WO2007086616A1 - 発電装置 - Google Patents

発電装置 Download PDF

Info

Publication number
WO2007086616A1
WO2007086616A1 PCT/JP2007/051865 JP2007051865W WO2007086616A1 WO 2007086616 A1 WO2007086616 A1 WO 2007086616A1 JP 2007051865 W JP2007051865 W JP 2007051865W WO 2007086616 A1 WO2007086616 A1 WO 2007086616A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnet units
units
power generator
roof
Prior art date
Application number
PCT/JP2007/051865
Other languages
English (en)
French (fr)
Inventor
Makoto Ogoshi
Original Assignee
Crystalbay Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crystalbay Co., Ltd. filed Critical Crystalbay Co., Ltd.
Publication of WO2007086616A1 publication Critical patent/WO2007086616A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/12Transversal flux machines

Definitions

  • the present invention relates to a power generator using a permanent magnet unit.
  • the power generation device obtains electric power by converting mechanical energy into electrical energy by electromagnetic action.
  • the present inventor has proposed a torque transmission device disclosed in Patent Document 1 (International Publication WO 3 0 9 4 3 2 9) and a power generation device using the torque transmission device.
  • a magnet wheel having a smaller diameter than this rotor and each having a plurality of permanent magnets in the circumferential direction is arranged at a plurality of circumferential positions of the rotor in which a large number of permanent magnets are arranged in the circumferential direction.
  • the rotor is rotated by driving the magnet wheel by a motor.
  • this rotated rotor rotates another rotor in which a large number of permanent magnets are arranged in the circumferential direction, and generates electromotive force in coreless coils arranged above and below the other rotor.
  • the permanent magnet on the rotor side and the permanent magnet on the magnet wheel side have the same polarity, and the rotor is turned by the repulsion of both, and the magnet wheel is also accelerated in the motor drive direction at the time of the repulsion. ing. However, when both permanent magnets approached, a repulsive force was generated to resist the approach, and it was difficult to obtain a large power generation. Disclosure of the invention
  • the present invention has been made to solve such problems, and its purpose is to have a high power generation efficiency, a simple structure and a low-cost production that is permanent. It is providing the electric power generating apparatus using a magnet.
  • a power generator includes a main rotor attached to a rotating shaft and a first permanent magnet unit with one end attached to the outer circumference of the main rotor and having one polarity on the front end side. And a second permanent magnet unit with the other polarity on the tip and the tip side, and a plurality of first, second,
  • the cut is composed of a magnet body having magnetic poles at both ends, and a first yoke that is disposed on one end face side of the magnet body and has a slope portion so as to have a predetermined angle with respect to one end face.
  • FIG. 1 is an end view showing a partial configuration example of the power generator according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line 2-2 in FIG.
  • FIG. 3 is a cross-sectional view showing a configuration example of the power generation device according to the second embodiment of the present invention.
  • FIG. 4 is a diagram showing a schematic configuration of a power generation system using the power generation device according to the first embodiment.
  • Fig. 5 is an electrical diagram of the power generator in Fig. 1.
  • FIG. 6 shows an example of the configuration of a permanent magnet unit used in the power generator of the present invention.
  • FIG. 7 is a cross-sectional view of the permanent magnet mute shown in FIG. 6 along the line AA.
  • FIG. 8 is a perspective view of one plate-like permanent magnet constituting the magnet body of the permanent magnet unit.
  • FIG. 9 is a perspective view showing a configuration example of a roof-shaped member attached on the upper end surface of the magnet body.
  • FIG. 10 is a perspective view showing a configuration example of a roof-shaped member according to another embodiment.
  • FIG. 11 is a perspective view showing a configuration example of a roof-shaped member according to still another embodiment. '
  • FIG. 12 is a perspective view showing another configuration example of the permanent magnet unit used in the power generator of the present invention.
  • FIG. 1 is an end view showing a partial configuration example of the power generator 40 according to the first embodiment of the present invention.
  • 2 is a cross-sectional view taken along line 2-2 in FIG.
  • the generator 40 is a device in which a main rotor having a permanent magnet unit rotates inside a stator core having a winding line, and an electromotive force is generated in the winding line wound around the core. is there.
  • the rotary shaft 4 3 is supported by a rotating member on a support member (not shown), and the main rotor 44 is attached to the rotary shaft 4 3.
  • the main rotor 44 has a substantially cylindrical shape with a relatively low height, and a support surface 45 for attaching the permanent magnet unit 51, 52 is provided on the outer peripheral surface thereof.
  • the first and second permanent magnet units 5 1 and 5 2 can be attached by an arbitrary method such as screwing or bonding to the support surface 45.
  • the first and second permanent magnet units 5 1, 52 have a roof-shaped member 30 made of a paramagnetic material on one end surface of the magnet body, and a base made of a paramagnetic material on the other end surface.
  • An end yoke 16 is provided.
  • the leading end side of the first permanent magnet unit 51, that is, the roof-shaped member 30 side is the S pole
  • the leading end side of the second permanent magnet unit 52 is the N pole. That is, the first and second permanent magnet units -y ⁇ 5 1 '52 are different in the magnetic pole on the tip side, and the other points are the same.
  • the first and second permanent magnet units 5 1 and 5 2 Details will be described later.
  • the first and second permanent magnet units 51 and 52 are attached to the support surface 45 of the main rotor 44 with the root member 30 outside and the ridges of the roof member 30 are The circles of the locus of the ridge lines of the first and second permanent magnet units 5 1 and 5 2 when the main rotor 44 rotates parallel to the rotation axis 4 3 of the rotor 4 4 are shown in FIG. Shown with a chain line.
  • the support surface 4 5 of the main rotor 4 4 is spaced apart from the first permanent magnet unit 5 1 and the second permanent magnet unit 5 2 force in the axial direction of the rotary shaft 4 3.
  • the two segments 5 3 a of the stator core 5 3 are arranged.
  • the polarities on the tip side (segment part 5 3 a, 5 3 b side) of the two permanent magnet units 5 1, 5 2 arranged in the axial direction are S and N, respectively.
  • the polarity on the tip side of the permanent magnet units 511 and 52 can be arranged in other ways.
  • N, S can be
  • the first and second permanent magnet units 5 1 and 5 2 are arranged in the circumferential direction of the main rotor 44.
  • the first permanent magnet unit 51 and the second permanent magnet unit V ⁇ 52 are arranged at equal intervals. It is preferable that the support surfaces 45 for mounting the permanent magnet units 51 and 52 are provided at equal intervals in the circumferential direction.
  • At least the vicinity of the support surface 4 5 of the main rotor 4 4 may be made of a paramagnetic material.
  • the vicinity of the support surface 45 made of paramagnetic material acts as the proximal end side yoke 16. Therefore, the first and second permanent magnet units 51 and 52 may not include the proximal end side yoke 16.
  • the first and second permanent magnet units 51 and 52 may be fixed directly to the support surface 45 with a fastening bolt 20 described later, or fixed by any other method. Can do.
  • the power generation device 40 is provided with a stator 53 on the circumference so as to surround the outside of the first and second permanent magnet units 5 1 and 52 of the net 5. .
  • the cores 5 3 are preferably arranged at equal intervals. The number of cores 5 3 is the number
  • the circumferential number of the first and second permanent magnets 5 1 and 5 2 is
  • the number of cores 5 3 is 8, the number of cores 5 3 is the first and second.
  • the number of permanent magnets ⁇ 51, 52 can be different from the number in the circumferential direction.
  • each core 5 3 has two segment parts 5 3 a and 5 3 b connected by a connecting part 5 3 c, and the cross section in the direction of the rotating shaft 4 3 is substantially U-shaped. .
  • the end faces of the two segment parts 5 3 a 5 3 b are almost flat
  • the first and second permanent magnet units 51 and 52 are arranged to face each other.
  • the core 53 is made of a ferromagnetic material.
  • the core 5 3 can have other shapes.
  • the non-magnetic, conductive plate-like member 5 is provided on the surface of the two segment flanges 5 3 a and 5 3 b of each core 53 that faces the first and second permanent magnet units 5 1 and 5 2.
  • the plate-like member 5 provided with 5 is typically an aluminum plate.
  • the plate-like member 5 5 has almost the same shape and size as the surfaces of the segment ridges oaa and 53 b.
  • the winding direction of the wires 5 4 a, 5 4 b may be different.
  • the direction of b is the same. Note that the winding direction of the winding lines 5 4 a and 5 4 b may be different.
  • FIG. 3 is a diagram showing a configuration example of the power generation device 40 according to the second embodiment of the present invention, and shows a cross-sectional view in the same plane as FIG.
  • the first and second permanent magnet units 5 1 and 5 2 are arranged in a line in the axial direction of the rotating shaft 4 3 of the main rotor 4 4. Four are arranged. Specifically, the first permanent magnet unit 51 and the second permanent magnet unit 52 are slightly spaced apart from one segment.
