WO2007072906A1 - Method for manufacturing curvature distribution crystal lens, polarization control device, x-ray reflectance measuring device, and x-ray reflectance measuring method - Google Patents

Method for manufacturing curvature distribution crystal lens, polarization control device, x-ray reflectance measuring device, and x-ray reflectance measuring method Download PDF

Info

Publication number
WO2007072906A1
WO2007072906A1 PCT/JP2006/325491 JP2006325491W WO2007072906A1 WO 2007072906 A1 WO2007072906 A1 WO 2007072906A1 JP 2006325491 W JP2006325491 W JP 2006325491W WO 2007072906 A1 WO2007072906 A1 WO 2007072906A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
curvature distribution
ray
single crystal
lens
Prior art date
Application number
PCT/JP2006/325491
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Okuda
Syojiro Ochiai
Kazuo Nakajima
Kozo Fujiwara
Original Assignee
Kyoto University
Tohoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Tohoku University filed Critical Kyoto University
Priority to JP2007551145A priority Critical patent/JP4759750B2/en
Publication of WO2007072906A1 publication Critical patent/WO2007072906A1/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • G21K1/062Devices having a multilayer structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/062Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements the element being a crystal
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/064Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements having a curved surface
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/065Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements provided with cooling means
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/067Construction details

Definitions

  • the present invention relates to a method for manufacturing a curvature distribution crystal lens in which a crystal lattice plane and a crystal surface have independent curved shapes.
  • a method of manufacturing a curvature distribution crystal lens used for X-ray diffraction or the like which is represented by a Johann type or Johansson type crystal lens.
  • the monochromator crystal deformed within the elastic limit is limited in curvature and processing method, and the micrometer requires both high resolution and high brightness. It cannot be used for applications such as beam diffraction.
  • KB mirrors used for microbeam generation in the sense of light condensing elements require highly parallel and high-intensity light such as third-generation radiation for the source itself, and can be used for X-rays in the laboratory. Absent.
  • parabolic mirrors conferencing mirrors
  • confocal mirrors and the like have been manufactured for effective use of the source intensity.
  • these mirrors require special multi-layer deposition technology, so the unit price is nearly 10 million yen and the angle at which they can be captured does not reach 0.3 degrees.
  • there is no alternative technology In addition, many of these mirrors are currently being shipped domestically and abroad.
  • the LiF crystal which is an ionic crystal
  • the LiF crystal can be plastically processed at low temperatures even at room temperature and can be uniformly plastically deformed by heating.
  • a semiconductor single crystal such as Si or Ge
  • elastic deformation has conventionally been performed, and precise plastic deformation has not been specifically realized.
  • Si and Ge single crystal plates are known to be easily cracked when bent, and if they are deformed, they break due to wall breaking and cannot be used as spectroscopic lenses. For this reason, in order to bend a single crystal plate of Si or Ge without cracks, it was only possible to elastically deform a very thin crystal plate with a slight curvature.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-160600 (published on June 7, 1994)
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-014895 (published on January 15, 2003)
  • the present invention has been made in view of the above-described conventional problems.
  • the crystal plane has an arbitrary two-dimensional curvature distribution.
  • the Johann type has a curvature distribution crystal layer including the Johansson type.
  • One object of the present invention is to provide a method of manufacturing a curvature distribution crystal lens capable of efficiently producing a lens.
  • the semiconductor single crystal plate such GaA S conventionally, such have fine plastic deformation is achieved ChikaraTsuta.
  • the present inventors have found that by using the manufacturing method as described above, accurate plastic deformation can be realized by performing high-temperature embossing even on a semiconductor single crystal substrate.
  • the high temperature is a temperature below the melting point or a temperature near the melting point.
  • the melting point is Tm, it is 0.80 times the melting point so that it can be expressed by Tm X 0.80.
  • the curvature distribution can be efficiently performed by using a process that performs the "polishing process” after the "embossing molding process”. It has been found that crystal lenses can be produced.
  • the method of manufacturing a curvature distribution crystal lens according to the present invention includes a semiconductor single crystal plate made of Si, Ge, GaAs or the like sandwiched between embossing members and plastically deformed by high-temperature pressurization.
  • the inclination of the crystal lattice plane of the semiconductor single crystal plate with respect to the crystal surface is left on the surface of the semiconductor single crystal plate so that an offset amount necessary to satisfy Johansson's diffraction condition strictly or approximately is left.
  • a preliminary polishing step for polishing the semiconductor single crystal plate, and the polished semiconductor single crystal plate is sandwiched between stamping members and plastically deformed under high temperature and high pressure so that the surface has different curvatures in two directions. And having a mold forming process to form.
  • the amount of offset necessary to satisfy Johansson's diffraction condition strictly or approximately is approximately a one-dimensional curved surface (a curve is formed in one direction and the direction In a direction perpendicular to the curved surface forming a straight line). Therefore, preliminary research In the polishing process, it is not necessary to cut out a complicated 2D curved surface by cutting out a 1D curved surface from the crystal surface.
  • a curvature distribution crystal lens can be obtained without cutting out a complicated two-dimensional curved surface, so that a curvature distribution crystal lens can be manufactured efficiently.
  • the method of manufacturing a curvature distribution crystal lens according to the present invention includes a semiconductor single crystal plate of Si, Ge, GaAs or the like sandwiched between embossing members and plastically deformed by high-temperature pressurization.
  • the inclination of the crystal lattice plane of the semiconductor single crystal plate to the crystal surface of the semiconductor single crystal plate leaves an offset amount necessary to satisfy Johansson's diffraction condition on one side of the semiconductor single crystal plate.
  • a pre-polishing step for polishing the crystal plate, a convex embossing member having a convex quadratic surface obtained by rotating a condensing circle, and a crystal lattice of the semiconductor single crystal plate to satisfy Johansson's diffraction conditions The polished semiconductor single crystal plate is placed between a concave embossed member having a concave quadric surface with a curvature to be satisfied, and the polished surface becomes a quadratic curved surface of the convex embossed member. Opposite surfaces that are not polished are And an embossing step of plastically deforming at a high temperature and a high pressure.
  • one side of the semiconductor single crystal plate is first subjected to preliminary polishing, and then a convex embossing member having a convex quadratic curved surface obtained by rotating a condensing circle. Is stamped.
  • the preliminary polishing when it is sandwiched between the embossing members and plastically deformed by high-temperature pressurization, the inclination of the crystal lattice plane of the semiconductor single crystal plate with respect to the crystal surface is necessary to satisfy Johansson's diffraction condition. Polished by a certain offset amount. Therefore, after embossing, one surface of the semiconductor single crystal plate becomes a surface along the condensing circle.
  • the surface is formed by a concave embossing member having a concave quadratic surface having a curvature that the crystal lattice must satisfy in order to satisfy Johansson's diffraction conditions. Embossed. Therefore, a semiconductor single crystal plate has a crystal lattice surface force ⁇ Johansson diffraction It will be deformed to meet the requirements.
  • a curvature distribution crystal lens having a complicated shape in which Johansson's diffraction condition is satisfied and the surface is along the condensing circle can be manufactured by two steps of preliminary polishing and stamping.
  • the offset required to satisfy Johansson's diffraction condition is approximately given as a one-dimensional curved surface (a curved surface that forms a curve in one direction and forms a straight line in a direction perpendicular to that direction). It is done. Therefore, in the pre-polishing process, it is not necessary to cut out a complicated two-dimensional curved surface by cutting out a one-dimensional curved surface from the crystal surface.
  • a curvature distribution crystal lens can be obtained without cutting out a complicated two-dimensional curved surface, a curvature distribution crystal lens can be manufactured efficiently.
  • a semiconductor single crystal plate such as Si, Ge, GaAs or the like is sandwiched between embossing members and pressed at a high temperature.
  • An embossing process in which the surface is plastically deformed to have different curvatures in two directions, and the tilt force of the crystal lattice plane on the crystal surface in the plastically deformed single crystal plate is strictly or approximately Johansson And a polishing step for polishing the surface of the semiconductor single crystal plate so as to satisfy the diffraction conditions.
  • the curvature distribution crystal lens can be efficiently produced by two simple processes, ie, an embossing process using an embossing member and a polishing process for polishing the surface of the semiconductor single crystal plate. It is out.
  • the shape of the crystal surface can be reliably controlled so as to satisfy the Johansson diffraction condition strictly or approximately. Therefore, a highly accurate curvature distribution crystal lens can be manufactured.
  • the 333 diffraction line 2 ⁇ is about 90 degrees.
  • the spherical surface may be polished in the above-described polishing step.
  • the polishing process can be simplified, and the curvature distribution crystal lens can be manufactured more efficiently.
  • a low defect density layer is grown on the surface used for X-ray diffraction of the crystal after the embossing step.
  • a single crystal plate having a large bending radius and sufficient mechanical strength can be realized while having good crystallinity.
  • the single crystal plate can have a sufficient crystal thickness that allows surface polishing to satisfy the Johansson condition. This makes it possible to obtain an ideal curvature distribution crystal lens that is almost completely crystalline at the depth of penetration of X-rays.
  • the present inventors have found that the curvature distribution crystal lens as described above can be applied to an X-ray reflectivity measuring apparatus.
  • the X-ray reflectivity is effective as a parameter for evaluating the thickness of an extremely thin insulating film in that the thickness of the thin film can be accurately and quantitatively evaluated even if it is nanometer or less.
  • highly parallel optics using a two-crystal or four-crystal monochromator see "X-ray diffraction / scattering technology (above) Chapter 7 (The University of Tokyo Press) 1992" by Kikuta) The system was used.
  • the conventional technique requires a minimum of several hours to measure the X-ray reflectivity.
  • the present invention provides an X-ray reflectivity measuring apparatus and an X-ray reflectivity measuring method capable of efficiently using X-rays and measuring X-ray reflectivity at high speed. This is one of the purposes.
  • the X-ray source Si, Ge, and is plastically deformed by hot embossing of a semiconductor single crystal plate such as GaA S A crystal lens comprising a curvature distribution crystal lens that satisfies the following conditions (1) or (2) and a position sensitive detector! / Speak.
  • a semiconductor single crystal plate such as GaA S A crystal lens comprising a curvature distribution crystal lens that satisfies the following conditions (1) or (2) and a position sensitive detector! / Speak.
  • the crystal lattice plane has a curvature distribution that satisfies the point convergence condition or the line convergence condition, and the crystal lattice plane and the lens surface are parallel to each other;
  • Both the crystal lattice plane and the lens surface have a curvature distribution that satisfies the point convergence condition or the line convergence condition.
  • the X-ray generated from the X-ray generation source can be diffracted by the curvature distribution crystal lens, and the sample can be irradiated with the diffracted X-ray.
  • the intensity of the X-ray reflected from the sample can be detected by a position sensitive detector.
  • the position sensitive detector includes, for example, a photostimulable film such as PSPC, IP (Imaging Plate), CCD (Charge Coupled Device), PD (PhotoDiode) -array, and the like.
  • a photostimulable film such as PSPC, IP (Imaging Plate), CCD (Charge Coupled Device), PD (PhotoDiode) -array, and the like.
  • the curvature distribution crystal lens is obtained by plastically deforming a single crystal plate of Si, Ge or the like by high-temperature embossing, and satisfies the above (1) or (2). According to the curvature distribution crystal lens having such a configuration, the conditions of the Johansson or Johann diffraction crystal are strictly satisfied over the angular range, and light can be condensed at a wide angle.
  • X-rays are irradiated to the curvature distribution crystal lens at a wide angle, and wide at the sample position. It is possible to collect light with a wide width, and it is possible to simultaneously measure the X-ray reflectivity of the sample in a wide angular range at high speed. In addition, since no synchrotron radiation is required to measure the X-ray reflectivity, measurements can be made as needed when required in the laboratory, and the light generated from the X-ray source can be used. In addition to improved efficiency, X-ray reflectivity can be measured without being limited by the resolution of the energy-resolved detector.
  • a curvature distribution crystal lens having a two-dimensional curved surface is used.
  • X-rays can be converged to a point at the sample position, and the X-ray reflectivity can be measured.
  • the curvature distribution crystal lens used when a linear light source is used as the X-ray generation source when cut along a plane perpendicular to the axis extending the X-ray generation source, the cut surface is always the same Johansson type Or it has Johann type monochrome shape.
  • X-rays generated from a linear X-ray generation source can be condensed linearly by the curvature distribution crystal lens. Therefore, it is possible to measure a wide range of the sample with the position sensitive detector at the same time.
  • an X-ray generated from the X-ray source, Si, Ge, a semiconductor single crystal plate such GaA S hot A crystal lens plastically deformed by embossing, diffracted by a curvature distribution crystal lens that satisfies the above conditions (1) or (2), and the diffracted X-ray is measured for X-ray reflectivity. It is characterized by being guided to the target sample and measuring the intensity of the X-ray reflected by the sample with a position sensitive detector.
  • FIG. 1 is a diagram for explaining an outline of a production method according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an embossing process in an embodiment of a manufacturing method according to the present invention.
  • FIG. 3 (a) is a diagram for explaining an offset amount remaining on the crystal surface.
  • FIG. 3 (b) is a diagram for explaining a circle formed by the offset amount.
  • FIG. 4 (a) is a diagram showing the configuration of a symmetrically distributed curvature distribution crystal lens in which the X-ray generation source and the focal point are arranged symmetrically.
  • FIG. 4 (b) is a diagram showing a configuration of an asymmetrically arranged curvature distribution crystal lens in which an X-ray generation source and a condensing point are arranged to be asymmetric.
  • FIG. 4 (c) is a diagram showing a cut shape in the yz plane of the curvature distribution crystal lens.
  • FIG. 5 (a) This is a graph showing the amount of offset necessary to satisfy Johansson's diffraction condition when the radius R of the focal circle is 100 mm.
  • FIG. 5 (b) This is a graph showing the amount of offset necessary to satisfy Johansson's diffraction condition when the radius R of the focal circle is 300 mm.
  • FIG. 5 (c) This is a graph showing the amount of offset required to satisfy Johansson's diffraction condition when the radius R of the focal circle is 600 mm.
  • FIG. 6 is a diagram showing a crystal surface and a crystal lattice plane of a curvature distribution crystal lens.
