WO2007083363A1 - Method for surface treatment with electron beam and apparatus for surface treatment with electron beam - Google Patents

Method for surface treatment with electron beam and apparatus for surface treatment with electron beam Download PDF

Info

Publication number
WO2007083363A1
WO2007083363A1 PCT/JP2006/300601 JP2006300601W WO2007083363A1 WO 2007083363 A1 WO2007083363 A1 WO 2007083363A1 JP 2006300601 W JP2006300601 W JP 2006300601W WO 2007083363 A1 WO2007083363 A1 WO 2007083363A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
surface treatment
workpiece
processed
locus
Prior art date
Application number
PCT/JP2006/300601
Other languages
French (fr)
Japanese (ja)
Inventor
Tetuya Fujimoto
Yosihiro Yamamoto
Masahiro Hanai
Yoshihito Imai
Takayuki Nakagawa
Syozui Takeno
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2006/300601 priority Critical patent/WO2007083363A1/en
Priority to TW095102774A priority patent/TWI277475B/en
Publication of WO2007083363A1 publication Critical patent/WO2007083363A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0013Positioning or observing workpieces, e.g. with respect to the impact; Aligning, aiming or focusing electronbeams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/002Devices involving relative movement between electronbeam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/02Control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/06Electron-beam welding or cutting within a vacuum chamber

Definitions

  • Electron beam surface treatment method and electron beam surface treatment apparatus are Electron beam surface treatment method and electron beam surface treatment apparatus
  • the present invention relates to an electron beam surface treatment method for performing surface treatment by irradiating an object to be treated with an electron beam, and an electron beam surface treatment apparatus used in the method.
  • the surface roughness after performing the discharge force is about several / im to several tens / im, and usually achieves the surface roughness of several ⁇ or less required for the mold. Is difficult.
  • chemical etching it is possible to finish the surface with a surface roughness of about 1 / m, but it is extremely difficult to control the processing conditions. For this reason, conventionally, for example, after electric discharge machining, surface polishing is performed with abrasive paper or scouring powder, and surface treatment is performed so that the surface roughness becomes about 0.1 / im-1 / im.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 55-165288
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-1086
  • Patent Document 3 JP-A-9 216075
  • Patent Document 1 performs smoothing by irradiating an object with an ion beam and sputtering the convex portions on the surface, so that the shape of the object to be processed is Even complex things can be handled.
  • it is difficult to improve the efficiency of the surface treatment because the processing speed is slow and the surface polishing is not much different from the case of manual polishing.
  • Patent Document 2 the technique described in Patent Document 2 can be finished to a fine surface roughness in a relatively short time.
  • the technique of Patent Document 2 since the electron beam is pulse-irradiated over a large area of the object to be processed, if the object has a complicated shape, the surface is uniformly irradiated with the electron beam. I ca n’t. For this reason, local unevenness is likely to occur in the surface roughness. Even when the surface is flat, the electron beam is simultaneously irradiated over a wide area of the object to be processed, so that the surface of the object to be processed is easily subjected to tensile residual stress when irradiated with heat that melts and solidifies in the surface layer. Cause fine cracks.
  • Patent Document 3 can be finished to a fine surface roughness in a relatively short time.
  • the technique of Patent Document 3 since the electron beam is scanned so as to form a circular locus when the surface of the object to be processed is irradiated with the electron beam, the circular locus is adjacent to the overlapping tangential portion. It is difficult to achieve a uniform surface finish that tends to cause uneven melting due to concentration of heat.
  • the present invention has been made to solve the above-described problems, and it is possible to finish the surface of an object to be processed to a fine surface roughness of about 1 ⁇ m within a relatively short time.
  • An electron beam surface treatment method and an electron beam surface treatment apparatus are provided. Also provided are an electron beam surface treatment method and an electron beam surface treatment apparatus that can uniformly finish the entire region to be treated that requires surface treatment. Means for solving the problem
  • An electron beam surface treatment method is a method for performing surface treatment by irradiating the surface of an object to be treated with an electron beam to melt and solidify the surface layer of the object.
  • Area information that defines the area to be processed is registered in advance, and based on this area information, the electron beam is drawn in a two-dimensional trajectory so as to draw a curved line trajectory within the area to be processed of the object to be processed. It is characterized by doing.
  • the electron beam surface treatment apparatus has an electron beam irradiation means for irradiating the surface of an object to be processed with an electron beam
  • the electron beam irradiation means includes an electron gun for generating an electron beam.
  • a beam converging unit for converging the electron beam from the electron gun and a beam deflecting unit for deflecting the electron beam, and region information for defining a processing target region for performing the surface treatment of the workpiece is registered in advance.
  • region information stored in the storage unit and the electron beam draws a curved line-shaped locus in the processing target region of the object to be processed.
  • beam scanning control means for controlling the beam deflection means so as to be scanned.
  • the surface tension changes the surface of the processing object from the original shape. Since it is transformed into a flat surface shape with less energy and then self-cooled and solidified, the surface of the workpiece can be finished to a fine surface roughness of about 1 ⁇ m within a relatively short time. .
  • the electron beam is two-dimensionally scanned so as to draw a bent line-shaped locus at that time, heat is not concentrated locally and melting unevenness does not occur. You can finish it.
  • FIG. 1 is a configuration diagram of an electron beam surface treatment apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view schematically showing a state in which a workpiece is placed on an XY table in Embodiment 1 of the present invention.
  • FIG. 3 is an explanatory diagram of a case where an electron beam is scanned two-dimensionally on an object to be processed in Embodiment 1 of the present invention.
  • FIG. 4 is an explanatory diagram of a case where an electron beam is two-dimensionally scanned on an object to be processed in Embodiment 1 of the present invention.
  • FIG. 5 is a diagram for explaining the degree of heat concentration caused by the difference in the scanning method when the workpiece is scanned two-dimensionally with an electron beam.
  • FIG. 6 is an explanatory diagram of another example when the electron beam is two-dimensionally scanned with respect to the object to be processed in the first embodiment of the present invention.
  • FIG. 7 is an explanatory diagram of another example in the case where an electron beam is scanned two-dimensionally with respect to an object to be processed in Embodiment 1 of the present invention.
  • FIG. 8 is an explanatory diagram in the case of performing focus control so that the electron beam always converges to the irradiation position on the surface of the workpiece in Embodiment 1 of the present invention.
  • FIG. 9 is an explanatory diagram in the case of performing focus control so that the electron beam always converges to the irradiation position on the surface of the workpiece in Embodiment 1 of the present invention.
  • FIG. 10 is a perspective view showing a modification of the workpiece moving mechanism.
  • FIG. 11 is a perspective view showing a modification of the workpiece moving mechanism.
  • FIG. 12 is a configuration diagram showing a main part of an electron beam surface treatment apparatus in a second embodiment.
  • FIG. 13 is an explanatory diagram in the case of deflecting the electron beam and irradiating the surface of the workpiece in the second embodiment.
  • FIG. 14 is a configuration diagram of an electron beam surface treatment apparatus in a third embodiment.
  • FIG. 15 is a configuration diagram showing a main part of an electron beam surface treatment apparatus in a fourth embodiment.
  • FIG. 16 is a characteristic diagram showing a difference in temperature distribution due to electron beam irradiation when the temperature of the object to be processed is adjusted by the temperature adjusting means in the fourth embodiment.
  • Electron beam irradiation means 4 XY table (workpiece moving mechanism),
  • Control device (beam scanning control means, focus control means), 12 electron gun,
  • FIG. 1 is a configuration diagram of an electron beam surface treatment apparatus according to Embodiment 1 of the present invention.
  • the electron beam surface treatment apparatus 1 performs a surface treatment of a workpiece W made of a ferrous metal such as steel or a non-ferrous metal such as an aluminum alloy.
  • a workpiece W made of a ferrous metal such as steel or a non-ferrous metal such as an aluminum alloy.
  • an electron beam irradiation means 3 and an XY table 4 are arranged in a vacuum chamber 2.
  • an evacuation device 5, a beam focusing device 6, a beam deflection device 7, a power supply device 8, and a control device 9 are provided outside the vacuum chamber 2.
  • the electron beam irradiation means 3 irradiates the surface of the workpiece W with an electron beam.
  • the electron beam irradiation means 3 includes an electron gun 12 that generates an electron beam, a converging lens 13 that converges the electron beam from the electron gun 12, and a deflection lens 14 that deflects the electron beam.
  • the electron gun 12 includes a force sword 12a, an anode 12b, and a bias electrode 12c. In the electron gun 12, a negative voltage is applied to the force sword 12 a and the bias electrode 12 c by the power supply device 8, and a positive voltage is applied to the anode 12 b, thereby generating an electron beam.
  • the electron beam of the electron gun 12 is converged by the converging lens 13, then deflected by the deflecting lens 14, and irradiated on the surface of the workpiece W.
  • the XY table 4 has a workpiece W mounted thereon and can move in the X-axis direction and the Y-axis direction orthogonal to each other.
  • the vacuum exhaust device 5 is for evacuating the vacuum chamber 2 so that a predetermined degree of vacuum is obtained.
  • the beam converging device 6 adjusts the degree of convergence of the electron beam by the converging lens 13 based on a command from the control device 9.
  • the beam deflecting device 7 adjusts the degree of deflection of the electron beam by the deflecting lens 14 based on an instruction from the control device 9.
  • a beam converging means 15 is constituted by the converging lens 13 and the beam converging apparatus 6, and a beam deflecting means 16 is constituted by the deflecting lens 14 and the beam deflecting apparatus 7.
  • the control device 9 is composed of a microcomputer or the like, and each of the electron beam irradiation means 3, the XY table 4, the vacuum exhaust device 5, and the power supply device 8 based on a preset control program. Control the behavior. Further, the processing device information memory 19 is provided in the control device 9.
  • the workpiece information memory 19 corresponds to the storage means in the claims, and includes region information that defines a processing target region (two-dimensional) for performing the surface treatment of the workpiece W, and the workpiece. Shape information relating to the surface shape (three-dimensional) of W is registered in advance.
  • the control device 9 converts the electron beam into the workpiece W.
  • the beam deflection means 16 is controlled so that a curved line trajectory is drawn in the processing target area as described later, and two-dimensional scanning is performed, and the electron beam is always focused on the irradiation position of the surface of the workpiece W.
  • the beam converging means 15 is controlled so as to connect the points. Therefore, the control device 9 serves as beam scanning control means and focus control means in the claims.
