WO2007078007A1 - Carbon nanohorn structure, composition capable of controlling the release of organic substance included therein, and method for the controlled release - Google Patents

Carbon nanohorn structure, composition capable of controlling the release of organic substance included therein, and method for the controlled release Download PDF

Info

Publication number
WO2007078007A1
WO2007078007A1 PCT/JP2007/050080 JP2007050080W WO2007078007A1 WO 2007078007 A1 WO2007078007 A1 WO 2007078007A1 JP 2007050080 W JP2007050080 W JP 2007050080W WO 2007078007 A1 WO2007078007 A1 WO 2007078007A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanohorn
cddp
cation
release
nhox
Prior art date
Application number
PCT/JP2007/050080
Other languages
French (fr)
Japanese (ja)
Inventor
Sumio Iijima
Masako Yudasaka
Kumiko Ajima
Original Assignee
Japan Science And Technology Agency
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, Nec Corporation filed Critical Japan Science And Technology Agency
Publication of WO2007078007A1 publication Critical patent/WO2007078007A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0087Galenical forms not covered by A61K9/02 - A61K9/7023
    • A61K9/0092Hollow drug-filled fibres, tubes of the core-shell type, coated fibres, coated rods, microtubules or nanotubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/143Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls

Definitions

  • Carbon nanohorn structure composition capable of controlling release of organic substances therein, and method thereof
  • the present invention makes it possible to control the release of endogenous organic substances, a new carbon nanohorn structure that is expected to be useful as a DDS drug or its carrier, a preparation method thereof, and the release of intrinsic organic substances.
  • the present invention relates to a composition and a control method.
  • cisplatin can be selectively delivered to the tumor site by increasing permeability and retention effect using a polymer carrier system, and has already been used in vivo using a cisbratin monopolymer system. Tumor growth is effectively suppressed, and in addition, studies of delivery systems using ribosomes, gelatin hydrogels, polymer micelles, etc. have shown that the nephrotoxic side effects of cisbratin are reduced in rats and mice.
  • CNTs carbon nanotubes
  • they are on a nanometer scale, they are well suited for transporting biomolecules such as DNA proteins. Since they are chemically and mechanically stable, they can be transported without degradation in the human body. Modifying CNTs is an answer that increases their biocompatibility by imparting targeting ability to them. Furthermore, the nanospace inside the C NTs is suitable for drug encapsulation.
  • Non-patent Document 1 a non-nanohorn
  • Non-patent Document 4 the number and size of holes can be changed by adjusting the heat treatment conditions (Non-patent Document 4), and the incorporated space has sufficient freedom of movement because of the large internal space. There are things. Open NHs are therefore well suited for drug uptake and controlled release purposes.
  • the control medium is a carbon nanohorn structure-containing composition that enables a cation or hydrogen ion exchange reaction with a cation bonded to an oxygen-containing functional group.
  • Figure 2 shows TG curves for (a) DMF-treated NHox, (b) DMF-treated NHh, (c) DMF-treated CDDP powder, (d) CDDP @ NHox, (e) CDDP @ NHh (Thin line) and DTG curve (thick line).
  • FIG. 6 shows the numerical ratio of Na: P: Cl: K as a percentage.
  • the pie charts are for (a) PBS-NHox, (b) PBS-NHox, (c) PBS.
  • the effective hole size is determined by these van 'del' Wales regions and is indicated by a red circle (diameter: 0.6nm (b), 0.4nm (c)). In this model (c), the effective hole size is reduced to 0.4 nm, which is too small for CDDP molecules to pass through (shown in yellow). For comparison, an orange circle (diameter: about 0.8 nm) is shown, which represents the effective hole size with OH or COOH groups attached.
  • NHs abbreviated as “NHs” indicating plural forms.
  • the “opening” or “opening edge” means that the above is formed on each of one or more of the horn-shaped bodies constituting the NHs.
  • the carbon nanohorn structure of the present invention is prepared by bringing into contact with a cation-containing liquid to form a bond between an oxygen-containing functional group at the opening edge and a cation.
  • graphite is CO laser blurred at room temperature and Ar (760 Torr) conditions.
  • NHs were prepared by following (according to Chem. Phys. Lett., 1999, 309, 165).
  • NHs were applied for 10 minutes in an air stream at 570-580 ° C.
  • CDDP @ NHox and CDDP @ NHh were subjected to X-ray diffraction (XRD) to show the size of CDDP crystallites deposited on the outside of NHox.
  • (1) and (2) show internal and external emissions, respectively.
  • the amount of NHox and NHh includes the amount of graphite particles.
  • the weight loss at about 100 ° C corresponds to the desorption of DMF ( Figures 2d and 2e).
  • Decomposition of plain CDDP crystallites was observed at approximately 330 ° C ( Figure 2c), CDDP @ NH ox CDDP burned or decomposed at different temperatures, which were approximately 250 ° C and approximately 400 ° C. C.
  • CDDP @ NHh CDDP burned or decomposed at about 250 ° C.
  • the XRD pattern of CDDP @ NHox and CDDP @ NHh showed a diffraction peak characteristic of CD DP with a 2-theta of approximately 14 ° (Fig. 3).
  • the particle size estimated using the peak width and Scherrer equation is about 20-50 nm, which means that they are likely to exist outside of NHox and NHh.
  • the CDDP crystallites with a size of 20-50 nm during HRTEM observations were unseen, so their amount is a small answer.
  • the peak at about 26.5 ° ( Figure 3) is due to the graphite impurity in the nanohorn.
  • the 1-2 nm sized CDDP clusters inside the nanospace of NHox (Fig. 1) or NHh (not shown) may show peaks due to their poor crystallinity or small crystal size. could not. When the crystallinity is poor or the crystal size is small, the XRD peak is usually too wide to observe.
  • the hole size used here is considered to be 1.2 nm according to the previous report (Adv. Mater., 2004, 16, 397).
  • Figure 7c shows that the effective hole size of 0.8 nm (orange circle) is reduced to 0.4 nm by changing the COOH group to -COONa group. Since the molecular size of CDDP is about 0.4 X 0.6 nm and the thickness is about 0.1 nm, it is difficult to pass CDDP molecules with COONa group and one ONa group bonded to the hole edge! / ,.
  • CDDP @ NHox and CDDP @ NHh showed that they are similar in structure, CDDP uptake, CDDP cluster size, etc.
  • the amount of CDDP released from CDDP @ NHox in PBS was only 15%, while that from CDDP @ NHh was 75%.
  • the cessation of CDDP release from NHox is due to the embolic effect.
  • the COONa group and —O Na group occupy the COOH group and OH group bonded to the hole edge of NHox, and NHox internal force also sterically hinders CDDP passing through the hole. It is. Since NHh has holes with hydrogen-terminated edges, such substitution does not occur, and therefore embolization was not observed.
  • NHox As part of the safety assessment of NHox, a carbon substance, it was used as a test substance and administered to mice once in a single dose, and long-term toxicity was examined 2 weeks after administration, 4 weeks after administration, and 26 weeks after administration. .
  • body weight was measured on the following schedule.
  • Group 1 Measurements were made on Day 1 (before administration), 2, 3.5, 8, 12, and 15.
  • Group 2 Measurements were made on Day 1 (administration ii), 2, 3, 5, 8> 12, 15, 22, and 29.
  • Group 3 Day 1 (before administration), 2, 3, 5, 8, 12, 15, 22, 29, 36. 43, 50, 57, 64, 'F], F 8, 85, 92, 99,] 06, 113, 120. 127, 134, 141, 148, 155, 162,

Abstract

Disclosed is a carbon nanohorn structure wherein an oxygen-containing functional group located at an open edge of the nanohorn is bound to a cation. Also disclosed is a carbon nanohorn structure having an organic substance included in an internal space of the nanohorn. A novel carbon nanohorn structure is provided which can control the release of a substance included therein through an opening site precisely by a simple means. By employing the carbon nanohorn structure, it becomes possible to provide a novel means for achieving the controlled release of a substance included in the carbon nanohorn structure.

