WO2007082289A2 - Color filter array with neutral elements and color image formation - Google Patents

Color filter array with neutral elements and color image formation Download PDF

Info

Publication number
WO2007082289A2
WO2007082289A2 PCT/US2007/060427 US2007060427W WO2007082289A2 WO 2007082289 A2 WO2007082289 A2 WO 2007082289A2 US 2007060427 W US2007060427 W US 2007060427W WO 2007082289 A2 WO2007082289 A2 WO 2007082289A2
Authority
WO
WIPO (PCT)
Prior art keywords
color
image
elements
color filter
luminance
Prior art date
Application number
PCT/US2007/060427
Other languages
French (fr)
Other versions
WO2007082289A3 (en
Inventor
Gang Luo
Original Assignee
Gang Luo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2006100951515A external-priority patent/CN101150731B/en
Priority claimed from US11/616,840 external-priority patent/US20070159542A1/en
Application filed by Gang Luo filed Critical Gang Luo
Publication of WO2007082289A2 publication Critical patent/WO2007082289A2/en
Publication of WO2007082289A3 publication Critical patent/WO2007082289A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/135Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on four or more different wavelength filter elements
    • H04N25/136Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on four or more different wavelength filter elements using complementary colours
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/843Demosaicing, e.g. interpolating colour pixel values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2209/00Details of colour television systems
    • H04N2209/04Picture signal generators
    • H04N2209/041Picture signal generators using solid-state devices
    • H04N2209/042Picture signal generators using solid-state devices having a single pick-up sensor
    • H04N2209/047Picture signal generators using solid-state devices having a single pick-up sensor using multispectral pick-up elements

