WO2007085478A1 - Floor cover comprising a sensor measuring the core temperature of the floor cover - Google Patents

Floor cover comprising a sensor measuring the core temperature of the floor cover Download PDF

Info

Publication number
WO2007085478A1
WO2007085478A1 PCT/EP2007/000698 EP2007000698W WO2007085478A1 WO 2007085478 A1 WO2007085478 A1 WO 2007085478A1 EP 2007000698 W EP2007000698 W EP 2007000698W WO 2007085478 A1 WO2007085478 A1 WO 2007085478A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
floor covering
communication means
covering according
floor cover
Prior art date
Application number
PCT/EP2007/000698
Other languages
German (de)
French (fr)
Inventor
Michael Schmid
Original Assignee
Franken-Schotter Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Franken-Schotter Gmbh & Co. Kg filed Critical Franken-Schotter Gmbh & Co. Kg
Priority to EP07703076A priority Critical patent/EP1984568A1/en
Publication of WO2007085478A1 publication Critical patent/WO2007085478A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/28Vibrated rollers or rollers subjected to impacts, e.g. hammering blows
    • E01C19/288Vibrated rollers or rollers subjected to impacts, e.g. hammering blows adapted for monitoring characteristics of the material being compacted, e.g. indicating resonant frequency, measuring degree of compaction, by measuring values, detectable on the roller; using detected values to control operation of the roller, e.g. automatic adjustment of vibration responsive to such measurements
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving

Definitions

  • the invention relates to a floor covering, comprising at least one pourable and hardenable mass on site, in particular a bitumen-containing composition according to the preamble of patent claim 1.
  • the invention has for its object to provide a floor covering of the type mentioned, which is characterized by a high coating quality with simple production.
  • the floor covering according to claim 1 consists of at least one pourable and hardenable on site mass such as bitumen or other hardenable binder with embedded bulk material.
  • This floor covering is preferably used in road construction.
  • at least one sensor is provided in the floor covering which measures at least the core temperature of the floor covering and if necessary stores the measured data.
  • This sensor is in operative connection with communication means which transmit the measured core temperature to an evaluation station.
  • the sensor can detect the temperature in the core of the floor covering, which is of considerable importance for the physical, in particular hydrodynamic properties of the mass.
  • this sensor offers a high degree of independence of the measurement result from weather influences such as solar radiation, air temperature or rain.
  • the temperature measurements obtained in this way are thus much more reliable than that of an infrared measuring device.
  • the core temperature obtained in this way is used in a manner known per se in the mathematical calculations for determining the density of the flooring.
  • the determined covering density is thus more precise, so that on This way, a topping with optimum quality can be produced.
  • the communication means connected to the sensor also have the advantage that they represent a positioning aid.
  • the individual sensors are distributed with their communication means in a defined manner, so that from the position obtained by the communication means information of the sensors and control signals can be derived to guide machines and other vehicles correctly along the planned route.
  • the sensor z After completion of the coating, the sensor z. Example, be used advantageously for ice monitoring, preferably to provide a traffic control system with data.
  • the communication means are designed to transmit power to the sensor energy.
  • with wireless data transmission in the communication means can be ensured in this way very easy power to the sensor.
  • an evaluation station supplies the sensor with the necessary electrical energy, while the sensor transmits via the communication means the measured core temperature or other information such as the state of preservation.
  • the communication means have at least one induction loop.
  • the energy transfer takes place in this way inductively by coupling a magnetic field generated by the evaluation station, which also very large amounts of energy can be transmitted very efficiently.
  • the communication means have at least one antenna for transmitting electromagnetic waves.
  • This antenna preferably has a transmitting and receiving mode, wherein in the receiving mode substantially the energy of the received electromagnetic field is used and stored for example in capacitors. In transmit mode, the antenna transmits the data measured by the sensor.
  • the information transmission to the evaluation station takes place in this case by more or less strong attenuation of the antenna resonant circuit. This attenuation leads to a stronger energy removal of the RF field at the transmitter of the evaluation station and can be easily dedektiert in this way in the evaluation station. In this case, the energy transfer is constantly from the evaluation station to the sensor, while the information transfer is constantly in the opposite direction.
  • the senor has at least one temperature-dependent resistor.
  • a metal resistor such as a platinum resistor is used, which has a very good reproducibility of the temperature dependence.
  • the sensor can also be formed by a semiconductor component, which can be used by the temperature-dependent properties of the semiconductor for temperature measurement.
  • semiconductor devices have a stronger temperature dependence of their electrical parameters as metal resistors, but they are subject to greater aging. If the sensors are to be used exclusively for determining the density of the floor covering, the aging of the sensors does not play a significant role. On the other hand, if the sensors are to be used permanently, for example for ice monitoring or the like, good long-term stability of the sensor is important.
  • a thermocouple is preferably used as a temperature-dependent sensor.
  • an analog-to-digital converter is provided between the sensor and the communication means.
  • the communication means are in this case designed so that they can transmit digital data. In this way it is avoided to transmit an analogue voltage signal via the communication means, if necessary wirelessly, which could lead to considerable errors.
  • the paving machine can already advantageously use the data of the sensors to determine the density of the mass.
  • the paving machine can automatically follow the route in this way, without having to resort to expensive and inaccurate satellite navigation.
  • the sensors may also be at least partially embedded in bores in the underground. In this way, the sensors are even better protected.
  • the temperature-sensitive points of the sensors are preferably in the region of their upper end and thus protrude into the floor covering.
  • the senor is adhesively bonded or screwed to the substrate.
  • the high pressures that the paving machine exerts on the sensor can no longer harm it.
  • the single figure shows a schematic, spatial representation of a floor covering 1, in particular an asphalt pavement, which is applied to a substrate 2.
  • a bore 3 was introduced before the application of the floor covering 1, in which a sensor housing 4 has been lowered.
  • the sensor housing 4 is screwed to the underside 2 by means of a dowel 5 to firmly anchor the sensor housing 4 in the ground 2.
  • the sensor housing 4 may also be provided directly on a surface 6 of the substrate 2.
  • a sensor 7 is provided, which is shown only for the embodiment as a temperature-dependent resistor. Alternatively, any other temperature sensor is also suitable.
  • the sensor 7 is arranged such that it comes to rest within the floor covering 1 in order to measure the core temperature of the floor covering 1.
  • the sensor 7 is connected via electrical lines 8 with a measuring amplifier 9 in operative connection, the output signal is passed via a further line 10 to an analog-to-digital converter. This converts the temperature measured value of the sensor 7 into a digital word. It is quite conceivable that non-linearities of the sensor 7, for example, be compensated by selecting a corresponding gain characteristic of the sense amplifier 9 or by corresponding conversion of the digital word generated by the analog-to-digital converter 11.
  • this conversion is shifted to a later explained evaluation station.
  • the advantage of this is, in particular, that the sensors 7 required in large numbers can be designed in this way very simply and therefore cost-effectively, while the additional expense in the evaluation station has practically no significance because of the small number of these devices.
  • the analog-to-digital converter 11 is connected via lines 12 with communication means 13 in operative connection. These communication means 13 convert the digital word into a serial data stream. Alternatively, it is also thought to provide the analog-to-digital converter directly with a serial data output in order to save this conversion.
  • the communication means comprise an RF transmitting and receiving device 14 which modulates the digital data to a high frequency signal.
  • the transmitting and receiving device 14 is in operative connection with an antenna 15 which transmits the modulated high-frequency signal so that it can be received and evaluated by the evaluation station.
  • the antenna 15 also serves for receiving a radio-frequency field which is transmitted by the evaluation station in order to supply the communication means 14, the analog-to-digital converter 11, the measuring amplifier 9 and the sensor 7 with electrical energy.
  • an evaluation station 16 which is preferably provided in a vehicle, in particular a paving machine or a roller.
  • the evaluation station 16 also has an antenna 17, which is designed to match the antenna 15 of the sensor housing 4.
  • the antenna 17 is in operative connection with an RF transmitting and receiving device 18, which on the one hand radiate high-frequency electromagnetic waves via the antenna 17 and on the other hand can decode from the antenna 17 received high-frequency signals.
  • the signals received and decoded by the RF transmitting and receiving device are supplied to a microcomputer 19, which decodes the measured values determined from these signals.
  • This microcomputer 19 also provides for a linearization of the sensor data by applying a predetermined mathematical function, which converts the digital sensor data directly into temperature values.
  • the microcomputer 19 can simultaneously serve to determine the current pad density using a corresponding mathematical model.
  • the sensor 7 can still be used after completion of the floor covering 1.
  • the position of the sensor 7 indicates the course of the road, on which vehicles can orient themselves to form an automatic steering system.
  • the sensors 7 in a traffic control system to get integrated. In particular, it is thought to use the measurement data of the sensor 7 for an ice alert.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Disclosed is a floor cover (1) composed of a material that can be cast and hardened in situ. At least one sensor (7) which measures the core temperature of the floor cover (1) is disposed in the floor cover (1). Said sensor (7) is effectively connected to communication means (13) which are configured for transmitting power in order to supply the sensor (7) with power.