  • the region information for defining the treatment target region of the workpiece W and the shape information regarding the surface shape of the workpiece W are stored in the workpiece information memory 19 in advance. Register. Then, after placing the workpiece W on the XY table 4, vacuuming is performed by the vacuum exhaust device 5 until the inside of the vacuum chamber 2 reaches a predetermined degree of vacuum.
  • the control device 9 drives the XY table 4 to a position where an electron beam can be irradiated to a processing target area where surface processing is required. Move W. Thereafter, the control device 9 activates the power supply device 8 to generate an electron beam from the electron gun 12.
  • the control device 9 draws a bent line-shaped trajectory in the processing target region of the workpiece W, and
  • the beam deflecting means 16 is controlled so as to be scanned.
  • the electron beam has a bend line shape that is uniform and does not cause sparse / dense over the entire area to be processed of the workpiece W.
  • Two-dimensional scanning is performed so as to draw a locus.
  • To draw a bent line-shaped locus means to draw a bent line-shaped locus with the bending point as a boundary.
  • the electron beam is bent in a sawtooth waveform in the processing target area Ra.
  • Two-dimensional scanning is performed so as to draw a locus of the line.
  • the electron beam is bent in a multiple reflection manner within the processing target area Rb.
  • Two-dimensional scanning is performed to draw a line trajectory.
  • the electron beam is controlled so as to be scanned so as to be uniform and non-dense over the entire region Ra or Rb of the object W to be processed.
  • FIG. 3 shows an example in which the electron beam is scanned so as to draw a sawtooth locus
  • FIG. 4 shows an example where the electron beam is scanned so as to draw a multiple reflection locus.
  • the electron beam is scanned two-dimensionally so as to draw a locus of a continuous panoramic wavy line in the processing target region Rc. Also good.
  • the electron beam may be scanned two-dimensionally so as to draw a trajectory of a vortex-like bent line in the processing target region Rd.
  • the electron beam is controlled so that it is scanned so as to be uniform and non-dense over the entire target region Rc or Rd of the workpiece W.
  • the control device 9 when the electron beam is two-dimensionally scanned in a bent line as described above, the control device 9 performs processing on the workpiece W stored in the workpiece information memory 19.
  • the beam converging means 15 is controlled so that the electron beam always focuses on the irradiation position on the surface of the workpiece W based on the shape information on the surface shape of the workpiece.
  • the electron beam is moved in the region to be processed of the workpiece W, so that the surface layer is immediately cooled and solidified immediately after being melted. It is possible to finish the surface of the workpiece W to a fine surface roughness of about 1 ⁇ m within a relatively short time.
  • the electron beam is scanned in a bent line at that time, heat is not concentrated locally to cause melting unevenness, so that the surface roughness is uniform over the entire region to be processed. Can do.
  • the electron beam is used to illuminate the surface of the workpiece W. Since the focus is controlled so as to always converge to the irradiation position, the energy density of the electron beam irradiated on the processing surface of the workpiece w is always constant. Therefore, the surface can be uniformly melted and solidified by irradiating the surface with an electron beam. For this reason, a uniform surface treatment can be performed.
  • the control device 9 moves the XY table 4 to move the workpiece W
  • surface treatment is performed by electron beam irradiation as described above.
  • the surface treatment is performed over the entire area of the predetermined processing target area of the workpiece W.
  • the two-dimensional scanning of the electron beam and the movement of the XY table 4 may be controlled synchronously.
  • a bent line-shaped locus is formed in a rectangular processing target area that requires surface treatment of the workpiece W, as shown in FIGS. 3, 4, 6, and 7, for example.
  • the electron beam is continuously scanned two-dimensionally as shown.
  • the electron beam is digitally minute (for example, the beam diameter is about 1/10 of ⁇ 0.3 mm, and the pitch interval between 0.01 mm and 0.05 mm) (X, If it is moved so that it follows the data at the (Y position), it is possible to irradiate not only the rectangular areas Ra and Rb but also any complicated area with an electron beam.
  • the focus control is performed so that the electron beam always focuses on the irradiation position on the surface of the workpiece W based on the shape information in the workpiece information memory 19.
  • the heat input density of the electron beam (energy density of the electron beam) differs compared to the case where the surface of W is a horizontal plane. Therefore, the heat input density (electron beam energy density) of the electron beam to the object to be processed is changed based on the shape information related to the surface shape of the object W stored in the object information memory 19. May be. In this case, the heat input density can be changed by changing the beam current, changing the number of runs, or changing the speed. It is possible to cope with it.
  • the XY table 4 is provided as the workpiece moving mechanism.
  • the present invention is not limited to this, and a workpiece moving mechanism having another configuration may be provided.
  • a mechanism 21 for tilting and holding the workpiece W as shown in FIG. 10 and a rotation holding mechanism 22 as shown in FIG. 11 can be arranged on the XY table 4.
  • the tilt holding mechanism 21 tilts the workpiece W and reliably irradiates the vertical wall of the groove W3 with an electron beam to perform surface treatment. It can be carried out.
  • the workpiece W when the workpiece W has a cylindrical shape, the workpiece W is rotated by the rotation holding mechanism 22 so that the electron beam is perpendicular to the processing surface. Since it can be irradiated, a uniform surface treatment can be performed.
  • FIG. 12 is a configuration diagram showing a main part of the electron beam surface treatment apparatus according to the second embodiment.
  • a feature of the second embodiment is that deflection lenses 14a and 14b are provided in a plurality of stages (two stages in this example) along the electron beam radiation direction. For this reason, the electron beam deflected by the first stage deflection lens 14a is subsequently further deflected by the second stage deflection lens 14b.
  • the incident angle of the electron beam applied to the surface of the workpiece W can be reduced.
  • the surface of the workpiece W can be irradiated with the electron beam as perpendicularly as possible. Therefore, when the electron beam is scanned two-dimensionally, the energy density of the electron beam irradiated onto the surface of the workpiece W is always constant, so that the surface layer of the workpiece W is uniformly melted and solidified. And uniform surface treatment.
  • the electron beam cannot be sufficiently deflected by a single deflecting lens, so that a shadow is formed in the concave portion W4 and the electron beam is formed. May not be adequately irradiated.
  • the surface treatment can be performed by reliably irradiating the concave portion W4 with the electron beam.
  • the two-stage deflection lenses 14 a and 14 b are provided along the electron beam radiation direction, but three or more stages may be provided. Since other configurations and operational effects are the same as those in the first embodiment, detailed description thereof is omitted here.
  • FIG. 14 is a configuration diagram of the electron beam surface treatment apparatus in the third embodiment, and the same reference numerals are given to the components corresponding to those in the first embodiment shown in FIG.
  • a feature of the third embodiment is that a vacuum chamber 2a in which the electron beam irradiation means 3 is arranged and a vacuum chamber 2b in which the XY table 4 is arranged are provided independently of each other.
  • the vacuum chambers 2a and 2b are in communication with each other by, for example, a bellows-like vacuum seal 23 provided.
  • the vacuum chamber 2a in which the electron beam irradiation means 3 is disposed is provided with a slide means 24 for displacing with respect to the other vacuum chamber 2b.
  • the slide means 24 in this case is constituted by, for example, a roller 25 provided at the bottom of the vacuum chamber 2a, and a drive unit 26 having a motor and a gear for driving the roller 25.
  • the entire vacuum chamber 2a in which the electron beam irradiation means 3 is arranged can be obtained even if the irradiation range of the electron beam on the workpiece W is limited only by moving the XY table 4. It is possible to irradiate the electron beam over a wide range of the workpiece W by moving the.
  • the force for moving the vacuum chamber 2a in which the electron beam irradiation means 3 is arranged is configured to move the vacuum chamber 2b in which the XY table 4 is stored. It is also possible to do. Since other configurations and operational effects are the same as those in the first embodiment, detailed description thereof is omitted here.
  • FIG. 10 shows a configuration in which the mechanism 21 for tilting and holding the workpiece W is arranged on the XY table 4, but the electron beam irradiation means 3 is tilted with respect to the XY table 4 in the vacuum chamber 2a. It can also be set as the structure which provided the tilt holding mechanism (not shown) to hold
  • FIG. 15 is a configuration diagram showing a main part of the electron beam surface treatment apparatus according to the fourth embodiment.
  • the feature of the fourth embodiment is that it includes a temperature adjusting means 29 that adjusts the temperature of the workpiece W placed on the XY table 4 so as to reach a required temperature.
  • the temperature adjusting means 29 in this case includes, for example, a heating cooler 30 interposed between the XY table 4 and the workpiece W, and a temperature control device 31 that controls the temperature of the heating cooler 30. It is configured.
  • the heating / cooling device 30 in this case, for example, a device using a Peltier element, a single heater or a single cooler, or a combination of both can be applied.
  • the melting temperature of the workpiece W by electron beam irradiation is Tq.
  • the base material temperature before the treatment of the workpiece W is changed to Tl and ⁇ 2 as shown in Fig. 16
  • the temperature distribution curve of the workpiece W during electron beam irradiation is different as shown by the solid line and the broken line. come.
  • the melt depth from the surface also changes by Dl and D2. Therefore, by adjusting the temperature of the workpiece W to the required temperature, it is possible to set an appropriate melting depth Dl, D2, etc. according to the material of the workpiece W.
  • the surface treatment was performed on the object to be evaluated.
  • STAVA X steel JIS G 4303 to 4309: equivalent to stainless steel type SUS420J2
  • the surface roughness of the substrate before this surface treatment is 6 x m.
  • the processing conditions are as follows: the vacuum is 6.7 Pa or less, the acceleration voltage is 30 kV, the beam current is 110 mA, and the processing target area is 30 mm X 30 mm.
  • the electron beam was scanned two-dimensionally to draw a trajectory. Then, the surface roughness of the workpiece after the electron beam scanning was measured.
  • the entire area to be processed of 30 mm X 30 mm is subjected to secondary electron beam irradiation only once.
  • the time required for the original scan was about 1.6 seconds, and the surface roughness of the workpiece at this time was 0.96 / im (average value of six measurements). Therefore, it was confirmed that the surface roughness after the surface treatment sufficiently satisfies the required characteristics. Further, when the surface condition of the object to be processed was observed with a scanning electron microscope or the like, it was confirmed that uniform surface treatment was performed in the region to be processed.
  • the total processing time is about 7.4.
  • the surface roughness of the workpiece at this time was 1.13 zm (average of 6 measurements). In this case, it was confirmed that the required surface roughness was obtained.
  • the present invention can be widely applied not only to the case where the object to be surface-treated is a mold, but also to the object to be treated that requires fine surface treatment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