  • the polarities on the tip side of the four permanent magnet units 51, 52 arranged in the same row are S, N, N, S in order.
  • the polarities on the tip side of the permanent magnet units 51 and 52 can be arranged in other order.
  • it can be N, S, S, N.
  • the winding directions of the two segment parts 5 3 a, 5 3 b are the same as each other, and the winding directions 5 4 a, 5 4 b are the same.
  • the direction of b can be different.
  • the core 5 3 and the adjacent core 5 3 are connected to the winding 5 4 a, 5
  • the direction of b is the same.
  • the winding direction of the winding lines 5 4 a and 5 4 b may be different.
  • n ( ⁇ is a positive integer) permanent magnet units 5 1 and 5 2 can be arranged in the same row.
  • n 3
  • the polarities on the tip side of the six permanent magnet units 51, 52 arranged in the same row are S, S, S, s, N,
  • N, N, S, N can be used.
  • FIG. 4 shows a schematic configuration of a power generation system using the power generation device 40 according to the first embodiment.
  • the main rotor 4 4 In order to rotate the main rotor 4 4 of the power generation device 40, the main rotor 4 4 is provided with a pulley 4 1, and the pulley 4 1 is connected to the motor 4 2 by a bell 4 9. By transmitting the driving force of the motor 4 2 to the pulley 4 1 through the joint 4 9, the main port 4 4 can be rotated. Alternatively, the main rotor 44 may be rotated by another power source.
  • the power generation apparatus 40 of the present embodiment rotates the motor 4 2 in the clockwise direction or the counterclockwise direction, thereby rotating the main rotor 44 in either the clockwise direction or the counterclockwise direction. Can also be rotated.
  • FIG. 5 is an air system diagram of the power generator 40 according to the first embodiment.
  • One feeder 5 4 a and the other feeder 5 4 b are connected in series, and each feeder 5 4 a
  • Conductor wire 5 7 is connected to transformer 60.
  • the transformer 6 0 that converts the AC output from the 5 4 a and 5 4 b forces to the desired pressure is
  • the rectifier 61 1 lm converts the alternating voltage transformed by the transformer 60 into a DC voltage.
  • the rectifier 61 is a bridge diode.
  • the rectifier 6 1 is connected to the noti- bomb 6 2.
  • connection of the conductors 5 6 and 5 7 from the respective wires 5 4 a and 5 4 b is not limited to that shown in FIG. 5, and can be used as various parts depending on the use of power. .
  • the permanent magnet units 5 1 and 5 2 attached to the main port 44 of the power generator 40 according to the present invention will be described in detail. Since the first and second permanent magnet units 5 1 and 5 2 differ only in the direction of the magnetic poles, they will be described collectively as the permanent magnet unit 10 below.
  • FIG. 6 is a perspective view of the permanent magnet unit 10 used in the power generator 40 of the present invention.
  • FIG. 7 is a cross-sectional view taken along the line AA of the permanent magnet unit 10 shown in FIG.
  • the permanent magnet unit 10 includes magnet bodies 12 having magnetic poles at both ends in the thickness direction.
  • the magnet body 12 is a magnet coupling body in which the plate-like permanent magnets 12 A to 12 H are mutually attracted and integrated.
  • the magnet body 1 2 has a plurality of The plate-like permanent magnets 12 A to 12 2 H are not integrated with each other, but can be constituted by one member.
  • the permanent magnet unit 10 is provided on one end face (upper end face) 13 side of the magnet body 12 so as to have a predetermined angle with respect to the upper end face 13. And a roof-shaped member 30 (corresponding to the first yoke of the present invention).
  • the permanent magnet unit 10 has a plate-like base end side yoke 16 (corresponding to the second yoke of the present invention) adsorbed on the other end face (lower end face) 15 of the magnet body 12. I have.
  • the permanent magnet unit 10 includes a fastening bolt 20 for integrally connecting the magnet body 12, the roof-shaped member 30, and the base end side yoke 16.
  • the roof-shaped member 30 side is up, and the base end side yoke 16 side is down.
  • the center line of the magnet body 12 of the permanent magnet unit 10 is defined as an axis line (indicated by a two-dot chain line).
  • FIG. 8 is a perspective view of one plate-like permanent magnet 12 A constituting the magnet body 12 of the permanent magnet unit 10.
  • the plate-shaped permanent magnet 12 A has a disk shape with a flat upper and lower surface, and a bolt hole 21 that penetrates from the upper surface to the lower surface is formed in the center.
  • the diameter of the plate-like permanent magnet 1 2 A is D.
  • the plate-like permanent magnet 12 A is made of, for example, a neodymium magnet (Ne-Fe-Co), and one surface (for example, the upper surface) has an S pole and the other surface (for example, the lower surface) has an N pole.
  • a neodymium magnet is preferable in that it has a large residual magnetic flux density and a large coercive force and can generate a strong magnetic field.
  • the other plate-like permanent magnets 1 2 B to 1 2 H have the same shape and material.
  • the plate-like permanent magnets 12 A to 12 H are mutually adsorbed to form a magnet body 12.
  • the shape of the plate-like permanent magnets 12 A to 12 2 H may be a plate shape, and is not limited to a disk shape. For example, it may be a quadrilateral or other polygons. Also magnet The material is not limited to neodymium, but may be samarium, cerium, alnico, or ferrite. However, since neodymium is the strongest magnet, it is preferable to use it.
  • the number of the plate-shaped permanent magnets to be overlapped is determined by the set height of the magnet body 12 and the thickness of one plate-shaped permanent magnet to be used. By changing the number of plate-like permanent magnets, the height (thickness) of the magnet body 12 can be easily changed. The whole can be made into one permanent magnet.
  • the number of plate-like permanent magnets is eight, but other numbers may be used. If the number of plate-like permanent magnets is small and the magnetic body 12 is low, sufficient magnetic flux density cannot be obtained. On the other hand, if the number of plate-like permanent magnets is large and the height of the magnet body 12 is high, the size and weight of the permanent magnet unit 10 as a whole increases, and the structure becomes weak and the cost increases. There is a drawback.
  • the number of plate-like permanent magnets is preferably 2 to 10 and more preferably 3 to 8.
  • FIG. 9 is a perspective view of the roof-shaped member 30 attached on the upper end surface 13 of the magnet body 12.
  • the roof-shaped member 30 includes a ridge line portion 3 1 at the top, and the upper surface of the ridge line portion 3 1 is a smooth curved surface.
  • the upper surface of the ridgeline 3 1 can also be a flat surface.
  • a bolt hole 3 4 for allowing the fastening port 20 to pass therethrough is formed in the center of the upper surface of the ridge part 3 1.
  • a counterbore 3 4 A in which the head of the fastening port 20 is embedded is formed.
  • Two slopes 3 2 and 3 3 extend diagonally downward from the ridge 3 1.
  • the upper and lower surfaces of the slopes 3 2 and 3 3 are parallel rectangular planes.
  • the roof-shaped member 30 is made of a paramagnetic material such as soft iron.
  • the entire roof-shaped member 30 may be composed of one soft iron or the like, or a plurality of thin soft irons may be stacked.
  • An electromagnetic steel plate may be used as the roof-shaped member 30.
  • roof-shaped member 30 is formed with an appropriate thickness. Roof-shaped member The thickness of 30 may or may not be uniform throughout. For example, the thickness near the ridgeline portion 31 may be reduced, and the thickness may be increased near the end away from the ridgeline portion 31. Alternatively, the thickness may be changed between one slope 3 2 and the other slope 3 3.
  • the angle 0 between the two slope portions 3 2 and 3 3 can be an angle other than 160 °.
  • the angle 0 is small, the distance between the ridgeline part 3 1 of the roof-shaped member 30 and the upper end face 1 3 of the magnet body 1 2 is increased, and is permanent with respect to the height of the magnet body 1 2.
  • Magnet unit 10 Overall height increases.
  • the angle 0 is preferably in the range of 90 ° to 1700 °, and 15 °. A range of ⁇ 165 ° is more preferred.
  • the length of the ridge part 3 1 of the roof-shaped member 30 is L, and the distance between the lower ends of the two slope parts 3 2 and 3 3 is W.
  • the roof-shaped member 30 may have a size that does not reach the outside in the radial direction of the upper end surface 1 3 of the magnet body 1 2 when the roof-shaped member 30 is placed on the magnet body 1 2 with the ridge line portion 3 1 facing up. However, it is preferable that the size extends to the outside. That is, the length L of the ridge part 3 1 may be smaller than the diameter D of the magnet body 12 (plate-like permanent magnets 12 A to 12 H), but is equal to or larger than the diameter D. I like it.
  • the distance W between the lower ends of the two slope portions 3 2 and 3 3 may be smaller than the diameter D of the magnet body 12, but is preferably equal to or larger than the diameter D. In this way, almost all the magnetic lines of force that emerge from the upper end surface 13 of the magnet body 12 enter the roof-shaped member 30.
  • the ridgeline portion 3 1 and the two slope portions 3 2 and 3 3 are magnetized. Stone 1 Angle to tilt with respect to 2 axis 0! , ⁇ 2 are set to the same value. However, the two slopes 3 2 and 3 3 can be inclined at different angles ( ⁇ i ⁇ G s).
  • the roof-shaped member 30 is configured such that the two slope portions 3 2 and 3 3 extend obliquely downward from the ridge line portion 31, but is not limited thereto. For example, there may be only one slope portion, that is, a flat soft iron or the like may be placed on the upper end surface 13 of the magnet body 12 while being inclined.