Description

BODENBELAG MIT EINEM DIE KERNTEMPERATUR DES BODENBELAGS MESSENDEN SENSORFLOORING WITH A SENSOR MEASURING THE CORE TEMPERATURE OF THE FLOORING
Die Erfindung betrifft einen Bodenbelag, bestehend aus mindestens einer vor Ort gießbaren und erhärtbaren Masse, insbesondere einer bitumenhaltigen Masse gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a floor covering, comprising at least one pourable and hardenable mass on site, in particular a bitumen-containing composition according to the preamble of patent claim 1.
Aus der DE 102 34 217 Al ist ein Verfahren und eine Vorrichtung zur Ermittlung der Dicke einer Asphaltschicht bekannt. Dabei werden Sensoren auf einen Untergrund abgelegt, die beim anschließenden Asphaltierprozeß die Temperatur an der Unterseite der Asphaltschicht erfassen. Dabei benötigen die einzelnen Sensoren eine spezielle Energieversorgung, die mit einem hohen Verkabelungsaufwand verbunden ist.From DE 102 34 217 Al a method and a device for determining the thickness of an asphalt layer is known. Sensors are placed on a surface, which detect the temperature at the bottom of the asphalt layer in the subsequent Asphaltierprozeß. The individual sensors require a special power supply, which is associated with a high cabling effort.
Der Erfindung liegt die Aufgabe zugrunde, einen Bodenbelag der eingangs genannten Art zu schaffen, der sich durch eine hohe Belagsqualität bei einfacher Herstellung auszeichnet.The invention has for its object to provide a floor covering of the type mentioned, which is characterized by a high coating quality with simple production.
Diese Aufgabe wird erfindungsgemäß mit den Merkmalen des Patentanspruchs 1 gelöst.This object is achieved with the features of claim 1.
Der Bodenbelag gemäß Anspruch 1 besteht aus mindestens einer vor Ort gießbaren und erhärtbaren Masse wie beispielsweise Bitumen oder ein sonstiges erhärtbares Bindemittel mit eingelagertem Schüttgut. Dieser Bodenbelag wird vorzugsweise im Straßenbau eingesetzt. Um beim anschließenden Walzvorgang die Belagsdichte genauer bestimmen zu können, ist im Bodenbelag mindestens ein Sensor vorgesehen, der zumindest die Kerntemperatur des Bodenbelags mißt und ggf. die gemessenen Daten speichert. Dieser Sensor steht mit Kommunikationsmitteln in Wirkverbindung, die die gemessene Kerntemperatur an eine Auswertestation übertragen. Damit kann der Sensor statt der Oberflächentemperatur die Temperatur im Kern des Bodenbelags erfassen, die für die physikalischen, insbesondere hydrodynamischen Eigenschaften der Masse von erheblicher Bedeutung sind. Im Gegensatz zur Messung der Oberflächentemperatur bietet dieser Sensor eine weitgehende Unabhängigkeit des Meßergebnisses von Witterungseinflüssen wie Sonneneinstrahlung, Lufttemperatur oder Regen. Die auf diese Weise erzielten Temperatur-Meßergebnisse sind damit wesentlich zuverlässiger, als die von einem Infrarot-Meßgerät. Die auf diese Weise gewonnene Kerntemperatur wird in an und für sich bekannter Weise in die mathematischen Berechnungen zur Bestimmung der Bodenbelagsdichte verwendet. Die ermittelte Belagsdichte ist damit präziser, so daß auf diese Weise ein Belag mit optimaler Qualität hergestellt werden kann. Die mit dem Sensor verbundenen Kommunikationsmittel haben außerdem den Vorteil, daß sie eine Positionierhilfe darstellen. Zu diesem Zweck werden die einzelnen Sensoren mit ihren Kommunikationsmitteln in definierter Weise verteilt, so daß aus den von den Kommunikationsmitteln gewonnenen Lage Informationen der Sensoren und Steuersignale abgeleitet werden können, um Maschinen und sonstige Fahrzeuge korrekt entlang der geplanten Trasse zu führen. Nach Fertigstellung des Belags kann der Sensor z. B. vorteilhaft zur Eisüberwachung eingesetzt werden, um vorzugsweise ein Verkehrsleitsystem mit Daten zu versorgen. Die Kommunikationsmittel sind zur Stromversorgung des Sensors energieübertragend ausgebildet. Insbesondere bei drahtloser Datenübermittlung in den Kommunikationsmitteln kann auf diese Weise sehr einfach die Stromversorgung des Sensors sichergestellt werden. Auf diese Weise versorgt eine Auswertestation den Sensor mit der nötigen elektrischen Energie, während der Sensor über die Kommunikationsmittel die gemessene Kerntemperatur oder weitere Informationen wie den Erhaltungszustand überträgt .The floor covering according to claim 1 consists of at least one pourable and hardenable on site mass such as bitumen or other hardenable binder with embedded bulk material. This floor covering is preferably used in road construction. In order to be able to determine the covering density more accurately during the subsequent rolling process, at least one sensor is provided in the floor covering which measures at least the core temperature of the floor covering and if necessary stores the measured data. This sensor is in operative connection with communication means which transmit the measured core temperature to an evaluation station. Thus, instead of the surface temperature, the sensor can detect the temperature in the core of the floor covering, which is of considerable importance for the physical, in particular hydrodynamic properties of the mass. In contrast to the measurement of the surface temperature, this sensor offers a high degree of independence of the measurement result from weather influences such as solar radiation, air temperature or rain. The temperature