WO2007080856A1 - Metallic material having excellent metal dusting resistance - Google Patents

Metallic material having excellent metal dusting resistance Download PDF

Info

Publication number
WO2007080856A1
WO2007080856A1 PCT/JP2007/050101 JP2007050101W WO2007080856A1 WO 2007080856 A1 WO2007080856 A1 WO 2007080856A1 JP 2007050101 W JP2007050101 W JP 2007050101W WO 2007080856 A1 WO2007080856 A1 WO 2007080856A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
metal
content
metal material
mass
Prior art date
Application number
PCT/JP2007/050101
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshitaka Nishiyama
Nobuo Otsuka
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006003481A external-priority patent/JP4687467B2/en
Priority claimed from JP2006003479A external-priority patent/JP4692289B2/en
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to DK07706448.3T priority Critical patent/DK1975267T3/en
Priority to CN2007800023001A priority patent/CN101370951B/en
Priority to CA002636624A priority patent/CA2636624A1/en
Priority to EP07706448.3A priority patent/EP1975267B1/en
Publication of WO2007080856A1 publication Critical patent/WO2007080856A1/en
Priority to US12/216,790 priority patent/US20080279716A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/06Making machine elements axles or shafts
    • B21K1/063Making machine elements axles or shafts hollow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/06Making machine elements axles or shafts
    • B21K1/10Making machine elements axles or shafts of cylindrical form
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal

Definitions

  • the present invention has a high temperature strength and excellent corrosion resistance, and is particularly decomposed in metal materials used in a carburizing gas atmosphere containing hydrocarbon gas, CO gas, etc., particularly in petroleum refining and petrochemical plants.
  • the present invention relates to a metal material having excellent metal dusting resistance suitable as a material for a furnace, a reforming furnace, a heating furnace or a heat exchanger.
  • the synthesis gas produced in the reactor as described above that is, H, CO, CO, H
  • Gas containing hydrocarbons such as O and methane must be mixed with metal materials such as reaction tubes and 1000 ° C
  • Corrosion is suppressed by selective oxidation of elements such as Cr and Si, which tend to oxidize more than Fe and Ni, and by forming dense films such as Cr and Si oxide.
  • elements such as Cr and Si, which tend to oxidize more than Fe and Ni, and by forming dense films such as Cr and Si oxide.
  • the diffusion of elements from the inside of the metal material to the surface becomes insufficient, so that the formation of an oxide film having a corrosion inhibiting effect is delayed.
  • the surface force c of the metal material enters and carburization occurs.
  • Patent Document 1 includes an atmosphere gas at 400 to 700 ° C containing H, CO, CO, and H 2 O.
  • Fe-base alloys or Ni-base alloys containing 11-60% Cr have been proposed for resistance to metal dusting in the steel.
  • Fe-based alloys containing 24% or more of Cr and 35% or more of Ni Ni-based alloys containing 20% or more of Cr and 60% or more of Ni, and alloy materials obtained by further adding Nb to these alloys
  • the invention is shown to be superior.
  • just increasing the Cr or Ni content of the Fe-based alloy or Ni-based alloy does not provide a sufficient carburizing suppression effect, and a metal material with even higher metal dusting resistance is required.
  • Patent Document 2 is based on the elements VIII, IB, IV of the periodic table of elements against corrosion due to metal dusting of high-temperature alloys containing iron, nickel, and chromium.
  • One or more metals from Group V and Group V and mixtures thereof are deposited on the surface by conventional physical or chemical means and annealed in an inert atmosphere to give: 0.01-: L0 ⁇
  • this method is effective in the initial stage, there is a possibility that the thin layer peels off due to long-term use and the effect is lost.
  • Patent Document 3 describes gold in an atmosphere gas of 400 to 700 ° C containing H, CO, CO, and H 2 O.
  • Patent Document 4 low Si-based 25Cr-20Ni (HK40) heat-resisting steel and low Si-based 25Cr-35Ni heat-resisting steel are used at a temperature near 1000 ° C for 100 hours or more.
  • a method for performing atmospheric pre-oxidation is disclosed, and Patent Document 6 discloses a method for performing atmospheric preliminary oxidation on an austenitic heat-resistant steel containing 20 to 35% Cr.
  • Patent Document 7 proposes a method for improving carburization resistance by heating a high Ni—Cr alloy in a vacuum to form a scale film.
  • Patent Document 8 proposes a method for improving carburization resistance by forming a concentrated layer of Si or Cr by surface treatment.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-178204
  • Patent Document 2 JP 11-172473 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-73763
  • Patent Document 4 Japanese Patent Laid-Open No. 53-66832
  • Patent Document 5 JP-A-53-66835
  • Patent Document 6 Japanese Unexamined Patent Publication No. 57-43989
  • Patent Document 7 JP-A-11-29776
  • Patent Document 8 Special Table 2000-509105
  • the present invention has been made in view of the above-described situation, and its purpose is to suppress the surface reaction between carburizing gas and metal in a cracking furnace tube or reforming furnace tube for an ethylene plant, It is to provide a metal material having excellent metal dusting resistance.
  • the penetration of C into the metal material can be achieved by adding elements that form stable carbides in metal materials such as Ti, Nb, V, and Mo. It is possible to suppress the penetration rate of C and thereby suppress the growth of the carburized layer formed inside the acid rind film.
  • P, S, Sb, and Bi are elements that segregate at the grain boundaries of the metal structure, so segregation at the metal surface is also expected, so the surface reaction between the carburizing gas and the metal. Is expected to be efficiently controlled. Therefore, it is considered unnecessary to add P, S, Sb and Bi, especially in excess.
  • a protective oxide scale on the metal surface In addition to a method of increasing the metal dust resistance of a metal material by including one or more of P, Sb and Bi as an alloy component, a protective oxide scale on the metal surface.
  • a conventional method such as forming a thin layer by surface treatment to increase the protective property of the oxide film, or including an element with strong affinity for oxygen such as Si or A1, It is possible to increase the resistance to metal dusting and to increase carburization resistance and coking resistance.
  • the present invention has been completed based on these findings, and the gist thereof is as shown in the following (1) to (3).
  • the present invention (1) to the present invention (3) respectively.
  • the present invention is sometimes referred to.
  • a metal material with excellent metal dusting resistance characterized by the fact that [0034] (2) The metal material having excellent metal dusting resistance according to the above (1), wherein the metal material further contains Nd: 0.OOl-O. 15% by mass%.
  • Second group % by mass, Mo: 3% or less and W: 6% or less,
  • the metal material of the present invention has an effect of suppressing the surface reaction between the carburizing gas and the metal, and is excellent in metal dusting resistance. Therefore, the metal material is decomposed in petroleum refining or petrochemical plants. It can be used for materials such as furnaces, reforming furnaces, heating furnaces, heat exchangers, etc., and the durability of the equipment can greatly improve the operation efficiency.
  • the reason for limiting the composition range of the metal material is as follows.
  • the “%” display of the content of each element means “mass%”.
  • C needs to be contained in an amount of 0.01% in order to ensure high temperature strength. However, if it exceeds 0.4%, the toughness of the alloy becomes extremely poor, so the upper limit is made 0.4%. Preferably, it is 0.03 to 0.35%, and a more preferable range is 0.03-0.3%.
  • a Si-based oxide scale is formed in the lower layer of Cr 2 O, and carburizing gas is formed.
  • Mn is necessary for deoxidation and improvement of strength, and in order to obtain such an effect, it is necessary to contain 0.01% or more.
  • Mn is an austenite-generating element, and it is possible to replace part of Ni with Mn.
  • the excessive content of Mn hinders the carburizing gas barrier performance of the protective oxide scale layer, so the upper limit is set to 2.5%.
  • a preferable range of the Mn content is 0.1 to 2%.
  • Cr has the effect of stably forming an oxide scale such as Cr 2 O and blocking carburizing gas
  • Ni is an element necessary for obtaining a stable austenite structure depending on the Cr content. Also, when C enters steel, it has a function to reduce the intrusion rate. In addition, it serves to ensure the high temperature strength of the metal structure. However, excessive content causes high cost and manufacturing difficulty, so 20-65% content is appropriate. Preferably it is 25 to 65%, more preferably 28 to 50%.
  • Cu is one of the important elements in the present invention.
  • Cu suppresses the reaction between the carburizing gas and the metal surface and greatly improves the metal dusting resistance. Also, since it is an austenite-producing element, it is possible to replace part of Ni with Cu. In order to exert the effect of improving the metal dusting resistance, it is necessary to contain 0.05% or more. However, if the content exceeds 20%, the weldability is remarkably lowered, so the upper limit of the content is made 20%. The preferred content is 0.2 to 15%. Further preferable content is 0.5 to 10%. [0044] S: 0.1% or less
  • the upper limit of the S content is preferably set to 0.015%.
  • the upper limit of the S content needs to be 0.1%, and when the catalyst is used in the plant, the upper limit of the S content is set to 0.015%. Therefore, the effect of suppressing the reaction between the carburizing gas and the metal may be insufficient with S alone. Therefore, in order to reliably obtain the effect of suppressing the reaction between the carburizing gas and the metal, it is necessary to contain one or more of P, Sb and Bi as described later.
  • N 0.25% or less
  • N may not be contained. If contained, it has the effect of increasing the high-temperature strength of the metal material. However, if its content exceeds 0.25%, the workability is greatly inhibited. Therefore, the upper limit for the N content is 0.25%. A preferred upper limit is 0.2%. In order to obtain the effect of increasing the high temperature strength of the metal material, it is preferable to contain 0.001% or more.
  • o oxygen
  • oxygen is an impurity element that is mixed into the raw material when melting a metal material. If a large amount of oxide inclusions are present in the steel, it is a metal that only deteriorates workability. Since it causes wrinkles on the material surface, it is desirable to reduce as much as possible. In the present invention Therefore, the allowable content is up to 0.02%.
  • P is the most important element in the present invention. All of these elements have a function of suppressing the reaction between the carburizing gas and the metal. These elements are effective even if only one kind is contained, and even if more than two kinds are contained.
  • the P content needs to exceed 0.05%. However, if excessively contained, hot workability and weldability are significantly impaired, so the upper limit of the P content must be 0.3%.
  • the preferable P content is 0.06-0.25%, and the more preferable P content. 085 to 0.2%.
  • Sb along with P and Bi, is the most important element in the present invention. All of these elements have a function of suppressing the reaction between the carburizing gas and the metal. These elements are effective even if only one kind is contained, and even if more than two kinds are contained.
  • the Sb content needs to be 0.001% or more. However, if excessively contained, the hot workability and weldability are significantly impaired, so the upper limit of the Sb content must be 1%.
  • the preferred Sb content is 0.005-0. 8%, and the more preferred Sb content is 0.01-0.7%.
  • Bi along with P and Sb, is the most important element in the present invention. All of these elements have a function of suppressing the reaction between the carburizing gas and the metal. These elements are effective even if only one kind is contained, and even if more than two kinds are contained.
  • the Bi content needs to be 0.001% or more. However, if excessively contained, the hot workability and weldability are significantly impaired, so the upper limit of the Bi content must be 0.5%.
  • the preferred Bi content is 0.005-0.3%, and the more preferred Sb content is 0.01-0.2%.
  • the above has described the present invention (1) relating to a metal material having improved metal dusting resistance by containing one or more of P, Sb and Bi as an alloy component.
  • the metal dusting resistance of the present invention (1) is maintained.
  • the present invention (2) relating to a metal material having improved workability, particularly hot workability, will be described.
  • the present invention (2) is a metal material excellent in metal dusting resistance, characterized by further imparting workability by containing Nd as follows.
  • Nd 0.001 to 0.15%
  • Nd is an optional element added at the time of securing the workability of the metal material having excellent metal dusting resistance.
  • P in order to greatly improve the metal dusting resistance, P: more than 0.05% and 0.3% or less, Sb: 0.001 to 1% and Bi: 0.001 to 0.5
  • the force Nd required to contain one or more of N% has the effect of suppressing the deterioration of hot workability caused by the inclusion of these elements, or further the inclusion of S.
  • Nd content of 0.001% or more is required.
  • the upper limit of the Nd content needs to be 0.15%.
  • the Nd content is preferably 0.005 to 0.12%, more preferably 0.01 to 0.10%.
  • the metal material defined in the present invention (1) or the present invention (2) includes at least one of the following first to sixth groups of grapes.
  • a metal material excellent in metal dusting resistance characterized by further containing at least one component selected from the group consisting of:
  • Second group % by mass, Mo: 3% or less and W: 6% or less,
  • Co has an effect of stabilizing the austenite phase
  • a part of the Ni component can be substituted, so it may be contained as necessary.
  • the content exceeds 10%, the hot workability deteriorates. Therefore, when Co is contained, the content is 10% or less. From the viewpoint of hot workability, a preferred range is 0.01 to 5%, and a more preferred range is 0.01 to 3%.
  • Second group (mass%, Mo: 3% or less, W: 6% or less)
  • Mo and W are both solid solution strengthening elements, either one or both of them may be contained as required. However, when Mo is contained, if its content exceeds 3%, the strength is reduced and the tissue stability is inhibited. Therefore, when Mo is contained, its content is 3% or less. To do.
  • the Mo content is preferably 0.01 to 2.5%.
  • W when W is included, if the content exceeds 6%, the workability is deteriorated and the tissue stability is inhibited. Therefore, when W is included, the content should be 6% or less.
  • the W content is preferably 0.01 to 2.5%.
  • Ti and Nb have the action of improving the high temperature strength and ductility and toughness with a very small amount of V shear, and when P, S or Bi coexist, it has the effect of improving the creep strength. Either one or both may be contained as necessary. However, when Ti is contained, if its content exceeds 1%, workability and weldability are deteriorated. Therefore, when Ti is contained, its content should be 1% or less. The Ti content is preferably 0.01 to 1%. In addition, when Nb is contained, if the content exceeds 2%, the caloric workability and weldability are deteriorated. Therefore, when Nb is contained, the content should be 2% or less. The Nb content is preferably 0.01-2%.
  • B, Zr, and Hf all have the effect of strengthening grain boundaries and improving hot workability and high-temperature strength characteristics. Therefore, one or more of these may be contained as necessary. Good. However, when B is included, if its content exceeds 0.1%, weldability is improved. Therefore, if B is included, its content should be 0.1% or less. The B content is preferably 0.001-0. 1%. In addition, when Zr is included, if its content exceeds 1.2%, weldability deteriorates. Therefore, when Zr is included, its content should be 1.2% or less. The Zr content is preferably 0.0001-1. 0%. When Hf is included, if the content exceeds 0.5%, weldability deteriorates. Therefore, when Hf is included, the content should be 0.5% or less. The Hf content is preferably 0.001 to 0.5%.
  • Group 5 (mass%, Mg: 0.1% or less, Ca: 0.1% or less, A1: 0.8% or less)
  • Mg, Ca, and A1 all have an effect of improving hot workability, one or more of these may be contained as necessary. However, when Mg is contained, if its content exceeds 0.1%, weldability is deteriorated. Therefore, when Mg is contained, its content should be 0.1% or less.
  • the Mg content is preferably 0.0005-0. 1%.
  • Ca when Ca is contained, if its content exceeds 0.1%, weldability is deteriorated. Therefore, when Ca is contained, its content should be 0.1% or less.
  • the Ca content is preferably 0.0005-0. 1%.
  • A1 the weldability deteriorates when its content exceeds 0.8%. Therefore, when A1 is contained, its content should be 0.8% or less.
  • the A1 content is preferably 0.001-0. 8%.
  • Group 6 (mass%, Y: 0.15% or less, La: 0.15% or less, Ce: 0.15% or less)
  • Y, La, and Ce all have an action of improving acid resistance, one or more of them may be contained as necessary. However, when these elements are contained, the strength decreases when the content exceeds 0.15%. Therefore, when they are contained, the content is 0.15% or less. To do. Preferably it is 0.0005-0.15%.
  • the metal material according to the present invention contains, in particular, hydrocarbons and carbon monoxide alone or in total of 1 vol% or more, and hydrocarbons, carbon monoxide and hydrogen alone or in total of 25 vol% or more, and 1000 Excellent metal dusting resistance in atmospheres below ° C. For this reason, if this welded joint is applied to a member such as a reaction tube or a peripheral device in a heat exchange type hydrocarbon reformer or waste heat recovery device for petroleum refining, the welding workability and durability of the device will be improved. And safety can be greatly improved.
  • the metal material according to the present invention is made of necessary materials such as thick plates, thin plates, seamless tubes, welded tubes, forged products, wire rods, etc. by means of melting, forging, hot working, cold working, welding and the like. Can be formed into a shape. Further, it can be formed into a required shape by a technique such as powder metallurgy or centrifugal forging. Surface treatments such as pickling, shot blasting, shot peening, machine cutting, grinder polishing, and electrolytic polishing can also be applied to the surface of the metal material after the final heat treatment. In addition, the metal material according to the present invention can be formed into an irregular shape having one or more protrusion shapes on the surface.
  • the metal material according to the present invention can be combined with various carbon steels, stainless steels, Ni-base alloys, Co-base alloys, Cu alloys, etc., to form a multi-layer or composite material, the shape after molding is also possible.
  • the joining method of the metal material according to the present invention and various steels or alloys for example, a shape subjected to mechanical joining such as pressure welding or “caulking”, or thermal joining such as welding or diffusion treatment. It is also possible.
  • a metal material having the chemical composition shown in Table 1 and Table 2 is melted using a high-frequency heating vacuum furnace, a billet is formed, the billet is hot forged and cold-rolled, and the outer diameter is 56 mm.
  • a steel pipe with a thickness of 6 mm was produced.
  • the steel pipe was subjected to solution heat treatment under the conditions shown below, and a part of the steel pipe was cut to produce a test piece.
  • the solution heat treatment was performed under the conditions of 1160-1230 ° CZ10 min.
  • some of the invention steels were made into clad steel by press-contacting with alloy 800H alloy, and test specimens were produced in the same manner.
  • Test pieces having a width of 15 mm and a length of 20 mm were cut from the metal materials shown in Tables 1 and 2.
  • the metal materials with test numbers 21 to 24 whose chemical compositions deviate from the conditions specified in the present invention have a short pitting time (pit) of 500 hours or less, and are resistant to metal dusting. Inferior.
  • the metal materials with test numbers 1 to 20 and 25 to 44 which are relevant to the present invention, have a pitting time (pit) generation time of 1000 hours or more. Excellent in metal dusting resistance.
  • a metal material having the chemical composition shown in Table 5 was melted using a high-frequency heating vacuum furnace to form a billet, and the billet was hot forged and cold-rolled to obtain a steel plate having a thickness of 12 mm.
  • the steel plate was subjected to solid solution heat treatment under the conditions shown below, and a test piece was produced by cutting a part of the steel plate.
  • the solution heat treatment was performed under the conditions of 1160-1230 ° CZ10 min.
  • Test steel Nos. 45 to 58 are steels of the present invention, and test steel Nos. 59 to 61 are comparative steels.
  • test piece having a width of 15 mm and a length of 20 mm was cut out from the metal material shown in Table 5.
  • test piece a volume 0/0, 60% CO- 26 % H -. 11. 5% CO-2 for 5% HO gas
  • the metal materials with test numbers 45 to 58 that are relevant to the present invention have a drawing ratio at 900 ° C of 60% or more, satisfying hot workability, Pitting (pit) departure
  • the birth time is 1000 hours or more, and the metal dusting resistance is excellent.
  • the metal materials with test numbers 59 and 60 whose chemical composition deviates from the conditional force defined in the present invention had a pitting time (pit) generation time of 1000 hours or more. Excellent strength in metal dusting resistance The drawing rate at 900 ° C is less than 60%, which is inferior in hot workability.
  • the metal composition of Test No. 61 whose chemical composition also deviates from the conditional force specified in the present invention is superior in hot workability and has poor metal dusting resistance with a short pit occurrence time of 200 hours.
  • the metal material of the present invention has an effect of suppressing the surface reaction between the carburizing gas and the metal, and is excellent in metal dusting resistance. It can be used for materials such as furnaces, reforming furnaces, heating furnaces, and heat exchangers, and the durability of the equipment can greatly improve the operation efficiency.

