WO2007077062A1 - Radarvorrichtung - Google Patents

Radarvorrichtung Download PDF

Info

Publication number
WO2007077062A1
WO2007077062A1 PCT/EP2006/068909 EP2006068909W WO2007077062A1 WO 2007077062 A1 WO2007077062 A1 WO 2007077062A1 EP 2006068909 W EP2006068909 W EP 2006068909W WO 2007077062 A1 WO2007077062 A1 WO 2007077062A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency signal
local oscillator
transmitting
signal
antenna element
Prior art date
Application number
PCT/EP2006/068909
Other languages
English (en)
French (fr)
Inventor
Joerg Schoebel
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP06819763A priority Critical patent/EP1969394A1/de
Publication of WO2007077062A1 publication Critical patent/WO2007077062A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/034Duplexers
    • G01S7/036Duplexers involving a transfer mixer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features
    • G01S2013/0245Radar with phased array antenna
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9321Velocity regulation, e.g. cruise control

Definitions

  • the present invention relates to a radar device, in particular a radar device for use in the automotive sector.
  • driver assistance systems should be used in the automotive sector.
  • Adaptive cruise control known, which are used for vehicle speeds in the range of 50 to 180 km / h.
  • driver assistance systems should also be provided, which control the vehicle even in heavy traffic or in traffic jams the speed of the vehicle.
  • it is thought to decelerate the vehicle to a standstill, if the vehicle in front stops.
  • Other auxiliary systems can be used to monitor areas that the driver can not or poorly see, as well as when reversing or when parking.
  • An essential component of these driver assistance systems are radar devices which can determine the speed of preceding vehicles and the distance to them.
  • an angle-resolved measurement of the distance and / or the speed is needed to distinguish a preceding vehicle from a vehicle, which may be e.g. parked in a parking bay next to the roadway.
  • One approach for achieving the angular resolution here is based on the so-called analog beam shaping.
  • Lenses, mirrors or diaphragms emit and / or receive the radiation of high-frequency signals from a plurality of feed antennas in a plurality of partially partially overlapping directions. On the basis of signal amplitudes of the received reflected high-frequency signals, it can be determined in which direction the detected object is located.
  • a disadvantage of the analog beam shaping is the relatively large mechanical structure of the antenna devices due to the lenses with a depth of several centimeters.
  • Another method is based on the so-called digital beam forming. In this case, a high-frequency signal is emitted by an antenna and the reflected signal is received by a plurality of spatially mutually spaced receiving antennas.
  • the distance of the individual receiving antennas to the object are slightly different.
  • the transit times of the reflected signals differ from the object to the receiving antennas.
  • the transit time differences are determined as the difference in the phase of the corresponding received reflected signals.
  • the direction to the object can then be determined from the phase differences.
  • the angular range is predetermined, in which a clear direction determination is possible and at the same time predetermines the accuracy of the angular resolution.
  • the requirements for the angular range and the angular resolution are different.
  • On the highway are usually only the vehicles of interest, which are located at a distance of 50 to 200 m (long range) in front of the vehicle on the same or on the adjacent lane. Detection of these objects and angle determination requires a high intensity density per angular volume to obtain a sufficient signal-to-noise ratio between received reflected signal components and signals from noise sources.
  • a parking aid requires almost all-round visibility around the entire vehicle, but only a detection of objects at a distance of a few decimeters to meters (near range). For this latter application thus antennas are required with a broad emission characteristic, but no high signal intensity.
  • the radar device according to the invention with the features of independent claim 1 can be realized compact with simple components and detect objects in a near area and objects in a long range.
  • the radar device comprises a local oscillator and a plurality of monostatic transmitting and receiving devices.
  • the local oscillator is used to generate a high-frequency signal and is coupled to the plurality of monostatic transmitting and receiving devices.
  • Each monostatic transmitting and receiving device of the plurality of monostatic transmitting and receiving devices has an antenna element and a first delay path.
  • the Antenna element is used to transmit the high frequency signal and to receive reflected portions of the high frequency signal.
  • the first delay path for delaying the high-frequency signal by an invariable duration is connected between the antenna element and the local oscillator.
  • the monostatic structure which uses an antenna element for both transmission and reception, can be made very compact. In particular, the fact that the number of necessary antennas is approximately halved.
  • the radiation characteristic of the radar apparatus is determined by the individual delay of the high frequency signal before being radiated by the antenna elements.
  • suitable signal delay paths with their fixed delay periods, a variety of emission characteristics can be formed by means of constructive and destructive interference of the radiated radio-frequency signals.
  • filter structures With the aid of filter structures, both lagging and leading phase shifts of the high-frequency signal can be generated.
  • the radar device may comprise a plurality of transmitting devices, each including an antenna element and a second signal delay line.
  • the second signal delay path corresponds to the first signal delay paths.
  • the antenna element is set up exclusively for transmitting the high-frequency signal. In this way, it can be achieved that a more favorable shaping of the emission characteristics is achieved by the very simple to set up transmitter devices which require, inter alia, no mixer.
  • first and / or the second signal delay path is formed by a first line having a predetermined length.
  • the line can in this case be rectilinear, wave-shaped or meander-shaped.
  • at least one second line with its second end can be connected to the first line, wherein a first end of the second line is open or short-circuited.
  • An embodiment of the present invention provides that the first / or the second signal delay path is formed by a filter structure, which in turn consists of one or more series and / or parallel circuits of one or more substantially inductive or capacitive elements. These elements can be realized as discrete components or as (planar) line structures.
  • the monostatic transmitting and receiving device has a mixing device which is connected in series with the delay line and between the antenna element and the local oscillator.
  • the mixing device may comprise a circulator, a directional coupler, a hybrid mixer or a transfer mixer, which couples a high-frequency signal to be transmitted from the local oscillator into the antenna element and which isolates the local oscillator from a received high-frequency signal.
  • the antenna elements may be formed as at least one patch antenna.
  • the patch antennas of a transmitting element can be connected in series.
  • An embodiment provides to realize the radar device planar on a support.
  • the carrier may comprise a flexible or rigid substrate on which printed conductors are applied, which form the antenna elements and / or the delay lines.
  • the antenna elements may have a distance from one another which corresponds to half of a (free space) wavelength of the high-frequency signal. In another embodiment, the distance can also correspond to greater than half the wavelength of the high-frequency signals.
  • a power divider and / or an amplifying device can be connected between the local oscillator and the monostatic transmitting and receiving devices, whereby the power of the transmitted high-frequency signal of the individual transmitting and receiving devices for each transmitting and receiving device is set individually to a predetermined value.
  • the power supply for transmitting and receiving devices which are centered in the
  • Radar device are arranged, decrease to transmitting and receiving devices, which are arranged at the edge of the radar device.
  • FIG. 1 shows a block diagram of an exemplary embodiment of the radar device according to the invention.
  • Figure 2 a second exemplary embodiment of the radar device according to the invention.
  • FIG. 3 schematic representation of a radiation characteristic of one of the
  • Embodiments as intensity distribution over a radiation angle.
  • Figures 4-7 Layout diagrams illustrating four embodiments.
  • FIG. 8-12 Circuit diagrams of mixers for use in the previous ones
  • FIG. 1 shows the block diagram of a first exemplary embodiment of a radar device.
  • a local oscillator 7 is connected to a plurality of monostatic transmitting and receiving devices 6a, 6b, ... for providing a high-frequency signal LO.