measurements obtained in this way are thus much more reliable than that of an infrared measuring device. The core temperature obtained in this way is used in a manner known per se in the mathematical calculations for determining the density of the flooring. The determined covering density is thus more precise, so that on This way, a topping with optimum quality can be produced. The communication means connected to the sensor also have the advantage that they represent a positioning aid. For this purpose, the individual sensors are distributed with their communication means in a defined manner, so that from the position obtained by the communication means information of the sensors and control signals can be derived to guide machines and other vehicles correctly along the planned route. After completion of the coating, the sensor z. Example, be used advantageously for ice monitoring, preferably to provide a traffic control system with data. The communication means are designed to transmit power to the sensor energy. In particular, with wireless data transmission in the communication means can be ensured in this way very easy power to the sensor. In this way, an evaluation station supplies the sensor with the necessary electrical energy, while the sensor transmits via the communication means the measured core temperature or other information such as the state of preservation.
Zur Erzielung einer möglichst effizienten Energieübertragung ist es gemäß Anspruch 2 vorteilhaft, wenn die Kommunikationsmittel mindestens eine Induktionsschleife aufweisen. Die Energieübertragung erfolgt auf diese Weise induktiv durch Einkoppeln eines von der Auswertestation erzeugten Magnetfeldes, wodurch sehr effizient auch größere Energiemengen übertragen werden können. - A -To achieve the most efficient energy transfer, it is advantageous according to claim 2, when the communication means have at least one induction loop. The energy transfer takes place in this way inductively by coupling a magnetic field generated by the evaluation station, which also very large amounts of energy can be transmitted very efficiently. - A -
Alternativ oder zusätzlich ist es gemäß Anspruch 3 vorteilhaft, wenn die Kommunikationsmittel mindestens eine Antenne zur Übertragung elektromagnetischer Wellen aufweisen. Diese Antenne besitzt vorzugsweise einen Sende- und Empfangsmodus, wobei im Empfangsmodus im wesentlichen die Energie des empfangenen elektromagnetischen Feldes genutzt und beispielsweise in Kondensatoren gespeichert wird. Im Sendemodus überträgt die Antenne die vom Sensor gemessenen Daten. Außerdem ist vorstellbar, die Antenne ausschließlich in einem Empfangsmodus zu betreiben, so daß der Sensor ständig mit elektrischer Energie versorgt wird. Die Informationsübertragung zur Auswertestation erfolgt in diesem Fall durch mehr oder weniger starkes Dämpfen des Antennen-Schwingkreises. Diese Dämpfung führt zu einer stärkeren Energieentnahme des HF-Feldes am Sender der Auswertestation und kann auf diese Weise einfach in der Auswertestation dedektiert werden. In diesem Fall erfolgt die Energieübertragung ständig von der Auswertestation zum Sensor, während die Informationsübertragung ständig in der Gegenrichtung erfolgt.Alternatively or additionally, it is advantageous according to claim 3, if the communication means have at least one antenna for transmitting electromagnetic waves. This antenna preferably has a transmitting and receiving mode, wherein in the receiving mode substantially the energy of the received electromagnetic field is used and stored for example in capacitors. In transmit mode, the antenna transmits the data measured by the sensor. In addition, it is conceivable to operate the antenna exclusively in a receiving mode, so that the sensor is constantly supplied with electrical energy. The information transmission to the evaluation station takes place in this case by more or less strong attenuation of the antenna resonant circuit. This attenuation leads to a stronger energy removal of the RF field at the transmitter of the evaluation station and can be easily dedektiert in this way in the evaluation station. In this case, the energy transfer is constantly from the evaluation station to the sensor, while the information transfer is constantly in the opposite direction.
Gemäß Anspruch 4 ist es vorteilhaft, wenn der Sensor mindestens einen temperaturabhängigen Widerstand aufweist. Vorzugsweise wird ein Metallwiderstand, wie beispielsweise ein Platin-Widerstand eingesetzt, der eine sehr gute Reproduzierbarkeit der Temperaturabhängigkeit besitzt. Alternativ kann der Sensor auch von einem Halbleiter- Bauelement gebildet sein, welches durch die temperaturabhängigen Eigenschaften des Halbleiters zur Temperaturmessung eingesetzt werden kann. Derartige Halbleiterbauelemente weisen eine stärkere Temperaturabhängigkeit ihrer elektrischen Parameter auf als Metallwiderstände, sie unterliegen jedoch einer stärkeren Alterung. Sollen die Sensoren ausschließlich zur Dichtebestimmung des Bodenbelags herangezogen werden, so spielt die Alterung der Sensoren keine wesentliche Rolle. Sollen die Sensoren dagegen dauerhaft, beispielsweise zur Eisüberwachung oder dergleichen eingesetzt werden, so ist eine gute Langzeitstabilität des Sensors wichtig. In diesem Fall wird vorzugsweise ein Thermoelement als temperaturabhängiger Sensor eingesetzt.According to claim 