Abstract

[PROBLEMS] To provide a metallic material which has excellent metal dusting resistance and is suitable as a material for use in a cracking furnace, a reforming furnace, a heating furnace, a heat exchanger or the like in a petroleum refining or petrochemical plant. [MEANS FOR SOLVING PROBLEMS] Disclosed is a metallic material having excellent metal dusting resistance, wherein the metallic material has the following chemical composition (by mass): C: 0.01-0.4%; Si: 0.01-2.5%; Mn: 0.01-2.5%; Cr: 15-35%; Ni: 20-65%; Cu: 0.05-20%; S: 0.1% or less; N: 0.25% or less; O (oxygen): 0.02% or less; and one or more elements selected from P in an amount of more than 0.05% and not more than 0.3%, Sb in an amount of 0.001-1% and Bi in an amount of 0.001-0.5%; with the remainder being Fe and impurities. The metallic material may additionally comprise one or more elements selected from the following elements: Nd: 0.001-0.15%; Co: 10% or less; Mo: 3% or less; W: 6% or less; Ti: 1% or less; Nb: 2% or less; B: 0.1% or less; Zr: 1.2% or less; Hf: 0.5% or less; Mg: 0.1% or less; Ca: 0.1% or less; Al: 0.8% or less; Y: 0.15% or less; La: 0.15% or less; and Ce: 0.15% or less.