Definitions

  • the invention relates generally to the field of electronic photography, and in particular to electronic imaging apparatus having a single imaging sensor and a color filter array.
  • CFA color filter array
  • CCD Charge Coupled Devices
  • CMOS complimentary metal oxide semiconductor
  • CID charge- injection device
  • the CFA was initially claimed to be comprised of one type of luminance element (Y) , and two types of chrominance elements (Cl and C2) .
  • Y luminance element
  • Cl and C2 two types of chrominance elements
  • Such a pattern was employed based on the recognition of human visual system' s relatively greater ability to discern luminance detail.
  • green filters are commonly used to substitute for Y, red and blue filters for Cl and C2 respectively .
  • the 50% sampling rate of luminance is not necessarily the optimal design for. a human visual system.
  • image files saved in JPEG format the most popular image format at present, more than 50% of data bits are for luminance.
  • the average amount of luminance data in high quality JPEG images is about 72%, and the number in low quality JPEG images is about 85% (G. Luo, ⁇ A novel color filter array with 75% transparent elements" Proceedings SPIE Vol. 6502, (Jan. 29, 2007), Appendix. In press).
  • about 28% or 15% of data are of chrominance.
  • the quality of JPEG images is not obviously attenuated when so little data bits are used for chrominance.
  • the present invention is directed to a method and a device for providing higher performances of image capturing and rendering than conventional methods and devices.
  • An object of the present invention is to provide CFA patterns that can achieve higher sampling rate for luminance than for chrominance.
  • a majority of the CFA' s are neutral elements without color selectivity. These elements can be neutral density filters, which only reduce the intensity of light, or completely transparent, which do not cause light energy loss. Gray scale images with high spatial resolution and high light sensitivity can be acquired from image samplings at these neutral elements.
  • Another object of the invention is to provide CFA patterns that can yield low color artifacts in output images in spite of sparse sampling of chrominance.
  • the remaining elements of the CFA other than neutral elements are color filtered ones.
  • Color elements cluster to form a repeating block pattern, and each block includes several types of color filter elements that are necessary for calculation of at least one color pixel. Color images with low spatial resolution but low color artifacts can be acquired from image samplings at these color filter elements.
  • a further object of the invention is to provide a color image formation method to combine luminance and chrominance information.
  • the gray scale images and the color images mentioned above are combined to form output images in a luminance—chrominance color space, such as CIE Lab or HSB (hue-saturation-brightness) .
  • the process is to first transform the color images to one of the luminance—chrominance color spaces, e.g. Lab, and then to replace the luminance component (e.g. L component in the Lab model) with the gray scale images acquired from neutral elements.
  • Another object of the invention is to provide a color image capturing apparatus comprising CFA means, in which a majority, of the elements in the CFA are neutral elements without color selectivity, and the remaining elements of the CFA color filtered ones clustering to form a repeating block pattern.
  • a still further object of the invention is to provide a color image capturing apparatus comprising image formation means, in which the processing of gray scale images and color images is firstly separated, and then they are combined in a luminance-chrominance color space by replacing the luminance components of the color images with the gray—scale images.
  • Preferred methods include application of interpolation schemes and algorithms to transform data into useful formats for subsequent processing, storage, transmission and rendering.
  • Preferred devices include CCD, CID and CMOS image sensor arrays that have a filter grid layered over sensing elements and integrated electronic elements for reading and processing information captured by the sensors.
  • FIG. 1 The Bayer pattern, a prior art description of a CFA.
  • FIG. 2 One CFA embodiment of the present invention, in which 75% of elements are neutral (shown as blank cells) .
  • FIG. 3 Schematic illustration that describes the process of the image formation to combine luminance and chrominance information.
  • FIG. 4 Other embodiments of the present invention that comprise different proportions of neutral elements and additive primary color filter elements (red, green, and blue) .
  • FIG. 5 Some other embodiments of the present invention that comprise subtractive primary color filters, cyan, magenta, yellow, and green.
  • FIG. 6 Other embodiments of the present invention that every other color filter block shifts either horizontally, vertically, or obliquely to ensure there are color filter elements in as many rows and columns as possible.
  • the present invention is a device and method that addresses certain disadvantages of prior art for digital imaging devices that use a color filter array (CFA) .
  • FIG. 1 shows the CFA pattern disclosed in U.S. Pat. 3,971,065 by Bayer. Unlike devices employing the Bayer pattern, the present invention collects and calculates real luminance and real chrominance information separately. Unlike the inventions disclosed in U.S. Patents 5323233 and 5914749, the present invention is directed to sampling luminance information with a majority (>50%) of image sensor elements, and to sampling chrominance information with a minority of image sensor elements.