4, it is advantageous if the sensor has at least one temperature-dependent resistor. Preferably, a metal resistor such as a platinum resistor is used, which has a very good reproducibility of the temperature dependence. Alternatively, the sensor can also be formed by a semiconductor component, which can be used by the temperature-dependent properties of the semiconductor for temperature measurement. Such semiconductor devices have a stronger temperature dependence of their electrical parameters as metal resistors, but they are subject to greater aging. If the sensors are to be used exclusively for determining the density of the floor covering, the aging of the sensors does not play a significant role. On the other hand, if the sensors are to be used permanently, for example for ice monitoring or the like, good long-term stability of the sensor is important. In this case, a thermocouple is preferably used as a temperature-dependent sensor.
Zur Erzielung einer präzisen Kerntemperaturmessung ist es gemäß Anspruch 5 vorteilhaft, wenn zwischen dem Sensor und den Kommunikationsmitteln ein Analog-Digital-Umsetzer vorgesehen ist. Die Kommunikationsmittel sind in diesem Fall derart ausgebildet, daß sie digitale Daten übertragen können. Auf diese Weise wird vermieden, ein Analogs- pannungssignal über die Kommunikationsmittel gegebenenfalls drahtlos zu übertragen, was zu erheblichen Fehlern führen könnte.To achieve a precise core temperature measurement, it is advantageous according to claim 5, if an analog-to-digital converter is provided between the sensor and the communication means. The communication means are in this case designed so that they can transmit digital data. In this way it is avoided to transmit an analogue voltage signal via the communication means, if necessary wirelessly, which could lead to considerable errors.
Zur Erzielung eines einfachen und gleichzeitig störungsarmen Aufbaus ist es gemäß Anspruch 6 günstig, wenn der Sensor und die Kommunikationsmittel in einem Halbleiterbauelement integriert sind. Auf diese Weise ergibt sich ein sehr kompakter Aufbau und eine kostengünstige Herstellung der Sensoren. Die Sensoren lassen sich auf diese Weise leicht mit einem einfachen Gehäuse für die rauhen Betriebsbedingungen auf der Baustelle schützen. Damit die Sensoren in vordefinierter Weise über den Untergrund verteilt sind, ist es gemäß Anspruch 7 vorteilhaft, wenn diese auf den Untergrund aufgesetzt sind. Die Sensoren werden demnach vor dem Ausbringen der erhärtenden Masse am Untergrund positioniert. Damit kann bereits die Asphaltiermaschine vorteilhaft die Daten der Sensoren nutzen, um die Dichte der Masse zu bestimmen. Außerdem kann die Asphaltiermaschine auf diese Weise automatisch der Trasse folgen, ohne auf teure und gleichzeitig ungenauere Satellitennavigationen zurückgreifen zu müssen. Alternativ können die Sensoren auch wenigstens teilweise in Bohrungen in den Untergrund eingelassen sein. Auf diese Weise sind die Sensoren noch besser geschützt. In diesem Fall befinden sich die temperaturemfindlichen Punkte der Sensoren vorzugsweise im Bereich ihres oberen Endes und ragen damit in den Bodenbelag hinein.To achieve a simple and at the same time low-noise construction, it is advantageous according to claim 6, when the sensor and the communication means are integrated in a semiconductor device. In this way, results in a very compact design and cost-effective production of the sensors. The sensors are easily protected in this way with a simple housing for the harsh operating conditions on the construction site. Thus, the sensors are distributed in a predefined manner on the ground, it is advantageous according to claim 7, if they are placed on the ground. The sensors are therefore positioned before the application of the hardening mass to the substrate. Thus, the paving machine can already advantageously use the data of the sensors to determine the density of the mass. In addition, the paving machine can automatically follow the route in this way, without having to resort to expensive and inaccurate satellite navigation. Alternatively, the sensors may also be at least partially embedded in bores in the underground. In this way, the sensors are even better protected. In this case, the temperature-sensitive points of the sensors are preferably in the region of their upper end and thus protrude into the floor covering.
Um zu verhindern, daß die Sensoren beim Ausbringen der erhärtenden Masse weggedrückt werden, ist es gemäß Anspruch 8 günstig, wenn der Sensor mit dem Untergrund verklebt bzw. verschraubt ist. Damit können die hohen Drük- ke, die die Asphaltiermaschine auf den Sensor ausübt, diesem nichts mehr anhaben.In order to prevent the sensors from being pushed away during the application of the hardening mass, it is advantageous if the sensor is adhesively bonded or screwed to the substrate. Thus, the high pressures that the paving machine exerts on the sensor can no longer harm it.