  • the roof-shaped member may be configured as follows.
  • FIG. 10 is a perspective view of a roof-shaped member 30 'according to another embodiment.
  • the roof-shaped member 3 0 ′ is different from the roof-shaped member 30 in that the upper surfaces of the two slope portions 3 2 ′ and 3 3 ′ are not rectangular but substantially semicircular. Other points are the same as the roof-shaped member 30 of the embodiment shown in FIG.
  • the length L ′ of the ridge part 3 1 ′ may be smaller than the diameter D of the magnet body 12, but is preferably equal to or larger than the diameter D.
  • the distance W ′ between the lower ends of the two slope portions 3 2 ′ and 3 3 ′ may be smaller than the diameter D of the magnet body 12, but is preferably equal to or larger than the diameter D.
  • the roof-shaped member 30 'of FIG. 10 also performs the same function as the roof-shaped member 30 of FIG.
  • FIG. 11 is a perspective view of a roof-shaped member 30 according to still another embodiment.
  • the roof-shaped member 30 '' differs from the roof-shaped member 30 in that there is no ridgeline part and the inclined surface parts 3 2 ⁇ , 3 3 '' are not flat but curved as a whole.
  • the other points are the same as the roof-shaped member 30 of the embodiment shown in Fig. 9.
  • the distance W '' between the lower ends of the slope portions 3 2, ', 3 3'' is the same as that of the magnet body 1 2. It may be smaller than the diameter D, but is preferably equal to or larger than the diameter D.
  • the length L '' may be smaller than the diameter D of the magnet body 12, but it is equal to or equal to the diameter D. It is preferable to be larger.
  • the roof-shaped member 3 0 ′ configured as shown in FIG. 11 also performs the same function as the roof-shaped member 30 shown in FIG.
  • the slopes of the slopes 3 2 and 3 3 can be made different in the example of FIG. 2 ) In the same way that the thickness is varied, the slope of the roof-shaped members 30 ', 30 is formed unevenly, or the thickness is unevenly formed. Also good.
  • the illustrated base end side yoke 16 has a disk shape whose diameter is equal to or larger than the diameter D of the magnet body 12.
  • the upper and lower surfaces of the proximal yoke 16 can also be square or rectangular.
  • a bolt hole 17 for receiving the distal end portion of the fastening port 20 is formed in the central portion of the proximal end side yoke 16, and the fastening hole is provided in the port hole 17.
  • a female screw is formed to be screwed with the male screw at the tip of the G20.
  • the proximal yoke 16 is made of a paramagnetic material such as soft iron.
  • the fastening bolt 20 is used to integrally connect the plate-like permanent magnets 12 A to 12 H constituting the magnet body 12, the roof-shaped member 30, and the base side yoke 16. It is. A male screw is formed at the distal end of the fastening port 20 to be engaged with the female screw of the port hole 17 of the base end side yoke 16.
  • the plate-like permanent magnets 12 A to 12 H are attracted to each other to form the magnet body 12.
  • the upper end surface 13 of the magnet body 12 is the S pole and the lower end surface 15 is the N pole. S pole and N pole may be reversed.
  • the magnet body 12 is disposed on the base side yoke 16, and the roof-shaped member 30 is disposed on the magnet body 12 so that the ridge line portion 31 is on the magnet body 12. Insert the fastening bolt 2 0 into the ridgeline 3 1 of the roof-shaped member 30 and insert the fastening bolt 2 0 into the magnet body 1 2 through the end of the fastening bolt 2 0.
  • the roof-shaped member 30, the magnet body 12, and the base end side yoke 16 are integrally tightened and fixed to form a permanent magnet unit 10.
  • the outer peripheral part of the upper end surface 13 of the roof-shaped member 30 is fixed so that the part of the roof-shaped member 30 is in contact, but it is connected with the fastening bolt 20 so that it does not contact. You may do it.
  • the fastening bolt 20 as the connecting means, the members constituting the permanent magnet unit 10 can be easily fixed.
  • the fastening port 20 is used as a connecting means for connecting the magnet body 12, the roof-shaped member 30 (3 0 ′, 3 0 ′), and the base end side yoke 16.
  • the connecting means is not limited to the fastening bolt 20 and may be connected by other methods.
  • the magnet body 12, the roof-shaped member 30 (30 ′, 30 ”) and the base end side yoke 16 can be housed and fixed in a resin-molded frame (not shown).
  • the magnet body 12, the roof-shaped member 30 (30 ′, 30 ′′) and the base end side yoke 16 can be bonded with a resin adhesive.
  • Fig. 12 is a perspective view of a permanent magnet unit 10 '"" according to another configuration example used in the power generator 40 of the present invention.
  • the magnet body 1 2 ''' is not composed of a plurality of plate-like permanent magnets, but is composed of a single permanent magnet.
  • the diameter is equal to the outer diameter D of the magnet body 1 2 '''. No proximal yoke is provided.
  • Adhesive surfaces 1 3 a for bonding to the roof-shaped member 3 0 ′ ′′ are provided at two locations on the outer peripheral portion of the upper surface 1 3 ′ ′ of the magnetic body 1 2, “”.
  • the other points are the same as the permanent magnet unit 10 shown in Fig. 6.
  • the permanent magnet unit 10 '''shown in Fig. 12 operates in the same manner as the permanent magnet unit 10 shown in Fig. 6.
  • the permanent magnet unit 10 '"in Fig. 12 has few parts and does not require machining of port holes, screws, etc., so it is easy to process.
  • the power generator 4 according to the first embodiment 4
  • the first and second permanent magnets 5 1, 5 of the main rotor 44 As shown in Fig. 1, the first and second permanent magnets 5 1, 5 of the main rotor 44
  • the winding directions of the wires 5 4 a and 5 4 b are the same, and the first and second permanents that are close to the core 5 3 This is different from the magnetic force tl K, which is generated from the magnet units 5 1 and 5 2. For this reason, the magnetic field magnetic poles generated in each core 53 are different from each other.
  • the magnetic field magnetic force generated on the core 53 side and the first and second permanent A repulsive magnetic force that produces a repulsive action and an attractive magnetic force that produces an attractive action are generated between the permanent magnet units 51 and 52.
  • These two magnetic forces are divided into a positive torque (propulsive force) acting in the rotational direction of the main rotor 44 and a negative torque (electromagnetic brake) acting in the reverse direction.
  • the first and second permanent magnet units 51 and 52 are moved in the rotational direction.
  • a repulsive magnetic force is received between the rear core 5 3 (the passed core 5 3)
  • the second Mizuishi stone unit 5 1, 5 2 also receives an attractive magnetic force with the next core 5 3 located in the j direction with respect to the rotation direction, so it acts as this attractive magnetic force plus norek Doing,
  • the first and second permanent magnet units 5 1 and 5 2 are in the state immediately before passing through the S core 53 and the first and second permanent magnet units 5 1 and 5 2 When it receives a repulsive magnetic force with the core 5 3 in front of it, it works as a negative torque. In this state, the first and second permanent magnet units 5 1 and 5 2 also receive an attractive magnetic force with the passed core 5 3 at the rear with respect to the rotation direction. Acts as
  • the rotation speed of the main rotor 44 is slow, and the first and second permanent magnet units 5 1, 5 2 and 5 3 of the main port 4 4 In other words, the first and second permanent magnet units 5 1 and 5 2 of the main rotor 4 4 approach the core 53 and pass through the position where the most repulsive force is strong. Since the rotation resistance of the main rotor 44 is large, a relatively large rotational torque from the motor 42 is required to rotate the main rotor 44.
  • the power generator 40 has a strong assist against the main rotor 44 because the first and second permanent magnet units 5 1, 52 are provided with the roof-shaped member 30.
  • the central axis of the permanent magnet units 5 1 and 5 2 should be in the radial direction of the power generator 40. Can be attached.
  • the structure of the mouthpiece and main mouthpiece 44 is simple and easy to manufacture.
  • the permanent magnet units 5 1, 5 used in the power generator 40 of this embodiment are used.
  • the roof-shaped member 30 (30 ', 30 ") has its slopes 3 2, 3 3 symmetric with respect to the central axis of the magnet body 12, but for example, the slopes 3 2 and 3 3 may have different slopes.
  • thickness ( ⁇ 1 ⁇ ⁇ 2 ), thickness can be different o
  • first and second permanent magnet units 5 1, 5 2 force When approaching core 5 3 to 3S after approaching core 5 3
  • the acting magnetic field lines are different from each other.
  • the main port 4 4 can obtain a greater driving force.
  • a power generation experiment was conducted using the power generation device 40 according to the first embodiment of the present invention.
  • Example 1 when 100 V was applied to the input of the motor 4 2 at the start, an input current of 2 OA flowed to the motor 4 2.
  • the rotation speed of the main rotor 4 4 rises to 100 rpm or higher and enters the constant speed rotation state, the input current to the motor 4 2 Decreased to 4 A.
  • the output short-circuit current is 3 A for one of the wires 5 4 a and 5 4 b, and when this is multiplied by the number 8 X 2 of the wires 5 4 a and 5 4 b, a total of 4 8 A Met.
  • the input current of the starter motor 42 was 6 A.
  • the power generator according to the present invention is useful for various technologies. For example, it can be used as power generators for automobiles, ships, ordinary houses, factories, emergency power supplies, power plants, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