Description

明 細 書  Specification
カーボンナノホーン構造体並びにその内在有機物の放出を制御可能と する組成物とその方法  Carbon nanohorn structure, composition capable of controlling release of organic substances therein, and method thereof
技術分野  Technical field
[0001] 本発明は、内在有機物の放出を制御可能として DDS薬剤やその担体等としての 有用性も期待される新しいカーボンナノホーン構造体とその調製方法、そして内在有 機物の放出を制御可能とする組成物と制御の方法に関するものである。  [0001] The present invention makes it possible to control the release of endogenous organic substances, a new carbon nanohorn structure that is expected to be useful as a DDS drug or its carrier, a preparation method thereof, and the release of intrinsic organic substances. The present invention relates to a composition and a control method.
背景技術  Background art
[0002] 抗癌剤であるシスプラチン [CDDP、 (NH ) PtCl ]の標的化運搬については、癌  [0002] For targeted delivery of cisplatin [CDDP, (NH) PtCl], an anticancer drug,
3 2 2  3 2 2
の化学療法を目的として in vitroならびに in vivoで詳しく調査されている。たとえ ば、高分子担体系を用いて透過性と保持効果を増加させることによりシスブラチンを 選択的に腫瘍部位まで運搬できることが確認されており、既にシスブラチン一高分子 系を使用して in vivoでの腫瘍増殖が効果的に抑制され、そのうえリボソーム、ゼラ チンヒドロゲル、ポリマーミセル等を用いた運搬系の研究により、ラットやマウスにおい てシスブラチンの腎毒性副作用が軽減されることが判っている。  It has been investigated in vitro and in vivo for the purpose of chemotherapy. For example, it has been confirmed that cisplatin can be selectively delivered to the tumor site by increasing permeability and retention effect using a polymer carrier system, and has already been used in vivo using a cisbratin monopolymer system. Tumor growth is effectively suppressed, and in addition, studies of delivery systems using ribosomes, gelatin hydrogels, polymer micelles, etc. have shown that the nephrotoxic side effects of cisbratin are reduced in rats and mice.
[0003] シスブラチンを効果的に運搬するためには放出を調節しなければならな 、が、ポリ マーミセルよりの放出を調節する方法では、そのポリマーミセルの崩壊特性を変化さ せている。これにより、各種微小担体の生体内分解により、 in vitroならびに in viv oで持続的放出が行われる。  [0003] In order to effectively deliver cisbratin, the release must be controlled, but methods that control the release from polymer micelles change the disintegration characteristics of the polymer micelles. Thereby, sustained release is performed in vitro and in vivo by in vivo degradation of various microcarriers.
[0004] 一方、カーボンナノチューブ(CNTs)はナノメートル規模であることから、 DNAゃタ ンパク質などの生体分子の運搬によく適合している。これらは化学的'力学的に安定 であるため、確実に人体内で分解することなく運搬を行うことができる。 CNTsをィ匕学 修飾するとそれらに標的化能力が賦与され、生体適合性が高まる答である。さらに C NTs内部のナノ空間は薬剤封入に適している。  [0004] On the other hand, since carbon nanotubes (CNTs) are on a nanometer scale, they are well suited for transporting biomolecules such as DNA proteins. Since they are chemically and mechanically stable, they can be transported without degradation in the human body. Modifying CNTs is an answer that increases their biocompatibility by imparting targeting ability to them. Furthermore, the nanospace inside the C NTs is suitable for drug encapsulation.
[0005] ただ、 CNTsの薬物封入についてはその実際的な方法については確立されていな い。  [0005] However, no practical method has been established for drug encapsulation of CNTs.
[0006] これに対し、本発明者らは、カーボンナノ物質一種であるシングルウォールカーボ ンナノホーン (NHs)の薬物担体としての利用について検討を進めてきており、すで に、抗炎症薬のデキサメタゾンは NHsに吸着されることが示され、放出されたデキサ メタゾンは in vitroで有効性を保持していることを確認している(非特許文献 1)。さら に最近ではシスブラチンも同じく NHs内に取り込まれることが示され、放出されたシス ブラチンはヒト癌細胞に対する殺傷能力を保持して ヽることも確認して ヽる (非特許文 献 2)。薬物運搬に用いる場合、 NHsにはシングルウォール CNTsよりも優れた点が いくつかある。すなわち Oガス中での熱処理によって NH壁は容易に開口し (非特許 [0006] In contrast, the present inventors have proposed a single-walled carbon that is a kind of carbon nanomaterial. The use of non-nanohorn (NHs) as a drug carrier has been studied, and it has already been shown that the anti-inflammatory drug dexamethasone is adsorbed by NHs, and the released dexamethasone has proved effective in vitro. It is confirmed that it is held (Non-Patent Document 1). More recently, it has been shown that cisbratin is also incorporated into NHs, and it has been confirmed that the released cisbratin retains the ability to kill human cancer cells (Non-patent Document 2). When used for drug delivery, NHs has several advantages over single-wall CNTs. In other words, the NH wall opens easily by heat treatment in O gas.
2  2
文献 3)、熱処理条件を調節することによって穴の数と大きさを変化させることが可能 であり(非特許文献 4)、内部空間が十分大きいために取り込まれた分子には運動の 自由性があることなどである。そのため開口した NHsは、薬物取り込みと調節化放出 という目的によく適している。  Reference 3), the number and size of holes can be changed by adjusting the heat treatment conditions (Non-patent Document 4), and the incorporated space has sufficient freedom of movement because of the large internal space. There are things. Open NHs are therefore well suited for drug uptake and controlled release purposes.
[0007] しかし NHsを薬剤や遺伝子の担体として実用化するためには、開口部の構造が薬 剤の取り込みと放出に及ぼす影響について詳しく検討し、簡便な手段によってより精 密な放出制御が可能とされる方策を確立しておくことが求められていた。 [0007] However, in order to put NHs into practical use as a drug or gene carrier, the effects of the opening structure on drug uptake and release are studied in detail, and more precise release control is possible by simple means. It was required to establish a policy to be said.
非特許文献 l : Mol. Pharm. 2004, 1, 399  Non-patent literature l: Mol. Pharm. 2004, 1, 399
非特許文献 2 : Mol. Pharm. 2005, 2, 475  Non-Patent Document 2: Mol. Pharm. 2005, 2, 475
非特許文献 3 : Adv. Mater. 2004, 16, 397  Non-Patent Document 3: Adv. Mater. 2004, 16, 397
特許文献 4:J. Phys. Chem. B2001, 105, 10210  Patent Document 4: J. Phys. Chem. B2001, 105, 10210
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明は、上記のとおりの背景から、簡便な手段によって、より精密な内在物の開 口部からの放出を制御可能とすることもできる新し 、カーボンナノホーン構造体とこ れによる内在物の放出制御の新 、手段を提供することを課題として 、る。 [0008] From the background as described above, the present invention provides a new carbon nanohorn structure that can control the release from the opening of a more precise inclusion by simple means, and the intrinsic presence of the carbon nanohorn structure. The challenge is to provide a new means of controlling the release of substances.
課題を解決するための手段  Means for solving the problem
[0009] 本発明は、上記の課題を解決するものとして、以下のことを特徴としている。 [0009] The present invention is characterized by the following in order to solve the above problems.
[0010] 第 1:カーボンナノホーンの開口エッジ部の酸素含有官能基がカチオンと結合され て 、るカーボンナノホーン構造体。 [0010] First: a carbon nanohorn structure in which an oxygen-containing functional group at the opening edge of the carbon nanohorn is bonded to a cation.
[0011] 第 2:カーボンナノホーンの内空間には有機物質が内在して!/、る上記のカーボンナ ノホーン構造体。 [0011] Second: An organic substance is inherent in the inner space of the carbon nanohorn! Nohone structure.
[0012] 第 3:有機物質は生理活性を有する薬剤物質であるカーボンナノホーン構造体。  [0012] Third: A carbon nanohorn structure in which an organic substance is a drug substance having physiological activity.
[0013] 第 4 :酸素含有官能基は水酸基およびカルボキシル基のうちの少くとも 1種である力 一ボンナノホーン構造体。 [0013] Fourth: A force-bonn nanohorn structure in which the oxygen-containing functional group is at least one of a hydroxyl group and a carboxyl group.
[0014] 第 5:カチオンは金属イオンであるカーボンナノホーン構造体。 [0014] Fifth: A carbon nanohorn structure in which the cation is a metal ion.
[0015] 第 6 :酸素含有官能基がカチオンと結合されて、 OMおよび COOM (Mは金属 原子を示す)で表わされる修飾構造の少くとも 1種が形成されているカーボンナノホ ーン構造体。 [0015] Sixth: A carbon nanophone structure in which an oxygen-containing functional group is bonded to a cation to form at least one modified structure represented by OM and COOM (M represents a metal atom).
[0016] 第 7:金属原子 Mが Na (ナトリウム)であるカーボンナノホーン構造体。  [0016] Seventh: A carbon nanohorn structure in which the metal atom M is Na (sodium).
[0017] 第 8 :上記第 2から第 7のいずれかのカーボンナノホーン構造体を含有するとともに 、その酸素含有官能基とカチオンとの結合状態を制御することで内在有機物の開口 部から外部への放出度合を制御可能とする制御媒体を含有しているカーボンナノホ ーン構造体含有組成物。  [0017] Eighth: The carbon nanohorn structure according to any one of the second to seventh aspects described above is contained, and the bonding state between the oxygen-containing functional group and the cation is controlled, so that the organic organic substance is opened from the opening to the outside. A carbon nanophone structure-containing composition containing a control medium capable of controlling the degree of release.
[0018] 第 9 :制御媒体は、酸素含有官能基に結合するカチオンとのカチオンもしくは水素 イオン交換反応を可能としているカーボンナノホーン構造体含有組成物。  [0018] Ninth: The control medium is a carbon nanohorn structure-containing composition that enables a cation or hydrogen ion exchange reaction with a cation bonded to an oxygen-containing functional group.
[0019] 第 10:上記第 2から第 7の
Figure imgf000005_0001
、て、その酸 素含有官能基とカチオンとの結合状態を制御することで内在有機物の開口部から外 部への放出度合を制御するカーボンナノホーン構造体における放出制御方法。