  • one CFA embodiment of the present invention is where neutral elements are inserted between color elements as represented by the blank cells. In this embodiment 75% of the elements of the CFA are neutral elements, which can be neutral density filters or completely transparent ones, and the remaining 25% of the elements are color filter elements .
  • the imaging sensor elements beneath the neutral filter elements directly detect luminance, working like those in black-and-white cameras. From these pixels, full-frame gray scale images can be acquired by means of interpolation. A portion of the data matrix acquired with the embodiment is shown as follows, in which the four missing luminance values (Xl to X4) need to be calculated using known values from peripheral pixels.
  • a simple interpolation method to estimate the luminance values at pixels of color filter elements is the linear interpolation.
  • Each block is the same as the repeating 2-by-2 pattern in Bayer's CFA, i.e. two green filters in diagonal cells, and one red and one blue filter in an opposing diagonal direction. From these color filter elements, color images can be obtained by means of demosaic interpolation.
  • a simple approach can be to first piece color filter blocks together to form a regular Bayer pattern, and then to use existing demosaic algorithms to calculate full color images. Examples of such algorithms and interpolation means are disclosed by Adams Jr. et al . in US Pat. 5,652,621 and in K. Hirakawa and T.W. Parks, "Adaptive homogeneity-directed demosaicing algorithm", IEEE Transactions on Image Processing, 14(3), pp. 360-369, 2005
  • the sizes of generated color images are normally smaller than those of the gray images mentioned above, but they can be easily resized to the same dimension.
  • the color images which are typically in RGB color space, it is preferable to transform the color images into a luminance-chrominance space, e.g. CIE 1976 Lab, YIQ, and HSB (hue- saturation—brightness) .
  • Luminance—chrominance color models are one type of model that specifically provide values of lightness to describe colors, unlike the tri—stimuli color models such as Red— Green-Blue (RGB) or Cyan-Magenta-Yellow (CMY) .
  • the luminance components e.g.
  • FIG. 3 schematically illustrates the process of the image formation described above, where panel L' represents the gray scale images acquired from neutral elements, multiple panels RGB represent the color images acquired from color filter elements, multiple panels Lab represent the color images in luminance—chrominance spaces, and multiple panels L'ab represent the output color images.
  • panel L' represents the gray scale images acquired from neutral elements
  • multiple panels RGB represent the color images acquired from color filter elements
  • multiple panels Lab represent the color images in luminance—chrominance spaces
  • multiple panels L'ab represent the output color images.
  • FIG. 4 illustrates some other embodiments of the present invention that comprise different proportions of neutral elements.
  • Neutral elements make up 55% (5/9) of the CFA in FIG. 4a, 67% (6/9) in FIG. 4b, and 92% (33/36) in FIG. 4c.
  • the remaining elements in the CFAs shown in FIG. 4 are red, green and blue color filters whose spectrum characteristics are the same as those used in the Bayer CFA.
  • the sampling rate of luminance between 55% and 92% can be easily designed to suit different applications by configuring the repeating period of color filter block.
  • the repeating period is 3 pixels in FIG 4b, 4 pixels in FIG.2, and 6 pixels in FIG. 4c both horizontally and vertically.
  • the repeating periods in the two directions can be different. The higher the luminance sampling rate is, the higher light sensitivity, but the worse the color distortion. CFA with more than 92% of luminance sampling rate will result in too coarse a sampling of chrominance to be useful.
  • each color filter block includes three color filter elements.
  • each color filter block includes four color filter elements: two green filters in diagonal cells, and one red and one blue filters in an opposing diagonal direction.
  • each color filter block includes three color filter elements.
  • a simple demosaicing method can be employed; namely, a nearest neighbor algorithm. This method computes the values for each "color" pixel using the three values from the surrounding pixels in the same one block.
  • FIG. 5 illustrates some other embodiments of the present invention that comprise subtractive primary color filters, cyan (C) , magenta (M) , and yellow (Y) .
  • the configuration of neutral elements of these CFAs is the same as that for CFAs comprising RGB filters, but the color filters are mainly CMY instead.
  • FIG. 5 shows two CFAs in which the luminance sampling rates are 67% (6/9) as in FIG. 5a and 75% (12/16) as in FIG. 5b, respectively.
  • the CMY type of CFAs of the present invention can be configured with different luminance sampling rates ranging from 56% to 92%.
  • FIG. 6 illustrates some other embodiments of the present invention that every other color filter block (circled by dashed lines) shifts either horizontally, vertically, or obliquely a certain amount to ensure there are color filter elements in as many rows and columns as possible. For instance, in the CFA shown in FIG. 2, every third and fourth rows and every third and fourth columns are all neutral elements. Obtaining chrominance information in these rows and columns may be favorable.
  • FIG. 6a illustrates a variation of the CFA shown in FIG.
  • FIG. 6b illustrates a variation, of the CFA shown in. FIG. 5a f in which the color filter block in every other fourth and fifth columns shift one element down so that there are color filter elements in every row and column of the CFA.
  • FIG 6c illustrates a variation of the CFA shown in Fig. 2, in which the filter blocks circled by dashed line shift obliquely to south-west.
  • the shift configuration can be applied to all the embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