 発電装置は、ステータの内側を主ロータが回転する構造である。主ロータ(44)と、主ロータの外周部に等間隔に取り付けられた複数の第1永久磁石ユニット(51)と、第2永久磁石ユニット(52)とを備える。第1永久磁石ユニット(51)と、第2永久磁石ユニット(52)とは、先端の磁極が相互に反対である。第1、第2永久磁石ユニット(51,52)は、磁極が厚さ方向両端にある磁石体(12)と、稜線部から2つの斜面部が斜め方向に延び、常磁性体からなる屋根形部材(30)と、これら一体的に連結する連結手段(20)とを備える。第1、第2永久磁石ユニット(51,52)の周りに、ステータのコア(53)が固定して設けられ、コアには巻線(54)が巻き回されている。

Description

明 細 書
発電装置 技術分野
本発明は、 永久磁石ュニッ トを利用した発電装置に関する。 背景技術
発電装置は、 機械的エネルギーを電磁作用によ り電気的エネルギーに 変換して、 電力を得ている。 本発明者は、 特許文献 1 (国際公開 w o o 3 0 9 4 3 2 9号公報) の トルク伝達装置と、 これを利用した発電装 置を提案した。 特許文献 1 の発明では、 永久磁石を円周方向に多数配置 したロータの円周方向複数箇所に、 このロータよ り小径で、 各々が円周 方向に複数の永久磁石を有する磁石車を配置し、 この磁石車をモータに よ り駆動するこ とによ り、 ロータを回転させる。 そして、 この回転した ロータによ り 、 永久磁石を円周方向に多数配置した他のロータを回転さ せ、 他のロータの上下に配置したコアレスコイルに起電力を生じさせる ものである。
ロータ側の永久磁石と磁石車側の永久磁石とは、 その極性が同一と さ れ、 両者の反発によってロータが回され、 更に、 磁石車もその反発時に モータ駆動方向に加速されるよ う にしている。 しかし、 両者の永久磁石 が接近する際に、 接近に抵抗するよ う に反発力が生じ、 このため大きい 発電力を得ることが困難であった。 発明の開示
本発明はこのよ うな問題を解決するために成されたものであり、 その 目的は、 発電効率が高く 、 しかも構造が簡単で安価に製造できる、 永久 磁石を利用した発電装置を提供することである。
この課題を解決するために、 本発明の発電装置は、 回転軸に取り付け られた主ロータ と、 主ロータの外周に沿って交互に取り付けられた、 先 端側が一方の極性の第 1永久磁石ユニッ トおよび先端側が他方の極性の 第 2久磁石ユニッ ト と、 回転軸を中心と した円周上に、 複数の第 1 、 第
2永久磁石ュニッ トの外側を一定の間隔で取り 囲むよ うに配置された複 数のコアと、 複数のコアの周 り に巻き回された卷線と、 を備え、 第 1 、 第 2永久磁石ュ-ッ トは、 磁極が両端にある磁石体と、 磁石体の一方の 端面側に配置された、 一方の端面に対して所定の角度を持つよ う に斜面 部を形成した第 1 のヨーク と、 を備える。
このよ う に構成した本発明の発電装置において、 主ロータを回転させ る と、 第 1 、 第 2永久磁石ユニッ ト と コアとの間に作用する磁気力によ り、 卷線に誘導電流が発生する。
本発明によれば、 簡単な構造で製造コス トが安く 、 効率が高く 大きい 発電力を得られる発電装置を得ることができる。 図面の簡単な説明
図 1 は、 本発明の第 1 の実施形態による発電装置の一部構成例を示す 端面図である。
図 2は、 図 1 の 2— 2線に沿った断面図である。
図 3 は、 本発明の第 2の実施形態による発電装置の構成例を示す断面 図である。
図 4 は、 第 1 の実施形態による発電装置を利用した発電システムの概 略構成を示す図である。
図 5は、 図 1 の発電装置の電気系統図である。
図 6 は、 本発明の発電装置に使用する永久磁石ュニッ トの構成例を示 す斜視図である。
図 7は、 図 6 に示した永久磁石ュュッ トの A— A線に沿った断面図で ある。
図 8 は、 永久磁石ュニッ トの磁石体を構成する 1つの板状永久磁石の 斜視図である。
図 9は、 磁石体の上端面上に取り付けられる屋根形部材の構成例を示 す斜視図である。
図 1 0は、 別の実施形態に係る屋根形部材の構成例を示す斜視図であ る。
図 1 1 は、 更に別の実施形態に係る屋根形部材の構成例を示す斜視図 である。 '
図 1 2は、 本発明の発電装置に使用する永久磁石ュニッ トの他の構成 例を示す斜視図である。 発明を実施するための最良の形態
以下に、 図面を参照して、 永久磁石ュニッ トを使用した本発明の発電 装置について説明する。
図 1 は、 本発明の第 1 の実施形態による発電装置 4 0 の一部構成例を 示す端面図である。 図 2は、 図 1 の 2— 2線に沿った断面図である。 発 電装置 4 0は、 卷き線を有するステータ のコアの内側で、 永久磁石ュニ ッ トを有する主ロータが回転し、 コアに卷き回された卷き線に起電力が 生じるものである。
図 1および図 2 において、 図示しない支持部材に回転軸 4 3が回転自 在に支持され、 回転軸 4 3 に主ロータ 4 4が取り付けられる。 主ロータ 4 4は、 高さが比較的低い略円柱形状であ り 、 その外周面には、 永久磁 石ュニッ ト 5 1, 5 2 を取り付けるための支持面 4 5が設けられている 。 第 1 、 第 2永久磁石ユニッ ト 5 1 , 5 2 の取り付けは、 支持面 4 5 に 対するネジ止めや接着など、 任意の方法で行う ことができる。
第 1 、 第 2永久磁石ユニッ ト 5 1 , 5 2は、 磁石体の一方の端面に常 磁性体からなる屋根形部材 3 0を備える と と もに、 他方の端面に常磁性 体からなる基端側ヨーク 1 6 を備える。 第 1永久磁石ュニッ ト 5 1 の先 端側、 即ち屋根形部材 3 0側は S極、 第 2永久磁石ユニッ ト 5 2 の先端 側は N極である。 即ち、 第 1 、 第 2永久磁石ュ二 -y 卜 5 1 ' 5 2は先端 側の磁極が異なり 、 他の点については同じである 第 1 、 第 2永久磁石 ュニッ ト 5 1 , 5 2の詳細については後述する。
第 1 、 第 2永久磁石ュニッ ト 5 1 , 5 2は、 根形部材 3 0 を外側に して主ロータ 4 4の支持面 4 5に取り付けられる 屋根形部材 3 0の稜 線部は 、 生ロータ 4 4 の回転軸 4 3 に平行である 主ロータ 4 4が回転 したときの第 1 、 第 2永久磁石ユニッ ト 5 1 , 5 2の稜線部の軌跡の円 を、 図 1 中に 2点鎖線で示す。
図 2に示すよ う に、 主ロータ 4 4 の支持面 4 5 には、 第 1永久磁石ュ ニッ ト 5 1 と第 2永久磁石ュ二ッ ト 5 2力 回転軸 4 3 の軸方向に間隔 をおレ、て配置され、 ステータのコア 5 3 の 2 つのセグメ ン ト部 5 3 a ,
5 3 b と対向するよ う になっている。 軸方向に配置された 2つの永久磁 石ュニッ ト 5 1, 5 2 の先端側 (セグメ ン ト部 5 3 a , 5 3 b側) の極 性は、 それぞれ S、 Nである。 永久磁石ュニッ 卜 5 1 , 5 2の先端側の 極性は 、 その他の配列とするこ と もできる。 例えば 、 N、 S とするこ と ができ
上述のよ う に、 主ロータ 4 4の周方向には、 第 1 、 第 2永久磁石ュ二 ッ 卜 5 1 , 5 2が配置される。 こ こで、 第 1永久磁石ュニッ ト 5 1 と第
2永久磁石ュニッ ト 5 2 とが交互に配置される とが好ま しい。 また、 第 1永久磁石ュニッ ト 5 1 と第 2永久磁石ュ二 V 卜 5 2 とは等間隔で配 置される (永久磁石ユニッ ト 5 1 , 5 2を取り付けるための支持面 4 5 が円周方向に等間隔で設けられる) ことが好ましい。
主ロータ 4 4 の少なく と も支持面 4 5 の近傍は、 常磁性体で構成して も良い。 この場合は、 常磁性体でできた支持面 4 5 の近傍が基端側ョー ク 1 6 の作用をする。 そのため、 第 1 、 第 2永久磁石ユニッ ト 5 1 , 5 2は、 基端側ヨーク 1 6 を備えなく てもよい。 この場合、 第 1 、 第 2永 久磁石ュニッ ト 5 1 , 5 2 を後述する締結ボル ト 2 0で支持面 4 5 に直 接固定しても良く 、 又はその他の任意の方法で固定することができる。 発電装置 4 0は 、 ネ复 の第 1 、 第 2永久磁石ユニ ッ ト 5 1 , 5 2 の外 側を取り 囲むよ 5 に 、 ステ一タの ァ 5 3が円周上に設けられている。 コア 5 3 は、 等間隔で配置される とが好ま しい。 コア 5 3の数は、 第
1 、 第 2永久磁石ュニッ ト 5 1 5 2の円周方向の数と同じである。 図
1 の例では、 第 1 、 第 2永久磁石ュ二ッ 卜 5 1 , 5 2 の円周方向の数は
8 なので、 コア 5 3の数は 8 である なお、 コア 5 3の数は、 第 1 、 第
2永久磁石ュニ 卜 5 1 , 5 2 の円周方向の数と異なる数とするこ とが できる。
図 2に示すよ Ό に 、 各コア 5 3 は 、 2つのセグメ ン ト部 5 3 a , 5 3 bが連結部 5 3 c でつながり 回転軸 4 3の方向の断面はほぼコの字形 である。 2つのセグメ ン ト部 5 3 a 5 3 b の端面は、 ほぼ平面であり
、 第 1 、 第 2永久磁石ュニッ 卜 5 1 , 5 2 とそれぞれ対向するよ う に配 される。
コア 5 3は、 強磁性体ででさてレ、る 。 コァ 5 3 は、 他の形状とするこ と もできる。
各コア 5 3 の 2つのセグメ ン 卜部 5 3 a , 5 3 b の第 1 、 第 2永久磁 石ユニッ ト 5 1 , 5 2 に対向する面には、 非磁性で導電性の板状部材 5
5が設けられる 板状部材 5 5 は 、 典型的にはアルミ ニ ウム板でめ 。 板状部材 5 5 は、 セグメ ン 卜部 o a a, 5 3 bの 面とほぼ同じ形状お ょぴ大きさである。
主ロータ 4 4が回転する とさ 、 第 1 、 第 2永久磁石ュニッ h 5 1 , 5
2 の屋根形部材 3 0 と、 ァ 5 3 のセグメ ン 卜部 5 3 a , 5 3 b の板状 部材 5 5 との間には、 一定の間隔があく よ になつている。 板状部材 5