  • the monostatic transmitting and receiving devices 6a, 6b, ... emit the high-frequency signal LO as a high-frequency signal Tx to be emitted.
  • the signal portions of the emitted high-frequency signal reflected by an object are received as received high-frequency signals Rx.
  • Each of the monostatic transmitting and receiving devices 6a and 6b,... Comprises an antenna device Ia, Ib,..., A mixing device 4a, 4b,... And at least one signal delay path 2a, 2b,..., 3a, 3b, ..., on.
  • the high-frequency signal LO provided by the local oscillator 7 is delayed in time by a first delay line 2a, and forwarded to the mixing device 4a, 4b,.
  • the mixing device forwards a signal component to the antenna device Ia, Ib,... As a high-frequency signal Tx to be emitted.
  • the signal can be delayed in time by the second signal delay line 3a, 3b, ....
  • the signal components of the emitted high-frequency signal Tx reflected by the object are received by the antenna devices 1a, 1b,... Of the transmitting and receiving device 6a, 6b as received high-frequency signals Rx.
  • the received high-frequency signals Rx optionally pass through the second signal delay line 3a, 3b,... And are then demixed in the mixing device 4a, 4b,... With the local oscillator signal LO to form an intermediate frequency signal ZF.
  • the intermediate frequency signal ZF is decoupled and fed to an evaluation device, which is not shown in FIG.
  • the mixing device 4a, 4b, ... insulates the
  • the embodiment illustrated in FIG. 1 permits emission of the emitted high-frequency signal Tx with an intensity distribution I, as represented in FIG. 2 by the angle ⁇ .
  • the direction ⁇ 0 denotes the vehicle direction.
  • the emitted high frequency signal Tx has an intensity I about 10 dB higher than in the angle range between minus 60 degrees to minus 15 degrees and plus 15 degrees to plus 60 degrees.
  • the intensity I falls to negligible low values.
  • This radiation profile corresponds to the requirements for vehicle assistance systems, which are intended to detect a long-range and a close range in parallel.
  • the following will explain the basic principles necessary for understanding the embodiment of FIG. 1 in order to adapt the signal delay paths 2a, 2b or 3a, 3b and to obtain the described intensity profile in FIG.
  • the high-frequency signals Tx emitted by the individual antenna devices Ia, Ib,... Have a fixed phase relation to each other, since they are all from the same source, i. the local oscillator 7, are fed. In the radiation profile thus arise areas of destructive and constructive interference.
  • the exact interference pattern depends on the spatial arrangement of the antenna devices Ia, Ib,... And the frequency of the high-frequency signal Tx.
  • the duration of the high-frequency signal LO in the electronic circuits and line paths to the antenna devices Ia, Ib, ... has a decisive influence on the interference pattern.
  • the signal delay lines 2a, 2b,..., 3a, 3b,... Enable the propagation delays to the corresponding antenna devices 1 a, 1 b,.
  • a designer, the radar device shown in Fig. 1 is given the opportunity to realize different interference pattern and thus radiation characteristics.
  • the procedure would be as follows: First, it sets a desired intensity profile I, e.g. from FIG. 2. Thereafter, it iteratively or by means of suitable adaptation algorithms adjusts the delay lines 2a, 2b, 3a, 3b,... in such a way that an interference pattern results, which agrees sufficiently with the desired intensity profile.
  • the delay lines 2a, 2b, 3a, 3b, ... are preferably simple line sections with a fixed length. The length is determined by the designer as described previously. To the To integrate delay lines 2a, 2b, 3a, 3b, ... in the circuit construction, it may be advantageous to arrange this view of the local oscillator 7 before and / or after the mixing device 4a, 4b,.
  • FIG. 3 shows a second exemplary embodiment of the radar device as a block diagram, in addition to the components and devices already described in FIG. 1, transmission devices 16e, 16f,... Are connected to the local oscillator 7. These transmission devices 16e, 16f,... Have only one antenna device 1ee, 1ff, and one signal delay path 12e, 12f,. The omission of a mixing device allows these transmitting devices 16e, 16f to build more compact and to arrange them more flexible.
  • Fig. 4 is a plan view of an embodiment is shown, which corresponds to the block diagram of Fig. 3.
  • the local oscillator 7 is connected via a distributor device 9 to the monostatic transmitting and receiving devices 6a, 6b,... And the transmitting devices 16e, 16f.
  • each monostatic transmitting and receiving device and each transmitting device 16e six patch antennas Ia, Ib, 1 Ie, ... on.
  • Each of these patch antennas can be realized by a conductive surface, shown here as squares.
  • the individual patch antennas Ia, Ie, ... are connected in series by interconnects.
  • the signal delay lines 3a, 3b, 12e, ... connect the patch antennas connected in series with the distributor device 9.
  • the signal delay devices 3a, 3b, 12e, ... have partially different lengths, as shown in FIG.
  • the track has a deflection in this area, which is directed away from the direct and shortest connection.
  • the size and number of excursions determines the length of the signal delay paths and thus the signal propagation delay caused by them.
  • the mixing devices 4a,... are shown schematically as T-shaped transfer mixers. Their structure and operation will be explained in more detail below.
  • FIG. 5 shows an exemplary embodiment of a radar device which substantially corresponds to the block diagram of FIG.
  • the additional pure transmitting devices with respect to the embodiment of Fig. 4 is omitted. Otherwise, these embodiments do not differ.
  • FIG. 6 shows a further exemplary embodiment of the radar device.
  • a plurality of monostatic transmitting and receiving devices 26a, 26b,... And transmitting devices 36e, 36f are connected via a distributor device 9 to a local oscillator 7.
  • the monostatic transmitting and receiving devices 26a, 26b, ... have in this embodiment a Reinforcement means 30a, 30b, 30c.
  • These amplifying devices 30a, 30b, 30c feed in pairs two parallel monostatic transmitting and receiving devices 26e, 26f with a different signal strength.
  • the signal strength or intensity of each individually emitted by the monostatic transmitting and receiving devices 26a, 26b, ... high-frequency signal Tx affects the intensity profile I of the radiation of the entire radar device.
  • a determination of the amplification takes place analogously to the necessary delays through the delay lines 3a, 3b, 12e,... By means of an iterative method or an adaptation algorithm.
  • a further embodiment is shown, which differs by the realization of the signal delay lines 23a, 23b, ... from the previous embodiment.
  • wave-shaped or curved strip conductors as signal delay lines 3 a, 3 b, 12 e, ... are connected perpendicular to a straight conductor at least one conductor track with an open end.
  • two parallel interconnects with an open end are shown.
  • a high-frequency signal fed from the local oscillator 7 into a monostatic transmitting and receiving device 46a, 46b branches at the T-shaped connections and is then at least partially reflected at the open end.
  • the returning reflected wave interferes with the input high-frequency signal LO and results in a phase shift thereof.
  • the length of the interconnects with an open end determines the phase delay experienced by the RF input signal LO.
  • mixers are shown by way of example, which can be used for the mixing devices 4a. These are suitable to a high-frequency signal LO in one
  • FIG 8 shows a circulator 42 which is placed between the antenna device and the local oscillator.
  • a third output of the circulator 42 is connected to a mixer 43, which receives as a second input signal the high-frequency signal f ⁇ of the local oscillator.
  • Figure 9 shows a structure which uses a coupler 52 instead of the circulator.
  • FIG. 10 shows a so-called transfer mixer which uses the nonlinearity of a diode 63 to demix the received high frequency signal Rx with the high frequency signal LO of the local oscillator.
  • a simplified structure with a T-shaped connection of the diode 74 to the local oscillator and the antenna device 4 is shown in Figure 11.
  • FIG. 12 shows a transfer mixer with a diode 81 which is connected in series between the Antenna device 4 and the local oscillator is connected, such a structure is known inter alia from the published patent application DE 102 35 338 Al.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Die Radarvorrichtung weist einen lokalen Oszillator und eine Mehrzahl monostatischer Sende- und Empfangseinrichtungen auf. Der lokale Oszillator dient zum Generieren eines Hochfrequenz-Signals und ist mit der Mehrzahl monostatischer Sende- und Empfangseinrichtungen gekoppelt. Jede monostatische Sende- und Empfangseinrichtung der Mehrzahl von monostatischen Sende- und Empfangseinrichtungen weist ein Antennenelement und eine Verzögerungsstrecke auf. Das Antennenelement dient zum Senden des Hochfrequenz-Signals und zum Empfangen von reflektierten Anteilen des Hochfrequenz-Signals. Die erste Verzögerungsstrecke zum Verzögern des Hochfrequenz-Signals um eine unveränderliche Dauer ist zwischen das Antennenelement und den lokalen Oszillator geschaltet.