Alternativ ist es gemäß Anspruch 9 vorteilhaft, den Sensor mit dem Materialfluß der erhärtbaren Masse einzubringen. Damit kommt der Sensor innerhalb des Bodenbelags zu liegen und erfaßt somit die Kerntemperatur besonders genau. Außerdem vereinfacht sich dabei die Montage der Sensoren. Weitere Vorteile und Merkmale der vorliegenden Erfindung werden in der folgenden detaillierten Beschreibung anhand der dazugehörigen Figuren dargelegt, in denen mehrere Ausführungsbeispiele der vorliegenden Erfindung enthalten sind. Es sollte jedoch verstanden werden, daß die Zeichnung nur dem Zweck der Darstellung der Erfindung dient und nicht den Schutzbereich der Erfindung beschränkt.Alternatively, it is advantageous according to claim 9 to introduce the sensor with the material flow of the hardenable mass. Thus, the sensor comes to rest within the flooring and thus detects the core temperature very accurately. It also simplifies the installation of the sensors. Further advantages and features of the present invention are set forth in the following detailed description with reference to the accompanying figures, in which several embodiments of the present invention are included. It should be understood, however, that the drawings are for the purpose of illustrating the invention and do not limit the scope of the invention.
Der Erfindungsgegenstand wird beispielhaft anhand der Zeichnung erläutert, ohne den Schutzumfang zu begrenzen.The subject invention is exemplified with reference to the drawing, without limiting the scope.
Die einzige Figur zeigt eine schematische, räumliche Darstellung eines Bodenbelags 1, insbesondere eines Asphalt- Belags, der auf einem Untergrund 2 aufgebracht ist. In den Untergrund 2 wurde vor dem Aufbringen des Bodenbelags 1 eine Bohrung 3 eingebracht, in der ein Sensorgehäuse 4 abgesenkt wurde. Das Sensorgehäuse 4 ist unterseitig mit dem Untergrund 2 mittels eines Dübels 5 verschraubt, um das Sensorgehäuse 4 im Untergrund 2 fest zu verankern. Alternativ zur dargestellten Ausführungsform kann das Sensorgehäuse 4 auch direkt an einer Oberfläche 6 des Untergrundes 2 vorgesehen sein.The single figure shows a schematic, spatial representation of a floor covering 1, in particular an asphalt pavement, which is applied to a substrate 2. In the substrate 2, a bore 3 was introduced before the application of the floor covering 1, in which a sensor housing 4 has been lowered. The sensor housing 4 is screwed to the underside 2 by means of a dowel 5 to firmly anchor the sensor housing 4 in the ground 2. As an alternative to the illustrated embodiment, the sensor housing 4 may also be provided directly on a surface 6 of the substrate 2.
Im Sensorgehäuse 4 ist ein Sensor 7 vorgesehen, der lediglich für das Ausführungsbeispiel als temperaturabhängiger Widerstand dargestellt ist. Alternativ ist jeder andere Temperatursensor ebenfalls geeignet. Der Sensor 7 ist derart angeordnet, daß er innerhalb des Bodenbelags 1 zu liegen kommt, um die Kerntemperatur des Bodenbelags 1 zu messen. Der Sensor 7 steht über elektrische Leitungen 8 mit einem Meßverstärker 9 in Wirkverbindung, dessen Ausgangssignal über eine weitere Leitung 10 an einen Analog-Digital- Umsetzer geführt wird. Dieser wandelt den Temperatur- Meßwert des Sensors 7 in ein Digitalwort um. Dabei ist es durchaus vorstellbar, daß Nichtlinearitäten des Sensors 7, beispielsweise durch Wahl einer entsprechenden Verstärkungskennlinie des Meßverstärkers 9 oder durch entsprechendes Umrechnen des vom Analog-Digital-Umsetzers 11 erzeugten Digitalwortes ausgeglichen werden. Vorzugsweise wird diese Umrechnung jedoch in eine später erläuterte Auswertestation verlagert. Der Vorteil hiervon besteht insbesondere darin, daß die in großer Anzahl erforderlichen Sensoren 7 auf diese Weise sehr einfach und damit kostengünstig ausgebildet werden können, während der zusätzliche Aufwand in der Auswertestation wegen der geringen Anzahl dieser Geräte praktisch keine Bedeutung hat.In the sensor housing 4, a sensor 7 is provided, which is shown only for the embodiment as a temperature-dependent resistor. Alternatively, any other temperature sensor is also suitable. The sensor 7 is arranged such that it comes to rest within the floor covering 1 in order to measure the core temperature of the floor covering 1. The sensor 7 is connected via electrical lines 8 with a measuring amplifier 9 in operative connection, the output signal is passed via a further line 10 to an analog-to-digital converter. This converts the temperature measured value of the sensor 7 into a digital word. It is quite conceivable that non-linearities of the sensor 7, for example, be compensated by selecting a corresponding gain characteristic of the sense amplifier 9 or by corresponding conversion of the digital word generated by the analog-to-digital converter 11. Preferably, however, this conversion is shifted to a later explained evaluation station. The advantage of this is, in particular, that the sensors 7 required in large numbers can be designed in this way very simply and therefore cost-effectively, while the additional expense in the evaluation station has practically no significance because of the small number of these devices.