This invention provides a method for surface treatment with an electron beam, which can finish the surface of an object in a relatively short time to a fine surface roughness level of about 1 μm evenly over the whole treatment object region to be surface treated, and an apparatus for surface treatment with an electron beam. In exposing the surface of an object W to be treated to an electron beam to melt and solidify the surface layer for surface treatment, region information defining a treatment object region to be surface treated in the object W is previously registered in a treatment object information memory (19), and, based on the region information, an electron beam is scanned in a two-dimensional scanning manner in the treatment object region in the object W so as to draw a flexure line trajectory.

Description

明 細 書  Specification
電子ビーム表面処理方法及び電子ビーム表面処理装置  Electron beam surface treatment method and electron beam surface treatment apparatus
技術分野  Technical field
[0001] この発明は、被処理物に電子ビームを照射して表面処理を行う電子ビーム表面処 理方法、およびその方法に使用する電子ビーム表面処理装置に関する。  [0001] The present invention relates to an electron beam surface treatment method for performing surface treatment by irradiating an object to be treated with an electron beam, and an electron beam surface treatment apparatus used in the method.
背景技術  Background art
[0002] 一般に、プラスチック射出成型用や半導体部品製造用等の各種の金型は、切削加 ェ機械で予め粗加工した後、放電加工や化学エッチング法等により微細な表面粗さ となるように表面処理を行ってレ、る。  [0002] In general, various molds for plastic injection molding and semiconductor component manufacturing are preliminarily roughed with a cutting processing machine, and then have a fine surface roughness by electrical discharge machining, chemical etching, or the like. Perform surface treatment.
[0003] ところが、放電力卩ェを行った後の表面粗さは数/ i m〜数 10 /i m程度で、通常、金 型において必要とされる数 μ ΐη以下の表面粗さを達成することは難しい。これに対し て、化学エッチング法を用いると、表面粗さを 1 / m程度の表面に仕上げることも可能 であるが、加工条件の制御が極めて難しい。そのため、従来、例えば放電加工を行 つた後、研磨紙や磨き粉等によって表面研磨を行って表面粗さが 0. l /i m-1 /i m 程度になるような表面処理を行っている。  [0003] However, the surface roughness after performing the discharge force is about several / im to several tens / im, and usually achieves the surface roughness of several μΐη or less required for the mold. Is difficult. In contrast, when chemical etching is used, it is possible to finish the surface with a surface roughness of about 1 / m, but it is extremely difficult to control the processing conditions. For this reason, conventionally, for example, after electric discharge machining, surface polishing is performed with abrasive paper or scouring powder, and surface treatment is performed so that the surface roughness becomes about 0.1 / im-1 / im.
[0004] しかし、この平滑化のための研磨作業は全て手作業で行われているため、熟練者 の技能に頼るところが多ぐ表面仕上げを完了するまでに多大な作業時間を要する。 特に、被処理物の形状が複雑な場合には表面を均一に研磨仕上げすることが難しく 、しかも、研磨作業に長時間を要することになり、表面処理の効率化を十分に図るこ とができない。  [0004] However, since all the polishing operations for smoothing are performed manually, much work is required to complete the surface finish, which often depends on the skill of the skilled worker. In particular, when the shape of the object to be processed is complicated, it is difficult to finish the surface uniformly, and it takes a long time for the polishing work, and the efficiency of the surface treatment cannot be sufficiently achieved. .
[0005] そのため、従来、手作業によらずに被処理物の表面を平滑化するために、被処理 物に対してイオンビームを照射して表面処理を行うようした技術があった(例えば、特 許文献 1参照)。また、被処理物の表面の広い範囲にわたって電子ビームをパルス照 射して表面処理を行うようにした技術があった (例えば、特許文献 2参照)。さらには、 被処理物の表面に電子ビームを照射しかつ円形の軌跡を描くように走査して表面処 理するようにした技術が提案されている(例えば、特許文献 3参照)。  [0005] Therefore, conventionally, there has been a technique for performing surface treatment by irradiating an object with an ion beam in order to smooth the surface of the object to be processed without using manual work (for example, (See Patent Literature 1). In addition, there has been a technique for performing surface treatment by irradiating an electron beam over a wide range of the surface of an object to be treated (see, for example, Patent Document 2). Furthermore, a technique has been proposed in which surface processing is performed by irradiating the surface of an object to be processed with an electron beam and scanning so as to draw a circular locus (for example, see Patent Document 3).
[0006] 特許文献 1 :特開昭 55— 165288号公報 特許文献 2:特開 2004— 1086号公報 [0006] Patent Document 1: Japanese Patent Application Laid-Open No. 55-165288 Patent Document 2: Japanese Patent Application Laid-Open No. 2004-1086
特許文献 3 :特開平 9 216075号公報  Patent Document 3: JP-A-9 216075
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 特許文献 1に記載されてレ、る技術は、被処理物に対してイオンビームを照射して表 面の凸部をスパッタリングすることで平滑化を行うので、被処理物の形状が複雑なも のでも対応可能である。しかし、特許文献 1の技術では、加工速度が遅くて手作業で 表面研磨を行う場合と大差なく、表面処理の効率化を図ることが難しレ、。  [0007] The technique described in Patent Document 1 performs smoothing by irradiating an object with an ion beam and sputtering the convex portions on the surface, so that the shape of the object to be processed is Even complex things can be handled. However, with the technique of Patent Document 1, it is difficult to improve the efficiency of the surface treatment because the processing speed is slow and the surface polishing is not much different from the case of manual polishing.
[0008] また、特許文献 2に記載されている技術は、比較的短時間で微細な表面粗さに仕 上げることが可能である。しかし、特許文献 2の技術では、被処理物の広い面積にわ たって電子ビームをパルス照射する関係上、被処理物の形状が複雑なものでは、そ の表面に均一に電子ビームを照射することができなレ、。このため、表面粗さに局所的 なむらを生じ易い。また、表面が平坦な場合でも、被処理物の広い面積にわたって 電子ビームが同時に照射されるため、表面層において溶融凝固する熱量が照射され た場合に引っ張り残留応力が生じ易ぐ被処理物の表面に微細なクラックを生じる。  [0008] Further, the technique described in Patent Document 2 can be finished to a fine surface roughness in a relatively short time. However, in the technique of Patent Document 2, since the electron beam is pulse-irradiated over a large area of the object to be processed, if the object has a complicated shape, the surface is uniformly irradiated with the electron beam. I ca n’t. For this reason, local unevenness is likely to occur in the surface roughness. Even when the surface is flat, the electron beam is simultaneously irradiated over a wide area of the object to be processed, so that the surface of the object to be processed is easily subjected to tensile residual stress when irradiated with heat that melts and solidifies in the surface layer. Cause fine cracks.
[0009] さらに、特許文献 3に記載されている技術は、比較的短時間で微細な表面粗さに仕 上げることが可能である。しかし、特許文献 3の技術では、被処理物の表面に電子ビ ームを照射する際に電子ビームが円形の軌跡となるように走査しているので、円形の 軌跡が重なる接線部分の近傍に熱が集中して溶融むらを生じ易ぐ均一な表面仕上 げを行うことが難しい。  [0009] Further, the technique described in Patent Document 3 can be finished to a fine surface roughness in a relatively short time. However, in the technique of Patent Document 3, since the electron beam is scanned so as to form a circular locus when the surface of the object to be processed is irradiated with the electron beam, the circular locus is adjacent to the overlapping tangential portion. It is difficult to achieve a uniform surface finish that tends to cause uneven melting due to concentration of heat.
[0010] しかも、特許文献 3の技術では、電子ビームが収束される焦点は常に一定に設定さ れるため、被処理物に凹凸部がある場合には電子ビームの照射エネルギに差が生じ 、その結果、均一な表面粗さに仕上げることができない。  [0010] Moreover, in the technique of Patent Document 3, since the focal point on which the electron beam is converged is always set to be constant, there is a difference in the irradiation energy of the electron beam when there is an uneven portion on the object to be processed. As a result, it is impossible to finish with a uniform surface roughness.
[0011] この発明は上記のような課題を解決するためになされたもので、被処理物の表面を 比較的短時間の内に 1 μ m程度の微細な表面粗さに仕上げることが可能である電子 ビーム表面処理方法及び電子ビーム表面処理装置を提供する。また、表面処理が 必要な処理対象領域の全域にわたって均一に仕上げることができる電子ビーム表面 処理方法及び電子ビーム表面処理装置を提供する。 課題を解決するための手段 [0011] The present invention has been made to solve the above-described problems, and it is possible to finish the surface of an object to be processed to a fine surface roughness of about 1 μm within a relatively short time. An electron beam surface treatment method and an electron beam surface treatment apparatus are provided. Also provided are an electron beam surface treatment method and an electron beam surface treatment apparatus that can uniformly finish the entire region to be treated that requires surface treatment. Means for solving the problem
[0012] この発明に係る電子ビーム表面処理方法は、電子ビームを被処理物の表面に照射 してその表層を溶融凝固させて表面処理を行う方法であって、被処理物の表面処理 を行う処理対象領域を規定する領域情報を予め登録しておき、この領域情報に基づ レ、て電子ビームを被処理物の処理対象領域内で屈曲線状の軌跡を描くように二次 元走查することを特徴としてレ、る。  [0012] An electron beam surface treatment method according to the present invention is a method for performing surface treatment by irradiating the surface of an object to be treated with an electron beam to melt and solidify the surface layer of the object. Area information that defines the area to be processed is registered in advance, and based on this area information, the electron beam is drawn in a two-dimensional trajectory so as to draw a curved line trajectory within the area to be processed of the object to be processed. It is characterized by doing.
[0013] また、この発明に係る電子ビーム表面処理装置は、被処理物の表面に電子ビーム を照射する電子ビーム照射手段を有し、この電子ビーム照射手段は、電子ビームを 発生する電子銃と、この電子銃からの電子ビームを収束するビーム収束手段と、電 子ビームを偏向するビーム偏向手段とを備えるとともに、上記被処理物の表面処理を 行う処理対象領域を規定する領域情報が予め登録された記憶手段と、この記憶手段 に記憶されてレ、る上記領域情報に基づレ、て電子ビームが上記被処理物の処理対象 領域内で屈曲線状の軌跡を描レ、て二次元走査されるように上記ビーム偏向手段を 制御するビーム走査制御手段と、を含むことを特徴としている。  [0013] Further, the electron beam surface treatment apparatus according to the present invention has an electron beam irradiation means for irradiating the surface of an object to be processed with an electron beam, and the electron beam irradiation means includes an electron gun for generating an electron beam. And a beam converging unit for converging the electron beam from the electron gun and a beam deflecting unit for deflecting the electron beam, and region information for defining a processing target region for performing the surface treatment of the workpiece is registered in advance. Based on the region information stored in the storage unit, and the electron beam draws a curved line-shaped locus in the processing target region of the object to be processed. And beam scanning control means for controlling the beam deflection means so as to be scanned.