Description

明 細 書  Specification
耐メタルダステイング性に優れた金属材料  Metal material with excellent metal dusting resistance
技術分野  Technical field
[0001] 本発明は、高温強度が高ぐ耐食性に優れ、特に炭化水素ガスや COガスなどを含 有する浸炭性ガス雰囲気で使用される金属材料、特に、石油精製や石油化学プラン トなどにおける分解炉ゃ改質炉、加熱炉もしくは熱交^^などの素材として好適な耐 メタルダステイング性に優れた金属材料に関する。  [0001] The present invention has a high temperature strength and excellent corrosion resistance, and is particularly decomposed in metal materials used in a carburizing gas atmosphere containing hydrocarbon gas, CO gas, etc., particularly in petroleum refining and petrochemical plants. The present invention relates to a metal material having excellent metal dusting resistance suitable as a material for a furnace, a reforming furnace, a heating furnace or a heat exchanger.
背景技術  Background art
[0002] 水素、メタノール、 GTL(Gas to Liquids)や DME (ジメチルエーテル)と 、つたタリー ンエネルギーの燃料は、今後の大幅な需要増が予想される。したがって、このような 合成ガスを製造するための改質装置は大型化し、より一層熱効率が高く量産に適し た装置が要求される。また、従来の石油精製や石油化学プラントなどにおける改質装 置、あるいは石油などを原料とするアンモニア製造装置、水素製造装置などにおい ても、よりエネルギー効率を高めるために、排熱回収のための熱交換が多用されるよ うになつてきている。  [0002] Hydrogen, methanol, GTL (Gas to Liquids) and DME (dimethyl ether) and other fuels from Taylen Energy are expected to see significant increases in the future. Therefore, the reformer for producing such synthesis gas is increased in size, and an apparatus with higher thermal efficiency and suitable for mass production is required. In addition, reforming equipment in conventional oil refining and petrochemical plants, ammonia production equipment that uses petroleum as a raw material, hydrogen production equipment, etc. can also be used to recover exhaust heat in order to increase energy efficiency. Heat exchange is becoming increasingly used.
[0003] このような高温ガスの熱を有効活用するためには、従来対象とされてきたよりも低い 、 400〜700°Cの温度域における熱交換が重要となってきており、この温度域におい て反応管や熱交換器等に使用する高 Cr—高 Ni— Fe合金系金属材料の浸炭現象 に伴う腐食が問題となっている。  [0003] In order to effectively utilize the heat of such a high-temperature gas, heat exchange in a temperature range of 400 to 700 ° C, which is lower than the conventional target, has become important. Corrosion due to carburization of high Cr-high Ni-Fe alloy metal materials used in reaction tubes and heat exchangers is a problem.
[0004] 通常、上述のような反応装置にて製造される合成ガス、すなわち H、 CO、 CO、 H  [0004] Usually, the synthesis gas produced in the reactor as described above, that is, H, CO, CO, H
2 2 twenty two
Oおよびメタンなどの炭化水素を含むガスは、反応管などの金属材料と 1000°C前Gas containing hydrocarbons such as O and methane must be mixed with metal materials such as reaction tubes and 1000 ° C
2 2
後な 、しはそれ以上の温度で接して 、る。この温度域にぉ 、て金属材料の表面では After that, it will come in contact at higher temperatures. In this temperature range, the surface of the metal material
、 Feや Niなどよりも酸化傾向の大きい Crや Siなどの元素が選択的に酸化され、酸化 Crや酸化 Siなどの緻密な皮膜が形成されることによって、腐食が抑止される。ところ 力 熱交換部分など相対的に温度の低い部分においては、金属材料の内部から表 面への元素の拡散が不十分となるために腐食抑止効果のある酸化皮膜の形成が遅 れることに加え、このような炭化水素を含む組成のガスは浸炭性へと変化するために 金属材料表面力 cが浸入して浸炭が生じてくる。 Corrosion is suppressed by selective oxidation of elements such as Cr and Si, which tend to oxidize more than Fe and Ni, and by forming dense films such as Cr and Si oxide. However, in parts where the temperature is relatively low, such as the force heat exchange part, the diffusion of elements from the inside of the metal material to the surface becomes insufficient, so that the formation of an oxide film having a corrosion inhibiting effect is delayed. In order to change the gas containing such hydrocarbons to carburizing The surface force c of the metal material enters and carburization occurs.
[0005] エチレン分解炉管等においては、浸炭が進み Crや Feなどの炭化物力もなる浸炭 層が形成されるとその部分の体積が膨張する。その結果、微細な割れが生じやすく なり、最悪の場合には使用中の鋼管が破断する。また、金属表面が露出すると、表面 で金属を触媒とした炭素析出(コーキング)が発生し、管内流路面積の減少や伝熱特 性の低下を伴う。 [0005] In an ethylene cracking furnace tube or the like, when carburization progresses and a carburized layer with carbides such as Cr and Fe is formed, the volume of that part expands. As a result, fine cracks are likely to occur, and in the worst case, the steel pipe in use breaks. Moreover, when the metal surface is exposed, carbon deposition (coking) using the metal as a catalyst occurs on the surface, which is accompanied by a decrease in the flow path area in the pipe and a decrease in heat transfer characteristics.
[0006] 一方、改質炉管や熱交 等におけるガスの浸炭性がより厳しい環境下では、炭 化物が過飽和となり、その後グラフアイトが直接析出するために、母材金属が剥離脱 落し、母材が減肉する、すなわちメタルダステイングといわれる腐食消耗が進行する。 さらに、剥離した金属粉末が触媒となり、コーキングを発生させる。  [0006] On the other hand, in an environment where gas carburization is more severe in reforming furnace tubes, heat exchangers, etc., the carbide becomes supersaturated, and then the graphite is directly deposited. The thickness of the material is reduced, that is, corrosion consumption called metal dusting progresses. Further, the peeled metal powder serves as a catalyst and generates coking.
[0007] このような亀裂、損耗や管内閉塞が拡大すると、装置故障等が発生して、その結果 、操業中断に至る恐れがあり、装置部材としての材料選定に十分な配慮が必要であ る。  [0007] When such cracks, wear and blockage in the pipe expand, an apparatus failure or the like may occur, resulting in an interruption of operation, and sufficient consideration must be given to the selection of materials as apparatus members. .
[0008] このような浸炭やメタルダステイングによる腐食を防止するために、従来から、種々 の対策が検討されてきた。  [0008] In order to prevent corrosion due to carburization and metal dusting, various countermeasures have been conventionally studied.
[0009] たとえば、特許文献 1には、 H、 CO、 CO、 H Oを含む 400〜700°Cの雰囲気ガ [0009] For example, Patent Document 1 includes an atmosphere gas at 400 to 700 ° C containing H, CO, CO, and H 2 O.
2 2 2  2 2 2
ス中での耐メタルダステイング性に関して、 Crを 11〜60% (質量%、以下同じ。)含 む Fe基合金または Ni基合金が提案されている。具体的には、 Crを 24%以上かつ N iを 35%以上含む Fe基合金、 Crを 20%以上かつ Niを 60%以上含む Ni基合金、及 びこれらの合金にさらに Nbを添加した合金材料の発明が優れていることが示されて いる。しかし、 Fe基合金又は Ni基合金の Crや Niの含有量を増しただけでは、十分 な浸炭抑制効果が得られず、より一層の耐メタルダステイング性を有する金属材料が 求められている。  Fe-base alloys or Ni-base alloys containing 11-60% Cr (mass%, the same shall apply hereinafter) have been proposed for resistance to metal dusting in the steel. Specifically, Fe-based alloys containing 24% or more of Cr and 35% or more of Ni, Ni-based alloys containing 20% or more of Cr and 60% or more of Ni, and alloy materials obtained by further adding Nb to these alloys The invention is shown to be superior. However, just increasing the Cr or Ni content of the Fe-based alloy or Ni-based alloy does not provide a sufficient carburizing suppression effect, and a metal material with even higher metal dusting resistance is required.
[0010] また、特許文献 2に開示されて ヽる方法は、鉄、ニッケルおよびクロムを含む高温合 金のメタルダステイングによる腐食に対し、元素周期表の第 VIII族、第 IB族、第 IV族 及び第 V族のうちの一種以上の金属およびそれらの混合物を、通常の物理的あるい は化学的手段で表面に付着させ、不活性雰囲気中でアニーリングして、 0. 01〜: L0 μ mの厚さの薄層を形成させることで合金表面を保護しょうとするものである。この場 合、 Sn、 Pb、 Bi等がとくに有効であるとしている。し力しこの方法は、初期には効果が あっても長期にわたる使用により薄層が剥離して効果がなくなるおそれがある。 [0010] In addition, the method disclosed in Patent Document 2 is based on the elements VIII, IB, IV of the periodic table of elements against corrosion due to metal dusting of high-temperature alloys containing iron, nickel, and chromium. One or more metals from Group V and Group V and mixtures thereof are deposited on the surface by conventional physical or chemical means and annealed in an inert atmosphere to give: 0.01-: L0 μ An attempt is made to protect the alloy surface by forming a thin layer of thickness m. This place Sn, Pb, Bi, etc. are particularly effective. However, even if this method is effective in the initial stage, there is a possibility that the thin layer peels off due to long-term use and the effect is lost.
[0011] 特許文献 3には、 H、 CO、 CO、 H Oを含む 400〜700°Cの雰囲気ガス中での金 [0011] Patent Document 3 describes gold in an atmosphere gas of 400 to 700 ° C containing H, CO, CO, and H 2 O.
2 2 2  2 2 2
属材料の耐メタルダステイング性に関して、鉄中の溶質元素の観点力 cとの相互作 用について調査がされた結果、酸ィ匕皮膜の保護性を高めることに加えて、 Ti、 Nb、 V、 Moなど金属材料中で安定な炭化物を作る元素の添加又は Si、 Al、 Ni、 Cu、 Co などの相互作用助係数 Ωが正の値を示す合金元素力メタルダステイング抑制に有効 であることが開示されている。ただし、 Si、 A1等を高めることは熱間加工性や溶接性 の低下につながる場合があり、製造安定性やプラント施工面を考えると改善の余地 がある。  As a result of investigating the interaction between the solute element in iron and the viewpoint power c of the metal dusting resistance of the genus material, Ti, Nb, V It is effective for the addition of elements that form stable carbides in metallic materials such as Mo and Mo, or for the alloying elemental forces in which the interaction coefficient Ω of Si, Al, Ni, Cu, Co, etc. has a positive value is suppressed. Is disclosed. However, increasing Si, A1, etc. may lead to a decrease in hot workability and weldability, and there is room for improvement in terms of manufacturing stability and plant construction.
[0012] 次に、金属表面への浸炭性ガスの接触を遮断するために、金属材料に予め酸化処 理を施す方法や表面処理を行う方法が開示されて 、る。  [0012] Next, in order to block the contact of the carburizing gas with the metal surface, a method of previously oxidizing the metal material and a method of performing the surface treatment are disclosed.
[0013] 例えば、特許文献 4及び特許文献 5には、低 Si系 25Cr—20Ni(HK40)耐熱鋼や 低 Si系 25Cr— 35Ni耐熱鋼を 1000°Cの近傍の温度で 100時間以上の条件で大気 中予酸ィ匕を行う方法が開示されており、そして、特許文献 6には 20〜35%Crを含有 するオーステナイト系耐熱鋼に大気中予備酸ィ匕を行う方法が開示されている。さらに 、特許文献 7には高 Ni—Cr合金を真空中で加熱しスケールの皮膜を生成させて耐 浸炭性を向上させる方法が提案されている。さらに、特許文献 8には、表面処理によ リ Siや Crの濃化層を形成させることによって耐浸炭性を向上させる方法が提案され ている。  [0013] For example, in Patent Document 4 and Patent Document 5, low Si-based 25Cr-20Ni (HK40) heat-resisting steel and low Si-based 25Cr-35Ni heat-resisting steel are used at a temperature near 1000 ° C for 100 hours or more. A method for performing atmospheric pre-oxidation is disclosed, and Patent Document 6 discloses a method for performing atmospheric preliminary oxidation on an austenitic heat-resistant steel containing 20 to 35% Cr. Further, Patent Document 7 proposes a method for improving carburization resistance by heating a high Ni—Cr alloy in a vacuum to form a scale film. Further, Patent Document 8 proposes a method for improving carburization resistance by forming a concentrated layer of Si or Cr by surface treatment.
[0014] その他、金属材料自体の改善ではなぐ合成ガスの改質装置や製造装置の管内の 雰囲気ガス中に H Sを添カ卩して、メタルダステイングを抑制する方法も考えられてい  [0014] Other than the improvement of the metal material itself, a method of suppressing metal dusting by adding H 2 S to the atmosphere gas in the tube of the synthesis gas reforming apparatus or the manufacturing apparatus has been considered.
2  2
る。  The
[0015] 特許文献 1:特開平 9一 78204号公報  Patent Document 1: Japanese Patent Laid-Open No. 9-178204
特許文献 2:特開平 11— 172473号公報  Patent Document 2: JP 11-172473 A
特許文献 3:特開 2003 - 73763号公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-73763
特許文献 4:特開昭 53— 66832号公報  Patent Document 4: Japanese Patent Laid-Open No. 53-66832
特許文献 5:特開昭 53— 66835号公報 特許文献 6:特開昭 57—43989号公報 Patent Document 5: JP-A-53-66835 Patent Document 6: Japanese Unexamined Patent Publication No. 57-43989
特許文献 7:特開平 11― 29776号公報  Patent Document 7: JP-A-11-29776
特許文献 8:特表 2000 - 509105号公報  Patent Document 8: Special Table 2000-509105
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0016] このように、金属材料の耐メタルダステイング性を高める技術が、従来から種々提案 されている力 いずれも特殊な熱処理や表面処理を必要とするものであって、コストと 手間を必要とする。また、予酸化スケールや表面処理層が剥離した後のスケールの 修復 (スケール再生)機能がないため、一度損傷が発生するとその後のメタルダステ イングを抑制することはできな 、。  [0016] As described above, various techniques for improving the metal dusting resistance of metal materials, which have been proposed in the past, require special heat treatment and surface treatment, which requires cost and labor. And Also, since there is no scale restoration (scale regeneration) function after the pre-oxidized scale or surface treatment layer has peeled off, once metal damage has occurred, subsequent metal dusting cannot be suppressed.
[0017] また、金属材料自体の改善ではなぐ前述のように、合成ガスの改質装置や製造装 置の管内の雰囲気ガス中に H Sを添カ卩してメタルダステイングを抑制する方法もある  [0017] As described above, there is also a method for suppressing metal dusting by adding HS to the atmosphere gas in the synthesis gas reforming apparatus or manufacturing apparatus pipe, as described above, rather than improving the metal material itself.
2  2
力 H Sは炭化水素の改質に用いられる触媒の活性を著しく低下させる恐れがある Force H S can significantly reduce the activity of catalysts used for hydrocarbon reforming
2 2
ので、雰囲気ガスの成分調整によるメタルダステイング抑制技術は、限定的に適用さ れているだけである。  Therefore, the technology for suppressing metal dusting by adjusting the components of the atmospheric gas is only applied to a limited extent.
[0018] このように、種々の検討はなされてはいるが、メタルダステイングを十分に抑制でき る技術は、現状では得られていない。  As described above, although various studies have been made, a technology that can sufficiently suppress metal dusting has not been obtained at present.
[0019] 本発明は、上記現状に鑑みてなされたもので、その目的は、エチレンプラント用分 解炉管ゃ改質炉管等において、浸炭性ガスと金属の表面反応を抑制することで、優 れた耐メタルダステイング性を有する金属材料を提供することである。  [0019] The present invention has been made in view of the above-described situation, and its purpose is to suppress the surface reaction between carburizing gas and metal in a cracking furnace tube or reforming furnace tube for an ethylene plant, It is to provide a metal material having excellent metal dusting resistance.
課題を解決するための手段  Means for solving the problem
[0020] 本発明者らは、メタルダステイングの発生を抑制するための方法を種々検討した結 果、次の (a)〜(i)に示す知見を得た。  [0020] As a result of various studies on methods for suppressing the occurrence of metal dusting, the present inventors have obtained the findings shown in the following (a) to (i).
[0021] (a)メタルダステイングの発生には、表面に形成される酸化皮膜の保護性とその内 部に形成される浸炭層の発達が影響する。すなわち、酸ィ匕皮膜に割れが生じたり、 酸化皮膜が剥離したりすると、その表面力 金属材料中に Cが浸入して浸炭層が形 成され、そのときの体積変化や炭化物の形成分解などによってメタルダステイングが 生じる。 [0022] (b)酸化皮膜の保護性を高めるには、耐酸ィ匕性を高めるための一般的手法と同様 に、 Crの含有量を高めるとともに、 Siや A1といった酸素との親和力の強い元素を含 有させる方法があるが、金属材料中への Cの浸入を一定期間抑制するだけである。 そして、長時間にわたって酸ィ匕皮膜が全く割れず、剥離もしないことを実現するのは 不可能であるから、酸ィ匕皮膜の保護性を高めるだけでは、 Cの金属材料中への浸入 を完全に遮断することはできない。そのため、酸ィ匕皮膜の保護性を高めることに加え て、 Ti、 Nb、 V、 Moなど金属材料中で安定な炭化物を作る元素を添加することによ つて、 Cの金属材料中への浸入を抑制して、 Cの侵入速度を低減し、もって、酸ィ匕皮 膜の内部に形成される浸炭層の成長を抑制することができる。 [0021] (a) The occurrence of metal dusting is affected by the protection of the oxide film formed on the surface and the development of the carburized layer formed in the interior. In other words, when cracks occur in the oxide film or when the oxide film peels, C enters the surface force metal material to form a carburized layer, and the volume change at that time and the formation and decomposition of carbides, etc. Causes metal dusting. [0022] (b) In order to improve the protection of the oxide film, as in the general method for increasing the acid resistance, the Cr content is increased, and an element having a strong affinity for oxygen such as Si or A1. Although there is a method to contain C, it only suppresses the penetration of C into the metal material for a certain period of time. And since it is impossible to realize that the acid film does not crack or peel at all for a long time, simply increasing the protection of the acid film prevents the penetration of C into the metal material. It cannot be completely blocked. Therefore, in addition to enhancing the protective properties of the acid film, the penetration of C into the metal material can be achieved by adding elements that form stable carbides in metal materials such as Ti, Nb, V, and Mo. It is possible to suppress the penetration rate of C and thereby suppress the growth of the carburized layer formed inside the acid rind film.
[0023] (c)あるいは、酸ィ匕皮膜の保護性を高めることに加えて、 Si、 Al、 Niなど炭素との親 和力がほとんどないと思われる元素を添加することによって、酸化皮膜の内部に形成 される浸炭層の成長を抑制することができる。炭素との親和力がほとんどないと思わ れる元素としては、 Fe中の溶質元素である Cの活量を高める効果がある元素、換言 すれば、相互作用助係数 Ωが正の値を示す合金元素が考えられる。たとえば、 Co、 Cu、 Ag、 As、 P、 S及び Nを挙げることができる。このうち、 Co及び Cuは金属材料の 熱間加工性ゃ靱性などの性質を劣化させることもなぐコスト面でも可能な含有量の 範囲であることから、合金成分として金属材料中に含有させて耐メタルダステイング性 を改善させるのに有効である。ただし、 Agはコストの点から、そして、 Asは毒性の点 力 使用することが困難であり、そして、 P、 S及び Nは金属材料の熱間加工性ゃ靱 性などの性質を劣化させるので合金成分として含有させることは困難である。  [0023] (c) Alternatively, in addition to enhancing the protective properties of the oxide film, by adding an element that has little affinity with carbon, such as Si, Al, Ni, etc., Growth of the carburized layer formed inside can be suppressed. Elements that seem to have little affinity for carbon include elements that have the effect of increasing the activity of C, which is a solute element in Fe, in other words, alloy elements that have a positive interaction coef? Cient Ω. Conceivable. For example, Co, Cu, Ag, As, P, S and N can be mentioned. Among these, Co and Cu are in the range of contents that are possible in terms of cost without deteriorating the hot workability and toughness of the metal material. Effective for improving metal dusting. However, Ag is difficult to use from the point of cost, As is a toxic point, and P, S and N deteriorate the properties of metal materials such as hot workability and toughness. It is difficult to contain as an alloy component.
[0024] なお、上記の (a)〜(c)の知見については、既に特許文献 3において開示したところ である。  [0024] The findings of (a) to (c) above have already been disclosed in Patent Document 3.
[0025] (d)本発明者らは、この度、この酸ィ匕皮膜の内部に形成される浸炭層の成長現象に ついてさらに詳細に検討した結果、炭素との親和力がほとんどないと思われる元素、 換言すれば、相互作用助係数 Ωが正の値を示す合金元素を添加することによって、 酸ィ匕皮膜の内部に形成される浸炭層の成長を抑制することができるのは、金属表面 での浸炭性ガスの吸着 Z解離反応を抑制することができるので、 Cが鋼中に浸入す ることを著しく低減させ得ることができるためであることを見出した。そして、金属表面 での浸炭性ガスの吸着 Z解離反応を抑制することができる合金元素としては、 Cu、 Agおよび Pt等の貴金属元素のほかに、周期律表の第 VA族又は VIA族の元素が優 れていることを新たに見出し、そして、そのうち、特に、 P、 S、 Sb又は Biを合金成分と して含有させると、耐メタルダステイング性に優れた金属材料となりうることが実験によ り明らかになった。なお、 P、 S、 Sb及び Biは、それぞれ、単独で含有させてもよいし、 複合して含有させてもよい。 [0025] (d) The present inventors have conducted a more detailed investigation on the growth phenomenon of the carburized layer formed inside the acid-sodium coating, and as a result, the element is considered to have little affinity for carbon. In other words, the growth of the carburized layer formed inside the oxide film can be suppressed by adding an alloy element having a positive interaction coefficient Ω. It has been found that the adsorption of carburizing gas can suppress the Z-dissociation reaction and can significantly reduce the intrusion of C into the steel. And metal surface Adsorption of carburizing gas at Zr In addition to noble metal elements such as Cu, Ag and Pt, the elements of group VA or VIA of the periodic table are superior as alloy elements that can suppress the Z-dissociation reaction. It has been found through experiments that, in particular, if P, S, Sb or Bi is included as an alloy component, it can be a metal material with excellent metal dusting resistance. became. P, S, Sb and Bi may be contained alone or in combination.
[0026] ここで、 P、 S、 Sb及び Biは金属組織の粒界に偏析する元素であることから、金属表 面での偏析もあると予想されるので、浸炭性ガスと金属の表面反応を効率的に抑制 することが予測される。したがって、 P、 S、 Sb、 Biを殊更、過剰に添加する必要性は ないと考えられる。 [0026] Here, P, S, Sb, and Bi are elements that segregate at the grain boundaries of the metal structure, so segregation at the metal surface is also expected, so the surface reaction between the carburizing gas and the metal. Is expected to be efficiently controlled. Therefore, it is considered unnecessary to add P, S, Sb and Bi, especially in excess.
[0027] (e)なお、 P及び Sに関しては、既に特許文献 3において、炭素との親和力がほとん どなぐ添加することによって酸ィ匕皮膜の内部に形成される浸炭層の成長を抑制する ことができる元素として挙げた力 S及び Pは粒界偏析元素であるために、金属材料 の熱間加工性などの性質を劣化させるので、合金成分として含有させることは困難で あるとしたものである。 P及び Sは、従来から、鋼の熱間加工性を劣化させ、酸化スケ ールの剥離を助長し、そして、溶接へ悪影響を及ぼすなどの有害元素として位置づ けられてきたために、精鍊工程においてこれら不純物をできるだけ低減させたり、さら に、 Pや Sを固定することができる元素を添加して Pや Sの微量含有分を金属材料の 粒内で固定したりすることがなされてきた力 である。しかしながら、その後の検討と 実験の結果、 Pは 0. 05%を超えて含有させれば耐メタルダステイング性に優れた金 属材料が得られ、また、熱間加工性や溶接性の点力ゝらは Pを 0. 3%まで含有させて も許容できることが判った。また、 Sに関しては、熱間加工性や溶接性の点から含有 量の上限を 0. 1%とする必要があるので、 Sの含有だけで耐メタルダステイング性を 付与することは不充分となる場合が生じるおそれがあるため、 P、 Sb又は Biを含有さ せるのが好ましいと思われる。  [0027] (e) Regarding P and S, in Patent Document 3, the growth of the carburized layer formed in the inside of the acid film is suppressed by adding almost the affinity with carbon. The forces S and P listed as elements that can be used are grain boundary segregation elements, which degrade the properties of metal materials such as hot workability and are therefore difficult to contain as alloy components. . P and S have traditionally been positioned as harmful elements such as degrading the hot workability of steel, facilitating the delamination of oxidation scale, and adversely affecting welding. In addition to reducing these impurities as much as possible, and adding elements that can fix P and S to fix trace amounts of P and S within the grains of metal materials It is. However, as a result of subsequent examinations and experiments, if P exceeds 0.05%, a metal material with excellent metal dusting resistance can be obtained, and the hot workability and weldability can be improved. We found that it was acceptable to contain P up to 0.3%. In addition, with respect to S, the upper limit of the content needs to be 0.1% in terms of hot workability and weldability, so it is insufficient to provide metal dusting resistance only by the inclusion of S. It may be preferable to include P, Sb, or Bi.
[0028] (D以上のとおり、金属材料の耐メタルダステイング性を高めるためには、金属表面 での浸炭性ガスの吸着 Z解離反応を抑制することが効果的であり、そのためには、 特に、 P、 Sb及び Biの 1種又は 2種以上を合金成分として含有させてなる金属材料が 好適である。 [0028] (As described above, in order to improve the metal dusting resistance of the metal material, it is effective to suppress the adsorption Z-dissociation reaction of the carburizing gas on the metal surface. A metal material containing one or more of P, Sb and Bi as an alloy component Is preferred.
[0029] (g)また、 P、 Sb及び Biの 1種又は 2種以上を合金成分として含有させて金属材料 の耐メタルダステイング性を高める方法に加えて、金属表面に保護性の酸化スケー ルゃ表面処理による薄層を形成して酸化皮膜の保護性を高めたり、あるいは、 Siや A1といった酸素との親和力の強い元素を含有させる方法など、従来手法を併用する こと〖こよって、さらに耐メタルダステイング性を高めるとともに耐浸炭性および耐コーキ ング性を高めることも可能である。  [0029] (g) In addition to a method of increasing the metal dust resistance of a metal material by including one or more of P, Sb and Bi as an alloy component, a protective oxide scale on the metal surface. By using a conventional method, such as forming a thin layer by surface treatment to increase the protective property of the oxide film, or including an element with strong affinity for oxygen such as Si or A1, It is possible to increase the resistance to metal dusting and to increase carburization resistance and coking resistance.
[0030] (h)このように、 P、 S、 Sb又は Biの 1種又は 2種以上を合金成分として含有させてな る金属材料は耐メタルダステイング性に優れていることを見出した。そして、この金属 材料の耐メタルダステイング性を維持したまま、さらに、加工性、特に熱間加工性をも 付与する方策についても種々検討した。その結果、これらの含有元素の粒界偏析を 抑制するためには、 Ndを適量添加することが好適であることを見出した。 Ndの作用 については不明な点もある力 P、 S、 Sb又は Biと化合物を形成することによって粒界 への元素濃化が抑制されていると推測される。  [0030] (h) Thus, it has been found that a metal material containing one or more of P, S, Sb, or Bi as an alloy component is excellent in metal dusting resistance. And while maintaining the metal dusting resistance of this metal material, various measures for imparting workability, especially hot workability were also examined. As a result, it has been found that it is preferable to add an appropriate amount of Nd in order to suppress the segregation of grain boundaries of these contained elements. It is speculated that element concentration at the grain boundary is suppressed by forming a compound with force P, S, Sb, or Bi, which is unclear about the action of Nd.
[0031] (0上記の P、 S、 Sb又は Biの 1種又は 2種以上を合金成分として含有させてなる耐 メタルダステイング性に優れた金属材料、ある 、はさらに Ndを適量添加することによ つて耐メタルダステイング性だけでなく加工性にも優れた金属材料を基に、さらに、 C o、 Mo、 W、 Ti、 Nb、 B、 Zr、 Hf、 Mg、 Ca、 Al、 Y、 La及び Ceのうちの 1種又は 2種 以上を含有させることによって、強度や延性、靱性をも改善することができることも見 出した。  (0) A metal material excellent in metal dusting resistance, containing one or more of P, S, Sb or Bi as an alloy component, or further adding an appropriate amount of Nd Therefore, based on metal materials with excellent metal dust resistance and workability, Co, Mo, W, Ti, Nb, B, Zr, Hf, Mg, Ca, Al, Y, It has also been found that the strength, ductility, and toughness can be improved by incorporating one or more of La and Ce.
[0032] 本発明は、これらの知見に基づいて完成されたものであり、その要旨とするところは 、次の (1)〜(3)に示す通りである。以下、それぞれ、本発明 (1)〜本発明 (3)という。総 称して、本発明ということがある。  [0032] The present invention has been completed based on these findings, and the gist thereof is as shown in the following (1) to (3). Hereinafter, the present invention (1) to the present invention (3), respectively. In general, the present invention is sometimes referred to.
[0033] (1)質量%で、 C : 0. 01〜0. 4%、 Si: 0. 01〜2. 5%、 Mn: 0. 01〜2. 5%、 Cr:  [0033] (1) By mass%, C: 0.01 to 0.4%, Si: 0.01 to 2.5%, Mn: 0.01 to 2.5%, Cr:
15〜35%、 Ni: 20〜65%、 Cu: 0. 05〜20%、S : 0. 1%以下、 N : 0. 25%以下及 び 0 (酸素) : 0. 02%以下並びに P : 0. 05%を超え 0. 3%以下、 Sb : 0. 001〜1% 及び Bi: 0. 001〜0. 5%のうちの 1種又は 2種以上を含有し、残部は Fe及び不純物 カゝらなることを特徴とする耐メタルダステイング性に優れた金属材料。 [0034] (2)質量%で、さらに、 Nd: 0. OOl-O. 15%を含有することを特徴とする、上記 (1) の耐メタルダステイング性に優れた金属材料。 15 to 35%, Ni: 20 to 65%, Cu: 0.05 to 20%, S: 0.1% or less, N: 0.25% or less and 0 (oxygen): 0.02% or less and P : More than 0.05% and less than 0.3%, Sb: 0.001% to 1% and Bi: 0.001% to 0.5% or more, and the balance is Fe and impurities A metal material with excellent metal dusting resistance, characterized by the fact that [0034] (2) The metal material having excellent metal dusting resistance according to the above (1), wherein the metal material further contains Nd: 0.OOl-O. 15% by mass%.
[0035] (3)次に示す第 1グループから第 6グループまでのうちの少なくとも 1つのグループ の中から選択される成分のうちの少なくとも 1種をさらに含有することを特徴とする、上 記 (1)又は (2)の耐メタルダステイング性に優れた金属材料。  (3) The above (3), further comprising at least one component selected from at least one of the following first group to sixth group: Metal material with excellent metal dusting resistance of 1) or (2).
第 1グループ:質量%で、 Co : 10%以下、  1st group:% by mass, Co: 10% or less,
第 2グループ:質量%で、 Mo: 3%以下及び W: 6%以下、  Second group:% by mass, Mo: 3% or less and W: 6% or less,
第 3グループ:質量%で、 Ti: 1%以下及び Nb : 2%以下、  Third group:% by mass, Ti: 1% or less and Nb: 2% or less,
第 4グループ:質量%で、 B : 0. 1%以下、 Zr: l. 2%以下及び Hf : 0. 5%以下、 第 5グループ:質量%で、 Mg : 0. 1%以下、 Ca: 0. 1%以下及び A1: 0. 8%以下、 第 6グループ:質量%で、 Y: 0. 15%以下、 La : 0. 15%以下及び Ce : 0. 15%以下 発明の効果  Group 4:% by mass, B: 0.1% or less, Zr: l. 2% or less and Hf: 0.5% or less, Group 5:% by mass, Mg: 0.1% or less, Ca: 0.1% or less and A1: 0.8% or less, Group 6:% by mass, Y: 0.15% or less, La: 0.15% or less, and Ce: 0.15% or less
[0036] 本発明の金属材料は浸炭性ガスと金属の表面反応を抑制する効果を有しており、 耐メタルダステイング性に優れて ヽるので、石油精製や石油化学プラントなどにおけ る分解炉、改質炉、加熱炉、熱交翻などの素材に利用することができ、装置の耐 久性ゃ操業効率を大幅に向上させることができる。  [0036] The metal material of the present invention has an effect of suppressing the surface reaction between the carburizing gas and the metal, and is excellent in metal dusting resistance. Therefore, the metal material is decomposed in petroleum refining or petrochemical plants. It can be used for materials such as furnaces, reforming furnaces, heating furnaces, heat exchangers, etc., and the durability of the equipment can greatly improve the operation efficiency.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0037] 本発明にお 、て、金属材料の組成範囲を限定する理由は次のとおりである。なお、 以下の説明にお 、て、各元素の含有量の「%」表示は「質量%」を意味する。 In the present invention, the reason for limiting the composition range of the metal material is as follows. In the following description, the “%” display of the content of each element means “mass%”.
[0038] C : 0. 01〜0. 4% [0038] C: 0.01-0.4%
Cは、高温強度を確保するために、 0. 01%の含有が必要である。ただし、 0. 4%を 超えると合金の靱性が極端に悪くなるため、上限を 0. 4%とする。好ましくは、 0. 03 〜0. 35%であり、さらに好ましい範囲は 0. 03-0. 3%である。  C needs to be contained in an amount of 0.01% in order to ensure high temperature strength. However, if it exceeds 0.4%, the toughness of the alloy becomes extremely poor, so the upper limit is made 0.4%. Preferably, it is 0.03 to 0.35%, and a more preferable range is 0.03-0.3%.
[0039] Si: 0. 01〜2. 5% [0039] Si: 0.01-2.5%
Siは、酸素との親和力が強いため、 Cr O等の保護性酸化スケ—ル層を均一に形  Since Si has a strong affinity for oxygen, a protective oxide scale layer such as Cr 2 O is uniformly formed.
2 3  twenty three
成することを促進する。また、 Cr Oの下層に Si系酸化スケールを形成し、浸炭性ガ  To promote In addition, a Si-based oxide scale is formed in the lower layer of Cr 2 O, and carburizing gas is formed.
2 3  twenty three
スを遮断する。この作用は、 0. 01%以上含有することで発揮される。ただし、 2. 5% を超えると靭性が低下するので、上限を 2. 5%とする。好ましい範囲は、 0. 1〜2. 5 %であり、さらに好ましい範囲は 0. 3〜2%である。 Shut off the service. This effect is exhibited when the content is 0.01% or more. However, 2.5% Since the toughness will be reduced if this value is exceeded, the upper limit is set to 2.5%. A preferred range is 0.1 to 2.5%, and a more preferred range is 0.3 to 2%.
[0040] Mn: 0. 01〜2. 5%  [0040] Mn: 0.01-2.5%
Mnは脱酸および力卩ェ性改善のために必要であり、このような効果を得るためには 、 0. 01%以上含有させる必要がある。また、 Mnはオーステナイト生成元素であるこ と力も Niの一部を Mnで置換することも可能である。しかしながら、 Mnの過剰の含有 は保護性酸化スケール層の浸炭性ガス遮断性能を阻害することから、上限を 2. 5% とする。なお、 Mnの含有量の好ましい範囲は、 0. 1〜2%である。  Mn is necessary for deoxidation and improvement of strength, and in order to obtain such an effect, it is necessary to contain 0.01% or more. In addition, Mn is an austenite-generating element, and it is possible to replace part of Ni with Mn. However, the excessive content of Mn hinders the carburizing gas barrier performance of the protective oxide scale layer, so the upper limit is set to 2.5%. A preferable range of the Mn content is 0.1 to 2%.
[0041] Cr: 15〜35%  [0041] Cr: 15-35%
Crは Cr O等の酸化スケ—ルを安定に形成し、浸炭性ガスを遮断する効果がある Cr has the effect of stably forming an oxide scale such as Cr 2 O and blocking carburizing gas
2 3 twenty three
。このような効果を得るためには、 15%以上の含有が必要である。しかしながら、過剰 な含有は加工性を劣化させるとともに組織安定性を劣化させるので、含有量の上限 を 35%とする。好ましい範囲は 18〜33%である。さらに好ましい範囲は 23〜33%で ある。  . In order to obtain such an effect, a content of 15% or more is necessary. However, excessive content degrades workability and structural stability, so the upper limit of content is 35%. A preferred range is 18 to 33%. A more preferred range is 23 to 33%.
[0042] Ni: 20〜65%  [0042] Ni: 20-65%
Niは、 Cr含有量に応じて安定したオーステナイト組織を得るために必要な元素で ある。また、 Cが鋼中に浸入した場合、浸入速度を低減する機能を有する。さらに、金 属組織の高温強度を確保する働きがある。しかしながら、必要以上の含有は、コスト 高と製造難を招くため、 20〜65%の含有量を適正とする。好ましくは 25〜65%であ り、さらに好ましくは 28〜50%である。  Ni is an element necessary for obtaining a stable austenite structure depending on the Cr content. Also, when C enters steel, it has a function to reduce the intrusion rate. In addition, it serves to ensure the high temperature strength of the metal structure. However, excessive content causes high cost and manufacturing difficulty, so 20-65% content is appropriate. Preferably it is 25 to 65%, more preferably 28 to 50%.
[0043] Cu: 0. 05〜20%  [0043] Cu: 0.05-20%
Cuは本発明にお 、て重要な元素のひとつである。 Cuは浸炭性ガスと金属の表面 反応を抑制し、耐メタルダステイング性等を大きく向上させる。また、オーステナイト生 成元素であるため Niの一部を Cuで置換することも可能である。耐メタルダステイング 性の向上効果を発揮するためには、 0. 05%以上含有させる必要がある。ただし、 20 %を超えて含有させると著しく溶接性を低下させるので、含有量の上限を 20%とする 。好ましい含有量は 0. 2〜15%である。さらに好ましい含有量は 0. 5〜10%である [0044] S : 0. 1%以下 Cu is one of the important elements in the present invention. Cu suppresses the reaction between the carburizing gas and the metal surface and greatly improves the metal dusting resistance. Also, since it is an austenite-producing element, it is possible to replace part of Ni with Cu. In order to exert the effect of improving the metal dusting resistance, it is necessary to contain 0.05% or more. However, if the content exceeds 20%, the weldability is remarkably lowered, so the upper limit of the content is made 20%. The preferred content is 0.2 to 15%. Further preferable content is 0.5 to 10%. [0044] S: 0.1% or less
Sは、浸炭性ガスと金属の反応を抑制する効果がある。しかしながら、過剰に含有さ せると、熱間加工性や溶接性を著しく阻害するため、その含有量の上限を 0. 1%と する必要がある。また、 Sは触媒被毒作用を有するため、プラントで触媒を使用する 場合には極力少ない方が望ましぐその場合には Sの含有量の上限を 0. 015%とす るのが好ましい。  S has an effect of suppressing the reaction between the carburizing gas and the metal. However, if it is excessively contained, hot workability and weldability are remarkably impaired, so the upper limit of the content must be 0.1%. In addition, since S has a catalyst poisoning action, when using a catalyst in a plant, it is desirable that the amount is as small as possible. In that case, the upper limit of the S content is preferably set to 0.015%.
[0045] このように、 Sの含有量の上限は 0. 1%とする必要があり、また、プラントで触媒を使 用する場合には Sの含有量の上限を 0. 015%とするのが好ましいため、 Sだけでは 浸炭性ガスと金属の反応を抑制する効果が不十分となる場合がある。したがって、浸 炭性ガスと金属の反応を抑制する効果を確実に得るためには、後述するように、 P、 S b及び Biのうちの 1種又は 2種以上を含有させる必要がある。  [0045] Thus, the upper limit of the S content needs to be 0.1%, and when the catalyst is used in the plant, the upper limit of the S content is set to 0.015%. Therefore, the effect of suppressing the reaction between the carburizing gas and the metal may be insufficient with S alone. Therefore, in order to reliably obtain the effect of suppressing the reaction between the carburizing gas and the metal, it is necessary to contain one or more of P, Sb and Bi as described later.
[0046] なお、 P、 Sb及び Biのうちの 1種又は 2種以上を含有させる場合には、 Sを含有させ る必要はないので、プラントで触媒を使用する場合など、 Sによる悪影響を許容するこ とができない場合には、 Sの含有量を可能な限り低減することが望ましい。もちろん、 Sによる悪影響を許容することができる場合には、 0. 1%以下であれば Sを含有させ ることは可能であり、この場合、 Sを 0. 005%以上含有させれば、 P、 Sb及び Biのうち の 1種又は 2種以上の含有によって浸炭性ガスと金属の反応を抑制する効果に、 Sに よる抑制効果が上乗せされることになる。  [0046] When one or more of P, Sb, and Bi are contained, it is not necessary to contain S. Therefore, adverse effects due to S are allowed, such as when using a catalyst in a plant. If this is not possible, it is desirable to reduce the S content as much as possible. Of course, if the adverse effects of S can be tolerated, it is possible to contain S if it is 0.1% or less. In this case, if S is contained in an amount of 0.005% or more, P The suppression effect by S is added to the effect of suppressing the reaction between carburizing gas and metal by containing one or more of Sb and Bi.
[0047] N: 0. 25%以下  [0047] N: 0.25% or less
Nは含有させなくてもよい。含有させれば、金属材料の高温強度を高める作用を有 する。し力しながら、その含有量が 0. 25%を超えると加工性を大きく阻害する。した がって、 Nの含有量は 0. 25%を上限とする。好ましい上限は、 0. 2%である。なお、 金属材料の高温強度を高める効果を得るためには、 0. 001%以上含有させることが 好ましい。  N may not be contained. If contained, it has the effect of increasing the high-temperature strength of the metal material. However, if its content exceeds 0.25%, the workability is greatly inhibited. Therefore, the upper limit for the N content is 0.25%. A preferred upper limit is 0.2%. In order to obtain the effect of increasing the high temperature strength of the metal material, it is preferable to contain 0.001% or more.
[0048] 0 (酸素): 0. 02%以下  [0048] 0 (oxygen): 0.02% or less
o(酸素)は、金属材料を溶製する際に原料など力 混入してくる不純物元素であり 、鋼中に酸化物系介在物が多量に存在すると、加工性を低下させるだけでなぐ金 属材料表面の疵の原因になるので、可能な限り低減することが望ましい。本発明に ぉ 、て許容できる含有量は 0. 02%までである。 o (oxygen) is an impurity element that is mixed into the raw material when melting a metal material. If a large amount of oxide inclusions are present in the steel, it is a metal that only deteriorates workability. Since it causes wrinkles on the material surface, it is desirable to reduce as much as possible. In the present invention Therefore, the allowable content is up to 0.02%.
[0049] P : 0. 05%を超え 0. 3%以下  [0049] P: More than 0.05% and less than 0.3%
Pは、 Sb及び Biと並んで、本発明においてもっとも重要な元素である。これらの元 素は、いずれも浸炭性ガスと金属の反応を抑制する働きを有する。これら元素は、 1 種のみの含有でも効果を発揮するし、 2種以上の含有でも効果を発揮する。  P, along with Sb and Bi, is the most important element in the present invention. All of these elements have a function of suppressing the reaction between the carburizing gas and the metal. These elements are effective even if only one kind is contained, and even if more than two kinds are contained.
[0050] この効果を発揮するためには、 Pの含有量は 0. 05%を超えることを必要とする。た だし、過剰に含有させると、熱間加工性や溶接性を著しく阻害するため、 Pの含有量 の上限は 0. 3%とする必要がある。好ましい Pの含有量は 0. 06-0. 25%、さらに好 ましい Pの含有量は。. 085〜0. 2%である。  [0050] In order to exert this effect, the P content needs to exceed 0.05%. However, if excessively contained, hot workability and weldability are significantly impaired, so the upper limit of the P content must be 0.3%. The preferable P content is 0.06-0.25%, and the more preferable P content. 085 to 0.2%.
[0051] Sb : 0. 001〜1%  [0051] Sb: 0.001 to 1%
Sbは、 P及び Biと並んで、本発明においてもっとも重要な元素である。これらの元 素は、いずれも浸炭性ガスと金属の反応を抑制する働きを有する。これら元素は、 1 種のみの含有でも効果を発揮するし、 2種以上の含有でも効果を発揮する。  Sb, along with P and Bi, is the most important element in the present invention. All of these elements have a function of suppressing the reaction between the carburizing gas and the metal. These elements are effective even if only one kind is contained, and even if more than two kinds are contained.
[0052] この効果を発揮するためには、 Sbの含有量は 0. 001%以上であることを必要とす る。ただし、過剰に含有させると、熱間加工性や溶接性を著しく阻害するため、 Sbの 含有量の上限は 1%とする必要がある。好ましい Sbの含有量は 0. 005-0. 8%、さ らに好ましい Sbの含有量は 0. 01〜0. 7%である。  [0052] In order to exert this effect, the Sb content needs to be 0.001% or more. However, if excessively contained, the hot workability and weldability are significantly impaired, so the upper limit of the Sb content must be 1%. The preferred Sb content is 0.005-0. 8%, and the more preferred Sb content is 0.01-0.7%.
[0053] Bi: 0. 001〜0. 5%  [0053] Bi: 0.001 to 0.5%
Biは、 P及び Sbと並んで、本発明においてもっとも重要な元素である。これらの元 素は、いずれも浸炭性ガスと金属の反応を抑制する働きを有する。これら元素は、 1 種のみの含有でも効果を発揮するし、 2種以上の含有でも効果を発揮する。  Bi, along with P and Sb, is the most important element in the present invention. All of these elements have a function of suppressing the reaction between the carburizing gas and the metal. These elements are effective even if only one kind is contained, and even if more than two kinds are contained.
[0054] この効果を発揮するためには、 Biの含有量は 0. 001%以上であることを必要とする 。ただし、過剰に含有させると、熱間加工性や溶接性を著しく阻害するため、 Biの含 有量の上限は 0. 5%とする必要がある。好ましい Biの含有量は 0. 005-0. 3%、さ らに好ましい Sbの含有量は 0. 01〜0. 2%である。  [0054] In order to exert this effect, the Bi content needs to be 0.001% or more. However, if excessively contained, the hot workability and weldability are significantly impaired, so the upper limit of the Bi content must be 0.5%. The preferred Bi content is 0.005-0.3%, and the more preferred Sb content is 0.01-0.2%.
[0055] 以上は、 P、 Sb及び Biの 1種又は 2種以上を合金成分として含有させることによって 耐メタルダステイング性を高めた金属材料に係る本発明 (1)に関して説明してきた。  [0055] The above has described the present invention (1) relating to a metal material having improved metal dusting resistance by containing one or more of P, Sb and Bi as an alloy component.
[0056] 次に、この本発明 (1)の手法に加えて、本発明 (1)の耐メタルダステイング性を維持し たまま、加工性、特に熱間加工性をも改善してなる金属材料に係る本発明 (2)を説明 する。 [0056] Next, in addition to the technique of the present invention (1), the metal dusting resistance of the present invention (1) is maintained. The present invention (2) relating to a metal material having improved workability, particularly hot workability, will be described.
[0057] すなわち、本発明 (2)は、さらに、次のとおり、 Ndを含有させることによって、加工性 をも付与したことを特徴とする、耐メタルダステイング性に優れた金属材料である。  [0057] That is, the present invention (2) is a metal material excellent in metal dusting resistance, characterized by further imparting workability by containing Nd as follows.
[0058] Nd: 0. 001〜0. 15%  [0058] Nd: 0.001 to 0.15%
Ndは、前記の耐メタルダステイング性に優れた金属材料の加工性を確保した 、とき に添加する任意含有元素である。前述のとおり、耐メタルダステイング性を大幅に向 上させるために、 P : 0. 05%を超え 0. 3%以下、 Sb : 0. 001〜1%及び Bi: 0. 001 〜0. 5%のうちの 1種又は 2種以上を含有させることが必要である力 Ndはこれらの 元素の含有、あるいはさらに Sの含有によって生じる熱間加工性の低下を抑える作用 を有する。熱間加工性の低下を抑える効果を発揮するには、 Ndの 0. 001%以上の 含有を必要とする。ただし、過剰に含有させると、 o(酸素)と結合して介在物を多量 に形成することになり、このため、加工性が低下するだけでなぐ金属材料表面の疵 の原因にもなるので、 Ndの含有量は上限を 0. 15%とする必要がある。 Ndの含有量 は、好ましくは 0. 005〜0. 12%であり、さらに好ましくは 0. 01〜0. 10%である。  Nd is an optional element added at the time of securing the workability of the metal material having excellent metal dusting resistance. As mentioned above, in order to greatly improve the metal dusting resistance, P: more than 0.05% and 0.3% or less, Sb: 0.001 to 1% and Bi: 0.001 to 0.5 The force Nd required to contain one or more of N% has the effect of suppressing the deterioration of hot workability caused by the inclusion of these elements, or further the inclusion of S. In order to exert the effect of suppressing the decrease in hot workability, Nd content of 0.001% or more is required. However, if it is contained excessively, it will combine with o (oxygen) to form a large amount of inclusions, and this will cause deterioration of the metal material surface as well as deterioration of workability. The upper limit of the Nd content needs to be 0.15%. The Nd content is preferably 0.005 to 0.12%, more preferably 0.01 to 0.10%.
[0059] 次に、この本発明 (1)及び (2)の手法に加えて、強度や延性、靱性を改善してなる金 属材料に係る本発明 (3)を説明する。  [0059] Next, in addition to the methods of the present inventions (1) and (2), the present invention (3) relating to a metal material having improved strength, ductility, and toughness will be described.
[0060] 本発明 (3)は、本発明 (1)又は本発明 (2)で規定される金属材料に、次に示す第 1グ ループから第 6グループまでのうちの少なくとも 1つのグレープの中から選択される成 分のうちの少なくとも 1種をさらに含有させることを特徴とする、耐メタルダステイング性 に優れた金属材料である。  [0060] According to the present invention (3), the metal material defined in the present invention (1) or the present invention (2) includes at least one of the following first to sixth groups of grapes. A metal material excellent in metal dusting resistance, characterized by further containing at least one component selected from the group consisting of:
第 1グループ:質量%で、 Co : 10%以下、  1st group:% by mass, Co: 10% or less,
第 2グループ:質量%で、 Mo: 3%以下及び W: 6%以下、  Second group:% by mass, Mo: 3% or less and W: 6% or less,
第 3グループ:質量%で、 Ti: 1%以下及び Nb : 2%以下、  Third group:% by mass, Ti: 1% or less and Nb: 2% or less,
第 4グループ:質量%で、 B : 0. 1%以下、 Zr: l. 2%以下及び Hf : 0. 5%以下、 第 5グループ:質量%で、 Mg : 0. 1%以下、 Ca: 0. 1%以下及び A1: 0. 8%以下、 第 6グループ:質量%で、 Y: 0. 15%以下、 La : 0. 15%以下及び Ce : 0. 15%以下 [0061] 以下、これらの任意添加元素に関して、順に説明する。 Group 4:% by mass, B: 0.1% or less, Zr: l. 2% or less and Hf: 0.5% or less, Group 5:% by mass, Mg: 0.1% or less, Ca: 0.1% or less and A1: 0.8% or less, Group 6:% by mass, Y: 0.15% or less, La: 0.15% or less, and Ce: 0.15% or less [0061] Hereinafter, these optional additional elements will be described in order.
[0062] 第 1グループ (質量%で、 Co: 10%以下)  [0062] 1st group (mass%, Co: 10% or less)
Coは、オーステナイト相を安定にする作用を有するため、 Ni成分の一部を置換す ることができるので、必要に応じて含有させてもよい。ただし、含有量が 10%を超える と熱間加工性を低下させるので、 Coを含有させる場合は、その含有量は 10%以下と する。熱間加工性の観点から、好ましい範囲は 0. 01〜5%であり、より好ましい範囲 は 0. 01〜3%である。  Since Co has an effect of stabilizing the austenite phase, a part of the Ni component can be substituted, so it may be contained as necessary. However, if the content exceeds 10%, the hot workability deteriorates. Therefore, when Co is contained, the content is 10% or less. From the viewpoint of hot workability, a preferred range is 0.01 to 5%, and a more preferred range is 0.01 to 3%.
[0063] 第 2グループ (質量%で、 Mo : 3%以下、 W: 6%以下)  [0063] Second group (mass%, Mo: 3% or less, W: 6% or less)
Mo及び Wは、いずれも固溶強化元素であるため、いずれか一方又は両方を必要 に応じて含有させてもよい。ただし、 Moを含有させる場合には、その含有量が 3%を 超えると力卩ェ性を低下させるとともに組織安定性を阻害するので、 Moを含有させる 場合は、その含有量は 3%以下とする。 Mo含有量は、好ましくは 0. 01-2. 5%であ る。また、 Wを含有させる場合には、その含有量が 6%を超えると加工性を低下させる とともに組織安定性を阻害するので、 Wを含有させる場合は、その含有量は 6%以下 とする。 W含有量は、好ましくは 0. 01-2. 5%である。  Since Mo and W are both solid solution strengthening elements, either one or both of them may be contained as required. However, when Mo is contained, if its content exceeds 3%, the strength is reduced and the tissue stability is inhibited. Therefore, when Mo is contained, its content is 3% or less. To do. The Mo content is preferably 0.01 to 2.5%. In addition, when W is included, if the content exceeds 6%, the workability is deteriorated and the tissue stability is inhibited. Therefore, when W is included, the content should be 6% or less. The W content is preferably 0.01 to 2.5%.
[0064] 第 3グループ (質量%で、 Ti: 1%以下、 Nb : 2%以下)  [0064] Third group (mass%, Ti: 1% or less, Nb: 2% or less)
Ti及び Nbは、 Vヽずれも極微量の含有で高温強度及び延性と靱性を向上させる作 用を有するとともに、 P、 S又は Biが共存する場合にはクリープ強度を向上させる作用 を有するため、いずれか一方又は両方を必要に応じて含有させてもよい。ただし、 Ti を含有させる場合には、その含有量が 1%を超えると加工性と溶接性を低下させるの で、 Tiを含有させる場合は、その含有量は 1%以下とする。 Ti含有量は、好ましくは 0 . 01〜1%である。また、 Nbを含有させる場合には、その含有量が 2%を超えるとカロ 工性と溶接性を低下させるので、 Nbを含有させる場合は、その含有量は 2%以下と する。 Nb含有量は、好ましくは 0. 01〜2%である。  Ti and Nb have the action of improving the high temperature strength and ductility and toughness with a very small amount of V shear, and when P, S or Bi coexist, it has the effect of improving the creep strength. Either one or both may be contained as necessary. However, when Ti is contained, if its content exceeds 1%, workability and weldability are deteriorated. Therefore, when Ti is contained, its content should be 1% or less. The Ti content is preferably 0.01 to 1%. In addition, when Nb is contained, if the content exceeds 2%, the caloric workability and weldability are deteriorated. Therefore, when Nb is contained, the content should be 2% or less. The Nb content is preferably 0.01-2%.
[0065] 第 4グループ (質量%で、 B : 0. 1%以下、 Zr: 1. 2%以下、 Hf : 0. 5%以下)  [0065] Fourth group (mass%, B: 0.1% or less, Zr: 1.2% or less, Hf: 0.5% or less)
B、 Zr及び Hfは、いずれも粒界を強化し、熱間加工性および高温強度特性を向上 させる作用を有するため、これらのうちの 1種又は 2種以上を必要に応じて含有させ てもよい。ただし、 Bを含有させる場合には、その含有量が 0. 1%を超えると溶接性を 低下させるので、 Bを含有させる場合は、その含有量は 0. 1%以下とする。 B含有量 は、好ましくは 0. 001-0. 1%である。また、 Zrを含有させる場合には、その含有量 が 1. 2%を超えると溶接性を低下させるので、 Zrを含有させる場合は、その含有量 は 1. 2%以下とする。 Zr含有量は、好ましくは 0. 001-1. 0%である。また、 Hfを含 有させる場合には、その含有量が 0. 5%を超えると溶接性を低下させるので、 Hfを 含有させる場合は、その含有量は 0. 5%以下とする。 Hf含有量は、好ましくは 0. 00 1〜0. 5%である。 B, Zr, and Hf all have the effect of strengthening grain boundaries and improving hot workability and high-temperature strength characteristics. Therefore, one or more of these may be contained as necessary. Good. However, when B is included, if its content exceeds 0.1%, weldability is improved. Therefore, if B is included, its content should be 0.1% or less. The B content is preferably 0.001-0. 1%. In addition, when Zr is included, if its content exceeds 1.2%, weldability deteriorates. Therefore, when Zr is included, its content should be 1.2% or less. The Zr content is preferably 0.0001-1. 0%. When Hf is included, if the content exceeds 0.5%, weldability deteriorates. Therefore, when Hf is included, the content should be 0.5% or less. The Hf content is preferably 0.001 to 0.5%.
[0066] 第 5グループ (質量%で、 Mg : 0. 1%以下、 Ca: 0. 1%以下、 A1: 0. 8%以下)  [0066] Group 5 (mass%, Mg: 0.1% or less, Ca: 0.1% or less, A1: 0.8% or less)
Mg、 Ca及び A1は、いずれも熱間加工性を向上させる作用を有するため、これらの うちの 1種又は 2種以上を必要に応じて含有させてもよい。ただし、 Mgを含有させる 場合には、その含有量が 0. 1%を超えると溶接性を低下させるので、 Mgを含有させ る場合は、その含有量は 0. 1%以下とする。 Mg含有量は、好ましくは 0. 0005-0. 1%である。また、 Caを含有させる場合には、その含有量が 0. 1%を超えると溶接性 を低下させるので、 Caを含有させる場合は、その含有量は 0. 1%以下とする。 Ca含 有量は、好ましくは 0. 0005-0. 1%である。また、 A1を含有させる場合には、その 含有量が 0. 8%を超えると溶接性を低下させるので、 A1を含有させる場合は、その 含有量は 0. 8%以下とする。 A1含有量は、好ましくは 0. 001-0. 8%である。  Since Mg, Ca, and A1 all have an effect of improving hot workability, one or more of these may be contained as necessary. However, when Mg is contained, if its content exceeds 0.1%, weldability is deteriorated. Therefore, when Mg is contained, its content should be 0.1% or less. The Mg content is preferably 0.0005-0. 1%. In addition, when Ca is contained, if its content exceeds 0.1%, weldability is deteriorated. Therefore, when Ca is contained, its content should be 0.1% or less. The Ca content is preferably 0.0005-0. 1%. Also, when A1 is contained, the weldability deteriorates when its content exceeds 0.8%. Therefore, when A1 is contained, its content should be 0.8% or less. The A1 content is preferably 0.001-0. 8%.
[0067] 第 6グループ (質量%で、 Y: 0. 15%以下、 La: 0. 15%以下、 Ce : 0. 15%以下)  [0067] Group 6 (mass%, Y: 0.15% or less, La: 0.15% or less, Ce: 0.15% or less)
Y、 La及び Ceは、いずれも耐酸ィ匕性を向上させる作用を有するため、これらのうち の 1種又は 2種以上を必要に応じて含有させてもよい。ただし、これらの元素を含有さ せる場合には、それぞれ、その含有量が 0. 15%を超えると力卩ェ性を低下させるので 、含有させる場合は、その含有量は 0. 15%以下とする。好ましくは 0. 0005-0. 15 %である。  Since Y, La, and Ce all have an action of improving acid resistance, one or more of them may be contained as necessary. However, when these elements are contained, the strength decreases when the content exceeds 0.15%. Therefore, when they are contained, the content is 0.15% or less. To do. Preferably it is 0.0005-0.15%.
[0068] 本発明に係る金属材料は、特に、炭化水素および一酸化炭素を単体または合計で lvol%以上、炭化水素、一酸ィ匕炭素および水素を単体または合計で 25vol%以上 含み、かつ 1000°C以下の雰囲気中における耐メタルダステイング性に優れている。 このため、この溶接継手を石油精製の熱交換型炭化水素改質装置や廃熱回収装置 等における反応管や周辺機器等の部材に適用すれば、装置の溶接施工性、耐久性 および安全性を大幅に向上させることができる。 [0068] The metal material according to the present invention contains, in particular, hydrocarbons and carbon monoxide alone or in total of 1 vol% or more, and hydrocarbons, carbon monoxide and hydrogen alone or in total of 25 vol% or more, and 1000 Excellent metal dusting resistance in atmospheres below ° C. For this reason, if this welded joint is applied to a member such as a reaction tube or a peripheral device in a heat exchange type hydrocarbon reformer or waste heat recovery device for petroleum refining, the welding workability and durability of the device will be improved. And safety can be greatly improved.
[0069] この発明に係る金属材料は、溶解、铸造、熱間加工、冷間加工、溶接等の手段に よって、厚板、薄板、継目無管、溶接管、鍛工品、線材等の所要の形状に成形するこ とができる。また、粉末冶金や遠心铸造等の手法によって所要の形状に成形してもで きる。最終熱処理を施した後の金属材料表面に対しては、酸洗、ショットブラスト、ショ ットピー-ング、機械切削、グラインダ研磨および電解研磨等の表面加工処理を施す こともできる。また、本発明に係る金属材料は、表面に 1つ又は 2つ以上の突起形状 等を有する不規則形状に成形することもできる。さらに、本発明に係る金属材料は、 各種炭素鋼、ステンレス鋼、 Ni基合金、 Co基合金、 Cu合金等と組み合わせて、複層 又は複合材料とすることができるので、その成形後の形状も格別制約されることもな い。この場合、本発明に係る金属材料と各種鋼もしくは合金との接合法に制約はなく 、たとえば圧接や"かしめ"などの機械的接合や、溶接、拡散処理などの熱的接合等 を施した形状とすることも可能である。  [0069] The metal material according to the present invention is made of necessary materials such as thick plates, thin plates, seamless tubes, welded tubes, forged products, wire rods, etc. by means of melting, forging, hot working, cold working, welding and the like. Can be formed into a shape. Further, it can be formed into a required shape by a technique such as powder metallurgy or centrifugal forging. Surface treatments such as pickling, shot blasting, shot peening, machine cutting, grinder polishing, and electrolytic polishing can also be applied to the surface of the metal material after the final heat treatment. In addition, the metal material according to the present invention can be formed into an irregular shape having one or more protrusion shapes on the surface. Furthermore, since the metal material according to the present invention can be combined with various carbon steels, stainless steels, Ni-base alloys, Co-base alloys, Cu alloys, etc., to form a multi-layer or composite material, the shape after molding is also possible. There are no special restrictions. In this case, there is no restriction on the joining method of the metal material according to the present invention and various steels or alloys, for example, a shape subjected to mechanical joining such as pressure welding or “caulking”, or thermal joining such as welding or diffusion treatment. It is also possible.
[0070] 次に実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例 に限定されるものではない。  [0070] Next, the present invention will be described more specifically by way of examples. However, the present invention is not limited to these examples.
実施例 1  Example 1
[0071] 表 1及び表 2に示す化学組成の金属材料を高周波加熱真空炉を用いて溶製し、ビ レットを形成し、そのビレットの熱間鍛造および冷間圧延を行って、外径 56mm、肉 厚 6mmの鋼管を作製した。鋼管は下記に示す条件で固溶化熱処理を行い、鋼管の 一部を切断して試験片を製作した。固溶化熱処理は、 1160〜1230°CZl0minの 条件で行った。また、一部の発明鋼については、 alloy800H合金と圧接してクラッド 鋼とし、同様に試験片を製作した。  [0071] A metal material having the chemical composition shown in Table 1 and Table 2 is melted using a high-frequency heating vacuum furnace, a billet is formed, the billet is hot forged and cold-rolled, and the outer diameter is 56 mm. A steel pipe with a thickness of 6 mm was produced. The steel pipe was subjected to solution heat treatment under the conditions shown below, and a part of the steel pipe was cut to produce a test piece. The solution heat treatment was performed under the conditions of 1160-1230 ° CZ10 min. In addition, some of the invention steels were made into clad steel by press-contacting with alloy 800H alloy, and test specimens were produced in the same manner.
[0072] [表 1] 表 1
Figure imgf000017_0001
[0072] [Table 1] table 1
Figure imgf000017_0001
Figure imgf000017_0002
Figure imgf000017_0002
Figure imgf000018_0002
Figure imgf000018_0002
Figure imgf000018_0001
Figure imgf000018_0001
T0l0S0/.00Zdf/X3d LY 9S8080/.00Z OAV [0074] 表 1および表 2に記載の金属材料から、幅 15mm X長さ 20mmの試験片を切り出し た。この試験片を、体積0 /0で、 60%CO- 26%H - 11. 5%CO —2. 5%H Oの T0l0S0 / .00Zdf / X3d LY 9S8080 / .00Z OAV [0074] Test pieces having a width of 15 mm and a length of 20 mm were cut from the metal materials shown in Tables 1 and 2. The test piece, a volume 0/0, 60% CO- 26 % H -. 11. 5% CO -2 of 5% HO
2 2 2 ガス雰囲気中で、 620°Cの等温で最大 1000時間保持し、所定時間経過毎に試験 片を取り出して試験片表面を観察し、孔食 (pit)の発生が確認された時を、その試験 片の Pit発生時間とした。この結果を、表 3及び表 4にまとめて示す。  2 2 2 Hold for a maximum of 1000 hours at 620 ° C isothermal in a gas atmosphere, take out the test piece every predetermined time, observe the surface of the test piece, and confirm the occurrence of pitting (pit) The Pit generation time of the test piece was used. The results are summarized in Table 3 and Table 4.
[0075] [表 3] 表 3 [0075] [Table 3] Table 3
Figure imgf000019_0001
Figure imgf000019_0001
[0076] [表 4] 表 4 [0076] [Table 4] Table 4
Figure imgf000020_0001
Figure imgf000020_0001
[0077] 化学組成が本発明で規定する条件から外れる試験番号 21〜24の金属材料は、表 3にみるとおり、孔食 (pit)発生時間が 500時間以下と短く、耐メタルダステイング性に 劣っている。これに対して、本発明に力かる試験番号 1〜20及び 25〜44の金属材 料は、表 3及び表 4にみるとおり、いずれも孔食 (pit)発生時間が 1000時間以上であ り、耐メタルダステイング性に優れる。 [0077] As shown in Table 3, the metal materials with test numbers 21 to 24 whose chemical compositions deviate from the conditions specified in the present invention have a short pitting time (pit) of 500 hours or less, and are resistant to metal dusting. Inferior. In contrast, as shown in Tables 3 and 4, the metal materials with test numbers 1 to 20 and 25 to 44, which are relevant to the present invention, have a pitting time (pit) generation time of 1000 hours or more. Excellent in metal dusting resistance.
実施例 2  Example 2
[0078] 表 5に示すィ匕学組成の金属材料を高周波加熱真空炉を用いて溶製し、ビレットを 形成し、そのビレットの熱間鍛造および冷間圧延を行って、板厚 12mmの鋼板を作 製した。鋼板は下記に示す条件で固溶ィ匕熱処理を行い、鋼板の一部を切断して試 験片を製作した。固溶化熱処理は、 1160〜1230°CZl0minの条件で行った。  [0078] A metal material having the chemical composition shown in Table 5 was melted using a high-frequency heating vacuum furnace to form a billet, and the billet was hot forged and cold-rolled to obtain a steel plate having a thickness of 12 mm. Was made. The steel plate was subjected to solid solution heat treatment under the conditions shown below, and a test piece was produced by cutting a part of the steel plate. The solution heat treatment was performed under the conditions of 1160-1230 ° CZ10 min.
[0079] [表 5] 母 材 化 学 組 成 (質量%) [0079] [Table 5] Base material chemical composition (mass%)
Figure imgf000021_0001
Figure imgf000021_0001
注:供試鋼 No.45~58は本発明鋼であり、供試鋼 No.59〜61は比較鋼である。 Note: Test steel Nos. 45 to 58 are steels of the present invention, and test steel Nos. 59 to 61 are comparative steels.
[0080] 表 5に記載の金属材料から、径 lOmm X長さ 130mmの丸棒状試験片を切り出し た。この試験片を、 1200°Cで 5分間加熱した後、 100°CZminの冷却速度で 900°C まで冷却し、その後 5Zsecの歪速度で引張り、破断後 Heガスで室温まで冷却した。 その後、装置力も試験片を取り出し、絞り率を測定した。この結果を、表 6に示す。絞 り率が 60%以上あると、量産規模の熱間加工において割れを発生することなく製造 できることから、絞り率 60%以上であれば良好であると判断することができる。 [0080] From the metal materials listed in Table 5, a round bar-shaped test piece having a diameter lOmm X a length 130 mm was cut. The specimen was heated at 1200 ° C. for 5 minutes, then cooled to 900 ° C. at a cooling rate of 100 ° C. Zmin, then pulled at a strain rate of 5 Zsec, and after rupture, cooled to room temperature with He gas. Thereafter, the test force was taken out of the test piece, and the drawing ratio was measured. The results are shown in Table 6. If the drawing ratio is 60% or more, it can be produced without cracking in mass production scale hot working. Therefore, if the drawing ratio is 60% or more, it can be judged that it is good.
[0081] また、表 5に記載の金属材料から、幅 15mm X長さ 20mmの試験片を切り出した。  In addition, a test piece having a width of 15 mm and a length of 20 mm was cut out from the metal material shown in Table 5.
この試験片を、体積0 /0で、 60%CO- 26%H - 11. 5%CO—2. 5%H Oのガス The test piece, a volume 0/0, 60% CO- 26 % H -. 11. 5% CO-2 for 5% HO gas
2 2 2 雰囲気中で、 620°Cの等温で最大 1000時間保持し、所定時間経過毎に試験片を 取り出して試験片表面を観察し、孔食 (pit)の発生が確認された時を、その試験片の Pit発生時間とした。この結果を、表 6に示す。  2 2 2 Hold at a constant temperature of 620 ° C for up to 1000 hours in an atmosphere, take out the test piece every predetermined time, observe the surface of the test piece, and confirm the occurrence of pitting (pit). The Pit generation time of the test piece was used. The results are shown in Table 6.
[0082] [表 6] 表 6 [0082] [Table 6] Table 6
Figure imgf000022_0001
本発明に力かる試験番号 45〜58の金属材料は、表 6にみるとおり、 900°Cにおけ る絞り率が 60%以上を有しており、熱間加工性を満足しているとともに、孔食 (pit)発 生時間がいずれも 1000時間以上であり、耐メタルダステイング性に優れる。
Figure imgf000022_0001
As shown in Table 6, the metal materials with test numbers 45 to 58 that are relevant to the present invention have a drawing ratio at 900 ° C of 60% or more, satisfying hot workability, Pitting (pit) departure The birth time is 1000 hours or more, and the metal dusting resistance is excellent.
[0084] これに対して、化学組成が本発明で規定する条件力も外れる試験番号 59および 6 0の金属材料は、表 6にみるとおり、孔食 (pit)発生時間が 1000時間以上であって、 耐メタルダステイング性には優れている力 900°Cにおける絞り率が 60%を下回って おり、熱間加工性に劣る。また、同じく化学組成が本発明で規定する条件力も外れる 試験番号 61の金属材料は、熱間加工性には優れる力 孔食 (pit)発生時間が 200 時間と短ぐ耐メタルダステイング性に劣って 、る。 [0084] In contrast, as shown in Table 6, the metal materials with test numbers 59 and 60 whose chemical composition deviates from the conditional force defined in the present invention had a pitting time (pit) generation time of 1000 hours or more. Excellent strength in metal dusting resistance The drawing rate at 900 ° C is less than 60%, which is inferior in hot workability. Similarly, the metal composition of Test No. 61 whose chemical composition also deviates from the conditional force specified in the present invention is superior in hot workability and has poor metal dusting resistance with a short pit occurrence time of 200 hours. And
産業上の利用可能性  Industrial applicability
[0085] 本発明の金属材料は、浸炭性ガスと金属の表面反応を抑制する効果を有しており 、耐メタルダステイング性に優れているので、石油精製や石油化学プラントなどにお ける分解炉、改質炉、加熱炉、熱交翻などの素材に利用することができ、装置の耐 久性ゃ操業効率を大幅に向上させることができる。 [0085] The metal material of the present invention has an effect of suppressing the surface reaction between the carburizing gas and the metal, and is excellent in metal dusting resistance. It can be used for materials such as furnaces, reforming furnaces, heating furnaces, and heat exchangers, and the durability of the equipment can greatly improve the operation efficiency.