Der Analog-Digital-Umsetzer 11 steht über Leitungen 12 mit Kommunikationsmitteln 13 in Wirkverbindung. Diese Kommunikationsmittel 13 wandeln das Digitalwort in einen seriellen Datenstrom um. Alternativ ist auch daran gedacht, den Analog-Digital-Umsetzer direkt mit einem seriellen Datenausgang zu versehen, um diese Umwandlung einzusparen. Die Kommunikationsmittel weisen eine HF-Sende- und -Empfangseinrichtung 14 auf, die die digitalen Daten auf ein Hochfrequenz-Signal aufmoduliert. Die Sende- und Empfangseinrichtung 14 steht mit einer Antenne 15 in Wirkverbindung, die das modulierte Hochfrequenz-Signal aussendet, damit es von der Auswertestation empfangen und ausgewertet werden kann. Die Antenne 15 dient außerdem zum Empfang eines Hochfrequenz-Feldes, welches von der Auswertestation gesendet wird, um die Kommunikationsmittel 14, den Analog-Digital-Umsetzer 11, den Meßverstärker 9 und den Sensor 7 mit elektrischer Energie zu versorgen.The analog-to-digital converter 11 is connected via lines 12 with communication means 13 in operative connection. These communication means 13 convert the digital word into a serial data stream. Alternatively, it is also thought to provide the analog-to-digital converter directly with a serial data output in order to save this conversion. The communication means comprise an RF transmitting and receiving device 14 which modulates the digital data to a high frequency signal. The transmitting and receiving device 14 is in operative connection with an antenna 15 which transmits the modulated high-frequency signal so that it can be received and evaluated by the evaluation station. The antenna 15 also serves for receiving a radio-frequency field which is transmitted by the evaluation station in order to supply the communication means 14, the analog-to-digital converter 11, the measuring amplifier 9 and the sensor 7 with electrical energy.
Oberhalb des Bodenbelags 1 befindet sich eine Auswertestation 16, die vorzugsweise in einem Fahrzeug, insbesondere einer Asphaltiermaschine bzw. einer Walze vorgesehen ist. Die Auswertestation 16 weist ebenfalls eine Antenne 17 auf, die passend zur Antenne 15 des Sensorgehäuses 4 ausgebildet ist. Die Antenne 17 steht mit einer HF-Sende- und -Empfangseinrichtung 18 in Wirkverbindung, die einerseits hochfrequente elektromagnetische Wellen über die Antenne 17 abstrahlen und andererseits von der Antenne 17 empfangene hochfrequente Signale decodieren kann. Die von der HF-Sende- und -Empfangseinrichtung empfangenen und decodierten Signale werden einem Mikrocomputer 19 zugeführt, der aus diesen Signalen die ermittelten Meßwerte decodiert. Dieser Mikrocomputer 19 sorgt außerdem für eine Linearisierung der Sensordaten durch Anwendung einer vorgegebenen mathematischen Funktion, die die digitalen Sensordaten direkt in Temperaturwerte umrechnet. Der Mikrocomputer 19 kann gleichzeitig dazu dienen, die gegenwärtige Belagsdichte mit Hilfe eines entsprechenden mathematischen Modells zu ermitteln.Above the floor covering 1 is an evaluation station 16, which is preferably provided in a vehicle, in particular a paving machine or a roller. The evaluation station 16 also has an antenna 17, which is designed to match the antenna 15 of the sensor housing 4. The antenna 17 is in operative connection with an RF transmitting and receiving device 18, which on the one hand radiate high-frequency electromagnetic waves via the antenna 17 and on the other hand can decode from the antenna 17 received high-frequency signals. The signals received and decoded by the RF transmitting and receiving device are supplied to a microcomputer 19, which decodes the measured values determined from these signals. This microcomputer 19 also provides for a linearization of the sensor data by applying a predetermined mathematical function, which converts the digital sensor data directly into temperature values. The microcomputer 19 can simultaneously serve to determine the current pad density using a corresponding mathematical model.
Der Sensor 7 kann auch nach Fertigstellung des Bodenbelags 1 noch genutzt werden. Die Lage des Sensors 7 zeigt den Straßenverlauf an, an dem sich Fahrzeuge zur Bildung eines automatischen Lenksystems orientieren können. Außerdem können die Sensoren 7 in ein Verkehrsleitsystem integriert werden. Insbesondere ist daran gedacht, die Meßdaten des Sensors 7 für eine Eiswarnung zu nutzen.The sensor 7 can still be used after completion of the floor covering 1. The position of the sensor 7 indicates the course of the road, on which vehicles can orient themselves to form an automatic steering system. In addition, the sensors 7 in a traffic control system to get integrated. In particular, it is thought to use the measurement data of the sensor 7 for an ice alert.
Da einige Ausführungsbeispiele der vorliegenden Erfindung nicht gezeigt bzw. beschrieben sind, ist zu verstehen, daß eine Vielzahl von Änderungen und Abwandlungen dieser beschriebenen Ausführungsbeispiele möglich ist, ohne den wesentlichen Gedanken und den Schutzbereich der Erfindung zu verlassen, der durch die Ansprüche festgelegt ist. Since some embodiments of the present invention are not shown or described, it is to be understood that a variety of changes and modifications of these described embodiments are possible without departing from the essential spirit and scope of the invention as defined by the claims.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
BodenbelagFlooring
Untergrundunderground
Bohrungdrilling
Sensorgehäusesensor housing
Dübeldowel
Oberflächesurface
Sensor elektrische LeitungSensor electric cable
MeßVerstärkermeasuring amplifier
Leitungmanagement
Analog-Digital-UmsetzerAnalog-to-digital converter
Leitungencables
Kommunikationsmittelmeans of communication
HF-Sende- und -EmpfangseinrichtungRF transmitting and receiving device
Antenneantenna
Auswertestationevaluation station
Antenneantenna
HF-Sende- und -EmpfangseinrichtungRF transmitting and receiving device
Mikrocomputer microcomputer