発明の効果  The invention's effect
[0014] この発明によれば、電子ビームを被処理物の処理対象領域内で二次元走查するこ とで、その表層が溶融した場合、その表面張力により被処理物の元の形状から表面 エネルギの少ない平坦な表面形状に変形した後に自己放冷されて凝固されるので、 被処理物の表面を比較的短時間の内に 1 μ m程度の微細な表面粗さに仕上げるこ とができる。しかも、その際、電子ビームが屈曲線状の軌跡を描くように二次元走査さ れるので、熱が局部的に集中して溶融むらを生じることはなぐ表面処理対象領域の 全域にわたって均一な表面粗さに仕上げることができる。  [0014] According to the present invention, when the surface layer is melted by two-dimensionally scanning the electron beam in the processing target area of the processing object, the surface tension changes the surface of the processing object from the original shape. Since it is transformed into a flat surface shape with less energy and then self-cooled and solidified, the surface of the workpiece can be finished to a fine surface roughness of about 1 μm within a relatively short time. . In addition, since the electron beam is two-dimensionally scanned so as to draw a bent line-shaped locus at that time, heat is not concentrated locally and melting unevenness does not occur. You can finish it.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]この発明の実施の形態 1における電子ビーム表面処理装置の構成図である。  FIG. 1 is a configuration diagram of an electron beam surface treatment apparatus according to Embodiment 1 of the present invention.
[図 2]この発明の実施の形態 1において、 XYテーブル上に被処理物を載置した状態 の概略を示す斜視図である。  FIG. 2 is a perspective view schematically showing a state in which a workpiece is placed on an XY table in Embodiment 1 of the present invention.
[図 3]この発明の実施の形態 1において、被処理物に対して電子ビームを二次元走 查する場合の説明図である。 [図 4]この発明の実施の形態 1において、被処理物に対して電子ビームを二次元走 查する場合の説明図である。 FIG. 3 is an explanatory diagram of a case where an electron beam is scanned two-dimensionally on an object to be processed in Embodiment 1 of the present invention. FIG. 4 is an explanatory diagram of a case where an electron beam is two-dimensionally scanned on an object to be processed in Embodiment 1 of the present invention.
[図 5]被処理物に対して電子ビームを二次元走査する場合の走査方法の違いに伴つ て生じる熱集中度合いを説明するための図である。  FIG. 5 is a diagram for explaining the degree of heat concentration caused by the difference in the scanning method when the workpiece is scanned two-dimensionally with an electron beam.
[図 6]この発明の実施の形態 1において、被処理物に対して電子ビームを二次元走 查する場合の他の例の説明図である。  FIG. 6 is an explanatory diagram of another example when the electron beam is two-dimensionally scanned with respect to the object to be processed in the first embodiment of the present invention.
[図 7]この発明の実施の形態 1において、被処理物に対して電子ビームを二次元走 查する場合の他の例の説明図である。  FIG. 7 is an explanatory diagram of another example in the case where an electron beam is scanned two-dimensionally with respect to an object to be processed in Embodiment 1 of the present invention.
[図 8]この発明の実施の形態 1において、電子ビームが被処理物表面の照射位置に 常に収束するようにフォーカス制御する場合の説明図である。  FIG. 8 is an explanatory diagram in the case of performing focus control so that the electron beam always converges to the irradiation position on the surface of the workpiece in Embodiment 1 of the present invention.
[図 9]この発明の実施の形態 1において、電子ビームが被処理物表面の照射位置に 常に収束するようにフォーカス制御する場合の説明図である。  FIG. 9 is an explanatory diagram in the case of performing focus control so that the electron beam always converges to the irradiation position on the surface of the workpiece in Embodiment 1 of the present invention.
[図 10]被処理物可動機構の変形例を示す斜視図である。  FIG. 10 is a perspective view showing a modification of the workpiece moving mechanism.
[図 11]被処理物可動機構の変形例を示す斜視図である。  FIG. 11 is a perspective view showing a modification of the workpiece moving mechanism.
[図 12]実施の形態 2における電子ビーム表面処理装置の要部を示す構成図である。  FIG. 12 is a configuration diagram showing a main part of an electron beam surface treatment apparatus in a second embodiment.
[図 13]実施の形態 2において、電子ビームを偏向して被処理物表面に照射する場合 の説明図である。 FIG. 13 is an explanatory diagram in the case of deflecting the electron beam and irradiating the surface of the workpiece in the second embodiment.
[図 14]実施の形態 3における電子ビーム表面処理装置の構成図である。  FIG. 14 is a configuration diagram of an electron beam surface treatment apparatus in a third embodiment.
[図 15]実施の形態 4における電子ビーム表面処理装置の要部を示す構成図である。 FIG. 15 is a configuration diagram showing a main part of an electron beam surface treatment apparatus in a fourth embodiment.
[図 16]実施の形態 4において、温度調節手段で被処理物の温度を調節した場合の 電子ビーム照射による温度分布の違いを示す特性図である。 FIG. 16 is a characteristic diagram showing a difference in temperature distribution due to electron beam irradiation when the temperature of the object to be processed is adjusted by the temperature adjusting means in the fourth embodiment.
符号の説明 Explanation of symbols
W 被処理物、 1 電子ビーム表面処理装置、 2 真空チャンバ、  W workpiece, 1 electron beam surface treatment device, 2 vacuum chamber,
3 電子ビーム照射手段、 4 XYテーブル (被処理物可動機構)、  3 Electron beam irradiation means, 4 XY table (workpiece moving mechanism),
9 制御装置(ビーム走査制御手段、フォーカス制御手段)、 12 電子銃、  9 Control device (beam scanning control means, focus control means), 12 electron gun,
13 収束レンズ、 14, 14a, 14b 偏向レンズ、 15 ビーム収束手段、  13 focusing lens, 14, 14a, 14b deflection lens, 15 beam focusing means,
16 ビーム偏向手段、 19 被処理物情報メモリ(記憶手段)、  16 beam deflection means, 19 workpiece information memory (storage means),
21 傾動保持機構、 22 回転保持機構、 24 スライド手段、 29 温度調節手段。 21 tilt holding mechanism, 22 rotation holding mechanism, 24 slide means, 29 Temperature control means.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、この発明を実施するための最良の形態を、図に基づいて説明する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
[0018] 実施の形態 1. [0018] Embodiment 1.
図 1はこの発明の実施の形態 1における電子ビーム表面処理装置の構成図である  FIG. 1 is a configuration diagram of an electron beam surface treatment apparatus according to Embodiment 1 of the present invention.
[0019] 実施の形態 1の電子ビーム表面処理装置 1は、鋼等の鉄系金属、あるいはアルミ二 ユウム合金等の非鉄金属からなる被処理物 Wの表面処理を行うものである。電子ビ ーム表面処理装置 1は、真空チャンバ 2内に電子ビーム照射手段 3と XYテーブル 4 とが配置されている。また、真空チャンバ 2の外部には、真空排気装置 5、ビーム収束 装置 6、ビーム偏向装置 7、電源装置 8、および制御装置 9が設けられている。 [0019] The electron beam surface treatment apparatus 1 according to the first embodiment performs a surface treatment of a workpiece W made of a ferrous metal such as steel or a non-ferrous metal such as an aluminum alloy. In the electron beam surface treatment apparatus 1, an electron beam irradiation means 3 and an XY table 4 are arranged in a vacuum chamber 2. In addition, an evacuation device 5, a beam focusing device 6, a beam deflection device 7, a power supply device 8, and a control device 9 are provided outside the vacuum chamber 2.
[0020] 電子ビーム照射手段 3は被処理物 Wの表面に電子ビームを照射するものである。こ の電子ビーム照射手段 3は、電子ビームを発生する電子銃 12、この電子銃 12からの 電子ビームを収束する収束レンズ 13、および電子ビームを偏向する偏向レンズ 14を 備えている。電子銃 12は、力ソード 12a、アノード 12bおよびバイアス電極 12cから構 成されている。そして、電子銃 12において、電源装置 8により力ソード 12aとバイアス 電極 12cに負電圧が、アノード 12bに正電圧が印加されることにより、電子ビームが 発生する。電子銃 12の電子ビームは、収束レンズ 13で収束された後、偏向レンズ 14 で偏向されて被処理物 Wの表面に照射される。  The electron beam irradiation means 3 irradiates the surface of the workpiece W with an electron beam. The electron beam irradiation means 3 includes an electron gun 12 that generates an electron beam, a converging lens 13 that converges the electron beam from the electron gun 12, and a deflection lens 14 that deflects the electron beam. The electron gun 12 includes a force sword 12a, an anode 12b, and a bias electrode 12c. In the electron gun 12, a negative voltage is applied to the force sword 12 a and the bias electrode 12 c by the power supply device 8, and a positive voltage is applied to the anode 12 b, thereby generating an electron beam. The electron beam of the electron gun 12 is converged by the converging lens 13, then deflected by the deflecting lens 14, and irradiated on the surface of the workpiece W.
[0021] XYテーブル 4は、図 2に示すように、被処理物 Wを搭載して互いに直交する X軸方 向及び Y軸方向にそれぞれ移動できるようになつている。また、真空排気装置 5は、 真空チャンバ 2内を所定の真空度になるように真空引きを行うものである。  As shown in FIG. 2, the XY table 4 has a workpiece W mounted thereon and can move in the X-axis direction and the Y-axis direction orthogonal to each other. In addition, the vacuum exhaust device 5 is for evacuating the vacuum chamber 2 so that a predetermined degree of vacuum is obtained.
[0022] ビーム収束装置 6は、制御装置 9からの指令に基づいて収束レンズ 13による電子ビ ームの収束度合いを調整するものである。ビーム偏向装置 7は、制御装置 9からの指 令に基づいて偏向レンズ 14による電子ビームの偏向度合いを調整するものである。 そして、収束レンズ 13とビーム収束装置 6とによってビーム収束手段 15が構成され、 また、偏向レンズ 14とビーム偏向装置 7とによってビーム偏向手段 16が構成されて いる。 [0023] 制御装置 9は、マイクロコンピュータ等から構成されるもので、予め設定された制御 プログラムに基づいて電子ビーム照射手段 3、 XYテーブル 4、真空排気装置 5、およ び電源装置 8の各動作を制御する。さらに、この制御装置 9には、被処理物情報メモ リ 19が設けられている。 The beam converging device 6 adjusts the degree of convergence of the electron beam by the converging lens 13 based on a command from the control device 9. The beam deflecting device 7 adjusts the degree of deflection of the electron beam by the deflecting lens 14 based on an instruction from the control device 9. A beam converging means 15 is constituted by the converging lens 13 and the beam converging apparatus 6, and a beam deflecting means 16 is constituted by the deflecting lens 14 and the beam deflecting apparatus 7. [0023] The control device 9 is composed of a microcomputer or the like, and each of the electron beam irradiation means 3, the XY table 4, the vacuum exhaust device 5, and the power supply device 8 based on a preset control program. Control the behavior. Further, the processing device information memory 19 is provided in the control device 9.