  • FIG. 7 (a) is a view showing a configuration of an upper boat used in an embossing process in another embodiment of the manufacturing method according to the present invention.
  • FIG. 7 (b) is a view showing a configuration of a lower boat used in an embossing process in another embodiment of the manufacturing method according to the present invention.
  • FIG. 8 is a diagram showing the evaluation results of the deformation state of Si (100) single crystal when the thickness and temperature are changed.
  • FIG. 9 is a view showing the evaluation results of the deformation state when the thickness and temperature of the Si (111) single crystal are changed.
  • FIG. 10 (a) is a yx plan view and a zx plan view showing another configuration of the curvature distribution crystal lens obtained by the method of manufacturing a curvature distribution crystal lens of the present invention.
  • FIG. 10 (b) is a perspective view showing the configuration of the curvature distribution crystal lens shown in FIG. 10 (a).
  • FIG. 11 (a) is a diagram showing a configuration of a conventional polarization control device.
  • FIG. 11 (b) is a diagram showing a configuration of a polarization control device using a curvature distribution crystal lens obtained by the method of manufacturing a curvature distribution crystal lens of the present invention.
  • FIG. 12 is a diagram showing a configuration according to an embodiment of the X-ray reflectivity measuring apparatus of the present invention.
  • FIG. 13 is a diagram showing two arrangements of position sensitive detectors in the X-ray reflectivity measuring apparatus of FIG.
  • FIG. 14 is a diagram showing a configuration when the X-ray reflectivity measuring apparatus of FIG. 12 is viewed from the upper side of the drawing.
  • FIG. 15 is a diagram showing a configuration of an X-ray reflectivity measuring apparatus using the curvature distribution crystal lens of FIGS. 10 (a) and 10 (b).
  • FIG. 16 (a) is a diagram showing a configuration of a conventional X-ray reflectivity measuring apparatus.
  • FIG. 16 (b) is a diagram showing another configuration of a conventional X-ray reflectivity measuring apparatus.
  • the present invention realizes a novel X-ray reflectivity measuring apparatus using a curvature distribution crystal lens (see PCTZJP20 05Z15442 specification) that has already been filed by the applicants. Therefore, first, a manufacturing method and configuration of a curvature distribution crystal lens used in the X-ray reflectivity measuring apparatus of the present invention will be described. [0053] First, the inventors of the present invention experimentally applied a load to a crystal plate having a high yield stress such as Si at a temperature below the melting point of the crystal entirely or locally, We have obtained the knowledge that by performing plastic deformation, it is possible to produce a curvature distribution crystal lens having a curvature distribution where the crystal lattice plane satisfies the point convergence condition or the line convergence condition.
  • the inventors applied a load to a crystal plate having a high yield stress such as Si, entirely or locally, at a temperature near the melting point of the crystal, and plastically deforming the crystal plate, thereby producing a crystal lattice plane. It was also found that a complete curvature distribution crystal lens having a curvature distribution satisfying the point convergence condition or the line convergence condition can be produced.
  • the temperature below the melting point of the crystal means a heating temperature from the temperature at which plastic deformation of the crystal plate starts (1 120 ° C. in the case of Si) to just before the temperature at which partial melting starts at the time of pressurization.
  • the temperature near the melting point of the crystal refers to the heating temperature at which a complete hemispherical convex portion is obtained, that is, the heating temperature at which a complete curvature distribution crystal lens having a predetermined curvature can be produced. Refers to the heating temperature from 280 ° C (or 0.80 times the melting point) below the melting point of the crystal to just before the temperature at which partial dissolution begins upon pressurization.
  • the temperature at which the partial melting starts, the temperature at which plastic deformation begins, and the temperature near the melting point of the crystal differ depending on the crystal material to be processed.
  • the Si single crystal lens constituting the hemispherical convex portion is plastically deformed while maintaining the original single crystal state of the crystal lattice. Therefore, it has a crystal lattice plane (parallel) along the curved surface shape of the surface.
  • a curvature distribution crystal lens using other surfaces can be similarly produced, for example, Si (l l l) single crystal.
  • a semiconductor single crystal plate such as Ge, SiGe, or GaAs can be used as a material for the crystal plate.
  • the production method of the present invention includes oxides such as MgO, Al 2 O, and SiO, and metals such as LiF and NaCl.
  • a curvature distribution crystal is obtained by using a crystal plate in which a thin film crystal made of one or more of compound semiconductors such as Si, Ge, SiGe, and GaAs is deposited on the surface of the crystal plate.
  • a lens may be produced.
  • the curvature distribution crystal lens molded as described above By making a combination of polishing and high-temperature deformation molding, both the lens surface and the crystal lattice plane can be formed to have a curvature distribution that satisfies the point convergence condition or the line convergence condition.
  • FIG. 1 An embodiment relating to a method of manufacturing a curvature distribution crystal lens according to the present invention will be described.
  • the outline of the manufacturing method of the present embodiment will be described.
  • two steps of (A) pre-polishing a high yield stress crystal and (B) embossing a two-dimensional curved surface are performed.
  • a curvature distribution crystal lens can be manufactured. Details of these two steps will be described below.
  • the X axis is set in the plane direction of the crystal plate forming the material of the curvature distribution crystal lens, and the y axis is set in the direction perpendicular to the plane in which the X axis is set.
  • (X, y) (0, 0) is set at the center of the crystal plate, and the coordinates of the surface of the crystal plate are expressed as coordinates (X, y).
  • the above-described offset amount is expressed as y (x).
  • is the inclination of the crystal lattice plane from the crystal surface, as shown in FIG. 3 (b).
  • R is the radius of the focal circle.
  • the focal circle refers to the crystal surface of the curvature distribution crystal lens, the light source position (point A in Fig. 4 (a) and Fig. 4 (b)), and the focusing position (see Fig. 4 (a) and (b)).
  • the amount of offset required to satisfy Johansson's diffraction condition can be reduced. Can be left in.
  • the curvature distribution crystal lens when creating an asymmetrically arranged curvature distribution crystal lens in which the X-ray generation source and the light collection point are asymmetric (see Fig. 4 (b)), a large When creating a crystal lens, the crystal plate may be ground so that y (X) obtained as a solution of Equation (1) remains on the crystal plate.
  • the inventors can leave the amount of offset necessary to satisfy Johansson's diffraction condition on the crystal surface by grinding a cylindrical surface with a radius of 2R with respect to the crystal plate. For confirmation, the data shown in FIGS. 5 (a) to 5 (c) were obtained.
  • FIGS. 5 (a) to 5 (c) show the case where the solution of the differential equation of the above equation (1) is set as the offset amount, the case where the circle of radius 2R is set as the offset amount, and This is an examination of the degree of error that occurs when the difference in height between the circle with radius R and the circle with radius 2R is set as the offset amount.
  • Fig. 5 (a) is a graph when the radius R of the focal circle is 100mm
  • Fig. 5 (b) is a graph when the radius R of the focal circle is 300mm
  • (c) is a graph when the radius R of the focal circle is 600 mm.
  • the vertical axis represents the depth of the crystal plate, which corresponds to the y-coordinate value in FIG. 3 (a).
  • the horizontal axis is the distance of the central force of the crystal plate and corresponds to the value of the X coordinate in FIG. 3 (a).
  • 5 (a) to 5 (c) indicates a circle with a radius of 2R set as the offset amount, and the point plotted as "EXACT” is the differential equation of the above equation (1).
  • the dashed line labeled “Delta (2R-R)” shows the difference in height between the circle with radius R and the circle with radius 2R.
  • the offset amount does not strictly follow the solution of the differential equation (1). It can be seen that it can be set as a simple circle with a radius of 2R. Therefore, by grinding a cylindrical surface with a radius of 2R against the crystal plate, the amount of offset necessary to satisfy Johansson's diffraction condition remains on the crystal surface. It can be said that it can be done.
  • the crystal plate subjected to the above-described pre-polishing process is subjected to two-dimensional curved surface embossing, and a curvature distribution crystal lens whose surface has different curvatures in two directions (curvature distribution crystal having a curved surface defined by RH) Lens) is completed.
  • the R--H curved surface means that the inclination of the crystal lattice plane with respect to the crystal surface is a point at each point P (0) on the crystal lattice plane of the curvature distribution crystal lens. It means a curved surface perpendicular to the straight line connecting P (0) and the point X. If such a relationship is satisfied with respect to the tilt of the crystal lattice plane, it can be said that the tilt of the crystal lattice plane satisfies Johansson's diffraction condition.
  • an upper boat (concave mold pressing member) and a lower boat (convex mold pressing member) shown in FIG. 2 are used.
  • These upper boat and lower boat are made of carbon, and a single-crystal wafer such as Si (100) or Si (111) is sandwiched between them, and a curved surface is processed into the single-crystal ware by pressurizing.
  • a curved recess is formed on the lower surface of the upper boat (recessed pressing member).
  • This curved surface has different curvatures in two directions orthogonal to each other. That is, the radius of curvature is 2R with respect to the first direction ( ⁇ ′ direction), and the radius of curvature is H with respect to the second direction (y ′ direction) orthogonal to the first direction.
  • the lower surface of the upper boat is a quadric surface with a curvature that the crystal lattice must satisfy in order to satisfy Johansson's diffraction condition.
  • a curved projection (convex portion) is formed on the upper surface of the lower boat (convex embossing member).
  • This curved surface also has different curvatures in two directions orthogonal to each other. That is, the radius of curvature is R (that is, the radius of the condensing circle) with respect to the first direction ( ⁇ ′ direction), and the second direction (y ′ direction) orthogonal to the first direction. ) And the radius of curvature is H.
  • the upper surface of the lower boat is a quadric surface obtained by rotating a part of a circle with a radius of curvature R (that is, a condensing circle) with a radius of curvature H.
  • a release agent is applied to the lower surface of the upper boat and the upper surface of the lower boat, and the annealing process is performed at a high temperature. After that, a Si single crystal plate is sandwiched between the upper and lower boats that have been annealed and placed in a vertical furnace. Note that the mold release agent is applied to the semiconductor It may be omitted depending on the material of the crystal plate and the molding conditions.
  • the Si single crystal plate is pre-polished on one surface to form a cylindrical surface with a radius of curvature 2R.
  • the cylindrical surface of the Si single crystal plate is placed in contact with the upper surface of the lower boat.
  • the Si single crystal plate is made of the upper boat so that the axial direction of the cylindrical surface of the Si single crystal plate coincides with the second direction (y ′ direction) of the upper boat and the lower boat. And the lower boat.
  • a surface protective film having little impurities against heat such as a release agent may be applied to the entire surface or a part of the surface of the Si single crystal plate.
  • a metal push rod is placed at the top of the furnace, and by operating this push rod with an external force, a load is applied to the upper surface of the upper boat, and deformation of the Si single crystal plate is performed. Now that you can give the power you need!
  • the Si single crystal plate has a radius of curvature H with respect to the axial direction of the cylindrical surface formed in the preliminary polishing step. Deformed.
  • the Si single crystal plate is pre-polished in a direction perpendicular to the axial direction of the cylindrical surface, and the surface becomes a curved surface with a radius of curvature 2R, and the pre-polished surface is a circle with a radius of curvature R ( In other words, it becomes a quadratic surface with the condensing circle) rotated.
  • the crystal lattice surface in the direction perpendicular to the axial direction, is curved with a radius of curvature 2R, and the ground surface is curved with a radius of curvature R, along the condensing circle.
  • the crystal surface and the crystal lattice plane are curved in one direction with curvatures R and 2R, respectively, and are curved with a curvature H in a direction perpendicular to the direction.
  • the concave quadric surface on the lower surface of the upper boat defines the shape of the crystal lattice plane.
  • the convex quadric surface on the upper surface of the lower boat defines the shape of the surface of the single crystal plate.
  • a crystal plate surface is obtained by plastically deforming the crystal plate by applying an overall or local load to the crystal plate having a high yield stress such as Si.
  • a curvature distribution crystal lens having a curvature distribution that satisfies the point convergence condition or the line convergence condition can be manufactured.
  • the crystal lattice plane is subjected to a point convergence condition by applying a load to the crystal plate with high yield stress such as Si, entirely or locally, and plastically deforming the crystal plate.
  • a complete curvature distribution crystal lens having a curvature distribution that satisfies the line convergence condition can be manufactured.
  • the temperature below the melting point of the crystal means a heating temperature from a temperature at which plastic deformation of the crystal plate starts (1 120 ° C. in the case of Si) to just before a temperature at which partial melting starts at the time of pressurization.
  • the temperature near the melting point of the crystal is a heating temperature at which a curved convex portion is obtained, that is, a heating temperature at which a complete curvature distribution crystal lens having a predetermined curvature can be produced.
  • the heating temperature from 280 ° C below the melting point of the crystal to just before the temperature at which partial dissolution starts during pressurization.
  • the temperature at which partial melting starts, the temperature at which plastic deformation begins, and the temperature near the melting point of the crystal differ depending on the crystal material to be processed.
  • the Si single crystal constituting the curved convex portion is plastically deformed while maintaining the original single crystal state of the crystal lattice. It has a (parallel) crystal lattice plane along the curved surface shape of the surface.
  • a curvature distribution crystal lens using other surfaces can be similarly produced, for example, Si (111) single crystal.
  • the pre-polished crystal plate is embossed to complete a curvature distribution crystal lens having a curved surface defined by RH.
  • the advantage of the method of manufacturing a curvature distribution crystal lens which is a two-step process of (A) pre-polishing a high yield stress crystal and (B) embossing a two-dimensional curved surface, is that the pre-polishing step is one-dimensional. It is a point that only polishing processing of the curved surface is required. In other words, in producing a curvature distribution crystal lens, it is not necessary to cut out a complicated two-dimensional curved surface.
  • the advantage of manufacturing method 1 is that it can be manufactured.
  • the hemispherical Si single crystal plate is embossed using the upper boat and the lower boat as examples of the embossing member used in the embossing molding process shown in FIGS. 7 (a) and 7 (b). .
  • the embossing method is the same as in manufacturing method 1.
  • the lower boat is formed with a curved depression (concave portion).
  • the upper boat is formed with a curved projection (convex portion) that fits in the recess of the lower boat with a slight margin.