Claims

-1-Patentansprüche -1-claims
1. Bodenbelag, bestehend aus mindestens einer vor Ort gießbaren und erhärtbaren Masse, in der mindestens ein die Kerntemperatur des Bodenbelags (1) meßender Sensor (7) vorgesehen ist, der mit Kommunikationsmitteln (13) in Wirkverbindung steht, dadurch gekennzeichnet, daß die Kommunikationsmittel (13) zur Stromversorgung des Sensors (7) energieübertragend ausgebildet sind.1. Floor covering, consisting of at least one pourable and hardenable mass on site, in which at least one core temperature of the floor covering (1) measuring sensor (7) is provided, which communicates with communication means (13) is in operative connection, characterized in that the communication means (13) are designed to transmit power to the sensor (7) energy-transmitting.
2. Bodenbelag nach Anspruch 1, dadurch gekennzeichnet, daß die Kommunikationsmittel (13) mindestens eine Induktionsschleife aufweisen.2. Floor covering according to claim 1, characterized in that the communication means (13) have at least one induction loop.
3. Bodenbelag nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Kommunikationsmittel (13) mindestens eine Antenne (15) zur Übertragung elektromagnetischer Wellen aufweisen.3. Floor covering according to claim 1 or 2, characterized in that the communication means (13) have at least one antenna (15) for transmitting electromagnetic waves.
4. Bodenbelag nach mindestens einem der Ansprüche 1 bis4. Floor covering according to at least one of claims 1 to
3, dadurch gekennzeichnet, daß der Sensor (7) mindestens einen temperaturabhängigen Widerstand, Halbleiter und/oder ein Thermoelement aufweisen.3, characterized in that the sensor (7) have at least one temperature-dependent resistor, semiconductor and / or a thermocouple.
5. Bodenbelag nach mindestens einem der Ansprüche 1 bis5. Floor covering according to at least one of claims 1 to
4, dadurch gekennzeichnet, daß dem Sensor (7) ein Analog-Digital-Umsetzer (11) nachgeschaltet ist, und die Kommunikationsmittel (13) digital sind. -2-4, characterized in that the sensor (7) an analog-to-digital converter (11) is connected downstream, and the communication means (13) are digital. -2-
6. Bodenbelag nach mindestens einem der Ansprüche 1 bis6. Floor covering according to at least one of claims 1 to
5, dadurch gekennzeichnet, daß der Sensor (7) und die Kommunikationsmittel (13) in einem Halbleiterbauelement integriert sind.5, characterized in that the sensor (7) and the communication means (13) are integrated in a semiconductor device.
7. Bodenbelag nach mindestens einem der Ansprüche 1 bis7. Floor covering according to at least one of claims 1 to
6, dadurch gekennzeichnet, daß der Sensor (7) auf einem Untergrund (2) aufgesetzt oder in eine Bohrung6, characterized in that the sensor (7) placed on a substrate (2) or in a bore
(3) des Untergrundes (2) wenigstens teilweise eingelassen ist.(3) of the substrate (2) is at least partially embedded.
8. Bodenbelag nach Anspruch 7, dadurch gekennzeichnet, daß der Sensor (7) mit dem Untergrund (2) verklebt und/oder verschraubt ist.8. Floor covering according to claim 7, characterized in that the sensor (7) is glued to the substrate (2) and / or screwed.
9. Bodenbelag nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Sensor (7) durch Einbringen in den Materialfluß der noch nicht erhärteten Masse innerhalb des Bodenbelags (1) vorgesehen ist . 9. Floor covering according to at least one of claims 1 to 6, characterized in that the sensor (7) is provided by introducing into the material flow of the not yet hardened mass within the floor covering (1).
PCT/EP2007/000698 2006-01-26 2007-01-26 Floor cover comprising a sensor measuring the core temperature of the floor cover WO2007085478A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07703076A EP1984568A1 (en) 2006-01-26 2007-01-26 Floor cover comprising a sensor measuring the core temperature of the floor cover