[0024] この被処理物情報メモリ 19は、請求の範囲における記憶手段に対応するもので、 被処理物 Wの表面処理を行う処理対象領域(2次元)を規定する領域情報、ならびに 被処理物 Wの表面形状(3次元)に関する形状情報が予め登録されている。  [0024] The workpiece information memory 19 corresponds to the storage means in the claims, and includes region information that defines a processing target region (two-dimensional) for performing the surface treatment of the workpiece W, and the workpiece. Shape information relating to the surface shape (three-dimensional) of W is registered in advance.
[0025] そして、制御装置 9は、この被処理物情報メモリ 19に記憶されている領域情報(2次 元情報)及び形状情報(3次元情報)に基づいて、電子ビームが被処理物 Wの処理 対象領域内で後述のごとく屈曲線状の軌跡を描レ、て二次元走査されるようにビーム 偏向手段 16を制御し、また、電子ビームが被処理物 Wの表面の照射位置に常に焦 点を結ぶようにビーム収束手段 15を制御する。したがって、この制御装置 9が請求の 範囲におけるビーム走査制御手段およびフォーカス制御手段としての役目を果たし ている。  [0025] Then, based on the region information (two-dimensional information) and the shape information (three-dimensional information) stored in the workpiece information memory 19, the control device 9 converts the electron beam into the workpiece W. The beam deflection means 16 is controlled so that a curved line trajectory is drawn in the processing target area as described later, and two-dimensional scanning is performed, and the electron beam is always focused on the irradiation position of the surface of the workpiece W. The beam converging means 15 is controlled so as to connect the points. Therefore, the control device 9 serves as beam scanning control means and focus control means in the claims.
[0026] 上記構成の電子ビーム表面処理装置 1を用いた被処理物 Wの表面処理方法につ いて、次に説明する。  [0026] Next, a surface treatment method for the workpiece W using the electron beam surface treatment apparatus 1 having the above-described configuration will be described.
[0027] 被処理物 Wの表面処理を行う際、被処理物情報メモリ 19に被処理物 Wの処理対 象領域を規定する領域情報、ならびに、被処理物 Wの表面形状に関する形状情報 を予め登録しておく。そして、被処理物 Wを XYテーブル 4上に載置した後、真空排 気装置 5により真空チャンバ 2内が所定の真空度に達するまで真空引きを行う。  [0027] When the surface treatment of the workpiece W is performed, the region information for defining the treatment target region of the workpiece W and the shape information regarding the surface shape of the workpiece W are stored in the workpiece information memory 19 in advance. Register. Then, after placing the workpiece W on the XY table 4, vacuuming is performed by the vacuum exhaust device 5 until the inside of the vacuum chamber 2 reaches a predetermined degree of vacuum.
[0028] 真空チャンバ 2内が所定の真空度に達すると、制御装置 9は、 XYテーブル 4を駆動 して表面処理が必要とされる処理対象領域に電子ビームが照射可能な位置まで被 処理物 Wを移動させる。その後、制御装置 9は、電源装置 8を起動して電子銃 12から 電子ビームを発生させる。  [0028] When the inside of the vacuum chamber 2 reaches a predetermined degree of vacuum, the control device 9 drives the XY table 4 to a position where an electron beam can be irradiated to a processing target area where surface processing is required. Move W. Thereafter, the control device 9 activates the power supply device 8 to generate an electron beam from the electron gun 12.
[0029] そして、制御装置 9は、被処理物情報メモリ 19に記憶されている領域情報に基づい て、電子ビームが被処理物 Wの処理対象領域内で屈曲線状の軌跡を描いて二次元 走査されるようにビーム偏向手段 16を制御する。この場合、電子ビームは、被処理物 Wの処理対象領域全域にわたって満遍なぐかつ疎密を生じないような屈曲線状の 軌跡を描くように二次元走査される。また、屈曲線状の軌跡を描くとは、屈曲点を境と して折れ線状の軌跡を描くことを意味する。 [0029] Then, based on the region information stored in the workpiece information memory 19, the control device 9 draws a bent line-shaped trajectory in the processing target region of the workpiece W, and The beam deflecting means 16 is controlled so as to be scanned. In this case, the electron beam has a bend line shape that is uniform and does not cause sparse / dense over the entire area to be processed of the workpiece W. Two-dimensional scanning is performed so as to draw a locus. To draw a bent line-shaped locus means to draw a bent line-shaped locus with the bending point as a boundary.
[0030] 例えば図 3に示すように、被処理物 Wの表面処理が必要な処理対象領域を符号 R aで示す範囲とした場合、電子ビームは、この処理対象領域 Ra内において鋸歯波状 の屈曲線の軌跡を描くように二次元走査される。あるいは、例えば図 4に示すように、 被処理物 Wの表面処理が必要な処理対象領域を符号 Rbで示す範囲とした場合、電 子ビームは、この処理対象領域 Rb内において多重反射状の屈曲線の軌跡を描くよう に二次元走査される。なお、図 3又は図 4の例において、電子ビームは、被処理物 W の処理対象領域 Ra又 Rbの全領域にわたって満遍なぐかつ疎密を生じないように 走査されるように制御される。  For example, as shown in FIG. 3, when the processing target area that requires surface treatment of the workpiece W is set to a range indicated by the symbol Ra, the electron beam is bent in a sawtooth waveform in the processing target area Ra. Two-dimensional scanning is performed so as to draw a locus of the line. Alternatively, for example, as shown in FIG. 4, when the processing target area that requires surface treatment of the workpiece W is set to a range indicated by the symbol Rb, the electron beam is bent in a multiple reflection manner within the processing target area Rb. Two-dimensional scanning is performed to draw a line trajectory. In the example of FIG. 3 or FIG. 4, the electron beam is controlled so as to be scanned so as to be uniform and non-dense over the entire region Ra or Rb of the object W to be processed.
[0031] ここで、図 3に示すような鋸歯波状の軌跡を描くようにするには、 X軸方向の走查速 度成分を Vx、 Y軸方向の走查速度成分を Vyとしたとき、 Vy> >Vxに設定すること により実施すること力 Sできる。  [0031] Here, in order to draw a sawtooth-like trajectory as shown in Fig. 3, when the running speed component in the X-axis direction is Vx and the running speed component in the Y-axis direction is Vy, It can be implemented by setting Vy>> Vx.
[0032] また、図 4に示すような多重反射状の軌跡を描くようにするには、 X軸方向の走査周 波数 fx、 Y軸方向の走査周波数 fyとしたとき、両周波数の差 Δ ( = fx— fy)が出るよう に設定することにより実施することができる。なお、 fx=fyのときには、図 4の処理対 象領域 Rbの対角線を電子ビームが往復走査されるため、多重反射状の軌跡を描く ようにはならない。  In addition, in order to draw a multiple reflection trajectory as shown in FIG. 4, when the scanning frequency fx in the X-axis direction and the scanning frequency fy in the Y-axis direction are set, the difference between both frequencies Δ ( = fx— fy) can be set to output. When fx = fy, the electron beam is reciprocally scanned along the diagonal line of the processing target region Rb in FIG. 4, so that a multiple reflection trajectory is not drawn.
[0033] このように、図 3に示すような鋸歯波状の軌跡、あるいは図 4に示すような多重反射 状の軌跡を描くように電子ビームを二次元走査すると、電子ビーム照射で生じる熱が 局部的に集中することがないので都合がよい。  [0033] In this way, when the electron beam is two-dimensionally scanned so as to draw a sawtooth wave locus as shown in FIG. 3 or a multiple reflection locus as shown in FIG. 4, the heat generated by electron beam irradiation is localized. It ’s convenient because you do n’t concentrate.
[0034] すなわち、図 5 (a)に示すように、電子ビームが円形の軌跡を描くように二次元走查 する場合には、ある一定幅 Mをもつ領域 (斜線部)内では長さ Laにわたつて電子ビー ムが走査されるために、電子ビームの照射時間も長くなつて円軌跡の重なる接線部 分の近傍に熱が集中してその他の部分との間で溶融むらを生じ易い。  That is, as shown in FIG. 5 (a), when the electron beam travels two-dimensionally so as to draw a circular trajectory, the length La in the region (shaded portion) having a certain width M is obtained. Since the electron beam is scanned over a long period of time, the electron beam irradiation time becomes longer, and heat is concentrated in the vicinity of the tangential part where the circular trajectory overlaps.
[0035] これに対して、図 5 (b)に示すように、電子ビームが屈曲線状に二次元走査される 場合には、同じ一定幅 Mをもつ領域 (斜線部)内では僅力、な長さ Lb (く La)だけ電子 ビームが走査されるために、電子ビームの照射時間が図 5 (a)の場合よりも短くなつて 軌跡の重なる接線部分での熱の集中が緩和される。このため、他の部分との間で溶 融むらを生じることがなぐ処理対象領域の全域にわたって均一な表面粗さに仕上げ ること力 Sできる。 [0035] On the other hand, as shown in FIG. 5 (b), when the electron beam is two-dimensionally scanned in the form of a bent line, the region having the same constant width M (shaded portion) has a slight force Since the electron beam is scanned by a long length Lb (く La), the irradiation time of the electron beam is shorter than in the case of Fig. 5 (a). Heat concentration at the tangential part where the tracks overlap is alleviated. For this reason, it is possible to finish the surface with a uniform surface roughness S over the entire region to be processed without causing uneven melting with other parts.
[0036] 図 3では、電子ビームを鋸歯波状の軌跡を描くように走査し、図 4では、電子ビーム を多重反射状の軌跡を描くように走査した例を示した。し力 ながら、図 3及び図 4の 例に限らず、図 6に示すように、電子ビームを、処理対象領域 Rc内において連続パ ノレス波状の屈曲線の軌跡を描くように二次元走査しても良レ、。あるいは、図 7に示す ように、電子ビームを、処理対象領域 Rd内において渦卷状の屈曲線の軌跡を描くよ うに二次元走査しても良レ、。なお、図 6又は図 7の場合においても、電子ビームは、被 処理物 Wの処理対象領域 Rc又 Rdの全領域にわたって満遍なぐかつ疎密を生じな レ、ように走査されるように制御される。  [0036] FIG. 3 shows an example in which the electron beam is scanned so as to draw a sawtooth locus, and FIG. 4 shows an example where the electron beam is scanned so as to draw a multiple reflection locus. However, not limited to the examples in FIGS. 3 and 4, but as shown in FIG. 6, the electron beam is scanned two-dimensionally so as to draw a locus of a continuous panoramic wavy line in the processing target region Rc. Also good. Alternatively, as shown in FIG. 7, the electron beam may be scanned two-dimensionally so as to draw a trajectory of a vortex-like bent line in the processing target region Rd. In the case of FIG. 6 or FIG. 7 as well, the electron beam is controlled so that it is scanned so as to be uniform and non-dense over the entire target region Rc or Rd of the workpiece W. The
[0037] さらに、この実施の形態 1では、上記のようにして電子ビームを屈曲線状に二次元 走査する際、制御装置 9は、被処理物情報メモリ 19に記憶されている被処理物 Wの 表面形状に関する形状情報に基づいて電子ビームが被処理物 Wの表面の照射位 置に常に焦点を結ぶようにビーム収束手段 15を制御する。  Furthermore, in the first embodiment, when the electron beam is two-dimensionally scanned in a bent line as described above, the control device 9 performs processing on the workpiece W stored in the workpiece information memory 19. The beam converging means 15 is controlled so that the electron beam always focuses on the irradiation position on the surface of the workpiece W based on the shape information on the surface shape of the workpiece.