The invention is directed to a method and a device for providing higher performance imaging capture using a novel pattern of a color filter array that enables one to achieve higher sampling rate for luminance than for chrominance. A majority of the elements in the CFA are neutral elements. Gray scale images with high spatial resolution and high light sensitivity can be acquired from image samplings at these neutral elements. The remaining elements of the CFA are color filtered ones. Color elements cluster to form a repeating block pattern. Color images with low spatial resolution but low color artifacts can be acquired from image samplings at these color filter elements. The color images are transformed into a luminance-chrominance color space, and the luminance components are replaced with the gray scale images to regain high spatial resolution.

Description

COLOR FILTER ARRAY WITH NEUTRAL ELEMENTS AND COLOR IMAGE
FORMATION
FIELD OF INVENTION
The invention relates generally to the field of electronic photography, and in particular to electronic imaging apparatus having a single imaging sensor and a color filter array.
CROSS-RELATED APPLICATION
This application claims priority to China application Ser. No. 200610095151.5, which was filed on September 22, 2006, and US patent application Ser. No. 11/616,840 ΛΛColor filter array with neutral elements and color image formation" filed on December 27, 2006, which claims the benefit of priority to US provisional application
60/758,361 filed on January 12, 2006.
BACKGROUND OF INVENTION A color filter array (CFA) is a required component in single-chip color imaging devices. Its pattern, consisting of color filter elements, allows "color-blind" sensors such as Charge Coupled Devices (CCD) , complimentary metal oxide semiconductor (CMOS) and charge- injection device (CID) sensors to capture vivid full—color images. The most commonly adopted CFA pattern is the Bayer pattern as cited in U.S. patent 3,971,065 and incorporated herein by reference, which consists of 50% of green elements and 25% of elements for red and blue respectively.
In Bayer' s patent, the CFA was initially claimed to be comprised of one type of luminance element (Y) , and two types of chrominance elements (Cl and C2) . Such a pattern was employed based on the recognition of human visual system' s relatively greater ability to discern luminance detail. However, as the exact chrominance filters as required by Bayer have not yet been invented, green filters are commonly used to substitute for Y, red and blue filters for Cl and C2 respectively .
Some other patents (U.S. 4663661, 5374956, 6917381) have proposed CFA with more than 50% of green elements, attempting to achieve higher resolution in luminance. However, the green component is not exactly the same as the luminance component. For reddish and bluish scenes, the luminance estimation based only upon green elements would be far from the true value. In these cases, special CFAs may be favorable. For instance, a CFA comprising 50% red elements has been proposed for applications of imaging internal human body organs (U.S. 6,783,900 B2 ) , as these images are usually reddish.
Previous patents such as U.S. 5,323,233, 5,914,749, 6, 476, 865Bl and 6,714,243Bl disclosed CFA patterns wherein partial elements have no spectral selectivity to directly detect luminance. In patents U.S. 6476865B1, and 6714243B1, 25% of elements are neutral. In patents U.S. 5,323,233 and 5,914,749 incorporated herein by reference, the proportion of luminance elements is as high as 50%.
However, the 50% sampling rate of luminance is not necessarily the optimal design for. a human visual system. In image files saved in JPEG format, the most popular image format at present, more than 50% of data bits are for luminance. For example, the average amount of luminance data in high quality JPEG images is about 72%, and the number in low quality JPEG images is about 85% (G. Luo, ΛΛA novel color filter array with 75% transparent elements" Proceedings SPIE Vol. 6502, (Jan. 29, 2007), Appendix. In press). In other words, about 28% or 15% of data are of chrominance. The quality of JPEG images is not obviously attenuated when so little data bits are used for chrominance. There is a need therefore for a CFA pattern that may better match human visual system, popular image formats as well as address color artifacts that sparsely chrominance sampling may cause.
SUMMARY OF THE INVENTION
The present invention is directed to a method and a device for providing higher performances of image capturing and rendering than conventional methods and devices.
An object of the present invention is to provide CFA patterns that can achieve higher sampling rate for luminance than for chrominance. A majority of the CFA' s are neutral elements without color selectivity. These elements can be neutral density filters, which only reduce the intensity of light, or completely transparent, which do not cause light energy loss. Gray scale images with high spatial resolution and high light sensitivity can be acquired from image samplings at these neutral elements.
Another object of the invention is to provide CFA patterns that can yield low color artifacts in output images in spite of sparse sampling of chrominance. The remaining elements of the CFA other than neutral elements are color filtered ones. Color elements cluster to form a repeating block pattern, and each block includes several types of color filter elements that are necessary for calculation of at least one color pixel. Color images with low spatial resolution but low color artifacts can be acquired from image samplings at these color filter elements.
