WO2007080733A1 - ロボットアームの制御装置及び制御方法、ロボット、及びプログラム - Google Patents

ロボットアームの制御装置及び制御方法、ロボット、及びプログラム Download PDF

Info

Publication number
WO2007080733A1
WO2007080733A1 PCT/JP2006/324741 JP2006324741W WO2007080733A1 WO 2007080733 A1 WO2007080733 A1 WO 2007080733A1 JP 2006324741 W JP2006324741 W JP 2006324741W WO 2007080733 A1 WO2007080733 A1 WO 2007080733A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot arm
information
characteristic
control device
impedance
Prior art date
Application number
PCT/JP2006/324741
Other languages
English (en)
French (fr)
Inventor
Yasunao Okazaki
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CN2006800235689A priority Critical patent/CN101213052B/zh
Priority to US11/919,578 priority patent/US7558647B2/en
Priority to JP2007516130A priority patent/JP4056080B2/ja
Publication of WO2007080733A1 publication Critical patent/WO2007080733A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39343Force based impedance control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40198Contact with human allowed if under pain tolerance limit
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40201Detect contact, collision with human
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41387Observe reference torque, position and feedback position, estimate contact force

Definitions

  • the present invention relates to a robot arm control device and control method, a robot having a robot arm control device, which controls a robot arm of a robot that may be in physical contact with a human, such as a home robot. And a robot arm control program.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-329071
  • the conventional control device described above only reduces the restoring force when a large force is applied to the robot arm. Therefore, the tray is gripped by the robot arm and an object is placed on the tray. When the robot arm is placed, there is a danger that the robot arm will move due to contact between the robot arm and a person, causing the tray to tilt and dropping the object placed on the tray.
  • the mouth bot arm is holding a hard object or an object with a sharp corner, only by reducing the restoring force, the hard object or the object with a sharp corner moves due to contact with a human and touches the robot arm. There is a danger of colliding and damaging humans, other nearby humans, or other objects such as furniture.
  • An object of the present invention is to solve the problems of the conventional control device described above, and to Even if contact occurs, it does not cause contact damage to humans, and the robot arm moves by contact, and does not drop the gripped object or touch other people or other objects to cause damage.
  • Another object of the present invention is to provide a robot arm control device and method, a robot, and a robot arm control program that can realize safe robot control. Means for solving the problem
  • the present invention is configured as follows.
  • a robot arm control device comprising:
  • An object property database in which information on the transport characteristics of the object being transported by the robot arm is recorded
  • Object characteristic responsive impedance setting means for setting a mechanical impedance set value of the robot arm based on the information in the object characteristic database
  • a robot arm control device comprising: an impedance control means for controlling a mechanical impedance value of the robot arm to the mechanical impedance set value set by the object characteristic responsive impedance setting means.
  • a method for controlling a robot arm comprising:
  • the robot arm control method is characterized in that the mechanical impedance value of the robot arm is controlled to the set mechanical impedance setting value.
  • the robot arm
  • a robot characterized by comprising any one of the first to sixteenth forces for controlling the robot arm.
  • An object characteristic responsive impedance setting means for setting the mechanical impedance setting value of the robot arm based on information on the transport characteristics of the object being transported by the robot arm;
  • the impedance control for controlling the mechanical impedance value of the robot arm to the mechanical impedance set value set by the object characteristic responsive impedance setting means.
  • a robot arm control program for functioning as a control means is provided.
  • the object conveyed by the robot arm by having the object characteristic database, the object characteristic responsive impedance setting means, and the impedance control means.
  • the mechanical impedance setting value of the robot arm is set appropriately according to the transport characteristics of the robot, so that even if contact with a person occurs, the robot arm moves without touching the person and causing contact damage!
  • the mechanical impedance setting value of the robot arm is set based on the information on the transport characteristics of the object transported by the robot arm.
  • the mechanical impedance setting value of the robot arm is set appropriately according to the transport characteristics of the object to be transported. Therefore, even if contact with humans occurs, contact damage to humans will not be caused, and the robot arm will move due to contact, causing objects to be transported to fall or touching other humans or other objects. This makes it possible to control the robot safely without damaging it.
  • FIG. 1 is a block diagram showing a concept of a control device in a first embodiment of the present invention.
  • Fig. 2 is a diagram showing a hard configuration of a control device for a robot arm in a first embodiment of the present invention and a detailed configuration of a robot arm to be controlled.
  • FIG. 3 is a block diagram showing a configuration of impedance control means of the control device according to the first embodiment of the present invention
  • FIG. 4 is a diagram for explaining the characteristic list of the object characteristic database.
  • FIG. 5 is a flowchart showing operation steps of a control program in impedance control means of the control device in the first embodiment of the present invention.
  • FIG. 6 is a flowchart showing the overall operation steps of the control device in the first embodiment of the present invention.
  • FIG. 7A is a diagram for explaining the operation of the robot arm that is the control target of the robot arm control device according to the first embodiment of the present invention
  • FIG. 7B is a diagram for explaining the operation of the robot arm that is the control target of the control device for the robot arm in the first embodiment of the present invention.
  • FIG. 7C is a diagram for explaining the operation of the robot arm that is the control target of the control device for the robot arm according to the first embodiment of the present invention.
  • FIG. 7D is a diagram for explaining the operation of the robot arm that is the control target of the control device for the robot arm according to the first embodiment of the present invention.
  • FIG. 8 is a diagram for explaining a gripping rule table in the object property database.
  • FIG. 9 is a diagram illustrating a gripping operation by a robot arm that is a control target of the robot arm control device according to the second embodiment of the present invention.
  • FIG. 10 is a diagram for explaining another gripping rule table of the object property database
  • FIG. 11 is a diagram illustrating the configuration of impedance control means of the control device according to the third embodiment of the present invention.
  • FIG. 12 is a diagram for explaining another gripping operation by the robot arm that is a control target of the control device for the robot arm according to the second embodiment of the present invention.
  • FIG. 13 is a diagram for explaining a target trajectory of the control device for the robot arm in the first embodiment of the present invention.
  • FIG. 14 is a block diagram for explaining details of the object characteristic collecting means in the first embodiment of the present invention.
  • FIG. 15 is a diagram for explaining the effect of the control device for the robot arm in the first embodiment of the present invention.
  • a robot arm control device comprising:
  • An object property database in which information on the transport characteristics of the object being transported by the robot arm is recorded
  • Object characteristic responsive impedance setting means for setting a mechanical impedance set value of the robot arm based on the information in the object characteristic database
  • a robot arm control device comprising: an impedance control means for controlling a mechanical impedance value of the robot arm to the mechanical impedance set value set by the object characteristic responsive impedance setting means.
  • the robot arm control device according to the first aspect is further provided with an object characteristic collection means.
  • the impedance control means includes contact detection means for detecting contact of a person or an object with the robot arm, and the robot arm is connected to the person or the object.
  • the mechanical impedance value of the robot arm is controlled to the mechanical impedance setting value set by the object characteristic responsive impedance setting means.
  • the robot arm according to the first or second aspect, Provide a control device.
  • the characteristic responsive impedance setting means sets the mechanical impedance in the six-dimensional directions of the translational and rotational directions of the hand of the robot arm based on the information in the object characteristic database.
  • a robot arm control device according to the first or second aspect is provided in which values are individually set.
  • the characteristic responsive impedance setting means is configured such that the robot arm is configured so that the translation direction of the hand has a low rigidity and the rotation direction has a higher rigidity than the translation direction. It is set to keep the above-mentioned object being transported horizontally
  • a robot arm control device according to a fourth aspect is provided.
  • the object characteristic database has physical characteristic information of the object carried by the robot arm, and the characteristic responsive impedance setting means includes the object characteristic database.
  • the robot arm control device according to the first or second aspect is characterized in that the machine impedance set value is set based on the physical characteristic information.
  • the object characteristic database has attribute information of the object carried by the robot arm
  • the characteristic responsive impedance setting means includes the object characteristic database
  • the robot arm control device according to the first or second aspect, wherein the mechanical impedance setting value is set based on the attribute information.
  • the object characteristic database includes weight information of the object carried by the robot arm as physical characteristic information of the object carried by the robot arm.
  • the characteristic responsive impedance setting means sets the mechanical impedance setting value based on the weight information of the object characteristic database.
  • the object characteristic database includes dimensional information of the object carried by the robot arm as the physical characteristic information! /, And the characteristic responsive impedance setting.
  • the means provides the control device for the robot arm according to the sixth aspect, wherein the mechanical impedance setting value is set based on the dimensional information.
  • the object characteristic database has the hardness information of the object carried by the robot arm as the physical characteristic information, and the characteristic responsive impedance setting means.
  • the mechanical impedance set value is set based on the hardness information of the object characteristic database.
  • the object characteristic database has constraint condition information on the position and orientation of the object carried by the robot arm as the physical characteristic information, and the characteristic response
  • the impedance setting means is the above-mentioned object property database.
  • the robot arm control device wherein the mechanical impedance setting value is set based on position and posture constraint condition information.
  • the object position and posture constraint condition information of the object characteristic database is based on a relative relationship between the positions and postures of a plurality of objects simultaneously carried by the robot arm.
  • the robot arm control device according to the eleventh aspect, characterized in that the information is constraint information on the set position and posture of the object.
  • the constraint condition information on the position and orientation of the object included in the object characteristic database is the information on the object set based on the ambient environment information of the object being transported.
  • An apparatus for controlling a robot arm according to an eleventh aspect is provided, which is positional and posture constraint condition information.
  • the object characteristic database includes risk information of the object to be conveyed as attribute information of the object
  • the characteristic responsive impedance setting means includes
  • the robot arm control device according to the seventh aspect, wherein the machine impedance set value is set based on the risk information of the object characteristic database.
  • the risk information included in the object characteristic database is risk information set based on ambient environment information of the object being transported.
  • the robot arm control device according to the fourteenth aspect is provided.
  • the object characteristic database includes importance information of the object to be conveyed as attribute information of the object
  • the characteristic responsive impedance setting means includes the object
  • the robot arm control device according to the seventh aspect, wherein the machine impedance set value is set based on the importance information in the characteristic database.
  • a robot arm control method comprising:
  • the mechanical impedance of the robot arm is added to the set mechanical impedance setting value.
  • a robot arm control method characterized by controlling the value of the impedance.
  • the robot arm
  • a robot characterized by comprising any one of the first to sixteenth forces for controlling the robot arm.
  • An object characteristic responsive impedance setting means for setting the mechanical impedance setting value of the robot arm based on information on the transport characteristics of the object being transported by the robot arm;
  • a robot arm control program for causing the mechanical impedance set value set by the object characteristic responsive impedance setting means to function as an impedance control means for controlling the mechanical impedance value of the robot arm.
  • FIG. 1 is a block diagram showing the concept of the robot arm control device 1 in the first embodiment of the present invention.
  • reference numeral 2 denotes an object characteristic database, which includes physical characteristic information and attribute information as an example of object characteristic data of a transported object that is transported by a robot arm 5 described later, for example, an object transported while gripping (gripped object) 38.
  • Transport characteristic information for example, gripping characteristic information is recorded, and when an object 38 to be gripped is specified, the characteristic data of the object 38 is sent to the object characteristic responsive impedance setting means 3. Yes.
  • the physical property information is property information determined physically, physically, and geometrically, such as the shape, size (dimension), weight, or temperature of an object.
  • the attribute information of the object is secondary characteristic information generated from a conceptual characteristic or a physical characteristic such as a risk level or an importance level.
  • [0040] 3 is an object characteristic responsive impedance setting means for setting the mechanical impedance setting value of the robot arm 5, that is, the setting value of rigidity and viscosity, based on the characteristic information regarding the gripped object in the object characteristic database 2.
  • [0041] 4 is an impedance control means, and an impedance control operation for controlling the mechanical impedance value of each joint portion of the robot arm 5 so that the mechanical impedance set value set by the object characteristic response impedance setting means 3 is obtained. I do.
  • FIG. 2 is a diagram showing a hardware configuration of the robot arm control device 1 and a detailed configuration of the robot arm 5 to be controlled.
  • the control device 1 is composed of a general personal computer in terms of hardware, and includes an input / output IF (interface) for the object characteristic database 2, the object characteristic responsive impedance setting means 3, and the impedance control means 4.
  • the parts other than 19 are realized in software as a control program 17 executed on a personal computer.
  • the input / output IF 19 includes a DZA board 20, an AZD board 21, and a counter board 22 connected to an expansion throttle such as a PCI bus of a personal computer.
  • the control program 17 for controlling the operation of the robot arm 5 is executed, so that the control device 1 functions, and joint angle information output from an encoder 43 (described later) of each joint portion of the robot arm 5 Are taken into the control device 1 through the counter board 22, and the control device 1 calculates the control command value for the rotational movement of each joint.
  • the calculated control command values are given to the motor driver 18 through the DZA board 20, and the motor 42 (described later) of each joint portion of the robot arm 5 is driven according to the control command values sent from the motor driver 18. Is done.
  • a hand drive motor 62 (actually disposed inside the hand 6 of the robot arm 5) as an example of a hand drive device that is driven and controlled by the motor driver 18, and a hand drive motor 62
  • the hand 6 further includes an encoder 63 (actually disposed inside the hand 6 of the robot arm 5) that detects the rotational phase angle (ie, the joint angle) of the rotary shaft of the Based on the rotation angle detected at 63, the rotation of the hand drive motor 62 is driven and controlled via the motor driver 18 by the control signal from the hand control means 200 of the impedance control means 4 of the control device 1 and the hand.
  • the hand 6 can be opened and closed by rotating the rotating shaft of the drive motor 62 forward and backward.
  • the robot arm 5 is a multi-link manipulator having 6 degrees of freedom, and the hand 6, a forearm link 8 having a wrist 7 to which the hand 6 is attached, and the forearm link 8 are rotatably connected.
  • the upper arm link 9 has a base portion 10 on which the upper arm link 9 is rotatably connected and supported.
  • the platform 10 may be fixed at a fixed position, but may be connected to a movable moving device to be movable.
  • the wrist part 7 has three rotation axes, a fourth joint part 14, a fifth joint part 15, and a sixth joint part 16 and changes the relative posture (orientation) of the hand 6 with respect to the upper arm link 9. be able to. That is, in FIG.
  • the fourth joint portion 14 can change the relative posture around the horizontal axis of the hand 6 with respect to the wrist portion 7, and the fifth joint portion 15 can change the hand 6 with respect to the wrist portion 7.
  • the relative posture around the vertical axis perpendicular to the horizontal axis of the fourth joint part 14 can be changed.
  • the sixth joint part 16 is the horizontal axis of the fourth joint part 14 of the hand 6 with respect to the wrist part 7.
  • the relative posture around the horizontal axis orthogonal to the vertical axis of the fifth joint portion 15 can be changed.
  • the other end of the forearm link 8 is rotatable around the third joint portion 13 with respect to the tip of the upper arm link 9, that is, around the horizontal axis parallel to the horizontal axis of the fourth joint portion 14.
  • the end is rotatable with respect to the base 10 around the second joint 12, that is, around the horizontal axis parallel to the horizontal axis of the fourth joint 14, and the upper movable part of the base 10 is below the base 10. It can rotate around the first joint 11 with respect to the side fixing portion, that is, around the vertical axis parallel to the vertical axis of the fifth joint 15. As a result, the robot arm 5 can rotate around a total of six axes to constitute the multi-link manipulator with the six degrees of freedom.
  • a motor 42 (actually an example of a rotary drive device provided in one member of each joint portion and driven and controlled by a motor driver 18 described later is provided in each joint portion constituting the rotating portion of each shaft.
  • an encoder 43 (actually, the robot arm 5 is disposed inside each joint of the robot arm 5) and a rotational phase angle (ie, joint angle) of the rotation axis of the motor 42.
  • the rotation shaft of the motor 42 provided in one member is connected to the other member to rotate the rotation shaft forward and backward.
  • 35 is an absolute coordinate system whose relative positional relationship is fixed with respect to the lower fixed portion of the base 10, and 36 is a hand coordinate system whose relative positional relationship is fixed with respect to the hand 6. It is.
  • the origin position Oe (x, y, z) of the hand coordinate system 36 viewed from the absolute coordinate system 35 is the hand position of the robot arm 5, and the posture of the hand coordinate system 36 viewed from the absolute coordinate system 35 is the roll angle and pitch.
  • the vertical axis of the first joint portion 11 can be parallel to the ⁇ axis of the absolute coordinate system 35, and the horizontal axis of the second joint portion 12 can be parallel to the X axis.
  • the horizontal axis of the sixth joint portion 16 can be positioned parallel to the X axis of the hand coordinate system 36, and the horizontal axis of the fourth joint portion 14 can be positioned parallel to the y axis.
  • the vertical axis of the fifth joint 15 can be positioned parallel to the axis.
  • the rotation angle with respect to the X axis of the hand coordinate system 36 is defined as a single angle ⁇
  • the rotation angle with respect to the y axis is defined as a pitch angle
  • the rotation angle with respect to the z axis is defined as a roll angle ⁇ .
  • Reference numeral 50 denotes an object characteristic collecting unit that collects characteristic data of an object held by the robot arm 5 and inputs and updates it in the object characteristic database 2.
  • the object characteristic collecting means 50 as will be described later, the image data from the image capturing device 44 such as a camera, the gripping object 38 read by the reading means 34 (for example, the RF tag receiver 54).
  • Information on the RF tag 33 and object characteristic data from the article information database 47 in an external web server are input through the Internet 46, and the input data or information is appropriately input and updated in the object characteristic database 2.
  • the object characteristic collecting means 50 is connected to the counter board 22 so that the joint angle information output from the encoder 43 of each joint portion of the robot arm 5 and the information such as the object weight from the impedance control means 4 can be obtained. Is also entered.
  • the details of the object characteristic collecting means 50 are shown in FIG.
  • [0051] 45 is an image recognition means, which performs image recognition from the image data of the image pickup device 44 such as a camera, extracts the size of the gripping object 38, and outputs it to the object characteristic database 2.
  • the image recognition unit 45 sends the information on the relative positional relationship of the plurality of gripping objects obtained from the image recognition result of the image recognition unit 45 to the gripping state detection unit 53 as an example of the transport state detection unit described later. Output.
  • Reference numeral 48 denotes an object weight estimating means for estimating the weight of the grasped object 38.
  • an object weight estimating means for estimating the weight of the grasped object 38.
  • the force estimator is used to calculate the torque ⁇ generated at each joint when 5 holds the object and is stationary.
  • the torque required for the robot arm 5 to maintain its position and posture is obtained from the equation of motion of the robot arm, and the torque value after subtraction is converted into the force acting on the hand to obtain the object weight.
  • Reference numeral 49 denotes an attribute data input IF (interface), which is an interface for humans to input attribute data (attribute information) using an input device such as a keyboard, mouse, or microphone.
  • attribute data input IF interface
  • an input device such as a keyboard, mouse, or microphone.
  • Reference numeral 51 denotes interference determination means, which is a map of arrangement information of walls, furniture, etc. existing in the environment around the robot arm 5, and is based on the environment map information accumulated in the environment map database 52 and the impedance control means 4. Based on the input position and orientation information of the robot arm 5, the interference relationship between the robot arm 5 and the wall, furniture, etc. is judged, and the attribute information in the object property database 2 is set and changed.
  • [0055] 53 is a gripping state detection unit as an example of a transporting state detection unit.
  • a relative number of a plurality of gripping objects obtained from an image recognition result of the image recognition unit 45 is shown.
  • ID data information
  • ID data information
  • the gripping state detection means 53 has a gripping state table that represents the relationship between the combination of objects and the gripping state, and when a combination of information is obtained, the gripping state table is referenced to infer the gripping state. .
  • the gripping state table for example, in the case of a combination of a tray and another object, the gripping state in which the object is placed on the tray is recorded! /, A plurality of general gripping rules are recorded. .
  • the object characteristic collecting means 50 is connected to the image recognition device 45 connected to the image capturing device 44 such as a camera and the object characteristic database 2, the impedance control means 4 and the object characteristic database 2.
  • Object weight estimation means 48, impedance control means 4 and interference determination means 51 connected to the object characteristic database 2, environment map database 52 connected to the interference determination means 51, object characteristic database 2 and keyboard or mouse Attribute data input IF (interface) 49 connected to an input device (not shown) such as a microphone, RF tag receiver 54, image recognition means 45, and object characteristic database 2 are connected
  • the gripping state detection means 53 is provided, and each means and member perform the respective functions, and the information of the RF tag 33 of the gripped object 38 read by the RF tag receiver 54 is input to the object characteristic database 2.
  • it also has a function of accessing the article information database 47 on the external web through the Internet 46 and inputting the object characteristic data into the object characteristic database 2.
  • the object characteristic database 2 for example, information on various objects 38 existing indoors where the robot arm 5 is installed is registered in advance. Each object 38 is provided with an RF tag 33, and HD information such as an individual ID number is recorded on the RF tag 33.
  • the hand 6 of the robot arm 5 is provided with a reading means 34 (for example, an RF tag receiver 54) of the RF tag 33, and is controlled via a motor driver 18 by a control signal from the impedance control means 4 of the control device 1.
  • the hand 6 When the hand 6 is opened and closed by the rotational drive control of the motor 62 for driving the motor and the hand 6 of the robot arm 5 grips the object 38, the information on the RF tag 33 of the gripped object 38 is read by the reading means 34. Then, the ID number of the grasped object 38 is specified by the reading means 34, and the ID number information of the grasped object 38 is input to the object characteristic database 2 via the object characteristic collecting means 50. Then, the object characteristic database 2 sends the characteristic data of the object 38 corresponding to the specified identified ID number to the object characteristic responsive impedance setting means 3.
  • the information held in the object characteristic database 2 is recorded with individual object characteristic data in the form of a physical characteristic information and attribute information characteristic list 30 as shown in FIG.
  • the characteristic data for each object includes the ID number of each object, the weight information, dimensional information, and hardness information of the object as an example of the physical characteristic information corresponding to the ID number. It is composed of risk information as an example of sex information.
  • the weight information, dimension information, hardness information, and risk information data are measured and evaluated in advance, and stored in the object property database 2 as a database.
  • the image recognition by the image recognition means 45 is performed based on the image data obtained by the image pickup device 44.
  • the image recognition by the image recognition means 45 is performed based on the image data obtained by the image pickup device 44.
  • the object weight estimation means 48 The weight of the object 38 held by the robot arm 5 can be estimated, and new weight information can be stored in the object characteristic database 2.
  • the object weight estimating means 48 an increase in the weight of the object due to the injected water can be estimated by the object weight estimating means 48, so that the increase or decrease of the weight can be estimated. It is also possible to update the weight information by
  • a five-level evaluation of levels 1 to 5 is performed according to the hardness of the gripping object 38.
  • the evaluation value is based on the material of the object 38.
  • an object made of metal has the highest hardness ⁇ Level 5 ''
  • an object formed of resin such as plastic has a medium ⁇ Level 3 ''
  • An object made of soft paper or towel, such as paper or towel is evaluated as “level 1” with the lowest hardness and recorded as hardness information.
  • the hardness can be evaluated from the viewpoint of fragility.
  • “Level 5” can be considered as a glass cup or pottery that has a high risk of cracking if it is hit by other objects.
  • the risk information in the object characteristic database 2 is recorded, for example, in five levels of evaluation values of levels 1 to 5.
  • an object that is considered to be the most dangerous to handle with the robot arm 5, such as a blade is set to “Level 5” with the highest degree of danger.
  • An object that is considered to be extremely soft and has no danger of harm even if it collides with a person is designated as “Level 1” with the lowest danger level.
  • the interference judging means 51 determines that there is a risk of interference between the object 38 to be grasped and the wall or furniture.
  • whether or not the object 38 to be gripped is close to a wall or furniture for example, If the position information of the object 38 to be grasped is also stored in the environment map information stored in the database 52, the position information should be taken from the environment map database 52, and such position If the information is stored in the environment map database 52, the object 38 to be grasped is picked up by an image pickup device 44 such as a camera, and the obtained image data is recognized by the image recognition means 45. Then, it may be accumulated in the object characteristic database 2 and judged by referring to the accumulated image recognition result and estimating the position information of the object 38 to be gripped by the interference judging means 51.
  • the tray 39 when the tray 39 is gripped by the robot arm 5 and the cup 40 is placed on the tray 39, the robot arm 5 and a human (for example, a hand) If the tray 39 is tilted by contact with (100), the cup 40 may fall from the tray 39 as shown by the arrow 101, so use the ID information such as the ID number of the RF tag 33 by the RF tag receiver 54.
  • the RF tag 33 of the tray 39 and the RF tag 33 of the cup 40 are detected at the same time by the RF tag receiver 54 when the gripped object is detected, or the cup 40 is placed on the tray 39 from the image recognition result of the image recognition means 45.
  • the placed information is obtained as relative positional relationship information, if the cup 40 is carried on the tray 39 and transported, it is inferred by the gripping state detection means 53 and the risk level is set high. (See Figure 14).
  • all the information of the object characteristic database 2 is obtained by accessing the article information database 47 in an external web server or the like through the Internet 46 by the object characteristic collecting means 50. It is also possible to obtain and update each information in the object property database 2.
  • the object characteristic response impedance setting means 3 sets the mechanical impedance setting value of the robot arm 5 according to the grasped object 38 based on the conveyance characteristic information in the object characteristic database 2.
  • Set each parameter of the machine impedance setting value based on the following evaluation formula.
  • K KKmX (Weight [k g]) + KK 1 X (Dimension [m]) +
  • KMm, KM1, KMkKD KMd, KDm, KD1, KDk ⁇ KDd, K Km, KK1, KKk, KKd are gains, and each has a constant value.
  • the object characteristic responsive impedance setting means 3 converts the inertia M, viscosity D, and rigidity K of the mechanical impedance parameters calculated based on the above formulas (1), (2), and (3) to the impedance control means 4. Output.
  • the inertia M is set large by the formula (1).
  • the robot arm 5 has a feeling of weight proportional to the weight of the grasped object 38.
  • a large force is required to move the robot arm 5, and the robot arm 5 is pushed a little by hand. Also stops moving (the generated acceleration is small).
  • the inertia M is set to be small according to the equation (1), and the robot arm 5 has a feeling of weight proportional to the weight of the gripping object 38.
  • the robot arm 5 can move easily with a weak force (the generated acceleration is large).
  • the viscosity D and rigidity K are set so as to increase. Become a movement. Conversely, in the case of an object with a low risk level such as a towel, the viscosity D and rigidity K will be set to be small. Easier to move.
  • the mechanical impedance set value is calculated using the total weight obtained by adding the weights of the objects gripped at the same time.
  • the mechanical impedance set value is calculated using the largest one of the dimensions of the object gripped at the same time.
  • the mechanical impedance set value is calculated using the maximum hardness of the objects simultaneously gripped.
  • the mechanical impedance set value is calculated using the maximum risk level of the objects that are gripped at the same time.
  • FIG. 3 shows a block diagram of the impedance control means 4.
  • the impedance control means 4 is the value of the mechanical impedance of the robot arm to the mechanical impedance setting value of the robot arm 5 set based on the inertia M, viscosity D, and rigidity K settings set by the object characteristic responsive impedance setting means 3. To control.
  • One dance control means 4 is taken in. Where q, q, q, q, q, q, q are
  • Reference numeral 23 denotes target trajectory generating means for outputting a hand position and posture target vector r for realizing the target operation of the robot arm 5. As shown in Figure 13, the target mouth d
  • the road generation means 23 uses polynomial interpolation, complements the trajectory between the points, and generates the hand position and posture target vector r.
  • Reference numeral 24 denotes force estimation means for estimating an external force applied to the robot arm 5 by contact of a human or the like with the robot arm 5.
  • Force S Taken via the counter board 22 and approximate inverse kinematics calculation means described later
  • the joint angle error compensation output u from 28 is taken in.
  • Force estimation means 24 is an observer
  • Torque generated at each joint by external force applied to robot arm 5 [ ⁇ , ⁇
  • T is converted into an equivalent hand external force F at the hand of robot arm 5 and output.
  • V J v (q) q.
  • v [V, V, V, ⁇ , ⁇ , ⁇ ] is a ⁇ , ( ⁇ , ⁇
  • is the translational velocity of the hand of the robot arm 5 in the hand coordinate system 36
  • ( ⁇ , ⁇ , ⁇ ) is the angular velocity of the hand of the robot arm 5 in the hand coordinate system 36.
  • M is the weight of the object being held
  • g is the gravitational acceleration of the object being held.
  • the value of the weight m of the grasped object can be obtained from the object characteristic database 2.
  • the robot arm 5 actually grips and grasps from the estimation result of the equivalent hand external force F of the force estimation means 24 at that time.
  • [0081] 37 is a contact detection means, which observes the equivalent hand external force F estimated by the force estimation means 24,
  • contact detection means 37 When contact is detected by the contact detection means 37, the contact detection means 37 notifies the impedance calculation means 25 that contact has been detected.
  • the impedance calculation means 25 is a part that fulfills the function of realizing the control of the mechanical impedance value of the robot arm to the mechanical impedance set value in the robot arm 5, and the robot arm 5 and humans or other objects. 0 is output during normal operation when contact is not detected by contact detection means 37. On the other hand, when contact between the robot arm 5 and a human or other object is detected by the contact detection means 37 and a contact notification is received from the contact detection means 37, the impedance parameter set by the object characteristic response impedance setting means 3 is used. A certain inertia M, viscosity D, stiffness K, current value q of the joint angle, and external force F estimated by the force estimation means 24.
  • the robot arm 5 calculates and outputs the hand position and posture target correction output r for realizing control of the mechanical impedance value of the robot arm to the mechanical impedance setting value by the following equation (4). . Is added to the hand position and posture target vector r output from the target trajectory generating means 23,
  • [0087] 26 is a forward kinematic calculation means in which the joint angle vector q, which is the current value q of the joint angle measured by the encoder 43 of each joint axis from the robot arm 5, is input via the counter board 22. Yes, geometrical calculation of the conversion from the joint angle vector q of the robot arm 5 to the hand position and posture vector r is performed.
  • Reference numeral 27 denotes position error compensation means, and the hand position and posture vector r calculated by the forward kinematics calculation means 26 from the joint angle vector q measured by the robot arm 5, and the hand position and posture correction target.
  • the error r from the outer r is input, and the position error compensation output u is
  • m out is the output from the inverse kinematics calculation means 28. If the input u is the joint angle error q, q
  • the joint angle error compensation output u is supplied to the motor driver 18 via the DZA board 20 as a voltage.
  • each joint axis is driven to rotate forward and backward by each motor 42, and robot arm 5 operates.
  • the impedance control means 4 configured as described above will be described based on the principle of the impedance control operation of the robot arm 5.
  • the basis of the impedance control operation is feedback control (position control) of the hand position and posture error r by the position error compensation means 27.
  • Control system 29 For example, a PID compensator is used as the position error compensation means 27. Then, the control works so that the hand position and posture error r force ⁇ converges, and the target robot
  • the arm 5 impedance control operation can be realized.
  • the hand position and posture target correction output r is output by the impedance calculation means 25 to the position control system 29 described above. Addition is performed to correct the hand position and posture target values. For this reason, the position control system 29 described above causes the hand position and posture target values to deviate slightly from the original values, and as a result, the value of the mechanical impedance of the robot arm 5 is set appropriately. The operation to control to the set value is realized. Since the hand position and posture target correction output r is calculated by the equation (4), the mechanical impedance values of the inertia M, viscosity D, and stiffness K of the robot arm 5 are controlled to the appropriately set values described above. Operation is realized.
  • Step 1 joint angle data (joint variable vector or joint angle vector q) measured by each encoder 43 is taken into the control device 1.
  • Step 2 the approximate inverse kinematics calculation means 28 calculates the Jacobian behavior necessary for the kinematics calculation of the robot arm 5.
  • step 3 processing by the forward kinematics calculation means 26
  • the current hand position and posture vector of the robot arm 5 are calculated.
  • r is calculated by the forward kinematics calculation means 26.
  • step 4 based on the operation program of the robot arm 5, which is stored in advance in the memory (not shown) of the control device 1, the target trajectory position of the robot arm 10 and Attitude target vector r is calculated.
  • step 5 processing by the force estimation means 24
  • the joint angle data joint angle vector q
  • the joint angle error compensation output u the robot
  • step 6 processing in the contact detection means 37
  • the robot arm 5 and the human arm are calculated by the equivalent hand external force F at the hand of the robot arm 5 calculated by the force estimation means 24.
  • the presence / absence of contact with another object is determined, and if the contact detection means 37 detects that there is contact, the process proceeds to step 7; if it is detected that there is no contact, the process proceeds to step 7 '.
  • step 7 processing by impedance calculation means 25
  • contact detection means 37 detects that the robot arm 5 is in contact with a human or other object
  • the object characteristic response Equivalent hand applied to the robot arm 5 calculated by the force estimation means 24 and inertia M, viscosity D, stiffness K, joint angle data (joint angle vector q) of the mechanical impedance parameters set in the impedance setting means 3 From external force F, hand position and posture ext
  • Target correction output ! Calculated by 1S impedance calculation means 25. Then go to step 8.
  • step 7 processing by the impedance calculation means 25
  • the impedance calculation means 25 Let the hand position and posture target correction output r be 0 vectors. Then go to step 8.
  • step 8 processing by the position error compensation means 27
  • the hand position and posture correction target vector d ⁇ is the sum of the hand position and posture target vector r and the hand position and posture target correction output r.
  • the difference r is calculated by the position error compensation means 27.
  • the position error compensation means 27 As a specific example of the position error compensation means 27, e
  • a PID compensator can be considered. Control is performed so that the position error converges to zero by appropriately adjusting the three gains of proportional, differential, and integral, which are constant diagonal matrices.
  • step 9 processing by the approximate inverse kinematics calculation means 28
  • the approximate inverse kinematics calculation means 28 multiplies the inverse matrix of the Jacobian computed in step 2 to obtain the position.
  • the error compensation output u is calculated from the values related to hand position and posture errors,
  • step 10 the joint angle error compensation output u force approximate inverse kinematics calculation means 2 qe
  • the rotational motion of each joint axis of the robot arm 5 is generated by changing the amount of current flowing from the motor 42 to the motor driver 18 through the DZA board 20 from 8. [0107]
  • the above steps 1 to 10 are repeatedly executed as a control calculation loop, so that the operation of the robot arm 5 is controlled, that is, the value of the mechanical impedance of the robot arm 5 is set appropriately.
  • the operation controlled to the value can be realized.
  • Step A the target trajectory generating means 23 generates a target trajectory for gripping the object 38 with the hand 6 of the robot arm 5, and the robot performs the control flow through Step 7 ′ shown in FIG.
  • the control of the hand position and posture of the arm 5 is executed, and the hand drive motor 62 by the control device 1 is driven and controlled, so that the hand 6 is brought close to the object 38 with the hand 6 open, and the object 38
  • the gripping action of the object 38 can be realized by positioning the hand 6 at a position where the gripper can be gripped and closing the hand 6 to grip the object 38 (see the gripping action shown in FIG. 7A).
  • the position information of the object 38 to be grasped necessary for generating the target trajectory is stored in the environment map database 52 in advance, or the image capturing device 44 and the image recognition means 45 are used. Use to get Rukoto can.
  • the target trajectory for gripping the object 38 is generated from the information on the position where the robot arm 5 is fixed and the position information of the object 38 to be gripped. It can be generated by means 23.
  • the current position information of the robot arm 5 with respect to the reference position is appropriately acquired using, for example, the image pickup device 44 and the image recognition means 45.
  • the target trajectory generating means 23 can generate a target trajectory for gripping the object 38 from the acquired current position information and the position information of the object 38 to be gripped.
  • Step B the information of the RF tag 33 arranged on the object 38 is read by the RF tag receiver 54 arranged on the hand 6, and the ID number of the object 38 is read by the RF tag receiver 54. ID information is identified.
  • step C the characteristic data such as the weight and size of the object 38 is read in the object characteristic database 2 from the information such as the ID number read by the RF tag receiver 54, and the object characteristic database 2 To the object characteristic response impedance setting means 3 Is done.
  • step D the mechanical impedance setting value corresponding to the object 38 is calculated by the above-described equations (1) to (3) based on the characteristic data transferred from the object characteristic database 2 in the object characteristic responsive impedance setting means 3. Calculated by (3).
  • Step E the target trajectory generating means 23 generates a target trajectory for transporting the object 38 while grasping the object 38 with the hand 6 of the robot arm 5, and the control passes through Step 7 'shown in FIG. flow under the control of the hand position and orientation of the robot arm 5 is executed, transportation operation can be realized (transport operation see indicated by an arrow in FIG. 7B.) 0
  • Step F whether the robot arm 5 is not in contact with a person or another object is detected by the contact detection means 37 (detection operation by the contact detection means 37), and the contact is detected by the contact detection means 37. If not detected, go to step G. If contact is detected by the contact detection means 37 (if contact operation between hand 100 and robot arm 5 shown in FIG. 7C is detected), move to step H. To do.
  • step G the target trajectory generating means 23 determines whether or not the transport operation is completed. If the transport operation is complete, the calculation of the target trajectory up to the target position will continue, and the transport operation will continue, while the target trajectory will be calculated up to the target position when the transport operation is completed. Is completed, the destination position is output as r, and d of robot arm 5
  • Step I If is transported to the target position or destination and transport is complete, go to Step I. If the transportation operation is not completed and the transportation operation is in progress, the transportation operation of Step E is continued.
  • Step H the impedance control means 4 causes the machine impedance of the robot arm 5 to be equal to the machine impedance setting value calculated by the object characteristic responsive impedance setting means 3.
  • An impedance control operation for controlling the impedance value is performed (operation by the impedance control means 4), and while the contact is detected by the contact detection means 37, the impedance control operation is continued.
  • Step I when the grasped object 38 has been transported, the robot is controlled by the control device 1.
  • the hand 6 of the arm 5 is opened and the object 38 is released from the gripping state (refer to the gripping release operation shown in FIG. 7D).
  • step J the operation completion notification signal 201 is output from the target trajectory generation means 23 to the impedance calculation means 25, and the set mechanical impedance set value is cleared by the impedance calculation means 25. .
  • the contact detection means 37 detects contact between the robot arm 5 and a human or other object.
  • the robot arm 5 can flexibly move to ensure safety), and the mechanical impedance setting value of the robot arm 5 can be appropriately changed according to the characteristics of the grasped object. Specifically, for example, when a cup is placed on a tray and transported, the posture of the hand is controlled even if a human contact occurs and the robot arm 5 moves flexibly. The tray is kept level and does not drop the cup.
  • the rigidity K is proportional to the weight in proportion to the weight. If it is set by the dance setting means 3, that is, if the gain KKm is set as KKm> 0 by the characteristic response impedance setting means 3, the panel property becomes strong when the node 6 holds the heavy object 38. Because the resistance increases, when the human pushes the robot arm 5 with the hand 100, the robot arm 5 is moved more than necessary, and the grabbed heavy object 38 collides with another object such as another furniture 55 or a plane. The risk of doing this can be reduced.
  • inertia M is set larger by characteristic responsive impedance setting means 3 so that it is proportional to the weight of gripping object 38, that is, if gain KMm is set as KMm> 0 by characteristic responsive impedance setting means 3,
  • gain KMm is set as KMm> 0 by characteristic responsive impedance setting means 3
  • the human can sense the weight of the object 38, and can be prevented from pushing with unnecessary force.
  • the object 38 that has a high level of danger such as a knife
  • the gain KDd is set to a large value for the characteristic response impedance setting. If it is set by the setting means 3, the viscous response D is set to a large value according to the degree of danger by the characteristic response impedance setting means 3, and the resistance due to the viscosity is generated in the robot arm 5, which is caused by contact with humans. This will prevent the danger of inadvertent movement of the blade, etc. and improve safety.
  • an infrared sensor (not shown) is provided near the hand of the robot arm 5, for example, and the temperature is set to infrared.
  • the sensor detects that the temperature is high, and the characteristic response impedance setting means 3 sets the risk data in the object characteristic database 2 to “level 5” with the highest risk.
  • the object characteristic responsive impedance setting means 3 and the impedance control means 4 increase the viscosity and control the robot arm 5 in motion, so that the robot arm 5 It moves violently and splashes hot water.
  • control device 1 that is effective in the first embodiment of the present invention, even if a contact with a human is generated, the contact with the human is not caused, and the robot arm is not damaged by the contact. 5 moves and drops the gripping object 38 or touches other people or other objects to damage it.
  • a control device that can realize safe robot control without giving is provided.
  • control device for the robot arm in the second embodiment of the present invention is the same as that in the first embodiment shown in FIG. 1 and FIG. Only the portion will be described in detail below.
  • FIG. 8 is a diagram for explaining a grip rule table in the object characteristic database 2.
  • the object characteristic database 2 has a gripping rule table 31 in which the constraint condition information on the position and posture of the object shown in FIG. 8 is recorded in the characteristic list 30 shown in FIG.
  • the gripping rule table 31 has items of position maintenance, posture maintenance, and height maintenance, and a numerical value of 1 or 0 is recorded in advance for each item.
  • the posture maintenance item When the posture maintenance item is 1, it indicates that there is information on the restraint condition of the posture to fix the posture of the object without power, and the rotation of the hand 6 of the robot arm 5 ( ⁇ , ⁇ , ⁇ ) direction mechanical impedance setting values are set to be large by the characteristic responsive impedance setting means 3 and controlled so that the hand, that is, the posture of the hand 6 does not easily change.
  • the gripping rule table 31 The posture maintenance item is set to 1.
  • the items in the grip rule table 31 are set based on the detection result of the grip state detection means 53. For example, when the tray 39 and the cup 40 are detected by the RF tag receiver 54, the gripping state table is inferred by referring to the gripping state table and inferring that the cup 40 is placed on the tray 39. It is set to the item power of 31 posture maintenance.
  • the mechanical impedance setting value in the translation (x, y, z) direction of the hand 6 that is the tip of the robot arm 5 is larger than that of the characteristic responsive impedance setting means 3. It is set and controlled so that the position of the hand 6 that is the hand is unlikely to fluctuate.
  • the mechanical impedance setting value in the z direction of the hand 6 which is the hand of the robot arm 5 is set larger by the characteristic responsive impedance setting means 3, and the hand 6 which is the hand. The height of the position is maintained.
  • the bottom surface of the bag 41 contacts the floor surface.
  • the height maintenance item is set to 1, it may be recorded in advance in the gripping rule table 31.
  • the mechanical impedance setting value in the ⁇ z direction that is, the vertical downward direction in the hand 6 that is the hand of the robot arm 5 is set to be large by the characteristic response impedance setting means 3, and the position of the hand 6 that is the hand is It is controlled as follows.
  • the hand position and posture target correction output r is calculated by the following equation (8) in the impedance calculation means 25.
  • ⁇ ⁇ is the impedance control coefficient
  • the component force impedance calculation means 25 which is a part of the impedance control coefficient, is changed. For example, referring to the gripping rule table 31 of the object characteristic database 2 when contact is detected, if the posture maintenance item of the gripping rule table 31 is 1, the component corresponding to the position ( ⁇ , (2) ⁇ ) is switched to 1, and components ( ⁇ , ⁇ , ⁇ ) corresponding to the posture are maintained at 0. As a result, the hand position (x, y, ⁇ )
  • the impedance control coefficient allows the mechanical impedance value of the robot arm 5 to be controlled to the mechanical impedance setting value for each direction of the hand 6 which is the hand, thereby preventing contact with humans. While ensuring safety, it is possible to perform control that can simultaneously satisfy the safety of the gripping object and the surrounding environment such as the surrounding environment.
  • the gripping rule table 31 is as shown in Fig. 8, but is not limited to this.
  • the position maintenance component, the posture maintenance component, and the direction of the soil The same effect can be achieved by specifying the method of switching the mechanical impedance setting value for each, and the switching operation of the mechanical impedance setting value can be further specified.
  • control device Since the basic configuration of the control device according to the third embodiment of the present invention is the same as that of the second embodiment described above, description of common parts is omitted, and only different parts are described in detail below. To do.
  • FIG. 11 is a block diagram showing the configuration of the impedance control means 4A of the control device for the robot arm in the third embodiment of the present invention.
  • 32 is an impedance adjustment means for each direction. Based on the mechanical impedance setting value set by the object characteristic response impedance setting means 3 and the gripping rule table 31 of the object characteristic database 2, the feedback gain of the position error compensation means 27 is calculated. It has a function to adjust by direction.
  • the rigidity K and the viscosity D are set, but the inertia M is not set.
  • the position error compensation means 27 is a PD compensator, and the position error compensation output u is calculated by the following equation (10).
  • K is the proportional gain matrix
  • K is the differential gain matrix
  • its diagonal component is the tip
  • Equation 13 It is a diagonal matrix comprised with the gain with respect to each component. By adjusting (tuning) these gains, it is possible to obtain appropriate position and orientation control performance.
  • the contact detection means 37 does not detect contact with a person or other object, the direction-specific impedance adjustment means 32 does not operate, and the position error compensation means 27 is calculated by the equation (10).
  • the position of the robot arm 5 can be controlled.
  • the direction-specific impedance adjustment means 32 sets the gain of the position error compensation means 27 using the following equations (11) and (11): Make adjustments based on (12).
  • the gain is adjusted by the adjusting means 32 and calculated by the following equation (13).
  • the robot arm 5 has an object characteristic response impedance setting. Since the stiffness K and viscosity D of the mechanical impedance set value set by the fixing means 3 are used, the control mode is based on the set value of stiffness and viscosity D. Therefore, for example, if the rigidity K ⁇ K, the proportional gain of the position control in the corresponding direction at the time of contact becomes small, and the robot
  • the differential gain of position control in the corresponding direction is reduced, and the viscosity of the robot arm 5 is reduced.
  • the set values of the rigidity K and the viscosity D are values representing the physical characteristics of rigidity and viscosity, respectively.
  • Rigidity K and viscosity D of the material directly realize rigidity and viscosity by adjusting the gain, which does not directly represent rigidity or viscosity. Therefore, the specific values of stiffness ⁇ and viscosity D in the third embodiment are searched for values for obtaining appropriate stiffness and viscosity while experimentally adjusting.
  • the mechanical impedance set value is artificially set for each direction of the hand.
  • the physical property information is the weight information, the dimension information, and the hardness information of the grasped object.
  • the physical property information may be other physical properties such as a temperature that is not limited thereto.
  • the risk information is attribute information.
  • the attribute information is not limited to this, and other attribute information such as importance information may be used.
  • importance information is selected as attribute information, for example, if the importance is set high for an important article such as a souvenir, the mechanical impedance setting value of the robot arm 5 is set high. The risk of damage can be reduced.
  • the present invention is not limited to the arm, and may be applied to a mobile robot that moves by wheels, a biped robot, a multi-legged robot, and the like. It is possible to achieve the same effect on contact between a mobile robot and a human.
  • the effects possessed by them can be produced.
  • the present invention relates to a robot arm control device and control method for controlling the operation of a robot arm of a robot that may come into contact with a person such as a home robot, a robot having a robot arm control device, and a robot. This is useful as an arm control program.
  • a robot arm control device and control method for controlling the operation of a robot arm of a robot that may come into contact with a person such as a home robot, a robot having a robot arm control device, and a robot. This is useful as an arm control program.
  • industrial robots, robot arm control devices and control methods for movable mechanisms in production facilities, robots having robot arm control devices, and mouth bot arm control programs are also available. Applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Description

明 細 書
ロボットアームの制御装置及び制御方法、ロボット、及びプログラム 技術分野
[0001] 本発明は、家庭用ロボット等、人との物理的な接触の可能性のあるロボットのロボッ トアームを制御する、ロボットアームの制御装置及び制御方法、ロボットアームの制御 装置を有するロボット、及びロボットアームの制御プログラムに関する。
背景技術
[0002] 近年、ペットロボットなどの家庭用ロボットの開発が盛んに行われており、将来は家 事支援ロボット等、より実用的な家庭用ロボットが実用化されるものと期待されている 。家庭用ロボットは、家庭内に入り人間と共生する必要があるため、人間との物理的 な接触が不可欠であり、安全性の面から、柔軟であることが必要とされる。
[0003] こうした課題に対し、従来技術としては、特許文献 1の特開平 10— 329071号公報 において、ロボットアームに加わった人間との接触カを検知し、アームに大きな力が 加わった時には復元力を小さくし安全性を高め、アームに微少な力が加わっている 時には復元力を大きくし動作精度を確保する制御装置を開示して!/、る。
[0004] 特許文献 1 :特開平 10— 329071号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、上記従来の制御装置では、ロボットアームに大きな力が加わった時 には復元力を小さくするのみであるため、トレィをロボットアームで把持し、トレイの上 に物体を載せている場合などに、ロボットアームと人間との接触でロボットアームが動 くことでトレイが傾き、トレイの上に載せた物体を落下させてしまう危険がある。また、口 ボットアームが硬い物体や角の尖った物体を把持しているときには、復元力を小さく するのみでは、人間との接触で硬い物体や角の尖った物体が動き、ロボットアームに 接触した人間あるいは、付近にいる他の人間、あるいは、家具等の他の物体に衝突 し、ダメージを与える危険がある。
[0006] 本発明の目的は、上記従来の制御装置の課題を解決し、ロボットアームと人間との 接触が発生しても、人間へ接触のダメージを与えることなぐかつ、接触によりロボット アームが動!、て、把持物体を落下させたり他の人間や他の物体に接触しダメージを 与えることのない、安全なロボット制御を実現できる、ロボットアームの制御装置及び 制御方法、ロボット、及びロボットアームの制御プログラムを提供することにある。 課題を解決するための手段
[0007] 上記目的を達成するために、本発明は以下のように構成する。
[0008] 本発明の第 1態様によれば、ロボットアームの制御装置であって、
上記ロボットアームが運搬している物体の運搬特性に関する情報が記録された物 体特性データベースと、
上記物体特性データベースの上記情報に基づき上記ロボットアームの機械インピ 一ダンス設定値を設定する物体特性呼応インピーダンス設定手段と、
上記物体特性呼応インピーダンス設定手段の設定した上記機械インピーダンス設 定値に、上記ロボットアームの機械インピーダンスの値を制御するインピーダンス制 御手段とを有することを特徴とするロボットアームの制御装置を提供する。
[0009] 本発明の第 17態様によれば、ロボットアームの制御方法であって、
上記ロボットアームが運搬している物体の運搬特性に関する情報に基づき上記ロボ ットアームの機械インピーダンス設定値を設定し、
上記設定された上記機械インピーダンス設定値に、上記ロボットアームの機械イン ピーダンスの値を制御することを特徴とするロボットアームの制御方法を提供する。
[0010] 本発明の第 18態様によれば、上記ロボットアームと、
上記ロボットアームを制御する第 1〜16のいずれ力 1つの態様に記載のロボットァ ームの制御装置とを有することを特徴とするロボットを提供する。
[0011] 本発明の第 19態様によれば、コンピュータを、
ロボットアームが運搬している物体の運搬特性に関する情報に基づき上記ロボット アームの機械インピーダンス設定値を設定する物体特性呼応インピーダンス設定手 段と、
上記物体特性呼応インピーダンス設定手段の設定した上記機械インピーダンス設 定値に、上記ロボットアームの機械インピーダンスの値を制御するインピーダンス制 御手段として機能させるためのロボットアームの制御プログラムを提供する。
発明の効果
[0012] 本発明のロボットアームの制御装置及びロボットアームの制御装置を有するロボット によれば、物体特性データベース、物体特性呼応インピーダンス設定手段、インピー ダンス制御手段を有することにより、ロボットアームで運搬する物体の運搬特性に応じ て、ロボットアームの機械インピーダンス設定値が適切に設定されるので、人間との 接触が発生しても、人間へ接触のダメージを与えることなぐかつ、接触によりロボット アームが動!、て、運搬する物体を落下させたり他の人間や他の物体に接触しダメー ジを与えることのな 、、安全なロボット制御が可能となる。
[0013] また、本発明のロボットアームの制御方法及びプログラムによれば、上記ロボットァ ームが運搬している物体の運搬特性に関する情報に基づき上記ロボットアームの機 械インピーダンス設定値を設定し、上記設定された上記機械インピーダンス設定値 に、上記ロボットアームの機械インピーダンスの値を制御することにより、運搬する物 体の運搬特性に応じて、ロボットアームの機械インピーダンス設定値が適切に設定さ れて制御されるので、人間との接触が発生しても、人間へ接触のダメージを与えるこ となぐかつ、接触によりロボットアームが動いて、運搬する物体を落下させたり他の 人間や他の物体に接触しダメージを与えることのな 、、安全なロボット制御が可能と なる。
図面の簡単な説明
[0014] 本発明のこれらと他の目的と特徴は、添付された図面についての好ましい実施形 態に関連した次の記述から明らかになる。この図面においては、
[図 1]図 1は、本発明の第 1実施形態における制御装置の概念を示すブロック図であ り、
[図 2]図 2は、本発明の第 1実施形態におけるロボットアームの制御装置のハードゥエ ァ構成及び制御対象であるロボットアームの詳細構成を示す図であり、
[図 3]図 3は、本発明の第 1実施形態における制御装置のインピーダンス制御手段の 構成を示すブロック図であり、
[図 4]図 4は、物体特性データベースの特性一覧表を説明する図であり、 [図 5]図 5は、本発明の第 1実施形態における制御装置のインピーダンス制御手段で の制御プログラムの動作ステップを表すフローチャートであり、
[図 6]図 6は、本発明の第 1実施形態における制御装置の全体的な動作ステップを表 すフローチャートであり、
[図 7A]図 7Aは、本発明の第 1実施形態におけるロボットアームの制御装置の制御対 象であるロボットアームの動作を説明する図であり、
[図 7B]図 7Bは、本発明の第 1実施形態におけるロボットアームの制御装置の制御対 象であるロボットアームの動作を説明する図であり、
[図 7C]図 7Cは、本発明の第 1実施形態におけるロボットアームの制御装置の制御対 象であるロボットアームの動作を説明する図であり、
[図 7D]図 7Dは、本発明の第 1実施形態におけるロボットアームの制御装置の制御対 象であるロボットアームの動作を説明する図であり、
[図 8]図 8は、物体特性データベースの把持規則表を説明する図であり、
[図 9]図 9は、本発明の第 2実施形態におけるロボットアームの制御装置の制御対象 であるロボットアームによる把持動作を説明する図であり、
[図 10]図 10は、物体特性データベースの他の把持規則表を説明する図であり、
[図 11]図 11は、本発明の第 3実施形態における制御装置のインピーダンス制御手段 の構成を説明する図であり、
[図 12]図 12は、本発明の第 2実施形態におけるロボットアームの制御装置の制御対 象であるロボットアームによる他の把持動作を説明する図であり、
[図 13]図 13は、本発明の第 1実施形態におけるロボットアームの制御装置の目標軌 道を説明する図であり、
[図 14]図 14は、本発明の第 1実施形態における物体特性収集手段の詳細を説明す るブロック図であり、
[図 15]図 15は、本発明の第 1実施形態におけるロボットアームの制御装置の効果を 説明する図である。
発明を実施するための最良の形態
以下に、本発明にかかる実施の形態を図面に基づいて詳細に説明する。添付図面 において同じ部品については同じ参照符号を付している。
[0016] 以下、図面を参照して本発明における実施形態を詳細に説明する前に、本発明の 種々の態様にっ 、て説明する。
[0017] 本発明の第 1態様によれば、ロボットアームの制御装置であって、
上記ロボットアームが運搬している物体の運搬特性に関する情報が記録された物 体特性データベースと、
上記物体特性データベースの上記情報に基づき上記ロボットアームの機械インピ 一ダンス設定値を設定する物体特性呼応インピーダンス設定手段と、
上記物体特性呼応インピーダンス設定手段の設定した上記機械インピーダンス設 定値に、上記ロボットアームの機械インピーダンスの値を制御するインピーダンス制 御手段とを有することを特徴とするロボットアームの制御装置を提供する。
[0018] 本発明の第 2態様によれば、上記ロボットアームが運搬している上記物体の運搬特 性に関する情報を収集し、収集した上記物体の運搬特性に関する情報を上記物体 特性データベースに記録する物体特性収集手段をさらに有することを特徴とする第 1 の態様に記載のロボットアームの制御装置を提供する。
[0019] 本発明の第 3態様によれば、上記インピーダンス制御手段は、上記ロボットアーム に人や物体が接触することを検知する接触検知手段を有し、上記ロボットアームが上 記人や物体と接触した時に、上記物体特性呼応インピーダンス設定手段の設定した 上記機械インピーダンス設定値に、上記ロボットアームの機械インピーダンスの値を 制御することを特徴とする第 1又は第 2の態様に記載のロボットアームの制御装置を 提供する。
[0020] 本発明の第 4態様によれば、上記特性呼応インピーダンス設定手段は、上記物体 特性データベースの上記情報に基づき上記ロボットアームの手先の並進方向及び 回転方向の 6次元の方向の機械インピーダンス設定値を個別に設定することを特徴 とする第 1又は第 2の態様に記載のロボットアームの制御装置を提供する。
[0021] 本発明の第 5態様によれば、上記特性呼応インピーダンス設定手段は、上記手先 の上記並進方向を低剛性とし上記回転方向を上記並進方向よりも高剛性とすること で上記ロボットアームが運搬している上記物体を水平に保つよう設定することを特徴 とする第 4の態様に記載のロボットアームの制御装置を提供する。
[0022] 本発明の第 6態様によれば、上記物体特性データベースは上記ロボットアームが運 搬して 、る上記物体の物理特性情報を有し、上記特性呼応インピーダンス設定手段 は、上記物体特性データベースの上記物理特性情報に基づき上記機械インピーダ ンス設定値を設定することを特徴とする第 1又は第 2の態様に記載のロボットアームの 制御装置を提供する。
[0023] 本発明の第 7態様によれば、上記物体特性データベースは上記ロボットアームが運 搬して 、る上記物体の属性情報を有し、上記特性呼応インピーダンス設定手段は、 上記物体特性データベースの上記属性情報に基づき上記機械インピーダンス設定 値を設定することを特徴とする第 1又は第 2の態様に記載のロボットアームの制御装 置を提供する。
[0024] 本発明の第 8態様によれば、上記物体特性データベースは、上記ロボットアームが 運搬して 、る上記物体の物理特性情報として上記ロボットアームが運搬して 、る上記 物体の重量情報を有し、上記特性呼応インピーダンス設定手段は、上記物体特性デ ータベースの上記重量情報に基づき上記機械インピーダンス設定値を設定すること を特徴とする第 6の態様に記載のロボットアームの制御装置を提供する。
[0025] 本発明の第 9態様によれば、上記物体特性データベースは上記物理特性情報とし て上記ロボットアームが運搬して!/、る上記物体の寸法情報を有し、上記特性呼応イン ピーダンス設定手段は、上記寸法情報に基づき上記機械インピーダンス設定値を設 定することを特徴とする第 6の態様に記載のロボットアームの制御装置を提供する。
[0026] 本発明の第 10態様によれば、上記物体特性データベースは上記物理特性情報と して上記ロボットアームが運搬して 、る上記物体の硬度情報を有し、上記特性呼応ィ ンピーダンス設定手段は、上記物体特性データベースの上記硬度情報に基づき上 記機械インピーダンス設定値を設定することを特徴とする第 6の態様に記載のロボッ トアームの制御装置を提供する。
[0027] 本発明の第 11態様によれば、上記物体特性データベースは上記物理特性情報と して上記ロボットアームが運搬している上記物体の位置及び姿勢の拘束条件情報を 有し、上記特性呼応インピーダンス設定手段は、上記物体特性データベースの上記 位置及び姿勢の拘束条件情報に基づき上記機械インピーダンス設定値を設定する ことを特徴とする第 6の態様に記載のロボットアームの制御装置を提供する。
[0028] 本発明の第 12態様によれば、上記物体特性データベースの有する物体の位置及 び姿勢の拘束条件情報は、上記ロボットアームが同時に運搬した複数の物体の位置 及び姿勢の相対関係に基づき設定された上記物体の位置及び姿勢の拘束条件情 報であることを特徴とする第 11の態様に記載のロボットアームの制御装置を提供する
[0029] 本発明の第 13態様によれば、上記物体特性データベースの有する物体の位置及 び姿勢の拘束条件情報は、上記運搬している物体の周囲環境情報に基づき設定さ れた上記物体の位置及び姿勢の拘束条件情報であることを特徴とする第 11の態様 に記載のロボットアームの制御装置を提供する。
[0030] 本発明の第 14態様によれば、上記物体特性データベースは、上記物体の属性情 報として上記運搬して ヽる物体の危険度情報を有し、上記特性呼応インピーダンス 設定手段は、上記物体特性データベースの上記危険度情報に基づき上記機械イン ピーダンス設定値を設定することを特徴とする第 7の態様に記載のロボットアームの 制御装置を提供する。
[0031] 本発明の第 15態様によれば、上記物体特性データベースの有する危険度情報は 、上記運搬している物体の周囲環境情報に基づき設定された危険度情報であること を特徴とする第 14の態様に記載のロボットアームの制御装置を提供する。
[0032] 本発明の第 16態様によれば、上記物体特性データベースは、上記物体の属性情 報として上記運搬して ヽる物体の重要度情報を有し、上記特性呼応インピーダンス 設定手段は、物体特性データベースの上記重要度情報に基づき上記機械インピー ダンス設定値を設定することを特徴とする第 7の態様に記載のロボットアームの制御 装置を提供する。
[0033] 本発明の第 17態様によれば、ロボットアームの制御方法であって、
上記ロボットアームが運搬している物体の運搬特性に関する情報に基づき上記ロボ ットアームの機械インピーダンス設定値を設定し、
上記設定された上記機械インピーダンス設定値に、上記ロボットアームの機械イン ピーダンスの値を制御することを特徴とするロボットアームの制御方法を提供する。
[0034] 本発明の第 18態様によれば、上記ロボットアームと、
上記ロボットアームを制御する第 1〜16のいずれ力 1つの態様に記載のロボットァ ームの制御装置とを有することを特徴とするロボットを提供する。
[0035] 本発明の第 19態様によれば、コンピュータを、
ロボットアームが運搬している物体の運搬特性に関する情報に基づき上記ロボット アームの機械インピーダンス設定値を設定する物体特性呼応インピーダンス設定手 段と、
上記物体特性呼応インピーダンス設定手段の設定した上記機械インピーダンス設 定値に、上記ロボットアームの機械インピーダンスの値を制御するインピーダンス制 御手段として機能させるためのロボットアームの制御プログラムを提供する。
[0036] 以下に、本発明に力かる実施の形態に力かるロボットアームの制御装置及び制御 方法、ロボット、及びプログラムを図面に基づいて詳細に説明する。
[0037] (第 1実施形態)
図 1は本発明の第 1実施形態における、ロボットアームの制御装置 1の概念を示す ブロック図である。図 1において、 2は物体特性データベースであり、後述するロボット アーム 5で運搬する運搬物体、例えば把持しながら運搬される物体 (把持物体) 38の 物体特性データの一例として物理特性情報及び属性情報などの運搬特性情報、例 えば把持特性情報が記録されており、把持される物体 38が特定されると、その物体 3 8の特性データを物体特性呼応インピーダンス設定手段 3に送出する機能を有して いる。
[0038] ここで、物理特性情報とは、例えば、物体の形状、大きさ(寸法)、重量、又は、温度 等の、物理的、物性的、幾何学的に決まる特性情報である。
[0039] また、物体の属性情報とは例えば、危険度、又は、重要度等の、概念的な特性や 物理特性から生じる 2次的な特性情報である。
[0040] 3は物体特性呼応インピーダンス設定手段であり、物体特性データベース 2の把持 物体に関する特性情報に基づき、ロボットアーム 5の機械インピーダンス設定値、す なわち、剛性や粘性の設定値の設定を行う。 [0041] 4はインピーダンス制御手段であり、物体特性呼応インピーダンス設定手段 3が設 定した機械インピーダンス設定値になるように、ロボットアーム 5の各関節部の機械ィ ンピーダンスの値を制御するインピーダンス制御動作を行う。
[0042] 図 2はロボットアームの制御装置 1のハードウェア構成及び制御対象であるロボット アーム 5の詳細構成を示す図である。
[0043] 制御装置 1は、ハードウェア的には一般的なパーソナルコンピュータにより構成され ており、物体特性データベース 2、物体特性呼応インピーダンス設定手段 3、及び、ィ ンピーダンス制御手段 4の入出力 IF (インターフェース) 19を除く部分は、パーソナル コンピュータで実行される制御プログラム 17としてソフトウェア的に実現される。
[0044] 入出力 IF19はパーソナルコンピュータの PCIバスなどの拡張スロットルに接続され た、 DZAボード 20、 AZDボード 21、カウンタボード 22により構成される。
[0045] ロボットアーム 5の動作を制御するための制御プログラム 17が実行されることにより 制御装置 1が機能しており、ロボットアーム 5の各関節部の後述するエンコーダ 43より 出力される関節角度情報がカウンタボード 22を通じて制御装置 1に取り込まれ、制御 装置 1によって各関節部の回転動作での制御指令値が算出される。算出された各制 御指令値は、 DZAボード 20を通じてモータードライバ 18に与えられ、モータードラ ィバ 18から送られた各制御指令値に従って、ロボットアーム 5の各関節部の後述する モーター 42が駆動される。また、モータードライバ 18により駆動制御されるハンド駆 動装置の一例としてのハンド駆動用モーター 62 (実際には、ロボットアーム 5のハンド 6の内部に配設されている)と、ハンド駆動用モーター 62の回転軸の回転位相角(す なわち関節角)を検出するエンコーダ 63 (実際には、ロボットアーム 5のハンド 6の内 部に配設されている)とをさらにハンド 6に備えて、エンコーダ 63で検出された回転角 度を基に、制御装置 1のインピーダンス制御手段 4のハンド制御手段 200からの制御 信号によりモータードライバ 18を介してハンド駆動用モーター 62の回転を駆動制御 して、ハンド駆動用モーター 62の回転軸を正逆回転させることによりハンド 6を開閉 可能としている。
[0046] ロボットアーム 5は、 6自由度の多リンクマニピュレータであり、ハンド 6と、ハンド 6が 取付けられる手首部 7を有する前腕リンク 8と、前腕リンク 8が回転可能に連結される 上腕リンク 9と、上腕リンク 9が回転可能に連結支持される台部 10とを有している。こ の台部 10は、一定位置に固定されていてもよいが、移動可能な移動装置に連結さ れて移動可能にしてもよい。手首部 7は第 4関節部 14、第 5関節部 15、第 6関節部 1 6の 3つの回転軸を有しており、上腕リンク 9に対するハンド 6の相対的な姿勢(向き) を変化させることができる。すなわち、図 2において、第 4関節部 14は手首部 7に対す るハンド 6の横軸周りの相対的な姿勢を変化させることができ、第 5関節部 15は手首 部 7に対するハンド 6の、第 4関節部 14の横軸とは直交する縦軸周りの相対的な姿勢 を変化させることができ、第 6関節部 16は手首部 7に対するハンド 6の、第 4関節部 1 4の横軸及び第 5関節部 15の縦軸とそれぞれ直交する横軸周りの相対的な姿勢を 変化させることができる。前腕リンク 8の他端は上腕リンク 9の先端に対して第 3関節部 13周りに、すなわち、第 4関節部 14の横軸と平行な横軸周りに回転可能とし、上腕リ ンク 9の他端は台部 10に対して第 2関節部 12周りに、すなわち、第 4関節部 14の横 軸と平行な横軸周りに回転可能とし、台部 10の上側可動部は台部 10の下側固定部 に対して第 1関節部 11周りに、すなわち、第 5関節部 15の縦軸と平行な縦軸周りに 回転可能としている。この結果、ロボットアーム 5は、合計 6個の軸周りに回転可能とし て上記 6自由度の多リンクマニピュレータを構成している。
[0047] 各軸の回転部分を構成する各関節部には、各関節部の一方の部材に備えられか つ後述するモータードライバ 18により駆動制御される回転駆動装置の一例としての モーター 42 (実際には、ロボットアーム 5の各関節部の内部に配設されている)と、モ 一ター 42の回転軸の回転位相角(すなわち関節角)を検出するエンコーダ 43 (実際 には、ロボットアーム 5の各関節部の内部に配設されている)とを備えて、一方の部材 に備えられたモーター 42の回転軸が他方の部材に連結されて上記回転軸を正逆回 転させることにより他方の部材を一方の部材に対して各軸周りに回転可能とする。
[0048] 35は台部 10の下側固定部に対して相対的な位置関係が固定された絶対座標系 であり、 36はハンド 6に対して相対的な位置関係が固定された手先座標系である。絶 対座標系 35から見た手先座標系 36の原点位置 Oe (x、 y、 z)をロボットアーム 5の手 先位置、絶対座標系 35から見た手先座標系 36の姿勢をロール角とピッチ角とョー 角で表現した( φ、 θ、 φ )をロボットアーム 5の手先姿勢とし、手先位置及び姿勢べ タトルをベクトル r= [x、 y、 ζ、 φ、 0、 φ ]Tと定義する。よって、一例として、絶対座標 系 35の ζ軸に対して第 1関節部 11の縦軸が平行であり、 X軸に対して第 2関節部 12 の横軸が平行に位置可能とするのが好ましい。また、手先座標系 36の X軸に対して 第 6関節部 16の横軸が平行に位置可能であり、 y軸に対して第 4関節部 14の横軸が 平行に位置可能であり、 z軸に対して第 5関節部 15の縦軸が平行に位置可能とする のが好ましい。なお、手先座標系 36の X軸に対しての回転角をョ一角 φとし、 y軸に 対しての回転角をピッチ角 0とし、 z軸に対しての回転角をロール角 φとする。ロボッ トアーム 5の手先位置及び姿勢を制御する場合には、手先位置及び姿勢ベクトル rを 手先位置及び姿勢目標ベクトル r〖こ追従させること〖こなる。
d
[0049] 50は物体特性収集手段であり、ロボットアーム 5で把持する物体の特性データを収 集し、物体特性データベース 2に入力、更新する。具体的には、物体特性収集手段 5 0は、後述するように、カメラなどの画像撮像装置 44からの画像データ、読み取り手 段 34 (例えば RFタグ受信機 54)により読み取られた把持物体 38の RFタグ 33の情報 、インターネット 46を通じて外部のウェブサーバにある物品情報データベース 47から の物体特性データがそれぞれ入力され、入力されたデータ又は情報を、適宜、物体 特性データベース 2に入力、更新する。また、物体特性収集手段 50には、カウンタボ ード 22が接続されて、ロボットアーム 5の各関節部のエンコーダ 43より出力される関 節角度情報や、インピーダンス制御手段 4からの物体重量などの情報も入力される。
[0050] 物体特性収集手段 50の詳細を図 14に示す。
[0051] 45は画像認識手段であり、カメラなどの画像撮像装置 44の画像データより画像認 識を行い、把持物体 38の寸法を抽出し、物体特性データベース 2に出力する。また 、画像認識手段 45は、画像認識手段 45の画像認識結果より得られる複数の把持物 体の相対的位置関係の情報を、後述する運搬状態検出手段の一例としての把持状 態検出手段 53に出力する。
[0052] 48は物体重量推定手段であり、把持物体 38の重量の推定を行う。例えば、ロボット アーム 5の手首部 7に力センサーを配設した場合には、ロボットアーム 5が物体を把 持し静止状態にある時の力センサーによる計測値力 ハンド 6の重量を差し引いた値 を物体重量とする。また、後述する力推定手段 24を利用する場合は、ロボットアーム 5が物体を把持し静止状態にある時の各関節部に発生するトルク τ を力推定手段
ext
24力ら得、ロボットアーム 5がその位置及び姿勢を保持するのに必要なトルクをロボッ トアームの運動方程式より求め、差し引いた後のトルク値を手先に働く力に換算し、 物体重量とする。
[0053] 49は属性データ入力 IF (インターフェース)であり、人間がキーボードやマウスやマ イクなどの入力装置を使用して属性データ (属性情報)を入力するためのインターフ エースである。
[0054] 51は干渉判断手段であり、ロボットアーム 5の周囲の環境に存在する壁や、家具等 の配置情報の地図であり環境マップデータベース 52に蓄積された環境マップ情報と インピーダンス制御手段 4より入力されるロボットアーム 5の位置及び姿勢情報とより、 ロボットアーム 5と壁や家具等との干渉関係を判断し、物体特性データベース 2の属 性情報の設定、変更を行う。
[0055] 53は運搬状態検出手段の一例としての把持状態検出手段であり、複数の把持物 体を同時に把持する場合に、画像認識手段 45の画像認識結果より得られる複数の 把持物体の相対的位置関係の情報や、 RFタグ受信機 54より得られる把持物体の I D番号などの 情報 (IDデータ)の組み合わせの情報力 把持状態を推論し、検出 する。把持状態検出手段 53は、物体同士の組み合わせと把持状態の関係を表す把 持状態テーブルを有し、 情報の組み合わせが得られた場合には、把持状態テー ブルを参照し、把持状態を推論する。把持状態テーブルには、例えば、トレイと他の 物体の組み合わせの場合は、トレイの上に物体が載置された把持状態であると!/、う 一般的な把持ルールが複数記録されて 、る。
[0056] このように、物体特性収集手段 50は、カメラなどの画像撮像装置 44と物体特性デ ータベース 2と接続される画像認識手段 45と、インピーダンス制御手段 4と物体特性 データベース 2と接続される物体重量推定手段 48と、インピーダンス制御手段 4と物 体特性データベース 2と接続される干渉判断手段 51と、干渉判断手段 51に接続さ れる環境マップデータベース 52と、物体特性データベース 2とキーボードやマウスや マイクなどの入力装置(図示せず)と接続される属性データ入力 IF (インターフェース ) 49と、 RFタグ受信機 54と画像認識手段 45と物体特性データベース 2と接続される 把持状態検出手段 53とを備えて、それぞれの手段や部材でそれぞれの機能を奏す るとともに、 RFタグ受信機 54により読み取られた把持物体 38の RFタグ 33の情報を 物体特性データベース 2に入力するとともに、インターネット 46を通じて外部の WEB にある物品情報データベース 47にアクセスして物体特性データを物体特性データべ ース 2に入力する機能をも有している。
[0057] 次に、物体特性データベース 2の詳細について説明する。物体特性データベース 2 には、例えばロボットアーム 5が設置された屋内に存在する種々の物体 38に関する 情報が予め登録されている。各物体 38には RFタグ 33が配設されており、個別の ID 番号などの HD情報が RFタグ 33に記録されている。ロボットアーム 5のハンド 6には R Fタグ 33の読み取り手段 34 (例えば RFタグ受信機 54)が配設されており、制御装置 1のインピーダンス制御手段 4からの制御信号によりモータードライバ 18を介してハン ド駆動用モーター 62の回転駆動制御によりハンド 6を開閉して、ロボットアーム 5のハ ンド 6が物体 38を把持すると、把持された物体 38の RFタグ 33の情報が読み取り手 段 34で読み取られ、把持した物体 38の ID番号が何であるかが読み取り手段 34によ り特定され、把持された物体 38の ID番号情報が物体特性収集手段 50を介して物体 特性データベース 2に入力される。すると、物体特性データベース 2は、特定された 特定された ID番号に対応する物体 38の特性データを物体特性呼応インピーダンス 設定手段 3に送出する。
[0058] 物体特性データベース 2の保有している情報は、図 4に示すような物理特性情報と 属性情報の特性一覧表 30の形で物体個別の特性データが記録されて 、る。物体個 別の特性データは、図 4にあるように、物体個別の ID番号と、 ID番号に相当する物 理特性情報の一例としての物体の重量情報、寸法情報、及び硬度情報、並びに、属 性情報の一例としての危険度情報で構成される。これらの、重量情報、寸法情報、硬 度情報、危険度情報のデータは、予め測定し、評価し、データベースとして物体特性 データベース 2に格納されて 、る。
[0059] 物体特性データベース 2の寸法情報に関しては、画像撮像装置 44及び画像認識 手段 45を設ければ、その画像撮像装置 44で得られた画像データを基に画像認識手 段 45による画像認識を行うことにより、物体 38の寸法を割り出し、寸法情報を物体特 性データベース 2に新たに蓄積あるいは更新することも可能である。
[0060] 物体特性データベース 2の重量情報に関しては、ロボットアーム 5の手首部 7にカセ ンサーを配設するか、あるいは、後述する力推定手段 24を利用すれば、物体重量推 定手段 48により、ロボットアーム 5で把持した物体 38の重量が推定可能であり、新た に重量情報を物体特性データベース 2に蓄積することができる。また、例えば、ロボッ トアーム 5で把持された鍋に対して水が注入されるとき、注入された水による物体の重 量の増加を物体重量推定手段 48により推定することもできるので、重量の増減によ る重量情報の更新にも対応可能である。
[0061] 物体特性データベース 2の硬度情報に関しては、把持物体 38の硬度に応じてレべ ル 1〜5の 5段階評価がなされる。評価値は、物体 38の材質をもとに、例えば、金属 で形成された物体は最も硬度の高 ヽ「レベル 5」、プラスチック等の樹脂で形成された 物体は中度の「レベル 3」、紙やタオルなどの柔らカ 、物体で形成された物体は最も 硬度の低い「レベル 1」といったように評価され、硬度情報として記録されている。また 、硬度は壊れやすさという観点での評価も可能である。ガラスコップや陶磁器のように 、他の物体にぶっけたりすると割れる危険が高いものを「レベル 5」とすることも考えら れる。これらの硬度情報は、予め人間が判断するか、物体の RFタグ 33に記録されて いる HD情報から自動的に判断し、レベルの評価、設定を行い、属性データ入力 IF4 9を通じて物体特性データベース 2への入力を行う。
[0062] 物体特性データベース 2の危険度情報に関しては、例えば、レベル 1〜5の 5段階 の評価値で記録されている。評価値の具体例としては、刃物のように危険性が高ぐ ロボットアーム 5での取り扱いに最も注意を有すると思われる物体を最も危険度の高 い「レベル 5」とし、書類やタオルなど軽ぐ柔らかくて人に衝突しても危害を与える恐 れが全くな 、と考えられる物体を最も危険度の低 ヽ「レベル 1」とする。これらの危険 度情報は、予め、人間が判断し、レベルの評価、設定を行い、属性データ入力 IF49 を通じて物体特性データベース 2への入力を行う。あるいは、干渉判断手段 51で、把 持すべき物体 38が壁面や家具等に近くにあり、把持すべき物体 38と壁面や家具等 との干渉の危険があると判断された把持物体の場合には、危険度を高く設定する。こ こで、把持すべき物体 38が壁面や家具等に近くにあるか否かは、例えば、環境マツ プデータベース 52に蓄積された環境マップ情報に、把持すべき物体 38の位置情報 も蓄積されている場合には、環境マップデータベース 52からその位置情報を取り込 めばよ 、し、そのような位置情報が環境マップデータベース 52に蓄積されて 、な ヽ 場合には、把持すべき物体 38をカメラなどの画像撮像装置 44で撮像し、取得した画 像データを画像認識手段 45で画像認識を行 ヽ、物体特性データベース 2にー且蓄 積し、蓄積された画像認識結果を参照して、干渉判断手段 51で把持すべき物体 38 の位置情報を推定して判断するようにしてもよい。
[0063] さらに、例えば、図 9に示すように、トレイ 39をロボットアーム 5で把持し、トレイ 39の 上にコップ 40を載せているような把持状態の場合、ロボットアーム 5と人間(例えば手 100)との接触でトレイ 39が傾くと、コップ 40がトレイ 39から矢印 101のように落下す る恐れがあるため、 RFタグ受信機 54による RFタグ 33の ID番号などの ID情報を使つ た把持物体の検出で、トレイ 39の RFタグ 33とコップ 40の RFタグ 33が同時に RFタグ 受信機 54で検出された場合、又は、画像認識手段 45の画像認識結果よりトレイ 39 にコップ 40が載置されている情報が相対的位置関係情報として得られる場合には、 トレイ 39の上にコップ 40を載せて運搬していると、把持状態検出手段 53において推 論し、危険度を高く設定する(図 14参照)。
[0064] また、物体特性データベース 2のすベての情報は、物体特性収集手段 50により、ィ ンターネット 46を通じて、外部のウェブサーバなどにある物品情報データベース 47に アクセスすることで物体特性データを入手し、物体特性データベース 2内の各情報を 更新する事も可能である。
[0065] 次に、物体特性呼応インピーダンス設定手段 3の詳細にっ 、て説明する。物体特 性呼応インピーダンス設定手段 3では、物体特性データベース 2の運搬特性情報に 基づき、把持している物体 38に応じて、ロボットアーム 5の機械インピーダンス設定値 の設定を行う。機械インピーダンス設定値の設定パラメータとしては、慣性 M、粘性 D 、剛性 Kがある。機械インピーダンス設定値の各パラメータの設定は以下の評価式に 基づいて行う。
[0066] [数 1] M = KMmX (重量 [k g] ) +KM 1 X (寸法 [m] ) +
KMk X (硬度) +KMd X (危険度) 式 (1)
[0067] [数 2]
D = KDmX (重量 [k g] ) +KD 1 X (寸法 [m] ) +
KDk X (硬度) +KD d X (危険度) 式 (2)
[0068] [数 3]
K = KKmX (重量 [k g] ) +KK 1 X (寸法 [m] ) +
KKk X (硬度) +KK d X (危険度) 式 (3)
[0069] 上記式(1)〜(3)中の KMm、 KM1、 KMkゝ KMd、 KDm、 KD1、 KDkゝ KDd、 K Km、 KK1、 KKk, KKdはゲインであり、それぞれ、ある定数値である。
[0070] 物体特性呼応インピーダンス設定手段 3は、上記式(1)、 (2)、 (3)に基づき計算し た機械インピーダンスパラメータの慣性 M、粘性 D、剛性 Kをインピーダンス制御手 段 4へと出力する。
[0071] 上記式(1)〜(3)に従えば、ゲイン KMm等を適切に設定することにより、例えば重 量の重い物体に対しては、式(1)により、慣性 Mが大きく設定されることになり、ロボッ トアーム 5は把持物体 38の重量に比例した重量感を持つことになる結果、ロボットァ ーム 5を動かすには大きな力が必要になり、少しぐらい手でロボットアーム 5を押しても 動かなくなる(発生する加速度が小さい)。逆に、重量の軽い物体に対しては、式(1) により、慣性 Mが小さく設定されることになり、ロボットアーム 5は把持物体 38の重量 に比例した重量感を持つことになる結果、弱い力で容易にロボットアーム 5が動くよう になる (発生する加速度が大きい)。また、刃物のように危険度を高く設定された物体 の場合には、粘性 D及び剛性 Kが大きくなるように設定されることになり、ロボットァー ム 5の動きに抵抗感ゃ硬さが生じ、動きに《なる。逆に、タオルなどのように危険度を 低く設定された物体の場合には、粘性 D及び剛性 Kが小さくなるように設定されること になり、ロボットアーム 5の動きに抵抗感ゃ硬さがなぐ動きやすくなる。
[0072] 複数の物体を同時に把持している場合、重量に関しては同時に把持している物体 の重量を加算した総重量を使用して機械インピーダンス設定値の計算を行う。 [0073] また、寸法に関しては、同時に把持している物体の寸法のうち、最大のものを使用 して機械インピーダンス設定値の計算を行う。
[0074] また、硬度に関しては、同時に把持している物体の硬度のうち、最大のものを使用 して機械インピーダンス設定値の計算を行う。
[0075] また、危険度に関しては、同時に把持している物体の危険度のうち、最大のものを 使用して機械インピーダンス設定値の計算を行う。
[0076] 図 3にインピーダンス制御手段 4のブロック図を示す。インピーダンス制御手段 4は、 物体特性呼応インピーダンス設定手段 3の設定した慣性 M、粘性 D、剛性 Kの設定 値に基づき設定されたロボットアーム 5の機械インピーダンス設定値に、上記ロボット アームの機械インピーダンスの値を制御する。
[0077] 次に、図 3を使い、インピーダンス制御手段 4の詳細について説明する。図 3におい て、 5は制御対象である図 2に示したロボットアームである。ロボットアーム 5からは、そ れぞれの関節軸のエンコーダ 43により計測された関節角の現在値(関節角度べタト ル)ベクトル q= [q , q , q , q , q , q ]Tが出力され、カウンタボード 22によりインピ
1 2 3 4 5 6
一ダンス制御手段 4に取り込まれる。ただし、 q , q , q , q , q , qは、それぞれ、第
1 2 3 4 5 6
1関節部 11、第 2関節部 12、第 3関節部 13、第 4関節部 14、第 5関節部 15、第 6関 節部 16の関節角度である。
[0078] 23は目標軌道生成手段であり、目標とするロボットアーム 5の動作を実現するため の手先位置及び姿勢目標ベクトル rが出力される。図 13に示すように、目標とする口 d
ボットアーム 5の動作は、目的とする作業に応じて事前にそれぞれの時間(t=0、 t= t、t=t、 · · ·)でのポイントごとの位置 (r 、r 、r 、 · · ·)が与えられており、目標軌
1 2 dO dl d2
道生成手段 23は、多項式補間を使用し、各ポイント間の軌道を補完し、手先位置及 び姿勢目標ベクトル rを生成する。
d
[0079] 24は力推定手段であり、人間等とロボットアーム 5の接触によってロボットアーム 5に 加わる外力を推定する。力推定手段 24には、モータードライバ 18の電流センサーで 計測された、ロボットアーム 5の各関節部を駆動するモーター 42を流れる電流値 i= [ i , i , i , i , i , i ]Tが AZDボード 21を介して取り込まれ、また、関節角の現在値 q
1 2 3 4 5 6
力 Sカウンタボード 22を介して取り込まれるとともに、後述する近似逆運動学計算手段 28からの関節角度誤差補償出力 u が取り込まれる。力推定手段 24は、オブザーバ
qe
一として機能し、以上の電流値 i、関節角の現在値 q、関節角度誤差補償出力 u より
qe
、ロボットアーム 5に加わる外力により各関節部に発生するトルクて = [ τ 、 τ
ext lext 2ext
、 τ 、 τ 、 τ 、 τ ]Τを算出する。そして、 F =J (q) "T τ - [0, 0, mg]
3ext 4ext 5ext 6 ext ext v ext
Tによりロボットアーム 5の手先における等価手先外力 F に換算し出力する。ここで、
ext
J (q)は、
[0080] [数 4]
V = J v ( q ) q を満たすヤコビ行列である。ただし、 v= [V、 V、 V、 ω 、 ω 、 ω ]Τであり、 (ν、 ν
、ν )は手先座標系 36でのロボットアーム 5の手先の並進速度、(ω 、 ω 、 ω )は手 先座標系 36でのロボットアーム 5の手先の角速度である。また、 mは把持している物 体の重さであり、 gは把持している物体の重力加速度である。把持物体の重さ mの値 は、物体特性データベース 2から入手することができる。また、ロボットアーム 5により 実際に把持を行い、そのときの力推定手段 24の等価手先外力 F の推定結果より把
ext
持物体の重さ mの値を算出する事も可能である。
[0081] 37は接触検知手段であり、力推定手段 24の推定する等価手先外力 F を観測し、
ext
ロボットアーム 5と人間や他の物体との接触を検知する。接触が発生すると等価手先 外力 F が変化するので、その変化量が、ある値 A Fを越えたときに接触が発生した ext
と接触検知手段 37で検知する。接触を接触検知手段 37で検知すると、接触検知手 段 37は接触を検知した事をインピーダンス計算手段 25に通知する。
[0082] インピーダンス計算手段 25は、ロボットアーム 5に機械インピーダンス設定値への 上記ロボットアームの機械インピーダンスの値の制御を実現する機能を果たす部分 であり、ロボットアーム 5と人間や他の物体との接触を接触検知手段 37で検知してい ない通常動作の際は 0を出力する。一方、ロボットアーム 5と人間や他の物体との接 触を接触検知手段 37で検知し、接触検知手段 37から接触の通知を受けると、物体 特性呼応インピーダンス設定手段 3で設定されたインピーダンスパラメータである慣 性 M、粘性 D、剛性 Kと、関節角の現在値 qと、力推定手段 24が推定した外力 F よ り、ロボットアーム 5に機械インピーダンス設定値への上記ロボットアームの機械インピ 一ダンスの値の制御を実現するための手先位置及び姿勢目標補正出力 r を以下 の式 (4)により計算し、出力する。手先位置及び姿勢目標補正出力!: は、目標軌道 生成手段 23の出力する手先位置及び姿勢目標ベクトル rに加算され、手先位置及
d
び姿勢補正目標ベクトル r が生成される。
[0083] [数 5]
(s 2M + 5D + K )_i F 式 (4) ただし、
[0084] [数 6]
M 0 0 0 0 0
0 M 0 0 0 O
0 0 M 0 0 0
0 0 0 M 0 0
0 0 0 0 M 0
0 0 0 0 0 M
式 (5)
[0085] [数 7]
D 0 0 0 0 0"
0 D 0 0 0 O
0 0 D 0 0 0
0 0 0 D 0 0
0 0 0 0 D 0
0 0 0 0 0 D
式 (6)
[0086] [数 8] κ 0 0 0 0 0
0 κ 0 0 ο 0
0 0 κ 0 0 0
K =
0 0 0 κ 0 0
0 0 0 0 κ 0
0 0 0 ο 0 κ 式 (7) であり、 sはラプラス演算子である。
[0087] 26はロボットアーム 5からのそれぞれの関節軸のエンコーダ 43により計測された関 節角の現在値 qである関節角度ベクトル qがカウンタボード 22を介して入力される順 運動学計算手段であり、ロボットアーム 5の関節角度ベクトル qから手先位置及び姿 勢ベクトル rへの変換の幾何科学的計算を行う。
[0088] 27は位置誤差補償手段であり、ロボットアーム 5において計測される関節角度べク トル qより順運動学計算手段 26により計算される手先位置及び姿勢ベクトル rと、手先 位置及び姿勢補正目標べ外ル r との誤差 rが入力され、位置誤差補償出力 u が
dm e re 近似逆運動学計算手段 28に向けて出力される。
[0089] 近似逆運動学計算手段 28では、近似式 u =J (q) _1u により、逆運動学の近似
out r in
計算を行う。ただし、 J (q)は、
[0090] [数 9] r = J r ( q ) q の関係を満たすヤコビ行列、 u は近似逆運動学計算手段 28への入力、 u は近
m out 似逆運動学計算手段 28からの出力であり、入力 uを関節角度誤差 qとすれば、 q
m e e
=J (q) _1rのように手先位置及び姿勢誤差 rから関節角度誤差 qへの変換式となる r e e e
。したがって、位置誤差補償出力 u が近似逆運動学計算手段 28に入力されると、そ
re
の出力として、関節角度誤差 qを補償するための関節角度誤差補償出力 u が近似
e qe 逆運動学計算手段 28から出力される。
[0091] 関節角度誤差補償出力 u は、 DZAボード 20を介してモータードライバ 18に電圧
qe
指令値として与えられ、各モーター 42により各関節軸が正逆回転駆動されロボットァ ーム 5が動作する。
[0092] 以上のように構成されるインピーダンス制御手段 4に関して、ロボットアーム 5のイン ピーダンス制御動作の原理にっ 、て説明する。
[0093] インピーダンス制御動作の基本は、位置誤差補償手段 27による手先位置及び姿 勢誤差 rのフィードバック制御 (位置制御)であり、図 3の点線で囲まれた部分が位置 e
制御系 29になっている。位置誤差補償手段 27として、例えば、 PID補償器を使用す れば、手先位置及び姿勢誤差 r力^に収束するように制御が働き、目標とするロボッ
e
トアーム 5のインピーダンス制御動作を実現することができる。
[0094] 接触検知手段 37がロボットアーム 5と人間や他の物体との接触を検知した場合、上 記説明した位置制御系 29に対し、インピーダンス計算手段 25により手先位置及び 姿勢目標補正出力 r が加算され、手先位置及び姿勢の目標値の補正が行われる。 このために、上記した位置制御系 29は、手先位置及び姿勢の目標値が本来の値よ り微妙にずれることになり、結果的に、上記ロボットアーム 5の機械インピーダンスの 値を上記適切に設定された設定値に制御する動作が実現される。手先位置及び姿 勢目標補正出力 r は式 (4)により算出されるため、上記ロボットアーム 5の慣性 M、 粘性 D、剛性 Kの機械インピーダンスの値を上記適切に設定された設定値に制御す る動作が実現される。
[0095] 以上の原理に基づく制御プログラムの実際の動作ステップについて、図 5のフロー チャートに基づいて説明する。
[0096] ステップ 1では、それぞれのエンコーダ 43により計測された関節角度データ(関節 変数ベクトル又は関節角度ベクトル q)が制御装置 1に取り込まれる。
[0097] 次 、で、ステップ 2では、ロボットアーム 5の運動学計算に必要なヤコビ行歹 等の 計算が近似逆運動学計算手段 28により行われる。
[0098] 次!、で、ステップ 3 (順運動学計算手段 26での処理)では、ロボットアーム 5からの 関節角度データ(関節角度ベクトル q)から、ロボットアーム 5の現在の手先位置及び 姿勢ベクトル rが、順運動学計算手段 26により計算される。
[0099] 次 、で、ステップ 4では、制御装置 1のメモリ(図示せず)に予め記憶されて 、たロボ ットアーム 5の動作プログラムに基づき、目標軌道計算手段 23によりロボットアーム 10 の手先位置及び姿勢目標ベクトル rが計算される。
d
[0100] 次!、で、ステップ 5 (力推定手段 24での処理)では、モーター 42の駆動電流値 iと、 関節角度データ(関節角度ベクトル q)と、関節角度誤差補償出力 u から、ロボットァ
qe
ーム 5の手先における等価手先外力 F 1 力推定手段 24により計算される。
ext
[0101] 次いで、ステップ 6 (接触検知手段 37での処理)では、力推定手段 24により計算さ れたロボットアーム 5の手先における等価手先外力 F よりロボットアーム 5と人間や 他の物体との接触の有無を判断し、接触検知手段 37で接触有りと検知した場合に はステップ 7へ、接触無しと検知した場合にはステップ 7'へ処理を進める。
[0102] 次!、で、ステップ 7 (インピーダンス計算手段 25での処理)では、ロボットアーム 5と 人間や他の物体との接触が有ると接触検知手段 37で検知した場合に、物体特性呼 応インピーダンス設定手段 3において設定された機械インピーダンスパラメータの慣 性 M、粘性 D、剛性 Kと、関節角度データ(関節角度ベクトル q)と、力推定手段 24に より計算されたロボットアーム 5に加わる等価手先外力 F から、手先位置及び姿勢 ext
目標補正出力!: 1S インピーダンス計算手段 25により計算される。その後、ステップ 8に進む。
[0103] ステップ 7,(インピーダンス計算手段 25での処理)では、ロボットアーム 5と人間や 他の物体との接触が無 1、と接触検知手段 37で検知した場合に、インピーダンス計算 手段 25で、手先位置及び姿勢目標補正出力 r を 0ベクトルとする。その後、ステツ プ 8に進む。
[0104] ステップ 8 (位置誤差補償手段 27での処理)では、手先位置及び姿勢目標ベクトル rと手先位置及び姿勢目標補正出力 r の和である手先位置及び姿勢補正目標べ d άΔ
タトル r と、現在の手先位置及び姿勢ベクトル rとの差である手先位置及び姿勢の誤 dm
差 rが位置誤差補償手段 27で計算される。位置誤差補償手段 27の具体例としては e
PID補償器が考えられる。定数の対角行列である比例、微分、積分の 3つのゲインを 適切に調整することにより、位置誤差が 0に収束するように制御が働く。
[0105] 次 、で、ステップ 9 (近似逆運動学計算手段 28での処理)では、ステップ 2で計算し たヤコビ行歹 の逆行列を近似逆運動学計算手段 28で乗算することにより、位置誤 差補償出力 u を、手先位置及び姿勢の誤差に関する値から関節角度の誤差に関 re
する値である関節角度誤差補償出力 u 〖こ、近似逆運動学計算手段 28により変換す qe
る。
[0106] 次いで、ステップ 10では、関節角度誤差補償出力 u 力 近似逆運動学計算手段 2 qe
8から DZAボード 20を通じ、モータードライバ 18に与えられ、それぞれのモーター 4 2を流れる電流量を変化させることによりロボットアーム 5のそれぞれの関節軸の回転 運動が発生する。 [0107] 以上のステップ 1〜ステップ 10が制御の計算ループとして繰り返し実行されることに より、ロボットアーム 5の動作の制御、すなわち、ロボットアーム 5の機械インピーダンス の値を上記適切に設定された設定値に制御する動作を実現することができる。
[0108] 次に、本発明の第 1実施形態における制御装置 1の全体的な動作について、ロボッ トアーム 5で物体 38を把持しながら運搬する作業を、 1つの具体的な例として、図 6の フローチャートに基づいて説明する。
[0109] まず、ステップ Aでは、ロボットアーム 5のハンド 6で物体 38を把持するための目標 軌道を目標軌道生成手段 23が生成し、図 5に示すステップ 7'を通る制御フローによ りロボットアーム 5の手先位置及び姿勢の制御が実行されるとともに、制御装置 1によ るハンド駆動用モーター 62が駆動制御されることにより、ハンド 6を開いた状態で物 体 38に近づけて、物体 38を把持可能な位置にハンド 6を位置させ、ハンド 6を閉じて 物体 38を把持することにより、物体 38の把持動作を実現することができる(図 7Aに 示す把持動作参照。 ) oなお、上記目標軌道を生成するときに必要な、把持する物体 38の位置情報は、前記したように、環境マップデータベース 52に予め蓄積されてい るカゝ、又は、画像撮像装置 44と画像認識手段 45とを利用して取得することができる。 これにより、ロボットアーム 5が固定の場合には、ロボットアーム 5の固定された位置の 情報と、上記把持する物体 38の位置情報とから、物体 38を把持するための目標軌 道を目標軌道生成手段 23で生成することができる。また、ロボットアーム 5が移動装 置などにより移動する場合には、基準位置に対するロボットアーム 5の現在位置情報 を、例えば、画像撮像装置 44と画像認識手段 45とを利用して適宜取得しておき、取 得された現在位置情報と、上記把持する物体 38の位置情報とから、物体 38を把持 するための目標軌道を目標軌道生成手段 23で生成することができる。
[0110] 次いで、ステップ Bでは、物体 38に配設された RFタグ 33の情報を、ハンド 6に配設 された RFタグ受信機 54で読み取り、 RFタグ受信機 54で物体 38の ID番号などの ID 情報が特定される。
[0111] 次 、で、ステップ Cでは、 RFタグ受信機 54で読み取った ID番号などの 情報より 、物体特性データベース 2において物体 38の重量、寸法等の特性データが読み出 され、物体特性データベース 2から物体特性呼応インピーダンス設定手段 3へと転送 される。
[0112] 次いで、ステップ Dでは、物体特性呼応インピーダンス設定手段 3において、物体 特性データベース 2より転送された特性データを基に、物体 38に呼応する機械イン ピーダンス設定値が上記式(1)〜式 (3)により計算される。
[0113] 次いで、ステップ Eでは、ロボットアーム 5のハンド 6で物体 38を把持しながら運搬す るための目標軌道を目標軌道生成手段 23が生成し、図 5に示すステップ 7'を通る制 御フローによりロボットアーム 5の手先位置及び姿勢の制御が実行され、運搬動作が 実現する(図 7Bに矢印で示す運搬動作参照。 ) 0
[0114] 次いで、ステップ Fでは、ロボットアーム 5が人や他の物体と接触していないかが接 触検知手段 37で検知され (接触検知手段 37での検知動作)、接触が接触検知手段 37で検知され無 、場合はステップ Gへ、接触が接触検知手段 37で検知された場合 (図 7Cに示す手 100とロボットアーム 5との接触動作が検知された場合)はステップ H へ、動作が移行する。
[0115] ステップ Gでは、運搬動作が完了したかどうかの判定が目標軌道生成手段 23で行 われる。運搬動作が完了して ヽな 、場合には目標位置までの目標軌道の計算が継 続し、運搬動作を継続する一方、運搬動作が完了した場合には目標位置までの目 標軌道の計算が完了し、 rとして目的地の位置が出力され、かつ、ロボットアーム 5の d
実際の手先位置 rが rと略一致した場合に、 目標位置に達したと判断する。物体 38 d
が目標位置すなわち目的地へと運搬されて、運搬が完了した場合にはステップ Iへ 移行する。運搬動作が完了せず、運搬途中の場合は、ステップ Eの運搬動作が継続 される。
[0116] ステップ Hでは、インピーダンス制御手段 4により、上記ロボットアームの機械インピ 一ダンスの値が、物体特性呼応インピーダンス設定手段 3において計算された機械 インピーダンス設定値となるように上記ロボットアーム 5の機械インピーダンスの値を 制御するインピーダンス制御動作が行われ (インピーダンス制御手段 4での動作)、 接触検知手段 37で接触が検知されている間はインピーダンス制御動作が継続され る。
[0117] ステップ Iでは、把持物体 38の運搬が完了すると、制御装置 1の制御によりロボット アーム 5のハンド 6が開き、物体 38が把持状態から開放される(図 7Dに示す把持解 除動作参照。)。
[0118] 次いで、ステップ Jでは、 目標軌道生成手段 23より動作完了告知信号 201がインピ 一ダンス計算手段 25へと出力され、設定されていた機械インピーダンス設定値がィ ンピーダンス計算手段 25によりクリアされる。
[0119] 以上の動作ステップ A〜ステップ Jにより、ロボットアーム 5による物体の運搬作業が 実現し、接触を接触検知手段 37で検知した際にはインピーダンス制御動作への切 換が実現する。
[0120] 以上のように、物体特性データベース 2、物体特性呼応インピーダンス設定手段 3、 インピーダンス制御手段 4を備えることにより、ロボットアーム 5と人間や他の物体との 接触を接触検知手段 37で検知した際には、剛性の高い位置制御の状態から、速や 力にインピーダンス制御の状態に移行し、安全性を確保できる(言い換えれば、十分 に柔軟性を発揮できる状態に移行し、人との接触によって、ロボットアーム 5が柔軟に 動くことにより安全性が発揮できる)ようになると共に、把持物体の特性に応じてロボッ トアーム 5の機械インピーダンス設定値を適切に変化させることができるようになる。 具体的には、例えば、トレイにコップ載せて運搬している場合には、人の接触が生じ てロボットアーム 5が柔軟に動 、ても、手先の姿勢は維持されるように制御されるので 、トレィは水平に維持され、コップを落下させることはない。
[0121] したがって、図 15に示すように、ロボットアーム 5の手先の目標軌道 TAに対し、人 間(例えば、手 100)との接触を接触検知手段 37で検知すると、適切な機械インピー ダンス設定値の設定を行わなカゝつた場合には、軌道 TCの様になり、ロボットアーム 5 のハンド 6に把持された物体 38やハンド 6と家具 55等の他の物体との衝突が発生す る可能性があるのに対し、上記第 1実施形態のように適切なインピーダンス設定値の 設定を行う場合には、軌道 TBの様に、 目標軌道 TAからのずれ量を小さくでき、ロボ ットアーム 5のハンド 6に把持された物体 38やハンド 6と、家具 55等の他の物体との 衝突の危険を回避できる。
[0122] 例えば、把持物体 38の重量に応じて、ロボットアーム 5の機械インピーダンス設定 値を変化させることができるので、重量に比例するように剛性 Kを特性呼応インピー ダンス設定手段 3により設定すれば、すなわち、特性呼応インピーダンス設定手段 3 によりゲイン KKmを KKm>0と設定すれば、重い物体 38をノヽンド 6が把持している 場合には、パネ性が強くなり抵抗が大きくなるため、人間がロボットアーム 5を手 100 で押しのける際に、必要以上にロボットアーム 5を動かし、把持した重量の大きい物体 38が他の家具 55などの他の物体や平面などに衝突する危険性を低減することがで きる。
[0123] また、把持物体 38の重量に比例するように慣性 Mを特性呼応インピーダンス設定 手段 3により大きく設定すれば、すなわち、特性呼応インピーダンス設定手段 3により ゲイン KMmを KMm>0と設定すれば、人間がロボットアーム 5を手 100で押しのけ る際に、人間が物体 38の重さの感覚を感じ取ることができ、不必要に力を込めて押 すことを防ぐことができる。
[0124] また、把持物体 38の例として刃物のように危険度の高!、「レベル 5」と設定された物 体 38に対しては、例えば、ゲイン KDdの設定値を大きく特性呼応インピーダンス設 定手段 3により設定しておけば、特性呼応インピーダンス設定手段 3により粘性 Dが 危険度に応じて大きく設定されることになり、ロボットアーム 5に粘性による抵抗が発 生し、人との接触により刃物等が不用意に動いてしまう危険性を防ぎ、安全性を高め ることがでさる。
[0125] また、把持物体 38の例として熱湯が入った鍋を把持しながら運搬する場合には、 例えば、ロボットアーム 5のハンド付近に赤外線センサー(図示せず)を配設し、温度 を赤外線センサーで検知することで高温であることを検知し、特性呼応インピーダン ス設定手段 3により物体特性データベース 2の危険度データを最も危険度の高い「レ ベル 5」とする。そのように設定することにより、物体特性呼応インピーダンス設定手段 3及びインピーダンス制御手段 4が、粘性を大きくし、ロボットアーム 5を動きに《制御 するので、人間に手で押されても、ロボットアーム 5が激しく動いて熱湯を飛び散らす t 、つたことを防ぐことが可能となる。
[0126] 以上のように、本発明の第 1実施形態に力かる制御装置 1によれば、人間との接触 が発生しても、人間へ接触のダメージを与えることなぐかつ、接触によりロボットァー ム 5が動 、て、把持物体 38を落下させたり他の人間や他の物体に接触しダメージを 与えることのな 、、安全なロボット制御を実現できる制御装置が提供される。
[0127] (第 2実施形態)
本発明の第 2実施形態における、ロボットアームの制御装置の基本的な構成は、図 1、図 2に示した第 1実施形態の場合と同様であるので、共通部分の説明は省略し、 異なる部分についてのみ以下、詳細に説明する。
[0128] 図 8は物体特性データベース 2の把持規則表を説明する図である。物体特性デー タベース 2は、図 4に示す特性一覧表 30にカ卩え、図 8に示す、物体の位置及び姿勢 の拘束条件情報が記された把持規則表 31を有している。把持規則表 31には、位置 維持、姿勢維持、高さ維持の項目があり、それぞれの項目に対し、 1又は 0の数値が 予め記録されている。
[0129] 姿勢維持の項目が 1の場合、物体の姿勢を動力さずに固定するという姿勢の拘束 条件の情報があることを示しており、ロボットアーム 5のハンド 6の手先での回転( φ、 θ、 φ )方向の機械インピーダンス設定値が特性呼応インピーダンス設定手段 3によ り大きく設定され、手先すなわちハンド 6の姿勢が変動しにくいように制御される。
[0130] 例えば、図 9に示すように、トレイ 39をノ、ンド 6で把持し、把持されたトレイ 39の上に コップ 40を載せているような把持状態の場合、ロボットアーム 5と人間との接触でトレ ィ 39が傾くとコップ 40が矢印 101のように落下する恐れがあるため、手先であるハン ド 6の姿勢を維持し、トレイ 39の水平を保っために、把持規則表 31の姿勢維持の項 目が 1に設定される。
[0131] 把持規則表 31の項目の設定は、把持状態検出手段 53の検出結果に基づいて行 われる。例えば、 RFタグ受信機 54によりトレイ 39とコップ 40が検出された場合、把持 状態テーブルを参照し、トレイ 39の上にコップ 40が載置された把持状態であると推 論し、把持規則表 31の姿勢維持の項目力 に設定される。
[0132] このようにトレイ 39をハンド 6で把持し、トレイ 39の上にコップ 40を載せているような 把持状態にあるかどうかの判断は、画像撮像装置 44で取得された画像データを画 像認識手段 45で画像認識することにより可能であるし (すなわち、画像認識手段 45 の画像認識結果より、トレイ 39にコップ 40が載置されている情報が相対的位置関係 情報として得られれば、トレイ 39の上にコップ 40を載せているような把持状態にある と判断することができ)、また、 RFタグによる ID番号などの ID情報を使った把持物体 の検出でも、例えば、トレイ 39とコップ 40が同時に検出された場合には、トレイ 39の 上にコップ 40を載せて運搬していると、把持状態検出手段 53により推論し、把持状 態検出手段 53により上記把持状態が推論された場合には、姿勢維持の項目を 1とす ると、把持規則表 31に予め記録しておいても良い。
[0133] また、位置維持の項目が 1の場合、ロボットアーム 5の手先であるハンド 6での並進( x、 y、 z)方向の機械インピーダンス設定値が特性呼応インピーダンス設定手段 3によ り大きく設定され、手先であるハンド 6の位置が変動しにくいように制御される。
[0134] 例えば、ロボットアーム 5の手先であるハンド 6の近くに家具等があり、手先であるハ ンド 6が並進 (x、 y、 z)方向に進むと、家具等に衝突する危険がある場合に、位置維 持の項目を 1とすると把持規則表 31に予め記録してぉ 、ても良 、。
[0135] また、高さ維持の項目が 1の場合、ロボットアーム 5の手先であるハンド 6での z方向 の機械インピーダンス設定値が特性呼応インピーダンス設定手段 3により大きく設定 され、手先であるハンド 6の位置する高さが維持される。
[0136] 例えば、図 12に示すように、バッグ 41をノ、ンド 6にぶら下げているような把持状態の 場合、ハンド 6の手先位置が下がってしまうと、バッグ 41の底面が床面に接触する危 険があるため、高さ維持の項目を 1とすると把持規則表 31に予め記録しておいても良 い。この場合、ロボットアーム 5の手先であるハンド 6での—z方向、すなわち、鉛直方 向下向きの機械インピーダンス設定値が特性呼応インピーダンス設定手段 3により大 きく設定され、手先であるハンド 6の位置が下がりにく 、ように制御される。
[0137] 次に、姿勢維持の場合を例に取り、機械インピーダンス設定値に、上記ロボットァー ムの機械インピーダンスの値を制御する実現方法について説明する。
[0138] 手先位置及び姿勢目標補正出力 r は、インピーダンス計算手段 25において、以 下の式 (8)により計算される。
[0139] [数 10] r d A = α ( 5 2 M + s O + K ) - l F ext 式 (8 ) ただし、 [0140] [数 11]
0 0 0 0 o l
0 0 0 0 0
0 0 a, 0 0 o 1
1 0 o 0 a * 0 0 1
1 ο 0 0 0 0
L° 0 0 0 0 」 であり、 ( α , α , α , α 、 α 、 α )
θ φ はインピーダンス制御係数である。
[0141] ロボットアーム 5と人等との接触が無ぐ通常の位置制御モードにあるときは、インピ 一ダンス制御係数のすべての成分(α 、 α 、 α 、 α 、 α 、 α )は、特性呼応イン
θ Φ
ピーダンス設定手段 3により Οに設定される。このとき、式 (8)でインピーダンス計算手 段 25により計算される手先位置及び姿勢目標補正出力!: の各成分は 0になり、手 先位置及び姿勢目標の補正は働かず、インピーダンス制御手段 4は位置制御系とし て動作する。
[0142] ロボットアーム 5と人等との接触が発生し、接触検知手段 37でその接触が検知され ると、インピーダンス制御係数の一部の成分力インピーダンス計算手段 25により変更 される。例えば、接触検知時に物体特性データベース 2の把持規則表 31を参照して 把持規則表 31の姿勢維持の項目が 1である場合、特性呼応インピーダンス設定手 段 3により、位置に対応する成分(α 、 ひ 、 α )は 1に切り換えられ、姿勢に対応する 成分(α 、 α 、 α )は 0が維持される。これにより、手先の位置 (x、 y、 ζ)に関して
φ θ φ
は剛性 Κとなるようにインピーダンス制御手段 4により制御され、手先の姿勢( φ、 Θ、 φ )は位置制御力 Sインピーダンス制御手段 4により維持される。
[0143] したがって、例えば、慣性 M = 0、 D=0となるようにし、剛性 Kとして十分な柔軟性 を発揮できる設定値に機械インピーダンスを特'性呼応インピーダンス設定手段 3によ り設定しておけば、ロボットアーム 5と人との接触によって、手先であるハンド 6の位置 が柔軟に動くことにより安全性が発揮され、一方、手先であるハンド 6の姿勢は維持さ れるので、例えば、トレイ 39にコップ 40を載せて運搬している場合には、人の接触が 生じてもトレイ 39は水平に維持され、コップ 40を落下させることはない。 [0144] このように、インピーダンス制御係数により、上記ロボットアーム 5の機械インピーダ ンスの値を、手先であるハンド 6の方向別に機械インピーダンス設定値に制御できる ようにすることで、人との接触に対する安全性を確保しつつ、把持物体や周囲環境な どの外環境に対する安全性を同時に満たすことができる制御が可能となる。
[0145] なお、本第 2実施形態では、把持規則表 31を図 8のとおりとしたが、これに限られる わけではなぐ図 10のように位置維持成分、姿勢維持成分、さらに、土の方向ごとに 機械インピーダンス設定値の切り換えの動作の仕方を指定する形式でも同様の効果 が発揮できるとともに、さらに細かぐ機械インピーダンス設定値の切り換えの動作を 旨定することができる。
[0146] (第 3実施形態)
本発明の第 3実施形態における制御装置の基本的な構成は、上記した第 2実施形 態の場合と同様であるので、共通部分の説明は省略し、異なる部分についてのみ以 下、詳細に説明する。
[0147] 図 11は、本発明の第 3実施形態における、ロボットアームの制御装置のインピーダ ンス制御手段 4Aの構成を示すブロック図である。 32は方向別インピーダンス調整手 段であり、物体特性呼応インピーダンス設定手段 3の設定した機械インピーダンス設 定値、及び、物体特性データベース 2の把持規則表 31に基づき、位置誤差補償手 段 27のフィードバックゲインを方向別に調整を行う機能を有する。
[0148] 本発明の第 3実施形態における上記制御装置のインピーダンス制御手段 4Aの物 体特性呼応インピーダンス設定手段 3では剛性 K及び粘性 Dの設定を行 ヽ、慣性 M の設定は行わない。また、位置誤差補償手段 27は PD補償器であり、位置誤差補償 出力 u は下記の(10)式で計算される。
re
[0149] [数 12] ure = Kp re + KD ^ 式 (1 0 )
a t ただし、 Kは比例ゲイン行列、 Kは微分ゲイン行列であり、その対角成分が手先
P D
位置べクトノレ
[0150] [数 13] の各成分に対するゲインで構成される対角行列である。これらのゲインを調整 (チュ 一-ング)することにより、適切な位置及び姿勢の制御性能を得ることができる。
[0151] 次に、動作について説明する。
[0152] 人や他の物体との接触を接触検知手段 37で検知していない場合には、方向別ィ ンピーダンス調整手段 32は動作せず、位置誤差補償手段 27は式(10)で計算され るゲインにより動作し、ロボットアーム 5の位置制御が実現する。
[0153] 一方、人や他の物体との接触を接触検知手段 37で検知した場合には、方向別イン ピーダンス調整手段 32は、位置誤差補償手段 27のゲインを以下の式(11)及び式( 12)に基づいて調整を行う。
[0154] [数 14]
ΛΤ = «i ^ + (/- ά)Κ 式 ( 1 1 )
[0155] [数 15]
I D = *xKD十(/ "·)! 式 f 1 2 ) ただし、 αは式(9)で与えられるインピーダンス制御係数、 Iは単位行列である。した がって、位置誤差補償手段 27の位置誤差補償出力 u は、方向別インピーダンス調
re
整手段 32によってゲインが調整され、下記の(13)式で計算される。
[0156] [数 16] dt 式 ( 1 3 ) 上記の式(13)によれば、把持規則表 31で位置維持、姿勢維持あるいは、高さ維 持と設定された場合に、 αの対角成分(α 、 α 、 α 、 α 、 a 、 α )のうち、対応
χ y ζ φ Θ Φ
する方向の成分が 1と設定されるため、それらの方向に関しては位置制御のための ゲイン Κ、Κによるフィードバックがなされる事になるため、ロボットアーム 5は位置制
P D
御モードの動作となる。
[0157] 一方、その他の方向成分では、ロボットアーム 5は、物体特性呼応インピーダンス設 定手段 3の設定した機械インピーダンス設定値の剛性 K及び粘性 Dが使用されるた め、剛性 粘性 Dの設定値に基づく制御モードとなる。したがって、例えば、剛性 K <Kとすれば、接触時には対応する方向の位置制御の比例ゲインが小さくなり、ロボ
Ρ
ットアーム 5の剛性が低下することになる。また、粘性 D<Kとすれば、接触時には対
D
応する方向の位置制御の微分ゲインが小さくなり、ロボットアーム 5の粘性が低下する ことになる。
[0158] 先に記載した第 1実施形態の場合、これらの剛性 K及び粘性 Dの設定値は、それ ぞれ、剛性、粘性という物理特性を表す値そのものであつたが、本第 3実施形態の剛 性 K、粘性 Dは直接、剛性、粘性を表すものではなぐゲインを調整することにより擬 似的に剛性、粘性を実現するものである。したがって、本第 3実施形態における剛性 Κ、粘性 Dの具体的数値については、実験的に調整を行いながら適切な剛性、粘性 が得られる値を探索することになる。
[0159] 以上のように、本発明の第 3実施形態におけるロボットアームの制御装置では、位 置誤差補償手段 27のゲインを調整することにより、手先の方向別に擬似的に機械ィ ンピーダンス設定値に上記ロボットアーム 5の機械インピーダンスの値を制御すること を実現することで、人との接触に対する安全性を確保しつつ、把持物体や外環境に 対する安全性を同時に満たすことができる制御が可能となる。
[0160] なお、上記第 1実施形態では、物理特性情報を把持物体の重量情報、寸法情報、 硬度情報としたが、これらに限られるわけではなぐ温度など、その他の物理特性でも よい。
[0161] また、上記第 1実施形態では、属性情報を危険度情報としたが、これらに限られる わけではなぐ重要度情報など、その他の属性情報でもよい。属性情報として重要度 情報を選んだ場合には、例えば、記念品など大切な物品に対して重要度を高く設定 すれば、ロボットアーム 5の機械インピーダンス設定値が高く設定されるので、大切な 物品を破損する危険度を低めることができる。
[0162] なお、上記実施形態ではロボットアームを例に説明した力 本発明は、アームに限 らず、車輪により動く移動ロボットや、 2足歩行ロボット、多足歩行ロボットなどにも適用 することができ、移動ロボットなどと人間との接触に関して同様の効果を発揮する。 [0163] なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより 、それぞれの有する効果を奏するようにすることができる。
産業上の利用可能性
[0164] 本発明は、家庭用ロボットなど人と接する可能性があるロボットのロボットアームの動 作の制御を行なうロボットアームの制御装置及び制御方法、ロボットアームの制御装 置を有するロボット、及びロボットアームの制御プログラムとして有用である。また、家 庭用ロボットに限らず、産業用ロボットや、生産設備等における可動機構のロボットァ ームの制御装置及び制御方法、ロボットアームの制御装置を有するロボット、及び口 ボットアームの制御プログラムとしても適用が可能である。
[0165] 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載され ているが、この技術の熟練した人々にとつては種々の変形や修正は明白である。そ のような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限り において、その中に含まれると理解されるべきである。

Claims

請求の範囲
[1] ロボットアームの制御装置であって、
上記ロボットアームが運搬している物体の運搬特性に関する情報が記録された物 体特性データベースと、
上記物体特性データベースの上記情報に基づき上記ロボットアームの機械インピ 一ダンス設定値を設定する物体特性呼応インピーダンス設定手段と、
上記物体特性呼応インピーダンス設定手段の設定した上記機械インピーダンス設 定値に、上記ロボットアームの機械インピーダンスの値を制御するインピーダンス制 御手段とを有する、ロボットアームの制御装置。
[2] 上記ロボットアームが運搬している上記物体の運搬特性に関する情報を収集し、収 集した上記物体の運搬特性に関する情報を上記物体特性データベースに記録する 物体特性収集手段をさらに有する、請求項 1に記載のロボットアームの制御装置。
[3] 上記インピーダンス制御手段は、上記ロボットアームに人や物体が接触することを 検知する接触検知手段を有し、上記ロボットアームが上記人や物体と接触した時に、 上記物体特性呼応インピーダンス設定手段の設定した上記機械インピーダンス設定 値に、上記ロボットアームの機械インピーダンスの値を制御する、請求項 1又は請求 項 2に記載のロボットアームの制御装置。
[4] 上記特性呼応インピーダンス設定手段は、上記物体特性データベースの上記情報 に基づき上記ロボットアームの手先の並進方向及び回転方向の 6次元の方向の機械 インピーダンス設定値を個別に設定する、請求項 1又は請求項 2に記載のロボットァ ームの制御装置。
[5] 上記特性呼応インピーダンス設定手段は、上記手先の上記並進方向を低剛性とし 上記回転方向を上記並進方向よりも高剛性とすることで上記ロボットアームが運搬し ている上記物体を水平に保つよう設定する、請求項 4に記載のロボットアームの制御 装置。
[6] 上記物体特性データベースは上記ロボットアームが運搬して 、る上記物体の物理 特性情報を有し、上記特性呼応インピーダンス設定手段は、上記物体特性データべ ースの上記物理特性情報に基づき上記機械インピーダンス設定値を設定する、請求 項 1又は請求項 2に記載のロボットアームの制御装置。
[7] 上記物体特性データベースは上記ロボットアームが運搬して 、る上記物体の属性 情報を有し、上記特性呼応インピーダンス設定手段は、上記物体特性データベース の上記属性情報に基づき上記機械インピーダンス設定値を設定する、請求項 1又は 請求項 2に記載のロボットアームの制御装置。
[8] 上記物体特性データベースは、上記ロボットアームが運搬している上記物体の物 理特性情報として上記ロボットアームが運搬して 、る上記物体の重量情報を有し、上 記特性呼応インピーダンス設定手段は、上記物体特性データベースの上記重量情 報に基づき上記機械インピーダンス設定値を設定する、請求項 6に記載のロボットァ ームの制御装置。
[9] 上記物体特性データベースは上記物理特性情報として上記ロボットアームが運搬 している上記物体の寸法情報を有し、上記特性呼応インピーダンス設定手段は、上 記寸法情報に基づき上記機械インピーダンス設定値を設定する、請求項 6に記載の ロボットアームの制御装置。
[10] 上記物体特性データベースは上記物理特性情報として上記ロボットアームが運搬 している上記物体の硬度情報を有し、上記特性呼応インピーダンス設定手段は、上 記物体特性データベースの上記硬度情報に基づき上記機械インピーダンス設定値 を設定する、請求項 6に記載のロボットアームの制御装置。
[11] 上記物体特性データベースは上記物理特性情報として上記ロボットアームが運搬 して!/、る上記物体の位置及び姿勢の拘束条件情報を有し、上記特性呼応インピー ダンス設定手段は、上記物体特性データベースの上記位置及び姿勢の拘束条件情 報に基づき上記機械インピーダンス設定値を設定する、請求項 6に記載のロボットァ ームの制御装置。
[12] 上記物体特性データベースの有する物体の位置及び姿勢の拘束条件情報は、上 記ロボットアームが同時に運搬した複数の物体の位置及び姿勢の相対関係に基づき 設定された上記物体の位置及び姿勢の拘束条件情報である、請求項 11に記載の口 ボットアームの制御装置。
[13] 上記物体特性データベースの有する物体の位置及び姿勢の拘束条件情報は、上 記運搬している物体の周囲環境情報に基づき設定された上記物体の位置及び姿勢 の拘束条件情報である、請求項 11に記載のロボットアームの制御装置。
[14] 上記物体特性データベースは、上記物体の属性情報として上記運搬している物体 の危険度情報を有し、上記特性呼応インピーダンス設定手段は、上記物体特性デー タベースの上記危険度情報に基づき上記機械インピーダンス設定値を設定する、請 求項 7に記載のロボットアームの制御装置。
[15] 上記物体特性データベースの有する危険度情報は、上記運搬している物体の周 囲環境情報に基づき設定された危険度情報である、請求項 14に記載のロボットァー ムの制御装置。
[16] 上記物体特性データベースは、上記物体の属性情報として上記運搬している物体 の重要度情報を有し、上記特性呼応インピーダンス設定手段は、物体特性データべ ースの上記重要度情報に基づき上記機械インピーダンス設定値を設定する、請求項 7に記載のロボットアームの制御装置。
[17] ロボットアームの制御方法であって、
上記ロボットアームが運搬している物体の運搬特性に関する情報に基づき上記ロボ ットアームの機械インピーダンス設定値を設定し、
上記設定された上記機械インピーダンス設定値に、上記ロボットアームの機械イン ピーダンスの値を制御する、ロボットアームの制御方法。
[18] 上記ロボットアームと、
上記ロボットアームを制御する請求項 1, 2, 5, 8〜16のいずれ力 1つに記載のロボ ットアームの制御装置とを有する、ロボット。
[19] コンピュータを、
ロボットアームが運搬している物体の運搬特性に関する情報に基づき上記ロボット アームの機械インピーダンス設定値を設定する物体特性呼応インピーダンス設定手 段と、
上記物体特性呼応インピーダンス設定手段の設定した上記機械インピーダンス設 定値に、上記ロボットアームの機械インピーダンスの値を制御するインピーダンス制 御手段として機能させるためのロボットアームの制御プログラム。
PCT/JP2006/324741 2006-01-13 2006-12-12 ロボットアームの制御装置及び制御方法、ロボット、及びプログラム WO2007080733A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800235689A CN101213052B (zh) 2006-01-13 2006-12-12 机械手臂的控制装置
US11/919,578 US7558647B2 (en) 2006-01-13 2006-12-12 Device and method for controlling robot arm, robot and program based on object-dependent impedance
JP2007516130A JP4056080B2 (ja) 2006-01-13 2006-12-12 ロボットアームの制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-005712 2006-01-13
JP2006005712 2006-01-13

Publications (1)

Publication Number Publication Date
WO2007080733A1 true WO2007080733A1 (ja) 2007-07-19

Family

ID=38256145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324741 WO2007080733A1 (ja) 2006-01-13 2006-12-12 ロボットアームの制御装置及び制御方法、ロボット、及びプログラム

Country Status (4)

Country Link
US (1) US7558647B2 (ja)
JP (1) JP4056080B2 (ja)
CN (3) CN101870108B (ja)
WO (1) WO2007080733A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270915A (ja) * 2008-05-07 2009-11-19 Kagawa Univ 3次元形状の計測方法および装置
JP2010228028A (ja) * 2009-03-26 2010-10-14 Nec Corp ロボットアーム、ロボットアームの接触検知方法、及び、ロボットアームを備えた装置
CN102239032A (zh) * 2008-12-03 2011-11-09 Abb研究有限公司 机器人安全***和方法
US8423188B2 (en) 2009-01-09 2013-04-16 Panasonic Corporation Control apparatus and control method for robot arm, robot, control program for robot arm, and integrated electronic circuit
JP2014008562A (ja) * 2012-06-28 2014-01-20 Honda Motor Co Ltd 移動ロボットの制御装置
CN105459136A (zh) * 2015-12-29 2016-04-06 上海帆声图像科技有限公司 机器人视觉抓取方法
US9452532B2 (en) 2014-01-27 2016-09-27 Panasonic Intellectual Property Management Co., Ltd. Robot, device and method for controlling robot, and computer-readable non-transitory recording medium
JP2016209952A (ja) * 2015-05-08 2016-12-15 ファナック株式会社 負荷パラメータ設定装置および負荷パラメータ設定方法
CN109062032A (zh) * 2018-10-19 2018-12-21 江苏省(扬州)数控机床研究院 一种基于近似动态逆的机器人pid变阻抗控制方法
US10434647B2 (en) 2016-11-25 2019-10-08 Kabushiki Kaisha Toshiba Robot control device, a robot control method, and a picking device
WO2020008538A1 (ja) * 2018-07-03 2020-01-09 三菱電機株式会社 材質推定装置及びロボット
WO2020075423A1 (ja) * 2018-10-10 2020-04-16 ソニー株式会社 ロボット制御装置、ロボット制御方法及びロボット制御プログラム
JP2020146460A (ja) * 2019-03-12 2020-09-17 兆強科技股▲分▼有限公司 飲料カップ自動振り装置
JP2020185620A (ja) * 2019-05-10 2020-11-19 川崎重工業株式会社 ロボット制御装置、ロボットシステム及びロボット制御方法
US20220097230A1 (en) * 2019-01-31 2022-03-31 Sony Group Corporation Robot control device, robot control method, and program
US11338439B2 (en) 2018-10-24 2022-05-24 Fanuc Corporation Robot control method
JP2023513603A (ja) * 2020-02-14 2023-03-31 フランカ エーミカ ゲーエムベーハー ロボットマニピュレータの衝突時の力制限
JP7415775B2 (ja) 2020-04-30 2024-01-17 トヨタ自動車株式会社 ロボット
US12023811B2 (en) * 2019-01-31 2024-07-02 Sony Group Corporation Robot control device and robot control method

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008188722A (ja) * 2007-02-06 2008-08-21 Fanuc Ltd ロボット制御装置
JP4836872B2 (ja) * 2007-05-31 2011-12-14 株式会社東芝 制御装置、制御方法、プログラム及びロボット
CN101646534B (zh) * 2007-06-27 2012-03-21 松下电器产业株式会社 机器手控制装置及控制方法、机器人
JP2009090403A (ja) * 2007-10-05 2009-04-30 Fanuc Ltd ロボット動作範囲設定装置
JP4445038B2 (ja) * 2008-02-06 2010-04-07 パナソニック株式会社 ロボット、ロボットの制御装置及び制御方法、並びに、ロボットの制御装置の制御プログラム
KR101479233B1 (ko) 2008-05-13 2015-01-05 삼성전자 주식회사 로봇 및 그 협조작업 제어방법
JP2010079814A (ja) * 2008-09-29 2010-04-08 Sanyo Electric Co Ltd 搬送制御装置、搬送装置の制御方法、及び観察装置
CN101737603B (zh) * 2008-11-10 2011-11-30 鸿富锦精密工业(深圳)有限公司 万向关节
JP5083194B2 (ja) * 2008-12-18 2012-11-28 株式会社デンソーウェーブ ロボットのキャリブレーション方法及びロボットの制御装置
JP5549129B2 (ja) 2009-07-06 2014-07-16 セイコーエプソン株式会社 位置制御方法、ロボット
US8544228B2 (en) * 2009-10-27 2013-10-01 Joseph Bronner Winged anchor and spiked spacer for veneer wall tie connection system and method
CN102470531B (zh) * 2010-01-04 2016-01-20 松下知识产权经营株式会社 机器人、机器人的控制装置及控制方法
JP2011200948A (ja) * 2010-03-24 2011-10-13 Sony Corp 把持判別装置および把持判別方法
JP5638283B2 (ja) * 2010-05-07 2014-12-10 本田技研工業株式会社 制御装置
JP5539000B2 (ja) * 2010-05-07 2014-07-02 本田技研工業株式会社 制御装置
JP5550468B2 (ja) 2010-06-30 2014-07-16 キヤノン株式会社 力覚センサの校正方法
JP5014471B2 (ja) * 2010-06-30 2012-08-29 ファナック株式会社 多軸加工機用数値制御装置
CN101870110B (zh) * 2010-07-01 2012-01-04 三一重工股份有限公司 一种机械铰接臂的控制方法及控制装置
KR102015307B1 (ko) * 2010-12-28 2019-08-28 삼성전자주식회사 로봇 및 그 제어 방법
JP5533727B2 (ja) * 2011-02-18 2014-06-25 株式会社安川電機 ワークピッキングシステム
CN103118842A (zh) * 2011-03-17 2013-05-22 松下电器产业株式会社 机器人、机器人的控制装置、控制方法以及控制程序
US8918210B2 (en) * 2011-03-18 2014-12-23 Denso Wave Incorporated Method of detecting an inter-axis offset of 6-axis robot
TW201247373A (en) * 2011-05-23 2012-12-01 Hon Hai Prec Ind Co Ltd System and method for adjusting mechanical arm
CN102363301A (zh) * 2011-10-19 2012-02-29 浙江工业大学 机器人拟人手指自适应指尖力跟踪控制方法
KR101305819B1 (ko) * 2012-01-04 2013-09-06 현대자동차주식회사 착용식 로봇의 사용자 조작 의도 토크 추출방법
US9014857B2 (en) * 2012-01-13 2015-04-21 Toyota Motor Engineering & Manufacturing North America, Inc. Methods and computer-program products for generating grasp patterns for use by a robot
JP5966372B2 (ja) * 2012-01-17 2016-08-10 セイコーエプソン株式会社 ロボット制御装置、ロボットシステム、ロボット制御方法及びロボット
JP5962020B2 (ja) 2012-01-17 2016-08-03 セイコーエプソン株式会社 ロボット制御装置、ロボットシステム、ロボット及びロボット制御方法
US9050726B2 (en) * 2012-05-16 2015-06-09 Gi 2 Technologies, Llc Activation control device for robotic auxiliary devices
JP5695223B2 (ja) * 2012-05-23 2015-04-01 パナソニックIpマネジメント株式会社 ロボット、ロボットの制御装置、制御方法、及び制御プログラム
JP5409844B2 (ja) * 2012-05-30 2014-02-05 株式会社神戸製鋼所 多関節ロボットの軌跡制御装置および制御方法
JP5971342B2 (ja) * 2012-09-04 2016-08-17 株式会社安川電機 ロボットの制御パラメータ調整方法、ロボットシステム、及びロボット制御装置
CN103894807A (zh) * 2012-12-28 2014-07-02 Abb技术有限公司 降低操作员潜在伤害的方法和装置
JP5942311B2 (ja) * 2013-02-25 2016-06-29 パナソニックIpマネジメント株式会社 ロボット、ロボットの制御装置及び制御方法、並びに、ロボット用制御プログラム
US9649765B2 (en) * 2013-03-11 2017-05-16 Siemens Aktiengesellschaft Reducing energy consumption of industrial robots by using new methods for motion path programming
KR20140147267A (ko) * 2013-06-19 2014-12-30 광주과학기술원 위치 제어 산업 로봇의 제어 방법 및 장치
CN103707300A (zh) * 2013-12-20 2014-04-09 上海理工大学 机械手装置
US9922144B2 (en) 2014-03-26 2018-03-20 Siemens Industry Software Ltd. Energy and cycle time efficiency based method for robot positioning
JP5820013B1 (ja) * 2014-04-30 2015-11-24 ファナック株式会社 ワークを把持して搬送するロボットの安全監視装置
NZ725166A (en) 2014-05-01 2018-05-25 Jarvis Products Robotic carcass processing method and system
US9701011B2 (en) 2014-05-08 2017-07-11 Siemens Industry Software Ltd. Method for robotic energy saving tool search
US9272417B2 (en) 2014-07-16 2016-03-01 Google Inc. Real-time determination of object metrics for trajectory planning
US9469029B2 (en) 2014-07-31 2016-10-18 Siemens Industry Software Ltd. Method and apparatus for saving energy and reducing cycle time by optimal ordering of the industrial robotic path
US9298863B2 (en) 2014-07-31 2016-03-29 Siemens Industry Software Ltd. Method and apparatus for saving energy and reducing cycle time by using optimal robotic joint configurations
US9815201B2 (en) 2014-07-31 2017-11-14 Siemens Industry Software Limited Method and apparatus for industrial robotic energy saving optimization using fly-by
US9457469B2 (en) * 2014-08-14 2016-10-04 Siemens Industry Software Ltd. Method and apparatus for automatic and efficient location generation for cooperative motion
DE102014216514B3 (de) * 2014-08-20 2015-09-10 Kuka Roboter Gmbh Verfahren zum Programmieren eines Industrieroboters und zugehöriger Industrieroboter
EP3200718A4 (en) * 2014-09-30 2018-04-25 Auris Surgical Robotics, Inc Configurable robotic surgical system with virtual rail and flexible endoscope
US9804593B1 (en) * 2014-12-12 2017-10-31 X Development Llc Methods and systems for teaching positions to components of devices
DE102014226933B3 (de) * 2014-12-23 2016-03-24 Kuka Roboter Gmbh Vorrichtung und Verfahren zum Aufnehmen von Positionen
US9687982B1 (en) 2015-05-27 2017-06-27 X Development Llc Adapting programming of a robot and/or control of the robot based on one or more parameters of an end effector of the robot
DE102015209899B4 (de) * 2015-05-29 2019-06-19 Kuka Roboter Gmbh Auswahl eines Gerätes oder eines Objektes mit Hilfe einer Kamera
JP6661925B2 (ja) * 2015-09-07 2020-03-11 セイコーエプソン株式会社 制御装置、ロボットおよびロボットシステム
GB2549072B (en) * 2016-03-24 2020-07-29 Cmr Surgical Ltd Robot control
JP6423815B2 (ja) * 2016-03-30 2018-11-14 ファナック株式会社 人協働型のロボットシステム
JP6755724B2 (ja) * 2016-06-20 2020-09-16 キヤノン株式会社 制御方法、ロボットシステム、および物品の製造方法
US20180021949A1 (en) * 2016-07-20 2018-01-25 Canon Kabushiki Kaisha Robot apparatus, robot controlling method, program, and recording medium
JP2018027581A (ja) * 2016-08-17 2018-02-22 株式会社安川電機 ピッキングシステム
GB2557179B (en) * 2016-11-29 2020-01-01 Rolls Royce Plc Methods, apparatus, computer programs and non-transitory computer readable storage mediums for controlling a hyper redundant manipulator
JP6392910B2 (ja) * 2017-01-13 2018-09-19 ファナック株式会社 ロボットの安全確保動作機能を備えた人間協働ロボットシステム
JP7427358B2 (ja) * 2017-07-20 2024-02-05 キヤノン株式会社 ロボットシステム、物品の製造方法、制御方法、制御プログラム、および記録媒体
US10821608B2 (en) 2017-10-23 2020-11-03 International Business Machines Corporation Method of robot arm fleet position control with wireless charging time
CN207929579U (zh) * 2018-01-04 2018-10-02 北京京东尚科信息技术有限公司 包裹识别装置和包裹分拣装置
TWI664507B (zh) * 2018-01-22 2019-07-01 金寶電子工業股份有限公司 自動控制設備以及自動控制方法
CN108406765B (zh) * 2018-02-06 2021-05-07 南京航空航天大学 一种开链式多臂机器人阻抗控制方法
JP2019155542A (ja) * 2018-03-14 2019-09-19 株式会社東芝 搬送装置、搬送システム、コントローラ、および搬送方法
US10875662B2 (en) * 2018-04-19 2020-12-29 Aurora Flight Sciences Corporation Method of robot manipulation in a vibration environment
JP7057214B2 (ja) * 2018-05-18 2022-04-19 トヨタ自動車株式会社 把持装置、タグが付された容器、対象物把持プログラムおよび対象物把持方法
ES2912406T3 (es) * 2019-02-15 2022-05-25 Siemens Ag Sistema y método computarizados que usan diferentes vistas de imágenes para encontrar ubicaciones de agarre y trayectorias para una recogida robótica
CN110605721A (zh) * 2019-10-24 2019-12-24 苏州艾利特机器人有限公司 一种基于末端六维力传感器的机械臂拖动示教方法
DE102019131401B3 (de) * 2019-11-21 2020-10-29 Franka Emika Gmbh Kalibrierung einer Impedanzregelung eines Robotermanipulators
CN113352327B (zh) * 2021-06-28 2022-09-23 深圳亿嘉和科技研发有限公司 五自由度机械臂关节变量确定方法
CN117124333A (zh) * 2023-10-20 2023-11-28 北京云桥智海科技服务有限公司 基于物联网的企业设备监测管理***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305591A (ja) * 1992-05-01 1993-11-19 Kobe Steel Ltd 組立ロボット
JPH07251389A (ja) * 1994-03-16 1995-10-03 Toshiba Corp マニピュレータ装置
JPH081559A (ja) * 1994-06-17 1996-01-09 Yaskawa Electric Corp マニピュレータの協調制御装置
JP2004280195A (ja) * 2003-03-12 2004-10-07 Yaskawa Electric Corp ロボット制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2960232B2 (ja) 1991-11-26 1999-10-06 川崎重工業株式会社 ロボットの制御装置
JP3115147B2 (ja) * 1993-03-12 2000-12-04 富士通株式会社 ロボット制御装置及びコントローラ
JP3369351B2 (ja) * 1995-03-28 2003-01-20 富士通株式会社 多関節マニピュレータの弾性設定方法および制御装置
JP3865158B2 (ja) 1997-05-30 2007-01-10 株式会社安川電機 ロボットアームのインピーダンス制御装置
US6522952B1 (en) * 1999-06-01 2003-02-18 Japan As Represented By Secretary Of Agency Of Industrial Science And Technology Method and system for controlling cooperative object-transporting robot
US7443115B2 (en) * 2002-10-29 2008-10-28 Matsushita Electric Industrial Co., Ltd. Apparatus and method for robot handling control
CN100348383C (zh) * 2002-12-12 2007-11-14 松下电器产业株式会社 机器人控制装置
JP2004195576A (ja) 2002-12-17 2004-07-15 Japan Science & Technology Agency 機能性流体を用いた柔軟関節マニピュレータ
JP2005088140A (ja) 2003-09-18 2005-04-07 National Institute Of Advanced Industrial & Technology 物体処理システム、物体処理方法及びロボット
CN1281384C (zh) * 2004-03-31 2006-10-25 哈尔滨工业大学 悬垂式智能机械手

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305591A (ja) * 1992-05-01 1993-11-19 Kobe Steel Ltd 組立ロボット
JPH07251389A (ja) * 1994-03-16 1995-10-03 Toshiba Corp マニピュレータ装置
JPH081559A (ja) * 1994-06-17 1996-01-09 Yaskawa Electric Corp マニピュレータの協調制御装置
JP2004280195A (ja) * 2003-03-12 2004-10-07 Yaskawa Electric Corp ロボット制御装置

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270915A (ja) * 2008-05-07 2009-11-19 Kagawa Univ 3次元形状の計測方法および装置
CN102239032A (zh) * 2008-12-03 2011-11-09 Abb研究有限公司 机器人安全***和方法
US8423188B2 (en) 2009-01-09 2013-04-16 Panasonic Corporation Control apparatus and control method for robot arm, robot, control program for robot arm, and integrated electronic circuit
JP2010228028A (ja) * 2009-03-26 2010-10-14 Nec Corp ロボットアーム、ロボットアームの接触検知方法、及び、ロボットアームを備えた装置
JP2014008562A (ja) * 2012-06-28 2014-01-20 Honda Motor Co Ltd 移動ロボットの制御装置
US9452532B2 (en) 2014-01-27 2016-09-27 Panasonic Intellectual Property Management Co., Ltd. Robot, device and method for controlling robot, and computer-readable non-transitory recording medium
US10252418B2 (en) 2015-05-08 2019-04-09 Fanuc Corporation Load parameter setting method and load parameter setting device
JP2016209952A (ja) * 2015-05-08 2016-12-15 ファナック株式会社 負荷パラメータ設定装置および負荷パラメータ設定方法
CN105459136A (zh) * 2015-12-29 2016-04-06 上海帆声图像科技有限公司 机器人视觉抓取方法
CN105459136B (zh) * 2015-12-29 2017-07-14 上海帆声图像科技有限公司 机器人视觉抓取方法
US10434647B2 (en) 2016-11-25 2019-10-08 Kabushiki Kaisha Toshiba Robot control device, a robot control method, and a picking device
WO2020008538A1 (ja) * 2018-07-03 2020-01-09 三菱電機株式会社 材質推定装置及びロボット
WO2020075423A1 (ja) * 2018-10-10 2020-04-16 ソニー株式会社 ロボット制御装置、ロボット制御方法及びロボット制御プログラム
CN109062032A (zh) * 2018-10-19 2018-12-21 江苏省(扬州)数控机床研究院 一种基于近似动态逆的机器人pid变阻抗控制方法
US11338439B2 (en) 2018-10-24 2022-05-24 Fanuc Corporation Robot control method
US12023811B2 (en) * 2019-01-31 2024-07-02 Sony Group Corporation Robot control device and robot control method
US20220097230A1 (en) * 2019-01-31 2022-03-31 Sony Group Corporation Robot control device, robot control method, and program
JP2020146460A (ja) * 2019-03-12 2020-09-17 兆強科技股▲分▼有限公司 飲料カップ自動振り装置
JP2020185620A (ja) * 2019-05-10 2020-11-19 川崎重工業株式会社 ロボット制御装置、ロボットシステム及びロボット制御方法
JP7497141B2 (ja) 2019-05-10 2024-06-10 川崎重工業株式会社 ロボット制御装置、ロボットシステム及びロボット制御方法
JP2023513603A (ja) * 2020-02-14 2023-03-31 フランカ エーミカ ゲーエムベーハー ロボットマニピュレータの衝突時の力制限
JP7415775B2 (ja) 2020-04-30 2024-01-17 トヨタ自動車株式会社 ロボット

Also Published As

Publication number Publication date
JP4056080B2 (ja) 2008-03-05
CN101870112A (zh) 2010-10-27
CN101870112B (zh) 2011-09-28
CN101213052A (zh) 2008-07-02
CN101870108B (zh) 2011-09-28
US7558647B2 (en) 2009-07-07
US20090105880A1 (en) 2009-04-23
CN101213052B (zh) 2011-01-12
JPWO2007080733A1 (ja) 2009-06-11
CN101870108A (zh) 2010-10-27

Similar Documents

Publication Publication Date Title
WO2007080733A1 (ja) ロボットアームの制御装置及び制御方法、ロボット、及びプログラム
JP4243326B2 (ja) ロボットアームの制御装置及び制御方法、ロボット、及びプログラム
JP4445038B2 (ja) ロボット、ロボットの制御装置及び制御方法、並びに、ロボットの制御装置の制御プログラム
JP4568795B2 (ja) ロボットアームの制御装置及び制御方法、ロボット、ロボットアームの制御プログラム、並びに、集積電子回路
JP7116901B2 (ja) ロボット制御装置、ロボット制御方法及びロボット制御プログラム
JP4759660B2 (ja) ロボットアーム制御用の装置、方法、プログラム及び集積電子回路、並びに、組立ロボット
JP5695223B2 (ja) ロボット、ロボットの制御装置、制御方法、及び制御プログラム
JP4361132B2 (ja) ロボットアームの制御装置及び制御方法、ロボット、及び制御プログラム
JP4947073B2 (ja) ロボット装置及びその制御方法
JP5154712B2 (ja) ロボットの制御装置及び制御方法、ロボット、並びに、制御プログラム
JPWO2013069291A1 (ja) ロボット、ロボットの制御装置、制御方法、及び制御プログラム
JPWO2012124342A1 (ja) ロボット、ロボットの制御装置、制御方法、及び制御プログラム
WO2020075423A1 (ja) ロボット制御装置、ロボット制御方法及びロボット制御プログラム
CN113631324A (zh) 多主体控制器和机器人
JP2014155985A (ja) ロボット、ロボットの制御装置、制御方法、及び制御プログラム
JP2017056525A (ja) ロボット装置、ロボット制御方法、プログラム、記録媒体及び組立部品の製造方法
Kitchatr et al. Visual servo control for ball-on-plate balancing: Effect of PID controller gain on tracking performance
TW202421393A (zh) 控制裝置以及電腦
TW202421392A (zh) 控制裝置以及電腦
Jayabharath A Dual Arm Tele Artificial Intelligence System Based on Zigbee and Sensor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680023568.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007516130

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11919578

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834496

Country of ref document: EP

Kind code of ref document: A1