[0038] このため、例えば図 8に示すように、被処理物 Wの表面に凹部 W1が存在する場合 でも、電子ビームは凹部 W1内の表面、凹部 W1外の表面のいずれの照射位置でも 常に焦点を結ぶようになる。また、例えば図 9に示すように、被処理物 Wの表面に円 弧状の段差 W2が存在する場合でも、電子ビームは段差 W2の途中、段差 W2の前 後の表面のいずれの照射位置でも常に焦点を結ぶようになる。したがって、被処理 物 Wの形状が種々異なる場合でもその表面に対して常に同じエネルギ密度で電子 ビームが照射される。  [0038] For this reason, as shown in FIG. 8, for example, even when the concave portion W1 exists on the surface of the workpiece W, the electron beam is always irradiated at any irradiation position on the surface inside the concave portion W1 or the surface outside the concave portion W1. Become focused. For example, as shown in FIG. 9, even when there is an arc-shaped step W2 on the surface of the workpiece W, the electron beam is always applied at any irradiation position on the surface of the step W2 in the middle of the step W2. Become focused. Therefore, even when the shape of the workpiece W varies, the surface is always irradiated with the electron beam with the same energy density.
[0039] このように、この実施の形態 1では、電子ビームを被処理物 Wの処理対象領域内で 走查することで、その表層が溶融した後に直ちに自己放冷されて凝固されるので、被 処理物 Wの表面を比較的短時間の内に 1 μ m程度の微細な表面粗さに仕上げること 力 Sできる。しかも、その際、電子ビームが屈曲線状になるように走査されるので、熱が 局部的に集中して溶融むらを生じることはなぐ処理対象領域の全域にわたって均 一な表面粗さに仕上げることができる。さらに、電子ビームは、被処理物 W表面の照 射位置に常に収束するようにフォーカス制御されるので、被処理物 wの処理表面に 対して照射される電子ビームのエネルギ密度が常に一定になる。したがって、電子ビ ームを表面に照射してその表層を均一に溶融凝固させることができる。このため、一 層均一な表面処理をすることができる。 As described above, in the first embodiment, the electron beam is moved in the region to be processed of the workpiece W, so that the surface layer is immediately cooled and solidified immediately after being melted. It is possible to finish the surface of the workpiece W to a fine surface roughness of about 1 μm within a relatively short time. In addition, since the electron beam is scanned in a bent line at that time, heat is not concentrated locally to cause melting unevenness, so that the surface roughness is uniform over the entire region to be processed. Can do. Furthermore, the electron beam is used to illuminate the surface of the workpiece W. Since the focus is controlled so as to always converge to the irradiation position, the energy density of the electron beam irradiated on the processing surface of the workpiece w is always constant. Therefore, the surface can be uniformly melted and solidified by irradiating the surface with an electron beam. For this reason, a uniform surface treatment can be performed.
[0040] このようにして、電子ビームの二次元走查により被処理物 Wの一定範囲の表面処 理が終われば、次に、制御装置 9は XYテーブル 4を移動して被処理物 Wの他の範 囲について上記と同様に電子ビーム照射により表面処理が行われる。そして、最終 的には被処理物 Wの所定の処理対象領域の全域にわたって表面処理が行われる。 なお、電子ビームの二次元走査と XYテーブル 4の移動とを同期制御するようにして あよい。  [0040] In this way, when the surface treatment of the workpiece W within a certain range is completed by the two-dimensional scanning of the electron beam, the control device 9 moves the XY table 4 to move the workpiece W In other ranges, surface treatment is performed by electron beam irradiation as described above. Finally, the surface treatment is performed over the entire area of the predetermined processing target area of the workpiece W. The two-dimensional scanning of the electron beam and the movement of the XY table 4 may be controlled synchronously.
[0041] 上記の実施の形態 1では、被処理物 Wの表面処理が必要な矩形の処理対象領域 内を、例えば図 3、図 4、図 6、図 7のように屈曲線状の軌跡を描くように電子ビームを 連続的に二次元走査している。し力しながら、電子ビームをデジタル的に微少量 (例 えばビーム径が φ 0· 3mmの 1/10くらいで、 0· 01mm〜0. 05mmのピッチ間隔) ずつ予め設定された位置 (X、 Y位置)にデータ通りに来るように動かすようにすれば 、矩形状の領域 Ra, Rbだけでなく任意の複雑な領域に電子ビームを照射することが できる。  [0041] In the first embodiment described above, a bent line-shaped locus is formed in a rectangular processing target area that requires surface treatment of the workpiece W, as shown in FIGS. 3, 4, 6, and 7, for example. The electron beam is continuously scanned two-dimensionally as shown. However, the electron beam is digitally minute (for example, the beam diameter is about 1/10 of φ0.3 mm, and the pitch interval between 0.01 mm and 0.05 mm) (X, If it is moved so that it follows the data at the (Y position), it is possible to irradiate not only the rectangular areas Ra and Rb but also any complicated area with an electron beam.
[0042] また、実施の形態 1において、被処理物情報メモリ 19の形状情報に基づいて電子 ビームが被処理物 Wの表面の照射位置に常に焦点を結ぶようにフォーカス制御を行 つてレ、るが、電子ビームの焦点位置は被処理物 Wの表面から常に所定距離だけ離 れた箇所に設定されるようにフォーカス制御を行うようにすることも可能である。  In the first embodiment, the focus control is performed so that the electron beam always focuses on the irradiation position on the surface of the workpiece W based on the shape information in the workpiece information memory 19. However, it is also possible to perform focus control so that the focal position of the electron beam is always set at a predetermined distance from the surface of the workpiece W.
[0043] さらに、電子ビームが被処理物 Wの表面に常に焦点を結ぶようにフォーカス制御を 行っても、被処理物 Wの表面が全般に傾斜しているような場合には、被処理物 Wの 表面が水平面の場合と比べて電子ビームの入熱密度(電子ビームのエネルギ密度) が異なってくる。そこで、被処理物情報メモリ 19に記憶されている被処理物 Wの表面 形状に関する形状情報に基づいて、被処理物に対する電子ビームの入熱密度(電 子ビームのエネルギ密度)を変化させるようにしてもよい。この場合の入熱密度を変 化させる方法としては、ビーム電流を変えたり、走查回数を変えたり、走查速度を変え たりすることで対処することが可能である。 [0043] Furthermore, even if the focus control is performed so that the electron beam always focuses on the surface of the workpiece W, the surface of the workpiece W is generally tilted. The heat input density of the electron beam (energy density of the electron beam) differs compared to the case where the surface of W is a horizontal plane. Therefore, the heat input density (electron beam energy density) of the electron beam to the object to be processed is changed based on the shape information related to the surface shape of the object W stored in the object information memory 19. May be. In this case, the heat input density can be changed by changing the beam current, changing the number of runs, or changing the speed. It is possible to cope with it.
[0044] さらにまた、上記の実施の形態 1では、被処理物可動機構として XYテーブル 4を設 けているが、これに限らず、他の構成の被処理物可動機構を設けることもできる。例 えば、図 10に示すような被処理物 Wを傾動保持する機構 21や、図 11に示すような 回転保持機構 22を XYテーブル 4上に配設することができる。  Furthermore, in Embodiment 1 described above, the XY table 4 is provided as the workpiece moving mechanism. However, the present invention is not limited to this, and a workpiece moving mechanism having another configuration may be provided. For example, a mechanism 21 for tilting and holding the workpiece W as shown in FIG. 10 and a rotation holding mechanism 22 as shown in FIG. 11 can be arranged on the XY table 4.
[0045] 例えば、図 10に示すように、被処理物 Wに溝 W3がある場合、電子ビームを偏向す るだけでは溝 W3内の垂直壁を十分に照射できないことがある。そこで、被処理物 W を傾動保持する傾動保持機構 21を設けることにより、この傾動保持機構 21で被処理 物 Wを傾斜させて溝 W3の垂直壁に電子ビームを確実に照射して表面処理を行うこ とができる。  For example, as shown in FIG. 10, when the workpiece W has a groove W3, the vertical wall in the groove W3 may not be sufficiently irradiated only by deflecting the electron beam. Therefore, by providing a tilt holding mechanism 21 that tilts and holds the workpiece W, the tilt holding mechanism 21 tilts the workpiece W and reliably irradiates the vertical wall of the groove W3 with an electron beam to perform surface treatment. It can be carried out.
[0046] また、図 11に示すように、被処理物 Wが円柱状をしている場合、回転保持機構 22 により被処理物 Wを回転させることでその処理表面に対して電子ビームを垂直に照 射することができるので、均一な表面処理をすることが可能になる。  As shown in FIG. 11, when the workpiece W has a cylindrical shape, the workpiece W is rotated by the rotation holding mechanism 22 so that the electron beam is perpendicular to the processing surface. Since it can be irradiated, a uniform surface treatment can be performed.
[0047] 実施の形態 2.  [0047] Embodiment 2.
図 12はこの実施の形態 2における電子ビーム表面処理装置の要部を示す構成図 である。  FIG. 12 is a configuration diagram showing a main part of the electron beam surface treatment apparatus according to the second embodiment.
[0048] この実施の形態 2の特徴は、電子ビームの放射方向に沿って複数段(この例では 2 段)にわたつて偏向レンズ 14a, 14bが設けられている。このため、第 1段目の偏向レ ンズ 14aで偏向された電子ビームは、引き続いて第 2段目の偏向レンズ 14bでさらに 偏向される。  [0048] A feature of the second embodiment is that deflection lenses 14a and 14b are provided in a plurality of stages (two stages in this example) along the electron beam radiation direction. For this reason, the electron beam deflected by the first stage deflection lens 14a is subsequently further deflected by the second stage deflection lens 14b.
[0049] これにより、被処理物 Wの表面に照射される電子ビームの入射角を小さくすることが できる。つまり、被処理物 Wの表面に対して電子ビームをできるだけ垂直に照射でき るようになる。このため、電子ビームを二次元走查する場合、被処理物 Wの表面に対 して照射される電子ビームのエネルギ密度が常に一定になるので、被処理物 Wの表 層を均一に溶融凝固させることができ、均一な表面処理をすることができる。  [0049] Thereby, the incident angle of the electron beam applied to the surface of the workpiece W can be reduced. In other words, the surface of the workpiece W can be irradiated with the electron beam as perpendicularly as possible. Therefore, when the electron beam is scanned two-dimensionally, the energy density of the electron beam irradiated onto the surface of the workpiece W is always constant, so that the surface layer of the workpiece W is uniformly melted and solidified. And uniform surface treatment.
[0050] しかも、例えば図 13に示すように、被処理物 Wに凹部 W4がある場合、単一の偏向 レンズでは電子ビームを十分に偏向できないために凹部 W4内に陰ができて電子ビ ームを十分に照射できないことがある。これに対して、この実施の形態 2のように、複 数段の偏向レンズ 14a, 14bによって電子ビームを複数回偏向させるようにすれば、 凹部 W4内に電子ビームを確実に照射して表面処理を行うことができる。 [0050] Moreover, as shown in FIG. 13, for example, when the workpiece W has a concave portion W4, the electron beam cannot be sufficiently deflected by a single deflecting lens, so that a shadow is formed in the concave portion W4 and the electron beam is formed. May not be adequately irradiated. On the other hand, as in the second embodiment, If the electron beam is deflected a plurality of times by several stages of deflection lenses 14a and 14b, the surface treatment can be performed by reliably irradiating the concave portion W4 with the electron beam.
[0051] なお、この実施の形態 2では、電子ビームの放射方向に沿って 2段の偏向レンズ 14 a, 14bを設けているが、 3段以上設けることも可能である。その他の構成、ならびに作 用効果は実施の形態 1の場合と同様であるから、ここでは詳しい説明は省略する。  In the second embodiment, the two-stage deflection lenses 14 a and 14 b are provided along the electron beam radiation direction, but three or more stages may be provided. Since other configurations and operational effects are the same as those in the first embodiment, detailed description thereof is omitted here.
[0052] 実施の形態 3.  [0052] Embodiment 3.
図 14はこの実施の形態 3における電子ビーム表面処理装置の構成図であり、図 1 に示した実施の形態 1と対応する構成部分には同一の符号を付す。  FIG. 14 is a configuration diagram of the electron beam surface treatment apparatus in the third embodiment, and the same reference numerals are given to the components corresponding to those in the first embodiment shown in FIG.
[0053] この実施の形態 3の特徴は、電子ビーム照射手段 3が配置された真空チャンバ 2aと 、XYテーブル 4が配置された真空チャンバ 2bとが互いに独立して設けられている。 そして、両真空チャンバ 2a, 2b間は、例えば蛇腹状の真空シール 23が施されて互 いに連通されている。また、電子ビーム照射手段 3が配置された真空チャンバ 2aには 、他方の真空チャンバ 2bに対して変位させるスライド手段 24が設けられている。この 場合のスライド手段 24は、例えば、真空チャンバ 2aの底部に設けたローラ 25と、この ローラ 25を駆動するモータやギヤを備えた駆動部 26とで構成される。  A feature of the third embodiment is that a vacuum chamber 2a in which the electron beam irradiation means 3 is arranged and a vacuum chamber 2b in which the XY table 4 is arranged are provided independently of each other. The vacuum chambers 2a and 2b are in communication with each other by, for example, a bellows-like vacuum seal 23 provided. The vacuum chamber 2a in which the electron beam irradiation means 3 is disposed is provided with a slide means 24 for displacing with respect to the other vacuum chamber 2b. The slide means 24 in this case is constituted by, for example, a roller 25 provided at the bottom of the vacuum chamber 2a, and a drive unit 26 having a motor and a gear for driving the roller 25.
[0054] この構成によれば、 XYテーブル 4を移動するだけでは被処理物 Wに対する電子ビ ームの照射範囲に限界がある場合でも、電子ビーム照射手段 3が配置された真空チ ヤンバ 2a全体を移動させれば被処理物 Wの広い範囲にわたって電子ビームを照射 することが可能になる。  [0054] According to this configuration, the entire vacuum chamber 2a in which the electron beam irradiation means 3 is arranged can be obtained even if the irradiation range of the electron beam on the workpiece W is limited only by moving the XY table 4. It is possible to irradiate the electron beam over a wide range of the workpiece W by moving the.
[0055] なお、この実施の形態 3では、電子ビーム照射手段 3が配置された真空チャンバ 2a を移動させるようにしている力 逆に XYテーブル 4が収納された真空チャンバ 2bを移 動する構成とすることも可能である。その他の構成、ならびに作用効果は実施の形態 1の場合と同様であるから、ここでは詳しい説明は省略する。  [0055] In the third embodiment, the force for moving the vacuum chamber 2a in which the electron beam irradiation means 3 is arranged is configured to move the vacuum chamber 2b in which the XY table 4 is stored. It is also possible to do. Since other configurations and operational effects are the same as those in the first embodiment, detailed description thereof is omitted here.
[0056] なお、図 10では被処理物 Wを傾動保持する機構 21を XYテーブル 4上に配置した 構成を示したが、電子ビーム照射手段 3を真空チャンバ 2a内の XYテーブル 4に対し て傾動保持する傾動保持機構(図示せず)を設けた構成とすることもできる。このよう な構成にすれば、被処理物 Wの形状が大きい場合でも、電子ビーム照射手段 3を傾 斜させることで被処理物 Wの広い表面にわたって適切に電子ビームを照射すること ができる。 FIG. 10 shows a configuration in which the mechanism 21 for tilting and holding the workpiece W is arranged on the XY table 4, but the electron beam irradiation means 3 is tilted with respect to the XY table 4 in the vacuum chamber 2a. It can also be set as the structure which provided the tilt holding mechanism (not shown) to hold | maintain. With such a configuration, even when the shape of the workpiece W is large, the electron beam irradiation means 3 is tilted to appropriately irradiate the electron beam over the wide surface of the workpiece W. Can do.
[0057] 実施の形態 4. [0057] Embodiment 4.
図 15はこの実施の形態 4における電子ビーム表面処理装置の要部を示す構成図 である。  FIG. 15 is a configuration diagram showing a main part of the electron beam surface treatment apparatus according to the fourth embodiment.
[0058] この実施の形態 4の特徴は、 XYテーブル 4の上に載置される被処理物 Wを所要温 度になるように温度調節する温度調節手段 29を備えていることである。この場合の温 度調節手段 29は、例えば、 XYテーブル 4と被処理物 Wとの間に介在される加熱冷 却器 30と、この加熱冷却器 30の温度制御を行う温度制御装置 31とから構成されて いる。この場合の加熱冷却器 30は、例えばペルチヱ素子を用いたものや、ヒータ単 体あるいはクーラ単体、または両者を組み合わせたものを適用することができる。  The feature of the fourth embodiment is that it includes a temperature adjusting means 29 that adjusts the temperature of the workpiece W placed on the XY table 4 so as to reach a required temperature. The temperature adjusting means 29 in this case includes, for example, a heating cooler 30 interposed between the XY table 4 and the workpiece W, and a temperature control device 31 that controls the temperature of the heating cooler 30. It is configured. As the heating / cooling device 30 in this case, for example, a device using a Peltier element, a single heater or a single cooler, or a combination of both can be applied.
[0059] この構成によれば、例えば図 16において、電子ビーム照射による被処理物 Wの溶 融温度を Tqとする。このとき、図 16のように被処理物 Wの処理前の母材温度を Tl, Τ2と変えると、電子ビーム照射時の被処理物 Wの温度分布曲線が実線および破線 で示すように異なってくる。そして、表面からの溶融深さも Dl, D2変化する。したがつ て、被処理物 Wを所要温度になるように温度調節することにより、被処理物 Wの材料 に応じて適切な溶融深さ Dl, D2等を設定することができる。  According to this configuration, for example, in FIG. 16, the melting temperature of the workpiece W by electron beam irradiation is Tq. At this time, if the base material temperature before the treatment of the workpiece W is changed to Tl and Τ2 as shown in Fig. 16, the temperature distribution curve of the workpiece W during electron beam irradiation is different as shown by the solid line and the broken line. come. And the melt depth from the surface also changes by Dl and D2. Therefore, by adjusting the temperature of the workpiece W to the required temperature, it is possible to set an appropriate melting depth Dl, D2, etc. according to the material of the workpiece W.
[0060] その他の構成、ならびに作用効果は実施の形態 1の場合と同様であるから、ここで は詳しい説明は省略する。  [0060] Since other configurations and operational effects are the same as those in the first embodiment, detailed description thereof is omitted here.
[0061] 発明の実施例.  [0061] Examples of the invention.
上記の実施の形態 1の構成を備えた電子ビーム表面処理装置を用いて、被処理物 に表面処理をして評価実験を行った。この場合、被処理物の材料としては、 STAVA X鋼 (JIS G 4303〜4309:マノレテンサイ卜系ステンレス鋼 SUS420J2相当)を使用 した。この表面処理前の素地の表面粗さは 6 x mである。また、処理条件として、真空 度が 6. 7Pa以下、加速電圧 30kV、ビーム電流が 110mAの下で、処理対象領域を 30mm X 30mmの範囲とし、その範囲内で図 3に示すように鋸歯波状の軌跡を描く ように電子ビームを二次元走査した。そして、被処理物の電子ビーム走查後の表面 粗さを測定した。  Using the electron beam surface treatment apparatus having the configuration of the first embodiment described above, the surface treatment was performed on the object to be evaluated. In this case, STAVA X steel (JIS G 4303 to 4309: equivalent to stainless steel type SUS420J2) was used as the material of the object to be treated. The surface roughness of the substrate before this surface treatment is 6 x m. In addition, the processing conditions are as follows: the vacuum is 6.7 Pa or less, the acceleration voltage is 30 kV, the beam current is 110 mA, and the processing target area is 30 mm X 30 mm. The electron beam was scanned two-dimensionally to draw a trajectory. Then, the surface roughness of the workpiece after the electron beam scanning was measured.
[0062] その結果、 30mm X 30mmの処理対象領域の全域を電子ビームを一度だけ二次 元走査するのに要する時間は約 1. 6秒で、このときの被処理物の表面粗さは 0. 96 /i m (6回測定の平均値)であった。したがって、表面処理後の表面粗さは要求特性 を十分に満たしていることが確認された。また、被処理物の処理後の表面状態を走 查電子顕微鏡等で観察したところ、処理対象領域内において均一な表面処理が行 われてレ、ることが確認された。 [0062] As a result, the entire area to be processed of 30 mm X 30 mm is subjected to secondary electron beam irradiation only once. The time required for the original scan was about 1.6 seconds, and the surface roughness of the workpiece at this time was 0.96 / im (average value of six measurements). Therefore, it was confirmed that the surface roughness after the surface treatment sufficiently satisfies the required characteristics. Further, when the surface condition of the object to be processed was observed with a scanning electron microscope or the like, it was confirmed that uniform surface treatment was performed in the region to be processed.
[0063] また、処理条件の内、ビーム電流のみを 90mAに変更し、上記と同じ面積をもつ処 理対象領域を 5回繰り返して二次元走査した場合、処理に要する総時間は約 7. 4秒 で、このときの被処理物の表面粗さは 1. 13 z m (6回測定の平均値)であった。この 場合も所要の表面粗さを得ることが確認できた。  [0063] In addition, when only the beam current is changed to 90 mA in the processing conditions and the processing target area having the same area as above is subjected to two-dimensional scanning five times, the total processing time is about 7.4. The surface roughness of the workpiece at this time was 1.13 zm (average of 6 measurements). In this case, it was confirmed that the required surface roughness was obtained.
[0064] なお、特許文献 2に記載されているように、被処理物の広い面積にわたって電子ビ ームをパルス照射して上記と同様な 30mm X 30mmの面積内を 1 μ m程度の表面 粗さに仕上げるのに要する時間は約 380秒程である。したがって、従来と比べると本 発明は同じ程度の表面粗さに仕上げるのに要する時間が極めて短時間で済むこと が理解される。  [0064] As described in Patent Document 2, an electron beam is pulse-irradiated over a wide area of the object to be processed, and a surface roughness of about 1 μm is obtained within the same 30 mm × 30 mm area as described above. The time required for finishing is about 380 seconds. Therefore, it can be understood that the time required for finishing the present invention with the same level of surface roughness is extremely short compared with the prior art.
産業上の利用可能性  Industrial applicability
[0065] この発明は、表面処理を行う被処理物が金型の場合のみならず、微細な表面処理 が要求される被処理物に対して広く適用することが可能である。 The present invention can be widely applied not only to the case where the object to be surface-treated is a mold, but also to the object to be treated that requires fine surface treatment.