  • the curved surface shape of the concave portion or the convex portion may be a hemispherical shape, a cylindrical surface, or a curved surface defined by RH.
  • the cylindrical surface shape is suitable for manufacturing a curvature distribution crystal lens that satisfies the line convergence condition.
  • the curved surface defined by R—H is suitable for manufacturing a curvature distribution crystal lens whose X-ray diffraction angle is not 90 °.
  • a curved surface defined by 2R ( ⁇ ) —H that is, a curvature distribution crystal lens having different curvatures in two directions can be obtained by such an embossing process using an upper boat and a lower boat.
  • the curved surface defined by 2R ( ⁇ ) —H has the shape described below.
  • the position of the X-ray generation source is point A
  • the condensing point of the curvature distribution crystal lens is point B.
  • R be defined as the radius of the circle that passes through the crystal surface of the curvature distribution crystal lens, point A, and point B obtained by the above-described die-molding process.
  • the curvature distribution crystal lens has a curved surface defined by 2R ( ⁇ ) —H, that is, the radius of curvature of the crystal lattice plane is 2R (0), and the cutting shape force point A in the yz plane and Form an arc with radius H perpendicular to the straight line connecting the point B with the curvature distribution crystal lens It has a curved surface shape (see Fig. 4 (c)).
  • the description will be made based on whether or not the radius of curvature of 2R (0) is a reasonable parameter.
  • the perpendicular bisector of the string connecting point A and point B intersects the focal circle at two points. Of these two intersections, the point formed on the opposite side of the curvature distribution crystal lens is shown as point X in Fig. 4 (a).
  • the radius of curvature 2R (0) is defined as the length of the line segment connecting each point ⁇ ( ⁇ ) and the point X on the crystal lattice plane of the curvature distribution crystal lens.
  • the radius of curvature 2R (0) is It is equal to the diameter 2R.
  • the surface of the curvature distribution crystal lens is polished so as to have a curved surface having a curvature force R—H of the curvature distribution crystal lens obtained by the above-described embossing molding.
  • the curvature distribution crystal lens As an instrument used for polishing the curvature distribution crystal lens as described above, a tool used for normal crystal polishing can be used.
  • the curvature distribution crystal lens may be polished by an NC cage using a diamond compound for polishing.
  • the curvature distribution crystal lens may be polished mechanically or chemically using polishing powder such as ceria.
  • the advantage of the method of manufacturing a curvature distribution crystal lens that has the two-step power of (A) two-dimensionally embossing a crystal with high yield stress and (B) polishing the two-dimensional curved surface after the die-molding is Since the surface of the single crystal plate is polished after the embossing process, the shape of the crystal surface can be reliably controlled to meet the Johansson diffraction condition strictly or approximately. That is, a highly accurate curvature distribution crystal lens can be manufactured.
  • the 333 diffraction line 2 ⁇ is about 90 degrees. .
  • the spherical surface may be polished in the above-described polishing step. As a result, the polishing process can be simplified, and the curvature distribution crystal lens can be manufactured more efficiently.
  • the semiconductor single crystal plate is changed by heating and pressing.
  • the present inventors have found through experiments that a temperature below the melting point of the crystal or a temperature near the melting point of the crystal is suitable.
  • the temperature below the melting point of the crystal refers to the heating temperature from the temperature at which plastic deformation of the crystal plate begins (1120 ° C for Si) to just before the temperature at which partial melting starts during pressurization.
  • the temperature near the melting point of the crystal refers to the heating temperature at which a complete hemispherical convex part is obtained, that is, the heating temperature at which a complete curvature distribution crystal lens having a predetermined curvature can be produced.
  • the heating temperature from a temperature of 280 ° C below the melting point of the crystal to just before the temperature at which partial dissolution begins upon pressurization.
  • the temperature at which the partial melting starts, the temperature at which plastic deformation begins, and the temperature near the melting point of the crystal differ depending on the crystal material to be processed.
  • FIG. 8 is a diagram showing the evaluation results of the deformation state of the Si (lOO) single crystal when the thickness and temperature are changed.
  • indicates that the desired shape was completely obtained by plastic deformation
  • indicates that almost the desired shape was obtained by plastic deformation
  • indicates that the surface was melted. It is shown that.
  • the Si (100) single crystal is most preferably in the range of 55 to 27 ° C. below the melting point.
  • FIG. 9 is a diagram showing the evaluation results of the deformation state of the Si (ll l) single crystal when the thickness and temperature are changed.
  • the Si (111) single crystal is most preferably in the range of 57-25 ° C. below the melting point.
  • the plastic deformation in question can be stably realized as a characteristic of the curvature distribution crystal lens at a temperature 100 to 2 ° C lower than the melting point.
  • Fig. 4 (a) is a diagram showing a configuration in which the curvature distribution crystal lens is arranged so that the X-ray generation source and the condensing position are symmetrical with respect to the curvature distribution crystal lens.
  • 4 (b) is a diagram showing a configuration in which the curvature distribution crystal lens is arranged so that the X-ray generation source and the condensing position are asymmetric with respect to the curvature distribution crystal lens.
  • Sarako, Fig. 4 (c) is a diagram for explaining the curvature of the curvature distribution crystal lens.
  • the curvature distribution crystal lens obtained by the manufacturing method 1 or the manufacturing method 2 described above is flat with respect to the light source position A and the condensing position B, as shown in FIGS. 4 (a) and 4 (b).
  • ABC it has a Johansson type monochrome shape, and as shown in Fig. 4 (c), it has a radius of curvature H in the z direction.
  • Such a curvature distribution crystal lens having a quadric surface is sometimes referred to as a “two-dimensional Johansson crystal”.
  • the conditions of Johansson's diffraction crystal are strictly satisfied over a wide angle range, and light can be condensed at a wide angle.
  • the 333 diffraction line 2 ⁇ is about 90 degrees with respect to the CuKa characteristic X-ray, and condensing at a wide angle is realized. . If 1 1 1 reflection or 220 reflection is used, it is also possible to achieve light collection with a more linear optical system.
  • the curvature distribution crystal lens may be formed linearly without having a curvature in the z direction. That is, as shown in Fig. 10 (b), when the curvature distribution crystal lens is cut along a plane perpendicular to the axis along which the linear X-ray generation source extends, the cut surface always has the same Johansson type or Johann type monochrome. It may be formed to have a shape! /
  • the offset amount y (X) needs to be set so as to satisfy the following formula for the preliminary polishing step described above.
  • the crystal is plastically deformed at high temperature and pressure.
  • the lattice plane which is originally a flat surface is bent and plastically deformed into a curved surface.
  • the amount of strain due to bending plastic deformation is inversely proportional to the radius of curvature of the crystal and proportional to the thickness of the substrate.
  • dislocations corresponding to the deformation due to bending plastic deformation exist in the crystal as an equilibrium state.
  • the amount of dislocations in this crystal is a very large value of 10 7 cm 2 in a crystal with a radius of curvature of several centimeters.
  • the X-ray diffraction half-width at this dislocation density becomes extremely high compared to a perfect crystal.
  • the surface used for X-ray diffraction (concave surface) after deformation by high-temperature pressurization processing, that is, after embossing using the upper boat and the lower boat.
  • an ideal diffractive lens crystal that is almost perfect at the depth of penetration of X-rays can be obtained.
  • This epitaxial growth may be realized by vapor phase or liquid phase growth on the crystal surface, or after the crystal surface is melted using lamp annealing, the low defect density layer is regrown. Also good.
  • the maximum amount of strain due to bending deformation is the value tZ2R depending on the layer thickness t and the radius of curvature R.
  • the amount of strain at the surface of the crystal once created by high-temperature plastic deformation is the value obtained by subtracting the amount of strain due to flexural elastic deformation and the amount of relaxation due to the amount of dislocation in the crystal, leaving almost no elastic strain component. Value.
  • the crystal has a sufficient crystal thickness that has a large bend radius and sufficient mechanical strength while having good crystallinity, and is capable of polishing a surface that satisfies Johansson conditions. It is possible to produce a Johansson crystal having a thickness.
  • the Cu ⁇ ; characteristic X-ray is 2 ⁇ force 0 ° under Ge333 diffraction condition.
  • X-rays emitted from the X-ray source S and having a completely random electric field vector in the yz plane can be expressed as follows: The intensity changes by the sin2 ⁇ polarization factor for each diffraction.
  • X-rays with an electric field vector in the direction parallel to the z-axis have the same intensity after being diffracted n times, but are directed in a direction inclined by ⁇ from the z-axis to the Y-axis.
  • X-rays having an electric field vector had after n times of diffraction, no strength force of sin n phi, 90 ° direction (y-direction), the intensity 0 ⁇ Konaru.
  • linearly polarized X-rays in the Z-axis direction can be created by repeated reflection.
  • the channel cut crystal is used, among the X-ray generation source S, the angular width of the X-ray transmitted by this repeated reflection is very small. In other words, only a part of the X-rays emitted in all directions, for example, X-rays with an angle width of 0.01 degrees or less are extracted and polarization control is performed.
  • the X-ray intensity is more than 100 times that of the prior art depending on conditions.
  • the X-ray electric and magnetic field vectors are always in the yz plane.
  • the X-ray reflectivity measuring apparatus 1 includes a curvature distribution crystal lens 2, an X-ray generation source 3, a divergence angle control slit 4, a shaping slit 5, and an optical adjustment blade 6. And a position sensitive detector 7.
  • a stimulable film such as PSPC, IP (Imaging Plate), CCD (Charge Coupled Device), PD (PhotoDiode) -array or the like can be used. That is, in the present specification, the position sensitive detector 7 includes a PSPC, a stimulable film such as IP (Imaging Plate), and a CCD (Charge Coupled Device) DevicePD (PhotoDiode) -array.
  • the divergence angle in the xy plane of the X-ray irradiated from the X-ray generation source 3 is defined by the divergence angle control slit 4. Thereafter, the X-ray is diffracted by the curvature distribution crystal lens 2 (refer to FIGS. 4 (a) to 4 (c) depending on the lens configuration).
  • the X-ray diffracted by the curvature distribution crystal lens 2 is shaped by the shaping slit 5 and is incident on the condensing position on the sample.
  • the X-ray reflected from the sample then enters 7 position sensitive detectors.
  • the optical adjustment blade 6 prevents ambient light other than X-rays reflected on the sample from entering the position sensitive detector 7.
  • the position sensitive detector 7 is movable in the xy plane between two positions, a reflectance measurement arrangement and an incident light intensity distribution measurement arrangement.
  • the sample is retracted from the measurement position and the position sensitive detector 7 is moved to the incident light intensity distribution arrangement.
  • the X-rays irradiated from the X-ray generation source 3 and diffracted by the curvature distribution crystal lens 2 are directly incident on the position sensitive detector 7.
  • the X-ray intensity distribution can be known from the X-rays directly incident on the position sensitive detector 7 .
  • an attenuator 8 may be provided before the position sensitive detector 7 in order to adjust the intensity of X-rays incident on the position sensitive detector 7 in accordance with the performance of the detector.
  • the sample is moved to the measurement position, and the position sensitive detector 7 is moved to the reflectance measurement arrangement. This allows the position sensitive detector 7 to measure the reflectivity of the X-rays reflected on the sample. It becomes possible to do.
  • FIG. 14 shows a state where the X-ray reflectivity measuring apparatus 1 having the above configuration is viewed from the upper surface (upper side of the paper in FIGS. 12 and 13). As shown in FIG. 14, the X-rays emitted from the X-ray generation source 3 are collected on the sample by the curvature distribution crystal lens 2 and then enter the position sensitive detector 7.
  • the X-ray reflectivity measuring apparatus 1 configured as described above, since the curvature distribution crystal lens 2 is used, the X-rays irradiated from the X-ray generation source 3 are condensed on the sample with a wide angle of capture. Can be performed. Therefore, it is possible to measure the X-ray reflectivity at high speed because the X-ray reflectivity in a wide angle range can be measured at a time by setting the X-ray incident angle to the sample widely. Become.
  • the X-ray reflectivity measuring apparatus 1 having the above-described configuration can condense X-rays emitted from the X-ray generation source 3 in the xy plane by the curvature distribution crystal lens 2 (see FIG. 12), and can be focused even in the xz plane (see Fig. 14).
  • the X-ray reflectivity measuring apparatus 1 can collect two-dimensional X-rays by the curvature distribution crystal lens 2 and is therefore suitable for irradiating a minute portion of the sample with X-rays. It can be said that it is a simple configuration.
  • the X-ray reflectivity measuring apparatus 1 described above can be used for comparatively large samples by changing the configuration of the curvature curvature crystal lens 2 that was suitable for irradiating a minute portion of the sample with X-rays.
  • X-ray reflectivity can be measured using a linear beam that can drive the X-ray generator with high output. Therefore, in the following, after describing the configuration of a curvature distribution crystal lens suitable for irradiating a large sample with X-rays, the configuration of an X-ray reflectivity measuring apparatus using the curvature distribution crystal lens will be described. To do.
  • the curvature distribution crystal lens 10 has Johansson in the plane ABC with respect to the light source position A and the condensing position (focal line) B, which are linear X-ray generation sources. It has the shape of a mold or Johann type monochrome. This is the same as the configuration of the curvature distribution crystal lens described with reference to Fig. 4 (a).
  • FIG. 15 shows the configuration of the X-ray reflectivity measuring apparatus 11 using the curvature distribution crystal lens 10 described above.
  • the X-ray reflectivity measuring device 11 includes a curvature distribution crystal lens 10, a linear X-ray generation source 12, an intake slit 13, a shaping slit 14, a position sensitive detector 7, It is equipped with.
  • the X-rays irradiated from the X-ray generation source 12 are cut out only at a required capture angle through the capture slit 13, and the curvature distribution is obtained. Guided to crystal lens 10. Then, the X-ray diffracted by the curvature distribution crystal lens 10 is shielded and shaped by the shaping slit 14 so that the diffracted rays having poor quality at the periphery of the crystal lens are incident on the light converging position on the sample. Then, the X-ray reflected from the sample enters the position sensitive detector 7.
  • the position sensitive detector 7 in the X-ray reflectivity measuring apparatus 11 is movable between two positions: a reflectance measurement arrangement and an incident light intensity distribution measurement arrangement.