Description

Beschreibung
Titel Radarvorrichtung
Stand der Technik
Die vorliegende Erfindung betrifft eine Radarvorrichtung, insbesondere eine Radarvorrichtung zur Verwendung im automobilen Bereich.
Zur Erhöhung der Fahrsicherheit sollen Fahrerassistenzsysteme im automobilen Bereich eingesetzt werden. Hierbei sind z.B. adaptive Geschwindigkeitsregler bekannt, welche für Fahrzeuggeschwindigkeiten im Bereich von 50 bis 180 km/h verwendet werden. Zudem sollen auch Fahrassistenzsysteme bereitgestellt werden, welche das Fahrzeug auch im dichten Verkehr oder im Stau die Geschwindigkeit des Fahrzeuges steuern. Hierbei wird unter anderem daran gedacht, das Fahrzeug bis zum Stillstand abzubremsen, falls das vorausfahrende Fahrzeug stehenbleibt. Weitere Hilfssysteme können zur Überwachung von Bereichen verwendet werden, die der Fahrer nicht oder nur schlecht einsehen kann, sowie beim Rückwärtsfahren oder beim Einparken. Eine wesentliche Komponente für diese Fahrerassistenzsysteme sind Radarvorrichtungen, welche die Geschwindigkeit vorausfahrender Fahrzeuge und den Abstand zu ihnen bestimmen können. Zudem wird eine winkelaufgelöste Messung des Abstandes und/oder der Geschwindigkeit benötigt, um ein vorausfahrendes Fahrzeug von einem Fahrzeug unterscheiden zu können, welches z.B. in einer Parkbucht neben der Fahrbahn geparkt ist.
Ein Ansatz, um hierbei die Winkelauflösung zu erreichen, basiert auf der sogenannten analogen Strahlformung. Durch Linsen, Spiegel oder Blenden wird die Abstrahlung von Hochfrequenz-Signalen von mehreren Speiseantennen in mehrere sich zum Teil partiell überlappende Richtungen emittiert und/oder empfangen. Anhand von Signalamplituden der empfangenen reflektierten Hochfrequenz- Signale kann bestimmt werden, in welcher Richtung sich das erfasste Objekt befindet. Ein Nachteil der analogen Strahlformung besteht in dem relativ großen mechanischen Aufbau der Antennenvorrichtungen aufgrund der Linsen mit einer Bautiefe von mehreren Zentimetern. Ein anderes Verfahren basiert auf der sogenannten digitalen Strahlformung. Hierbei wird ein Hochfrequenz-Signal von einer Antenne abgestrahlt und das reflektierte Signal von mehreren räumlich zueinander beabstandeten Empfangsantennen empfangen. Die Entfernung der einzelnen Empfangsantennen zu dem Objekt sind leicht verschieden. Dadurch unterscheiden sich die Laufzeiten der reflektierten Signale von dem Objekt bis zu den Empfangsantennen. Die Laufzeitunterschiede werden als Differenz in der Phase der entsprechenden empfangenen reflektierten Signale ermittelt. Aus den Phasendifferenzen kann dann die Richtung zu dem Objekt bestimmt werden.
Durch die Anordnung der Linsen für eine analoge Strahlformung und die räumliche Anordnung der Empfangsantennen für eine digitale Strahlformung ist der Winkelbereich vorgegeben, in dem eine eindeutige Richtungsbestimmung möglich ist und zugleich die Genauigkeit der Winkelauflösung vorgegeben. In verschiedenen Fahrpositionen sind jedoch die Anforderungen an den Winkelbereich und die Winkelauflösung verschieden. Auf der Autobahn sind in der Regel nur die Fahrzeuge von Interesse, welche sich in einem Abstand von 50 bis 200 m (Fernbereich) vor dem Fahrzeug auf derselben oder noch auf der benachbarten Fahrspur befinden. Eine Erfassung dieser Objekte und eine Winkelbestimmung erfordert eine hohe Intensitätsdichte pro Winkelvolumen, um ein ausreichendes Signal- zu-Rauschverhältnis zwischen empfangenen reflektierten Signalanteilen und Signalen von Rauschquellen zu erhalten. Allerdings ist wie beschrieben der gesamte abzudeckende Winkelbereich relativ klein. Eine Einparkhilfe hingegen benötigt nahezu eine Rundumsicht um das gesamte Fahrzeug, jedoch nur eine Erfassung von Objekten im Abstand von wenigen Dezimetern bis Metern (Nahbereich). Für diese letztgenannten Anwendung werden somit Antennen mit einer breiten Abstrahlcharakteristik benötigt, jedoch keine hohe Signalintensität.
Eine Verwendung und Einbau von zwei unabhängigen Radarvorrichtungen ist aufgrund des erheblichen Platzbedarfs und aus Kostengründen unerwünscht.
Offenbarung der Erfindung
Die erfindungsgemäße Radarvorrichtung mit den Merkmalen des unabhängigen Patentanspruchs 1 kann mit einfachen Komponenten kompakt realisiert werden und Objekte in einem Nahbereich und Objekte in einem Fernbereich erfassen.
Die Radarvorrichtung weist einen lokalen Oszillator und eine Mehrzahl monostatischer Sende- und Empfangseinrichtungen auf. Der lokale Oszillator dient zum Generieren eines Hochfrequenz-Signals und ist mit der Mehrzahl monostatischer Sende- und Empfangseinrichtungen gekoppelt. Jede monostatische Sende- und Empfangseinrichtung der Mehrzahl von monostatischen Sende- und Empfangseinrichtungen weist ein Antennenelement und eine erste Verzögerungsstrecke auf. Das Antennenelement dient zum Senden des Hochfrequenz- Signals und zum Empfangen von reflektierten Anteilen des Hochfrequenz-Signals. Die erste Verzögerungsstrecke zum Verzögern des Hochfrequenz-Signals um eine unveränderliche Dauer ist zwischen das Antennenelement und den lokalen Oszillator geschaltet.
Der monostatische Aufbau, welcher ein Antennenelement sowohl zum Senden wie auch zum Empfangen verwendet, kann sehr kompakt gestaltet werden. Insbesondere dadurch, dass die Anzahl der notwendigen Antennen ungefähr halbiert wird.
Die Abstrahlungscharakteristik der Radarvorrichtung wird durch die individuelle Verzögerung des Hochfrequenz-Signals vor dem Abstrahlen durch die Antennenelemente festgelegt. Durch die Wahl geeigneter Signalverzögerungsstrecken mit deren fest vorgegebenen Verzögerungsdauern lassen sich vielfältige Abstrahlcharakteristiken mittels konstruktiver und destruktiver Interferenz der abgestrahlten Hochfrequenz-Signale formen. Mit Hilfe von Filterstrukturen lassen sich sowohl nacheilende wie auch voreilende Phasenverschiebungen des Hochfrequenz-Signals erzeugen.
Weiterbildungen und Ausgestaltungen der erfindungsgemäßen Radarvorrichtung sind in den Unteransprüchen angegeben.
Insbesondere kann die Radarvorrichtung eine Mehrzahl von Sendeeinrichtungen aufweisen, welche jeweils ein Antennenelement und eine zweite Signalverzögerungsstrecke beinhalten. Die zweite Signalverzögerungsstrecke entspricht den ersten Signalverzögerungsstrecken. Das Antennenelement hingegen ist ausschließlich zum Senden des Hochfrequenz-Signals eingerichtet. Auf diese Weise kann erreicht werden, dass durch die sehr einfach aufzubauenden Sendeeinrichtungen, welche unter Anderem keinen Mischer benötigen, eine günstigere Formung der Abstrahlcharakteristika erreicht wird.
Eine Ausgestaltung der vorliegenden Erfindung sieht vor, dass die erste und/oder die zweite Signalverzögerungsstrecke durch eine erste Leitung mit einer vorbestimmten Länge gebildet wird. Die Leitung kann hierbei geradlinig, wellenförmig oder mäanderförmig ausgestaltet sein. Ferner kann an die erste Leitung mindestens eine zweite Leitung mit deren zweiten Ende angeschlossen werden, wobei ein erstes Ende der zweiten Leitung offen oder kurzgeschlossen ist.
Eine Ausgestaltung der vorliegenden Erfindung sieht vor, dass die erste/oder die zweite Signalverzögerungsstrecke durch eine Filterstruktur gebildet wird, die ihrerseits aus einer oder mehrerer Serien- und/oder Parallelschaltungen eines oder mehrerer im Wesentlichen induktiver oder kapazitiver Elemente besteht. Diese Elemente können als diskrete Bauelemente oder als (planare) Leitungsstrukturen realisiert sein.
Eine Ausgestaltung sieht vor, dass die monostatische Sende- und Empfangseinrichtung eine Mischeinrichtung aufweist, welche in Serie zu der Verzögerungsstrecke und zwischen das Antennenelement und den lokalen Oszillator geschaltet ist. Die Mischeinrichtung kann einen Zirkulator, einen Richtkoppler, einen Hybridmischer oder einen Transfermischer aufweisen, welcher ein zu sendendes Hochfrequenz-Signal von dem lokalen Oszillator in das Antennenelement einkoppelt und welcher den lokalen Oszillator von einem empfangenen Hochfrequenz- Signal isoliert.
Die Antennenelemente können als wenigstens eine Patch- Antenne ausgebildet sein. Die Patch- Antennen eines Sendeelements können in Serie miteinander verbunden sein. Eine Ausgestaltung sieht vor, die Radarvorrichtung planar auf einem Träger zu realisieren. Der Träger kann ein flexibles oder starres Substrat aufweisen, auf welchem Leiterbahnen aufgebracht werden, welche die Antennenelemente und/oder die Verzögerungsstrecken bilden.
Die Antennenelemente können einen Abstand zueinander aufweisen, welcher der Hälfte einer (Freiraum-)Wellenlänge des Hochfrequenz-Signals entspricht. In einer anderen Ausgestaltung kann deren Abstand auch größer als die Hälfte der Wellenlänge der Hochfrequenz-Signale entsprechen.
Zwischen dem lokalen Oszillator und den monostatischen Sende- und Empfangseinrichtungen kann ein Leistungsteiler und/oder eine Verstärkungseinrichtung geschaltet sein, womit die Leistung des gesendeten Hochfrequenz-Signals der einzelnen Sende- und Empfangseinrichtungen für jede Sende- und Empfangseinrichtung individuell auf einen vorbestimmten Wert eingestellt ist. Insbesondere kann die Leistungseinspeisung für Sende- und Empfangseinrichtungen, welche mittig in der
Radarvorrichtung angeordnet sind, zu Sende- und Empfangseinrichtungen abnehmen, welcher am Rand der Radarvorrichtung angeordnet sind.
Beispielhafte Ausführungsformen und Ausgestaltungen sind in den Figuren und der nachfolgenden Beschreibung näher erläutert.
In den Figuren zeigen:
Figur 1 : ein Blockdiagramm eines Ausführungsbeispiels der erfmdungsgemäßen Radarvorrichtung. Figur 2: ein zweites Ausfuhrungsbeispiel der erfindungsgemäßen Radarvorrichtung.
Figur 3 : schematische Darstellung einer Abstrahlungscharakteristik eines der
Ausführungsbeispiele als Intensitätsverteilung über einen Abstrahlungswinkel.
Figuren 4-7: Layout-Diagramme zur Illustration von vier Ausführungsbeispielen.
Figuren 8-12: Schaltdiagramme von Mischeinrichtungen zur Verwendung in den vorhergehenden
Ausführungsbeispielen.
In den Figuren bezeichnen gleiche Bezugszeichen gleiche oder funktionsgleiche Komponenten.
In Figur 1 ist das Blockdiagramm ein erstes Ausführungsbeispiel einer Radarvorrichtung dargestellt. Ein lokaler Oszillator 7 ist zum Bereitstellen eines Hochfrequenz-Signals LO mit einer Mehrzahl von monostatischen Sende- und Empfangseinrichtungen 6a, 6b, ... verbunden. Die monostatischen Sende- und Empfangseinrichtungen 6a, 6b, ... emittieren das Hochfrequenz-Signal LO als zu emittierendes Hochfrequenz-Signal Tx. Die von einem Objekt reflektierten Signalanteile des emittierten Hochfrequenz-Signals werden als empfangene Hochfrequenz-Signale Rx empfangen.
Jede der monostatischen Sende- und Empfangseinrichtungen 6a und 6b, ... weist eine Antenneneinrichtung Ia, Ib, ..., eine Mischeinrichtung 4a, 4b, ... und mindestens eine Signalverzögerungsstrecke 2a, 2b, ..., 3a, 3b, ..., auf. Das von dem lokalen Oszillator 7 bereitgestellte Hochfrequenz-Signal LO wird von einer ersten Verzögerungsstrecke 2a zeitlich verzögert, und an die Mischeinrichtung 4a, 4b, ... weitergeleitet. Die Mischeinrichtung leitet einen Signalanteil an die Antenneneinrichtung Ia, Ib, ... als zu emittierendes Hochfrequenz-Signal Tx weiter. Zwischen der