[0019] Tenth: From the second to the seventh
Figure imgf000005_0001
Then, a method for controlling the release in a carbon nanohorn structure, in which the degree of release of the internal organic substance from the opening to the outside is controlled by controlling the bonding state between the oxygen-containing functional group and the cation.
[0020] 第 11:酸素含有官能基に結合するカチオンとのカチオンもしくは水素イオン交換反 応により制御するカーボンナノホーン構造体における放出制御方法。  [0020] Eleventh: A method for controlling release in a carbon nanohorn structure controlled by a cation or hydrogen ion exchange reaction with a cation bonded to an oxygen-containing functional group.
[0021] 第 12 :上記第 1から第 7のいずれかのカーボンナノホーン構造体の調製方法であつ て、カチオン含有液と接触させて開口エッジ部の酸素含有官能基とカチオンとの結 合を形成することを特徴とするカーボンナノホーン構造の調製方法。  [0021] Twelfth: A method for preparing any one of the first to seventh carbon nanohorn structures, wherein the oxygen-containing functional group at the opening edge and a cation are formed by contacting with a cation-containing liquid. A method for preparing a carbon nanohorn structure, comprising:
発明の効果  The invention's effect
[0022] 上記のとおりの本発明によれば、簡便な手段によって、より精密な内在物の開口部 力もの放出を制御可能とすることもできる新しいカーボンナノホーン構造体とこれによ る内在物の放出制御の新 、手段が提供される。  [0022] According to the present invention as described above, a new carbon nanohorn structure that can control the release of the opening force of a more precise internal object by simple means and the internal object by this can be controlled. New means of controlled release are provided.
図面の簡単な説明 [0023] [図 1]図 1は、(a) CDDP@NHoxの HRTEM顕微鏡写真、(b) CDDP@NHoxの Z コントラスト ZSTEM顕微鏡写真、(c) CDDP@NHoxの HRTEM顕微鏡拡大写 真である。 Brief Description of Drawings [0023] [Fig. 1] Fig. 1 shows (a) an HRTEM micrograph of CDDP @ NHox, (b) a Z-contrast ZSTEM micrograph of CDDP @ NHox, and (c) an enlarged HRTEM micrograph of CDDP @ NHox.
[図 2]図 2は、(a) DMF処理した NHox、 (b) DMF処理した NHh、 (c) DMF処理し た CDDP粉末、(d) CDDP@NHox、 (e) CDDP@NHhの TG曲線(細線)と DTG 曲線 (太線)である。  [Figure 2] Figure 2 shows TG curves for (a) DMF-treated NHox, (b) DMF-treated NHh, (c) DMF-treated CDDP powder, (d) CDDP @ NHox, (e) CDDP @ NHh (Thin line) and DTG curve (thick line).
[図 3]図 3は、 X線回折パターンである。  FIG. 3 is an X-ray diffraction pattern.
[図 4]図 4は、 PBS中に浸した CDDP@NHoxならびに CDDP@NHhより放出され た CDDP量を浸漬時間に対してプロットした図である。  [FIG. 4] FIG. 4 is a graph plotting the amount of CDDP released from CDDP @ NHox and CDDP @ NHh immersed in PBS against the immersion time.
[図 5]図 5は、(a) PBS処理した NHox、(b) PBS処理した NHh、(c) l日間水中に浸 漬した CDDP@NHoxを水で洗浄し、乾燥させた試料の TG曲線 (細線)と DTG曲 線 (太線)である。  [Fig. 5] Fig. 5 shows TG curves of (a) PBS-treated NHox, (b) PBS-treated NHh, and (c) CDDP @ NHox soaked in water for 1 day, washed with water and dried. (Thin line) and DTG curve (thick line).
[図 6]図 6は、 Na : P : Cl:Kの数値比をパーセンテージで示す。円グラフは(a) PBS— NHox、(b) PBS— NHox、(c) PBSに関するものである。  FIG. 6 shows the numerical ratio of Na: P: Cl: K as a percentage. The pie charts are for (a) PBS-NHox, (b) PBS-NHox, (c) PBS.
[図 7]図 7は、ホールエッジに結合した OHと ONaの配置(a)。グラフェン層内部 の穴のホールエッジが ONa基(b)と COONa基(c)に修正された状態のモデル 。緑色の点線による丸(直径: 1. 2nm (b)または 1. 3nm (c) )が表すの力 HRTEM 観察に見られる COOH、 一 OH等の酸素含有官能基を有するホールエッジである 。各 Na原子の周りに青 、円盤(ファン'デル 'ワールス半径: 227pm)が描かれて!/、る 。原子斥力が大きすぎるために原子はこの領域内に侵入できな 、 (ィヒ学結合して 、 る場合を除く)。有効ホールサイズはこれらのファン 'デル'ワールス領域によって決定 され、赤い円で示される(直径: 0. 6nm (b)、 0. 4nm (c) )。このモデル(c)では有効 ホールサイズが 0. 4nmまで縮小しており、これは CDDP分子が通過するには小さす ぎる大きさである(黄色で示す)。比較のためにオレンジ色の円(直径:約 0. 8nm)を 示すが、これは OH基または COOH基が結合した状態の有効ホールサイズを表 す。  [Figure 7] Figure 7 shows the arrangement of OH and ONa bonded to the hole edge (a). A model in which the hole edge of the hole in the graphene layer is modified to ONa group (b) and COONa group (c). The force represented by a green dotted circle (diameter: 1.2 nm (b) or 1.3 nm (c)) is a hole edge with oxygen-containing functional groups such as COOH and mono-OH as seen in HRTEM observations. A blue disk around each Na atom is drawn (Van 'Del' Waals radius: 227pm)! The atomic repulsion is too large for atoms to enter this region (except for the case where they are bound together). The effective hole size is determined by these van 'del' Wales regions and is indicated by a red circle (diameter: 0.6nm (b), 0.4nm (c)). In this model (c), the effective hole size is reduced to 0.4 nm, which is too small for CDDP molecules to pass through (shown in yellow). For comparison, an orange circle (diameter: about 0.8 nm) is shown, which represents the effective hole size with OH or COOH groups attached.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 本発明は上記のとおりの特徴をもつものである力 以下にその実施の形態につい て説明する。 [0024] The present invention has the characteristics as described above. I will explain.
[0025] 本発明においては、カーボンナノホーンの上記のとおりの構造体が提供されるが、 ここで「カーボンナノホーン」については、通常は、個々のホーン形状体が集合してホ ーン形状の閉鎖点部が外方に向いた「ダリア状」等の形態や複数個のホーン形状体 が数個以上集合した形態を構成したものとして考慮される。  [0025] In the present invention, the carbon nanohorn structure as described above is provided. Here, regarding the "carbon nanohorn", normally, the horn-shaped bodies are gathered to form a horn-shaped closure. This is considered to be configured as a “dahlia” shape or the like in which the point is directed outward, or a configuration in which several or more horn-shaped bodies are gathered.
[0026] すなわち以後の説明において複数形態を示す「NHs」と略記されるものとして定義 される。そして「開口部」あるいは「開口エッジ部」とは、これら NHsを構成するホーン 形状体の 1個以上の各々に形成された、以上のものであることを意味している。  That is, in the following description, it is defined as abbreviated as “NHs” indicating plural forms. The “opening” or “opening edge” means that the above is formed on each of one or more of the horn-shaped bodies constituting the NHs.
[0027] 本発明においては、発明者が開発した方法をはじめとして各種の方法により製造さ れたカーボンナノホーン (NHs)が使用対象とされてよい。そして、開口部の形成に ついても、酸素を作用させる発明者らの開発した方法等が適宜に採用される。  In the present invention, carbon nanohorns (NHs) produced by various methods including the method developed by the inventor may be used. As for the formation of the opening, a method developed by the inventors that causes oxygen to act is appropriately employed.
[0028] 本発明においては、このような公知もしくは各種の方法により製造されたカーボンナ ノホーン (NHs)であって、し力も開口部を有し、この開口エッジ部に酸素含有官能基 を有するものが対象、もしくは出発物質となる。  [0028] In the present invention, carbon nanohorns (NHs) produced by such known or various methods, which have an opening portion and an oxygen-containing functional group at the opening edge portion. Target or starting material.
[0029] 本発明におけるカーボンナノホーン構造体は、上記の酸素含有官能基、たとえば 代表的なものとして好適に考慮される水酸基 (OH)、カルボキシル基 (COOH)と力 チオンが結合されているものである。これらは、その内空間に、有機物質を内在して いるものであってよい。ここでの有機物質は、本発明のカーボンナノホーン構造体の 用途、必要とされる機能作用に応じて選択されてよぐたとえば生理活性を有する薬 剤物質である。 DDS等への応用として、たとえば抗ガン剤等をこの薬剤物質として選 択することができる。  [0029] The carbon nanohorn structure in the present invention is a combination of the above oxygen-containing functional groups, for example, a hydroxyl group (OH), a carboxyl group (COOH), and a force thione, which are preferably considered as typical ones. is there. These may contain organic substances in their internal space. The organic substance here is a drug substance having, for example, physiological activity, which can be selected according to the use of the carbon nanohorn structure of the present invention and the required functional action. As an application to DDS or the like, for example, an anticancer drug or the like can be selected as this drug substance.
[0030] 後述の参考例に示した NHoxの安全性評価の一環としての長期毒性試験の結果 によっても本発明のカーボンナノホーン構造体の DDS等への応用の可能性が示さ れている。  [0030] The result of the long-term toxicity test as part of the safety evaluation of NHox shown in the reference examples described later also indicates the possibility of applying the carbon nanohorn structure of the present invention to DDS and the like.
[0031] カチオンについては、本発明では、水素イオンを除ぐ各種の陽イオンであると定義 される。これらは、金属イオンやアンモ-ゥムイオン、ァミン化合物カチオン、その他 無機、あるいは有機のカチオンであってよい。有機カチオンとしてはオリゴマーやポリ マー、 DNA、 RNA等の形態を有していてもよい。 [0032] より好適には、本発明においては、酸素含有官能基がカチオンと結合されて、 O Mおよび COOM (Mは金属原子を示す)で表わされる修飾構造の少くとも 1種が 形成されて 、るものや、金属原子 Mが Na (ナトリウム)であるものが考慮される。 [0031] The cation is defined as various cations other than hydrogen ions in the present invention. These may be metal ions, ammonia ions, amine compound cations, other inorganic or organic cations. The organic cation may be in the form of an oligomer, polymer, DNA, RNA or the like. [0032] More preferably, in the present invention, an oxygen-containing functional group is bonded to a cation to form at least one modified structure represented by OM and COOM (M represents a metal atom). And those in which the metal atom M is Na (sodium) are considered.
[0033] 本発明のカーボンナノホーン構造体は、カチオン含有液と接触させて開口エッジ部 の酸素含有官能基とカチオンとの結合を形成することによって調製される。  [0033] The carbon nanohorn structure of the present invention is prepared by bringing into contact with a cation-containing liquid to form a bond between an oxygen-containing functional group at the opening edge and a cation.
[0034] たとえばカチオンが Naである場合には、カチオン含有液は食塩水、生理食塩水、 あるいはその他の Na+含有液であってよ!、。  [0034] For example, when the cation is Na, the cation-containing solution may be saline, physiological saline, or other Na + -containing solution!
[0035] そして、本発明においては、以上のようなカーボンナノホーン構造体を含有するとと もに、その酸素含有官能基とカチオンとの結合状態を制御することで内在有機物の 開口部から外部への放出度合を制御可能とする制御媒体を含有して 、るカーボンナ ノホーン構造体含有組成物が実現され、制御媒体としては、たとえば、酸素含有官 能基に結合するカチオンとのカチオンもしくは水素イオン交換反応を可能として 、る ことが考慮される。  [0035] In the present invention, the carbon nanohorn structure as described above is contained, and the bonding state between the oxygen-containing functional group and the cation is controlled, so that the organic organic substance is released from the opening to the outside. A carbon nanohorn structure-containing composition containing a control medium capable of controlling the degree of release is realized. Examples of the control medium include a cation or hydrogen ion exchange reaction with a cation bonded to an oxygen-containing functional group. It is considered to be possible.
[0036] そして、本発明では、カーボンナノホーン構造体にぉ 、て、その酸素含有官能基と カチオンとの結合状態を制御することで内在有機物の開口部から外部への放出度合 を制御することを特徴とするカーボンナノホーン構造体における放出制御方法が提 供される。  [0036] Then, in the present invention, the degree of release of the organic substance from the opening to the outside is controlled by controlling the bonding state between the oxygen-containing functional group and the cation in the carbon nanohorn structure. A release control method for the carbon nanohorn structure is provided.
[0037] たとえば、酸素含有官能基に結合するカチオンとのカチオンもしくは水素イオン交 換反応により制御することでよい。  [0037] For example, it may be controlled by a cation or hydrogen ion exchange reaction with a cation bonded to an oxygen-containing functional group.
[0038] そこで、以下に実施例を示し、さらに詳しく説明する。もちろん、以下の例によって 発明が限定されることはない。 [0038] Therefore, an example will be shown below and will be described in more detail. Of course, the invention is not limited by the following examples.
実施例  Example
[0039] ここでは室温ならびに Ar (760 Torr)条件下でグラフアイトを COレーザーアブレ  [0039] Here, graphite is CO laser blurred at room temperature and Ar (760 Torr) conditions.
2  2
ーシヨンすることによって、 NHsを調製した(Chem. Phys. Lett. , 1999, 309, 16 5に従う)。そして開口エッジ部に酸素含有官能基を有するカーボンナノホーン (ΝΗ oxと略記する)については、 O気流中、 570— 580°C条件で 10分間にわたり NHsを  NHs were prepared by following (according to Chem. Phys. Lett., 1999, 309, 165). For carbon nanohorns with oxygen-containing functional groups at the opening edge (abbreviated as 基 ox), NHs were applied for 10 minutes in an air stream at 570-580 ° C.
2  2
処理することによって得られた (前記非特許文献 2に従う)。一方、水素還元された N Hhは NHoxを H気流中、 1200°C条件で 3時間にわたり処理し、ホールエッジから 酸素含有官能基を除去することによって得られた (J. Phys. Chem. , Β2004, 108 , 10732に従う)。 It was obtained by processing (according to the non-patent document 2). On the other hand, N Hh reduced with hydrogen is treated with NHox in H stream at 1200 ° C for 3 hours. Obtained by removing oxygen-containing functional groups (according to J. Phys. Chem., 2004, 108, 10732).
[0040] ΝΗοχと NHh内への CDDP取り込みにはナノ析出法を用いた(非特許文献 2 :J. P hys. Chem. , Β2005, 109, 17861に従う)。これをジメチルホルムアミド(DMF) に溶解させて 3mg mL—1の濃度にした。 NHoxまたは NHh (50mg)をビーカー内の CDDP— DMF溶液(5mL)で混合し、乾燥空気流のもとでこの混合物をビーカー中 に放置して DMFを蒸発させた。得られた粉末を、高分解能透過電子顕微鏡 (HRT EM)ならびに高角度散乱暗視野法 (Z—コントラスト像、 Z =原子番号)を用いた走査 型透過電子顕微鏡 (STEM)を用いて観察した。ここでは CDDPの取り込まれた NH oxと NHhをそれぞれ「CDDP@NHox」と「CDDP@NHh」と呼ぶ。またここでは D MF溶液力も再結晶した CDDPを対照試料に用いた。 [0040] Nanoprecipitation was used for CDDP incorporation into ΝΗοχ and NHh (according to Non-Patent Document 2: J. Phys. Chem., Β2005, 109, 17861). This was dissolved in dimethylformamide (DMF) to a concentration of 3 mg mL- 1 . NHox or NHh (50 mg) was mixed with the CDDP-DMF solution (5 mL) in a beaker and the mixture was left in the beaker under a stream of dry air to evaporate the DMF. The obtained powder was observed using a high-resolution transmission electron microscope (HRT EM) and a scanning transmission electron microscope (STEM) using a high-angle scattering dark field method (Z-contrast image, Z = atomic number). Here, NH ox and NHh in which CDDP is incorporated are called “CDDP @ NHox” and “CDDP @ NHh”, respectively. Here, CDDP recrystallized from DMF solution was used as a control sample.
[0041] CDDP @ NHoxならびに CDDP @ NHh中の CDDP量の評価は熱重量分析(TG A)により行った力 これは O大気条件下、温度範囲は室温から 1000°Cまで、加熱  [0041] The amount of CDDP in CDDP @ NHox and CDDP @ NHh was evaluated by thermogravimetric analysis (TG A). This is the atmospheric temperature, heating from room temperature to 1000 ° C.
2  2
速度は 10°C 分—1という条件で実施した。測定残渣は Ptであり、ここではその量から CDDP量を算出した。 CDDP@NHoxならびに CDDP@NHhを X線回折(XRD)し て、 NHox外部に析出した CDDPクリスタライトの大きさを示した。 The speed was 10 ° C min- 1 The measurement residue was Pt. Here, the amount of CDDP was calculated from the amount. CDDP @ NHox and CDDP @ NHh were subjected to X-ray diffraction (XRD) to show the size of CDDP crystallites deposited on the outside of NHox.
[0042] リン酸緩衝食塩水(PBS)中における CDDP@NHoxならびに CDDP@NHhから の CDDP放出速度を評価するため、ここでは lOkDa膜孔の透析膜シリンダに入れた PBS (2mL)中に CDDP @ NHoxまたは CDDP @ NHh (CDDP : 1. 2mg)を分散さ せ、 PBS (598mL)中にこのシリンダを浸した。そしてシリンダ外部へ CDDPが拡散 する間、定期的にシリンダ外部の CDDP— PBS溶液を lmLずつ採取した。これらの 試料の原子吸光スペクトル (AAS)測定値力ゝら各試料中の Pt量を評価し、その値を 用いて CDDPの放出量を評価した。この放出実験を水中条件についても実施し、得 られた結果を PBSを使用した場合と比較した。  [0042] To evaluate the rate of CDDP release from CDDP @ NHox and CDDP @ NHh in phosphate buffered saline (PBS), we used CDDP @ NH in PBS (2 mL) in a lOkDa membrane pore dialysis membrane cylinder. NHox or CDDP @ NHh (CDDP: 1.2 mg) was dispersed, and the cylinder was immersed in PBS (598 mL). During the diffusion of CDDP outside the cylinder, 1 mL of CDDP-PBS solution outside the cylinder was collected periodically. The amount of Pt in each sample was evaluated based on the measured atomic absorption spectrum (AAS) of these samples, and the amount of CDDP released was evaluated using these values. This release experiment was also performed under water conditions, and the results obtained were compared with those using PBS.
[0043] CDDP@NHhの CDDP放出速度と放出量が CDDP@NHoxの場合と異なる理由 を調べるため、本稿では NHoxと NHhに対する PBS吸着効果を調べた。すなわち N Hoxまたは NHhを PBS溶液 (lmg mL"1)中に分散させ、溶液を 1時間にわたり撹 拌した。膜孔サイズ 200nmの濾紙で溶液 10mLを濾過し、濾過物を 3回にわたり 10 mLの水で洗浄して、 NHoxまたは NHhの内外に残る PBS溶液をカットした。得られ た材料は乾燥した空気流のもとで乾燥させた。これらの標本を「PBS— NHox」なら び〖こ「PBS— NHh」とする。 TGAを実施してこれらの燃焼温度を明らかにし、低線量 エネルギー分散型 X線分光法 (XEDS)を調べて吸収された PBS元素(Na、 Cl、 P、 K)を定量した。 XEDS測定は HRTEM (002B、 Topcon、 X線検出器(5538A— 4 SUS— SN、 Thermo Electron Inc.)を装備したもの)を 120keVで操作することによつ て実施した。ピーク積分はデジタルトップハットフィルタを用いて行い、ノ ックグラウン ドを除去した。定量に用いる k因子は、シスプラチン結晶、 SWNHsに挿入された Pt、 PBSクリスタライトを用いたキャリブレーションをもとに計算した。 [0043] In order to investigate the reason why the CDDP release rate and release amount of CDDP @ NHh differ from those of CDDP @ NHox, this paper investigated the PBS adsorption effect on NHox and NHh. That is, N Hox or NHh was dispersed in a PBS solution (lmg mL " 1 ), and the solution was stirred for 1 hour. 10 mL of the solution was filtered with a filter paper having a membrane pore size of 200 nm, and the filtrate was filtered three times. After washing with mL of water, the PBS solution remaining inside or outside NHox or NHh was cut. The resulting material was dried under a stream of dry air. These specimens are designated as “PBS-NHox” and “Kako-PBS”. TGA was performed to clarify these combustion temperatures, and low-dose energy dispersive X-ray spectroscopy (XEDS) was examined to quantify absorbed PBS elements (Na, Cl, P, K). XEDS measurement was performed by operating a HRTEM (002B, Topcon, X-ray detector (5538A-4 SUS-SN, Thermo Electron Inc.) equipped) at 120 keV. Peak integration was performed using a digital top hat filter to remove the knock ground. The k factor used for quantification was calculated based on calibration using cisplatin crystals, Pt inserted into SWNHs, and PBS crystallite.