A further object of the invention is to provide a color image formation method to combine luminance and chrominance information. The gray scale images and the color images mentioned above are combined to form output images in a luminance—chrominance color space, such as CIE Lab or HSB (hue-saturation-brightness) . The process is to first transform the color images to one of the luminance—chrominance color spaces, e.g. Lab, and then to replace the luminance component (e.g. L component in the Lab model) with the gray scale images acquired from neutral elements.
Another object of the invention is to provide a color image capturing apparatus comprising CFA means, in which a majority, of the elements in the CFA are neutral elements without color selectivity, and the remaining elements of the CFA color filtered ones clustering to form a repeating block pattern.
A still further object of the invention is to provide a color image capturing apparatus comprising image formation means, in which the processing of gray scale images and color images is firstly separated, and then they are combined in a luminance-chrominance color space by replacing the luminance components of the color images with the gray—scale images. Preferred methods include application of interpolation schemes and algorithms to transform data into useful formats for subsequent processing, storage, transmission and rendering.
Preferred devices include CCD, CID and CMOS image sensor arrays that have a filter grid layered over sensing elements and integrated electronic elements for reading and processing information captured by the sensors.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1. The Bayer pattern, a prior art description of a CFA.
FIG. 2. One CFA embodiment of the present invention, in which 75% of elements are neutral (shown as blank cells) .
FIG. 3. Schematic illustration that describes the process of the image formation to combine luminance and chrominance information.
FIG. 4. Other embodiments of the present invention that comprise different proportions of neutral elements and additive primary color filter elements (red, green, and blue) .
FIG. 5. Some other embodiments of the present invention that comprise subtractive primary color filters, cyan, magenta, yellow, and green. FIG. 6. Other embodiments of the present invention that every other color filter block shifts either horizontally, vertically, or obliquely to ensure there are color filter elements in as many rows and columns as possible.
DETAILED DESCRIPTION OF THE INVENTION
The present invention is a device and method that addresses certain disadvantages of prior art for digital imaging devices that use a color filter array (CFA) . FIG. 1 shows the CFA pattern disclosed in U.S. Pat. 3,971,065 by Bayer. Unlike devices employing the Bayer pattern, the present invention collects and calculates real luminance and real chrominance information separately. Unlike the inventions disclosed in U.S. Patents 5323233 and 5914749, the present invention is directed to sampling luminance information with a majority (>50%) of image sensor elements, and to sampling chrominance information with a minority of image sensor elements.
The benefit of providing neutral elements between color elements is several—fold. It enhances the signal to noise ratio that is addressed in Bawolek et al . ' s patent (US 5914749) and Yamagami, et al . ' s patent (US 5323233) so that imaging apparatus with high light sensitivity can be made by adopting the invention. The present invention can also yield higher image resolution than U.S. patents 5,323,233, 5,914,749, 6,476,865Bl and 6,714,243Bl. Referring to FIG. 2, one CFA embodiment of the present invention is where neutral elements are inserted between color elements as represented by the blank cells. In this embodiment 75% of the elements of the CFA are neutral elements, which can be neutral density filters or completely transparent ones, and the remaining 25% of the elements are color filter elements .
The imaging sensor elements beneath the neutral filter elements directly detect luminance, working like those in black-and-white cameras. From these pixels, full-frame gray scale images can be acquired by means of interpolation. A portion of the data matrix acquired with the embodiment is shown as follows, in which the four missing luminance values (Xl to X4) need to be calculated using known values from peripheral pixels.
LIl L12 L13 L14
L21 Xl X2 L24
L31 X3 X4 L34
L41 L42 L43 L44
A simple interpolation method to estimate the luminance values at pixels of color filter elements is the linear interpolation.
X1=(L21+(L24-L21) /3 + L12+ (L42-L12) /3) /2 X2=(L21+(L24-L21) *2/3 + L13+ (L43-L13) /3 ) /2 X3=(L31+(L34-L31) /3 + L12+ (L42-L12) *2/3 ) /2 X4=(L31+(L34-L31) *2/3 + L13+ (L43-L13) *2/3 ) /2 In the CFA as shown in FIG. 2, red, green, and blue color filter elements are arranged, in a repeating block fashion. Each block is the same as the repeating 2-by-2 pattern in Bayer's CFA, i.e. two green filters in diagonal cells, and one red and one blue filter in an opposing diagonal direction. From these color filter elements, color images can be obtained by means of demosaic interpolation. A simple approach can be to first piece color filter blocks together to form a regular Bayer pattern, and then to use existing demosaic algorithms to calculate full color images. Examples of such algorithms and interpolation means are disclosed by Adams Jr. et al . in US Pat. 5,652,621 and in K. Hirakawa and T.W. Parks, "Adaptive homogeneity-directed demosaicing algorithm", IEEE Transactions on Image Processing, 14(3), pp. 360-369, 2005