  • a reflectance measurement arrangement and an incident light intensity distribution measurement arrangement the X-ray reflectance measurement device shown in Fig. 13 is used according to the reflectance measurement and the X-ray intensity distribution. Move as in 1.
  • X-rays generated from the linear X-ray generation source 12 are linearly collected on the sample by the curvature distribution crystal lens 10 (See Figure 10 (b) and Figure 15). Concentrating X-rays in this way makes it possible to quickly scan a wide range of samples. Therefore, it can be said that the X-ray reflectivity measuring apparatus 11 is suitable for irradiating a large sample with X-rays.
  • the curvature distribution crystal lens manufactured as described above can be applied to various X-ray apparatuses.
  • the curvature distribution crystal lens has a monochromator function that separates only specific X-rays from an X-ray generator having a point-like X-ray generation source.
  • X-rays can be captured at a large solid angle, so that the light is condensed to a size equivalent to the size of the X-ray generation source. Can do.
  • the curvature distribution crystal lens manufactured as described above includes an ultra-bright X-ray diffraction 'scattering device, an ultra-compact X-ray diffractometer, a high-brightness X-ray fluorescence analyzer, and a polarized X-ray.
  • Photoelectron content The present invention can be applied to an optical device or a photoelectron microscope device.
  • the present invention can be used in quality control of ultra-thin films in industries that require high-speed evaluation of the thickness of sub-nanometer thin films, for example, factories.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

In a prepolishing step, one side of a semiconductor single crystal plate is polished so that, when a semiconductor single crystal plate of Si, Ge, GaAs or the like is inserted in an embossing member followed by plastic deformation under high temperature and high pressure conditions, the inclination of the crystal lattice face to the crystal surface satisfies Johansson diffraction conditions. The semiconductor single crystal plate is held between a protruded pressing member having such a protruded quadratic curve that a light focusing circle has been rotated, and a recessed pressing member having a recessed quadratic curve having a curvature to be satisfied by the crystal lattice of the semiconductor single crystal plate for satisfying Johansson diffraction conditions. In this case, the semiconductor single crystal plate is held so that the polished plane faces the protruded pressing member in its quadratic curve, and the nonpolished plane faces the recessed pressing member in its quadratic curve, followed by plastic deformation under high temperature and high pressure conditions. According to the above constitution, a curvature distribution crystal lens can be efficiently prepared.

Description

明 細 書  Specification
曲率分布結晶レンズの製造方法、偏光制御装置、 X線反射率測定装置 および X線反射率測定方法  Method of manufacturing curvature distribution crystal lens, polarization control device, X-ray reflectivity measuring device, and X-ray reflectivity measuring method
技術分野  Technical field
[0001] 本発明は、結晶格子面と結晶表面が独立な曲面形状を持つような曲率分布結晶レ ンズの製造方法に関する。本発明の応用分野の一例として、 Johann (ヨハン)型また は Johansson (ヨハンソン)型結晶レンズに代表される、 X線の回折等に用いられる曲 率分布結晶レンズの製造方法を挙げることができる。  [0001] The present invention relates to a method for manufacturing a curvature distribution crystal lens in which a crystal lattice plane and a crystal surface have independent curved shapes. As an example of an application field of the present invention, there can be mentioned a method of manufacturing a curvature distribution crystal lens used for X-ray diffraction or the like, which is represented by a Johann type or Johansson type crystal lens.
背景技術  Background art
[0002] 従来の X線用モノクロメータでは、結晶を弹¾的に少し曲げ、その後研磨によって 所定の回折が均一に得られるように、研磨仕上げを行うか、あるいは逆に、結晶を研 磨した後、曲げ変形させている。そして、弾性限界内で変形させた Johann型や Johans son型のモノクロメータ結晶は、実用化されている。  [0002] In a conventional X-ray monochromator, the crystal is slightly bent and then polished so that a predetermined diffraction is uniformly obtained by polishing, or conversely, the crystal is polished. After that, it is bent and deformed. And Johann-type and Johansson-type monochromator crystals deformed within the elastic limit have been put into practical use.
[0003] し力しながら、この弾性限界内で変形させた従来の X線用のモノクロメータ結晶の作 成方法では、曲率の大きな曲げができないため、大型の X線装置にしか用いることが できなかった。また、角度分解能と積分反射能とを大幅に低下させることが許容され るような場合は、低降伏応力の結晶を塑性変形して用いる場合もあった。  [0003] However, the conventional method for producing a monochromator crystal for X-rays deformed within the elastic limit cannot be bent with a large curvature, and therefore can be used only for a large-sized X-ray apparatus. There wasn't. In addition, when it was allowed to greatly reduce the angular resolution and the integrated reflectivity, a crystal having a low yield stress was sometimes used after being plastically deformed.
[0004] この弾性限界内で変形させたモノクロメータ結晶は、曲率や加工方法に制限がある ため、コンパクトな X線装置に用いることができず、高分解能と高輝度との両立が必要 なマイクロビーム回折のような用途には用いることができない。さらに、集光素子という 意味でマイクロビーム生成に使われる KBミラーは、線源そのものに第 3世代放射光 のような高平行高輝度光が必要となり、実験室における X線には用いることができな い。  [0004] Since the monochromator crystal deformed within the elastic limit is limited in curvature and processing method, it cannot be used in a compact X-ray apparatus, and the micrometer requires both high resolution and high brightness. It cannot be used for applications such as beam diffraction. In addition, KB mirrors used for microbeam generation in the sense of light condensing elements require highly parallel and high-intensity light such as third-generation radiation for the source itself, and can be used for X-rays in the laboratory. Absent.
[0005] 小角散乱では、線源強度の有効利用のため、放物面ミラー(ゲ一べルミラー)、コン フォーカルミラーなども製作されている。しかしながら、これらのミラーは、特殊な多層 膜蒸着技術を必要とするために、単体価格が 1千万円近くするうえ、取込み可能角 度が 0. 3度にも達しない。このような問題があるにも関わらず、代替技術がないため に、これらのミラーは、国内外で数多く出荷されているのが現状である。 [0005] For small-angle scattering, parabolic mirrors (conferencing mirrors), confocal mirrors, and the like have been manufactured for effective use of the source intensity. However, these mirrors require special multi-layer deposition technology, so the unit price is nearly 10 million yen and the angle at which they can be captured does not reach 0.3 degrees. Despite these problems, there is no alternative technology In addition, many of these mirrors are currently being shipped domestically and abroad.
[0006] X線用の Johann型や Johansson型のモノクロメータは、通常、切削'研磨加工の後に 、適当な弾性変形を加えて固定するか、加工の容易な結晶を塑性変形させるといつ た方法で製造されている。  [0006] Johann type and Johansson type monochromators for X-rays are usually fixed by applying appropriate elastic deformation after cutting or polishing, or when a crystal that is easily processed is plastically deformed. Manufactured by.
[0007] なお、イオン結晶である LiF結晶では、室温でも低速変形により塑性加工が可能で あること,加熱することにより一様に塑性変形されることが知られている。しかしながら 、共有結合が主である Siや Geのような半導体単結晶の場合、従来、弾性変形が行わ れており、精密な塑性変形が具体的に実現されていない。すなわち、従来、 Siや Ge の単結晶板は、曲げるとすぐに割れ易いものと知られており、変形させようとすると壁 開破壊による破断が生じてしまい、分光レンズとして使用できない。そのため、亀裂が 入ることなく Siや Geの単結晶板を曲げるためには、非常に薄い結晶板をわずかな曲 率で弾性変形させることしかできな力つた。  [0007] It is known that the LiF crystal, which is an ionic crystal, can be plastically processed at low temperatures even at room temperature and can be uniformly plastically deformed by heating. However, in the case of a semiconductor single crystal such as Si or Ge, which mainly has covalent bonds, elastic deformation has conventionally been performed, and precise plastic deformation has not been specifically realized. In other words, conventionally, Si and Ge single crystal plates are known to be easily cracked when bent, and if they are deformed, they break due to wall breaking and cannot be used as spectroscopic lenses. For this reason, in order to bend a single crystal plate of Si or Ge without cracks, it was only possible to elastically deform a very thin crystal plate with a slight curvature.
[0008] このように、弾性変形を利用した手法では、弾性変形結晶の保持における変形量 の安定性、経年変化の問題があり、また弾性限界内の変形にとどまるため、見込み 角が極めて小さな値に制限されてしまう。また、塑性変形を利用する場合には、塑性 変形による結晶性劣化に伴い、反値幅が著しく増加し、さらに積分反射能が低下し てしまう。このため、光学性能を落さないままで大きな見込み角、すなわち集光効率 が得られるような分光レンズ作成方法の開発が渴望されていた。  [0008] As described above, in the method using elastic deformation, there is a problem of stability of deformation and secular change in holding an elastically deformed crystal, and since the deformation remains within the elastic limit, the expected angle is a very small value. It will be limited to. In addition, when plastic deformation is used, the inverse width increases remarkably and the integrated reflectivity decreases as the crystallinity deteriorates due to plastic deformation. For this reason, the development of a method for producing a spectroscopic lens capable of obtaining a large prospective angle, that is, a condensing efficiency without degrading the optical performance has been desired.
[0009] また、 X線回折装置を小型化して、広く汎用的に使えるようにすることに対する要求 は根強い。し力しながら、良好な角度精度を持つ X線用の Johann型や Johansson型モ ノクロメータ結晶は、弾性限度内でしか作成できないため。その曲率半径を小さくでき ないことや、研磨による精密加工が必要な点が障害となり、上記要求は未だ満たされ ていない。  [0009] In addition, there is a strong demand for reducing the size of an X-ray diffractometer so that it can be used widely and widely. However, X-ray Johann and Johansson monochromator crystals with good angular accuracy can only be made within the elastic limits. The above requirements have not been satisfied because the curvature radius cannot be reduced and the need for precision machining by polishing is an obstacle.
特許文献 1:特開平 6— 160600号公報(1994年 6月 7日公開)  Patent Document 1: Japanese Patent Laid-Open No. 6-160600 (published on June 7, 1994)
特許文献 2:特開 2003— 014895公報(2003年 1月 15日公開)  Patent Document 2: Japanese Patent Laid-Open No. 2003-014895 (published on January 15, 2003)
発明の開示  Disclosure of the invention
[0010] 本発明は、上記従来の問題点に鑑みなされたものであって、結晶面が任意の 2次 元曲率分布を有する Johann型ある ヽは Johansson型をはじめとする曲率分布結晶レ ンズを効率よく作成し得る曲率分布結晶レンズの製造方法を提供することを目的の 1 つとする。 [0010] The present invention has been made in view of the above-described conventional problems. The crystal plane has an arbitrary two-dimensional curvature distribution. The Johann type has a curvature distribution crystal layer including the Johansson type. One object of the present invention is to provide a method of manufacturing a curvature distribution crystal lens capable of efficiently producing a lens.
[0011] 本発明の曲率分布結晶レンズの製造方法は、上記の目的を達成するために、 Si,G e,GaAS等の半導体単結晶板を用い、研磨加工と高温型押しによる塑性変形との組 み合わせにより、結晶表面形状と結晶格子面形状とを独立な曲面に形成することを 特徴としている。 [0011] The method for producing a curvature distribution crystal lens of the present invention, in order to achieve the above object, Si, G e, using the semiconductor single crystal plate such GaA S, and plastic deformation due to polishing and hot embossing By combining these, the crystal surface shape and the crystal lattice plane shape are formed into independent curved surfaces.
[0012] 上述したように、 Si,Ge,GaAS等の半導体単結晶板では、従来、精密な塑性変形が 実現されていな力つた。し力しながら、本発明者らは、上記のような製造方法を用いる ことにより、半導体単結晶基板であっても、高温型押しを行うことにより、精密な塑性 変形を実現できることを見出した。ここで、高温とは、融点未満の温度、または、融点 近傍の温度であり、融点を Tmとすると、 Tm X 0.80で表現できるように、融点の 0.80 倍とする。 [0012] As described above, Si, G e, the semiconductor single crystal plate such GaA S, conventionally, such have fine plastic deformation is achieved ChikaraTsuta. However, the present inventors have found that by using the manufacturing method as described above, accurate plastic deformation can be realized by performing high-temperature embossing even on a semiconductor single crystal substrate. Here, the high temperature is a temperature below the melting point or a temperature near the melting point. When the melting point is Tm, it is 0.80 times the melting point so that it can be expressed by Tm X 0.80.
[0013] そして、予備研磨加工と高温型押しによる塑性変形とが組み合わされた工程として 、たとえば後述する「予備研磨工程」の後に「型押し成型工程」を行う工程を採用した り、あるいは、以下に例示するような研磨曲面の対称性の良いいくつかの特殊な条件 につ ヽては、「型押し成型工程」の後に「研磨工程」を行う工程を用いたりすることで、 効率よく曲率分布結晶レンズを製造できることが判明した。  [0013] And, as a process in which pre-polishing and plastic deformation by high-temperature embossing are combined, for example, a process of performing a "embossing process" after a "pre-polishing process" to be described later, or For some special conditions with good symmetry of the polished curved surface, as shown in Fig. 3, the curvature distribution can be efficiently performed by using a process that performs the "polishing process" after the "embossing molding process". It has been found that crystal lenses can be produced.
[0014] 本発明の曲率分布結晶レンズの製造方法は、上記従来の課題を解決するために、 Si,Ge,GaAs等の半導体単結晶板が型押し部材に挟み込まれて高温加圧により塑性 変形された場合に、当該半導体単結晶板の結晶格子面の結晶表面に対する傾きが 、厳密あるいは近似的に Johanssonの回折条件を満たすために必要なオフセット量を 、上記半導体単結晶板の表面に残すように上記半導体単結晶板を研磨する予備研 磨工程と、上記研磨された半導体単結晶板を型押し部材に挟み込んで高温高圧下 で塑性変形させ、その表面が 2方向に異なる曲率を有するように形成する型押し成 型工程とを有して 、ることを特徴として 、る。  [0014] In order to solve the above-described conventional problems, the method of manufacturing a curvature distribution crystal lens according to the present invention includes a semiconductor single crystal plate made of Si, Ge, GaAs or the like sandwiched between embossing members and plastically deformed by high-temperature pressurization. In this case, the inclination of the crystal lattice plane of the semiconductor single crystal plate with respect to the crystal surface is left on the surface of the semiconductor single crystal plate so that an offset amount necessary to satisfy Johansson's diffraction condition strictly or approximately is left. A preliminary polishing step for polishing the semiconductor single crystal plate, and the polished semiconductor single crystal plate is sandwiched between stamping members and plastically deformed under high temperature and high pressure so that the surface has different curvatures in two directions. And having a mold forming process to form.
[0015] 上記製造方法にお!、て、厳密あるいは近似的に Johanssonの回折条件を満たすた めに必要なオフセット量は、近似的に 1次元曲面 (ある一方向に曲線を形成し、その 方向と直角な方向には直線を形成する曲面)として与えられる。したがって、予備研 磨工程では、結晶表面から 1次元曲面を削り出せばよぐ複雑な 2次元曲面を削り出 す必要がない。 [0015] In the above manufacturing method, the amount of offset necessary to satisfy Johansson's diffraction condition strictly or approximately is approximately a one-dimensional curved surface (a curve is formed in one direction and the direction In a direction perpendicular to the curved surface forming a straight line). Therefore, preliminary research In the polishing process, it is not necessary to cut out a complicated 2D curved surface by cutting out a 1D curved surface from the crystal surface.
[0016] さらに、厳密あるいは近似的に Johanssonの回折条件を満たすために必要なオフセ ット量が表面に残された単結晶板を、型押し部材を用いて高温高圧下で塑性変形さ せることで、 2方向に異なる曲率を有する曲率分布結晶レンズが最終的に製造される  [0016] Further, a single crystal plate in which the amount of offset necessary to satisfy Johansson's diffraction condition strictly or approximately is plastically deformed under high temperature and high pressure using a stamping member. Finally, a curvature distribution crystal lens having different curvatures in the two directions is manufactured.
[0017] このように、本発明によれば、複雑な 2次元曲面を削り出すことなく曲率分布結晶レ ンズを得ることができるので、効率よく曲率分布結晶レンズを製造することができる。 Thus, according to the present invention, a curvature distribution crystal lens can be obtained without cutting out a complicated two-dimensional curved surface, so that a curvature distribution crystal lens can be manufactured efficiently.
[0018] 本発明の曲率分布結晶レンズの製造方法は、上記従来の課題を解決するために、 Si,Ge,GaAs等の半導体単結晶板が型押し部材に挟み込まれて高温加圧により塑性 変形された場合に、当該半導体単結晶板の結晶格子面の結晶表面に対する傾きが 、 Johanssonの回折条件を満たすために必要なオフセット量を、上記半導体単結晶板 の片面上に残すように上記半導体単結晶板を研磨する予備研磨工程と、集光円を 回転させた凸状の 2次曲面を持つ凸状型押し部材と、 Johanssonの回折条件を満た すために上記半導体単結晶板の結晶格子が満たすべき曲率の凹状の 2次曲面を持 つ凹状型押し部材との間に、上記研磨された半導体単結晶板を、上記の研磨がされ た面が上記凸状型押し部材の 2次曲面に対向し、上記の研磨がされていない面が上 記凹状型押し部材の 2次曲面に対向するように挟み込み、高温高圧下で塑性変形さ せる型押し成型工程とを有して 、ることを特徴として 、る。  [0018] In order to solve the above-described conventional problems, the method of manufacturing a curvature distribution crystal lens according to the present invention includes a semiconductor single crystal plate of Si, Ge, GaAs or the like sandwiched between embossing members and plastically deformed by high-temperature pressurization. In this case, the inclination of the crystal lattice plane of the semiconductor single crystal plate to the crystal surface of the semiconductor single crystal plate leaves an offset amount necessary to satisfy Johansson's diffraction condition on one side of the semiconductor single crystal plate. A pre-polishing step for polishing the crystal plate, a convex embossing member having a convex quadratic surface obtained by rotating a condensing circle, and a crystal lattice of the semiconductor single crystal plate to satisfy Johansson's diffraction conditions The polished semiconductor single crystal plate is placed between a concave embossed member having a concave quadric surface with a curvature to be satisfied, and the polished surface becomes a quadratic curved surface of the convex embossed member. Opposite surfaces that are not polished are And an embossing step of plastically deforming at a high temperature and a high pressure.
[0019] 上記の構成によれば、半導体単結晶板の片面は、まず最初に予備研磨が行われ、 その後に、集光円を回転させた凸状の 2次曲面を持つ凸状型押し部材により型押し 成形される。ここで、予備研磨では、型押し部材に挟み込まれて高温加圧により塑性 変形された場合に、当該半導体単結晶板の結晶格子面の結晶表面に対する傾きが 、 Johanssonの回折条件を満たすために必要なオフセット量だけ研磨される。そのた め、型押し成形された後には、半導体単結晶板の片面は、集光円に沿う面になる。  [0019] According to the above configuration, one side of the semiconductor single crystal plate is first subjected to preliminary polishing, and then a convex embossing member having a convex quadratic curved surface obtained by rotating a condensing circle. Is stamped. Here, in the preliminary polishing, when it is sandwiched between the embossing members and plastically deformed by high-temperature pressurization, the inclination of the crystal lattice plane of the semiconductor single crystal plate with respect to the crystal surface is necessary to satisfy Johansson's diffraction condition. Polished by a certain offset amount. Therefore, after embossing, one surface of the semiconductor single crystal plate becomes a surface along the condensing circle.
[0020] 一方、半導体単結晶板の予備研磨が行われな 、面は、 Johanssonの回折条件を満 たすために結晶格子が満たすべき曲率の凹状の 2次曲面を持つ凹状型押し部材に より型押しされる。そのため、半導体単結晶板は、結晶格子面力 ^Johanssonの回折条 件を満たすよう〖こ変形されることとなる。 On the other hand, when the semiconductor single crystal plate is not preliminarily polished, the surface is formed by a concave embossing member having a concave quadratic surface having a curvature that the crystal lattice must satisfy in order to satisfy Johansson's diffraction conditions. Embossed. Therefore, a semiconductor single crystal plate has a crystal lattice surface force ^ Johansson diffraction It will be deformed to meet the requirements.
[0021] このように、 Johanssonの回折条件を満たすとともに、表面が集光円に沿うという複雑 な形状の曲率分布結晶レンズを、予備研磨と型押し成形の 2工程により製造すること ができる。ここで、 Johanssonの回折条件を満たすために必要なオフセット量は、近似 的に 1次元曲面 (ある一方向に曲線を形成し、その方向と直角な方向には直線を形 成する曲面)として与えられる。したがって、予備研磨工程では、結晶表面から 1次元 曲面を削り出せばよぐ複雑な 2次元曲面を削り出す必要がない。  [0021] As described above, a curvature distribution crystal lens having a complicated shape in which Johansson's diffraction condition is satisfied and the surface is along the condensing circle can be manufactured by two steps of preliminary polishing and stamping. Here, the offset required to satisfy Johansson's diffraction condition is approximately given as a one-dimensional curved surface (a curved surface that forms a curve in one direction and forms a straight line in a direction perpendicular to that direction). It is done. Therefore, in the pre-polishing process, it is not necessary to cut out a complicated two-dimensional curved surface by cutting out a one-dimensional curved surface from the crystal surface.
[0022] このように、本発明によれば、複雑な 2次元曲面を削り出すことなく曲率分布結晶レ ンズを得ることができるので、効率よく曲率分布結晶レンズを製造することができる。  Thus, according to the present invention, since a curvature distribution crystal lens can be obtained without cutting out a complicated two-dimensional curved surface, a curvature distribution crystal lens can be manufactured efficiently.
[0023] また、本発明の曲率分布結晶レンズの製造方法は、上記従来の課題を解決するた めに、 Si,Ge,GaAs等の半導体単結晶板を型押し部材に挟み込み、高温加圧して塑 性変形させ、その表面が 2方向に異なる曲率を有するように形成する型押し成型ェ 程と、上記塑性変形された単結晶板における結晶格子面の結晶表面に対する傾き 力 厳密あるいは近似的に Johanssonの回折条件を満たすよう、上記半導体単結晶 板の表面を研磨する研磨工程とを有して 、ることを特徴として 、る。  [0023] Further, in the method of manufacturing a curvature distribution crystal lens of the present invention, in order to solve the above-described conventional problems, a semiconductor single crystal plate such as Si, Ge, GaAs or the like is sandwiched between embossing members and pressed at a high temperature. An embossing process in which the surface is plastically deformed to have different curvatures in two directions, and the tilt force of the crystal lattice plane on the crystal surface in the plastically deformed single crystal plate is strictly or approximately Johansson And a polishing step for polishing the surface of the semiconductor single crystal plate so as to satisfy the diffraction conditions.
[0024] 上記製造方法によれば、型押し部材を用いる型押し成型工程と、半導体単結晶板 の表面を研磨する研磨工程という簡易な 2工程により、曲率分布結晶レンズを効率よ く作成することがでさる。  [0024] According to the above manufacturing method, the curvature distribution crystal lens can be efficiently produced by two simple processes, ie, an embossing process using an embossing member and a polishing process for polishing the surface of the semiconductor single crystal plate. It is out.
[0025] さらに、型押し成型工程のあとに、半導体単結晶板の表面を研磨するので、厳密あ るいは近似的に Johanssonの回折条件を満たすよう、確実に結晶表面の形状を制御 できる。よって、精度の高い曲率分布結晶レンズを製造することができる。  [0025] Furthermore, since the surface of the semiconductor single crystal plate is polished after the embossing process, the shape of the crystal surface can be reliably controlled so as to satisfy the Johansson diffraction condition strictly or approximately. Therefore, a highly accurate curvature distribution crystal lens can be manufactured.
[0026] 特に、 CuK a特性 X線を回折するための曲率分布結晶レンズを、 Ge ( l l l)結晶を 用いて製造すると、 333回折線 2 Θが約 90度となる。これは、上述の研磨工程にお いて、球面を研磨すればよいことを意味している。これにより、研磨工程を簡略化でき るので、より効率よく曲率分布結晶レンズを製造することができる。  [0026] In particular, when a curvature distribution crystal lens for diffracting CuKa characteristic X-rays is manufactured using a Ge (lll) crystal, the 333 diffraction line 2Θ is about 90 degrees. This means that the spherical surface may be polished in the above-described polishing step. As a result, the polishing process can be simplified, and the curvature distribution crystal lens can be manufactured more efficiently.
[0027] さらに、本発明の曲率分布結晶レンズの製造方法において、上記型押し成型工程 の後、上記結晶の X線回折に用いられる面に、低欠陥密度層を成長させることが好 ましい。 [0028] このように低欠陥密度層を成長させることで、良好な結晶性をもちながら、大きな曲 げ半径、力学的にも十分な強度を有する単結晶板を実現することができる。また、 Joh ansson条件を満たすような表面の研磨を許容できる十分な結晶厚さを、単結晶板に 持たせることができる。これにより、 X線が侵入する深さまではほぼ完全結晶である理 想的な曲率分布結晶レンズが得られる。 [0027] Further, in the method for manufacturing a curvature distribution crystal lens of the present invention, it is preferable that a low defect density layer is grown on the surface used for X-ray diffraction of the crystal after the embossing step. By growing the low defect density layer in this manner, a single crystal plate having a large bending radius and sufficient mechanical strength can be realized while having good crystallinity. In addition, the single crystal plate can have a sufficient crystal thickness that allows surface polishing to satisfy the Johansson condition. This makes it possible to obtain an ideal curvature distribution crystal lens that is almost completely crystalline at the depth of penetration of X-rays.
[0029] また、上記のような曲率分布結晶レンズを X線反射率測定装置に適用できることを 本発明者らは見出した。  [0029] Further, the present inventors have found that the curvature distribution crystal lens as described above can be applied to an X-ray reflectivity measuring apparatus.
[0030] X線反射率は、ナノメートル以下であっても薄膜の厚さを精度よく定量評価すること ができるという点で、極めて薄い絶縁膜の厚さを評価するパラメータとして有効である 。従来は、この X線反射率を測定するために、 2結晶あるいは 4結晶モノクロメータ(「 X線回折 ·散乱技術 (上) 7章 (東大出版会) 1992」、菊田著 参照)による高平行光学 系が使われていた。  [0030] The X-ray reflectivity is effective as a parameter for evaluating the thickness of an extremely thin insulating film in that the thickness of the thin film can be accurately and quantitatively evaluated even if it is nanometer or less. Conventionally, to measure this X-ray reflectivity, highly parallel optics using a two-crystal or four-crystal monochromator (see "X-ray diffraction / scattering technology (above) Chapter 7 (The University of Tokyo Press) 1992" by Kikuta) The system was used.
[0031] し力しながら、 X線反射率を測定するためには、試料に対する X線の入射角を Θと すると、試料に対して 2 Θの回折角をなすように検出器を置き、反射率強度 R ( Θ )を 逐次測定する必要がある。そのため、たとえば、 5度程度の範囲を 0. 01度刻みで反 射率測定するという比較的低分解能の測定でも、入射角 Θと回折角 2 Θを変えた測 定が 500回程度必要となり、 1回の測定が仮に 20秒程度であっても 3時間以上必要 になる。  [0031] In order to measure the X-ray reflectivity, however, if the incident angle of X-rays to the sample is Θ, the detector is placed so that the diffraction angle of 2Θ is made with respect to the sample, and the reflection is performed. It is necessary to measure the rate intensity R (Θ) sequentially. For this reason, for example, even with a relatively low-resolution measurement in which the reflectivity is measured in increments of 0.01 degrees over a range of about 5 degrees, it is necessary to measure the incident angle Θ and the diffraction angle 2 Θ about 500 times. Even if one measurement is about 20 seconds, it takes 3 hours or more.
[0032] このように、従来技術は、 X線反射率を測定するために最低数時間を必要とするも のであった。  [0032] Thus, the conventional technique requires a minimum of several hours to measure the X-ray reflectivity.
[0033] なお、従来においても、迅速に X線反射率を測定することを目的とした技術が 2種 類提案されている。その 1つが、図 16 (a)に示すように、線状 X線源から X線を発生す るとともに、ナイフエッジスリットを試料直上に置くことにより、試料位置でその X線の一 部が一定の見込角をもって試料に入射するように設定し、これを試料で反射させ、 1 次元検出器(PSPC : Position Sensitive Proportional Counter)を用いて X線反射率 を測定する技術である。  [0033] In the past, two types of techniques aimed at quickly measuring the X-ray reflectivity have been proposed. One of these is the generation of X-rays from a linear X-ray source as shown in Fig. 16 (a), and by placing a knife edge slit directly above the sample, a part of the X-ray is constant at the sample position. This is a technology that sets the incidence angle to be incident on the sample, reflects it on the sample, and measures the X-ray reflectivity using a one-dimensional detector (PSPC: Position Sensitive Proportional Counter).
[0034] し力しながら、このように X線反射率を測定する場合、 X線の利用効率が悪くなり、さ らにとり得る角度範囲も光源のサイズによって大きく制限されてしまう。 [0035] また、 X線反射率を迅速に測定することを目的にしたもう 1つの技術として、図 16 (b )に示すように、試料に対する白色 X線の入射角度を固定し、試料で鏡面反射した白 色 X線をエネルギー分解検出器で検出する技術が提案されている。 However, when measuring the X-ray reflectivity in this way, the X-ray utilization efficiency is deteriorated, and the possible angular range is greatly limited by the size of the light source. [0035] As another technique aimed at quickly measuring the X-ray reflectivity, as shown in Fig. 16 (b), the incident angle of white X-rays to the sample is fixed, and the sample is mirror-finished. Techniques have been proposed for detecting reflected white X-rays with an energy-resolved detector.
[0036] し力しながら、このように X線反射率を測定すると、放射光を利用する必要があるの で実験室における多頻度での測定が不可能であり、さらに、 X線反射率の測定精度 が検出器のエネルギー分解能で、また測定効率が検出器の最大係数率で制限を受 けてしまう。  [0036] However, if the X-ray reflectivity is measured in this way, it is necessary to use synchrotron radiation, and therefore it is impossible to measure frequently in the laboratory. Measurement accuracy is limited by the energy resolution of the detector, and measurement efficiency is limited by the maximum coefficient factor of the detector.
[0037] 本発明は、上記従来の問題に鑑みて、 X線を効率よく利用し、なおかつ高速に X線 反射率を測定し得る X線反射率測定装置および X線反射率測定方法を提供すること を目的の 1つとしている。  In view of the above-described conventional problems, the present invention provides an X-ray reflectivity measuring apparatus and an X-ray reflectivity measuring method capable of efficiently using X-rays and measuring X-ray reflectivity at high speed. This is one of the purposes.
[0038] 本発明の X線反射率測定装置は、上記の目的を達成するために、 X線発生源と、 Si ,Ge,GaAS等の半導体単結晶板を高温型押しにより塑性変形させた結晶レンズであつ て、下記の(1)または (2)の条件を満たす曲率分布結晶レンズと、位置敏感検出器と を備えたことを特徴として!/ヽる。 [0038] X-ray reflectance measurement apparatus of the present invention, in order to achieve the above object, the X-ray source, Si, Ge, and is plastically deformed by hot embossing of a semiconductor single crystal plate such as GaA S A crystal lens comprising a curvature distribution crystal lens that satisfies the following conditions (1) or (2) and a position sensitive detector! / Speak.
[0039] (1)結晶格子面が点収束条件または線収束条件を満たす曲率分布を有しており、 当該結晶格子面と、レンズ表面とが平行になっている;  [0039] (1) The crystal lattice plane has a curvature distribution that satisfies the point convergence condition or the line convergence condition, and the crystal lattice plane and the lens surface are parallel to each other;
(2)結晶格子面およびレンズ表面の双方が点収束条件または線収束条件を満た す曲率分布を有している。  (2) Both the crystal lattice plane and the lens surface have a curvature distribution that satisfies the point convergence condition or the line convergence condition.
[0040] 上記構成によれば、 X線発生源カゝら発生される X線を、曲率分布結晶レンズにて回 折し、その回折された X線を試料に照射することができる。そして、試料にて反射され た X線の強度は、位置敏感検出器により検出することができる。  [0040] According to the above configuration, the X-ray generated from the X-ray generation source can be diffracted by the curvature distribution crystal lens, and the sample can be irradiated with the diffracted X-ray. The intensity of the X-ray reflected from the sample can be detected by a position sensitive detector.
[0041] ここで、位置敏感検出器には、例えば、 PSPC、 IP (Imaging Plate)のような輝尽性 フィルム、 CCD (Charge Coupled Device)、 PD (PhotoDiode) - arrayなどが含まれる。  Here, the position sensitive detector includes, for example, a photostimulable film such as PSPC, IP (Imaging Plate), CCD (Charge Coupled Device), PD (PhotoDiode) -array, and the like.
[0042] ここで、曲率分布結晶レンズは、 Si,Geなどの単結晶板を高温型押しにより塑性変形 させたものであり、上述の(1)または(2)を満たすものである。このような構成を有する 曲率分布結晶レンズによれば、 Johanssonまたは Johannの回折結晶の条件が広!、角 度範囲にわたって厳密に満たされており、広角度での集光が可能となる。  Here, the curvature distribution crystal lens is obtained by plastically deforming a single crystal plate of Si, Ge or the like by high-temperature embossing, and satisfies the above (1) or (2). According to the curvature distribution crystal lens having such a configuration, the conditions of the Johansson or Johann diffraction crystal are strictly satisfied over the angular range, and light can be condensed at a wide angle.
[0043] したがって、 X線を広角度で曲率分布結晶レンズに照射し、試料位置で広!、角度 幅を持って集光することが可能となり、試料の X線反射率を広い角度範囲で同時に 高速に測定することが可能となる。さらに、 X線反射率を測定するにあたり放射光を必 要としないので、実験室で必要とされるときに必要なだけ測定が可能であり、 X線発 生源カゝら発生された光の利用効率が良くなるとともに、エネルギー分解検出器の分 解能に制限を受けることなく X線反射率の測定が可能となる。 [0043] Therefore, X-rays are irradiated to the curvature distribution crystal lens at a wide angle, and wide at the sample position. It is possible to collect light with a wide width, and it is possible to simultaneously measure the X-ray reflectivity of the sample in a wide angular range at high speed. In addition, since no synchrotron radiation is required to measure the X-ray reflectivity, measurements can be made as needed when required in the laboratory, and the light generated from the X-ray source can be used. In addition to improved efficiency, X-ray reflectivity can be measured without being limited by the resolution of the energy-resolved detector.
[0044] 上記 X線発生源として点状光源を用いる場合は、曲率分布結晶レンズとして、 2次 元曲面を有するものを用いる。 [0044] When a point light source is used as the X-ray generation source, a curvature distribution crystal lens having a two-dimensional curved surface is used.
[0045] 上記構成によれば、試料位置で X線を点に収束させ、 X線反射率を測定することが できる。 [0045] According to the above configuration, X-rays can be converged to a point at the sample position, and the X-ray reflectivity can be measured.
[0046] 上記 X線発生源として線状光源を利用する場合に用いられる曲率分布結晶レンズ は、上記 X線発生源が延びる軸に直交する平面で切断すると、その切断面が常に同 じ Johansson型又は Johann型モノクロの形状を有している。  [0046] The curvature distribution crystal lens used when a linear light source is used as the X-ray generation source, when cut along a plane perpendicular to the axis extending the X-ray generation source, the cut surface is always the same Johansson type Or it has Johann type monochrome shape.
[0047] 上記構成によれば、線状の X線発生源から発生される X線を、曲率分布結晶レンズ により線状に集光させることができる。よって、試料の広い範囲を同時に位置敏感検 出器によって測定することが可能となる。  [0047] According to the above configuration, X-rays generated from a linear X-ray generation source can be condensed linearly by the curvature distribution crystal lens. Therefore, it is possible to measure a wide range of the sample with the position sensitive detector at the same time.
[0048] また、本発明の X線反射率測定方法は、上記課題を解決するために、 X線発生源 から発生される X線を、 Si,Ge,GaAS等の半導体単結晶板を高温型押しにより塑性変 形させた結晶レンズであって、上記の(1)または(2)の条件を満たす曲率分布結晶レ ンズにより回折し、その回折された X線を、 X線反射率の測定対象となる試料に導き、 当該試料にて反射された X線の強度を位置敏感検出器により測定することを特徴と している。 [0048] In addition, X-ray reflectivity measurement method of the present invention, in order to solve the above problems, an X-ray generated from the X-ray source, Si, Ge, a semiconductor single crystal plate such GaA S hot A crystal lens plastically deformed by embossing, diffracted by a curvature distribution crystal lens that satisfies the above conditions (1) or (2), and the diffracted X-ray is measured for X-ray reflectivity. It is characterized by being guided to the target sample and measuring the intensity of the X-ray reflected by the sample with a position sensitive detector.
[0049] 上記 X線反射率測定方法によれば、本発明の X線反射率測定装置と同様の作用 効果を得ることができる。  [0049] According to the above X-ray reflectivity measurement method, the same operational effects as the X-ray reflectivity measurement apparatus of the present invention can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0050] [図 1]本発明の一実施形態に係る製造方法の概略を説明するための図である。 [0050] FIG. 1 is a diagram for explaining an outline of a production method according to an embodiment of the present invention.
[図 2]本発明に係る製造方法の一実施形態における型押し成形工程を示す図である  FIG. 2 is a diagram showing an embossing process in an embodiment of a manufacturing method according to the present invention.
[図 3(a)]結晶表面に残されるオフセット量を説明するための図である。 [図 3(b)]オフセット量により形成される円を説明するための図である。 FIG. 3 (a) is a diagram for explaining an offset amount remaining on the crystal surface. FIG. 3 (b) is a diagram for explaining a circle formed by the offset amount.
[図 4(a)]X線の発生源と集光点とが対称となるように配置する対称配置型の曲率分布 結晶レンズの構成を示す図である。  FIG. 4 (a) is a diagram showing the configuration of a symmetrically distributed curvature distribution crystal lens in which the X-ray generation source and the focal point are arranged symmetrically.
[図 4(b)]X線の発生源と集光点とが非対称となるように配置する非対称配置型の曲率 分布結晶レンズの構成を示す図である。  FIG. 4 (b) is a diagram showing a configuration of an asymmetrically arranged curvature distribution crystal lens in which an X-ray generation source and a condensing point are arranged to be asymmetric.
[図 4(c)]曲率分布結晶レンズの yz平面における切断形状を示す図である。  FIG. 4 (c) is a diagram showing a cut shape in the yz plane of the curvature distribution crystal lens.
[図 5(a)]焦点円の半径 Rが 100mmの場合の Johanssonの回折条件を満たすために 必要なオフセット量を示すグラフである。  [Fig. 5 (a)] This is a graph showing the amount of offset necessary to satisfy Johansson's diffraction condition when the radius R of the focal circle is 100 mm.
[図 5(b)]焦点円の半径 Rが 300mmの場合の Johanssonの回折条件を満たすために 必要なオフセット量を示すグラフである。  [Fig. 5 (b)] This is a graph showing the amount of offset necessary to satisfy Johansson's diffraction condition when the radius R of the focal circle is 300 mm.
[図 5(c)]焦点円の半径 Rが 600mmの場合の Johanssonの回折条件を満たすために 必要なオフセット量を示すグラフである。  [Fig. 5 (c)] This is a graph showing the amount of offset required to satisfy Johansson's diffraction condition when the radius R of the focal circle is 600 mm.
[図 6]曲率分布結晶レンズの結晶表面および結晶格子面を示す図である。  FIG. 6 is a diagram showing a crystal surface and a crystal lattice plane of a curvature distribution crystal lens.
[図 7(a)]本発明に係る製造方法の他の実施形態における型押し成型工程に用いられ る上部ボートの構成を示す図である。  FIG. 7 (a) is a view showing a configuration of an upper boat used in an embossing process in another embodiment of the manufacturing method according to the present invention.
[図 7(b)]本発明に係る製造方法の他の実施形態における型押し成型工程に用いら れる下部ボートの構成を示す図である。  [FIG. 7 (b)] is a view showing a configuration of a lower boat used in an embossing process in another embodiment of the manufacturing method according to the present invention.
[図 8]Si (100)単結晶について、厚み及び温度を変えたときの変形状態の評価結果 を示す図である。  FIG. 8 is a diagram showing the evaluation results of the deformation state of Si (100) single crystal when the thickness and temperature are changed.
[図 9]Si (111)単結晶につ 、て、厚み及び温度を変えたときの変形状態の評価結果 を示す図である。  FIG. 9 is a view showing the evaluation results of the deformation state when the thickness and temperature of the Si (111) single crystal are changed.
[図 10(a)]本発明の曲率分布結晶レンズの製造方法により得られる曲率分布結晶レン ズの別の構成を示す yx平面図および zx平面図である。  FIG. 10 (a) is a yx plan view and a zx plan view showing another configuration of the curvature distribution crystal lens obtained by the method of manufacturing a curvature distribution crystal lens of the present invention.
[図 10(b)]図 10 (a)に示した曲率分布結晶レンズの構成を示す斜視図である。  FIG. 10 (b) is a perspective view showing the configuration of the curvature distribution crystal lens shown in FIG. 10 (a).
[図 11(a)]従来の偏光制御装置の構成を示す図である。  FIG. 11 (a) is a diagram showing a configuration of a conventional polarization control device.
[図 11(b)]本発明の曲率分布結晶レンズの製造方法により得られる曲率分布結晶レン ズを利用した偏光制御装置の構成を示す図である。  FIG. 11 (b) is a diagram showing a configuration of a polarization control device using a curvature distribution crystal lens obtained by the method of manufacturing a curvature distribution crystal lens of the present invention.
[図 12]本発明の X線反射率測定装置の一実施形態に係る構成を示す図である。 [図 13]図 12の X線反射率測定装置における位置敏感検出器に関する 2つの配置を 示す図である。 FIG. 12 is a diagram showing a configuration according to an embodiment of the X-ray reflectivity measuring apparatus of the present invention. FIG. 13 is a diagram showing two arrangements of position sensitive detectors in the X-ray reflectivity measuring apparatus of FIG.
[図 14]図 12の X線反射率測定装置を紙面上側カゝら見た場合の構成を示す図である  14 is a diagram showing a configuration when the X-ray reflectivity measuring apparatus of FIG. 12 is viewed from the upper side of the drawing.
[図 15]図 10 (a)及び図 10 (b)の曲率分布結晶レンズを用いる X線反射率測定装置 の構成を示す図である。 FIG. 15 is a diagram showing a configuration of an X-ray reflectivity measuring apparatus using the curvature distribution crystal lens of FIGS. 10 (a) and 10 (b).
[図 16(a)]従来の X線反射率測定装置の構成を示す図である。  FIG. 16 (a) is a diagram showing a configuration of a conventional X-ray reflectivity measuring apparatus.
[図 16(b)]従来の X線反射率測定装置の別の構成を示す図である。 FIG. 16 (b) is a diagram showing another configuration of a conventional X-ray reflectivity measuring apparatus.
符号の説明 Explanation of symbols
1 X線反射率測定装置  1 X-ray reflectivity measuring device
2 曲率分布結晶レンズ  2 Curvature distribution crystal lens
3 X線発生源  3 X-ray source
4 発散角制御スリット  4 Divergence angle control slit
5 整形スリット  5 Shaping slit
6 光学調整ブレード  6 Optical adjustment blade
7 位置敏感検出器  7 Position sensitive detector
8 アツテネータ  8 Attenuator
10 曲率分布結晶レンズ  10 Curvature distribution crystal lens
11 X線反射率測定装置  11 X-ray reflectivity measuring device
12 X線発生源  12 X-ray source
13 取込スリット  13 Capture slit
14 整形スリット  14 Shaping slit
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
(1.曲率分布結晶レンズについて)  (1. About curvature distribution crystal lens)
本発明は、出願人らにより既に出願済みである曲率分布結晶レンズ (PCTZJP20 05Z15442号明細書参照)を用いて、新規の X線反射率測定装置を実現するもの である。そこで、先ず、本発明の X線反射率測定装置に用いられる曲率分布結晶レ ンズの製造方法および構成について説明する。 [0053] まず、本発明の発明者らは、実験により、結晶の融点未満の温度にて、 Siのような 高降伏応力の結晶板に全体的または局所的に荷重を加え、当該結晶板を塑性変形 させることで、結晶格子面が点収束条件または線収束条件を満たす曲率分布を有す る曲率分布結晶レンズを作製することができるという知見を得た。さらに、発明者らは 、結晶の融点近傍の温度にて、 Siのような高降伏応力の結晶板に全体的または局所 的に荷重を加え、当該結晶板を塑性変形させることにより、結晶格子面が点収束条 件または線収束条件を満たす曲率分布を有する完全な曲率分布結晶レンズを作製 することができるという知見も得た。 The present invention realizes a novel X-ray reflectivity measuring apparatus using a curvature distribution crystal lens (see PCTZJP20 05Z15442 specification) that has already been filed by the applicants. Therefore, first, a manufacturing method and configuration of a curvature distribution crystal lens used in the X-ray reflectivity measuring apparatus of the present invention will be described. [0053] First, the inventors of the present invention experimentally applied a load to a crystal plate having a high yield stress such as Si at a temperature below the melting point of the crystal entirely or locally, We have obtained the knowledge that by performing plastic deformation, it is possible to produce a curvature distribution crystal lens having a curvature distribution where the crystal lattice plane satisfies the point convergence condition or the line convergence condition. Furthermore, the inventors applied a load to a crystal plate having a high yield stress such as Si, entirely or locally, at a temperature near the melting point of the crystal, and plastically deforming the crystal plate, thereby producing a crystal lattice plane. It was also found that a complete curvature distribution crystal lens having a curvature distribution satisfying the point convergence condition or the line convergence condition can be produced.
[0054] ここで、結晶の融点未満の温度とは、結晶板の塑性変形が始まる温度(Siの場合 1 120°C)から加圧時に一部融解が始まる温度直前までの加熱温度をいう。また、結晶 の融点近傍温度とは、完全な半球状の凸部が得られる加熱温度、すなわち所定の 曲率を有する完全な曲率分布結晶レンズを作製することができる加熱温度をいい、 S iの場合には、当該結晶の融点以下 280°C (または融点の 0. 80倍)の温度から加圧 時に一部溶解が始まる温度直前までの加熱温度をいう。なお、上述の一部融解が始 まる温度、塑性変形が始まる温度、および結晶の融点近傍の温度は、加工する結晶 材料により異なるものである。  Here, the temperature below the melting point of the crystal means a heating temperature from the temperature at which plastic deformation of the crystal plate starts (1 120 ° C. in the case of Si) to just before the temperature at which partial melting starts at the time of pressurization. The temperature near the melting point of the crystal refers to the heating temperature at which a complete hemispherical convex portion is obtained, that is, the heating temperature at which a complete curvature distribution crystal lens having a predetermined curvature can be produced. Refers to the heating temperature from 280 ° C (or 0.80 times the melting point) below the melting point of the crystal to just before the temperature at which partial dissolution begins upon pressurization. The temperature at which the partial melting starts, the temperature at which plastic deformation begins, and the temperature near the melting point of the crystal differ depending on the crystal material to be processed.
[0055] そして、上述のように得られる曲率分布結晶レンズにおいては、半球状の凸部を構 成する Si単結晶レンズは、結晶格子が元の単結晶状態を維持したまま塑性変形して V、るから、表面の曲面形状に沿った(平行な)結晶格子面を有するものとなって 、る。 なお、 Si (lOO)単結晶による曲率分布結晶レンズ以外にも、たとえば Si(l l l)単結 晶のように、他の面を利用した曲率分布結晶レンズも同様に作製することができる。  [0055] In the curvature distribution crystal lens obtained as described above, the Si single crystal lens constituting the hemispherical convex portion is plastically deformed while maintaining the original single crystal state of the crystal lattice. Therefore, it has a crystal lattice plane (parallel) along the curved surface shape of the surface. In addition to the curvature distribution crystal lens made of Si (lOO) single crystal, a curvature distribution crystal lens using other surfaces can be similarly produced, for example, Si (l l l) single crystal.
[0056] また、結晶板の素材としては、 Si以外にも、 Ge、 SiGe、および GaAs等の半導体単 結晶板を用いることができる。  [0056] In addition to Si, a semiconductor single crystal plate such as Ge, SiGe, or GaAs can be used as a material for the crystal plate.
[0057] なお、本発明の製造方法は、 MgO、 Al O、 SiO等の酸化物、 LiF、 NaCl等のハ  [0057] The production method of the present invention includes oxides such as MgO, Al 2 O, and SiO, and metals such as LiF and NaCl.
2 3 2  2 3 2
ロゲン化物にも適用できる。  It can also be applied to rogens.
[0058] さらに、上述の結晶板の表面に、 Si、 Ge、 SiGe、及び GaAs等の化合物半導体の いずれか 1つまたは 2以上よりなる薄膜結晶を堆積させた結晶板を用いて、曲率分布 結晶レンズを作製してもよい。また、上述のように成型される曲率分布結晶レンズを 研磨と高温変形成型とを組み合わせて作成することで、レンズ表面および結晶格子 面の双方を、点収束条件または線収束条件を満たす曲率分布を有するように形成す ることが可能となる。 [0058] Further, a curvature distribution crystal is obtained by using a crystal plate in which a thin film crystal made of one or more of compound semiconductors such as Si, Ge, SiGe, and GaAs is deposited on the surface of the crystal plate. A lens may be produced. In addition, the curvature distribution crystal lens molded as described above By making a combination of polishing and high-temperature deformation molding, both the lens surface and the crystal lattice plane can be formed to have a curvature distribution that satisfies the point convergence condition or the line convergence condition.
[0059] (2.曲率分布結晶レンズの製造方法 1)  [0059] (2. Curvature Distribution Crystal Lens Manufacturing Method 1)
本発明に係る曲率分布結晶レンズの製造方法に係る一実施形態を説明する。本 実施形態の製造方法の概略を説明すると、図 1に示すように、(A)高降伏応力の結 晶を予備研磨し、(B) 2次元曲面を型押しするという 2工程を経ることで、曲率分布結 晶レンズを製造することができる。以下、これら 2工程の詳細について説明する。  An embodiment relating to a method of manufacturing a curvature distribution crystal lens according to the present invention will be described. The outline of the manufacturing method of the present embodiment will be described. As shown in FIG. 1, two steps of (A) pre-polishing a high yield stress crystal and (B) embossing a two-dimensional curved surface are performed. A curvature distribution crystal lens can be manufactured. Details of these two steps will be described below.
[0060] (2- 1.予備研磨工程)  [0060] (2-1. Pre-polishing process)
予備研磨工程においては、曲率分布結晶レンズが図 2に示すような上部ボートおよ び下部ボート (詳細は後述する)により変形される場合に、結晶格子面の結晶表面か らの傾き φ (図 3 (b)参照)力 Johanssonの回折条件を満たすために必要なオフセット 量が結晶表面に残されるよう、結晶表面が研磨される。なお、必要なオフセット量は 結晶の変形における拘束のかけ方により差が出る。以下はその実現方法の例である  In the preliminary polishing process, when the curvature distribution crystal lens is deformed by an upper boat and a lower boat (details will be described later) as shown in Fig. 2, the inclination φ of the crystal lattice plane from the crystal surface (Fig. 3 (b)) Force The crystal surface is polished so that the amount of offset necessary to satisfy Johansson's diffraction condition remains on the crystal surface. Note that the required offset varies depending on how the crystal is deformed. The following is an example of how to achieve this:
[0061] つまり、図 3 (a)に示すように、曲率分布結晶レンズの素材をなす結晶板の平面方 向に X軸を設定し、 X軸が設定された平面と垂直な方向に y軸を設定する。そして、(X , y) = (0, 0)を、結晶板の中心に設定し、結晶板の表面の座標を座標 (X, y)で表 す。このとき、上述のオフセット量は、 y (x)として表される。 That is, as shown in FIG. 3 (a), the X axis is set in the plane direction of the crystal plate forming the material of the curvature distribution crystal lens, and the y axis is set in the direction perpendicular to the plane in which the X axis is set. Set. Then, (X, y) = (0, 0) is set at the center of the crystal plate, and the coordinates of the surface of the crystal plate are expressed as coordinates (X, y). At this time, the above-described offset amount is expressed as y (x).
[0062] そして、オフセット量 y (x)は、下記の式(1)を満たしていればよい。  [0062] The offset amount y (x) only needs to satisfy the following expression (1).
[0063] dy/dx=tan かつ Rsin (2 ci) ) =x …式(1)  [0063] dy / dx = tan and Rsin (2 ci)) = x… Equation (1)
ここで、 φは、図 3 (b)に示すように、結晶格子面の結晶表面からの傾きである。ま た、 Rは焦点円の半径である。なお、焦点円とは、曲率分布結晶レンズの結晶表面と 、光源位置(図 4 (a)及び図 4 (b)参照の点 A)と、集光位置(図 4 (a) (b)参照の点 B) とを通る円(ローランド円)を意味する。  Here, φ is the inclination of the crystal lattice plane from the crystal surface, as shown in FIG. 3 (b). R is the radius of the focal circle. The focal circle refers to the crystal surface of the curvature distribution crystal lens, the light source position (point A in Fig. 4 (a) and Fig. 4 (b)), and the focusing position (see Fig. 4 (a) and (b)). Means a circle (Roland circle) passing through point B).
[0064] 上記式(1)は、 Xを 0で近似すると、 dyZdx=xZ2Rとなる。これは、 x力 となる結 晶表面上の点 Poの近傍では、オフセット量 y (x)が、半径 2Rの円を描くことを意味し ている。 [0065] したがって、曲率分布結晶レンズに関して、 X線の発生源と集光点とが対称となるよ うに配置する対称配置型の小さな曲率分布結晶レンズを作成する場合 (図 4 (a)参照 )、結晶板に対して半径 2Rの円筒の一部となる面 (以下、円筒面という)を形成するよ うに研削することで、 Johanssonの回折条件を満たすために必要なオフセット量を、結 晶表面に残すことができる。また、曲率分布結晶レンズに関して、 X線の発生源と集 光点とが非対称となるように配置する非対称配置型の曲率分布結晶レンズを作成す る場合 (図 4 (b)参照)や、大きな結晶レンズを作成する場合には、式 (1)の解として 得られる y (X)が結晶板に残されるよう、結晶板を研削すればよい。 [0064] In the above equation (1), when X is approximated by 0, dyZdx = xZ2R. This means that the offset amount y (x) draws a circle with a radius of 2R in the vicinity of the point Po on the crystal surface that is the x force. [0065] Therefore, in the case of creating a small curvature distribution crystal lens having a symmetrical arrangement in which the X-ray generation source and the condensing point are arranged symmetrically with respect to the curvature distribution crystal lens (see Fig. 4 (a)). By grinding the crystal plate to form a part of a cylinder with a radius of 2R (hereinafter referred to as a cylindrical surface), the amount of offset required to satisfy Johansson's diffraction condition can be reduced. Can be left in. In addition, with regard to the curvature distribution crystal lens, when creating an asymmetrically arranged curvature distribution crystal lens in which the X-ray generation source and the light collection point are asymmetric (see Fig. 4 (b)), a large When creating a crystal lens, the crystal plate may be ground so that y (X) obtained as a solution of Equation (1) remains on the crystal plate.
[0066] ここで、発明者らは、結晶板に対して半径 2Rの円筒面を研削することで、 Johansso nの回折条件を満たすために必要なオフセット量を、結晶表面に残すことができること を確認するため、図 5 (a)〜図 5 (c)に示すデータを得た。  [0066] Here, the inventors can leave the amount of offset necessary to satisfy Johansson's diffraction condition on the crystal surface by grinding a cylindrical surface with a radius of 2R with respect to the crystal plate. For confirmation, the data shown in FIGS. 5 (a) to 5 (c) were obtained.