Claims

請求の範囲 The scope of the claims
[1] 電子ビームを被処理物の表面に照射してその表層を溶融凝固させて表面処理を行 う電子ビーム表面処理方法において、  [1] In an electron beam surface treatment method in which a surface treatment is performed by irradiating the surface of an object with an electron beam to melt and solidify the surface layer,
上記被処理物の表面処理を行う処理対象領域を規定する領域情報を予め登録して おき、この領域情報に基づいて電子ビームを上記被処理物の処理対象領域内を屈 曲線状の軌跡を描くように二次元走查することを特徴とする電子ビーム表面処理方 法。  Pre-register region information that defines a processing target region for performing the surface treatment of the workpiece, and draw a curved locus in the processing target region of the workpiece based on this region information. An electron beam surface treatment method characterized by two-dimensional scanning.
[2] 上記の屈曲線状の軌跡を描く二次元走査とは、鋸歯波状の屈曲線の軌跡を描く二 次元走査であることを特徴とする請求項 1記載の電子ビーム表面処理方法。  2. The electron beam surface treatment method according to claim 1, wherein the two-dimensional scanning that draws a bent line-shaped locus is a two-dimensional scan that draws a sawtooth-like bent line locus.
[3] 上記の屈曲線状の軌跡を描く二次元走査とは、多重反射状の屈曲線の軌跡を描く 二次元走査であることを特徴とする請求項 1記載の電子ビーム表面処理方法。  3. The electron beam surface treatment method according to claim 1, wherein the two-dimensional scanning that draws the bent line-shaped locus is a two-dimensional scan that draws the locus of the multiple reflection-like bent line.
[4] 上記の屈曲線状の軌跡を描く二次元走査とは、連続ノ^レス波状の屈曲線の軌跡を 描く二次元走査であることを特徴とする請求項 1記載の電子ビーム表面処理方法。  4. The electron beam surface treatment method according to claim 1, wherein the two-dimensional scanning that draws the bent line-shaped trajectory is a two-dimensional scan that draws a locus of a continuous knurled wavy line. .
[5] 上記の屈曲線状の軌跡を描く二次元走査とは、渦巻状の屈曲線の軌跡を描く二次 元走査であることを特徴とする請求項 1記載の電子ビーム表面処理方法。  5. The electron beam surface treatment method according to claim 1, wherein the two-dimensional scanning that draws the bent line locus is a two-dimensional scan that draws a spiral bent line locus.
[6] 上記被処理物の表面形状に関する形状情報を予め登録しておき、この形状情報に 基づいて電子ビームが上記被処理物の表面または表面から一定距離だけ離れた箇 所に常に焦点を結ぶようにフォーカス制御を行うことを特徴とする請求項 1記載の電 子ビーム表面処理方法。  [6] Shape information relating to the surface shape of the object to be processed is registered in advance, and based on this shape information, the electron beam is always focused on the surface of the object to be processed or a place away from the surface by a certain distance. 2. The electron beam surface treatment method according to claim 1, wherein focus control is performed as described above.
[7] 上記被処理物の表面形状に関する形状情報を予め登録しておき、この形状情報に 基づいて電子ビームの上記被処理物の照射位置に対するエネルギ密度が変化する 制御を行うことを特徴とする請求項 1記載の電子ビーム表面処理方法。  [7] Shape information related to the surface shape of the object to be processed is registered in advance, and control is performed to change the energy density of the electron beam with respect to the irradiation position of the object to be processed based on the shape information. The electron beam surface treatment method according to claim 1.
[8] 被処理物の表面に電子ビームを照射する電子ビーム照射手段を有し、この電子ビー ム照射手段は、電子ビームを発生する電子銃と、この電子銃からの電子ビームを収 束するビーム収束手段と、電子ビームを偏向するビーム偏向手段とを備えている電 子ビーム表面処理装置において、  [8] An electron beam irradiation means for irradiating the surface of the workpiece with an electron beam is provided. The electron beam irradiation means converges an electron gun for generating an electron beam and an electron beam from the electron gun. In an electron beam surface treatment apparatus comprising a beam converging means and a beam deflecting means for deflecting an electron beam,
上記被処理物の表面処理を行う処理対象領域を規定する領域情報が予め登録され た記憶手段と、この記憶手段に記憶されている上記領域情報に基づいて電子ビーム が上記被処理物の処理対象領域内で屈曲線状の軌跡を描レ、て二次元走査されるよ うに上記ビーム偏向手段を制御するビーム走査制御手段とを備えることを特徴とする 電子ビーム表面処理装置。 Storage means in which area information for defining a processing target area for performing the surface treatment of the workpiece is registered in advance, and an electron beam is generated based on the area information stored in the storage means. A beam scanning control means for controlling the beam deflection means so as to draw a bent line-shaped locus in the processing target area of the workpiece and to perform two-dimensional scanning. Processing equipment.
[9] 上記記憶手段には、上記領域情報に加えて被処理物の表面形状に関する形状情 報が予め登録され、この形状情報に基づレ、て電子ビームが上記被処理物の表面ま たは表面から所定距離だけ離れた箇所に常に常に焦点を結ぶように上記ビーム収 束手段を制御するフォーカス制御手段を備えることを特徴とする請求項 8記載の電子 ビーム表面処理装置。  [9] In the storage means, in addition to the region information, shape information related to the surface shape of the object to be processed is registered in advance. Based on the shape information, the electron beam is reflected on the surface of the object to be processed. 9. The electron beam surface treatment apparatus according to claim 8, further comprising a focus control means for controlling the beam convergence means so as to always focus on a place away from the surface by a predetermined distance.
[10] 上記被処理物を電子ビームの照射方向に対して水平移動、回転、傾動の内の少なく とも一つを行う被処理物可動機構を備えることを特徴とする請求項 8記載の電子ビー ム表面処理装置。  10. The electronic bead according to claim 8, further comprising a workpiece moving mechanism that performs at least one of horizontal movement, rotation, and tilting of the workpiece with respect to the electron beam irradiation direction. Surface treatment equipment.
[11] 上記ビーム偏向手段が電子ビームの放射方向に沿って複数段にわたって設けられ ていることを特徴とする請求項 8記載の電子ビーム表面処理装置。  11. The electron beam surface treatment apparatus according to claim 8, wherein the beam deflecting means is provided in a plurality of stages along the electron beam radiation direction.
[12] 上記電子ビーム照射手段の位置を上記被処理物可動機構に対して変位させるスラ イド手段を備えることを特徴とする請求項 10記載の電子ビーム表面処理装置。 12. The electron beam surface treatment apparatus according to claim 10, further comprising slide means for displacing the position of the electron beam irradiation means with respect to the workpiece moving mechanism.
[13] 上記電子ビーム照射手段の位置を上記被処理物可動機構に対して傾動させる傾動 手段を備えることを特徴とする請求項 10記載の電子ビーム表面処理装置。 13. The electron beam surface treatment apparatus according to claim 10, further comprising tilting means for tilting the position of the electron beam irradiation means with respect to the workpiece moving mechanism.
[14] 上記被処理物を所定温度になるように温度調節する温度調節手段を備えることを 特徴とする請求項 8記載の電子ビーム表面処理装置。 14. The electron beam surface treatment apparatus according to claim 8, further comprising temperature adjusting means for adjusting the temperature of the object to be processed to a predetermined temperature.
PCT/JP2006/300601 2004-07-27 2006-01-18 Method for surface treatment with electron beam and apparatus for surface treatment with electron beam WO2007083363A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/300601 WO2007083363A1 (en) 2006-01-18 2006-01-18 Method for surface treatment with electron beam and apparatus for surface treatment with electron beam
TW095102774A TWI277475B (en) 2004-07-27 2006-01-25 Surface processing method using electron beam and surface processing apparatus using electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/300601 WO2007083363A1 (en) 2006-01-18 2006-01-18 Method for surface treatment with electron beam and apparatus for surface treatment with electron beam

Publications (1)

Publication Number Publication Date
WO2007083363A1 true WO2007083363A1 (en) 2007-07-26

Family

ID=38287325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300601 WO2007083363A1 (en) 2004-07-27 2006-01-18 Method for surface treatment with electron beam and apparatus for surface treatment with electron beam

Country Status (1)

Country Link
WO (1) WO2007083363A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165288A (en) * 1979-06-06 1980-12-23 Fujita Kinzoku Kogyo Kk Smooth finishing method of groove inside surface in metal mold or the like
JPH02229681A (en) * 1989-03-01 1990-09-12 Mitsubishi Electric Corp Beam deflecting method for charge beam machine
JPH05261565A (en) * 1992-03-13 1993-10-12 Mitsubishi Electric Corp Working method using electron beam
JPH08167595A (en) * 1994-12-09 1996-06-25 Tokyo Electron Ltd Plasma treatment device
JP2005039279A (en) * 2003-07-17 2005-02-10 Applied Materials Inc Method of surface texturizing
JP2006026660A (en) * 2004-07-13 2006-02-02 Elionix Kk Surface smoothing device using electron beam, and method for treating surface of metal mold
JP2006035263A (en) * 2004-07-27 2006-02-09 Mitsubishi Electric Corp Electron beam surface treatment method and electron beam surface treatment device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165288A (en) * 1979-06-06 1980-12-23 Fujita Kinzoku Kogyo Kk Smooth finishing method of groove inside surface in metal mold or the like
JPH02229681A (en) * 1989-03-01 1990-09-12 Mitsubishi Electric Corp Beam deflecting method for charge beam machine
JPH05261565A (en) * 1992-03-13 1993-10-12 Mitsubishi Electric Corp Working method using electron beam
JPH08167595A (en) * 1994-12-09 1996-06-25 Tokyo Electron Ltd Plasma treatment device
JP2005039279A (en) * 2003-07-17 2005-02-10 Applied Materials Inc Method of surface texturizing
JP2006026660A (en) * 2004-07-13 2006-02-02 Elionix Kk Surface smoothing device using electron beam, and method for treating surface of metal mold
JP2006035263A (en) * 2004-07-27 2006-02-09 Mitsubishi Electric Corp Electron beam surface treatment method and electron beam surface treatment device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OBATA H. AND HANAI M.: "Denshi Beam ni yoru Kanagata Migaki Tekiyo Saishin Gijutsu", KATA GIJUTSU, vol. 20, no. 15, 1 December 2005 (2005-12-01) *

Similar Documents

Publication Publication Date Title
US6861613B1 (en) Device and method for the preparation of building components from a combination of materials
JP5201098B2 (en) Laser cutting apparatus and laser cutting method
JP2021522072A (en) Equipment and methods for manufacturing 3D objects
JP4027930B2 (en) Laser processing apparatus and method using polygon mirror
JP7387870B2 (en) Method for beam machining plate or tubular workpieces
JP2008053417A (en) Manufacturing method of semiconductor chip and processing method of semiconductor wafer
TWI277475B (en) Surface processing method using electron beam and surface processing apparatus using electron beam
JP4829748B2 (en) Deburring apparatus, deburring method, and resin product manufacturing method
JP2005329436A (en) Laser machining method
JP2022523275A (en) Methods for beaming plate or tubular workpieces
JP4934762B2 (en) Positioning method and apparatus
JPH05177366A (en) Sheet metal working method
JP6050002B2 (en) Laser processing method
JP5258402B2 (en) Electron beam surface treatment apparatus and electron beam surface treatment method
CN110730694A (en) Laser cleaning device and laser cleaning method
JP7149013B2 (en) Planning-polishing apparatus and method using femtosecond pulsed laser
JP5397768B2 (en) Laser processing apparatus and laser processing method
JP4210857B2 (en) Laser machining method for plated plate
WO2007083363A1 (en) Method for surface treatment with electron beam and apparatus for surface treatment with electron beam
KR100664573B1 (en) Laser Processing Apparatus and Method thereof
JP5037132B2 (en) Method and apparatus for generating cavities
CN115229334A (en) Rotary selective surface treatment laser processing system and processing method
EP4043142A1 (en) Method for batch processing of 3d objects using laser treatment and a system implementing the method
JP6768459B2 (en) Three-dimensional laminated molding method and three-dimensional laminated molding equipment
JP5242936B2 (en) Surface treatment method and surface treatment apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP