WO2007079685A1 - Procédé et système de négociation de canaux entre stations de base adjacentes - Google Patents

Procédé et système de négociation de canaux entre stations de base adjacentes Download PDF

Info

Publication number
WO2007079685A1
WO2007079685A1 PCT/CN2007/000092 CN2007000092W WO2007079685A1 WO 2007079685 A1 WO2007079685 A1 WO 2007079685A1 CN 2007000092 W CN2007000092 W CN 2007000092W WO 2007079685 A1 WO2007079685 A1 WO 2007079685A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
base station
escape
base stations
working
Prior art date
Application number
PCT/CN2007/000092
Other languages
English (en)
French (fr)
Inventor
Xuyong Wu
Zhong Pan
Quanbo Zhao
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2007079685A1 publication Critical patent/WO2007079685A1/zh
Priority to US12/169,941 priority Critical patent/US8107969B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to the use of channels in broadband wireless access technologies, and more particularly to a method and system for channel negotiation between adjacent base stations. Background of the invention
  • Broadband wireless access technology utilizes wireless resources for broadband access, which is invaluable for this access technology.
  • a channel is a broad concept and refers to a communication system resource, which may be a physical frequency band or a virtual link resource.
  • a time division multiplexed frequency band can generate multiple virtual channels; for example, different CDMA codewords correspond to different CDMA channels.
  • a neighboring base station of the base station refers to all other base stations having a common coverage area with the base station and having one or more active terminals in the common coverage area. It is assumed that for base station A, base station B is a neighboring base station of base station A. Then, for base station B, base station A is also a neighboring base station of base station B, that is, there is an adjacency relationship between base station A and base station B.
  • Method 1 Perform network planning to statically configure channels for base stations, and ensure that base stations in the common coverage area occupy different channels as much as possible. However, this method does not support dynamic configuration. When the topology of the network changes, the network must be re-planned, cannot be automatically adjusted and negotiated, and the work efficiency is low.
  • Method 2 Define multiple base stations with adjacencies as a community, and use specific algorithms, such as greedy algorithms, to allocate channels to each base station in the community to ensure the best performance with the least number of channels.
  • the method is divided into two implementation methods: centralized and distributed.
  • the centralized method is to designate a base station to perform channel distribution calculation, and then command other base stations to switch to the target channel according to the calculation result;
  • the distributed is that all base stations in the community calculate at the same time after learning that the topology structure of the network changes,
  • the base station calculates its own target channel by itself and then performs handover at a uniform time.
  • the main purpose of the present invention is to provide a method for channel negotiation between adjacent base stations.
  • the new base station and its neighboring base stations adjust the working channel of the neighboring base station through information interaction, thereby providing the new base station with the information. Available working channel.
  • a further object of the present invention is to provide a system for channel negotiation between adjacent base stations.
  • the working channel of the neighboring base station is automatically adjusted in the system to provide an available working channel for the new base station.
  • a method for channel negotiation between adjacent base stations includes:
  • the first base station starts to acquire channel information of all second base stations adjacent to itself; Selecting a channel in a network as the first working channel of the first base station, and requesting all the third base stations occupying the first working channel in all the second base stations to perform channel switching;
  • a system for channel negotiation between adjacent base stations comprising a first base station and at least one second base station adjacent to the first base station;
  • the first base station is configured to acquire channel information of all the second base stations at the time of startup, select a channel in one network as its first working channel, and request all third parties occupying the first working channel in the second base station.
  • the base station performs channel switching and occupies the first working channel;
  • the third base station After determining a channel other than the first working channel as the target channel of each of the third base stations, the third base station switches to the target channel.
  • the method and system for channel negotiation between adjacent base stations of the present invention adjust channels by auto-negotiation between adjacent base stations, optimize resource allocation of the entire network, and enable limited communication system resources. Support as many base stations as possible.
  • the above process is dynamically completed, and resource adjustment is limited to between adjacent base stations, which greatly improves the efficiency of channel negotiation between base stations.
  • 1 is a flow chart of negotiating a working channel S for an IBS in one embodiment of the present invention.
  • 2 is a flow chart of negotiating a working channel S for an IBS in another embodiment of the present invention.
  • 2 is a network structure before channel reallocation in still another embodiment of the present invention.
  • FIG. 3 is a diagram showing the network structure after channel reallocation in still another embodiment of the present invention. Mode for carrying out the invention
  • Working Channel It is the channel currently occupied by a certain base station, and the base station works normally on the channel. On this channel, the base station does not cause any interference with its neighboring base stations.
  • Alternative Channel An alternate channel for a base station.
  • the base station can switch to an escape channel to avoid interference with its neighboring base stations. That is, the escape channel is a channel that is not occupied by all neighboring base stations of a certain base station.
  • the base station has one or more escape channels, and the information of these escape channels is recorded in the escape channel list.
  • the base station can exclude the working channels of each neighboring base station from all the channels within the known scanning range to obtain its own escape channel. Of course, the working channel of the base station is not recorded in the escape channel list.
  • Target Channel A channel selected from the list of escape channels. When the working channel is unavailable, the base station switches from the working channel to the target channel.
  • Channel Usage Table Record information about the working channel and escape channel of a base station and its neighboring base stations. For example, the channel usage of a base station is shown in Table 1.
  • the first row of Table 1 records the working channel and the escape channel list of the base station, and the subsequent rows record the work, channel and escape channel list of each neighboring base station of the base station.
  • the base station's own escape channel list records all available channels in the network except the working channels of all its neighboring base stations, and the remaining channels after the working channel of the base station, and the list needs to be updated in time.
  • the base station needs to update the information of the working channels of each neighboring base station in time, that is, once the working channel of the neighboring base station changes, the base station needs to modify the corresponding record of its own channel usage table.
  • the escape channel list of the neighboring base stations is obtained by the base station from the corresponding neighboring base stations through information interaction, and the base station is not necessary for the maintenance of the escape channel list of each neighboring base station.
  • the base station When the topology of the network changes, or when the working channel of the base station changes, the base station must update the working channels of each neighboring base station in time, and update its own escape channel list accordingly.
  • the distribution calculation can be re-executed according to its own escape channel list.
  • the base station may assign a target channel to the neighboring base station, or the neighboring base station may select an escape channel as the target channel. In the latter case, the base station may not need to obtain the escape channel list of each neighboring base station, and only needs to obtain information about whether each neighboring base station has an escape channel.
  • a change in the topology of the network refers to a change in base station members in the network or a change in adjacency between base stations.
  • the change of the base station member includes the addition or reduction of the base station in the network, or the merging or splitting of the network, etc.; the change of the adjacency relationship between the base stations refers to the increase or decrease of the adjacency relationship between the base stations.
  • channel negotiation is performed between the neighboring base stations, and a method for allocating a working channel S to the new base station is as shown in FIG. 1, which includes the following steps:
  • Step 101 After a certain base station newly joins the network, the base station is started.
  • the base station is referred to as an Initializing Base (IBS).
  • IBS-Nrl the first neighboring base stations adjacent to the IBS are determined, and the channel of the IBS is entered. Line scan. If the idle channel is scanned, the iBS directly occupies the idle channel as its own working channel S, and step 108 is performed; otherwise, step 102 is performed.
  • the neighboring base stations of the IBS can be determined by means of Coexistence Signal Interval (CSI) broadcast, etc., which is a prior art, and therefore will not be described in detail herein.
  • CSI Coexistence Signal Interval
  • Step 102 The IBS acquires channel information of all IBS-Nrls, and selects the working channel S according to the above information.
  • the method for the IBS to obtain channel information of all IBS-Nrls may be that the IBS sends a channel query message to all IBS-Nrls, and then each IBS-Nrl returns its own channel information.
  • each IBS-Nrl broadcasts its channel information to the IBS after scanning to find that the IBS is activated in the community.
  • the channel information of the IBS-Nrl refers to a working channel and an escape channel list of the IBS-Nrl, and the channel information may be recorded in any format, such as a table.
  • each IBS-Nrl can select one of the at least one escape channel as the target channel T and switch to the target channel T to vacate the working channel S to the IBS.
  • the method for selecting the working channel S is: determining, for all channels scanned by the IBS, the number of uses of each channel, that is, the channel acts as a working channel of several IBS-Nrl, and determines the channel Whether each IBS-Nrl as a working channel has at least one escape channel.
  • the channel with the smallest number of uses is selected as the working channel S of the IBS. If at least one of all IBS-Nrls corresponding to the least used channel does not have an escape channel, then The channel cannot be determined as the working channel S. For this case, a similar method can be used to examine all IBS-Nrls corresponding to a small number of channels, until the qualified working channel 8 is selected for the IBS.
  • the IBS may also select one channel for each IBS-Nrl occupying the working channel S as the target channel T of the IBS-Nrl according to the channel usage table.
  • the IBS-Nrl occupying the working channel S is referred to as a handover IBS-Nrl.
  • Step 103 The IBS sends a channel switching request to all the handover IBS-Nrls.
  • the channel switching request includes at least one of an IBS identifier, an identifier of the handover IBS-Nrl, and a target channel T identification.
  • Step 104 Each handover IBS-Nrl determines whether the target channel T is its own escape channel, and if yes, returns a handover response message to the IBS; otherwise, the handover IBS-Nrl returns a handover error report to the IBS, indicating that the channel negotiation is not success.
  • Step 105 The IBS judges according to the message returned by all the switching IBS-Nrl. If the IBS receives the handover error report of the at least one switching IBS-Nrl, step 106 is performed; if the IBS receives the handover response of all the switching IBS-Nrl If the message is received, go to step 107.
  • Step 106 The IBS sends a handover cancellation request to all handover IBS-Nrls, and the handover has been performed. After receiving the message, the IBS-Nrl switches back to the working channel S to work normally, and the IBS returns to step 102.
  • the working channel S selected in the previous step 102 should be excluded from the candidate set.
  • steps 104-106 are not indispensable, but are a preferred step when the method of the present invention is performed, and may not be performed.
  • Step 107 Each handover IBS-Nrl is switched from the working channel S to the corresponding target channel T, and the IBS occupies the working channel S.
  • the operation of updating the channel usage table of each IBS-Nrl is specifically as follows: adding one line in its own channel usage table, recording the channel information of the IBS; and deleting the working channel S from its own escape channel list.
  • adding one line in its own channel usage table, recording the channel information of the IBS and deleting the working channel S from its own escape channel list.
  • Step 109 Each handover IBS-Nrl broadcasts a channel switching message to all the base stations adjacent to the IBS, that is, the second neighboring base station (IBS-Nr2), to notify all IBS-Nr2 to update the channel usage table.
  • IBS-Nr2 the second neighboring base station
  • Step 1 10 Each IBS-Nr2 updates its own channel usage table, and the process ends.
  • the operation of each IBS-Nr2 update channel usage table is specifically: 1) deleting the target channel T from the escape channel list of the IBS-Nr2; 2) setting the working channel of the switching IBS-Nrl to the target in the channel usage table.