5 は、 第 1 、 第 2永久磁石ュ二ッ 卜 5 1 , 5 2 と ァ 5 3 のセグメ ン ト 部 5 3 a , 5 3 b との間で生じる磁力線を女 させ 、 発電効率を高める 作用をする。
各コア 5 3の 2つのセグメ ン ト部 5 3 a 5 3 b の周 り には、 卷線 5
4 a, 5 4 b が巻き回されてレ、る。 了 5 3のセグメ ン ト部 o 3 a , o
3 b を連結部 5 3 c に対して直角にまつすぐに延ばしたと仮定して、 2 つのセグメ ン ト部 5 3 a 5 3 bの卷線 5 4 a 5 4 b の卷き方向は、 セグメ ン ト部 5 3 a, 5 3 b の軸線に対して互レ、に じ方向である。 第
1 、 第 2永久磁石ュニッ 卜 5 1 , 5 2の先端側の極性によ り 、 卷線 5 4 a , 5 4 bの卷き方向は、 異なっても良レ、。
また、 1つのコア 5 3 とそれに隣接するコア 5 3 とで卷線 5 4 a, 5
4 bの卷き方向は、 互いに同じである。 なお、 卷線 5 4 a , 5 4 b の卷 き方向は、 異なっても良い。
図 3 は、 本発明の第 2の実施形態による発電装置 4 0の構成例を示す 図であり、 図 2 と同じ面における断面図を示している。
第 2の実施形態では第 1 の実施形態と異なり 、 第 1 、 第 2永久磁石ュ ニッ ト 5 1 , 5 2は、 主ロータ 4 4の回転軸 4 3 の軸方向に、 1列につ いて 4個配置されている。 具体的には、 第 1永久磁石ュニッ ト 5 1 と第 2永久磁石ュュッ ト 5 2 とがわずかな間隔をおいて一方のセグメ ン ト部
5 3 a と対向するよ う に配置され、 そこから大きい間隔をおいて、 第 2 永久磁石ュニッ ト 5 2 と第 1永久磁石ュュッ ト 5 1 とがわずかな間隔を おいて他方のセグメ ン ト部 5 3 b と対向するよ うに配置される。
即ち、 第 2の実施形態では、 同じ列に配置された 4個の永久磁石ュニ ッ ト 5 1, 5 2の先端側の極性は、 順に S、 N、 N、 S となっている。 なお、 永久磁石ユニッ ト 5 1 , 5 2の先端側の極性は、 その他の順に配 置すること もできる。 例えば、 N、 S、 S、 Nとすることができる。 第 2の実施形態でも、 2つのセグメ ン ト部 5 3 a , 5 3 bの卷線 5 4 a , 5 4 b の卷き方向は、 互いに同じである なお、 卷線 5 4 a , 5 4 bの卷き方向は、 異なっても良い。
また 、 1つのコア 5 3 とそれに隣接するコァ 5 3 とで卷線 5 4 a , 5
4 bの卷き方向は、 互いに同じである。 なお 、 卷線 5 4 a , 5 4 b の卷 き方向は 、 異なっても良い。
更に 、 同じ列に永久磁石ユニッ ト 5 1, 5 2 を 2 n ( ηは正の整数) 個配置するこ と もできる。 n = 3 の場合、 同じ列に配 βした 6個の永久 磁石ュ二ッ ト 5 1, 5 2の先端側の極性は、 順に S、 Ν 、 S 、 s 、 N、
S とするこ とができる。 又は、 6個の永久磁石ュニ ッ 卜 5 1 , 5 2 の先 端側の極性は、 その他の順に配置するこ と もできる。 例 X.ば 、 N 、 s、
N、 N 、 S、 Nとすることができる。
図 4は 、 第 1 の実施形態による発電装置 4 0 を利用 した発電システム の概略構成を示す。 発電装置 4 0の主ロータ 4 4 を回転させるため、 主 ロータ 4 4 にプーリ 4 1 が設けられ、 プーリ 4 1 は、 ベル 4 9 によ り モータ 4 2 に連結される。 モータ 4 2 の駆動力をべノレ 卜 4 9 を介してプ ーリ 4 1 に伝達するこ とによ り 、 主口一タ 4 4 を回転させるこ とができ るよ う になっている。 又は、 主ロータ 4 4 を他の動力源で回転させても 良い。
主口一タ 4 4が回転すると、 これに取り付けられた永久磁石ュニッ ト
5 1, 5 2 も回転し、 永久磁石ュニッ ト 5 1 , 5 2 と コァ 5 3 との間に 生じる磁力の変化によ り、 卷線 5 4 a , 5 4 b に起電力が生じる。
なお、 本実施形態の発電装置 4 0は、 モータ 4 2 を時計回り方向また は反時計回り方向に回転させるこ とによ り 、 主ロータ 4 4 を時計回り 、 反時計回りの何れの方向にも回転させるこ とができる。
図 5 は、 第 1 の実施形態による発電装 4 0の 気系統図である。 一 方の卷線 5 4 a と他方の卷線 5 4 b とが直列に接 され 、 各卷線 5 4 a
, 5 4 b の両端部から延びた導線 5 6 は 、 導線 5 7 に対して並列に接続 される。 導線 5 7は、 変圧器 6 0に接 される 変圧器 6 0は 、 各卷線
5 4 a , 5 4 b 力 らの交流出力を所望の 圧に 換する 変圧器 6 0 は
、 整流器 6 1 に lmされ O 流器 6 1 は 、 変圧 6 0で変圧された交 流電圧を直流電圧に変換する。 本実施形態では 、 整流器 6 1 は 、 ブリ ツ ジダイォー ドである。 整流器 6 1 に対しては 、 ノ テリ一 6 2が接続さ れている。
なお、 各卷線 5 4 a , 5 4 bからの導線 5 6 , 5 7の接続は 、 図 5 に 示すものに限定されず 、 電力の使用される用途によつて 色々な部品に 核 ¾ϊΕ れる。
次に、 本発明の発電装置 4 0の主口 タ 4 4 に取り付けられる永久磁 石ユニッ ト 5 1 , 5 2 について詳細に説明する。 第 1 、 第 2永久磁石ュ ニッ ト 5 1 , 5 2 は、 磁極の方向が異なるだけなので、 以下では永久磁 石ュニッ ト 1 0 と してまとめて説明する。
図 6 は、 本発明の発電装置 4 0 に使用する永久磁石ュニッ ト 1 0 の斜 視図である。 図 7 は、 図 6 に示した永久磁石ユニッ ト 1 0の A— A線に 沿った断面図である。
本実施形態による永久磁石ュニッ ト 1 0は、 磁極が厚さ方向両端にあ る磁石体 1 2 を備える。 磁石体 1 2は、 板状永久磁石 1 2 A〜 1 2 Hを 相互に吸着させて一体と した磁石連結体である。 磁石体 1 2は、 複数の 板状永久磁石 1 2 A~ 1 2 Hを一体と したものではなく 、 1つの部材で 構成することもできる。
また、 永久磁石ュニッ ト 1 0は、 磁石体 1 2の一方の端面 (上端面) 1 3側に、 当該上端面 1 3 に対して所定の角度を持つよ う に斜面部 3 2 , 3 3 を形成した屋根形の屋根形部材 3 0 (本発明の第 1 のヨークに相 当する) を備えている。 また、 永久磁石ユニッ ト 1 0 は、 磁石体 1 2の 他方の端面 (下端面) 1 5 に吸着された板状の基端側ヨーク 1 6 (本発 明の第 2のヨークに相当) を備えている。
また、 永久磁石ユニッ ト 1 0は、 磁石体 1 2 と、 屋根形部材 3 0 と、 基端側ヨーク 1 6 とを一体的に連結するための締結ボル ト 2 0 を備えて いる。 以下、 永久磁石ユニッ ト 1 0の説明において、 屋根形部材 3 0の 側を上、 基端側ヨーク 1 6 の側を下とレヽう。 また、 永久磁石ユニッ ト 1 0の磁石体 1 2の中心線を、 軸線とする ( 2点鎖線で示す) 。
以下、 永久磁石ュニッ ト 1 0を構成する各部材について説明する。 図 8は、 永久磁石ュニッ ト 1 0の磁石体 1 2 を構成する 1 つの板状永 久磁石 1 2 Aの斜視図である。 図 8 に示すよ う に、 板状永久磁石 1 2 A は、 上下面が平面の円板状で、 中央部には、 上面から下面へ貫通するボ ル ト孔 2 1 が形成されている。 板状永久磁石 1 2 Aの直径は、 Dである 。 板状永久磁石 1 2 Aは、 例えばネオジゥム磁石 (Ne- Fe-Co) でできて いて、 一方の面 (例えば上面) が S極、 他方の面 (例えば下面) が N極 である。 ネオジゥム磁石は残留磁束密度も保磁力も大き く 、 強い磁場を 発生するこ とができる点で好ましい。 他の板状永久磁石 1 2 B〜 1 2 H も同様の形状と材質である。 板状永久磁石 1 2 A〜 1 2 Hの面を相互に 吸着させて一体と して、 磁石体 1 2を構成する。
板状永久磁石 1 2 A〜 1 2 Hの形状は、 板状であればよ く 、 円板状に 限定されない。 例えば、 4角形、 その他の多角形でも良い。 また、 磁石 材料はネオジゥム系に限らず、 サマリ ウム系、 セ リ ウム系、 アルニコ系 、 フェライ ト系のものでも良い。 ただし、 ネオジゥム系が最も強い磁石 であるので、 これを用いるのが好ましい。
設定した磁石体 1 2の高さ と、 使用する板状永久磁石の 1枚の厚さ と によ り 、 重ね合わせる板状永久磁石の数を決める。 板状永久磁石の枚数 を変えるこ とによ り 、 磁石体 1 2の高さ (厚さ) を容易に変えるこ とが できる。 なお、 全体を 1つの永久磁石とするこ ともできる。
本実施形態では、 板状永久磁石の数は 8枚と したが、 他の枚数でも良 い。 板状永久磁石の数が少なく磁石体 1 2の高さが低いと、 十分な磁束 密度を得るこ とができない。 一方、 板状永久磁石の数が多く磁石体 1 2 の高さが高いと、 永久磁石ユニッ ト 1 0全体の大き さ と重量が増し、 構 造的に弱く なり 、 また、 コス トが高く なる という欠点がある。 板状永久 磁石の数は、 2〜 1 0枚が好ましく、 3〜 8枚が更に好ましい。
図 9 は、 磁石体 1 2 の上端面 1 3上に取り付けられる屋根形部材 3 0 の斜視図である。 図 9 に示すよ う に、 屋根形部材 3 0 は、 頂部に稜線部 3 1 を備え、 稜線部 3 1 の上面は、 滑らかな曲面である。 稜線部 3 1 の 上面は、 平面とするこ と もできる。 稜線部 3 1 の上面中央部に、 締結ポ ル ト 2 0 を通すためのボル ト孔 3 4が形成されている。 ポル ト孔 3 4 に は、 締結ポル ト 2 0 の頭部が埋め込まれる座ぐり部 3 4 Aが形成されて いる'。 稜線部 3 1 から 2つの斜面部 3 2, 3 3が斜め下方向に延びる。 斜面部 3 2, 3 3の上面と下面は、 平行な長方形の平面である。
屋根形部材 3 0 は、 軟鉄等の常磁性体からなる。 こ こで、 屋根形部材 3 0 は、 全体を 1 つの軟鉄等で構成しても良いし、 複数の薄い軟鉄等を 重ね合わせて構成しても良い。 屋根形部材 3 0 と して電磁鋼板を用いて も良い。
また、 屋根形部材 3 0は、 適切な厚みに形成されている。 屋根形部材 3 0の厚みは、 全体が均一であっても良いし、 均一でなく ても良い。 例 えば、 稜線部 3 1付近の厚みは薄く し、 稜線部 3 1 から離れた端部付近 では厚く するよ うにしても良い。 または、 一方の斜面部 3 2 と他方の斜 面部 3 3 とで厚みを変えても良い。
本実施形態では、 2つの斜面部 3 2, 3 3の間の角度 0 は、 1 6 0 ° である。 また、 屋根形部材 3 0の各々の斜面部 3 2 , 3 3 と磁石体 1 2 の軸線との間の角度 0 i , 0 2は同じで、 0 = 0 2 = 8 0 ° である。
なお、 2つの斜面部 3 2 , 3 3の間の角度 0 は、 1 6 0 ° 以外の角度 とするこ とができる。 角度 0 が小さレ、と、 屋根形部材 3 0の稜線部 3 1 と磁石体 1 2の上端面 1 3 との間の距離が大き く な り 、 磁石体 1 2の高 さに対して永久磁石ユニッ ト 1 0全体の高さが高く なる。 一方、 角度 0 が大きいと、 磁石体 1 2の上端面 1 3 に平板の軟鉄を接続したのと大差 がなく なってく る。 角度 0 は、 9 0 ° 〜 1 7 0 ° の範囲が好ま しく 、 1 5 0。 〜 1 6 5 ° の範囲が更に好ましい。
屋根形部材 3 0の稜線部 3 1 の長さは Lであり 、 2つの斜面部 3 2 , 3 3の下端間の距離は Wである。 屋根形部材 3 0は、 稜線部 3 1 を上に して磁石体 1 2の上に置いたと き、 磁石体 1 2の上端面 1 3の半径方向 外側まで届かない大き さであっても良いが、 外側まで延びる大き さであ るこ とが好ま しい。 すなわち、 稜線部 3 1 の長さ Lは、 磁石体 1 2 (板 状永久磁石 1 2 A〜 1 2 H) の直径 Dよ り小さ く ても良いが、 直径 D と 等しいかそれよ り大きいのが好ま しい。 2つの斜面部 3 2, 3 3の下端 間の距離 Wは、 磁石体 1 2の直径 Dよ り小さ く ても良いが、 直径 D と等 しいかそれよ り大きいのが好ま しい。 このよ う にする と、 磁石体 1 2の 上端面 1 3から出る磁力線は、 殆ど全て屋根形部材 3 0に入るこ と にな る。
なお、 本実施形態では、 稜線部 3 1 から 2つの斜面部 3 2, 3 3が磁 石体 1 2の軸線に対して傾斜する角度 0 ! , θ 2は、 共に同じ値と した。 しかし、 2つの斜面部 3 2 , 3 3が異なる角度 ( ^ i ^^ G s ) で傾斜する よ う にするこ と もできる。 また、 本実施形態では、 屋根形部材 3 0 は、 稜線部 3 1 から 2つの斜面部 3 2 , 3 3が斜め下方向に延びる構成と し ているが、 これに限定されない。 例えば、 斜面部を 1つのみとする、 す なわち、 平板状の軟鉄等を磁石体 1 2の上端面 1 3の上に傾けて載置す るよ う にしても良い。 その他、 以下のよ う に屋根形部材を構成しても良 レ、。
図 1 0は、 別の実施形態に係る屋根形部材 3 0 'の斜視図である。 屋根 形部材 3 0 'が屋根形部材 3 0 と異なるのは、 2つの斜面部 3 2 ', 3 3 ' の上面が、 長方形ではなく 、 ほぼ半円形である点である。 その他の点は 、 図 9に示す実施形態の屋根形部材 3 0 と同様である。 稜線部 3 1 'の長 さ L 'は、 磁石体 1 2の直径 Dよ り小さ く ても良いが、 直径 Dと等しいか それよ り大きいのが好ま しい。 2つの斜面部 3 2 ', 3 3 'の下端間の距 離 W'は、 磁石体 1 2の直径 Dよ り小さ く ても良いが、 直径 Dと等しいか それよ り大きいのが好ましい。 図 1 0 の屋根形部材 3 0 'も、 図 9 の屋根 形部材 3 0 と同様の機能を果たす。
なお、 屋根形部材の上面の形状は、 長方形、 半円形に限定されない。 図 1 1 は、 更に別の実施形態に係る屋根形部材 3 0 の斜視図である 。 屋根形部材 3 0 ''が屋根形部材 3 0 と異なるのは、 稜線部がなく 、 斜 面部 3 2 " , 3 3 ''が平面状でなく 全体と して湾曲形状となっている点 である。 その他の点は、 図 9 に示す実施形態の屋根形部材 3 0 と同様で ある。 斜面部 3 2, ', 3 3 ' 'の下端間の距離 W ' 'は、 磁石体 1 2の直径 Dよ り小さ く ても良いが、 直径 D と等しいかそれよ り大きいのが好ま し い。 斜面部 3 2 ' ', 3 3 "の下端間の距離 W' ' と直行する方向の長さ L ' 'は、 磁石体 1 2 の直径 Dよ り小さ く ても良いが、 直径 D と等しいかそ れよ り大きいのが好ま しい。 図 1 1 のよ う に構成した屋根形部材 3 0 ' ' も、 図 9の屋根形部材 3 0 と同様の機能を果たす。
図 1 0、 図 1 1 のよ うに屋根形部材 3 0 ' , 3 0 ' 'を構成した場合も、 図 9 の例で斜面部 3 2 , 3 3 の傾斜を異ならせたり ( Θ i≠ 0 2 ) 、 厚み を異ならせたり したのと同様に、 屋根形部材 3 0 ', 3 0 の斜面部の傾 きの大き さを不均一に形成したり 、 厚みを不均一に形成したり しても良 レ、。
再度、 図 6およぴ図 7 を参照し、 磁石体 1 2 の下端面 1 5上に取り付 けられる基端側ヨーク 1 6 について説明する。 図示する基端側ヨーク 1 6は、 直径が磁石体 1 2 の直径 D と等しいかこれよ り大きい円板状であ る。 基端側ヨーク 1 6 の上下の面は、 正方形または長方形とするこ と も できる。 図 7 に示すよ う に、 基端側ヨーク 1 6 の中央部には、 締結ポル ト 2 0の先端部を受入れるためのボル ト孔 1 7が形成され、 ポル ト孔 1 7には締結ボル ト 2 0の先端部の牡ねじと螺合するための雌ねじが形成 されている。 基端側ヨーク 1 6は、 軟鉄等の常磁性体からなる。
締結ボル ト 2 0 は、 磁石体 1 2 を構成する板状永久磁石 1 2 A〜 1 2 Hと、 屋根形部材 3 0 と、 基端側ヨーク 1 6 とを一体的に連結するため のものである。 締結ポル ト 2 0の先端部には、 基端側ヨーク 1 6 のポル ト孔 1 7の雌ねじと螺合するための牡ねじが形成されている。
永久磁石ュニッ ト 1 0 を組立てるには、 板状永久磁石 1 2 A〜 1 2 H を相互に吸着させて磁石体 1 2 とする。 磁石体 1 2の上端面 1 3が S極 、 下端面 1 5が N極である。 S極と N極とは、 逆にしても良い。 基端側 ヨーク 1 6 の上に磁石体 1 2を配置し、 その上に稜線部 3 1が上になる よ う にして屋根形部材 3 0 を配置する。 屋根形部材 3 0 の稜線部 3 1 の ポル ト孔 3 4カゝら締結ボル ト 2 0 を挿入し、 磁石体 1 2のポル ト孔 2 1 を貫通させ、 締結ボル ト 2 0の先端部の牡ねじを基端側ヨーク 1 6 のボ ルト孔 1 7の雌ねじと螺合させる。 屋根形部材 3 0 と磁石体 1 2 と基端 側ヨーク 1 6 と を一体的に締め付けて固定し、 永久磁石ュニッ ト 1 0 を 形成する。 こ こでは、 屋根形部材 3 0の上端面 1 3の外周部と屋根形部 材 3 0の一部とが接するよ う に固定しているが、 接触しないよ う に締結 ボルト 2 0で連結するよ う にしても良い。 連結手段と して締結ボル ト 2 0を用いるこ とによ り 、 永久磁石ュニッ ト 1 0 を構成する部材を簡単に 固定することができる。
なお、 本実施形態では、 磁石体 1 2 と屋根形部材 3 0 ( 3 0 ' , 3 0 ' ' ) と基端側ヨーク 1 6 と を連結する連結手段と して、 締結ポル ト 2 0 を用いたが、 連結手段は締結ボル ト 2 0に限定されるものではなく 、 他 の方法で連結しても良い。 例えば、 磁石体 1 2 と屋根形部材 3 0 ( 3 0 ' , 3 0 " ) と基端側ヨーク 1 6 とを樹脂で成形した枠 (図示せず) に 収容して固定するこ とができる。 または磁石体 1 2 と屋根形部材 3 0 ( 3 0 ' , 3 0 " ) と基端側ヨーク 1 6 とを樹脂系接着剤で接着するこ と もできる。
図 1 2は、 本発明の発電装置 4 0に使用する別の構成例に係る永久磁 石ュニッ ト 1 0 ' "の斜視図である。 図 1 2に示す永久磁石ュニッ ト 1 0 ' ' 'では、 磁石体 1 2 ' ' 'は、 複数の板状永久磁石を吸着させたものでは なく、 1つの永久磁石で構成されている。 屋根形部材 3 0 '''は略円形で 、 その外径は磁石体 1 2 ' ' 'の外径 Dに等しい。 基端側ヨークは設けられ ていない。 磁石体 1 2 ' ' ' と屋根形部材 3 0 ' ' ' とは、 締結ボル トで固定 するのではなく 、 接着剤で接着される。 そのため、 磁石体 1 2 ' ' ' と屋根 形部材 3 0 ' " とには、 締結ポルトを揷入するためのボル ト孔は形成され ていない。 磁石体 1 2, ' 'の上面 1 3 ' ' 'の外周部の 2箇所には、 屋根形 部材 3 0 ' '' と接着するための接着面 1 3 aが設けられている。 その他の 点は、 図 6 に示した永久磁石ュニッ ト 1 0 と同じである。 図 1 2に示す永久磁石ュニッ ト 1 0 ' ' 'は、 図 6に示した永久磁石ュニ ッ ト 1 0 と同様の作用をする。 図 1 2の永久磁石ユニッ ト 1 0 ' "は、 部 品数が少なく 、 ポル ト孔、 ネジ等の加工が不要なので、 加工が容易であ る。
再度、 図 1およぴ図 2 を参照して、 第 1 の実施形態による発電装置 4
0 の動作について説明する。
図 1 のよ う に、 主ロータ 4 4の第 1、 第 2永久磁石ュ二ッ 卜 5 1 , 5
2 と コア 5 3 とが互いに対向する位置にある初期状態のと き 、 モータ 4
2によ り主ロータ 4 4 を回転させる と、 主ロータ 4 4 の第 1 、 第 2永久 磁石ユニッ ト 5 1, 5 2力 ら出てコア 5 3の卷線 5 4 a , 5 4 bの周囲 に生じる磁界が変化し、 電磁誘導によ り卷線 5 4 a, 5 4 b に誘導電流 が生じる。 このと き、 誘導電流によ り、 卷線 5 4 a , 5 4 b の内部にあ る強磁性体のコア 5 3に磁力 (磁界磁力) が生じる。
第 1 、 第 2永久磁石ユニッ ト 5 1, 5 2力 Sコア 5 3 に近づ < とき と、 コア 5 3力、ら遠ざかる と き とで、 卷線 5 4 a , 5 4 b に生じる誘導電流 の向きは異なる (ファ ラデーの法則) 。 このため、 主口一タ 4 4の回転 に伴って第 1 、 第 2永久磁石ュニッ ト 5 1, 5 2力 Sコ了 5 3 を通過する ごとに、 その通過の前後で卷線 5 4 a, 5 4 b に起電力が m起され、 交 流電流が発生する。 この と き コア 5 3 に生じる磁界磁力も 、 第 1 、 第 2 永久磁石ユニッ ト 5 1, 5 2 力 ァ 5 3 を通過する前後で磁極が交互に 反転する。 また、 1 つのコア 5 3 とそれに隣接する コァ 5 3 とでは、 卷 線 5 4 a , 5 4 b の卷き方向が同じで、 コア 5 3 に近接してレ、る第 1、 第 2永久磁石ユニッ ト 5 1 , 5 2から発している励磁磁力の磁 tl Kレ、 に異なっている。 このため、 各コア 5 3 に発生する磁界磁力の磁極は交 互に異なったものとなっている。
そして、 このよ う にコア 5 3側に発生する磁界磁力と、 第 1 、 第 2永 久磁石ュニッ ト 5 1 , 5 2から発している励磁磁力との間で、 反発作用 をする反発磁力と、 吸引作用をする吸引磁力とが発生する。 この両磁力 は、 主ロータ 4 4 の回転方向へ作用するプラス トルク (推進力) と、 逆 方向へ作用するマイナス トルク (電磁ブレーキ) とに分かれる。
例えば、 第 1 、 第 2永久磁石ユニッ ト 5 1 , 5 2がコア 5 3 を通過し た直後の状態において、 第 1 、 第 2永久磁石ュュッ ト 5 1 , 5 2が、 回 転方向に対して後方にあるコア 5 3 (通過済みのコア 5 3 ) との間で反 発磁力を受ける と、 これはプラス トルク と して働く。 この状態では、 第
1 、 第 2水久 石ュニッ ト 5 1 , 5 2は、 回転方向に対して j方にある 次のコア 5 3 との間で吸引磁力も受けるので 、 この吸引磁力 プラス ト ノレク と して作用する,
逆に、 第 1 、 第 2永久磁石ュニッ ト 5 1 , 5 2力 Sコア 5 3 を通過する 直前の状態において 、 第 1 、 第 2永久磁石ュニッ ト 5 1 , 5 2が 、 回転 方向に対して前方にあるコア 5 3 との間で反発磁力を受ける と 、 これは マイナス トルク と して働く。 この状態では、 第 1 、 第 2永久磁石ュニッ 卜 5 1 , 5 2は、 回転方向に対して後方にある通過済みのコァ 5 3 との 間で吸引磁力も受けるので、 この吸引磁力もマイナス トルク と して作用 する。
主ロータ 4 4 を回転させ始めた直後は、 主ロータ 4 4の回転速度が遅 く 、 主口ータ 4 4の第 1 、 第 2永久磁石ュニッ 卜 5 1 , 5 2 と ァ 5 3 との間のマイナス トルクに抗して回転させなければならない 即ち、 主 ロータ 4 4 の第 1 、 第 2永久磁石ュニッ 卜 5 1 , 5 2は、 コァ 5 3 に近 づき、 最も反発が強い位置を通り越して回転しなければならず、 主ロー タ 4 4 の回転抵抗が大きいので、 主ロータ 4 4を回転させるのにモータ 4 2からの比較的大きい回転トルクが必要である。
主ロータ 4 4 の始動後、 時間が経つにつれて、 モータ 4 2からの駆動 力と、 第 1 、 第 2永久磁石ユニッ ト 5 1 , 5 2 と 了 5 3 との間で生じ る磁界によ り受けるプラス トルク とによ り 、 主口一タ 4 4の回転速度が 次第に速く なる と、 主ロータ 4 4は比較的大さな慣性力を得る 。 この慣 性力と、 第 1 、 第 2永久磁石ユニッ ト 5 1 , 5 2 と コァ 5 3 との間の磁 力によ り受けるプラス トルク とによ り主口一タ 4 4は大さな推進力を得 て、 やがて定速回転状態となる。 定速回転状態では 、 主 ―タ 4 4 を回 転させるのに必要な回転 トルクは小さ < な り 、 安定する その結果、 モ ータ 4 2 の消費電力が低下する。
と ころで、 主ロータ 4 4 の第 1 、 第 2永久磁石ュニッ ト 5 1 , 5 2か ら屋根形部材 3 0 を取り外した状態にして、 主 一タ 4 4 を回転させよ う とする と、 第 1 、 第 2永久磁石ユニッ ト 5 1 5 2がコア 5 3 に近づ く と さの反発力が強く 、 主ロータ 4 4 を回すのに非常に強い力を必要と する。 これに対して、 第 1 、 第 2永久磁石ュニク 卜 5 1, 5 2 に屋根形 部材 3 0 を取り付けた図 1 の状態では、 これがないよ りずつ と弱い力で 主ロータ 4 4を回転させることができる。
また 、 本実施形態による発電装置 4 0 は、 第 1 、 第 2永久磁石ュニッ 卜 5 1 , 5 2が屋根形部材 3 0 を備えるこ とによ り 、 主ロータ 4 4に対 して強いアシス トカを得るこ とができる と と もに 、 永久磁石ュニッ 卜 5
1 , 5 2がコア 5 3 に近づく と きの反発力が弱められる。 そのため、 発 電効率が高く 、 比較的小さい駆動力で大きい発電力を得るこ とができる よ / 、 永久磁石ュニッ ト 5 1 , 5 2 の中心軸線が発電装置 4 0 の半径 方向になるよ う取り付けるこ とができる。 その 口果 、 主口—タ 4 4の構 造が簡単で、 製造が容易である。
さ らに、 図 1 1 のよ う に構成した屋根形部材 3 0 ' 'を用いる場合は、 第 1 、 第 2の永久磁石ユニッ ト 5 1 , 5 2がコァ 5 3 に近づぐ ときに受 ける磁力線の作用と、 第 1 、 第 2の永久磁石ュ ッ 卜 5 1 , 5 2がコア 5 3 に近づいたときに受ける磁力線の作用との切り替えがスムーズに行 われ、 よ り滑らかに回転トルクの伝達を行う ことができる。
なお、 本実施形態の発電装置 4 0で用レ、る永久磁石ュニッ ト 5 1 , 5
2 の屋根形部材 3 0 ( 3 0 ' , 3 0 " ) は 、 その斜面部 3 2 , 3 3が磁 石体 1 2の中心軸線に対して対称型となつているが、 対称型となつてレ、 なく ても良い。 例えば、 斜面部 3 2, 3 3 の傾斜を異ならせてち良いし
( θ 1≠ Θ 2 ) 、 厚みを異ならせても良い o
このよ う にする と、 主ロータ 4 4 の第 1 、 第 2永久磁石ュニッ 卜 5 1
, 5 2がコア 5 3 に近づく ときに作用する磁力線と、 第 1 、 第 2永久磁 石ユニッ ト 5 1 , 5 2力 コア 5 3 に最も近づいてからコア 5 3から 3Sざ かる と きに作用する磁力線とが互いに異なるものとなる。 これによ り 、 第 1 、 第 2永久磁石ユニッ ト 5 1 , 5 2がコア 5 3 に近づく と さには反 発力が小さ く てよ り容易に近づき、 第 1 、 第 2永久磁石ュニッ 卜 5 1 ,
5 2がコア 5 3 から遠ざかる と きには主口ータ 4 4がよ り大きな推進力 を得るよ うにすることができる。
その他、 上記実施形態は、 何れも本発明を実施するにあたっての具体 化の一例を示したものに過ぎず、 これによつて本発明の技術的範囲が限 定的に解釈されてはならないものである。 すなわち、 本発明はその精神 、 またはその主要な特徴から逸脱することなく 、 様々な形で実施するこ とができる。
(実験 1 )
本発明の第 1 の実施形態による発電装置 4 0 を使用 して、 発電実験を 行った。
1 実施例では、 始動時にモータ 4 2の入力に 1 0 0 Vを印加する と、 モータ 4 2 に 2 O Aの入力電流が流れた。 主ロータ 4 4 の回転数が 1 0 0 r p m以上に上がり定速回転状態になる と、 モータ 4 2 への入力電流 は 4 Aに減少した。
この状態で、 発電装置 4 0 の出力に定格 1 0 O V、 1 0 0 Wの白熱電 球 3 6個を接続する と、 モータ 4 2への入力力 S l O O V、 6 A ( 6 0 0 W) になり、 出力は 1 0 0 V、 3 6 A ( 3 6 0 0 W) を示し、 接続した 3 6個の白熱電球は全て通常の明るさで点灯した。
次に、 発電装置 4 0の出力を短絡させ、 発電装置 4 0の電磁プレーキ をかけた。 出力のショー ト電流は、 1つの卷線 5 4 a , 5 4 b について 3 Aであり 、 これに卷線 5 4 a , 5 4 b の数 8 X 2列を乗じる と、 合計 で 4 8 Aであった。 このとき、 起動モータ 4 2の入力電流は 6 Aであつ た。
(実験 2 )
本発明の第 1 の実施形態による発電装置 4 0 を使用して、 アルミユウ ムの板状部材 5 5を外した状態で、 実験 1 と同様に発電実験を行った。 発電装置 4 0 のコア 5 3のセグメ ン ト部 5 3 a , 5 3 b の端面のアル ミニゥムプレー ト 5 5 を外して、 実験 1 と同様に、 3 6個の白熱電球を 接続して発電装置 4 0 を作動させた。 発電装置 4 0の入力は実験 1 と同 じ 1 0 0 V、 6 A ( 6 0 0 W) であ り 、 出力は 1 0 0 V、 1 2 A ( 1 2 0 0 W) であった。 接続した 3 6個の白熱電球は、 実験 1 と比較して暗 かった。 産業上の利用可能性
本発明による発電装置は、 様々な技術に有用である。 例えば自動車、 船舶、 一般住宅、 工場、 非常電源、 発電所等の発電装置と して使用する ことができる。

Claims

請 求 の 範 囲
1 . 回転軸に取り付けられた主ロータ と、
上記主ロータの外周に沿って交互に取り付けられた、 先端側が一方の 極性の第 1永久磁石ユニッ トおよび先端側が他方の極性の第 2久磁石ュ ニッ ト と、
上記回転軸を中心と した円周上に、 複数の上記第 1 、 第 2永久磁石ュ ニッ トの外側を一定の間隔で取り囲むよ うに配置された複数のコアと、 上記複数のコアの周 り に巻き回された卷線と、 を備え、
上記第 1、 第 2永久磁石ュニッ トは、 磁極が両端にある磁石体と、 上 記磁石体の一方の端面側に配置された、 上記一方の端面に対して所定の 角度を持つよ う に斜面部を形成した第 1 のヨーク と、 を備えるこ とを特 徵とする発電装置。
2 . 請求の範囲第 1項において、 上記第 1 、 第 2永久磁石ユニッ トは等 間隔に配置され、 上記複数のコアは等間隔に配置されているこ とを特徴 とする発電装置。
3 . 請求の範囲第 1項または第 2項において、 上記複数のコアの上記第 1 、 第 2永久磁石ュニッ トに対向する面に非磁性体の板状部材を備える ことを特徴とする発電装置。
4 . 請求の範囲第 3項において、 上記板状部材は、 アルミニウム板であ ることを特徴とする発電装置。
5 . 請求の範囲第 1項〜第 4項の何れか 1項において、 上記コアは、 2 つのセグメ ン ト部が連結部でつなが り 、 断面がほぼコの字形であり 、 上 記 2つのセグメ ン ト部の端部が上記第 1 、 第 2永久磁石ュニッ トの外側 を一定の間隔で取り囲むことを特徴とする発電装置。
6 . 請求の範囲第 5項において、 上記回転軸の軸方向に間隔をおいて、 上記第 1、 第 2永久磁石ュニッ トが、 合わせて 2個以上設けられている ことを特徴とする発電装置。
7 . 請求の範囲第 6項において、 上記コアの一方のセグメ ン ト部に対応 して上記第 1 、 第 2永久磁石ュニッ トが合わせて 2個設けられ、 他方の セグメ ン ト部に対応して上記第 1 、 第 2永久磁石ュニッ トが合わせて 2 個設けられていることを特徴とする発電装置。
8 . 請求の範囲第 1項〜第 7項の何れか 1項において、 上記コアの数は 、 上記第 1、 第 2永久磁石ユニッ トの円周方向の数に等しいこ とを特徴 とする発電装置。
9 . 請求の範囲第 1項〜第 8項の何れか 1項において、 動力源と してモ ータを用いて、 上記主ロータを回転させることを特徴とする発電装置。
1 0 . 請求の範囲第 1項〜第 9項の何れか 1項において、 上記第 1 、 第 2永久磁石ュニッ トの上記磁石体は、 複数の板状永久磁石を相互に吸着 して重ねて一体と した磁石連結体であるこ とを特徴とする発電装置。
1 1 . 請求の範囲第 1項〜第 1 0項の何れか 1項において、 上記第 1 の ヨークは、 稜線部から 2つの平面状の斜面部が延びる形状で構成される こ とを特徴とする発電装置。
1 2 . 請求の範囲第 1項〜第 1 0項の何れか 1項において、 上記第 1 の ヨークは、 上記斜面部が湾曲形状で構成されるこ とを特徴とする永久磁 石ュニッ ト。
1 3 . 請求の範囲第 1項〜第 1 0項の何れか 1項において、 上記第 1 、 第 2永久磁石ュニッ トは、 上記磁石体の他方の端面側に配置された板状 の第 2 のヨークを備えるこ とを特徴とする発電装置。
PCT/JP2007/051865 2006-01-30 2007-01-30 発電装置 WO2007086616A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006021133 2006-01-30
JP2006-021133 2006-01-30

Publications (1)

Publication Number Publication Date
WO2007086616A1 true WO2007086616A1 (ja) 2007-08-02

Family

ID=38309384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051865 WO2007086616A1 (ja) 2006-01-30 2007-01-30 発電装置

Country Status (2)

Country Link
TW (1) TW200737654A (ja)
WO (1) WO2007086616A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072623A1 (ja) * 2007-12-06 2009-06-11 Iyoda, Toshiro 発電機
EP4283837A3 (en) * 2022-05-23 2024-03-13 Yilmaz Dursun Co-polar magnet generator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1031U (ja) * 1997-01-18 1998-02-03 知敏 徳納 高効率発電機
JP2005245174A (ja) * 2004-02-27 2005-09-08 Makoto Ogose 永久磁石ユニット、回転アシスト装置及び回転アシスト付モータ装置
JP2005287185A (ja) * 2004-03-30 2005-10-13 Hitachi Ltd リニアモータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1031U (ja) * 1997-01-18 1998-02-03 知敏 徳納 高効率発電機
JP2005245174A (ja) * 2004-02-27 2005-09-08 Makoto Ogose 永久磁石ユニット、回転アシスト装置及び回転アシスト付モータ装置
JP2005287185A (ja) * 2004-03-30 2005-10-13 Hitachi Ltd リニアモータ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072623A1 (ja) * 2007-12-06 2009-06-11 Iyoda, Toshiro 発電機
EP4283837A3 (en) * 2022-05-23 2024-03-13 Yilmaz Dursun Co-polar magnet generator

Also Published As

Publication number Publication date
TW200737654A (en) 2007-10-01

Similar Documents

Publication Publication Date Title
US6794783B2 (en) Flat rotary electric generator
JP5033552B2 (ja) アキシャルギャップ型コアレス回転機
US8536759B2 (en) AC generator
KR101492172B1 (ko) 일체형 권선을 활용한 반경 방향 및 축 방향 자속 일체형 모터
US20050099081A1 (en) Disk alternator
WO1999060692A3 (en) Magnetic circuit for rotating apparatus
TW200929805A (en) Permanent magnet rotating machine
JP2008220120A (ja) 発電システム
JP2007282393A (ja) 磁石発電機
WO2013073416A1 (ja) 回転電機
WO2007086616A1 (ja) 発電装置
CA2511526C (en) Flat rotary electric generator
TWI652883B (zh) Magnetic power generator
TWI704749B (zh) 雙轉子發電機
JP3216355U (ja) 発電装置
US20080157613A1 (en) Permanent Magnet Electric Generator with Rotor Circumferentially Encircling Stator
JP2019216530A (ja) 永久磁石発電機
TWM564862U (zh) Magnetic power generator
TW202005233A (zh) 電流增益發電機
JP2011004576A (ja) 発電機
CN221408567U (zh) 星形接法三齿绕制三相电机定子
TWI290789B (en) Flat rotary electric generator
KR101004890B1 (ko) 모터
TW202143607A (zh) 磁助力發電機
KR20170014200A (ko) 동박코일 모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007556056

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07707995

Country of ref document: EP

Kind code of ref document: A1