[0044] その結果を以下に説明する。  [0044] The results will be described below.
< 1 > CDDP @ NHoxの HRTEM画像(図 laと c)ならびに Z—コントラスト像(図 lb) から、 NHox中に取り込まれた CDDPクラスタは凝集しており、クラスタサイズは約 1 — 2nmであったが(図 lc)、これは CDDP@NHhに関する既発表の結果と一致して いた(非特許文献 2)。今回の HRTEM観察では、 NHoxまたは NHhの外部に CDD Pクリスタライトの存在は見られな力つた。  <1> From CDDP @ NHox HRTEM images (Fig. La and c) and Z-contrast image (Fig. Lb), CDDP clusters incorporated into NHox are aggregated, and the cluster size is about 1-2 nm. (Fig. Lc), which was consistent with the published results for CDDP @ NHh (Non-patent Document 2). In this HRTEM observation, the presence of CDD P crystallites outside NHox or NHh was strong.
[0045] NHox, NHh,ならびに単味の CDDPクリスタライトに対する TGAを、 CDDP@N Hoxならびに CDDP@NHhの場合と比較した。 NHoxに対する重量減少の微分曲 線は、約 635°Cでピークを、約 660°Cで肩を示した(図 2a)。前者は NHoxの燃焼に 、後者はグラフアイト粒子の燃焼に対応している (J. Phys. Chem. , Β2005, 109, 10756)。 NHhの微分曲線は 635°Cと 715°Cにピークを示し、これらはそれぞれ NH hとグラフアイト粒子の燃焼に対応して 、る。  [0045] TGA for NHox, NHh, and plain CDDP crystallites were compared to those for CDDP @ N Hox and CDDP @ NHh. The differential curve of weight loss with respect to NHox showed a peak at about 635 ° C and a shoulder at about 660 ° C (Figure 2a). The former corresponds to the combustion of NHox, and the latter corresponds to the combustion of graphite particles (J. Phys. Chem., 2005, 109, 10756). The NHh derivative curves show peaks at 635 ° C and 715 ° C, which correspond to the combustion of NHh and graphite particles, respectively.
[0046] じ00 @?«10 (図2(1)とじ00?@?«¾ (図26)に対する TGAから、 Pt—残余量 より見積もられた CDDP量は、表 1〖こも示したよう〖こ、 lgの NHoxならびに NHhあたり それぞれ 0. 22gと 0. 21gであることが示された。  [0046] As shown in Table 1, the amount of CDDP estimated from Pt—residual amount based on TGA for Fig. 2 (1) and 00? @? «¾ (Fig. 26) Tsujiko, lg of NHox and NHh were shown to be 0.22g and 0.21g respectively.
[0047] [表 1] CDDP CDDP [0047] [Table 1] CDDP CDDP
@NHox @NHh  @NHox @NHh
NHs中の CDDP量 (g/g) * 0.22 0.21  CDDP content in NHs (g / g) * 0.22 0.21
TGA TGA
NHsの燃焼温度 (°C) 556 560 NHs combustion temperature (° C) 556 560
緩やかに放出 ( 1) 13 66  Slow release (1) 13 66
CDDPの放出 ·  CDDP release
放出 急速に放出 (2) 3 4  Release Rapid release (2) 3 4
非放出量 (%)  Non-release amount (%)
プロファイル 放出せず 85 30  Profile No release 85 30
分析 放出速度 a (1) 0.18 0.05  Analysis Release rate a (1) 0.18 0.05
(時間—1) oi (2) i.O 1.1 (Time — 1 ) oi (2) iO 1.1
*重量はグラフアイ ト粒子を含み 100%として評価した。  * Weight was evaluated as 100% including graphite particles.
( 1) と (2) はそれぞれ内部と外部からの放出を示す。  (1) and (2) show internal and external emissions, respectively.
NHoxならびに NHhにカプセル化された CDDP量と、 NHoxならびに NHhの燃焼 温度の、 TGAを元にした評価値。 H 4に示した放出プロファイルの数値シミュレーション 結果も掲載されている。  Evaluation value based on TGA for the amount of CDDP encapsulated in NHox and NHh and the combustion temperature of NHox and NHh. Numerical simulation results of the release profile shown in H4 are also posted.
[0048] なお、ここで、 NHoxと NHhの量にはグラフアイト粒子の量が含まれることに注意す べきである。約 100°Cにおける重量減少は DMFの脱離に対応している(図 2dと 2e) 。単味 CDDPクリスタライトの分解は約 330°Cで観察された力 (図 2c)、 CDDP@NH oxの CDDPは異なる温度で燃焼または分解しており、その温度は約 250°Cと約 400 °Cであった。 CDDP@NHhの場合には CDDPは約 250°Cで燃焼または分解した。 CDDP @ NHoxならびに CDDP @ NHhの CDDPが燃焼 Z分解する温度が CDDP クリスタライトの場合より低いこと、また CDDP @ NHhの CDDPが燃焼/分解する温 度が 2種類の範囲内に入ることの理由は不明である。 NHoxと NHhの燃焼温度(図 2 aと b)は、 CDDPを取り込み時には 635°Cから 560°Cに減少し [0048] It should be noted here that the amount of NHox and NHh includes the amount of graphite particles. The weight loss at about 100 ° C corresponds to the desorption of DMF (Figures 2d and 2e). Decomposition of plain CDDP crystallites was observed at approximately 330 ° C (Figure 2c), CDDP @ NH ox CDDP burned or decomposed at different temperatures, which were approximately 250 ° C and approximately 400 ° C. C. In the case of CDDP @ NHh, CDDP burned or decomposed at about 250 ° C. The reason why CDDP @ NHox and CDDP @ NHh CDDP burns and decomposes Z is lower than that of CDDP crystallite, and CDDP @ NHh CDDP burns / decomposes within two ranges. It is unknown. The combustion temperature of NHox and NHh (Figures 2a and b) decreased from 635 ° C to 560 ° C when CDDP was incorporated.
た(図 2dと e)。このように燃焼温度の減少が見られるのは、 Ptの分解断片が NHoxと NHhの燃焼に際して触媒作用を果たすためであった。  (Figures 2d and e). The decrease in the combustion temperature was observed because the Pt decomposition fragments catalyzed the combustion of NHox and NHh.
[0049] CDDP@NHoxと CDDP@NHhの XRDパターンは、 2シータが約 14° になる CD DPに特徴的な回折ピークを示した(図 3)。ピーク幅と Scherrer式を用いて概算した 粒子サイズは約 20— 50nmであり、これらは NHoxと NHhの外部に存在する可能性 が高いことを意味している。 HRTEM観察時に、サイズが 20— 50nmである CDDPク リスタライトは見られな力つたため、それらの量は少ない答である。約 26. 5° にみら れるピーク(図 3)はナノホーン中のグラフアイト不純物に起因する。 NHox (図 1)また は NHh (示さず)のナノスペース内部にある 1— 2nmサイズの CDDPクラスタはそれ らの結晶性が乏 、ためか、あるいは結晶サイズが小さ 、ためにピークを示すことが できなかった。結晶性が乏しい場合や結晶サイズが小さい場合には、通常 XRDピー クが広くなりすぎて観察できなくなる。 [0049] The XRD pattern of CDDP @ NHox and CDDP @ NHh showed a diffraction peak characteristic of CD DP with a 2-theta of approximately 14 ° (Fig. 3). The particle size estimated using the peak width and Scherrer equation is about 20-50 nm, which means that they are likely to exist outside of NHox and NHh. The CDDP crystallites with a size of 20-50 nm during HRTEM observations were unseen, so their amount is a small answer. The peak at about 26.5 ° (Figure 3) is due to the graphite impurity in the nanohorn. The 1-2 nm sized CDDP clusters inside the nanospace of NHox (Fig. 1) or NHh (not shown) may show peaks due to their poor crystallinity or small crystal size. could not. When the crystallinity is poor or the crystal size is small, the XRD peak is usually too wide to observe.
[0050] 以上の結果から、構造、取り込まれた CDDP量、 CDDPクラスタのサイズに関して C DDP@NHoxと CDDP@NHhの間にはほとんど違いがないことが示されている。し かし PBS中で CDDP@NHoxならびに CDDP@NHhから放出される CDDP量は著 しく異なることが判明している。 [0050] The above results show that there is almost no difference between CDDP @ NHox and CDDP @ NHh in terms of structure, amount of incorporated CDDP, and size of CDDP cluster. However, the amount of CDDP released from CDDP @ NHox and CDDP @ NHh in PBS has been found to be significantly different.
< 2> PBS中での NHoxならびに NHhからの CDDPの放出につ!、て検討した。  <2> The release of CDDP from NHox and NHh in PBS was investigated.
[0051] ここでは CDDP@NHoxならびに CDDP@NHhを PBS中に浸した場合、それらよ り放出される CDDPの量を AAS測定で評価した。その結果 CDDP@NHoxからの 放出はわずか 15%であったが、 CDDP@NHhからの放出は約 70%であることが判 明した (図 4)。 [0051] Here, when CDDP @ NHox and CDDP @ NHh were immersed in PBS, the amount of CDDP released from them was evaluated by AAS measurement. As a result, it was found that the release from CDDP @ NHox was only 15%, but the release from CDDP @ NHh was about 70% (Figure 4).
[0052] この放出過程をより詳しく調べるため、図 4に見られる放出プロファイルを数値解析 したが、この時には以前に C @NHoxからの C 放出を分析する場合に行われた 2  [0052] In order to investigate this release process in more detail, the release profile shown in Fig. 4 was numerically analyzed. At this time, it was performed when analyzing C release from C @NHox 2
60 60  60 60
段階の放出過程を仮定した (J. P ys. Chem. , Β2005, 109, 17861)。図 4の太 線に示すように、浸漬時間に伴う放出量の変化は計算により良く再現されていた。シ ミュレーシヨンパラメータは、徐放出ならびに急速放出される CDDPの量と速度であ つた(表 1参照)。 NHoxならびに NHhのいずれからも CDDPの急速放出量は少量 で同程度であった。両者から徐放出される CDDPは大量であった。 CDDP@NHox 力 徐放出される CDDP量は、 CDDP@NHhからの場合より少量であった。 TEM ( 図 1)観察と XRD測定(図 3)により得られた結果を考慮すると、徐放出された CDDP はそのほとんどが NHoxまたは NHh内部に由来するものである力 急速放出された CDDPは NHoxまたは NHhの外部に位置するという結論が得られる。  A stepwise release process was assumed (J. Pys. Chem., 2005, 109, 17861). As shown by the bold line in Fig. 4, the change in the amount of release with immersion time was well reproduced by calculation. The simulation parameters were slow release as well as the amount and rate of rapidly released CDDP (see Table 1). The rapid release of CDDP from both NHox and NHh was small and similar. A large amount of CDDP was slowly released from both. CDDP @ NHox force The amount of CDDP released slowly was less than that from CDDP @ NHh. Considering the results obtained by TEM (Fig. 1) observation and XRD measurement (Fig. 3), the sustained release of CDDP is mostly derived from NHox or NHh. The conclusion is that it is located outside of NHh.
[0053] 徐放出速度に関しては特別な解釈がある。 NHhからの CDDP徐放出は 0. 05時 間一1であり(表 1)、これはホールの水素終端ィ匕エッジの疎水性を反映している。水溶 液は水素終端ィ匕エッジを有するホールを容易に通過できな 、ために、 CDDPが徐放 出されることになると思われる。この考えに対応するように NHoxからの CDDP放出 速度は 0. 18時間—1であり、 NHhからの速度 0. 05時間—1と比較して大きい(表 1)。 < 3 >NHoxからの CDDP放出が停止する理由につ!/、ては以下のとおりである。 [0054] CDDP@NHoxと CDDP@NHhの間には PBS中における CDDP放出量に違い が見られる力 これはおそらく NHoxと NHhに対する PBSの影響が原因であろう。 P BS中のイオンが NHoxのホールエッジに位置する官能基と反応し、これによつてホ ールが塞栓状態になるという説明などが妥当であろう。この考えの妥当性を以下に示 す 2種類の実験により確認した。 [0053] There is a special interpretation regarding the sustained release rate. CDDP sustained release from NHh is an 1 inter hour 0.05 (Table 1), reflecting the hydrophobicity of the hydrogen terminated I spoon edge of the hole. It seems that CDDP is gradually released because the aqueous solution cannot easily pass through the hole having the hydrogen-terminated edge. Corresponding to this idea, the rate of CDDP release from NHox is 0.18 hours— 1, which is higher than the rate from NHh of 0.05 hours— 1 (Table 1). <3> The reason why CDDP release from NHox stops! / Is as follows. [0054] There is a difference in CDDP release in PBS between CDDP @ NHox and CDDP @ NHh This is probably due to the effect of PBS on NHox and NHh. It would be reasonable to explain that ions in PBS react with functional groups located at the hole edge of NHox, which causes the hole to become embolized. The validity of this idea was confirmed by the following two types of experiments.
[0055] 最初に放出溶媒を PBSから水に切り替えた。すると相当な量の CDDPが放出され ることが判明し、水中に 1日間浸漬した後に CDDP @ NHoxを TGA測定したところ、 1000°C条件での Pt残渣はわず力 3重量%であることが示され(図 5a)、これはすな わち約 83%の CDDPが NHox内部から放出されたことを意味する。この知見は PBS 中での CDDP@NHoxからの CDDP放出の場合と大きく異なっている(図 4)。  [0055] First, the release solvent was switched from PBS to water. It was found that a considerable amount of CDDP was released, and when CDDP @ NHox was measured by TGA after being immersed in water for 1 day, the Pt residue at 1000 ° C showed a force of 3% by weight. Shown (Figure 5a), meaning that about 83% of CDDP was released from inside NHox. This finding is very different from the case of CDDP release from CDDP @ NHox in PBS (Figure 4).
[0056] 次に PBS— NHhと PBS— NHoxに対する TGAを実施したが、これらの物質は NH hと NHoxを PBS存在下で撹拌した後に水で洗浄し、乾燥させること〖こよって得られ たものである。この TGAの結果では PBS浸漬によって NHhの燃焼温度がわずかに 減少して 635°C力ら 600°Cになり(図 5c)、これに対して NHoxの燃焼温度は大幅に 減少して 635°Cから 475°Cになった(図 5b)。 NHoxにみられるこの大幅な減少は、 P BS中のイオンが NHoxのホールエッジに位置する酸素含有官能基に対して化学反 応する結果生じる化学的不安定性に起因して 、る。これはホールエッジに位置する 酸素含有官能基を化学修飾することによって NHoxの燃焼温度が大幅に減少すると V、う既発表の結果にも類似して 、る。  [0056] Next, TGA was performed on PBS-NHh and PBS-NHox. These substances were obtained by stirring NHh and NHox in the presence of PBS, washing with water, and drying. It is. In this TGA result, the NHh combustion temperature decreased slightly by PBS soaking to 635 ° C force and 600 ° C (Fig. 5c), while NHox combustion temperature was significantly reduced to 635 ° C. From 475 ° C (Fig. 5b). This significant reduction in NHox is due to chemical instability resulting from the chemical reaction of ions in the PBS to oxygen-containing functional groups located at the hole edge of NHox. This is similar to the previously published results V, when the combustion temperature of NHox is greatly reduced by chemically modifying the oxygen-containing functional group located at the hole edge.
[0057] 従って PBS中での CDDP@NHoxからの CDDP放出量が少ないのは、ホールエツ ジに位置する官能基に結合してホールを塞 ヽで 、るイオンが原因であると!/、う結論 が得られた。 NHoxのホールエッジに結合したイオンは XEDS測定により解明されて おり、以下にその結果を示す。  [0057] Therefore, the small amount of CDDP released from CDDP @ NHox in PBS is caused by ions that bind to the functional group located in the hole edge and block the hole! / was gotten. The ions bound to the hole edge of NHox have been elucidated by XEDS measurement, and the results are shown below.
<4>塞栓効果は主に COONa基と ONa基により引き起こされることが以下のと おり確認された。  <4> It was confirmed that the embolic effect was mainly caused by COONa and ONa groups as follows.
[0058] ホールエッジに結合したイオンを同定するため、ここでは PBS— NHoxと PBS— N Hhのエネルギー分散型 X線分光を測定した。結果は図 6に示した力 PBS-NHh に対する Na: P : C1: Kの数値比(Na: P: C1: K = 51: 11: 36: 2、図 6b)は PBS自体 の比率(Na: P : Cl:K= 50 : 3 :46 : l、図 6c)に近く、それらが NaCl、 KC1、リン酸塩 の形で存在することを示している。一方、 PBS— NHoxの数値比は PBSの場合とか なり異なっており、多量の C1が失われて!/、ることを示して!/、た (Na: P: C1: K = 64: 23 :4 : 9、図 6a)。これらの結果から、ホールエッジにある— COOH基と— OH基が主に COONa基と ONa基に変化しており、 NHoxからのシスプラチン放出を妨げて いると考えられる。さらにもしリン酸がナトリウム塩を形成し、残ったナトリウムがホール エッジにある官能基と反応すると考える場合には、 NHoxに吸収された Na量 (数値 i:k¾C :Na= 1000 : 2. 5)は 40nm長と 2nm幅の NHoxに対する 7原子の Naに対応 していることが判った。この値は以下のシミュレーションで示すように、直径 1— 1. 5n mであるホールのエッジに結合しうる ONa基と COONa基の数と同等である。 発明者は塞栓効果の可能性を数値面から調べた。ここでは H (37pm)、 O (73pm) 、 Na (154pm)の共有結合半径と、 Na (227pm)と H ( 120pm)のファン.デル.ヮー ルス半径を用いて計算を行った。計算によると— OH基の水素原子力 SNaに置換され ると (すなわち— ONa基が形成されると)、官能基の立体障害が 130pm増加した。図 7bに示すように、この置換によって有効ホールサイズが縮小して 0. 8nm (オレンジ色 の円)から 0. 6nm (赤色の円)になる。ここで用いるホールサイズは既報(Adv. Mat er. , 2004, 16, 397)に従!ヽ 1. 2nmであると考えられる。図 7cには、 COOH基 がー COONa基に変わることによって有効ホールサイズ 0. 8nm (オレンジ色の円)が 0. 4nmに縮小することを示している。 CDDPの分子サイズは約 0. 4 X 0. 6nm、厚さ は約 0. lnmであることから、 COONa基と一 ONa基がホールエッジに結合した状 態での CDDP分子の通過は難し!/、。 [0058] In order to identify ions bound to the hole edge, here, energy-dispersive X-ray spectroscopy of PBS-NHox and PBS-N Hh was measured. The result shows the numerical ratio of Na: P: C1: K (Na: P: C1: K = 51: 11: 36: 2, Figure 6b) to the force PBS-NHh shown in Fig. 6 is PBS itself. (Na: P: Cl: K = 50: 3: 46: l, Fig. 6c), indicating that they exist in the form of NaCl, KC1, and phosphate. On the other hand, the numerical value ratio of PBS—NHox is quite different from that of PBS, indicating that a large amount of C1 is lost! /, (Na: P: C1: K = 64: 23: 4: 9, Figure 6a). From these results, it is considered that the —COOH group and —OH group at the hole edge are mainly changed to COONa group and ONa group, which prevents the release of cisplatin from NHox. Furthermore, if phosphoric acid forms a sodium salt and the remaining sodium reacts with the functional group at the hole edge, the amount of Na absorbed by NHox (numerical value i: k¾C: Na = 1000: 2.5) Was found to correspond to 7 atom Na for 40 nm long and 2 nm wide NHox. This value is equivalent to the number of ONa and COONa groups that can bind to the edge of a hole with a diameter of 1–1.5 nm, as shown in the following simulation. The inventor investigated the possibility of the embolic effect from the numerical aspect. Here, calculations were performed using H (37pm), O (73pm), Na (154pm) covalent radii and Na (227pm) and H (120pm) van der Waals radii. According to calculations, the substitution of the OH group with hydrogen nuclear SNa (ie, the formation of the ONa group) increased the steric hindrance of the functional group by 130 pm. As shown in Figure 7b, this substitution reduces the effective hole size from 0.8 nm (orange circle) to 0.6 nm (red circle). The hole size used here is considered to be 1.2 nm according to the previous report (Adv. Mater., 2004, 16, 397). Figure 7c shows that the effective hole size of 0.8 nm (orange circle) is reduced to 0.4 nm by changing the COOH group to -COONa group. Since the molecular size of CDDP is about 0.4 X 0.6 nm and the thickness is about 0.1 nm, it is difficult to pass CDDP molecules with COONa group and one ONa group bonded to the hole edge! / ,.
く 5 >以上のことから、 CDDP@NHoxならびに CDDP@NHhを構造分析したとこ ろ、これらは構造、 CDDP取込み量、 CDDPクラスタのサイズなどに関して類似して いることが示された。しかし PBS中での CDDP@NHoxからの CDDP放出量はわず 力 15%であるのに対し、 CDDP@NHhからの同放出量は 75%であった。 NHoxか らの CDDP放出の停止は塞栓効果が原因である。つまり COONa基ならびに—O Na基が NHoxのホールエッジに結合した COOH基ならびに OH基の代わりを 占めるようになり、 NHox内部力もホールを通過する CDDPを立体的に妨害するため である。 NHhは水素終端化エッジをもつホールを有するためにこのような置換が起こ らず、従って塞栓効果も観察されな力つた。以上の結果力も NHoxのホールエッジに 位置する官能基を化学修飾すれば、 NHox内部に取り込まれた物質の放出量と放 出速度が調節されることになり、これによつて NHoxを物質担体に利用できる可能性 が強まる。 From the above, the structural analysis of CDDP @ NHox and CDDP @ NHh showed that they are similar in structure, CDDP uptake, CDDP cluster size, etc. However, the amount of CDDP released from CDDP @ NHox in PBS was only 15%, while that from CDDP @ NHh was 75%. The cessation of CDDP release from NHox is due to the embolic effect. In other words, the COONa group and —O Na group occupy the COOH group and OH group bonded to the hole edge of NHox, and NHox internal force also sterically hinders CDDP passing through the hole. It is. Since NHh has holes with hydrogen-terminated edges, such substitution does not occur, and therefore embolization was not observed. As a result of the above, if the functional group located at the hole edge of NHox is chemically modified, the release amount and release rate of the substance incorporated into NHox can be adjusted, and this makes NHox a substance carrier. The possibility of being used increases.
<参考例>  <Reference example>
炭素物質である NHoxの安全性評価の一環として、これを被験物質に用いてマウ スに単回静脈内投与し、投与後 2週間、投与後 4週間および投与後 26週間における 長期毒性について検討した。  As part of the safety assessment of NHox, a carbon substance, it was used as a test substance and administered to mice once in a single dose, and long-term toxicity was examined 2 weeks after administration, 4 weeks after administration, and 26 weeks after administration. .
[0060] 試験には、マウス、 Slc :ICR、 SPF、雄(日本ェヌエルシー株式会社)(体重範囲 3 5. 6-42. 3g (9週齢)を 30匹用いた。 15匹を 3群に分け(各 5匹)、また 15匹を各々 の対照群とした。 [0060] In the test, 30 mice, Slc: ICR, SPF, male (NJLC) (weight range 35.6-62.3 g (9 weeks old)) were used. Divided (5 animals each) and 15 animals were used as each control group.
[0061] 被験物質(30mg)入りバイアル瓶にリン酸緩衝生理食塩水 40mLを加え、超音波 を用いて十分に懸濁し、投与液を調整した。  [0061] 40 mL of phosphate buffered saline was added to a vial containing a test substance (30 mg), and the suspension was sufficiently suspended using ultrasound to prepare a dosing solution.
[0062] NHoxの投与用量は 6. Omg/kg,投与液濃度は 0. 75mgZmLとした。 [0062] The dose of NHox was 6. Omg / kg, and the concentration of the solution was 0.75 mgZmL.
[0063] 投与経路は、被験物質が臨床的に使用される経路が静脈内であるため、 26Gの注 射針を装着したデイスポーザブルの lmL注射筒を用い、マウスの尾静脈より静脈内 投与した。投与液量は、いずれの被験物質についても 8mLZkgとした。 [0063] Because the route of administration of the test substance is intravenous, the administration route is intravenous, using a disposable lmL syringe equipped with a 26G injection needle, via the tail vein of the mouse. did. The dose was 8 mLZkg for all test substances.
[0064] 投与期間は、投与日(Daylとする)に 1回、午前 9 : 26〜: L0 : 13の間に行った。 [0064] The administration period was once a day of administration (referred to as Dayl) between 9:26 am and L0: 13.
[0065] 一般状態および死亡観察は、次の表 2の 3群に区分して行った。 [0065] The general condition and death observation were divided into three groups in Table 2 below.
[0066] [表 2] [0066] [Table 2]
群 観察期間 -般状態観察および死亡状況確認 Group Observation period-General condition observation and death status confirmation
群 is n Day 1:  Group is n Day 1:
Da 卜 投与直後〜 1時間後. 2時問後おょぴ 4時間後に, 生死確認およ Da 15 び -般状態の観察を行った。  Immediately after Da 投 与 administration-1 hour later. After 2 hours, 4 hours later, confirmation of viability and observation of Da 15 and general conditions were performed.
Day 2以降:  After Day 2:
午前 (8:00〜12:ϋϋ) に生死確認および一般状態の観察を行い、 午後 (15:00〜 : 00) に生死確認を行った。 In the morning (8 : 00-12: ϋϋ), we checked the life and death and observed general conditions, and in the afternoon (15:00-0: 00), we checked the life and death.
但し, 休日は. 午前巾 (8:00〜! 2:00) 1回のみの生死確認および 一般状態観察とした。  However, on weekends, morning width (8: 00 ~! 2:00) Life and death were confirmed only once and general condition was observed.
群 2 日'間 Day ]:  Group 2 days 'Day':
Day 1〜 投与直後〜 1時間後、 2時間後および 4時間後に、 生死確認およ Day 29 び一般状態の観察を行った。  Day 1-Immediately after administration-1 hour, 2 hours and 4 hours later, life and death were confirmed and Day 29 and general condition were observed.
Dav 2^- Day !5:  Dav 2 ^-Day! 5:
午前 (8:00〜 00) に生死確認および一般状態の観察を行い、 午後 (】5:00〜: 17:00) に生死確認を行った。  Life and death were confirmed in the morning (8: 00 ~ 00) and general condition was observed, and life and death was confirmed in the afternoon (] 5: 00 ~ 17: 00).
但し, 休日は, 午前中 (8:00~12:00) 1回のみの生死確認および 一般状態観察とした。 However, on holidays, we decided to check the life and death only once in the morning (8: 00-12 : 00) and to observe general conditions.
Da 16 ら Day 29:  Da 16 et Day 29:
Diiy22および Day29の午前 (8:(X)~ 12:00) に牛死確認および一 般状態の観察を行った。  On the morning of Diiy22 and Day29 (8: (X) ~ 12: 00), we confirmed cattle death and observed general conditions.
その他の日は、午前中(8:00~12:00) ]回の生死確認のみとした。 On other days, it was only confirmed in the morning (8: 00 ~ 12: 00 )].
3群 183日間 Da 1:  3 groups 183 days Da 1:
Day 卜 投与直後〜 1時間後、 2時間後および 4時間後に、 生死確認およ Day 183 び一般状態の観察を行った。  Immediately after Day IV administration-1 hour, 2 hours and 4 hours later, life and death were confirmed and Day 183 and general condition were observed.
Day 2~Da 15:  Day 2 ~ Da 15:
午前 (8:00-12:00) に生死確認および 般状態の観察を行い, 午後 (15:00〜17:{)0) に生死確認のみを行った。  Life and death were confirmed in the morning (8: 00-12: 00) and general conditions were observed, and only life and death were confirmed in the afternoon (15: 00-17: {) 0).
但し、 休日は、 午 M屮 (8:00~12:00) 1回のみの生死確認および However, on holidays, it is M 屮 (8: 00 ~ 12: 00) in the afternoon.
-般状態親察とした。 -It became general condition familiarity.
Day 16から Day 183:  Day 16 to Day 183:
Day 22, 29、 36. 43, 50, 57. 64, 71 , 78, 85, 92、 99. 106, 123, 120. 127, 134、 141、 148, 155, ! 62, 169, 176および  Day 22, 29, 36. 43, 50, 57. 64, 71, 78, 85, 92, 99. 106, 123, 120. 127, 134, 141, 148, 155,! 62, 169, 176 and
183 の午前 (8:00~ 12:00) に生死確認および一般状態の観察を 行った。  On the morning of 183 (8: 00 ~ 12: 00), we confirmed life and death and observed general condition.
その他の日は、午前中(8:00〜 : 00) 1回の生死確認のみとした。  On other days, only one check was made in the morning (8: 00-0: 00).
[0067] また、以下の日程にぉ 、て体重を測定した。 [0067] Also, body weight was measured on the following schedule.
[0068] [表 3] [0068] [Table 3]
1 群: Day 1 (投与前)、 2、 3. 5 , 8, 12および 15に測定した。 Group 1: Measurements were made on Day 1 (before administration), 2, 3.5, 8, 12, and 15.
2群: Day 1 (投与 ii)、 2、 3, 5、 8> 12、 15、 22および 29に測定した。  Group 2: Measurements were made on Day 1 (administration ii), 2, 3, 5, 8> 12, 15, 22, and 29.
3群: Day 1 (投与前)、 2、 3、 5、 8、 12, 15、 22、 29、 36. 43、 50、 57、 64、' フ】, フ 8、 85、 92、 99、 ] 06、 113、 120. 127、 134、 141、 148、 155、 162, Group 3: Day 1 (before administration), 2, 3, 5, 8, 12, 15, 22, 29, 36. 43, 50, 57, 64, 'F], F 8, 85, 92, 99,] 06, 113, 120. 127, 134, 141, 148, 155, 162,
169、 ] 76および 1 S3に測定した。 169,] 76 and 1 S3.
[0069] 病理解剖学的検査では、 Day [0069] Day for pathological anatomy
1群においては Dayl5に、 2群においては Day29に、また 3群においては Dayl83に 、ペントパルビタールナトリゥム麻酔下で放血により安楽死させたのち病理学的手技 に従って解剖し、体表、開孔部、頭蓋、胸腔、腹腔の器官および組織を観察した。 Group 1 on Dayl5, Group 2 on Day29, Group 3 on Dayl83 They were euthanized by exsanguination under anesthesia with pentoparbital sodium and then dissected according to pathological procedures, and the body surface, open area, skull, chest cavity, organs and tissues of the abdominal cavity were observed.
[0070] 病理解剖学的検査では、  [0070] In pathological anatomy,
各群とも全例において、以下の器官について 10%中性緩衝ホルマリン液にて固定 後、常法に従ってパラフィン包理、薄切したのち HE染色を施し、光学顕微鏡下にて 鏡検した。  In all cases in each group, the following organs were fixed with 10% neutral buffered formalin solution, then paraffin-embedded and sliced according to conventional methods, followed by HE staining and microscopic examination under an optical microscope.
[0071] 対象器官:脳、心臓、肺、肝臓、腎臓および脾臓  [0071] Target organs: brain, heart, lung, liver, kidney and spleen
以上の試験の結果、以下のことが確認された。  As a result of the above test, the following was confirmed.
[0072] 一般状態および体重推移において、 NHox投与による異常は認められな力つた。  [0072] In the general state and weight transition, abnormalities due to NHox administration were not recognized.
[0073] 病理組織学的検査について、 M— NHox550投与によって投与 2週間後、 4週間 後および 26週間後のいずれにおいても肺血管内腔、肝臓のクッパー細胞および脾 臓において被験物質に由来すると思われる色素沈着が組織学的に観察された。これ ら観察された色素沈着に関しては、いずれの器官においても炎症および細胞変性- 壊死等の変化はともなって 、な力つた。  [0073] Regarding histopathological examination, it seems to be derived from the test substance in the pulmonary vascular lumen, liver Kupffer cells and spleen at 2, 4, and 26 weeks after administration with M-NHox550. Pigmentation was observed histologically. Regarding the observed pigmentation, all organs were strong with changes such as inflammation and cytopathic necrosis.
[0074] また、肺において、投与 26週間後では投与 2週間後および投与 4週間後よりも、組 織学的に血管腔内の色素沈着および血管壁肥厚の程度が減じている傾向が見られ た。これらのことから肺の血管腔内に詰まった被験物質については、その血管腔内か らの少量ではあるが長期にわたってクリアランスされる可能性が示唆された。  [0074] In addition, in the lung, the degree of pigmentation in the vascular cavity and the thickening of the blood vessel wall tended to decrease histologically at 26 weeks after administration than at 2 weeks and 4 weeks after administration. It was. These facts suggest that the test substance clogged in the pulmonary vascular cavity may be cleared for a long time even though it is a small amount from the vascular cavity.

Claims

請求の範囲 The scope of the claims
[I] カーボンナノホーンの開口エッジ部の酸素含有官能基がカチオンと結合されて 、る ことを特徴とするカーボンナノホーン構造体。  [I] A carbon nanohorn structure characterized in that an oxygen-containing functional group at the opening edge of the carbon nanohorn is bonded to a cation.
[2] カーボンナノホーンの内空間には有機物質が内在していることを特徴とする請求項 [2] The organic material is inherent in the inner space of the carbon nanohorn.
1記載のカーボンナノホーン構造体。 1. The carbon nanohorn structure according to 1.
[3] 有機物質は生理活性を有する薬剤物質であることを特徴とする請求項 2記載の力 一ボンナノホーン構造体。 [3] The force-bonded nanohorn structure according to claim 2, wherein the organic substance is a drug substance having physiological activity.
[4] 酸素含有官能基は水酸基およびカルボキシル基のうちの少くとも 1種であることを 特徴とする請求項 1から 3のいずれかに記載のカーボンナノホーン構造体。 [4] The carbon nanohorn structure according to any one of claims 1 to 3, wherein the oxygen-containing functional group is at least one of a hydroxyl group and a carboxyl group.
[5] カチオンは金属イオンであることを特徴とする請求項 1から 4の 、ずれかに記載の力 一ボンナノホーン構造体。 [5] The force-bonbon nanohorn structure according to any one of claims 1 to 4, wherein the cation is a metal ion.
[6] 酸素含有官能基がカチオンと結合されて、 OMおよび COOM (Mは金属原子 を示す)で表わされる修飾構造の少くとも 1種が形成されて ヽることを特徴とする請求 項 1から 5のいずれかに記載のカーボンナノホーン構造体。 [6] The oxygen-containing functional group is bonded to a cation to form at least one modified structure represented by OM and COOM (M represents a metal atom). 6. The carbon nanohorn structure according to any one of 5 above.
[7] 金属原子 Mが Na (ナトリウム)であることを特徴とする請求項 6記載のカーボンナノ ホーン構造体。 7. The carbon nanohorn structure according to claim 6, wherein the metal atom M is Na (sodium).
[8] 請求項 2から 7の 、ずれかに記載のカーボンナノホーン構造体を含有するとともに、 その酸素含有官能基とカチオンとの結合状態を制御することで内在有機物の開口部 から外部への放出度合を制御可能とする制御媒体を含有していることを特徴とする カーボンナノホーン構造体含有組成物。  [8] The carbon nanohorn structure according to any one of claims 2 to 7 is contained, and the organic organic substance is released from the opening of the organic substance to the outside by controlling the bonding state between the oxygen-containing functional group and the cation. A carbon nanohorn structure-containing composition comprising a control medium capable of controlling the degree.
[9] 制御媒体は、酸素含有官能基に結合するカチオンとのカチオンもしくは水素イオン 交換反応を可能としていることを特徴とする請求項 8のカーボンナノホーン構造体含 有組成物。  9. The carbon nanohorn structure-containing composition according to claim 8, wherein the control medium enables a cation or hydrogen ion exchange reaction with a cation bonded to an oxygen-containing functional group.
[10] 請求項 2から 7のいずれかに記載のカーボンナノホーン構造体において、その酸素 含有官能基とカチオンとの結合状態を制御することで内在有機物の開口部から外部 への放出度合を制御することを特徴とするカーボンナノホーン構造体における放出 制御方法。  [10] In the carbon nanohorn structure according to any one of [2] to [7], the degree of release of the organic organic substance from the opening to the outside is controlled by controlling the bonding state between the oxygen-containing functional group and the cation. A method for controlling release in a carbon nanohorn structure characterized by the above.
[II] 酸素含有官能基に結合するカチオンとのカチオンもしくは水素イオン交換反応によ り制御することを特徴とする請求項 10のカーボンナノホーン構造体における放出制 御方法。 [II] Cation or hydrogen ion exchange reaction with cations binding to oxygen-containing functional groups 11. The method for controlling emission in a carbon nanohorn structure according to claim 10, wherein the control is performed.
請求項 1から 7の 、ずれかのカーボンナノホーン構造体の調製方法であって、カチ オン含有液と接触させて開口エッジ部の酸素含有官能基とカチオンとの結合を形成 することを特徴とするカーボンナノホーン構造の調製方法。  8. The method for preparing a carbon nanohorn structure according to claim 1, wherein the carbon nanohorn structure is brought into contact with a cation-containing liquid to form a bond between an oxygen-containing functional group at the opening edge and a cation. Preparation method of carbon nanohorn structure.
PCT/JP2007/050080 2006-01-06 2007-01-09 Carbon nanohorn structure, composition capable of controlling the release of organic substance included therein, and method for the controlled release WO2007078007A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006001896 2006-01-06
JP2006-001896 2006-01-06

Publications (1)

Publication Number Publication Date
WO2007078007A1 true WO2007078007A1 (en) 2007-07-12

Family

ID=38228343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050080 WO2007078007A1 (en) 2006-01-06 2007-01-09 Carbon nanohorn structure, composition capable of controlling the release of organic substance included therein, and method for the controlled release

Country Status (1)

Country Link
WO (1) WO2007078007A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004532A1 (en) * 2006-07-07 2008-01-10 Nec Corporation Substance-containing carbon nanohorn composite having polyamine plug and process for producing the same
JP2009184973A (en) * 2008-02-06 2009-08-20 Nec Corp Sustained release antimicrobial agent preparation using carbon nanohorn as carrier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812310A (en) * 1994-07-05 1996-01-16 Nec Corp Purifying-opening method of carbon-nanotube in liquid phase and introducing method of functional group
JPH08325008A (en) * 1995-05-30 1996-12-10 Nec Corp Ion-exchanged carbon nanotube, its production, buffering medium comprising the same and element capturing and collecting method using the same
JP2000504002A (en) * 1996-01-30 2000-04-04 ノバジェント オサケユイチア Compositions for transdermal delivery of drugs
WO2002075831A1 (en) * 2001-03-19 2002-09-26 Nec Corporation Fuel cell electrode, and fuel cell comprising the electrode
JP2005343885A (en) * 2004-05-07 2005-12-15 Japan Science & Technology Agency Drug carbon nanohorn composite and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812310A (en) * 1994-07-05 1996-01-16 Nec Corp Purifying-opening method of carbon-nanotube in liquid phase and introducing method of functional group
JPH08325008A (en) * 1995-05-30 1996-12-10 Nec Corp Ion-exchanged carbon nanotube, its production, buffering medium comprising the same and element capturing and collecting method using the same
JP2000504002A (en) * 1996-01-30 2000-04-04 ノバジェント オサケユイチア Compositions for transdermal delivery of drugs
WO2002075831A1 (en) * 2001-03-19 2002-09-26 Nec Corporation Fuel cell electrode, and fuel cell comprising the electrode
JP2005343885A (en) * 2004-05-07 2005-12-15 Japan Science & Technology Agency Drug carbon nanohorn composite and method for producing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AJIMA K. ET AL.: "Effect of Functional Groups at Hole Edges on Cisplatin Release from Inside Single-Wall Carbon Nanohorns", THE JOURNAL OF PHYSICAL CHEMISTRY B, vol. 110, no. 11, 23 March 2006 (2006-03-23), pages 5773 - 5778, XP003015344 *
MIYAWAKI J. ET AL.: "Solvent Effects on Hole-Edge Structure for Single-Wall Carbon Nanotubes and Single-wall Carbon Nanohorns", THE JOURNAL OF PHYSICAL CHEMISTRY B, vol. 108, no. 30, 2004, pages 10732 - 10735, XP003004045 *
MURAKAMI T. ET AL.: "Carbon Nano Kagobutsu to Peptide Jinko Tanpakushitsu Fukugotai Sozai no Kaihatsu to DDS eno Riyo", BIO INDUSTRY, vol. 22, no. 11, 2005, pages 28 - 33, XP003015343 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004532A1 (en) * 2006-07-07 2008-01-10 Nec Corporation Substance-containing carbon nanohorn composite having polyamine plug and process for producing the same
US8084505B2 (en) 2006-07-07 2011-12-27 Nec Corporation Substance-containing carbon nanohorn composite having polyamine plug and process for producing the same
JP5130544B2 (en) * 2006-07-07 2013-01-30 日本電気株式会社 Substance-encapsulating carbon nanohorn composite having polyamine plug and method for producing the same
JP2009184973A (en) * 2008-02-06 2009-08-20 Nec Corp Sustained release antimicrobial agent preparation using carbon nanohorn as carrier

Similar Documents

Publication Publication Date Title
Cunha et al. Hybrid composites made of multiwalled carbon nanotubes functionalized with Fe3O4 nanoparticles for tissue engineering applications
Kundu et al. Doxorubicin-intercalated nano-hydroxyapatite drug-delivery system for liver cancer: An animal model
JP5569837B2 (en) Method for producing surface-coated inorganic particles
Tang et al. Coordination polymer nanocapsules prepared using metal–organic framework templates for pH-responsive drug delivery
EP2598437B1 (en) Intrinsically magnetic hydroxyapatite
Pistone et al. Hydroxyapatite-magnetite-MWCNT nanocomposite as a biocompatible multifunctional drug delivery system for bone tissue engineering
Hancock et al. The characterization of purified citrate-coated cerium oxide nanoparticles prepared via hydrothermal synthesis
Arun Kumar et al. Two‐dimensional metal organic frameworks for biomedical applications
Kurapov et al. Physical synthesis of iron oxide nanoparticles and their biological activity in vivo
Asenath-Smith et al. Role of akaganeite (β-FeOOH) in the growth of hematite (α-Fe2O3) in an inorganic silica hydrogel
Pandit et al. Iron oxide nanoparticle encapsulated; folic acid tethered dual metal organic framework-based nanocomposite for MRI and selective targeting of folate receptor expressing breast cancer cells
Abureesh et al. Engineered mixed oxide-based polymeric composites for enhanced antimicrobial activity and sustained release of antiretroviral drug
Zhang et al. Facile controlled preparation of phosphonic acid-functionalized gold nanoparticles
Casañas-Montes et al. Molybdocene dichloride intercalation into zirconium phosphate nanoparticles
Jiang et al. A combined experimental and molecular dynamics simulation study on doxorubicin adsorption on strontium-substituted hydroxyapatite hollow microspheres
Ahamed et al. Fabrication of biologically active fish bone derived hydroxyapatite and montmorillonite blended sodium alginate composite for in-vitro drug delivery studies
Babayevska et al. ZnO: Tb3+ hierarchical structures as carriers for drug delivery application
WO2007078007A1 (en) Carbon nanohorn structure, composition capable of controlling the release of organic substance included therein, and method for the controlled release
Groenke et al. Structural characterization, solution stability, and potential health and environmental effects of the Nano-TiO 2 bioencapsulation matrix and the model product of its biodegradation TiBALDH
US20090036549A1 (en) Substance-encapsulated carbon nanohorn complex and producing method thereof
Xu et al. A tiered experimental approach for characterization and silver release of silver-containing wound dressings
CN108785686B (en) Preparation method and application of double-sided nanoparticles based on palladium nanosheets
EP2175988A1 (en) Process for producing finely divided, high-surface-area materials coated with inorganic nanoparticles, and also use thereof
Dong et al. A zeolite-based ship-in-a-bottle route to ultrasmall carbon dots for live cell labeling and bioimaging
Racles et al. Silver nanoparticles obtained with a glucose modified siloxane surfactant

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07706427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)