Mischeinrichtung 4a, 4b und der Antenneneinrichtung Ia, Ib kann das Signal nochmals zeitlich durch die zweite Signalverzögerungsstrecke 3a, 3b, ... verzögert werden.
Die von dem Objekt reflektierten Signalanteile des emittierten Hochfrequenz-Signals Tx werden von den Antenneneinrichtungen Ia, Ib, ... der Sende- und Empfangseinrichtung 6a, 6b als empfangene Hochfrequenz-Signale Rx empfangen. Die empfangenen Hochfrequenz-Signale Rx durchlaufen gegebenenfalls die zweite Signalverzögerungsstrecke 3a, 3b, ... und werden dann in der Mischeinrichtung 4a, 4b, ... mit dem lokalen Oszillatorsignal LO zu einem Zwischenfrequenzsignal ZF entmischt. Das Zwischenfrequenzsignal ZF wird ausgekoppelt und einer Auswertungseinrichtung zugeführt, welche in Fig. 1 nicht dargestellt ist. Die Mischeinrichtung 4a, 4b, ... isoliert den
Empfangsbereich auf der Seite der Antenneneinrichtung Ia, Ib, ... von dem lokalen Oszillator 7, so dass nur vernachlässigbare geringe Anteile des empfangenen Hochfrequenz-Signals Rx in den lokalen Oszillator 7 eingespeist werden. Es ist aber auch möglich, mit einer geringeren Isolation auszukommen. Dies ermöglicht den Einsatz von besonders einfach aufgebauten und kostengünstig realisierbaren Transfermischern.
Entsprechende Mischeinrichtungen 4a, 4b, ... werden nachfolgend beschrieben.
Das in Fig. 1 dargestellte Ausführungsbeispiel ermöglicht eine Emission des emittierten Hochfrequenz-Signals Tx mit einer Intensitätsverteilung I, wie sie in Fig. 2 über den Winkel θ dargestellt ist. Die Richtung θ = 0 bezeichnet hierbei die Fahrzeugrichtung. In einem Winkelbereich zwischen minus 15 Grad und plus 15 Grad weist das emittierte Hochfrequenz-Signal Tx eine um etwa 10 dB höhere Intensität I auf, als in dem Winkelbereich zwischen minus 60 Grad bis minus 15 Grad und plus 15 Grad bis plus 60 Grad. Für Winkel, die um mehr als 60 Grad zu der Fahrzeugrichtung geneigt sind, fällt die Intensität I auf vernachlässigbare geringe Werte ab. Dieses Abstrahlungsprofil entspricht den Anfordernissen für Fahrzeugassistenzsysteme, die einen Fernbereich und einen Nahbereich parallel erfassen sollen.
Nachfolgend sollen die grundlegenden Prinzipien erläutert werden, die zum Verständnis des Ausführungsbeispiels aus Fig. 1 notwendig sind, um die Signalverzögerungsstrecken 2a, 2b bzw. 3 a, 3b anzupassen und das beschriebene Intensitätsprofil in Fig. 2 zu erhalten. Die von den einzelnen Antenneneinrichtungen Ia, Ib, ... emittierten Hochfrequenz-Signale Tx weisen zueinander eine feste Phasenbeziehung auf, da sie alle von derselben Quelle, d.h. dem lokalen Oszillator 7, gespeist werden. In dem Abstrahlungsprofil ergeben sich somit Bereiche destruktiver und konstruktiver Interferenz. Das genaue Interferenzmuster ist von der räumlichen Anordnung der Antenneneinrichtungen Ia, Ib, ... und der Frequenz des Hochfrequenz-Signals Tx abhängig. Zudem hat die Laufzeit des Hochfrequenz- Signal LO in den elektronischen Schaltungen und Leitungswegen bis zur Antenneneinrichtungen Ia, Ib, ... entscheidenden Einfluss auf das Interferenzmuster. Die Signalverzögerungsstrecken 2a, 2b, ..., 3a, 3b, ... ermöglichen es gezielt, die Laufzeitverzögerungen bis zu den entsprechenden Antenneneinrichtungen Ia, Ib, ... festzulegen. Somit erhält ein Designer, der in Fig. 1 dargestellten Radarvorrichtung die Möglichkeit, verschiedene Interferenzmuster und damit Abstrahlungscharakteristiken zu realisieren. Zweckmäßigerweise würde dabei wie folgt vorgegangen: Zuerst legt der ein gewünschtes Intensitätsprofil I fest, z.B. das aus Fig. 2. Danach passt er iterativ oder mittels geeigneter Anpassungsalgorithmen die Verzögerungsstrecken 2a, 2b, 3a, 3b, ... derart an, bis sich ein Interferenzmuster ergibt, was in ausreichender Weise mit dem gewünschten Intensitätsprofil übereinstimmt.
Die Verzögerungsstrecken 2a, 2b, 3a, 3b, ... sind vorzugsweise einfache Leitungsstücke mit einer festen Länge. Die Länge wird wie z.B. zuvor beschrieben durch den Designer festgelegt. Um die Verzögerungsstrecken 2a, 2b, 3a, 3b, ... in dem Schaltungsbau zu integrieren, kann es vorteilhaft sein, diese Aussicht des lokalen Oszillators 7 vor und/oder nach der Mischeinrichtung 4a, 4b, ... anzuordnen.
Andere Ausgestaltungsmöglichkeiten der Signalverzögerungsstrecken 2a, 2b, 3a, 3b, ... werden nachfolgend beschrieben.
In Fig. 3 ist ein zweites Ausführungsbeispiel der Radarvorrichtung als Blockdiagramm dargestellt, zusätzlich zu den bereits in Fig. 1 beschriebenen Komponenten und Einrichtungen sind Sendeeinrichtungen 16e, 16f, ... mit dem lokalen Oszillator 7 verbunden. Diese Sendeeinrichtungen 16e, 16f, ... weisen nur eine Antenneneinrichtung 1 Ie, 1 If, und eine Signalverzögerungsstrecke 12e, 12f, ... auf. Der Verzicht auf eine Mischeinrichtung ermöglicht diese Sendeeinrichtungen 16e, 16f kompakter aufzubauen und diese flexibler anzuordnen.
In Fig. 4 ist eine Aufsicht auf ein Ausführungsbeispiel dargestellt, das dem Blockschaltbild von Fig. 3 entspricht. Der lokale Oszillator 7 ist über eine Verteilereinrichtung 9 mit den monostatischen Sende- und Empfangseinrichtungen 6a, 6b, ... und den Sendeeinrichtungen 16e, 16f verbunden. In diesem Ausführungsbeispiel weist jede monostatische Sende- und Empfangseinrichtung und jede Sendeeinrichtung 16e sechs Patch- Antennen Ia, Ib, 1 Ie, ... auf. Jede dieser Patch- Antennen kann durch eine leitfähige Fläche, hier als Quadrate dargestellt, realisiert werden. Die einzelnen Patch- Antennen Ia, 1 Ie, ... sind in Serie durch Leiterbahnen miteinander verbunden. Die Signalverzögerungsstrecken 3a, 3b, 12e, ... verbinden die in Serie miteinander verbundenen Patch- Antennen mit der Verteilereinrichtung 9. Die Signalverzögerungseinrichtungen 3a, 3b, 12e, ... weisen wie in Fig. 4 dargestellt, teilweise unterschiedliche Längen auf. Die Leiterbahn weist in diesem Bereich eine Auslenkung auf, die von der direkten und kürzesten Verbindung weggerichtet ist. Die Größe und Anzahl der Auslenkungen bestimmt die Länge der Signalverzögerungsstrecken und damit die durch sie verursachte Laufzeitverzögerung des Signals. Die Mischeinrichtungen 4a, ... sind als T- förmig angeschlossene Transfermischer schematisch dargestellt. Deren Aufbau und Funktionsweise wird nachfolgend noch näher erläutert. In Fig. 5 ist ein Ausführungsbeispiel einer Radarvorrichtung dargestellt, das im Wesentlichen dem Blocksschaltbild von Fig. 1 entspricht. Hierbei wird auf die zusätzlichen reinen Sendeeinrichtungen gegenüber dem Ausführungsbeispiel von Fig. 4 verzichtet. Ansonsten unterscheiden sich diese Ausführungsbeispiele nicht.
In Fig. 6 ist ein weiteres Ausführungsbeispiel der Radarvorrichtung dargestellt. Mehrere monostatische Sende- und Empfangseinrichtungen 26a, 26b, ... und Sendeeinrichtungen 36e, 36f sind über eine Verteilereinrichtung 9 mit einem lokalen Oszillator 7 verbunden. Die monostatischen Sende- und Empfangseinrichtungen 26a, 26b, ... weisen in diesem Ausführungsbeispiel eine Verstärkungseinrichtung 30a, 30b, 30c auf. Diese Verstärkungseinrichtungen 30a, 30b, 30c speisen paarweise zwei parallele monostatische Sende- und Empfangseinrichtungen 26e, 26f mit einer unterschiedlichen Signalstärke. Die Signalstärke oder Intensität jedes durch die monostatischen Sende- und Empfangseinrichtungen 26a, 26b, ... individuell emittierten Hochfrequenz-Signals Tx nimmt Einfluss auf das Intensitätsprofil I der Abstrahlung der gesamten Radarvorrichtung. Durch eine geeignete Wahl der Verstärkung erhält ein Designer somit einen zusätzlichen Freiheitsgrad, um ein gewünschtes Intensitätsprofil zu erhalten. Eine Bestimmung der Verstärkung erfolgt analog der notwendigen Verzögerungen durch die Verzögerungsstrecken 3a, 3b, 12e, ... mittels eines iterativen Verfahrens oder eines Anpassungsalgorithmus.
In Fig. 7 ist ein weiteres Ausführungsbeispiel dargestellt, welches sich durch die Realisierung der Signalverzögerungsstrecken 23a, 23b, ... von dem bisherigen Ausführungsbeispiel unterscheidet. Anstelle von wellenförmigen oder kurvenförmigen Leiterbahnen als Signalverzögerungsstrecken 3 a, 3b, 12e, ... werden senkrecht zu einer geradlinigen Leiterbahn mindestens eine Leiterbahn mit einem offenen Ende angeschlossen. In dem in Fig. 7 dargestellten Ausführungsbeispiel sind jeweils zwei zueinander parallele Leiterbahnen mit einem offenen Ende dargestellt. Eine von dem lokalen Oszillator 7 in eine monostatische Sende- und Empfangseinrichtung 46a, 46b eingespeistes Hochfrequenz-Signal verzweigt sich an den T-förmigen Verbindungen und wird dann zumindest teilweise an dem offenen Ende reflektiert. Die rücklaufende reflektierte Welle interferiert mit dem eingespeisten Hochfrequenz-Signal LO und führt zu einer Phasenverschiebung dessen. Die Länge der Leiterbahnen mit einem offenen Ende bestimmt die Phasenverzögerung, die das eingespeiste Hochfrequenz-Signal LO erfährt.
In den Figuren 8 bis 12 sind exemplarisch Mischer gezeigt, welche für die Mischeinrichtungen 4a verwendet werden können. Diese sind geeignet, um ein Hochfrequenz-Signal LO in eine
Antenneneinrichtung einzuspeisen und ein empfangenes Signal RX von der Antenneneinrichtung auszukoppeln. Figur 8 zeigt einen Zirkulator 42, welcher zwischen der Antenneneinrichtung und dem lokalen Oszillator angeordnet wird. Ein dritter Ausgang des Zirkulators 42 ist mit einem Mischer 43 verbunden, welcher als zweites Eingangssignal das Hochfrequenz- Signal fθ des lokalen Oszillators empfängt. Figur 9 zeigt einen Aufbau, welcher anstelle des Zirkulators einen Koppler 52 verwendet.
Figur 10 zeigt einen so genannten Transfermischer, welcher die Nichtlinearität einer Diode 63 zum Entmischen des empfangenen Hochfrequenz-Signals Rx mit dem Hochfrequenz-Signal LO des lokalen Oszillators verwendet. Die Anbindung der Diode 63 an die Antenneneinrichtung 4 und an den lokalen Oszillator erfolgt über einen Koppler 62. Ein vereinfachter Aufbau mit einer T-förmigen Anbindung der Diode 74 an den lokalen Oszillator und die Antenneneinrichtung 4 ist in Figur 11 dargestellt. Figur 12 zeigt einen Transfermischer mit einer Diode 81, welche in Serie zwischen die Antenneneinrichtung 4 und den lokalen Oszillator geschaltet ist, ein solcher Aufbau ist unter Anderem aus der Offenlegungsschrift DE 102 35 338 Al bekannt.
Obwohl die vorliegende Erfindung anhand mehrerer Ausführungsbeispiele beschrieben wurde, ist sie nicht darauf beschränkt. Insbesondere ist die Anzahl der in Serie miteinander verbundenen Patch- Antennen in beliebiger Weise änderbar. Ferner sind auch verschiedene Kombinationen der dargestellten Signalverzögerungsstrecken, Mischeinrichtungen, monostatischen Sende- und Empfangseinrichtungen und reinen Sendeeinrichtungen möglich.

Claims

Patentansprüche
1. Radarvorrichtung mit: einem lokalen Oszillator (7) zum Generieren eines Hochfrequenz-Signals; und einer Mehrzahl monostatischer Sende- und Empfangseinrichtungen (6a, 6b, ...), die mit dem lokalen Oszillator (7) gekoppelt sind und die jeweils ein Antennenelement (Ia, Ib, ...) zum Senden des Hochfrequenz-Signals (Tx) und zum Empfangen von reflektierten Anteilen des Hochfrequenz-Signals (Rx) aufweisen und wobei eine erste Signalverzögerungsstrecke (2a, 2b, ...; 3a, 3b, ...) zum Verzögern des Hochfrequenz- Signals (Tx) um eine unveränderliche Dauer zwischen das Antennenelement (Ia, Ib, ...) und den lokalen Oszillator (7) geschaltet ist.
2. Radarvorrichtung nach Anspruch 1, mit einer Mehrzahl von Sendeeinrichtungen (16e, 16f, ...), die ein Antennenelement (1 Ie, 1 If, ...), welches ausschließlich zum Senden des Hochfrequenz-Signals (Tx) eingerichtet ist, und eine zweite Signalverzögerungsstrecke (12e, 12f, ...), welche zwischen das Antennenelement (1 Ie, 1 If, ...) und den lokalen Oszillator (7) geschaltet ist und das Hochfrequenz-Signal (Tx) um eine unveränderliche Dauer verzögert, aufweisen.
3. Radarvorrichtung nach Anspruch 1 oder 2, in welcher die erste Signalverzögerungsstrecke durch eine Serien- und/oder Parallelschaltung diskreter oder in Form von Leitungsstrukturen realisierter Elemente gebildet wird, die in ihrer Wirkung im Wesentlichen kapazitiv oder induktiv sind und die in ihrer Zusammenschaltung im Wesentlichen eine Filterstruktur bilden und damit eine feste, positive oder negative Phasenverschiebung des Hochfrequenzsignals erzeugen.
4. Radarvorrichtung nach Anspruch 1 bis 3, in welcher die erste Signalverzögerungsstrecke (2a, 2b, ...; 3a, 3b, ...) durch eine erste Leitung mit einer vorbestimmten Länge gebildet wird.
5. Radarvorrichtung nach Anspruch 4, in welcher die erste Signalverzögerungsstrecke (2a, 2b, ...; 3a, 3b, ...) eine zweite Leitung mit einer vorbestimmten Länge und einem offenen oder kurzgeschlossenen ersten Ende aufweist, und ein zweites Ende der zweiten Leitung mit der ersten Leitung verbunden ist.
6. Radarvorrichtung nach einem der vorhergehenden Ansprüche, in welcher die monostatische Sende- und Empfangseinrichtung (6a, 6b, ...) eine Mischeinrichtung (4a, 4b, ...) aufweist, welche in Serie zu der Signalverzögerungsstrecke (2a, 2b, ..., 3a, 3b, ...) zwischen das Antennenelement (Ia, Ib, ...) und den lokalen Oszillator (7) geschaltet ist und die
Mischeinrichtung (4a, 4b, ...) einen Zirkulator, einen Richtkopp ler, einen Hybrid-Mischer oder einen Transfermischer aufweist, welcher ein zu sendendes Hochfrequenz-Signal (Tx) von dem lokalen Oszillator (7) in das Antennenelement (Ia, Ib, ...) einkoppelt und welcher gleichzeitig das empfangene Hochfrequenz-Signal (Rx) mit einem Lokaloszillatorsignal mischt.
7. Radarvorrichtung nach einem der vorhergehenden Ansprüche, deren Antennenelemente (Ia, Ib, ..., He, Hf, ...) als wenigstens eine Patch- Antenne ausgebildet sind.
8. Radarvorrichtung nach einem der vorhergehenden Ansprüche, welche planar auf einem Träger realisiert ist.
9. Radarvorrichtung nach einem der vorhergehenden Ansprüche, in welcher die Antennenelemente (Ia, Ib, ...) einen Abstand zu einander aufweisen, welcher ungefähr der Hälfte der Wellenlänge der Hochfrequenz-Signale (Rx, Tx) entspricht.
10. Radarvorrichtung nach einem der vorhergehenden Ansprüche, mit einem Leistungsteiler und/oder einer Verstärkungseinrichtung, welche zwischen den lokalen Oszillator (7) und die monostatischen Sende- und Empfangseinrichtungen (6a, 6b, ...) geschaltet ist, womit die Leistung des gesendeten Hochfrequenz-Signals (Rx) der einzelnen Sende- und Empfangseinrichtungen (6a, 6b, ...) für jede Sende- und Empfangseinrichtung (6a, 6b, ...) individuell auf einen vorbestimmten Wert eingestellt ist.
PCT/EP2006/068909 2005-12-28 2006-11-24 Radarvorrichtung WO2007077062A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06819763A EP1969394A1 (de) 2005-12-28 2006-11-24 Radarvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005062772A DE102005062772A1 (de) 2005-12-28 2005-12-28 Radarvorrichtung
DE102005062772.2 2005-12-28

Publications (1)

Publication Number Publication Date
WO2007077062A1 true WO2007077062A1 (de) 2007-07-12

Family

ID=37685911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/068909 WO2007077062A1 (de) 2005-12-28 2006-11-24 Radarvorrichtung

Country Status (3)

Country Link
EP (1) EP1969394A1 (de)
DE (1) DE102005062772A1 (de)
WO (1) WO2007077062A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009021768A1 (de) * 2007-08-16 2009-02-19 Robert Bosch Gmbh Monostatischer mehrstrahlradarsensor für kraftfahrzeuge
JP2011510278A (ja) * 2008-01-16 2011-03-31 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 車両のためのモノスタティック・マルチビームレーダセンサ装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007060769A1 (de) * 2007-12-17 2009-06-18 Robert Bosch Gmbh Monostatischer Mehrstrahl-Radarsensor, sowie Verfahren
DE102009002082A1 (de) * 2009-04-01 2010-10-07 Robert Bosch Gmbh Mehrstrahlradarsensorvorrichtung und Verfahren zum Bestimmen eines Abstandes
DE102010041755A1 (de) * 2010-09-30 2012-04-05 Siemens Aktiengesellschaft Radarsystem

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19719953A1 (de) * 1997-05-14 1998-11-19 Bosch Gmbh Robert Kraftfahrzeug-Radarsensor
US5874915A (en) * 1997-08-08 1999-02-23 Raytheon Company Wideband cylindrical UHF array
US6198451B1 (en) * 1989-06-07 2001-03-06 Marconi Electronic Systems Limited Radar antenna feed arrangement
WO2001026183A1 (de) * 1999-10-06 2001-04-12 Robert Bosch Gmbh Asymmetrischer, mehrstrahliger radarsensor
EP0778953B1 (de) * 1995-07-01 2002-10-23 Robert Bosch GmbH Monostatischer fmcw-radarsensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19714570B4 (de) * 1997-04-09 2006-08-31 Robert Bosch Gmbh Mehrstrahliges Radarsystem

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198451B1 (en) * 1989-06-07 2001-03-06 Marconi Electronic Systems Limited Radar antenna feed arrangement
EP0778953B1 (de) * 1995-07-01 2002-10-23 Robert Bosch GmbH Monostatischer fmcw-radarsensor
DE19719953A1 (de) * 1997-05-14 1998-11-19 Bosch Gmbh Robert Kraftfahrzeug-Radarsensor
US5874915A (en) * 1997-08-08 1999-02-23 Raytheon Company Wideband cylindrical UHF array
WO2001026183A1 (de) * 1999-10-06 2001-04-12 Robert Bosch Gmbh Asymmetrischer, mehrstrahliger radarsensor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1969394A1 *
WILLIAMS D A: "Millimetre wave radars for automotive applications", MICROWAVE SYMPOSIUM DIGEST, 1992., IEEE MTT-S INTERNATIONAL ALBUQUERQUE, NM, USA 1-5 JUNE 1992, NEW YORK, NY, USA,IEEE, US, 1 June 1992 (1992-06-01), pages 721 - 724, XP010062944, ISBN: 0-7803-0611-2 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009021768A1 (de) * 2007-08-16 2009-02-19 Robert Bosch Gmbh Monostatischer mehrstrahlradarsensor für kraftfahrzeuge
US9063214B2 (en) 2007-08-16 2015-06-23 Robert Bosch Gmbh Monostatic multi-beam radar sensor for motor vehicles
JP2011510278A (ja) * 2008-01-16 2011-03-31 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 車両のためのモノスタティック・マルチビームレーダセンサ装置

Also Published As

Publication number Publication date
DE102005062772A1 (de) 2007-07-05
EP1969394A1 (de) 2008-09-17

Similar Documents

Publication Publication Date Title
EP1792203B1 (de) Monostatischer planarer mehrstrahlradarsensor
EP3140882B1 (de) Antennenvorrichtung für ein fahrzeug
EP1570291B1 (de) Verfahren und anordnung f r multistatische nachdistanzradarm essungen
EP1340097B1 (de) Radareinrichtung und verfahren zum betreiben einer radareinrichtung
DE112011102901B4 (de) Mehrbereich-Radarsystem
EP2534730B1 (de) Radarsensor
WO2017148561A1 (de) Radarsystem, umfassend eine antennenanordnung zum senden und empfangen elektromagnetischer strahlung
EP2569820B1 (de) Fahrerassistenzeinrichtung für ein fahrzeug, fahrzeug und verfahren zum betreiben eines radargeräts
DE102004059915A1 (de) Radarsystem
EP1610147A1 (de) Single-Chip Radar für Kraftfahrzeug-Anwendungen
DE69828210T2 (de) Vorausschauender Sensor für Kraftfahrzeuge
EP2616840A1 (de) Radarsensor für kraftfahrzeuge, insbesondere lca-sensor
DE102018118863A1 (de) Radarvorrichtung und Verfahren zum Erzeugen unterschiedlicher Richtcharakteristika
EP1969394A1 (de) Radarvorrichtung
DE102005007917A1 (de) Kraftfahrzeug-Radarsystem und Auswerteverfahren
DE102004054466A1 (de) Radarsystem insbesondere zur Entfernungs- und/oder Geschwindigkeitsmessung
EP2616839B1 (de) Radarsensor für kraftfahrzeuge, insbesondere rca-sensor
DE102021112000A1 (de) Radarvorrichtung für fahrzeug, steuerverfahren der radarvorrichtung und radarsystem für fahrzeug
DE102012224062B4 (de) Streifenleiterantenne, Gruppenantenne und Radarvorrichtung
EP1804074B1 (de) Radarvorrichtung
DE102010041755A1 (de) Radarsystem
EP2722686A1 (de) Interferometrisches SAR-System
EP3966593A1 (de) Kohärentes, multistatisches radarsystem, insbesondere zur verwendung in einem fahrzeug
DE102020119934A1 (de) Verfahren zum Betreiben eines Radarsystems, Radarsystem und Fahrzeug mit wenigstens einem Radarsystem
DE102023205823A1 (de) Verfahren zum entwerfen eines radoms einer radarvorrichtung, radom und radarvorrichtung, für die es verwendet wird

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006819763

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006819763

Country of ref document: EP