  • the base station adjacent to IBS-Nr2 is referred to as a third neighboring base station (IBS-Nr3), and it is determined according to the record of the channel usage table whether each IBS-Nr3 occupies the working channel S of the IBS, and accordingly It is judged whether the working channel S can be added to the escape channel list of the IBS-Nr2; if no IBS-Nr3 occupies the working channel S, the working channel S can be added to the escape channel list of the IBS-Nr2.
  • IBS-Nr3 third neighboring base station
  • a method for negotiating a working channel S between adjacent base stations for an IBS is as shown in FIG. 2.
  • the switching IBS-Nrl can select the target channel T by itself without being designated by the IBS.
  • Step 201 After an IBS is newly joined to the network, the IBS is started. Thereafter, all first neighboring base stations (IBS-Nrl) adjacent to the IBS are determined and the channel of the IBS is scanned. If scanning to an idle channel, the IBS directly occupies the idle channel as its own work. 07 000092 is made to channel S, and step 208 is performed, otherwise step 202 is performed.
  • IBS-Nrl first neighboring base stations
  • Step 202 The IBS acquires channel information of all IBS-Nrls, and selects the working channel S according to the above information.
  • the channel information of the IBS-Nrl refers to the working channel of the IBS-Nrl, and whether there is an escape channel and/or the number of escape channels, and the like.
  • Step 203 The IBS sends a channel switching request to all IBS-Nrls that occupy the working channel S, that is, the switching IBS-Nrl.
  • the channel switch request includes an IBS identifier and/or an identifier of the handover IBS-Nrl.
  • Step 204 Each handover IBS-Nrl determines whether it can switch to another channel, and if it can switch, returns a handover response message to the IBS; otherwise, the handover IBS-Nrl returns a handover error report to the IBS, indicating that the channel negotiation is unsuccessful.
  • each handover IBS-Nrl determines whether it can perform handover according to its own escape channel list. If there is at least one escape channel in the escape channel list, indicating that handover can be performed, the handover IBS-Nrl can arbitrarily select an escape channel as its own target channel. If there is no escape channel in the escape channel list, the handover IBS-Nrl cannot perform handover.
  • Step 205 The IBS determines according to the message returned by all the switching IBS-Nrl. If the IBS receives the handover error report of the at least one switching IBS-Nrl, step 206 is performed; if the IBS receives the handover response of all the switching IBS-Nrl If the message is received, go to step 207.
  • Step 206 The IBS sends a handover cancellation request to all handover IBS-Nrls, and the handover has been performed. After receiving the message, the IBS-Nrl switches back to the working channel S to work normally, and the IBS returns to step 202.
  • step 204 206 is not indispensable, but is a preferred step when the method of the present invention is performed, and may not be performed.
  • Step 207 Each handover IBS-Nrl selects an escape channel from its own escape channel list as the target channel T, and switches to the target channel T, and the IBS occupies the working channel 8.
  • Step 208 The IBS broadcasts a channel occupation message to all IBS-Nrls, notifies each IBS-Nrl to update channel information, and each IBS-Nrl updates its own channel usage table stored.
  • Step 209 Each handover IBS-Nrl broadcasts a channel switching message to all base stations other than the IBS, i.e., IBS-Nr2, to notify all IBS-Nr2 to update the channel usage table.
  • Step 210 Each IBS-Nr2 updates its own channel usage table stored, and the process ends.
  • a normal working base station may exit the network.
  • the OBS may be an IBS that enters a normal working state, or any base station in the network.
  • the OBS is required to broadcast a channel exit message to all fourth neighboring base stations (IBS-Nr4) adjacent to itself before exiting the network, and each IBS-Nr4 will update its channel usage table according to the message.
  • the channel information of the OBS is deleted, and whether the working channel of the OBS is added to the IBS-Nr4's own escape channel list, so that each base station in the network can know the actual usage of the channel in real time.
  • FIG. 3 shows a network structure of a specific example of the present invention.
  • BS1 ⁇ BS8 are all normal working base stations, and every two intersecting base stations can be neighboring base stations, for example, BS1 and BS2 are neighboring base stations. If neighboring base stations occupy the same channel at the same time, interference will occur between them. To this end, it is necessary to make these adjacent base stations work on different channels as much as possible. Assume that there are only three available channels in the current area, namely Channel 1, Channel 2 and Channel 3, which are in BS1 BS8. The distribution of the use of the eight base stations is shown in Figure 3.
  • a new start base station BS9 is started in the current area.
  • the BS9 scans four adjacent base stations, namely BS3, BS4, BS5 and BS7, and the channels available to BS9 are Channel 1, Channel 2, and Channel 3. Since the working channel of BS3 is Channel 3, the working channels of BS4 and BS7 are both Channel 1, and the working channel of BS5 is Channel 2, so BS9 cannot scan the idle channel. To ensure that BS9 and each neighboring base station have no interference, it is necessary to provide another channel to BS9, or to make BS9 share a certain channel with a neighboring base station.
  • Table 2 is the channel usage table of BS9 before the working channel S is selected. It can be seen that among the four neighboring base stations of BS9, BS3 occupies Channel 3 separately and cannot switch to other channels, otherwise it will interfere with BS3's own neighboring base stations. BS5 occupies Channel 2 alone, but can switch to Channel 3 without interference. BS4 and BS7 occupy Channel 1 at the same time, and both have escape channels. ⁇
  • BS5 can be switched to Channel 3 first, and Channel 2 can be determined as the working channel S of BS9.
  • Channel occupancy of the current area is as shown in FIG. That is to say, by adjusting the channel of the adjacent base station, one channel is vacated for use by the BS 9.
  • the method of the present invention can improve the capacity of the system to accommodate the base station by adjusting the channel of the adjacent base station when the number of channels of the network is small. And, after the above adjustment, the base accommodated The number of stations in 2007/000092 is equivalent to the number of base stations accommodated after the channel of all base stations is globally adjusted. Compared with the global adjustment of the channels of all base stations, the method of the present invention has high efficiency in channel negotiation because it is only adjusted between adjacent base stations.
  • the method and system for channel negotiation between adjacent base stations of the present invention adjust channels by auto-negotiation between adjacent base stations, thereby optimizing resource allocation of the entire network.
  • the above process is dynamically completed, which can reduce maintenance costs, and resource adjustment is limited to between adjacent base stations, which greatly improves the efficiency of channel negotiation between base stations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

相邻基站间信道协商的方法和*** 技术领域
本发明涉及宽带无线接入技术中信道的使用, 尤指一种相邻基站 间信道协商的方法和***。 发明背景
宽带无线接入技术是利用无线资源进行宽带接入, 信道对于该接 入技术而言是很宝贵的。 在本申请中, 信道是一个广义的概念, 指的 是一种通信***资源, 可以是物理频带或虚拟链路资源等。 比如, 时 分复用频带可以产生多个虚拟信道; 再比如, 不同的 CDMA码字对 应不同的 CDMA信道。
对于某个基站(Base Station, BS )而言, 该基站的相邻基站指的 是和该基站具有共同覆盖区域,并且共同覆盖区域内含有一个或多个 有效终端的所有其它基站。 假设对于基站 A而言, 基站 B是基站 A 的一个相邻基站。 那么, 对于基站 B而言, 基站 A也是基站 B的一 个相邻基站, 也就是基站 A和基站 B之间存在邻接关系。
网络中的所有基站共享有限的通信***资源, 因此任一个基站都 不能随便占用网络的通信***资源, 需要按照规划进行使用。 对于网 络中没有较好地进行信道规划的区域, 或是对于免许可频段 ( License-Exempt Band, LE Band ) , 常会出现多个基站同时占用某 个信道的情况, 引起基站之间的相互干扰。 当网络的规模较大时, 相 邻基站之间如何协商信道, 将关系到通信***资源是否得到充分利 用, 进而影响到基站及网络的性能。 为此, 现有技术提供了多种在相 邻基站之间进行信道协商的方法。 方法一: 执行网络规划, 为基站静态配置信道, 尽可能保证共同 覆盖区域内的基站占用不同的信道。 但是, 该方法不支持动态配置, 当网络的拓朴结构发生变化时, 必须对该网络重新进行规划, 不能自 动调整和协商, 工作效率低。
方法二: 将多个具有邻接关系的基站定义为一个共同体, 采用特 定算法, 比如贪婪算法等, 将信道分配给共同体中的各个基站, 以保 证使用最少的信道达到最好的性能。该方法又分为两种执行方式: 集 中式和分布式。 其中, 集中式是指定某个基站进行信道分布计算, 然 后根据计算结果命令其他基站切换至目标信道;分布式是共同体内的 所有基站在获知网络的拓朴结构发生变化后同时进行计算, 由各个基 站自行计算出自身的目标信道, 然后在统一的时间点执行切换。
当共同体中加入新基站时, 必须在整个共同体内重新进行信道分 布计算, 并为共同体内的大部分基站执行信道切换。 上述过程会增加 终端成本, 并与现有协议存在沖突。 发明内容
本发明的主要目的在于提供一种相邻基站间信道协商的方法, 当 有新基站加入网络时,该新基站与其相邻基站通过信息交互调整相邻 基站的工作信道, 从而为该新基站提供可用的工作信道。
本发明的再一目的在于提供一种相邻基站间信道协商的***, 当 有新基站加入该***时, 通过在***中自动调整相邻基站的工作信 道, 为该新基站提供可用的工作信道。
为达到上述目的, 本发明的技术方案具体是这样实现的: 一种相邻基站间信道协商的方法, 该方法包括:
第一基站启动, 获取与自身相邻的所有第二基站的信道信息; 选择一个网络中的信道作为第一基站的第一工作信道, 并请求所 述所有第二基站中占用所述第一工作信道的所有第三基站进行信道 切换;
为每个第三基站确定一个除第一工作信道之外的其他信道, 作为 该第三基站的目标信道, 将该第三基站切换到所述目标信道, 第一基 站占用所述第一工作信道。
一种相邻基站间信道协商的***, 该***包括第一基站和至少一 个与第一基站相邻的第二基站;
所述第一基站用于在启动时获取所有第二基站的信道信息, 选择 一个网络中的信道作为自身的第一工作信道,请求所有第二基站中占 用所述第一工作信道的所有第三基站进行信道切换,并占用所述第一 工作信道;
在确定一个除第一工作信道之外的其他信道作为每个第三基站 的目标信道后, 所述第三基站切换到该目标信道。
由上述技术方案可见, 本发明的这种相邻基站间信道协商的方法 和***, 在相邻基站之间通过自动协商来调整信道, 优化了整个网络 的资源分配, 使得有限的通信***资源可以支持尽可能多的基站。 上 述过程是动态完成的, 并且资源调整仅限于相邻基站之间, 大大提高 基站之间信道协商的效率。 附图简要说明
图 1是本发明一个实施例中为 IBS协商工作信道 S的流程图。 图 2是本发明另一个实施例中为 IBS协商工作信道 S的流程图。 图 2是本发明再一个实施例中信道重新分配前的网络结构。
图 3是本发明再一个实施例中信道重新分配后的网络结构。 实施本发明的方式
在阐述本发明的方法和***时, 使用到以下几个概念, 具体为: 工作信道( Working Channel ): 是某个基站当前占用的信道, 基 站在该信道上正常工作。 在该信道上, 该基站与其相邻基站不会产生 任何干扰。
逃逸信道( Alternative Channel ): 是某个基站的备选信道。 当工 作信道不可用时, 该基站可以切换到某个逃逸信道, 以避免与其相邻 基站产生干扰。 也就是说, 逃逸信道是某个基站的所有相邻基站都没 有占用的信道。 一般情况下, 基站具有一个或多个逃逸信道, 这些逃 逸信道的信息记录在逃逸信道列表中。基站可以从已知扫描范围内的 所有信道中排除各个相邻基站的工作信道得到自身的逃逸信道。 当 然, 该基站的工作信道不会记录在逃逸信道列表中。
目标信道( Target Channel ):从逃逸信道列表中选出的一个信道。 当工作信道不可用时, 基站从工作信道切换到该目标信道。
信道用途表(CUT, Channel Usage Table ) : 记录某个基站及其 相邻基站的工作信道和逃逸信道的信息等。 比如, 某个基站的信道用 途表见表一。
Figure imgf000006_0001
表一
表一的第 1行记录的是该基站的工作信道及逃逸信道列表, 后面 各行记录的分别是该基站的各个相邻基站的工作,信道及逃逸信道列 表。 在信道用途表中, 该基站自身的逃逸信道列表记录的是网络中所 有可用的信道除去其所有相邻基站的工作信道,以及该基站的工作信 道后剩余的信道, 该列表需要及时更新。
此外, 基站需要及时更新各个相邻基站的工作信道的信息, 即相 邻基站的工作信道一旦发生变化,该基站就要修改自身的信道用途表 的相应记录。相邻基站的逃逸信道列表是该基站通过信息交互从对应 的相邻基站获得的,基站对于各个相邻基站的逃逸信道列表的维护不 是必须的。
当网络的拓朴结构发生变化时, 或者基站的工作信道发生改变 时, 该基站必须及时更新各个相邻基站的工作信道, 并据此更新自身 的逃逸信道列表。 当该基站新启动扫描不到空闲信道时, 可以根据自 身的逃逸信道列表重新进行分布计算。 在此过程中, 该基站可以为相 邻基站指定一个目标信道,也可由相邻基站自行选择一个逃逸信道作 为目标信道。 对于后一种情况, 该基站可以不必获取各个相邻基站的 逃逸信道列表, 只需获取各个相邻基站是否具有逃逸信道这一信息。
所述网络的拓朴结构发生变化指的是网络中的基站成员发生变 化或基站之间的邻接关系发生变化。 其中, 基站成员发生变化包括网 络中增加、 减少基站, 或出现网络的合并或***等; 基站之间的邻接 关系发生变化是指基站之间的邻接关系增加或减少等。
在本发明的一个实施例中, 网络中加入一个新基站后, 相邻基站 之间进行信道协商,为该新基站分配一个工作信道 S的方法如图 1所 示, 包括以下步驟:
步骤 101 : 某个基站新加入网络后, 启动该基站。 在下面的描述 中, 该基站被称为新启动基站 (Initializing BS, IBS ) 。 之后, 确定 所有与 IBS相邻的第一相邻基站 ( IBS-Nrl ) , 并对该 IBS的信道进 行扫描。 如果扫描到空闲信道, iBS直接占用该空闲信道作为自身的 工作信道 S, 并执行步骤 108, 否则执行步骤 102。
该步骤中, 可以通过共存信令时隙 ( Coexistence Signal Interval, CSI ) 广播等方式来确定 IBS的相邻基站, 此为现有技术, 故不在此 详述。
步驟 102: IBS获取所有 IBS-Nrl 的信道信息, 根据上述信息选 择工作信道 S。
该步骤中, IBS获取所有 IBS-Nrl 的信道信息的方法可以是 IBS 向所有 IBS-Nrl发送信道查询报文, 之后每个 IBS-Nrl返回自身的信 道信息。或者是,每个 IBS-Nrl通过扫描得知共同体中有 IBS启动后, 就向该 IBS 广播其信道信息。 所述 IBS-Nrl 的信道信息指的是该 IBS-Nrl的工作信道和逃逸信道列表, 该信道信息可以采用任意格式 记录, 比如表格等。
一般情况下,网络中的某个信道若要被确定为 IBS的工作信道 S , 需要满足一个条件,即当前占用该工作信道 S的每个 IBS-Nrl都至少 拥有一个逃逸信道。 这样, 当 IBS要求占用该工作信道 S 时, 各个 IBS-Nrl可以从至少一个逃逸信道中选出一个作为目标信道 T, 并切 换到该目标信道 T上, 以便将工作信道 S空出给 IBS。
在本发明的一个实例中, 选择工作信道 S的方法为: 对于 IBS扫 描到的所有信道,确定每个信道的使用数,即该信道作为几个 IBS-Nrl 的工作信道,并确定以该信道作为工作信道的每个 IBS-Nrl是否具有 至少一个逃逸信道。
如果使用数最小的信道对应的所有 IBS- Nrl都至少有一个逃逸信 道, 则选中该使用数最小的信道作为 IBS的工作信道 S。 如果使用数 最小的信道对应的所有 IBS-Nrl中至少有一个不具有逃逸信道,则该 信道不能被确定为工作信道 S。 对于这种情况, 可采用类似方法考察 使用数次小的信道对应的所有 IBS-Nrl , 直至为 IBS选出符合条件的 工作信道8。
本实施例中, IBS还可根据信道用途表, 为占用工作信道 S的每 个 IBS-Nrl选择一个信道作为该 IBS-Nrl的目标信道 T。 在后续描述 中, 将占用工作信道 S的 IBS-Nrl称为切换 IBS-Nrl。
步骤 103: IBS向所有所述切换 IBS-Nrl发送信道切换请求。 该信道切换请求包括 IBS标识符、 切换 IBS-Nrl的标识符和目标 信道 T标识的至少其中一项。
步骤 104: 各个切换 IBS- Nrl分别判断所述目标信道 T是否为自 身的逃逸信道, 如果是则向 IBS 返回切换应答消息; 否则, 该切换 IBS-Nrl向 IBS返回切换错误报告, 表明信道协商不成功。
步骤 105: IBS根据所有切换 IBS-Nrl返回的消息进行判断, 如 果该 IBS接收到至少一个切换 IBS-Nrl的切换错误报告,则执行步骤 106; 如果该 IBS接收到所有切换 IBS-Nrl的切换应答消息, 则执行 步骤 107。
步骤 106: IBS向所有切换 IBS-Nrl发送切换取消请求, 已执行 切换的切换 IBS-Nrl接收到该消息后, 切换回工作信道 S正常工作, 该 IBS返回执行步骤 102。
其中, IBS返回执行步驟 102选择一个新的工作信道时, 应该将 之前一次执行步骤 102选出的工作信道 S排除在备选集之外。
需要说明的是, 上述步驟 104~106并非必不可少的, 只是执行本 发明的方法时一个较佳的步骤, 也可以不必执行。
步骤 107: 每个切换 IBS-Nrl都从工作信道 S切换到各自对应的 目标信道 T, IBS占用工作信道 S。 步骤 108 : IBS 向所有 IBS-Nrl 广播信道占用消息, 通知各个 IBS-Nrl更新信道信息, 每个 IBS-Ni'l根据该消息更新自身存储的信 道用途表。
每个 IBS-Nrl更新信道用途表的操作具体为: 在自身的信道用途 表中增加一行,记录 IBS的信道信息; 将工作信道 S从自身的逃逸信 道列表中删除。 此外, 对于每个切换 IBS-Nrl, 由于其已经切换到目 标信道 T进行工作, 故还需进一步将目标信道 T从自身的逃逸信道 列表中删除。
步骤 109: 每个切换 IBS- Nrl向除 IBS之外所有与自身相邻的基 站,即第二相邻基站( IBS-Nr2 ),广播信道切换消息,通知所有 IBS-Nr2 更新信道用途表。
步骤 1 10: 每个 IBS-Nr2更新自身存储的信道用途表, 流程结束。 每个 IBS-Nr2更新信道用途表的操作具体为: 1 )将目标信道 T 从该 IBS-Nr2 的逃逸信道列表中删除; 2 ) 在信道用途表中将切换 IBS-Nrl的工作信道设置为目标信道 T; 3 )将与 IBS-Nr2相邻的基站 称为第三相邻基站 (IBS-Nr3 ) , 根据信道用途表的记录判断每个 IBS- Nr3是否占用 IBS的工作信道 S , 并据此判断可否将工作信道 S 添加到该 IBS-Nr2的逃逸信道列表; 如果没有 IBS-Nr3占用工作信道 S, 则该工作信道 S可以添加到 IBS-Nr2的逃逸信道列表。
在本发明的另一个实施例中,相邻基站之间为一个 IBS协商出工 作信道 S的方法如图 2所示。与图 1的实施例不同的是,本实施例中, 切换 IBS-Nrl可以自行选择目标信道 T, 而不必由 IBS指定。
步驟 201 : 某个 IBS新加入网络后, 启动该 IBS。 之后, 确定所 有与 IBS相邻的第一相邻基站 (IBS-Nrl ) , 并对该 IBS的信道进行 扫描。 如果扫描到空闲信道, IBS直接占用该空闲信道作为自身的工 07 000092 作信道 S, 并执行步骤 208, 否则执行步骤 202。
步骤 202: IBS获取所有 IBS-Nrl 的信道信息, 根据上述信息选 择工作信道 S。
所述 IBS-Nrl的信道信息指的是该 IBS-Nrl的工作信道, 以及是 否具有逃逸信道和 /或逃逸信道的数量等。
步驟 203: IBS向所有占用工作信道 S的 IBS-Nrl ,即切换 IBS-Nrl 发送信道切换请求。
所述信道切换请求包括 IBS标识符和 /或切换 IBS-Nrl的标识符。 步骤 204: 各个切换 IBS-Nrl判断自身能否切换到其他信道上, 如果能切换则向 IBS返回切换应答消息;否则,该切换 IBS-Nrl向 IBS 返回切换错误报告, 表明信道协商不成功。
该步骤中, 每个切换 IBS-Nrl根据自身的逃逸信道列表判断能否 执行切换。 如果逃逸信道列表中存在至少一个逃逸信道, 表明能执行 切换,该切换 IBS-Nrl可以任意选择一个逃逸信道作为自身的目标信 道丁。 如果逃逸信道列表中不存在逃逸信道, 则该切换 IBS-Nrl不能 执行切换。
步骤 205: IBS根据所有切换 IBS-Nrl返回的消息进行判断, 如 果该 IBS接收到至少一个切换 IBS-Nrl的切换错误报告,则执行步骤 206; 如果该 IBS接收到所有切换 IBS- Nrl的切换应答消息, 则执行 步骤 207。
步驟 206: IBS向所有切换 IBS- Nrl发送切换取消请求, 已执行 切换的切换 IBS-Nrl接收到该消息后, 切换回工作信道 S正常工作, 该 IBS返回执行步骤 202。
其中, IBS返回执行步骤 202选择一个新的工作信道时, 应该将 之前一次执行步骤 202选出的工作信道 S排除在备选集之外。 需要说明的是, 上述步骤 204 206并非必不可少的, 只是执行本 发明的方法时一个较佳的步骤, 也可以不必执行。
步骤 207: 每个切换 IBS-Nrl从自身的逃逸信道列表中选择一个 逃逸信道作为目标信道 T, 并切换到该目标信道 T, IBS 占用工作信 道8。
步骤 208: IBS 向所有 IBS-Nrl 广播信道占用消息, 通知每个 IBS-Nrl更新信道信息, 各个 IBS-Nrl更新自身存储的信道用途表。
步驟 209: 每个切换 IBS-Nrl向除 IBS之外所有与自身相邻的基 站, 即 IBS- Nr2, 广播信道切换消息, 通知所有 IBS-Nr2更新信道用 途表。
步骤 210: 每个 IBS-Nr2更新自身存储的信道用途表, 流程结束。 在实际应用中, 还可能出现正常工作基站 ( Working BS, OBS ) 退出网络的情况, 该 OBS 可以是一个进入正常工作状态的 IBS, 或 是网络中的任意一个基站。 为此, 要求该 OBS在退出网络前, 向所 有与自身相邻的第四相邻基站 (IBS-Nr4 ) 广播信道退出消息, 每个 IBS-Nr4 将会根据该消息更新自身的信道用途表, 包括删除该 OBS 的信道信息, 以及判定是否将该 OBS 的工作信道添加到该 IBS-Nr4 自身的逃逸信道列表中,以便网络中的每个基站都能实时获知信道的 实际使用情况。
图 3 显示的是本发明一个具体实例的网络结构。 在图 3 中, BS1〜BS8 都是正常工作基站, 并且每两个相交的基站都可以互为相 邻基站, 比如 BS1和 BS2就是相邻基站。 如果相邻基站在同一时间 占用相同的信道, 相互间会产生干扰。 为此, 需要令这些相邻基站尽 可能地工作在不同的信道上。 假设当前区域的可用信道只有三个, 分 别为 Channel 1、 Channel 2和 Channel 3, 这三个信道在 BS1 BS8这 八个基站的使用分布见图 3。
如图 3所示, 有一个新启动基站 BS9在当前区域启动。 该 BS9 会扫描到四个相邻基站, 即 BS3、 BS4、 BS5和 BS7, 并且可供 BS9 使用的信道有 Channel 1、 Channel 2、 Channel 3。 由于 BS3的工作信 道是 Channel 3 , BS4和 BS7的工作信道都是 Channel 1, BS5的工作 信道是 Channel 2, 所以 BS9扫描不到空闲信道。 若要保证 BS9与各 个相邻基站均无干扰, 需要另外给 BS9提供其它的信道, 或令 BS9 与某个相邻基站分时共享某个信道。
表二是选出工作信道 S之前 BS9的信道用途表。 可以看到, 在 BS9的四个相邻基站中, BS3单独占用 Channel 3 , 并且不能切换到 其他信道上, 否则会与 BS3 自身的相邻基站产生干扰。 BS5单独占用 Channel 2 , 但可以无干扰地切换到 Channel 3上。 BS4和 BS7同时占 用 Channel 1 , 且都有逃逸信道。 ―
Figure imgf000013_0002
Figure imgf000013_0001
因此, 可以先将 BS5切换到 Channel 3上, 再将 Channel 2确定 为 BS9的工作信道 S。 经过上述信道协商的过程, 当前区域的信道占 用情况如图 4所示。 也就是说, 通过对相邻基站的信道调整, 空出一 个信道供 BS9使用。
本发明的方法在网络的信道数量较少时, 通过调整相邻基站的信 道, 就能提高***容纳基站的能力.。 并且, 经过上述调整后容纳的基 2007/000092 站数量与全局调整所有基站的信道后容纳的基站数量是相当的。相比 较全局调整所有基站的信道而言,本发明的方法由于仅在相邻基站之 间进行调整, 故信道协商的效率高。
由上述的实施例可见, 本发明的这种相邻基站间信道协商的方法 和***, 在相邻基站之间通过自动协商来调整信道, 优化了整个网络 的资源分配。 上述过程是动态完成的, 能够降低维护成本, 并且资源 调整仅限于相邻基站之间, 大大提高基站之间信道协商的效率。

Claims

权利要求书
1、 一种相邻基站间信道协商的方法, 其特征在于, 该方法包括: 第一基站启动, 获取与自身相邻的所有第二基站的信道信息; 选择一个网络中的信道作为第一基站的第一工作信道, 并请求所 述所有第二基站中占用所述第一工作信道的所有第三基站进行信道 切换;
为每个第三基站确定一个除第一工作信道之外的其他信道, 作为 该笫三基站的目标信道, 将该第三基站切换到所述目标信道, 第一基 站占用所述第一工作信道。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述第一基站获 取所有第二基站的信道信息包括:
第一基站发送信道查询消息给每个第二基站, 以获取该第二基站 的信道信息;
或者, 每个第二基站通过扫描获知第一基站启动后, 将自身的信 道信息广播给第一基站。
3、 根据权利要求 1 所述的方法, 其特征在于, 所迷选择第一基 站的第一工作信道包括:
第一基站根据网络中的信道作为每个第二基站的工作信道的使 用数,和以该网络中的信道作为工作信道的每个第二基站是否具有至 少一个逃逸信道, 来选择第一工作信道;
如果该网絡中的信道对应的每个第二基站都具有至少一个逃逸 信道, 并且该网络中的信道的使用数最小, 将该信道确定为第一工作 信道》
4、 根据权利要求 1 所述的方法, 其特征在于, 所述确定每个第 三基站的目标信道包括:该第三基站接收到第一基站的信道切换请求 后, 判断自身是否具有至少一个逃逸信道;
如果不具有逃逸信道, 该第三基站向第一基站返回切换错误报 告; 如果具有逃逸信道, 该第三基站从自身的逃逸信道列表中选择一 个信道作为自身的目标信道, 并向第一基站返回切换应答消息。
5、 根据权利要求 1 所述的方法, 其特征在于, 所述确定每个第 三基站的目标信道包括:该第三基站接收到第一基站的信道切换请求 后, 判断该信道切换请求中指示的目标信道是否为自身的逃逸信道; 如果该目标信道不是该第三基站的逃逸信道, 该第三基站向第一 基站返回切换错误报告; 如果该目标信道是该第三基站的逃逸信道, 该第三基站向第一基站返回切换应答消息。
6、 根据权利要求 4或 5所述的方法, 其特征在于, 该方法进一 步包括: 如果第一基站接收到至少一个第三基站的切换错误报告, 该 第一基站通知所有已执行切换的第三基站切换回第一工作信道,并从 网络中选择一个除第一工作信道之外的其他信道重新执行信道协商。
7、 根据权利要求 4或 5所述的方法, 其特征在于, 该方法进一 步包括: 第一基站接收到所有第三基站的切换应答消息后, 向所有第 二基站广播信道占用消息,每个第二基站根据该消息更新其存储的信 道用途表。
8、 根据权利要求 7所述的方法, 其特征在于, 所述每个第二基 站更新信道用途表包括:
该第二基站将第一工作信道从自身的逃逸信道列表删除, 并在信 道用途表中记录第一基站的信道信息;
当所述第二基站是一个第三基站时, 该第二基站进一步将所述目 标信道从自身的逃逸信道列表删除。
9、 根据权利要求 1 所述的方法, 其特征在于, 该方法进一步包 括: 每个第三基站向与自身相邻的所有第四基站广播信道切换消息, 每个第四基站根据该消息更新其存储的信道用途表。
10、 根据权利要求 9所述的方法, 其特征在于, 所述每个第四基 站更新信道用途表包括:
该第四基站将所述目标信道从自身的逃逸信道列表删除, 并在信 道用途表中将该目标信道设置为所述第三基站的工作信道;
判断第一工作信道是否被至少一个与该第四基站相邻的第五基 站占用, 如果没有, 该第四基站将第一工作信道添加到自身的逃逸信 道列表。
1 1、 根据权利要求 1所述的方法, 其特征在于, 该方法进一步包 括: 第六基站退出网络前, 向与自身相邻的所有第七基站广播信道退 出消息, 每个第七基站根据该消息更新其存储的信道用途表。
12、 根据权利要求 1 1 所述的方法, 其特征在于, 所述第六基站 为正常工作的第一基站, 或网络中任意一个正常工作的基站。
13、 根据权利要求 7至 12任一项所述的方法, 其特征在于, 所 述信道用途表包括以下至少一项信息: 基站的工作信道和逃逸信道、 所有与该基站相邻的基站的工作信道和逃逸信道。
14、 根据权利要求 1所述的方法, 其特征在于, 所述信道为物理 频带或虚拟链路资源。
15、 一种相邻基站间信道协商的***, 其特征在于, 该***包括 第一基站和至少一个与第一基站相邻的第二基站;
所述第一基站用于在启动时获取所有第二基站的信道信息, 选择 一个网络中的信道作为自身的第一工作信道,请求所有第二基站中占 用所述第一工作信道的所有第三基站进行信道切换,并占用所述第一 工作信道;
在确定一个除第一工作信道之外的其他信道作为每个第三基站 的目标信道后, 所述笫三基站切换到该目标信道。
16、 根据权利要求 15所述的***, 其特征在于,
所述第一基站进一步用于向所有第三基站发送信道切换请求; 所述每个第三基站进一步用于判断自身是否具有至少一个逃逸 信道; 如果不具有逃逸信道, 该第三基站向第一基站返回切换错误报 告; 如果具有逃逸信道, 该第三基站从自身的逃逸信道列表中选择一 个信道作为自身的目标信道, 并向第一基站返回切换应答消息。
17、 根据权利要求 15所述的***, 其特征在于,
. 所述第一基站进一步用于向所有第三基站发送信道切换请求; 所述每个第三基站进一步用于判断该信道切换请求中指示的目 标信道是否为自身的逃逸信道;如果所述目标信道不是该第三基站的 逃逸信道, 该第三基站向第一基站返回切换错误报告; 如果所述目标 信道是该第三基站的逃逸信道,该第三基站向第一基站返回切换应答 消息。
18、 根据权利要求 15所述的***, 其特征在于,
所述第一基站进一步用于向所有笫二基站广播信道占用消息, 所 述每个第二基站进一步用于根据该消息更新其存储的信道用途表。
19、 根据权利要求 18所述的***, 其特征在于,
所述每个第三基站进一步用于向与自身相邻的所有第四基站广 播信道切换消息,所述每个第四基站进一步用于根据该消息更新其存 储的信道用途表。
20、 根据权利要求 15所述的***, 其特征在于,
所述第一基站进一步用于在退出网络前向所有第二基站广播信 道退出消息,所述每个第二基站进一步用于根据该消息更新其存储的 信道用途表。
PCT/CN2007/000092 2006-01-10 2007-01-10 Procédé et système de négociation de canaux entre stations de base adjacentes WO2007079685A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/169,941 US8107969B2 (en) 2006-01-10 2008-07-09 Method and system of channel negotiation between neighbor base stations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2006100329298A CN101001438B (zh) 2006-01-10 2006-01-10 相邻基站间协商工作信道的方法
CN200610032929.8 2006-01-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/169,941 Continuation US8107969B2 (en) 2006-01-10 2008-07-09 Method and system of channel negotiation between neighbor base stations

Publications (1)

Publication Number Publication Date
WO2007079685A1 true WO2007079685A1 (fr) 2007-07-19

Family

ID=38255990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/000092 WO2007079685A1 (fr) 2006-01-10 2007-01-10 Procédé et système de négociation de canaux entre stations de base adjacentes

Country Status (3)

Country Link
US (1) US8107969B2 (zh)
CN (1) CN101001438B (zh)
WO (1) WO2007079685A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9048981B2 (en) * 2008-07-31 2015-06-02 Qualcomm Incorporated Wireless telecommunicatons network

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8509788B2 (en) * 2007-03-08 2013-08-13 Motorola Mobility Llc Dynamic sharing of wireless resources among different communication networks
JP2009182597A (ja) * 2008-01-30 2009-08-13 Nec Corp 広帯域無線接続システム、無線基地局、および無線基地局通知方法
KR101527119B1 (ko) * 2008-12-03 2015-06-10 삼성전자주식회사 인지 무선 기반의 통신 시스템에서 동적 자원 교환 장치 및 방법
WO2010073060A1 (zh) * 2008-12-26 2010-07-01 夏普株式会社 协作通信方法及***、用户设备、基站、程序和存储介质
CN101835166B (zh) * 2009-03-09 2012-12-12 上海贝尔股份有限公司 信道分配优化方法及信道分配优化设备
US8717983B2 (en) * 2009-04-07 2014-05-06 National Taiwan University MediaTek Inc. Mechanism of dynamic resource transaction for wireless OFDMA systems
CN101959132A (zh) * 2009-07-15 2011-01-26 雷凌科技股份有限公司 用于无线通讯***的基地台选择方法及装置
CN102892151B (zh) * 2012-09-20 2016-05-25 华为技术有限公司 信道协商方法、设备及***
US9288728B1 (en) * 2013-03-07 2016-03-15 Sprint Spectrum L.P. Intelligent re-provisioning of base stations for circuit-switched fallback
US9445345B2 (en) 2013-09-17 2016-09-13 Qualcomm Incorporated Staggered primary channel selection in wifi communication systems
US9392432B2 (en) * 2013-12-17 2016-07-12 Argela Yazilim ve Bilisim Teknolojileri San. ve Tic. A.S. Interface between base stations for topology discovery to enable coordinated resource usage
CN105208672B (zh) * 2014-05-26 2019-02-22 北京信威通信技术股份有限公司 一种用于eps网络架构的通道信息管理方法
US9629041B1 (en) 2014-09-26 2017-04-18 Sprint Spectrum L.P. Substitution of system parameter information from other base station in response to error condition
JP6579447B2 (ja) * 2016-06-14 2019-09-25 日本電信電話株式会社 無線通信システムおよび無線通信方法
CN111988101B (zh) * 2019-05-23 2022-08-05 杭州海康威视数字技术股份有限公司 一种无线信道切换方法、***、接入点及工作站

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020102941A1 (en) * 2001-01-31 2002-08-01 Nokia Mobile Phones Ltd. Measurement method and device for activating interfrequency handover in a wireless telecommunication network
US20020102977A1 (en) * 1999-05-18 2002-08-01 Hong Shi Adaptive threshold of handoff in mobile telecommunication systems
CA2432433A1 (en) * 2002-06-17 2003-12-17 M/A-Com, Inc. Secure transmission system for a digital trunked radio system

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898390A (en) * 1973-05-15 1975-08-05 Martin Marietta Corp Multiple zone communications system and method
JP3083363B2 (ja) * 1991-09-20 2000-09-04 明星電気株式会社 コードレスボタン電話システムの着信方式
US5280630A (en) * 1992-01-21 1994-01-18 Motorola, Inc. Method and apparatus for dynamic channel allocation
CA2118273C (en) * 1993-11-23 2000-04-25 Pi-Hui Chao Method and apparatus for dynamic channel allocation for wireless communication
US5761621A (en) * 1993-12-15 1998-06-02 Spectrum Information Technologies, Inc. Apparatus and methods for networking omni-modal radio devices
US6212389B1 (en) * 1997-04-04 2001-04-03 Nortel Networks Limited Methods and apparatus for controlling allocation of traffic channels in macrocell/microcell telecommunications networks
DE19811825B4 (de) * 1998-03-18 2004-09-16 Telefonaktiebolaget Lm Ericsson (Publ) Kommunikationssystem mit einer begrenzten Anzahl von Kommunikationskanälen
US6216004B1 (en) * 1998-06-23 2001-04-10 Qualcomm Incorporated Cellular communication system with common channel soft handoff and associated method
JP3212031B2 (ja) * 1999-01-04 2001-09-25 日本電気株式会社 パケットの伝送制御方法
US6898431B1 (en) * 1999-05-24 2005-05-24 Ericsson Inc. Dynamic channel allocation in a sectored cell of a cellular communication system
US7567781B2 (en) * 2001-01-05 2009-07-28 Qualcomm, Incorporated Method and apparatus for power level adjustment in a wireless communication system
JP3744365B2 (ja) * 2001-03-06 2006-02-08 Kddi株式会社 無線lanシステム及びその周波数チャネル切替方法
US7206840B2 (en) * 2001-05-11 2007-04-17 Koninklike Philips Electronics N.V. Dynamic frequency selection scheme for IEEE 802.11 WLANs
US7020107B2 (en) * 2003-01-21 2006-03-28 Arraycomm, Llc Methods for reliable user switchback on a PHS spatial division multiple access channel
US7174170B2 (en) * 2003-02-12 2007-02-06 Nortel Networks Limited Self-selection of radio frequency channels to reduce co-channel and adjacent channel interference in a wireless distributed network
US7535831B2 (en) * 2003-09-16 2009-05-19 Nortel Networks Limited Method and apparatus for providing grades of service for unprotected traffic in an optical network
CN100382650C (zh) * 2003-11-21 2008-04-16 株式会社日立国际电气 进行越区切换的移动通信***和方法
KR100622411B1 (ko) * 2004-07-22 2006-09-14 주식회사 애트랩 무선 통신 시스템 및 이의 채널 변경 방법
US20060109815A1 (en) * 2004-11-05 2006-05-25 Ozer Sebnem Z System and method for dynamic frequency selection in a multihopping wireless network
US7606596B2 (en) * 2004-12-01 2009-10-20 Adaptix, Inc. Exploiting multiuser diversity through phase modulation multiplexing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020102977A1 (en) * 1999-05-18 2002-08-01 Hong Shi Adaptive threshold of handoff in mobile telecommunication systems
US20020102941A1 (en) * 2001-01-31 2002-08-01 Nokia Mobile Phones Ltd. Measurement method and device for activating interfrequency handover in a wireless telecommunication network
CA2432433A1 (en) * 2002-06-17 2003-12-17 M/A-Com, Inc. Secure transmission system for a digital trunked radio system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9048981B2 (en) * 2008-07-31 2015-06-02 Qualcomm Incorporated Wireless telecommunicatons network

Also Published As

Publication number Publication date
CN101001438B (zh) 2010-12-08
CN101001438A (zh) 2007-07-18
US20080268858A1 (en) 2008-10-30
US8107969B2 (en) 2012-01-31

Similar Documents

Publication Publication Date Title
WO2007079685A1 (fr) Procédé et système de négociation de canaux entre stations de base adjacentes
US10917778B2 (en) Communication resource allocation method and apparatus, terminal device, base station, and communications system
US9894631B2 (en) Authentication using DHCP services in mesh networks
US10567997B2 (en) Efficient device handover/migration in mesh networks
US6023622A (en) Wireless communication system with dynamic channel allocation
US7016325B2 (en) Link context mobility method and system for providing such mobility, such as a system employing short range frequency hopping spread spectrum wireless protocols
US7689215B2 (en) Method of compressing control information in a wireless communication system
JP2006229938A (ja) 分散型ネットワーク発見
AU2012379054B2 (en) Authentication using DHCP services in mesh networks
CN101431748B (zh) 确定哪个设备该管理与移动终端相关的数据的方法和装置
CN100553254C (zh) 无线互联中设备自动发现的方法
JP2008295014A (ja) 無線通信ネットワーク内におけるチャンネル選択マネジメントのためのシステムおよび方法
JP2006314009A (ja) 無線通信システム、アクセス・ポイント管理装置及びアクセス・ポイント管理方法、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JPH1155727A (ja) 無線通信システムのチャネル選択方式
CN112218304B (zh) 一种确定异频邻区的方法及装置
CN114666813A (zh) 一种基站、通过周围基站信息来管理分布式自组织网络的方法
JP6217863B2 (ja) ビーコンフレーム送信方法及び装置
WO2019214693A1 (zh) 确定父节点的方法及装置
CN113950108B (zh) 一种小区重选方法、装置、终端及网络节点
JP5695083B2 (ja) Csgidを指示する方法、基地局タイプを指示する方法及びcsgid指示を取得する方法
KR101319904B1 (ko) 채널 할당을 위한 최적화 방법 및 채널 할당을 위한 최적화 장치
CN104094639A (zh) 无线通信***、通信方法、基站装置以及移动终端
WO2014034115A1 (ja) 通信システム、管理装置、ネットワークノード及び通信方法
WO2024099244A1 (zh) 一种通信方法、装置、相关设备和存储介质
US11510210B2 (en) Flexible radio assignment for multi-link capable access points

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07702024

Country of ref document: EP

Kind code of ref document: A1