The sizes of generated color images are normally smaller than those of the gray images mentioned above, but they can be easily resized to the same dimension. To combine the color images and the gray scale images, the color images, which are typically in RGB color space, it is preferable to transform the color images into a luminance-chrominance space, e.g. CIE 1976 Lab, YIQ, and HSB (hue- saturation—brightness) . Luminance—chrominance color models are one type of model that specifically provide values of lightness to describe colors, unlike the tri—stimuli color models such as Red— Green-Blue (RGB) or Cyan-Magenta-Yellow (CMY) . In the luminance- chrominance space, the luminance components (e.g. L component of Lab) of the color images are replaced by the gray scale images to result in new color images. Finally, they can be transformed to desired color spaces, e.g. RGB, and output. FIG. 3 schematically illustrates the process of the image formation described above, where panel L' represents the gray scale images acquired from neutral elements, multiple panels RGB represent the color images acquired from color filter elements, multiple panels Lab represent the color images in luminance—chrominance spaces, and multiple panels L'ab represent the output color images. This process can be applied to all the embodiments of the present invention as well as the embodiments of other inventions comprising neutral elements.
FIG. 4 illustrates some other embodiments of the present invention that comprise different proportions of neutral elements. Neutral elements make up 55% (5/9) of the CFA in FIG. 4a, 67% (6/9) in FIG. 4b, and 92% (33/36) in FIG. 4c. The remaining elements in the CFAs shown in FIG. 4 are red, green and blue color filters whose spectrum characteristics are the same as those used in the Bayer CFA.
Because the luminance and chrominance are sampled and calculated separately, the sampling rate of luminance between 55% and 92% can be easily designed to suit different applications by configuring the repeating period of color filter block. For example, the repeating period is 3 pixels in FIG 4b, 4 pixels in FIG.2, and 6 pixels in FIG. 4c both horizontally and vertically. To achieve different chrominance sampling rates for horizontal and vertical directions, the repeating periods in the two directions can be different. The higher the luminance sampling rate is, the higher light sensitivity, but the worse the color distortion. CFA with more than 92% of luminance sampling rate will result in too coarse a sampling of chrominance to be useful.
Not only by repeating the period, the sampling rate of luminance can be varied also by configuring whether each color filter block includes three or four color filter elements. For instance, in CFAs shown in FIG. 2and FIG 4a, each color filter block includes four color filter elements: two green filters in diagonal cells, and one red and one blue filters in an opposing diagonal direction. In CFAs shown in FIG. 4b and FIG. 4c, each color filter block includes three color filter elements. For these CFAs, a simple demosaicing method can be employed; namely, a nearest neighbor algorithm. This method computes the values for each "color" pixel using the three values from the surrounding pixels in the same one block.
FIG. 5 illustrates some other embodiments of the present invention that comprise subtractive primary color filters, cyan (C) , magenta (M) , and yellow (Y) . The configuration of neutral elements of these CFAs is the same as that for CFAs comprising RGB filters, but the color filters are mainly CMY instead. FIG. 5 shows two CFAs in which the luminance sampling rates are 67% (6/9) as in FIG. 5a and 75% (12/16) as in FIG. 5b, respectively. As in the RGB type of aforementioned CFAs, the CMY type of CFAs of the present invention can be configured with different luminance sampling rates ranging from 56% to 92%. CFAs comprised of CMY filters have been used in some digital cameras, for example, the Kodak DCS620X. To improve color fidelity, a green filter element can be used in each color filter block, as shown in FIG 5b. FIG. 6 illustrates some other embodiments of the present invention that every other color filter block (circled by dashed lines) shifts either horizontally, vertically, or obliquely a certain amount to ensure there are color filter elements in as many rows and columns as possible. For instance, in the CFA shown in FIG. 2, every third and fourth rows and every third and fourth columns are all neutral elements. Obtaining chrominance information in these rows and columns may be favorable. FIG. 6a illustrates a variation of the CFA shown in FIG. 2, in which the color filter block in every other fifth and sixth rows shift two elements to the right so that there are color filter elements in every column of the CFA. Similarly, FIG. 6b illustrates a variation, of the CFA shown in. FIG. 5af in which the color filter block in every other fourth and fifth columns shift one element down so that there are color filter elements in every row and column of the CFA. FIG 6c, illustrates a variation of the CFA shown in Fig. 2, in which the filter blocks circled by dashed line shift obliquely to south-west. The shift configuration can be applied to all the embodiments of the present invention.
A number of embodiments of the invention have been described. Nevertheless, it shall be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims .

Claims

CLAIMSI claim
1. An image sensing device having an array of image sensors and. a color filter structure disposed in relation to the image sensors, the filter structure comprised of a plurality of neutral filter elements for passing a luminance component of an image; and color filter elements for passing color components of the image, wherein said color filter array has 55% to 92% of its elements comprised of neutral filter elements and the remaining elements comprising at least three types of color filter elements for passing the color components of the image.
2. The color filter array claimed in claim 1, wherein the color filter elements occur in repeating block patterns such that each block comprises at least three types of color filter elements.
3. A color filter array according to claim 1, wherein said three color components comprise red, green, and blue components of the image, respectively.
4. A color filter array according to claim 1, wherein said three color components comprise cyan, yellow, and magenta components of the image, respectively.
5. A color filter array according to claim 1, wherein a fourth type of color filter elements for passing green component of the image are used along with cyan, yellow and magenta elements.
6. A color filter array according to claim 2, wherein said, blocks may be shifted by one or more columns from adjacent blocks.
7. A color filter array according to claim 2, wherein said blocks may be shifted by one or more rows from adjacent blocks.
8. The image sensing device of claim 1 further comprising electronic components for sampling and storing values from photo sensitive elements of an array for conversion to digital form and enabling subsequent calculations to be made for approximating luminance and chrominance values .
9. The image sensing device of claim 8 further comprising a means for outputting such luminance and chrominance values in a form compatible with prevailing imaging standards .
10. The image sensing device of claim 8 is incorporated into digital imaging devices such as a still image camera, video camera, scanner or the like.
11. A method of forming a color image, comprising the steps of: a) providing an image sensing device having an array of light-sensitive elements in juxtaposition with a color filter array having varying filter properties, which includes a plurality of elements sensitive to a spectral region corresponding to luminance; and remaining elements sensitive to color components of the image; b) employing the image sensing device to produce a sampled image; c) calculating the missing luminance pixel values in the sampled image to generate a complete gray scale image; d) calculating the missing color pixel values in the sampled image to generate a full color image having red, green and blue pixel values; and e) resizing the color image to be the same size of the gray scale image.
12. The method of claim 11 further comprising a means for transforming the color image to a luminance—chrominance color space, preferably CIE Lab; replacing the luminance component of the color image with the gray scale image; and transforming the color image to a desired color space if needed.
13. The method of claim 11, wherein the color filter elements occur in blocks of repeating patterns such that each block comprises at least three types of color filter elements.
14. The method claimed in claim 11, wherein the calculating and resizing steps are performed in a camera comprising the image sensing device.
15. An image sensing device having an array of image sensors in juxtaposition with a color filter array having varying filter properties which is integrated into a semi-conductor device that is connected to a second semiconductor device that carries out certain computations and outputs to viewers, storage devices, and the like wherein the filter array is further comprised of neutral filter elements sensitive to a spectral region corresponding to luminance of light, and blocks of filter elements that selectively pass at least three different spectral qualities of light sufficient to reconstruct full color images.
16. The device of claim 15 wherein the three different spectral qualities represent bandwidths suitable for red, blue and green.
17. The device of claim 15 wherein the three different spectral qualities represent outputs for cyan, magenta and yellow.
18. The device of claim 15 wherein certain computations include algorithms for interpolation of colors based upon values at a particular pixel being averaged with values from, nearest neighbors pixels .
PCT/US2007/060427 2006-01-12 2007-01-11 Color filter array with neutral elements and color image formation WO2007082289A2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US75836106P 2006-01-12 2006-01-12
US60/758,361 2006-01-12
CN200610095151.5 2006-09-22
CN2006100951515A CN101150731B (en) 2006-09-22 2006-09-22 Color filtering array for digital imaging and its imaging method
US11/616,840 US20070159542A1 (en) 2006-01-12 2006-12-27 Color filter array with neutral elements and color image formation
US11/616,840 2006-12-27

Publications (2)

Publication Number Publication Date
WO2007082289A2 true WO2007082289A2 (en) 2007-07-19
WO2007082289A3 WO2007082289A3 (en) 2008-02-14

Family

ID=38257131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/060427 WO2007082289A2 (en) 2006-01-12 2007-01-11 Color filter array with neutral elements and color image formation

Country Status (1)

Country Link
WO (1) WO2007082289A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2173104A1 (en) * 2007-08-03 2010-04-07 Panasonic Corporation Image data generating apparatus, method, and program
US20120106840A1 (en) * 2010-10-28 2012-05-03 Amit Singhal Combining images captured with different color patterns
US20120188409A1 (en) * 2011-01-24 2012-07-26 Andrew Charles Gallagher Camera with multiple color sensors
JP2013224922A (en) * 2012-03-21 2013-10-31 Ricoh Co Ltd Multi-lens camera apparatus and vehicle including the same
CN104394391A (en) * 2014-11-25 2015-03-04 广东威创视讯科技股份有限公司 Method and system for processing image data of dot matrix images acquired by camera
WO2018183206A1 (en) * 2017-03-26 2018-10-04 Apple, Inc. Enhancing spatial resolution in a stereo camera imaging system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6476865B1 (en) * 2001-03-07 2002-11-05 Eastman Kodak Company Sparsely sampled image sensing device with color and luminance photosites
US6771243B2 (en) * 2001-01-22 2004-08-03 Matsushita Electric Industrial Co., Ltd. Display device and method for driving the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6771243B2 (en) * 2001-01-22 2004-08-03 Matsushita Electric Industrial Co., Ltd. Display device and method for driving the same
US6476865B1 (en) * 2001-03-07 2002-11-05 Eastman Kodak Company Sparsely sampled image sensing device with color and luminance photosites

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2173104A1 (en) * 2007-08-03 2010-04-07 Panasonic Corporation Image data generating apparatus, method, and program
EP2173104A4 (en) * 2007-08-03 2012-02-08 Panasonic Corp Image data generating apparatus, method, and program
US20120106840A1 (en) * 2010-10-28 2012-05-03 Amit Singhal Combining images captured with different color patterns
US20120188409A1 (en) * 2011-01-24 2012-07-26 Andrew Charles Gallagher Camera with multiple color sensors
JP2013224922A (en) * 2012-03-21 2013-10-31 Ricoh Co Ltd Multi-lens camera apparatus and vehicle including the same
CN104394391A (en) * 2014-11-25 2015-03-04 广东威创视讯科技股份有限公司 Method and system for processing image data of dot matrix images acquired by camera
WO2018183206A1 (en) * 2017-03-26 2018-10-04 Apple, Inc. Enhancing spatial resolution in a stereo camera imaging system
US10531067B2 (en) 2017-03-26 2020-01-07 Apple Inc. Enhancing spatial resolution in a stereo camera imaging system

Also Published As

Publication number Publication date
WO2007082289A3 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
US20070159542A1 (en) Color filter array with neutral elements and color image formation
EP3054675B1 (en) Imaging systems with clear filter pixels
US10136107B2 (en) Imaging systems with visible light sensitive pixels and infrared light sensitive pixels
JP5106870B2 (en) Solid-state image sensor
US7400332B2 (en) Hexagonal color pixel structure with white pixels
US11632525B2 (en) Image processing method and filter array including wideband filter elements and narrowband filter elements
US9025871B2 (en) Image processing apparatus and method of providing high sensitive color images
US6781626B1 (en) System and method of color interpolation
TWI386049B (en) A solid-state imaging device, and a device using the solid-state imaging device
US7072509B2 (en) Electronic image color plane reconstruction
US8248496B2 (en) Image processing apparatus, image processing method, and image sensor
JP2023025085A (en) Camera image processing method and camera
US20060050956A1 (en) Signal processing apparatus, signal processing method, and signal processing program
WO2006080220A1 (en) Imaging device and imaging element
US20030063185A1 (en) Three-dimensional imaging with complementary color filter arrays
CN104412581B (en) Color image sensor and camera head
US20150109491A1 (en) Color imaging element and imaging device
WO2007082289A2 (en) Color filter array with neutral elements and color image formation
KR20210018136A (en) Method and apparatus for image processing
US20110142331A1 (en) System and method of color interpolation
US20130038772A1 (en) Image processing apparatus and image processing method
Luo A novel color filter array with 75% transparent elements
Singh et al. Double Binnable RGB, RGBW and LMS Color Filter Arrays
TWI617198B (en) Imaging systems with clear filter pixels
WO2022185345A2 (en) Optimal color filter array and a demosaicing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07710077

Country of ref document: EP

Kind code of ref document: A2