Claims

請求の範囲 The scope of the claims
[1] 質量0 /0で、 C:0.01〜0.4%、 Si:0.01〜2.5%、 Mn:0.01〜2.5%、 Cr:15 〜35%、 Ni:20〜65%、 Cu:0.05〜20%、 S:0. 1%以下、 N:0.25%以下及び 0(酸素) :0.02%以下並びに P:0.05%を超え 0.3%以下、 Sb:0.001〜1%及 び Bi:0.001〜0.5%のうちの 1種又は 2種以上を含有し、残部は Fe及び不純物か らなることを特徴とする耐メタルダステイング性に優れた金属材料。 [1] in a weight 0/0, C: 0.01~0.4% , Si: 0.01~2.5%, Mn: 0.01~2.5%, Cr: 15 ~35%, Ni: 20~65%, Cu: 0.05~20% , S: 0. 1% or less, N: 0.25% or less and 0 (oxygen): 0.02% or less, P: more than 0.05% and 0.3% or less, Sb: 0.001-1% and Bi: 0.001-0.5% A metal material excellent in metal dusting resistance, characterized by containing one or more of the above, with the balance being Fe and impurities.
[2] 質量%で、さらに、 Nd:0.001-0.15%を含有することを特徴とする、請求項 1に 記載の耐メタルダステイング性に優れた金属材料。  [2] The metal material having excellent metal dusting resistance according to claim 1, further comprising Nd: 0.001-0.15% by mass%.
[3] 次に示す第 1グループから第 6グループまでのうちの少なくとも 1つのグループの中 力 選択される成分のうちの少なくとも 1種をさらに含有することを特徴とする、請求項 1又は 2に記載の耐メタルダステイング性に優れた金属材料。  [3] According to claim 1 or 2, further comprising at least one of the components selected from at least one of the following groups 1 to 6: Metal materials with excellent metal dusting resistance as described.
第 1グループ:質量%で、 Co: 10%以下、  1st group: mass%, Co: 10% or less,
第 2グループ:質量%で、 Mo: 3%以下及び W: 6%以下、  Second group:% by mass, Mo: 3% or less and W: 6% or less,
第 3グループ:質量%で、 Ti: 1%以下及び Nb: 2%以下、  Third group:% by mass, Ti: 1% or less and Nb: 2% or less,
第 4グループ:質量%で、 B:0.1%以下、 Zr:l.2%以下及び Hf:0.5%以下、 第 5グループ:質量%で、 Mg:0.1%以下、 Ca:0. 1%以下及び A1:0.8%以下、 第 6グループ:質量%で、 Y:0.15%以下、 La:0.15%以下及び Ce:0.15%以下  Group 4:% by mass, B: 0.1% or less, Zr: 1% or less and Hf: 0.5% or less, Group 5:% by mass, Mg: 0.1% or less, Ca: 0.1% or less and A1: 0.8% or less, Group 6:% by mass, Y: 0.15% or less, La: 0.15% or less, and Ce: 0.15% or less
PCT/JP2007/050101 2006-01-11 2007-01-09 Metallic material having excellent metal dusting resistance WO2007080856A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DK07706448.3T DK1975267T3 (en) 2006-01-11 2007-01-09 Metal material with excellent resistance to metal dusting / high temperature corrosion
CN2007800023001A CN101370951B (en) 2006-01-11 2007-01-09 Metal material having excellent metal dusting resistance
CA002636624A CA2636624A1 (en) 2006-01-11 2007-01-09 Metal material having excellent metal dusting resistance
EP07706448.3A EP1975267B1 (en) 2006-01-11 2007-01-09 Metallic material having excellent metal dusting resistance
US12/216,790 US20080279716A1 (en) 2006-01-11 2008-07-10 Metal material having excellent metal dusting resistance

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006003481A JP4687467B2 (en) 2006-01-11 2006-01-11 Metal material with excellent workability and metal dusting resistance
JP2006-003481 2006-01-11
JP2006-003479 2006-01-11
JP2006003479A JP4692289B2 (en) 2006-01-11 2006-01-11 Metal material with excellent metal dusting resistance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/216,790 Continuation US20080279716A1 (en) 2006-01-11 2008-07-10 Metal material having excellent metal dusting resistance

Publications (1)

Publication Number Publication Date
WO2007080856A1 true WO2007080856A1 (en) 2007-07-19

Family

ID=38256262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050101 WO2007080856A1 (en) 2006-01-11 2007-01-09 Metallic material having excellent metal dusting resistance

Country Status (5)

Country Link
US (1) US20080279716A1 (en)
EP (1) EP1975267B1 (en)
CA (1) CA2636624A1 (en)
DK (1) DK1975267T3 (en)
WO (1) WO2007080856A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100172790A1 (en) * 2007-06-26 2010-07-08 Heike Hattendorf Iron-nickel-chromium-silicon alloy
EP2246454A1 (en) * 2008-02-27 2010-11-03 Sumitomo Metal Industries, Ltd. Carburization-resistant metal material
WO2015129631A1 (en) * 2014-02-26 2015-09-03 新日鐵住金株式会社 Welded joint

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100577844C (en) * 2005-04-04 2010-01-06 住友金属工业株式会社 Austenitic stainless steel
CN101921967A (en) * 2010-08-12 2010-12-22 江苏新华合金电器有限公司 Novel austenitic heat-resistance stainless steel
DE102011077893A1 (en) * 2011-06-21 2012-12-27 Robert Bosch Gmbh Use of a hot gas corrosion resistant ductile alloy
JP5146576B1 (en) 2011-08-09 2013-02-20 新日鐵住金株式会社 Ni-base heat-resistant alloy
EP2829628B1 (en) 2012-03-23 2020-03-04 Kubota Corporation Cast product having alumina barrier layer, and method for manufacturing same
US9399807B2 (en) 2012-04-30 2016-07-26 Haynes International, Inc. Acid and alkali resistant Ni—Cr—Mo—Cu alloys with critical contents of chromium and copper
US9394591B2 (en) 2012-04-30 2016-07-19 Haynes International, Inc. Acid and alkali resistant nickel-chromium-molybdenum-copper alloys
CN102912188A (en) * 2012-11-15 2013-02-06 江苏新亚特钢锻造有限公司 Laser cladding nickel-based alloy powder and preparation method thereof
EP2746414B1 (en) 2012-12-19 2019-12-11 Haynes International, Inc. Acid and alkali resistant ni-cr-mo-cu alloys with critical contents of chromium and copper
RU2579710C1 (en) * 2015-05-20 2016-04-10 Байдуганов Александр Меркурьевич High-temperature alloy
RU2581317C1 (en) * 2015-05-25 2016-04-20 Байдуганов Александр Меркурьевич High-temperature alloy
RU2581322C1 (en) * 2015-05-25 2016-04-20 Байдуганов Александр Меркурьевич High-temperature alloy
RU2581318C1 (en) * 2015-06-01 2016-04-20 Байдуганов Александр Меркурьевич High-temperature alloy
RU2581323C1 (en) * 2015-06-01 2016-04-20 Байдуганов Александр Меркурьевич High-temperature alloy
JP6250895B2 (en) * 2015-06-04 2017-12-20 トヨタ自動車株式会社 Austenitic heat-resistant cast steel
RU2632497C2 (en) * 2016-02-10 2017-10-05 Байдуганов Александр Меркурьевич Heat-resistant alloy
RU2635411C2 (en) * 2016-04-11 2017-11-13 Байдуганов Александр Меркурьевич Heat-resistant alloy
RU2614973C1 (en) * 2016-04-25 2017-03-31 Байдуганов Александр Меркурьевич Refractory alloy
CA2930827A1 (en) * 2016-05-25 2017-11-25 Nova Chemicals Corporation Furnace coil modified fins
RU2630101C1 (en) * 2016-05-30 2017-09-05 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" АО "НПО "ЦНИИТМАШ" Method for melting high-chromium steels and alloys in open induction furnaces
RU2647052C1 (en) * 2017-05-04 2018-03-13 Юлия Алексеевна Щепочкина Steel
RU2693417C1 (en) * 2019-02-08 2019-07-02 Сергей Васильевич Афанасьев Heat-resistant alloy of austenite structure with intermetallic hardening
RU2700346C1 (en) * 2019-06-13 2019-09-16 Сергей Васильевич Афанасьев Heat-resistant alloy
WO2021066142A1 (en) * 2019-10-03 2021-04-08 東京都公立大学法人 Heat-resistant alloy, heat-resistant alloy powder, heat-resistant alloy molded article, and method for producing same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366832A (en) 1976-11-27 1978-06-14 Babcock Hitachi Kk Method of preventing carburizing by preeoxidation of hk40 low si material
JPS5366835A (en) 1976-11-27 1978-06-14 Babcock Hitachi Kk Method of preventing carburizing of 25crr35ni low si material
JPS5743989A (en) 1980-08-28 1982-03-12 Sumitomo Metal Ind Ltd Carburizing preventing method for heat resistant steel
JPH0978204A (en) 1995-09-18 1997-03-25 Chiyoda Corp Metallic material
JPH1129776A (en) 1997-07-11 1999-02-02 Kubota Corp Pyrolysis reaction pipe for preparation of ethylene
JPH11172473A (en) 1997-09-19 1999-06-29 Haldor Topsoee As Corrosion resistance of high-temperature alloy
JP2000509105A (en) 1996-04-30 2000-07-18 ウエスタイン・テクノロジーズ・インコーポレイテッド Surface alloyed high temperature alloy
JP2003073763A (en) 2001-06-19 2003-03-12 Sumitomo Metal Ind Ltd Metal material having metal dusting resistance
JP2003247049A (en) * 2002-02-20 2003-09-05 Daido Steel Co Ltd Austenite-containing free cutting stainless steel
JP2005048284A (en) * 2003-07-17 2005-02-24 Sumitomo Metal Ind Ltd Stainless steel having carburization resistance and calking resistance, and stainless steel pipe thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100401951B1 (en) * 1999-01-28 2003-10-17 스미토모 긴조쿠 고교 가부시키가이샤 Machine structural steel product
JP4280898B2 (en) * 2002-12-18 2009-06-17 住友金属工業株式会社 Metal dusting metal material with excellent high temperature strength
DK1717330T3 (en) * 2004-02-12 2018-09-24 Nippon Steel & Sumitomo Metal Corp METAL PIPES FOR USE IN CARBON GASA MOSPHERE

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366832A (en) 1976-11-27 1978-06-14 Babcock Hitachi Kk Method of preventing carburizing by preeoxidation of hk40 low si material
JPS5366835A (en) 1976-11-27 1978-06-14 Babcock Hitachi Kk Method of preventing carburizing of 25crr35ni low si material
JPS5743989A (en) 1980-08-28 1982-03-12 Sumitomo Metal Ind Ltd Carburizing preventing method for heat resistant steel
JPH0978204A (en) 1995-09-18 1997-03-25 Chiyoda Corp Metallic material
JP2000509105A (en) 1996-04-30 2000-07-18 ウエスタイン・テクノロジーズ・インコーポレイテッド Surface alloyed high temperature alloy
JPH1129776A (en) 1997-07-11 1999-02-02 Kubota Corp Pyrolysis reaction pipe for preparation of ethylene
JPH11172473A (en) 1997-09-19 1999-06-29 Haldor Topsoee As Corrosion resistance of high-temperature alloy
JP2003073763A (en) 2001-06-19 2003-03-12 Sumitomo Metal Ind Ltd Metal material having metal dusting resistance
JP2003247049A (en) * 2002-02-20 2003-09-05 Daido Steel Co Ltd Austenite-containing free cutting stainless steel
JP2005048284A (en) * 2003-07-17 2005-02-24 Sumitomo Metal Ind Ltd Stainless steel having carburization resistance and calking resistance, and stainless steel pipe thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1975267A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100172790A1 (en) * 2007-06-26 2010-07-08 Heike Hattendorf Iron-nickel-chromium-silicon alloy
EP2246454A1 (en) * 2008-02-27 2010-11-03 Sumitomo Metal Industries, Ltd. Carburization-resistant metal material
EP2246454A4 (en) * 2008-02-27 2014-01-22 Nippon Steel & Sumitomo Metal Corp Carburization-resistant metal material
WO2015129631A1 (en) * 2014-02-26 2015-09-03 新日鐵住金株式会社 Welded joint
JPWO2015129631A1 (en) * 2014-02-26 2017-03-30 新日鐵住金株式会社 Welded joint

Also Published As

Publication number Publication date
EP1975267B1 (en) 2013-07-03
EP1975267A4 (en) 2012-04-25
CA2636624A1 (en) 2007-07-19
DK1975267T3 (en) 2013-07-29
US20080279716A1 (en) 2008-11-13
EP1975267A1 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
WO2007080856A1 (en) Metallic material having excellent metal dusting resistance
JP5177330B1 (en) Carburization-resistant metal material
JP4329883B1 (en) Carburization-resistant metal material
US6623869B1 (en) Metal material having good resistance to metal dusting
JP4692289B2 (en) Metal material with excellent metal dusting resistance
KR100473039B1 (en) Ni-base heat resistant alloy excellent in weldability and strength at elavated temperature, weld joint using the same, and tube for ethylene cracking furnace or reformer furnace using the same
JPWO2005078148A1 (en) Metal tube for use in carburizing gas atmosphere
JP4687467B2 (en) Metal material with excellent workability and metal dusting resistance
JP2008214734A (en) Metallic material having excellent metal dusting resistance
JP4280898B2 (en) Metal dusting metal material with excellent high temperature strength
JP4415544B2 (en) Metal dusting metal material with excellent high temperature strength

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007706448

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2636624

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200780002300.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE