WO2007074691A1 - トリポード型等速自在継手 - Google Patents

トリポード型等速自在継手 Download PDF

Info

Publication number
WO2007074691A1
WO2007074691A1 PCT/JP2006/325353 JP2006325353W WO2007074691A1 WO 2007074691 A1 WO2007074691 A1 WO 2007074691A1 JP 2006325353 W JP2006325353 W JP 2006325353W WO 2007074691 A1 WO2007074691 A1 WO 2007074691A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
joint
leg shaft
constant velocity
velocity universal
Prior art date
Application number
PCT/JP2006/325353
Other languages
English (en)
French (fr)
Inventor
Minoru Ishijima
Junichi Izumino
Original Assignee
Ntn Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005377620A external-priority patent/JP2007177914A/ja
Priority claimed from JP2005378271A external-priority patent/JP2007177927A/ja
Priority claimed from JP2005378276A external-priority patent/JP2007177928A/ja
Priority claimed from JP2006038031A external-priority patent/JP2007218313A/ja
Application filed by Ntn Corporation filed Critical Ntn Corporation
Publication of WO2007074691A1 publication Critical patent/WO2007074691A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D3/205Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part
    • F16D3/2055Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part having three pins, i.e. true tripod joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/41Couplings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/12Mounting or assembling

Definitions

  • the present invention relates to a tri-board type constant velocity universal joint that is incorporated in, for example, a driving system of an automobile and transmits a rotational force at a constant speed between rotating shafts that exist on a non-linear line.
  • a constant velocity universal joint is a type of universal joint capable of transmitting a rotational force at a constant speed even when there is an angle between the two axes by connecting two shafts on the driving side and the driven side.
  • the constant velocity universal joint has a fixed type and a sliding type. The sliding type allows relative axial displacement between the two axes by plunging the joint.
  • a tri-board type is a type of sliding constant velocity universal joint.
  • the triboard type constant velocity universal joint includes an outer joint member and a tripod member.
  • One of the two shafts to be coupled is connected to the outer joint member, and the other shaft is connected to the tripod member.
  • the outer joint member has a bottomed cylindrical shape with one end opened, and has three track grooves extending in the axial direction on the inner periphery thereof.
  • the tripod member has three leg shafts projecting radially outward from the cylindrical boss, and these leg shafts engage with the track grooves of the outer joint member to transmit torque.
  • a roller is rotatably fitted on the leg shaft, and the roller rolls along a pair of roller guide surfaces facing each other in the track groove, thereby smoothly smoothing angular displacement and axial displacement between the two connecting shafts. To do.
  • each roller performs a complicated motion. That is, each roller moves along the roller guide surface while changing its direction in the axial direction of the outer joint member, and the force is also displaced in the axial direction of the leg shaft.
  • each roller moves in such a complicated manner, the relative displacement between the outer peripheral surface of the roller and the roller guide surface is not necessarily smoothly performed, and a relatively large friction is generated between these two surfaces. As a result, a tertiary axial force is generated while the two connecting shafts rotate once.
  • a large vibration called a shudder may be generated by the tertiary axial force.
  • a double roller type in which another roller is inserted inside a roller via a rolling element such as a one-dollar roller (see Patent Documents 1 and 2).
  • the roller guide surface of the track groove is formed in a Gothic arch shape so that the contact with the outer side roller is an angular contact, while the leg shaft is swingable with respect to the inner roller.
  • Angular contact makes the roller rolling direction parallel to the track groove direction, thereby reducing the rolling resistance of the roller and reducing the third-order induced thrust! / Disclosure of the invention
  • the double roller type requires an extra inner roller, and also requires a mechanism for holding the inner roller at a fixed position in the axial direction of the leg shaft. For this reason, assembly takes time and costs increase.
  • Patent Document 3 a tri-board type constant velocity universal joint devised to roll in a straight line along the track groove without using the inner roller.
  • the circumferential surface of the leg shaft is spherical, and a plurality of one-dollar rollers are arranged in a full roller state between the spherical leg shaft and the roller.
  • the roller guide surfaces facing each other in the track groove are configured as flat surfaces, and the rollers are linearly brought into linear contact with the roller guide surface by making the outer peripheral surface of the roller cylindrical, thereby preventing induced thrust. ing.
  • the leg shaft can be tilted without swinging the roller, but the contact surface pressure increases because the spherical outer peripheral surface of the leg shaft makes point contact with the needle roller, which may shorten the service life. There is.
  • the needle roller is connected to form a linear contact with the spherical outer peripheral surface of the leg shaft.
  • a tri-board type constant velocity universal joint see Patent Document 4.
  • this joint is a fixed joint, and the leg shaft and the roller oscillate without changing the relative angle, and thus have nothing to do with prevention of induced thrust.
  • An object of the present invention is to provide a simple roller triboard type constant velocity universal joint having a simple structure, in which the roller rolls straight in a direction parallel to the track groove of the outer joint member and The contact surface pressure of the roller placed between the arm and the leg shaft is reduced, resulting in lower cost, lower vibration, and longer length.
  • An object of the present invention is to provide a tri-board type constant velocity universal joint that enables the entire life.
  • Patent Document 1 Japanese Patent Publication No. 4-503554
  • Patent Document 2 Japanese Patent Laid-Open No. 5-215141
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-74086
  • Patent Document 4 Japanese Patent Laid-Open No. 58-627
  • the invention of claim 1 includes an outer joint member provided with three track grooves extending in the axial direction on the inner periphery, and provided with roller guide surfaces facing each other on the inner wall of each track groove, and a distal end thereof.
  • a tripod member having three leg shafts inserted into the track groove, and a mouth ring rotatably supported by the leg shaft and rotatably inserted into the track groove of the outer joint member;
  • the peripheral surface of the leg shaft has a partial spherical shape with a predetermined curvature radius
  • the inner diameter surface of the roller has a convex R surface with the same curvature as the predetermined curvature radius.
  • a plurality of zigzag rollers having a concave R surface having the same curvature as the predetermined curvature radius are arranged in a circumferential direction between the shaft circumferential surface and the roller inner surface.
  • a plurality of zigzag rollers having a concave R surface having the same curvature as the leg spherical surface and the inner convex R surface are arranged in the circumferential direction between the spherical spherical surface and the inner convex R surface of the roller. Therefore, the leg shaft and the roller can be brought into line contact with the hooked piece, thereby reducing the surface pressure at the contact portion and increasing the joint life.
  • the invention of claim 2 is the invention of claim 1, wherein the plurality of rollers have their axial axes shifted in the axial direction of the joints relative to the minimum inner diameter position of the rollers.
  • the diameter d is set to be larger than the spherical outer diameter of the leg shaft.
  • the leg axis spherical surface can be easily inserted into the inner side of the roller.
  • the one end of the roller on the joint center side is The roller joint center and the other end on the opposite side abut each other, and the inscribed circle diameter d of the roller ends separated at this time is slightly smaller than the spherical outer diameter of the leg shaft. It is set so that
  • the concave R surface of the tapered roller makes a line contact with the spherical surface of the leg shaft and the inner surface of the roller, thereby lowering the contact surface and increasing the joint life.
  • the inscribed circle diameter d at the roller end when the pinch roller is displaced to the maximum extent is slightly smaller than the spherical outer diameter of the leg shaft, so that the leg shaft can be inserted into the roller by press-fitting. Can prevent the roller from falling off.
  • the invention of claim 5 is the invention of claim 4, wherein the outer diameter D of the leg shaft in the circumferential direction of the joint is formed within a predetermined angular range in the circumferential direction of the leg shaft, and exceeds the predetermined angular range. In this region, the outer diameter D is gradually reduced and connected to the outer diameter C of the leg shaft in the joint axis direction.
  • the invention of claim 6 is characterized in that, in the invention of claim 5, the predetermined angle range is 90 ° or more and 150 ° or less.
  • the invention of claim 7 is the invention of claim 1, wherein a protruding portion protruding from the convex R surface is formed at a joint center side edge of the convex R surface, and the leg shaft peripheral surface and the roller inner surface are formed. In between, a plurality of pinched rollers having concave R surfaces with the same curvature as the predetermined curvature radius are arranged in the circumferential direction. It is characterized by that.
  • the invention according to claim 8 is the invention according to claim 7, wherein the indentation of one end portion of the roller when the pinch roller is displaced until the end portion on the joint center side abuts against the protruding portion.
  • the circular diameter d is set to be slightly smaller than the spherical outer diameter of the leg shaft.
  • the inscribed circle diameter d of the roller end when the pinch roller is displaced to the maximum extent is slightly smaller than the spherical outer diameter of the leg shaft, so that the leg shaft can be inserted into the inner side of the roller. It can be press-fitted, and the roller can be prevented from falling off and stable assembly can be handled.
  • the invention of claim 10 is the invention of claim 9, wherein the outer diameter D of the leg shaft in the circumferential direction of the joint is formed within a predetermined angular range in the circumferential direction of the leg shaft, and exceeds the predetermined angular range. In this region, the outer diameter D is gradually reduced to connect to the outer diameter C of the leg shaft in the joint axis direction.
  • the invention of claim 11 is characterized in that, in the invention of claim 10, the predetermined angle range is 90 ° or more and 150 ° or less.
  • the convex R surface of the leg shaft has an axial longitudinal sectional shape in which the center of curvature is offset from the center of the leg shaft to the side opposite to the outer peripheral surface side, and the curvature radius of the convex R surface of the roller is the curvature radius of the leg shaft.
  • the life of the joint can be extended by reducing the contact surface pressure of the hourglass roller disposed between the roller and the leg shaft. Also, the roller is against the track groove of the outer joint member. Because it rolls in parallel, low-induced thrust performance (suppression of vehicle shudder phenomenon) and low backlash in the rotational direction are both achieved.
  • a universal joint can be provided.
  • the tri-board type constant velocity universal joint 10 of the present invention has an outer joint member 11 and a tripod member 12.
  • the outer joint member 11 has a bottomed cylindrical shape, and one end of the rotating shaft is connected to the center of the bottom wall.
  • Three track grooves 13 are formed on the inner peripheral surface of the outer joint member 11 at equal intervals in the circumferential direction.
  • Each track groove 13 is formed by a pair of roller guide surfaces 13a facing each other and a bottom surface 13b connecting the pair of roller guide surfaces 13a.
  • the roller guide surface 13a has an arc-shaped cross section and extends linearly in the axial direction of the outer joint member 11.
  • the bottom surface 13b of the track groove 13 has a central plane 13bl and both side surfaces 13b2. Both side surfaces 13b2 are provided to ensure that the rollers 15 described later are prevented from tilting. Note that the outer peripheral surface of the outer joint member 11 is reduced in thickness by forming an arc-shaped recess 14 in a portion corresponding to the space between the track grooves 13 because of the light weight.
  • the tripod member 12 has three leg shafts 12b integrally formed radially at equal intervals in the circumferential direction (120 ° intervals) on the outer peripheral surface of a cylindrical central boss portion 12a.
  • One end of a rotating shaft different from the rotating shaft of the outer joint member 11 is connected to the shaft hole 12c of the boss portion 12a by a spline or the like.
  • the tips of the three leg shafts 12b extend in the radial direction to the vicinity of the bottom surface 13b of the track groove 13.
  • the peripheral surface of the leg shaft 12b is a spherical surface S having a diameter D as shown in FIGS. 1 and 2, the tip end surface is a loose convex R surface, and faces the bottom surface 13b of the track groove 13 with a predetermined interval.
  • the base portion of the leg shaft 12b is connected to the boss portion 12a via the constricted portion 12d.
  • a roller 15 is disposed between the roller guide surface 13 a of the track groove 13 of the outer joint member 11 and the leg shaft spherical surface S.
  • the outer peripheral surface 15a of the roller 15 has an arcuate longitudinal section and is configured to be in line contact with the roller guide surface 13a. The roller 15 rolls parallel to the track groove 13 to reduce the induced thrust and prevent the vehicle from shuddering.
  • the inner diameter surface 15b of the roller 15 is a convex R surface having the same curvature as the leg axis spherical surface S, and a plurality of intergrated rollers 16 are disposed between the roller inner diameter surface 15b and the leg axis spherical surface S. Arranged in a state.
  • the circumferential surface of the tapered roller 16 has a concave R surface with the same curvature as that of the leg shaft 12b and the roller inner surface 15b. Is done.
  • the concave R surface of the tapered roller 16 is in rolling contact with both the leg shaft spherical surface S and the roller inner surface 15b without any gap on the torque acting side. That is, the toothed rollers 16 are in line contact with the leg axis spherical surface S and the guide roller guide surface 13a, respectively, to ensure a low surface pressure.
  • the inscribed circle diameter d of the roller 16 ends 16a that are spaced apart from each other does not increase any further.
  • the inscribed circle diameter d is set to be slightly larger than the outer diameter of the spherical surface S of the leg shaft 12b. This facilitates insertion of the leg shaft 12b into the inner side of the tapered roller 16. After the insertion, appropriate gaps are formed between the rollers 16 and between the rollers 16 and the leg shaft 12b, and between the rollers 16 and 15, so that good operability can be secured and the rollers 16 can be prevented from leaking.
  • the triboard type constant velocity universal joint of the present invention is configured as described above, and when the roller 15 is attached to the leg shaft 12b of the tripod member 12, the tapered roller 16 is made thicker than the roller 15 as shown in FIG. Arranged so that it is displaced to the maximum from the center of the scanning direction. In this state, the leg shaft 12b is pushed also in the direction of the arrow toward the inner diameter d of the outer end portion of the roller 16. At this time, since the inner ends of the rollers 16 are in contact with each other, the inner diameter d does not increase any further. Since the diameter D of the leg shaft 12b is smaller than the inner diameter d of the end portion 16 of the leg 16, the leg shaft 12b can be inserted very smoothly.
  • the roller 16 is in the position shown in FIG. 1 (A), and an appropriate gap is created between the rollers 16.
  • the tri-board type constant velocity universal joint 10 is completed by inserting the roller 15 into the track groove 13 of the outer joint member 11 from the end thereof.
  • the triboard constant velocity universal joint 10 transmits torque between the track groove 13 of the outer joint member 11 and the leg shaft 12b of the tripod member 12.
  • the roller 15 mounted rotatably on the leg shaft 12b can roll along the track groove 13, so the outer joint member 11 and the tripod member 12 is relatively displaceable in the axial direction. Before and after this axial displacement, torque transmission remains unchanged.
  • the inscribed circle diameter d shown in FIG. 6 is set to be slightly smaller than the outer diameter of the spherical surface S of the leg shaft 12b.
  • the insertion of the leg shaft 12b into the inside of the pinched roller 16 is press-fitted, and after insertion, an appropriate gap is formed between the rollers 16 and between the roller 16 and the leg shaft 12b, and between the roller 16 and the roller 15. , Ensure good operability and prevent roller 16 from leaking.
  • the tri-board member 12, the roller 15 and the tabular roller 16 can be handled in a stable assembly state.
  • the cross-sectional shape of the leg shaft 12b is a perfect circle, and as shown in Fig. 5 (only one leg shaft 12b is shown), the outer diameter C in the joint axial direction and the outer diameter D in the joint circumferential direction It can be a non-circular circle that is different from As described above, it is desirable to press-fit the insertion of the leg shaft 12b into the inner side of the toothed roller 16, but it is the leg shaft configuration of FIG. 5 that makes this press-fitting more effective. That is, the outer diameters C and D of the leg shaft 12b are set so as to satisfy the relational expression C ⁇ d ⁇ D with respect to the inscribed circle diameter d.
  • the outer diameter of the leg shaft 12b is the same as the outer diameter D, and when outside the range of angle 2 ⁇ , the leg shaft 12b The outer diameter may be gradually reduced so that the outer diameter C is smoothly connected.
  • the outer diameter surface of the leg shaft 12b is a perfect circle, so that the contact pressure with the roller 16 can be evenly distributed to reduce the contact pressure and increase the joint life. If the perfect circle of the outer diameter of the leg shaft is expanded to the range exceeding the angle ⁇ force of 75 °, the gap between the leg shaft 12b and 16 will be narrowed, and the diameter of the roller 15 will be reduced in the joint axis direction. As a result, the diameter of the roller 15 in the circumferential direction of the joint 15 decreases, and it becomes difficult to obtain a sufficient press-fitting dimension of the leg shaft 12b.
  • the tri-board type constant velocity universal joint of the first modified example of the present invention is configured as described above.
  • the tapered roller as shown in FIG. 16 is arranged with the maximum deviation from the center in the thickness direction of the roller 15, and the leg shaft 12b is pushed in from the direction of the arrow toward the inner diameter d of the outer end of the roller 16.
  • the inner diameter d does not increase any further.
  • the diameter D of the leg shaft 12b is larger than the inner diameter d of the end of the roller 16, the leg shaft 12b is pressed in. After press-fitting the leg shaft 12b, the roller 16 is in the position shown in FIG. 1 (A), and an appropriate gap is created between the rollers 16.
  • the triboard type constant velocity universal joint 10 is completed.
  • the inner surface 15b of the roller 15 is formed as a convex R surface having the same curvature as that of the leg spherical surface S, and a convex center edge of the convex R surface is projected as shown in FIG.
  • a protruding portion 15c that is raised from the R surface is formed.
  • the protruding portion 15c may be configured by a plane parallel to the axial direction of the roller 15. The protruding portion 15c continues to the end surface of the roller 15 via the R chamfer.
  • the inscribed circle diameter d of the roller 16 end portions 16a that are spaced apart from each other is set to be slightly smaller than the outer diameter of the spherical surface S of the leg shaft 12b.
  • the cross-sectional shape of the leg shaft 12b is a perfect circle, as shown in Fig. 5 (only one leg shaft 12b is shown).
  • the outer diameter C in the joint axial direction and the outer diameter D in the circumferential direction of the joint may be different from each other. That is, the outer diameters C and D of the leg shaft 12b can be set so as to satisfy the relational expression C ⁇ d ⁇ D with respect to the inscribed circle diameter d.
  • a predetermined angle on both sides from the center line M in the joint circumferential direction as shown in FIG. 5
  • the outer diameter of the leg shaft 12b may be the same as the outer diameter D within the range of ⁇ , and the outer diameter of the leg shaft 12b may be gradually reduced outside the range of angle 2 ⁇ so that the outer diameter C is smoothly connected.
  • the pinched rollers 16 are arranged in a state in which the center force in the thickness direction of the roller 15 is displaced as much as possible. Push the leg shaft 12b in the direction of the arrow toward the inner diameter d of the outer edge of the arm. At this time, since one end portion of the roller 16 is in contact with the protruding portion 15c, the inner diameter d does not increase further. Since the diameter D of the leg shaft 12b is larger than the inner diameter d of the end of the roller 16, the leg shaft 12b is pushed in. After press-fitting the leg shaft 12b, the roller 16 is in the position shown in FIG.
  • FIG. 1A is a cross-sectional view of a triboard constant velocity universal joint according to the present invention
  • FIG. 1B is a side view showing a state in which a tripod member is inclined with respect to a roller of the joint.
  • FIG. 2 is a plan view of the tripod member viewed from the distal end side of the leg shaft.
  • FIG. 3 (A) is a plan view of the roller also showing the leg shaft tip side force, and (B) is a bottom view of the roller also showing the joint axis side force.
  • FIG. 4 is a cross-sectional view showing a state where a leg shaft of a tripod member is press-fitted into a roller.
  • FIG. 5 is a plan view of a tripod member of a triboard type constant velocity universal joint according to a first modification of the present invention as viewed from the front end side of the leg shaft.
  • FIG. 6 Bottom view of the roller shaft side force. 7] A sectional view showing a state in which the leg shaft of the tripod member is press-fitted into the roller.
  • FIG. 8 shows a roller of a tri-board type constant velocity universal joint according to a first modified example of the present invention.
  • FIG. 10 A longitudinal sectional view with respect to the axis of the triboard type constant velocity universal joint, showing a state in which the tripod member has an operating angle with respect to the outer joint member.
  • FIG. 11 is a view of the roller and the hourglass roller of FIG.
  • FIG. 12 This is for explaining the assembly of rollers and drum rollers and leg shafts.
  • A is a top view of the rollers and drum rollers of (b)
  • (b) is the rollers and drum rollers. Sectional view showing tapered rollers
  • (C) is the figure which looked at the roller and drum-shaped roller of (b) from the bottom.
  • FIG. 13 is a view of one leg shaft of the tripod member also viewed from the axial end side force.
  • a modification of the present invention showing a leg shaft, a roller, and a drum roller.
  • Another modification of the present invention is shown, and is a view of one leg shaft of the tripod member as seen from the shaft end side.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

 本発明は、ローラが外側継手部材のトラック溝に対して平行方向で直進転動するトリポード型等速自在継手において、ローラと脚軸との間に配設するころの接触面圧を低減するものである。脚軸の周面を所定曲率半径の球面状にする。ローラ15の内径面15bを所定曲率半径と同曲率の凸R面とする。脚軸周面とローラ内径面との間に、所定曲率半径と同曲率の凹R面を有するつづみ状ころを円周方向に複数配列する。複数のころは、その軸線方向中心位置をローラの最小内径位置よりも継手軸心方向に偏位させる。これにより、ころの軸線を傾斜させたとき、ころの継手中心側一端部が互いに離間し合うと共に、ころの継手中心と反対側他端部が互いに当接し合う。このときの離間し合うころ端部の内接円直径dを、脚軸の球面外径Dより大きく設定する。

Description

トリボード型等速自在継手
技術分野
[0001] 本発明は、例えば自動車の駆動系に組み込んで非直線上に存在する回転軸同士 の間で等速に回転力を伝達するトリボード型等速自在継手に関する。
背景技術
[0002] 等速自在継手は、駆動側と従動側の二軸を連結して二軸間に角度があっても等速 で回転力を伝達することのできるユニバーサルジョイントの一種である。等速自在継 手には固定式と摺動式があり、摺動式のものは継手のプランジングによってニ軸間 の相対的軸方向変位を可能にする。摺動式等速自在継手の一種にトリボード型があ る。
[0003] トリボード型等速自在継手は、外側継手部材とトリポード部材とからなり、連結すベ き二軸の一方の軸が外側継手部材と接続され、他方の軸がトリポード部材と接続され る。外側継手部材は一端が開口した有底筒状で、その内周に軸方向に延びる三本 のトラック溝を有する。トリポード部材は円筒状のボス部から半径方向外方に突出した 三本の脚軸を有し、これら脚軸が外側継手部材のトラック溝に係合してトルク伝達を 行う。脚軸にはローラが回転自在に外嵌され、このローラがトラック溝の互いに対向す る一対のローラ案内面に沿って転動することで連結二軸間の角度変位と軸方向変位 を円滑にする。
[0004] ところで、トリボード型等速自在継手が作動角を取った状態で連結二軸が回転する と各ローラが複雑な運動を行う。すなわち、各ローラは、ローラ案内面に沿って外側 継手部材の軸方向に向きを変えながら移動し、し力も、脚軸の軸方向にも変位する。 各ローラがこのような複雑な動きをすると、ローラの外周面とローラ案内面との間の相 対変位が必ずしも円滑に行なわれなくなり、これら両面間に比較的大きな摩擦が発 生する。その結果、連結二軸が一回転する間に三次の軸力が発生する。等速自在 継手が自動車に組み込まれて大きなトルクを伝達しつつ大きな作動角をとつた場合、 前記三次の軸力によってシャダ一と呼ばれる大きな振動が発生することがある。 [0005] このようなシャダ一を防止するものとして、ローラの内側に-一ドルころなどの転動 体を介して別のローラを入れたダブルローラ型がある(特許文献 1、 2参照)。このダブ ルローラ型は、トラック溝のローラ案内面をゴシックアーチ形状とすることにより外側口 ーラとの接触をアンギユラコンタクトにする一方、脚軸を内側ローラに対して揺動可能 としている。アンギユラコンタクトによりローラの転動方向がトラック溝方向と平行となり 、これによりローラの転がり抵抗を低減して回転三次の誘起スラストを低減して!/、る。 発明の開示
発明が解決しょうとする課題
[0006] しかし、ダブルローラ型は内側ローラが余分に必要となるうえ、この内側ローラを脚 軸の軸方向定位置に保持するための機構も必要になる。このため、組立に時間がか 力りコストも嵩む。
[0007] そこで、内側ローラを使用することなくシングルローラのままでトラック溝に沿って一 直線に転動するように工夫したトリボード型等速自在継手が提案されて ヽる(特許文 献 3)。このシングルローラ型は、脚軸周面を球面状にすると共に、この球面状脚軸と ローラとの間に複数の-一ドルころを総ころ状態で配設している。また、トラック溝の 互いに対向するローラ案内面を平面で構成し、ローラの外周面を円筒状にしてロー ラ案内面と線接触させることでローラを直進転動させ、これにより誘起スラストを防止 している。この構成では、ローラを揺動させずに脚軸のみを傾動させることができるが 、脚軸の球面状外周面がニードルころに対して点接触するため接触面圧が高くなり、 寿命低下のおそれがある。
[0008] なお、脚軸の球面状外周面と-一ドルころとの間の接触面圧を軽減するため、ニー ドルころをつづみ状にして脚軸球面状外周面との接触を線接触にしたトリボード型等 速自在継手がある(特許文献 4参照)。しかし、この継手は固定式継手であって、脚 軸とローラとは相対角度を変えずに首振り運動をし、したがって誘起スラストの防止と は何ら関係がな 、ものである。
[0009] 本発明の目的は、構造の簡単なシングルローラ型のトリボード型等速自在継手に おいて、ローラが外側継手部材のトラック溝に対して平行方向で直進転動し、かつ口 一ラと脚軸との間に配設するころの接触面圧を低減し、もって、低コスト、低振動、長 寿命の総てを可能とするトリボード型等速自在継手を提供することにある。
特許文献 1:特表平 4— 503554号公報
特許文献 2:特開平 5— 215141号公報
特許文献 3:特開 2000— 74086号公報
特許文献 4:特開昭 58— 627号公報
課題を解決するための手段
[0010] 請求項 1の発明は、内周に軸線方向に延びる三本のトラック溝を設けると共に各トラ ック溝の内側壁に互いに対向するローラ案内面を設けた外側継手部材と、先端が前 記トラック溝内に挿入された三本の脚軸を有するトリポード部材と、前記脚軸に回転 自在に支持されると共に前記外側継手部材のトラック溝に転動自在に挿入された口 一ラとを備えたトリボード型等速自在継手において、前記脚軸の周面を所定曲率半 径の部分球面状にすると共に前記ローラの内径面を前記所定曲率半径と同曲率の 凸 R面とし、前記脚軸周面とローラ内径面との間に、前記所定曲率半径と同曲率の 凹 R面を有するつづみ状ころを円周方向に複数配列したことを特徴とする。
[0011] 本発明は、脚軸球面とローラの内径凸 R面との間に、脚軸球面および内径凸 R面と 同曲率の凹 R面を有するつづみ状ころを円周方向に複数配列したから、つづみ状こ ろに対して脚軸およびローラを線接触させることができ、これにより同接触部での面 圧を低減して継手寿命を増大させることができる。
[0012] また、ころを一方側に偏位させたときの互いに離間し合うころ端部の内接円直径 dを 、脚軸の球面外径より大きくなるように設定することにより、ころの内側に対して脚軸 球面を容易に挿入可能となる。
[0013] 請求項 2の発明は、請求項 1の発明において、前記複数のころは、その軸線方向 中心位置を前記ローラの最小内径位置よりも継手軸心方向に偏位させてころの軸線 を傾斜させたとき、前記ころの継手中心側一端部が互いに離間し合うと共に前記ころ の継手中心と反対側他端部が互いに当接し合い、このときの前記離間し合うころ端 部の内接円直径 dを、前記脚軸の球面外径より大きくなるように設定したことを特徴と する。
[0014] これにより、ころの内側に対して脚軸球面を容易に挿入可能となる。 [0015] 請求項 3の発明は、ころの軸線方向中心位置をローラの最小内径位置よりも継手 軸心方向に偏位させてころの軸線を傾斜させたとき、ころの継手中心側一端部が互 いに離間し合うと共にころの継手中心と反対側他端部が互いに当接し合い、このとき の離間し合うころ端部の内接円直径 dを、脚軸の球面外径より僅かに小さくなるように 設定したことを特徴とする。
[0016] つづみ状ころの凹 R面は、脚軸球面およびローラ内径面に対して線接触してこれら 接触部を低面圧にし継手寿命を増大させる。また、つづみ状ころを最大限偏位させ たときのころ端部の内接円直径 dを脚軸の球面外径より僅かに小さくすることで、ころ の内側に対する脚軸の挿入を圧入とすることができ、ころの脱落を防止する。
[0017] 請求項 4の発明は、請求項 3の発明において、前記脚軸の継手円周方向の外径を D、継手軸線方向の外径を Cとしたとき、 C< Dの関係となるように前記脚軸の横断面 形を非真円にすると共に、前記ころ端部の内接円直径 dを、前記外径 Cと Dの中間の 大きさに設定したことを特徴とする。
[0018] これにより、脚軸の継手軸線方向でローラの弾性的縮径を許容する一方、脚軸の 継手円周方向でローラの弾性的拡径を利用して、十分な圧入寸法を取ることが可能 になる。
[0019] このように、つづみ状ころの内側に脚軸を圧入することにより、トリボード部材、ロー ラおよびつづみ状ころのアッセンプリ体力 構成部品が不測に脱落することがなぐ 安定したアッセンプリ状態でのハンドリングが可能となる。
[0020] 請求項 5の発明は、請求項 4の発明において、前記脚軸の継手円周方向の外径 D を脚軸の周方向所定角度範囲で形成すると共に、前記所定の角度範囲を越えた領 域で前記外径 Dを漸減させて前記脚軸の継手軸線方向の外径 Cに繋げたことを特 徴とする。
[0021] 請求項 6の発明は、請求項 5の発明において、前記所定の角度範囲を 90° 以上 1 50° 以下とした事を特徴とする。
[0022] 請求項 7の発明は、請求項 1の発明において、前記凸 R面の継手中心側縁部に凸 R面よりも***したはみ出し部を形成し、前記脚軸周面とローラ内径面との間に、前 記所定曲率半径と同曲率の凹 R面を有するつづみ状ころを円周方向に複数配列し たことを特徴とする。
[0023] 請求項 8の発明は、請求項 7の発明において、前記つづみ状ころをその継手中心 側一端部が前記はみ出し部に当接するまで偏位させたときのころの一端部の内接円 直径 dを、前記脚軸の球面外径より僅かに小さくなるように設定したことを特徴とする。
[0024] つづみ状ころを最大限偏位させたときのころ端部の内接円直径 dを、脚軸の球面外 径より僅かに小さくすることで、ころの内側に対する脚軸の挿入を圧入とすることがで き、ころの脱落を防止して安定したアッセンプリ状態でのハンドリングが可能となる。
[0025] 請求項 9の発明は、請求項 8の発明において、前記脚軸の継手円周方向の外径を D、継手軸線方向の外径を Cとしたとき、 C< Dの関係となるように前記脚軸の横断面 形を非真円にすると共に、前記ころ端部の内接円直径 dを、前記外径 Cと Dの中間の 大きさに設定したことを特徴とする。
[0026] これにより、脚軸の継手軸線方向でローラの弾性的縮径を許容する一方、脚軸の 継手円周方向でローラの弾性的拡径を利用して、十分な圧入寸法を取ることが可能 になる。
[0027] 請求項 10の発明は、請求項 9の発明において、前記脚軸の継手円周方向の外径 Dを脚軸の周方向所定角度範囲で形成すると共に、前記所定の角度範囲を越えた 領域で前記外径 Dを漸減させて前記脚軸の継手軸線方向の外径 Cに繋げたことを 特徴とする。
[0028] 請求項 11の発明は、請求項 10の発明において、前記所定の角度範囲を 90° 以 上 150° 以下とした事を特徴とする。
また、脚軸の凸 R面をその曲率中心を脚軸中心から外周面側と反対側にオフセット させた軸方向縦断面形状とし、ローラの凸 R面の曲率半径を、脚軸の曲率半径と同 一にしたことにより、脚軸およびローラの凸 R面が真球面より大きな Rとなることから、口 一ラの内周面に沿って鼓状ころが変位する際の鼓状ころの内接径の増加量を低減 することができ、高作動角時の継手における回転方向ガタを低減することができる。 発明の効果
[0029] 本発明によれば、ローラと脚軸との間に配設された鼓状ころの接触面圧を低減する ことにより継手の長寿命化が図れる。また、ローラが外側継手部材のトラック溝に対し て平行に転動するため、低誘起スラスト性能(車両のシャダ一現象の抑制)と回転方 向ガタの低減とを両立させた、低振動で、シンプルな構造で、低コストのトリボード型 等速自在継手を提供することができる。
発明を実施するための最良の形態
[0030] 以下に本発明の実施形態を図に基づき説明する。図 1 (A)に示すように、本発明の トリボード型等速自在継手 10は、外側継手部材 11とトリポード部材 12を有する。外 側継手部材 11は有底筒状であり、その底壁中央に回転軸の一端が連結される。外 側継手部材 11の内周面には、円周方向等間隔に 3本のトラック溝 13が形成される。 各トラック溝 13は、互いに対向する一対のローラ案内面 13aと、これら一対のローラ 案内面 13a間を繋ぐ底面 13bとで形成される。ローラ案内面 13aは円弧状断面を有 し、外側継手部材 11の軸線方向に直線状に延びる。トラック溝 13の底面 13bは中央 平面 13blと両側鍔面 13b2を有する。両側鍔面 13b2は後述のローラ 15の傾斜防 止を確実にするためのものである。なお、外側継手部材 11の外周面はトラック溝 13 間に対応する部位が軽量ィ匕のため円弧状凹所 14とされて減肉されている。
[0031] トリポード部材 12は、円筒状をなす中心ボス部 12aの外周面に 3本の脚軸 12bが円 周方向等間隔(120° 間隔)かつ放射状に一体形成されたものである。ボス部 12aの 軸孔 12cに外側継手部材 11の回転軸とは別の回転軸の一端がスプラインなどにより 連結される。 3本の脚軸 12bの先端はトラック溝 13の底面 13b付近まで半径方向に 延在する。脚軸 12bの周面は図 1、図 2のように直径 Dの球面 Sとされ、先端面は緩い 凸 R面とされて、トラック溝 13の底面 13bと所定間隔を開けて対向する。脚軸 12bの 基部は括れ部 12dを介してボス部 12aに連結する。
[0032] 外側継手部材 11のトラック溝 13のローラ案内面 13aと、脚軸球面 Sとの間に、ロー ラ 15が配設される。ローラ 15の外周面 15aは縦断面円弧状とされ、ローラ案内面 13 aと線接触するように構成される。ローラ 15がトラック溝 13と平行に転動して誘起スラ ストを低減し、車両のシャダ一現象を防止する。
[0033] ローラ 15の内径面 15bは脚軸球面 Sと同曲率の凸 R面とされ、ローラ内径面 15bと 脚軸球面 Sとの間に、複数のつづみ状ころ 16が単列総ころ状態で配設される。つづ み状ころ 16の周面は、脚軸 12bおよびローラ内径面 15bの曲率と同曲率の凹 R面と される。つづみ状ころ 16の凹 R面はトルク作用側において脚軸球面 Sとローラ内径面 15bの双方に隙間なく転接する。すなわち、つづみ状ころ 16は、脚軸球面 Sおよび口 ーラ案内面 13aに対してそれぞれ線接触し、低面圧を確保する。
[0034] つづみ状ころ 16相互間には若干の隙間を空けている。この隙間は、継手の組立時 につづみ状ころ 16を図 1 (B)、図 3 (B)および図 4のように、ローラ 15の厚み方向を 二等分する中心線 Lを基準として、図上の上下方向に偏位可能とするためである。す なわち、つづみ状ころ 16をローラ 15の最小内径位置である中心線 Lよりも継手軸心 方向に偏位させてころ 16の軸線を傾斜させたとき、図 3 (A)、(B)のように、ころ 16の 継手中心側一端部 16aが互いに離間し合うと共に、ころ 16の継手中心と反対側他端 部 16bが互いに当接し合う。このような状態にころ 16を偏位させた場合、ころ 16はそ れ以上継手軸心方向に偏位することができない。換言すると、前記離間し合うころ 16 端部 16aの内接円直径 dは、これ以上は拡大しない。本発明ではこの内接円直径 d を脚軸 12bの球面 S外径より僅かに大きくなるように設定している。これにより、つづ み状ころ 16の内側に対する脚軸 12bの挿入を容易にする。挿入後はころ 16相互間 、およびころ 16と脚軸 12b、ころ 16とローラ 15の間に適度の隙間が形成され、良好な 作動性を確保できると共にころ 16の脱漏を防止できる。
[0035] 本発明のトリボード型等速自在継手は以上のように構成され、トリポード部材 12の 脚軸 12bにローラ 15を装着する場合、図 4のようにつづみ状ころ 16をローラ 15の厚 み方向中心から最大限偏位させた状態で配列する。この状態で、ころ 16の外側端部 の内径 dに向けて脚軸 12bを矢印方向力も押し込む。この時、ころ 16の内側端部は 互いに当接し合っているので、内径 dはこれ以上は拡大しない。脚軸 12bの径 Dがこ ろ 16の端部内径 dより小さいため、脚軸 12bの挿入を極めてスムーズに行うことがで きる。脚軸 12bの挿入後は、ころ 16が図 1 (A)の位置に収まり、ころ 16相互間に適度 の隙間が生まれる。次に、ローラ 15を外側継手部材 11のトラック溝 13に対してその 端部から挿入することによりトリボード型等速自在継手 10が出来上がる。
[0036] トリボード型等速自在継手 10は、外側継手部材 11のトラック溝 13と、トリポード部材 12の脚軸 12bとの間で、トルク伝達をなす。脚軸 12bに回転自在に取付けられた口 ーラ 15は、トラック溝 13に沿って転動可能なため、外側継手部材 11とトリポード部材 12は相対的に軸方向に変位可能である。この軸方向変位の前後で、トルク伝達が変 わらずに維持される。
[0037] また、外側継手部材 11とトリポード部材 12との間に角度差を生じると、脚軸 12bがト ラック溝 13に対して相対的に傾斜する。同時に、ローラ 15がトラック溝 13に沿って転 動する。この際、ローラ 15はトラック溝 13に対して傾斜することなくトラック溝 13の方 向に直進転動することで誘起スラストの発生を防止する。なお、脚軸 12bが傾斜する と、図 1 (b)のようにつづみ状ころ 16が継手中心側にやや偏位する。この状態でも、こ ろ 16の周面は脚軸 12bおよびローラ 15に対して線接触を維持し、低面圧でのトルク 伝達を可能にする。
[0038] 次に、本発明の第 1変形例を図 5〜図 7に基づき説明する。この第 1変形例は、図 6 に示す内接円直径 dを、脚軸 12bの球面 S外径より僅かに小さくなるように設定したも のである。これにより、つづみ状ころ 16の内側に対する脚軸 12bの挿入が圧入となり 、挿入後はころ 16相互間、およびころ 16と脚軸 12b、ころ 16とローラ 15の間に適度 の隙間が形成され、良好な作動性を確保し、かつ、ころ 16の脱漏を防止する。またト リボード部材 12、ローラ 15およびつづみ状ころ 16を安定したアッセンブリ状態でのハ ンドリングが可能となる。
[0039] 脚軸 12bの横断面形は真円とするほか、図 5 (脚軸 12bは 1本のみ図示)に示すよう に、継手軸線方向の外径 Cと継手円周方向の外径 Dとが異なる非真円とすることが できる。前述のように、つづみ状ころ 16の内側に対する脚軸 12bの挿入は圧入が望 ましいが、この圧入をより効果的にするのが図 5の脚軸形態である。すなわち、脚軸 1 2bの外径 Cと Dは、前記内接円直径 dに対して C< d< Dの関係式を満足するように 設定する。このような寸法関係にすることにより、脚軸 12bの継手軸線方向(外径 C方 向)ではころ 16との間に隙間を形成してローラ 15の弾性的縮径を許容する一方、脚 軸 12bの継手円周方向(外径 D方向)ではローラ 15の前記縮径による弹性的拡径を 利用して、十分な圧入寸法を取ることが可能になる。
[0040] さらに、トルク伝達時に脚軸 12bの球面 Sに作用する圧力が継手円周方向に偏在 することに着目して、図 5のように、継手円周方向の中心線 Mから両側所定角度 Θの 範囲内では脚軸 12bの外径を外径 Dと同じにし、角度 2 Θの範囲外では脚軸 12bの 外径を漸減させて外径 Cに滑らかに繋がる形状にしてもよい。前記所定角度 Θは、 例えば 0 =45° (2 0では 90° )以上かつ 75° (2 0では 150° )以下とする。この 角度範囲内では脚軸 12bの外径面は真円であるから、ころ 16との間の面圧を均等分 散させて低面圧とし継手寿命を増大させることができる。脚軸外径の真円を、前記角 度 Θ力 75° を越える範囲まで拡大すると、こんどは脚軸 12bところ 16との間の隙間 が狭くなり、継手軸線方向でのローラ 15の縮径代減少、継手円周方向でのローラ 15 の拡径代減少となって脚軸 12bの十分な圧入寸法を取ることが困難になる。
[0041] 本発明の第 1変形例のトリボード型等速自在継手は以上のように構成され、トリポー ド部材 12の脚軸 12bにローラ 15を装着する場合、図 7のようにつづみ状ころ 16を口 ーラ 15の厚み方向中心から最大限偏位させた状態で配列し、ころ 16の外側端部の 内径 dに向けて脚軸 12bを矢印方向から押し込む。この時、ころ 16の内側端部は互 いに当接し合っているので、内径 dはこれ以上は拡大しない。脚軸 12bの径 Dがころ 16の端部内径 dより大きいため、脚軸 12bの押し込みは圧入となる。脚軸 12bの圧入 後はころ 16が図 1 (A)の位置に収まり、ころ 16相互間に適度の隙間が生まれる。次 に、ローラ 15を外側継手部材 11のトラック溝 13に対してその端部力 挿入することに よりトリボード型等速自在継手 10が出来上がる。
[0042] 次に、本発明の第 2変形例を図 8に基づき説明する。この第 2変形例は、ローラ 15 の内径面 15bを脚軸球面 Sと同曲率の凸 R面とすると共に、この凸 R面の継手中心側 縁部に図 8 (B)に示すように凸 R面よりも***したはみ出し部 15cを形成したものであ る。はみ出し部 15cは、ローラ 15の軸線方向と平行な平面で構成してよい。はみ出し 部 15cは R面取りを経由してローラ 15の端面へと続く。また、互いに離間し合うころ 16 端部 16aの内接円直径 dを、脚軸 12bの球面 S外径より僅かに小さくなるように設定し ている。これにより、つづみ状ころ 16の内側に対する脚軸 12bの挿入が圧入となり、 挿入後はころ 16相互間、およびころ 16と脚軸 12b、ころ 16とローラ 15の間に適度の 隙間が形成され、良好な作動性を確保でき、かつ、ころ 16の脱漏を防止できる。また トリポード部材 12、ローラ 15およびつづみ状ころ 16を安定したアッセンプリ状態での ハンドリングが可能となる。
[0043] 脚軸 12bの横断面形は真円とするほか、図 5 (脚軸 12bは 1本のみ図示)に示すよう に、継手軸線方向の外径 Cと継手円周方向の外径 Dとが異なる非真円とすることが できる。すなわち、脚軸 12bの外径 Cと Dは、前記内接円直径 dに対して C< d< Dの 関係式を満足するように設定することができる。
[0044] さらに、トルク伝達時に脚軸 12bの球面 Sに作用する圧力が継手円周方向に偏在 することに着目して、図 5のように、継手円周方向の中心線 Mから両側所定角度 Θの 範囲内では脚軸 12bの外径を外径 Dと同じにし、角度 2 Θの範囲外では脚軸 12bの 外径を漸減させて外径 Cに滑らかに繋がる形状にしてもよい。前記所定角度 Θは、 例えば 0 =45° (2 0では 90° )以上かつ 75° (2 0では 150° )以下とする。
[0045] トリポード部材 12の脚軸 12bにローラ 15を装着する場合、図 7と同様に、つづみ状 ころ 16をローラ 15の厚み方向中心力 最大限偏位させた状態で配列し、ころ 16の 外側端部の内径 dに向けて脚軸 12bを矢印方向力も押し込む。この時、ころ 16の一 端部は、はみ出し部 15cに当接しているので、内径 dはこれ以上は拡大しない。脚軸 12bの径 Dがころ 16の端部内径 dより大きいため、脚軸 12bの押し込みは圧入となる 。脚軸 12bの圧入後は、ころ 16が図 1 (A)の位置に収まり、ころ 16相互間に適度の 隙間が生まれる。この状態では、はみ出し部 15cはころ 16から離間するので、ころ 16 の転動の妨げにはならない。次に、ローラ 15を外側継手部材 11のトラック溝 13に対 してその端部力も挿入することによりトリボード型等速自在継手 10が出来上がる。
[0046] 次に、本発明の第 2実施形態を図 9〜図 15に基づき説明する。
図面の簡単な説明
[0047] [図 1] (A)は本発明に係るトリボード型等速自在継手の断面図、(B)は同継手のロー ラに対してトリポード部材が傾斜した状態を示す側面図。
[図 2]トリポード部材を脚軸の先端側から見た平面図。
[図 3] (A)はローラを脚軸先端側力も見た平面図、 (B)はローラを継手軸心側力も見 た底面図。
[図 4]トリポード部材の脚軸をローラに圧入する状態を示す断面図。
[図 5]本発明の第 1変形例のトリボード型等速自在継手のトリポード部材を、脚軸の先 端側から見た平面図。
[図 6]ローラを継手軸心側力 見た底面図。 圆 7]トリポード部材の脚軸をローラに圧入する状態を示す断面図。
圆 8]本発明の第 1変形例のトリボード型等速自在継手のローラを示すもので、 (A)は ローラを脚軸先端側カゝら見た平面図、 (B)はローラを継手軸心側から見た底面図。 圆 9]本発明の第 2実施形態におけるトリボード型等速自在継手の軸線に対する横断 面である。
[図 10]トリボード型等速自在継手の軸線に対する縦断面図で、トリポード部材が外側 継手部材に対して作動角をとつた状態を示す。
[図 11]図 10のローラおよび鼓状ころを継手中心側力も見た図である。
[図 12]ローラおよび鼓状ころと脚軸との組み付けを説明するためのもので、(a)は (b) のローラおよび鼓状ころを上から見た図、 (b)はローラおよび鼓状ころを示す断面図
、 (c)は (b)のローラおよび鼓状ころを下から見た図である。
圆 13]トリポード部材の一つの脚軸を軸端側力も見た図である。
圆 14]本発明の変形例を示すもので、脚軸とローラおよび鼓状ころを示す図である。 圆 15]本発明の他の変形例を示すもので、トリポード部材の一つの脚軸を軸端側か ら見た図である。

Claims

請求の範囲
[1] 内周に軸線方向に延びる三本のトラック溝を設けると共に各トラック溝の内側壁に 互いに対向するローラ案内面を設けた外側継手部材と、先端が前記トラック溝内に 挿入された三本の脚軸を有するトリポード部材と、前記脚軸に回転自在に支持される と共に前記外側継手部材のトラック溝に転動自在に挿入されたローラとを備えたトリ ボード型等速自在継手にぉ 、て、
前記脚軸の周面を所定曲率半径の部分球面状にすると共に前記ローラの内径面 を前記所定曲率半径と同曲率の凸 R面とし、前記脚軸周面とローラ内径面との間に、 前記所定曲率半径と同曲率の凹 R面を有するつづみ状ころを円周方向に複数配列 したことを特徴とするトリボード型等速自在継手。
[2] 前記複数のころは、その軸線方向中心位置を前記ローラの最小内径位置よりも継 手軸心方向に偏位させてころの軸線を傾斜させたとき、前記ころの継手中心側一端 部が互いに離間し合うと共に前記ころの継手中心と反対側他端部が互いに当接し合 い、このときの前記離間し合うころ端部の内接円直径 dを、前記脚軸の球面外径より 大きくなるように設定したことを特徴とするトリボード型等速自在継手。
[3] 前記複数のころは、その軸線方向中心位置を前記ローラの最小内径位置よりも継 手軸心方向に偏位させてころの軸線を傾斜させたとき、前記ころの継手中心側一端 部が互いに離間し合うと共に前記ころの継手中心と反対側他端部が互いに当接し合 い、このときの前記離間し合うころ端部の内接円直径 dを、前記脚軸の球面外径より 僅かに小さくなるように設定したことを特徴とする請求項 1のトリボード型等速自在継 手。
[4] 前記脚軸の継手円周方向の外径を D、継手軸線方向の外径を Cとしたとき、 C< D の関係となるように前記脚軸の横断面形を非真円にすると共に、前記ころ端部の内 接円直径 dを、前記外径 Cと Dの中間の大きさに設定したことを特徴とする請求項 3の トリボード型等速自在継手。
[5] 前記脚軸の継手円周方向の外径 Dを脚軸の周方向所定角度範囲で形成すると共 に、前記所定の角度範囲を越えた領域で前記外径 Dを漸減させて前記脚軸の継手 軸線方向の外径 Cに繋げたことを特徴とする請求項 4のトリボード型等速自在継手。
[6] 前記所定の角度範囲を 90° 以上 150° 以下とした事を特徴とする請求項 5のトリ ポ
ード型等速自在継手。
[7] 前記凸 R面は継手中心側縁部に凸 R面よりも***したはみ出し部を形成したことを 特徴とする請求項 1のトリボード型等速自在継手。
[8] 前記つづみ状ころをその継手中心側一端部が前記はみ出し部に当接するまで偏 位させたときのころの一端部の内接円直径 dを、前記脚軸の球面外径より僅かに小さ くなるように設定したことを特徴とする請求項 7のトリボード型等速自在継手。
[9] 前記脚軸の継手円周方向の外径を D、継手軸線方向の外径を Cとしたとき、 C< D の関係となるように前記脚軸の横断面形を非真円にすると共に、前記ころ端部の内 接円直径 dを、前記外径 Cと Dの中間の大きさに設定したことを特徴とする請求項 8の トリボード型等速自在継手。
[10] 前記脚軸の継手円周方向の外径 Dを脚軸の周方向所定角度範囲で形成すると共 に、前記所定の角度範囲を越えた領域で前記外径 Dを漸減させて前記脚軸の継手 軸線方向の外径 Cに繋げたことを特徴とする請求項 9のトリボード型等速自在継手。
[11] 前記所定の角度範囲を 90° 以上 150° 以下とした事を特徴とする請求項 10のトリ ボード型等速自在継手。
[12] 前記脚軸の外周面および前記ローラの内周面をそれぞれ同一曲率半径の凸 R面 とし、前記脚軸の凸 R面をその曲率中心を脚軸中心から外周面側と反対側にオフセ ットさせた軸方向縦断面形状としたことを特徴とする請求項 1のトリボード型等速自在 継手。
[13] 前記鼓状ころの全てをローラの内周面に沿って継手中心側へ変位させることにより 、前記鼓状ころの継手中心側一端部が互いに離間し合うと共に前記鼓状ころの継手 中心と反対側他端部が互いに当接し合う状態で、前記離間し合う鼓状ころの一端部 同士でなす内接径を前記脚軸の外径より僅かに小さくなるように設定した請求項 12 に記載のトリボード型等速自在継手。
[14] 前記ローラの内周面の少なくとも継手中心側縁部に、その凸 R面よりもはみ出した はみ出し部を設けた請求項 13に記載のトリボード型等速自在継手。
[15] 前記脚軸の継手軸線方向の外径を C、継手円周方向の外径を Dとしたとき、 C< D の関係を満足するように前記脚軸の横断面形状を非真円形にすると共に、前記鼓状 ころの一端部の前記内接径を、前記脚軸の外径 Cより大きぐかつ、脚軸の外径 Dよ り小さい範囲に設定したことを特徴とする請求項 12〜14のいずれか一項に記載のト リボード型等速自在継手。
[16] 前記脚軸の継手円周方向の外径 Dにおける脚軸の周方向所定角度範囲を真円形 とし、前記所定角度範囲を超えた領域で前記外径 Dを漸減させて前記脚軸の継手 軸線方向の外径 Cに繋げた請求項 15に記載のトリボード型等速自在継手。
[17] 前記所定角度範囲を 90° 以上とした請求項 16に記載のトリボード型等速自在継 手。
PCT/JP2006/325353 2005-12-28 2006-12-20 トリポード型等速自在継手 WO2007074691A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005-378271 2005-12-28
JP2005377620A JP2007177914A (ja) 2005-12-28 2005-12-28 トリポード型等速自在継手
JP2005378271A JP2007177927A (ja) 2005-12-28 2005-12-28 トリポード型等速自在継手
JP2005378276A JP2007177928A (ja) 2005-12-28 2005-12-28 トリポード型等速自在継手
JP2005-378276 2005-12-28
JP2005-377620 2005-12-28
JP2006038031A JP2007218313A (ja) 2006-02-15 2006-02-15 トリポード型等速自在継手
JP2006-038031 2006-02-15

Publications (1)

Publication Number Publication Date
WO2007074691A1 true WO2007074691A1 (ja) 2007-07-05

Family

ID=38217911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325353 WO2007074691A1 (ja) 2005-12-28 2006-12-20 トリポード型等速自在継手

Country Status (1)

Country Link
WO (1) WO2007074691A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9561845B2 (en) 2007-12-06 2017-02-07 Roller Bearing Company Of America, Inc. Bearing installed on an aircraft structure
US9890814B2 (en) 2014-06-03 2018-02-13 Roller Bearing Company Of America, Inc. Cage for hourglass roller bearings
US10012265B2 (en) 2007-12-06 2018-07-03 Roller Bearing Company Of America, Inc. Corrosion resistant bearing material
US10077808B2 (en) 2013-12-18 2018-09-18 Roller Bearing Company Of America, Inc. Roller profile for hourglass roller bearings in aircraft

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58628A (ja) * 1981-06-01 1983-01-05 グレンツア−・スピ−セル 等速回転3脚継手
JPS61201925A (ja) * 1985-02-28 1986-09-06 ザ・ゼラ−・コ−ポレ−シヨン ユニバ−サル・ジヨイント
JPS6293426U (ja) * 1985-12-04 1987-06-15
JPH10184717A (ja) * 1996-12-26 1998-07-14 Ntn Corp トリポード型等速自在継手及びその製造方法
JP2001234941A (ja) * 2000-02-22 2001-08-31 Ntn Corp 等速自在継手

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58628A (ja) * 1981-06-01 1983-01-05 グレンツア−・スピ−セル 等速回転3脚継手
JPS61201925A (ja) * 1985-02-28 1986-09-06 ザ・ゼラ−・コ−ポレ−シヨン ユニバ−サル・ジヨイント
JPS6293426U (ja) * 1985-12-04 1987-06-15
JPH10184717A (ja) * 1996-12-26 1998-07-14 Ntn Corp トリポード型等速自在継手及びその製造方法
JP2001234941A (ja) * 2000-02-22 2001-08-31 Ntn Corp 等速自在継手

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9561845B2 (en) 2007-12-06 2017-02-07 Roller Bearing Company Of America, Inc. Bearing installed on an aircraft structure
US10012265B2 (en) 2007-12-06 2018-07-03 Roller Bearing Company Of America, Inc. Corrosion resistant bearing material
US10077808B2 (en) 2013-12-18 2018-09-18 Roller Bearing Company Of America, Inc. Roller profile for hourglass roller bearings in aircraft
US9890814B2 (en) 2014-06-03 2018-02-13 Roller Bearing Company Of America, Inc. Cage for hourglass roller bearings

Similar Documents

Publication Publication Date Title
US7357723B2 (en) Tripod type constant velocity joint
WO2007074691A1 (ja) トリポード型等速自在継手
JP2001295855A (ja) 等速自在継手
US20070049380A1 (en) Tripod type constant velocity universal joint
JP2007010086A (ja) 等速自在継手
JP2004144240A (ja) トリポード型等速自在継手
JP4255678B2 (ja) トリポード型等速自在継手
JP2004257418A (ja) トリポード型等速自在継手
JP2007177914A (ja) トリポード型等速自在継手
JP2002327773A (ja) 等速自在継手
JP3874992B2 (ja) 等速自在継手
JP2007177927A (ja) トリポード型等速自在継手
JP4086999B2 (ja) 等速自在継手
JP3913380B2 (ja) 等速ジョイントおよびその組み付け方法
JP3976358B2 (ja) トリポード型等速ジョイント
WO2023047930A1 (ja) トリポード型等速自在継手
JP2006283831A (ja) 等速自在継手
JP2007177928A (ja) トリポード型等速自在継手
JP2007263235A (ja) 等速自在継手
JP2009014179A (ja) トリポード型等速自在継手
JP2007218313A (ja) トリポード型等速自在継手
JP3982863B2 (ja) トリポード型等速ジョイント
JP2001099180A (ja) 等速ジョイント
JP2006266328A (ja) 等速自在継手
JP2008019952A (ja) トリポード型等速自在継手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06842907

Country of ref document: EP

Kind code of ref document: A1