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200620001305 DE202006001305U1 (en) 2006-01-26 2006-01-26 Flooring consisting of at least one pourable and hardenable mass on site
DE202006001305.9 2006-01-26

Publications (1)

Publication Number Publication Date
WO2007085478A1 true WO2007085478A1 (en) 2007-08-02

Family

ID=36500708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/000698 WO2007085478A1 (en) 2006-01-26 2007-01-26 Floor cover comprising a sensor measuring the core temperature of the floor cover

Country Status (3)

Country Link
EP (1) EP1984568A1 (en)
DE (1) DE202006001305U1 (en)
WO (1) WO2007085478A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015213868B4 (en) 2015-07-22 2023-06-29 Moba Mobile Automation Aktiengesellschaft energy transfer
DE102016124341A1 (en) 2016-12-14 2018-06-14 Hamm Ag Construction machinery
DE102019205835A1 (en) * 2019-04-24 2020-10-29 Adolf Würth Gmbh & Co Kg Arrangement with at least one section of a building and method for determining a state of at least one section of a building

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10138417C1 (en) * 2001-08-01 2003-01-16 Mit Gmbh Magnetic Imaging Tool Thickness measuring device for concrete or asphalt layers uses transmission coil and relatively spaced reception coils cooperating with metal surfaces below concrete or asphalt layer
DE10234217A1 (en) * 2002-07-27 2004-02-05 Hermann Kirchner Gmbh & Co Kg Asphalt thickness determination and control method in which the asphalt thickness is continuously determined based on foundation level measurements and corrected using discrete electromagnetic asphalt thickness measurements
JP2004226157A (en) * 2003-01-21 2004-08-12 Mitsubishi Heavy Ind Ltd Sensor network, sensor, radiowave transmitting body, and computer program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515757A (en) * 2000-12-08 2004-05-27 ザ ジョンズ ホプキンズ ユニバーシティ Wireless multifunctional sensor platform, system having the platform and method of using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10138417C1 (en) * 2001-08-01 2003-01-16 Mit Gmbh Magnetic Imaging Tool Thickness measuring device for concrete or asphalt layers uses transmission coil and relatively spaced reception coils cooperating with metal surfaces below concrete or asphalt layer
DE10234217A1 (en) * 2002-07-27 2004-02-05 Hermann Kirchner Gmbh & Co Kg Asphalt thickness determination and control method in which the asphalt thickness is continuously determined based on foundation level measurements and corrected using discrete electromagnetic asphalt thickness measurements
JP2004226157A (en) * 2003-01-21 2004-08-12 Mitsubishi Heavy Ind Ltd Sensor network, sensor, radiowave transmitting body, and computer program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1984568A1 *

Also Published As

Publication number Publication date
EP1984568A1 (en) 2008-10-29
DE202006001305U1 (en) 2006-05-11

Similar Documents

Publication Publication Date Title
DE19817008B4 (en) Method and arrangement for analyzing traffic and a sensor therefor
EP2568605B1 (en) Capacitative sensor assembly
DE19514342C1 (en) Radio-interrogated current transducer for HV or MV appts.
EP3259745A1 (en) Method for operating a sensor device, and sensor device
EP2668512B1 (en) Method for the contactless determination of an electrical potential of an object using two different values for the electric flux, and device
WO2016177490A1 (en) Method for measuring an electrical current and current sensor
DE10253278B4 (en) Tire measurement with an energy self-modulated backscatter transponder
DE112006001021T5 (en) Tire sensor system and tire used for this
DE2244166A1 (en) METHOD AND DEVICE FOR DETERMINING VARIOUS CONDITIONS
EP3566032A1 (en) Temperature limit value sensor
DE19915999C2 (en) Motor vehicle with tire pressure control system
WO2007085478A1 (en) Floor cover comprising a sensor measuring the core temperature of the floor cover
DE102013226201A1 (en) Linear guide with combined load and position measurement
EP1726753B1 (en) Door handle for vehicle with a capacitive proximity sensor
WO2006040267A1 (en) Method and system for determining the distance between a profiled surface from a functional surface moving in relation thereto by using two exploring coils
EP0918212A1 (en) Method for the acquisition and evaluation of temperature dependent consumption values or other physical measuring values
DE102013226492A1 (en) System for controlling the drying phase of concrete screed provided with underfloor heating
DE3940710A1 (en) DEVICE FOR DETERMINING THE MEDIUM WATER FILM THICKNESS ON ROAD SURFACES
EP1275014B1 (en) Device for measuring layer thicknesses
DE102023101464A1 (en) SYSTEMS AND METHODS FOR A GROUND PEELING TAILGATE SENSING SYSTEM
DE102023101350A1 (en) SYSTEMS AND METHODS FOR A GROUND PEELING TAILGATE SENSING SYSTEM
DE3940253A1 (en) Traffic radiometer for measuring water film thickness on road surfaces - has three pref. identical channels operating in millimetre wavelength region with interchangeable inputs
DE102007006466B4 (en) Method for recognizing the position of an ID transmitter in a keyless entry go system
DE102017210149A1 (en) Sensor module and tires with such a sensor module
DE60133768T2 (en) SYSTEM FOR RECOGNIZING OPTICALLY INVISIBLE OBJECTS EQUIPPED WITH CODING

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007703076

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE