鉄心 40 に向けて接近すると、弁開度が最大となる。この最大ストローク Sの位置は、可動鉄心 43の基端面 58がスぺーサ 53には接触しない位置に設定されており、これ以上可動 鉄心 43が移動すると、基端面 58が非磁性のスぺーサ 53に衝突するので基端面 58 が直接固定鉄心 40に衝突することが防止される。  [0027] The maximum stroke S of the valve body 46 with the maximum valve opening is set to about 1.5 mm in consideration of variation in dimensions because the illustrated inner diameter of the valve seat 19 is 2 mm. In Fig. 5, the movable iron core 43 is shown by a solid line as a position corresponding to when the valve body 46 is in contact with the valve seat 19, and the movable iron core 43 is fixed to the position of the maximum stroke S shown by the two-dot chain line. When approaching 40, the valve opening becomes maximum. The position of this maximum stroke S is set so that the base end surface 58 of the movable iron core 43 does not come into contact with the spacer 53. If the movable iron core 43 moves further, the base end surface 58 will be non-magnetic spacer. Therefore, it is possible to prevent the base end face 58 from directly colliding with the fixed iron core 40.
[0028] コイル 24に通電することにより、固定鉄心 40と可動鉄心 43が励磁され、固定鉄心 4 0の先端部と可動鉄心 43の基端部は相互に逆極性となり、可動鉄心 43は固定鉄心 40に向けて磁力により吸引されることになる。この磁力は、コイル 24に供給する駆動 電流値が大きくなると大きくなるが、駆動電流値が同じであれば、可動鉄心 43の基端 面 58が固定鉄心 40に対して軸方向同一の位置となるようにすることが、弁開度の変 化量をコイル 24に供給される駆動電流の変化量に直線的に変化させて高精度の比 例電磁弁とするためには望ましい。  [0028] When the coil 24 is energized, the fixed core 40 and the movable core 43 are excited, the leading end of the fixed core 40 and the base end of the movable core 43 have opposite polarities, and the movable core 43 is the fixed core. It will be attracted to 40 by magnetic force. This magnetic force increases as the drive current value supplied to the coil 24 increases, but if the drive current value is the same, the base end surface 58 of the movable core 43 is in the same axial position with respect to the fixed core 40. This is desirable in order to obtain a proportional solenoid valve with high accuracy by linearly changing the amount of change in the valve opening to the amount of change in the drive current supplied to the coil 24.
[0029] 固定鉄心 40から可動鉄心 43に対して軸方向の推力となる磁力は、両方の鉄心の 間を軸方向に形成される磁界の強度に大きく依存しており、固定鉄心 40の先端部の 内周面 56と可動鉄心 43の嵌合部 55の外周面 57とがオーバーラップする領域には 径方向に磁界が横断することになり可動鉄心 43を軸方向に固定鉄心 40に向けて吸 弓 Iさせる推力には寄与しな 、無効磁界となる。 [0029] The magnetic force that is axial thrust from the fixed iron core 40 to the movable iron core 43 largely depends on the strength of the magnetic field formed in the axial direction between both iron cores. of In the region where the inner peripheral surface 56 and the outer peripheral surface 57 of the fitting portion 55 of the movable iron core 43 overlap, the magnetic field crosses in the radial direction, and the movable iron core 43 is sucked toward the fixed iron core 40 in the axial direction. It does not contribute to the thrust force, but becomes a reactive magnetic field.
[0030] 上述のように、固定鉄心 40の先端部には先端面 50に向けて小径となるように角度 θ 1で傾斜した固定側のテーパ面 51が形成されるとともに凹部 52が形成されている 。一方、可動鉄心 43の基端部には可動鉄心 43の凹部 52の内周面 56に隙間を介し て入り込む嵌合部 55が形成されるとともに嵌合部 55の外周面 57に連なって可動鉄 心 43の先端部に向けて大径となるように角度 Θ 2で傾斜した可動側のテーパ面 59が 形成されている。さら〖こ、可動鉄心 43の外周面 57の傾斜角度《2は、固定鉄心 40の 内周面 56の傾斜角度 αはりも大きく設定されている。 [0030] As described above, the fixed iron core 40 has a fixed-side taper surface 51 inclined at an angle θ1 so as to have a small diameter toward the front-end surface 50 and a concave portion 52 formed at the front-end portion. Yes. On the other hand, a fitting portion 55 is formed at the base end portion of the movable core 43 so as to enter the inner peripheral surface 56 of the concave portion 52 of the movable core 43 through a gap, and the movable iron is connected to the outer peripheral surface 57 of the fitting portion 55. A movable side taper surface 59 inclined at an angle Θ 2 is formed so as to increase in diameter toward the tip of the core 43. Furthermore, the inclination angle << 2 of the outer peripheral surface 57 of the movable iron core 43 is set so that the inclination angle α beam of the inner peripheral surface 56 of the fixed iron core 40 is also large.
[0031] これにより、弁体 46が弁座 19に接触して流路が閉じられた状態力も弁体 46が弁座 19から離れて固定鉄心 40に向けて移動するときには、主として対向面 54と基端面 5 8との間を軸方向に横断する磁界によって可動鉄心 43は固定鉄心 40に向けて吸引 されることになるが、可動鉄心 43が吸引されるに従い、内周面 56と外周面 57とのォ 一バーラップ寸法が大きくなるので、その部分で径方向に横断する無効磁界も大きく なる。  [0031] Thus, when the valve body 46 contacts the valve seat 19 and the flow path is closed, when the valve body 46 moves away from the valve seat 19 toward the fixed iron core 40, The movable core 43 is attracted toward the fixed core 40 by the magnetic field that crosses the base end surface 58 between the inner peripheral surface 56 and the outer peripheral surface 57 as the movable core 43 is attracted. Therefore, the reactive magnetic field that traverses in the radial direction at that portion also increases.
[0032] このように、固定鉄心 40にテーパ面 51が形成され可動鉄心 43にテーパ面 59が形 成されていることと相俟って、外周面 57の傾斜角度 a 2を内周面 56の傾斜角度 a 1 よりも大きく設定すると、可動鉄心 43が固定鉄心 40に接近しても、無効磁界が大きく なることから、可動鉄心 43に固定鉄心 40からカ卩えられる吸引力は一定に保持される 。し力も、外周面 57の傾斜角度 a 2が内周面 56の傾斜角度 αはりも大きく設定され ているので、可動鉄心 43が固定鉄心 40に接近するに従って、その基端面 58の外周 エッジは内周面 56から離れることになり、可動鉄心 43が駆動電流によって微振動し ても、嵌合部 55が内周面 56に接触することが防止される。これにより、コイル 24に供 給される駆動電流値の変化量と弁体 46の開度とが直線的に変化し高精度の比例電 磁弁となる。 In this way, in combination with the tapered surface 51 formed on the fixed iron core 40 and the tapered surface 59 formed on the movable iron core 43, the inclination angle a 2 of the outer circumferential surface 57 is set to the inner circumferential surface 56. If the tilt angle is set to be greater than the inclination angle a 1, the ineffective magnetic field increases even when the movable core 43 approaches the fixed core 40, so that the attractive force that can be held by the movable core 43 from the fixed core 40 is kept constant. Is done. In addition, since the inclination angle a2 of the outer peripheral surface 57 is set to be larger than the inclination angle α beam of the inner peripheral surface 56, the outer peripheral edge of the base end surface 58 becomes inward as the movable core 43 approaches the fixed core 40. Even if the movable iron core 43 is slightly vibrated by the drive current, the fitting portion 55 is prevented from coming into contact with the inner peripheral surface 56. As a result, the amount of change in the drive current value supplied to the coil 24 and the opening of the valve body 46 change linearly, and a highly accurate proportional solenoid valve is obtained.
実施例  Example
[0033] 図 6 (Α)〜図 6 (F)は本発明の比例電磁弁の作動特性を示す特性線図である。図 6 (A)〜図 6 (F)は実施例 1〜6を示し、それぞれの実施例においては、内周面 56の 傾斜角度 ex 1を 4度とし、外周面 57の傾斜角度 α 2を αはりも 1度大きい 5度とした。 さらに、固定鉄心 40の外径寸法 D1を 12mmとし、先端面 50の外径寸法 D2を 9. 5mm とし、先端面 50の内径寸法 D3を 9mmとした。また、可動鉄心 43の外径寸法は dlを 1 1. 3mmとし、基端面 58の外径寸法は d2を 8. 2mmとし、基端面 58の内径寸法 d3を 4 mmとした。傾斜角度 Θ 2はそれぞれの実施例において 45度である。 [0033] FIGS. 6 (A) to 6 (F) are characteristic diagrams showing the operating characteristics of the proportional solenoid valve of the present invention. Figure 6 (A) to FIG. 6 (F) show Examples 1 to 6. In each example, the inclination angle ex 1 of the inner peripheral surface 56 is 4 degrees, and the inclination angle α 2 of the outer peripheral surface 57 is α. The beam was also set to 1 degree, 5 degrees. Furthermore, the outer diameter D1 of the fixed iron core 40 was set to 12 mm, the outer diameter D2 of the tip face 50 was set to 9.5 mm, and the inner diameter D3 of the tip face 50 was set to 9 mm. The outer diameter of the movable core 43 was set to 11.3 mm for dl, the outer diameter of the base end face 58 was set to 8.2 mm, and the inner diameter d3 of the base end face 58 was set to 4 mm. The tilt angle Θ 2 is 45 degrees in each example.
[0034] 実施例 1〜3においてはテーパ面 51の傾斜角度 θ 1を 25度とし、実施例 4〜6にお いてはテーパ面 51の傾斜角度 α 1を 30度とした。  In Examples 1 to 3, the inclination angle θ 1 of the taper surface 51 was set to 25 degrees, and in Examples 4 to 6, the inclination angle α 1 of the taper surface 51 was set to 30 degrees.
[0035] 実施例 1〜3では、凹部 52の深さ寸法 Ρを 2. 5と 3. 0と 3. 5に相違させ、可動鉄心 43がスぺーサ 53に接触したときにおける可動鉄心 43の基端面 58と固定鉄心 40の 対向面 54との距離が lmmとなるように、凹部 52の深さ寸法 Pに対応させてスぺーサ 5 3の厚みを相違させた。同様に、実施例 4〜6においても、凹部 52の深さ寸法を 2. 5 と 3. 0と 3. 5に相違させ、可動鉄心 43がスぺーサ 53に接触したときにおける可動鉄 心 43の基端面 58と固定鉄心 40の対向面 54との距離が lmmとなるように、凹部 52の 深さ寸法 Pに対応させてスぺーサ 53の厚みを相違させた。  [0035] In Examples 1 to 3, the depth dimension 凹 部 of the recess 52 is changed to 2.5, 3.0, and 3.5, and the movable core 43 is in contact with the spacer 53 when the movable core 43 contacts the spacer 53. The thickness of the spacer 53 was made to correspond to the depth dimension P of the recess 52 so that the distance between the base end face 58 and the facing face 54 of the fixed iron core 40 was lmm. Similarly, also in Examples 4 to 6, the depth dimension of the recess 52 is changed to 2.5, 3.0, and 3.5, and the movable core 43 when the movable core 43 contacts the spacer 53 is changed. The thickness of the spacer 53 was made to correspond to the depth dimension P of the recess 52 so that the distance between the base end surface 58 of the core and the facing surface 54 of the fixed core 40 was lmm.
[0036] 図 6は、それぞれの実施例 1〜6において、 300mAと 200mAと 100mAの 3種類の 駆動電流をそれぞれ供給し、可動鉄心 43をその基端面 58がスぺーサ 53から 0. 3m m離れた位置から 1. 5mm離れた位置となるまで可動鉄心 43を移動して、それぞれに ついて 0. 1 mm毎に駆動電流と可動鉄心 43に作用する吸引力との関係を測定した。 基端面 58がスぺーサ 53から 0. 3mm離れた位置では基端面 58は対向面 54から 1. 3mm離れた位置になり、基端面 58がスぺーサ 53から 0. 8mm離れた位置では基端 面 58は対向面 54力ら 1. 8mm離れた位置になる。  [0036] Fig. 6 shows that in each of Examples 1 to 6, three types of drive currents of 300 mA, 200 mA, and 100 mA were supplied, and the movable iron core 43 had a base end surface 58 of 0.3 mm from the spacer 53. The movable core 43 was moved from the distant position to a position 1.5 mm away, and the relationship between the drive current and the attractive force acting on the movable core 43 was measured for each 0.1 mm. When the base end face 58 is 0.3 mm away from the spacer 53, the base end face 58 is 1.3 mm away from the facing face 54, and when the base end face 58 is 0.8 mm away from the spacer 53 The end face 58 is 1. 8 mm away from the opposing face 54 force.
[0037] その結果、 α ΐを 4度とし、 α 2を 5度とするとともに、凹部 52の深さ寸法 Ρを 2. 5mm に設定すると、図 6 (A) (D)に示すように θ 1を 25度としても 30度としてもいずれも良 好な作動特性となった。特に、 θ 1を 25度(図 6 (A) )とする方が、 30度(図 6 (D) )と するよりも作動特性が良好であった。また、可動鉄心 43のストロークが 0. 9mmの範囲 では、図 6 (B)に示すように凹部 52の深さ寸法 Pを 3. Ommとしても作動特性は良好 であることが判明した。一方、 θ 1を 30度とし、凹部 52の深さ寸法 Pを 3. Ommとした場 合には、図 6 (E)に示すように可動鉄心 43の基端面 58が対向面 54力 0. 8mm以上 離れると、吸引力が一定とならな力つた。 [0037] As a result, when α 度 is set to 4 degrees, α 2 is set to 5 degrees, and the depth dimension 凹 部 of the recess 52 is set to 2.5 mm, as shown in FIGS. 6 (A) and 6 (D), θ Both 1 and 25 degrees showed good operating characteristics. In particular, the operating characteristics were better when θ 1 was 25 degrees (Fig. 6 (A)) than when it was 30 degrees (Fig. 6 (D)). In addition, when the stroke of the movable iron core 43 was in the range of 0.9 mm, the operating characteristics were found to be good even when the depth dimension P of the recess 52 was 3. Omm as shown in FIG. 6 (B). On the other hand, when θ 1 is 30 degrees and the depth dimension P of the recess 52 is 3. Omm. In this case, as shown in FIG. 6 (E), when the base end surface 58 of the movable iron core 43 was separated from the opposing surface 54 force by 0.8 mm or more, the suction force was not constant.
[0038] 弁体 46が弁座 19に接触して 、る閉弁状態から可動鉄心 43が固定鉄心 40に向け て移動して弁体 46が全開状態となるのは、図 6に示すストロークでは 1. Omm力ら 0.[0038] The valve body 46 comes into contact with the valve seat 19 and the movable iron core 43 moves from the closed state toward the fixed iron core 40, so that the valve body 46 is fully opened. 1. Omm force etc.
3mmの範囲であるので、凹部 52の深さ寸法 Pが 2. 5mmであって、傾斜角度 θ 1が 2Since the depth is 3 mm, the depth dimension P of the recess 52 is 2.5 mm, and the inclination angle θ 1 is 2
5度または 30度とすると、最適な作動特性の比例電磁弁 10が得られ。特に、傾斜角 度 θ 1を 25度とすることが好ましいことが実測値力も判明した。 If 5 degrees or 30 degrees, proportional solenoid valve 10 with optimum operating characteristics is obtained. In particular, it was found that the measured value force is that the inclination angle θ 1 is preferably 25 degrees.
[0039] 本発明は前記実施の形態に限定されるものではなぐその要旨を逸脱しない範囲 で種々変更可能である。図示した比例電磁弁 10は空気圧回路に使用される力 油 圧回路に使用される比例電磁弁についても同様とすることができる。 [0039] The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. The proportional solenoid valve 10 shown in the figure can be similarly applied to the proportional solenoid valve used in the hydraulic pressure circuit used in the pneumatic circuit.
産業上の利用分野  Industrial application fields
[0040] 空気圧回路等の流体圧回路に使用され流体の流量や圧力を制御するための比例 電磁弁として使用することができる。  [0040] It is used in a fluid pressure circuit such as a pneumatic circuit, and can be used as a proportional solenoid valve for controlling the flow rate and pressure of fluid.

Claims

請求の範囲 The scope of the claims
[1] 固定鉄心が内部に固定されるコイルと、前記コイルの内部に前記固定鉄心と同軸 状に軸方向に摺動自在に組み込まれる可動鉄心と、前記可動鉄心の先端に設けら れるとともに、弁座に接触して一次側流路と二次側流路との連通開度を調整する弁 体と、前記可動鉄心と前記固定鉄心との間に配置され前記弁体を初期位置に付勢 するばね部材とを有する比例電磁弁であって、  [1] A coil in which a fixed iron core is fixed, a movable iron core that is slidably incorporated in the coil in the axial direction coaxially with the fixed iron core, and provided at the tip of the movable iron core, A valve body that contacts the valve seat and adjusts the degree of communication between the primary side flow path and the secondary side flow path, and is disposed between the movable iron core and the fixed iron core and biases the valve body to an initial position. A proportional solenoid valve having a spring member that
前記固定鉄心の先端部に凹部を形成する一方、前記可動鉄心の基端部に前記凹 部の内周面に隙間を介して対向する外周面が形成された嵌合部を前記可動鉄心の 基端部に形成し、  A concave portion is formed at the distal end portion of the fixed core, and a fitting portion in which an outer peripheral surface facing the inner peripheral surface of the concave portion through a gap is formed at the base end portion of the movable core is a base of the movable core. Formed at the end,
前記固定鉄心の先端部の外周面に先端面に向けて小径となるテーパ面を形成す る一方、前記可動鉄心の基端部に前記嵌合部から連なり前記可動鉄心の先端部に 向けて大径となるテーパ面を形成し、  A tapered surface having a small diameter toward the distal end surface is formed on the outer peripheral surface of the distal end portion of the fixed iron core, while the base end portion of the movable iron core is continuous from the fitting portion and is large toward the distal end portion of the movable core. Forming a tapered surface that becomes the diameter,
前記固定鉄心の前記内周面を先端面に向けて大径となる方向に傾斜させる一方、 前記嵌合部の前記外周面を基端面に向けて小径となる方向に傾斜させるとともに、 前記外周面の傾斜角度を前記内周面の傾斜角度よりも大きく傾斜させることを特徴と する比例電磁弁。  While the inner peripheral surface of the fixed iron core is inclined in the direction of a large diameter toward the distal end surface, the outer peripheral surface of the fitting portion is inclined in the direction of a small diameter toward the base end surface, and the outer peripheral surface The proportional solenoid valve is characterized in that an inclination angle of the inner surface is inclined larger than an inclination angle of the inner peripheral surface.
[2] 請求項 1記載の比例電磁弁において、前記外周面の傾斜角度は 5度であり、前記 内周面の傾斜角度は 4度であることを特徴とする比例電磁弁。  [2] The proportional solenoid valve according to claim 1, wherein the outer peripheral surface has an inclination angle of 5 degrees, and the inner peripheral surface has an inclination angle of 4 degrees.
[3] 請求項 1記載の比例電磁弁において、前記固定鉄心の前記凹部の底面である対 向面の深さ寸法は 2. 5mmであることを特徴とする比例電磁弁。 [3] The proportional solenoid valve according to claim 1, wherein a depth dimension of a facing surface which is a bottom surface of the concave portion of the fixed iron core is 2.5 mm.
PCT/JP2006/302041 2006-02-07 2006-02-07 Proportional solenoid valve WO2007091300A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007557692A JP4612059B2 (en) 2006-02-07 2006-02-07 Proportional solenoid valve
PCT/JP2006/302041 WO2007091300A1 (en) 2006-02-07 2006-02-07 Proportional solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/302041 WO2007091300A1 (en) 2006-02-07 2006-02-07 Proportional solenoid valve

Publications (1)

Publication Number Publication Date
WO2007091300A1 true WO2007091300A1 (en) 2007-08-16

Family

ID=38344908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302041 WO2007091300A1 (en) 2006-02-07 2006-02-07 Proportional solenoid valve

Country Status (2)

Country Link
JP (1) JP4612059B2 (en)
WO (1) WO2007091300A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191974A (en) * 2008-02-15 2009-08-27 Hitachi Ltd Normally open solenoid valve and normally closed solenoid valve
JP2012119367A (en) * 2010-11-29 2012-06-21 Shindengen Mechatronics Co Ltd Solenoid
EP3492789A1 (en) * 2017-11-30 2019-06-05 Advance Denki Kogyo Kabushiki Kaisha Solenoid valve

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07280123A (en) * 1994-04-12 1995-10-27 Riken Corp Solenoid valve
WO1997009727A1 (en) * 1995-09-08 1997-03-13 Toto Ltd. Solenoid and solenoid valve
JPH1012435A (en) * 1996-04-25 1998-01-16 Fuji Electric Co Ltd Electromagnetic solenoid
JPH1172177A (en) * 1997-06-30 1999-03-16 Nok Corp Solenoid valve
JPH11132357A (en) * 1997-10-27 1999-05-21 Toyoda Mach Works Ltd Solenoid valve
JP2002332962A (en) * 2001-05-10 2002-11-22 Toyota Industries Corp Control valve for variable displacement compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07280123A (en) * 1994-04-12 1995-10-27 Riken Corp Solenoid valve
WO1997009727A1 (en) * 1995-09-08 1997-03-13 Toto Ltd. Solenoid and solenoid valve
JPH1012435A (en) * 1996-04-25 1998-01-16 Fuji Electric Co Ltd Electromagnetic solenoid
JPH1172177A (en) * 1997-06-30 1999-03-16 Nok Corp Solenoid valve
JPH11132357A (en) * 1997-10-27 1999-05-21 Toyoda Mach Works Ltd Solenoid valve
JP2002332962A (en) * 2001-05-10 2002-11-22 Toyota Industries Corp Control valve for variable displacement compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191974A (en) * 2008-02-15 2009-08-27 Hitachi Ltd Normally open solenoid valve and normally closed solenoid valve
JP2012119367A (en) * 2010-11-29 2012-06-21 Shindengen Mechatronics Co Ltd Solenoid
EP3492789A1 (en) * 2017-11-30 2019-06-05 Advance Denki Kogyo Kabushiki Kaisha Solenoid valve
CN109854803A (en) * 2017-11-30 2019-06-07 先进电气工业株式会社 Solenoid valve
JP7072831B2 (en) 2017-11-30 2022-05-23 アドバンス電気工業株式会社 solenoid valve

Also Published As

Publication number Publication date
JP4612059B2 (en) 2011-01-12
JPWO2007091300A1 (en) 2009-06-25

Similar Documents

Publication Publication Date Title
EP1050703B1 (en) Pilot operated control valves
EP1213521B1 (en) Flow rate control valve
US6179005B1 (en) Spool valve type electromagnetic valve
EP1848013B1 (en) Proportional solenoid and flow control valve employing it
US6405757B1 (en) Low power solenoid valve assembly
ITRM20000484A1 (en) SOLENOID VALVE FOR DISPENSING A VARIABLE FLOW OF A FLUID.
JP2007510563A (en) Valve gate assembly
JP5931742B2 (en) Solenoid valve
US8714179B2 (en) Solenoid valve
JPH0250348B2 (en)
US20080216899A1 (en) Dimensional tolerance stack component and assembly compliant design
US20060169936A1 (en) Solenoid Valves
WO2007091300A1 (en) Proportional solenoid valve
EP1965112A1 (en) Closed end variable bleed actuator and method of making
US5918856A (en) Electropneumatic valve
US20150377378A1 (en) A magnetic valve with an armature arranged inside a piston
US6752375B2 (en) Solenoid-operated valve
CN217055751U (en) Hydraulic proportional electromagnetic valve
US7717400B2 (en) Fluid pressure regulating device
KR20030019175A (en) Solenoid operated valve with integral magnetic separator
CN109958804B (en) Proportional pressure stabilizing valve
CN110177968A (en) The hinged armature valving of electromagnetism
KR100644003B1 (en) Solenoid valve for automatic transmission
JP2005310838A (en) Electromagnetic drive unit
WO2020226101A1 (en) Solenoid valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007557692

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713184

Country of ref document: EP

Kind code of ref document: A1