[0067] 図 5 (a)〜図 5 (c)のグラフは、上記式(1)の微分方程式の解をオフセット量として設 定する場合、半径 2Rの円をオフセット量として設定する場合、および半径 Rの円と半 径 2Rの円との高さの差をオフセット量として設定する場合の間にお 、て、どの程度の 誤差がでるかを検討したものである。  [0067] The graphs in FIGS. 5 (a) to 5 (c) show the case where the solution of the differential equation of the above equation (1) is set as the offset amount, the case where the circle of radius 2R is set as the offset amount, and This is an examination of the degree of error that occurs when the difference in height between the circle with radius R and the circle with radius 2R is set as the offset amount.
[0068] なお、図 5 (a)は、焦点円の半径 Rが 100mmの場合のグラフであり、図 5 (b)は、焦 点円の半径 Rが 300mmの場合のグラフであり、図 5 (c)は、焦点円の半径 Rが 600m mの場合のグラフである。また、図 5 (a)〜図 5 (c)において、縦軸は、結晶板の深さ であり、図 3 (a)における y座標の値に相当する。さらに、図 5 (a)〜図 5 (c)において、 横軸は、結晶板の中心力も距離であり、図 3 (a)における X座標の値に相当する。また 、図 5 (a)〜図 5 (c)における実線は、オフセット量として設定された半径 2Rの円を示 しており、「EXACT」としてプロットされた点は上記式(1)の微分方程式の解を示して おり、「Delta(2R-R)」と記載された破線は、半径 Rの円と半径 2Rの円との高さの差を 示している。  [0068] Fig. 5 (a) is a graph when the radius R of the focal circle is 100mm, and Fig. 5 (b) is a graph when the radius R of the focal circle is 300mm. (c) is a graph when the radius R of the focal circle is 600 mm. In FIGS. 5 (a) to 5 (c), the vertical axis represents the depth of the crystal plate, which corresponds to the y-coordinate value in FIG. 3 (a). Further, in FIGS. 5 (a) to 5 (c), the horizontal axis is the distance of the central force of the crystal plate and corresponds to the value of the X coordinate in FIG. 3 (a). In addition, the solid line in Figs. 5 (a) to 5 (c) indicates a circle with a radius of 2R set as the offset amount, and the point plotted as "EXACT" is the differential equation of the above equation (1). The dashed line labeled “Delta (2R-R)” shows the difference in height between the circle with radius R and the circle with radius 2R.
[0069] これら図 5 (a)〜図 5 (c)力もわ力るように、半径 Rがある程度大きければ、オフセット 量は、厳密に式(1)の微分方程式の解に従うものでなくても、簡易な半径 2Rの円とし て設定すればよいことがわかる。よって、結晶板に対して半径 2Rの円筒面を研削す ることで、 Johanssonの回折条件を満たすために必要なオフセット量を、結晶表面に残 すことができるといえる。 [0069] As shown in FIGS. 5 (a) to 5 (c), if the radius R is large to some extent, the offset amount does not strictly follow the solution of the differential equation (1). It can be seen that it can be set as a simple circle with a radius of 2R. Therefore, by grinding a cylindrical surface with a radius of 2R against the crystal plate, the amount of offset necessary to satisfy Johansson's diffraction condition remains on the crystal surface. It can be said that it can be done.
[0070] (2- 2. 2次元曲面型押し工程)  [0070] (2-2. Two-dimensional curved surface stamping process)
上述した予備研磨工程が行なわれた結晶板に対して、 2次元曲面型押しが行われ 、その表面が 2方向に異なる曲率を有する曲率分布結晶レンズ (R Hで定義される 曲面を有する曲率分布結晶レンズ)が完成する。ここで、 R— Hの曲面とは、図 4 (b) に示すように、曲率分布結晶レンズの結晶格子面における各点 P ( 0 )において、結 晶格子面の結晶表面に対する傾きが、点 P ( 0 )と点 Xとを結ぶ直線と直交する曲面 を意味する。そして、このような関係が結晶格子面の傾きについて満たされていれば 、その結晶格子面の傾きは、 Johanssonの回折条件を満たしているといえる。  The crystal plate subjected to the above-described pre-polishing process is subjected to two-dimensional curved surface embossing, and a curvature distribution crystal lens whose surface has different curvatures in two directions (curvature distribution crystal having a curved surface defined by RH) Lens) is completed. Here, as shown in Fig. 4 (b), the R--H curved surface means that the inclination of the crystal lattice plane with respect to the crystal surface is a point at each point P (0) on the crystal lattice plane of the curvature distribution crystal lens. It means a curved surface perpendicular to the straight line connecting P (0) and the point X. If such a relationship is satisfied with respect to the tilt of the crystal lattice plane, it can be said that the tilt of the crystal lattice plane satisfies Johansson's diffraction condition.
[0071] ここで、曲面型押し工程においては、図 2に示す上部ボート(凹状型押し部材)およ び下部ボート(凸状型押し部材)が用いられる。これらの上部ボートおよび下部ボート は、カーボン製であり、 Si (100)あるいは Si (111)などの単結晶ウェハを間に挟みカロ 圧することにより、当該単結晶ウェアに曲面を加工するものである。  Here, in the curved surface pressing process, an upper boat (concave mold pressing member) and a lower boat (convex mold pressing member) shown in FIG. 2 are used. These upper boat and lower boat are made of carbon, and a single-crystal wafer such as Si (100) or Si (111) is sandwiched between them, and a curved surface is processed into the single-crystal ware by pressurizing.
[0072] 図 2に示されるように、上部ボート(凹状型押し部材)の下面には、曲面状の窪み( 凹部)が形成されている。この曲面は、互いに直交する 2方向に対して異なる曲率を 有している。すなわち、第 1の方向(χ'方向)に対して曲率半径が 2Rであり、当該第 1 の方向と直交する第 2の方向(y'方向)に対して曲率半径が Hである。言い換えると、 上部ボートの下面は、 Johanssonの回折条件を満たすために結晶格子が満たすべき 曲率をもつ 2次曲面である。  As shown in FIG. 2, a curved recess (recess) is formed on the lower surface of the upper boat (recessed pressing member). This curved surface has different curvatures in two directions orthogonal to each other. That is, the radius of curvature is 2R with respect to the first direction (χ ′ direction), and the radius of curvature is H with respect to the second direction (y ′ direction) orthogonal to the first direction. In other words, the lower surface of the upper boat is a quadric surface with a curvature that the crystal lattice must satisfy in order to satisfy Johansson's diffraction condition.
[0073] 一方、図 2に示されるように、下部ボート(凸状型押し部材)の上面には、曲面状の 突起(凸部)が形成されている。この曲面も、互いに直交する 2方向に対して異なる曲 率を有している。すなわち、上記第 1の方向(χ'方向)に対して曲率半径が R (すなわ ち、集光円の半径)であり、当該第 1の方向と直交する上記第 2の方向 (y'方向)に対 して曲率半径が Hである。言い換えると、下部ボートの上面は、曲率半径 Rの円(すな わち、集光円)の一部を曲率半径 Hで回転させた 2次曲面となる。  On the other hand, as shown in FIG. 2, a curved projection (convex portion) is formed on the upper surface of the lower boat (convex embossing member). This curved surface also has different curvatures in two directions orthogonal to each other. That is, the radius of curvature is R (that is, the radius of the condensing circle) with respect to the first direction (χ ′ direction), and the second direction (y ′ direction) orthogonal to the first direction. ) And the radius of curvature is H. In other words, the upper surface of the lower boat is a quadric surface obtained by rotating a part of a circle with a radius of curvature R (that is, a condensing circle) with a radius of curvature H.
[0074] そして、上部ボートの下面と、下部ボートの上面とに、離型剤を塗布し、高温でー且 ァニール処理を行う。その後、ァニール処理を施した上部ボートと下部ボートとの間 に、 Si単結晶板を挟み、縦型炉の中に配置する。なお、離型剤の塗布は、半導体単 結晶板の材料や成型条件に応じて省略することも可能である。 [0074] Then, a release agent is applied to the lower surface of the upper boat and the upper surface of the lower boat, and the annealing process is performed at a high temperature. After that, a Si single crystal plate is sandwiched between the upper and lower boats that have been annealed and placed in a vertical furnace. Note that the mold release agent is applied to the semiconductor It may be omitted depending on the material of the crystal plate and the molding conditions.
[0075] 上述したように、 Si単結晶板は、一方の面に対して予備研磨が行われ、曲率半径 2 Rの円筒面が形成されている。ここでは、 Si単結晶板の円筒面が下部ボートの上面 に接するように配置する。また、図 2に示されるように、 Si単結晶板の円筒面の軸方向 が上部ボート及び下部ボートの第 2の方向(y'方向)と一致するように、 Si単結晶板 は、上部ボートと下部ボートとの間に配置される。  [0075] As described above, the Si single crystal plate is pre-polished on one surface to form a cylindrical surface with a radius of curvature 2R. Here, the cylindrical surface of the Si single crystal plate is placed in contact with the upper surface of the lower boat. In addition, as shown in FIG. 2, the Si single crystal plate is made of the upper boat so that the axial direction of the cylindrical surface of the Si single crystal plate coincides with the second direction (y ′ direction) of the upper boat and the lower boat. And the lower boat.
[0076] この Si単結晶板の全面または一部の面に、汚染防止や熱による表面劣化を防ぐた め、離型剤等の熱に全く不純物の少ない表面保護膜を塗ってもよい。この縦型炉に は、金属製の押し棒が炉の上部に配置されてあり、この押し棒を外部力 操作するこ とにより、上部ボートの上面に荷重をかけて、 Si単結晶板の変形に必要な力を与える ことができるようになって!/、る。  [0076] In order to prevent contamination and to prevent surface deterioration due to heat, a surface protective film having little impurities against heat such as a release agent may be applied to the entire surface or a part of the surface of the Si single crystal plate. In this vertical furnace, a metal push rod is placed at the top of the furnace, and by operating this push rod with an external force, a load is applied to the upper surface of the upper boat, and deformation of the Si single crystal plate is performed. Now that you can give the power you need!
[0077] このようにセットした上部ボートおよび下部ボートと、 Si単結晶板とを水素雰囲気中 で Siの融点の近くまで、適宜の温度に昇温する。この適宜の温度に到達した時、金 属棒を炉内で下げ、上部ボートの上面を押して、たとえば 200N程度の荷重をかける 。なお、この適宜の温度については後述する。  [0077] The upper and lower boats set in this way and the Si single crystal plate are heated to an appropriate temperature in a hydrogen atmosphere to near the melting point of Si. When this appropriate temperature is reached, the metal rod is lowered in the furnace and the upper surface of the upper boat is pushed to apply a load of about 200 N, for example. The appropriate temperature will be described later.
[0078] これにより、 Si単結晶板にも圧縮力がかかり、高温加圧により Si単結晶板が、上部 ボートと下部ボートとの間で曲面状に変形する。なお、上部ボートには、 0〜1分程度 の荷重をかければよい。  Thereby, a compressive force is also applied to the Si single crystal plate, and the Si single crystal plate is deformed into a curved shape between the upper boat and the lower boat by high-temperature pressurization. It should be noted that a load of about 0 to 1 minute should be applied to the upper boat.
[0079] また、 Si単結晶板と上部及び下部ボートとを上述のように配置することによって、 Si 単結晶板は、予備研磨工程で形成された円筒面の軸方向に対して曲率半径 Hで変 形される。また、 Si単結晶板は、上記円筒面の当該軸方向に垂直な方向について、 予備研磨されて ヽな 、面が曲率半径 2Rの曲面となり、予備研磨された面が曲率半 径 Rの円(すなわち、集光円)を回転させた 2次曲面となる。その結果、 Si単結晶板は 、当該軸方向に垂直な方向において、結晶格子面が曲率半径 2Rで湾曲するととも に、研削された表面が曲率半径 Rで湾曲し、集光円に沿うこととなる。また、図 6に示 されるように、結晶表面および結晶格子面は、それぞれ曲率 Rおよび 2Rで一方向に 湾曲するとともに、当該方向と直交する方向に曲率 Hで湾曲する。  [0079] Further, by arranging the Si single crystal plate and the upper and lower boats as described above, the Si single crystal plate has a radius of curvature H with respect to the axial direction of the cylindrical surface formed in the preliminary polishing step. Deformed. In addition, the Si single crystal plate is pre-polished in a direction perpendicular to the axial direction of the cylindrical surface, and the surface becomes a curved surface with a radius of curvature 2R, and the pre-polished surface is a circle with a radius of curvature R ( In other words, it becomes a quadratic surface with the condensing circle) rotated. As a result, in the Si single crystal plate, in the direction perpendicular to the axial direction, the crystal lattice surface is curved with a radius of curvature 2R, and the ground surface is curved with a radius of curvature R, along the condensing circle. Become. Further, as shown in FIG. 6, the crystal surface and the crystal lattice plane are curved in one direction with curvatures R and 2R, respectively, and are curved with a curvature H in a direction perpendicular to the direction.
[0080] このように、上部ボート下面の凹状の 2次曲面は、結晶格子面の形状を定義付ける ものであり、下部ボート上面の凸状の 2次曲面は、単結晶板の表面の形状を定義付 けるものである。 [0080] Thus, the concave quadric surface on the lower surface of the upper boat defines the shape of the crystal lattice plane. The convex quadric surface on the upper surface of the lower boat defines the shape of the surface of the single crystal plate.
[0081] つまり、結晶の融点未満の温度にて、 Siのような高降伏応力の結晶板に全体的ま たは局所的に荷重を加え、当該結晶板を塑性変形させることで、結晶格子面が点収 束条件または線収束条件を満たす曲率分布を有する曲率分布結晶レンズを製造す ることができる。さらに、結晶の融点近傍の温度にて、 Siのような高降伏応力の結晶 板に全体的または局所的に荷重を加え、当該結晶板を塑性変形させることにより、結 晶格子面が点収束条件または線収束条件を満たす曲率分布を有する完全な曲率分 布結晶レンズを製造することができる。  That is, at a temperature lower than the melting point of the crystal, a crystal plate surface is obtained by plastically deforming the crystal plate by applying an overall or local load to the crystal plate having a high yield stress such as Si. Thus, a curvature distribution crystal lens having a curvature distribution that satisfies the point convergence condition or the line convergence condition can be manufactured. Furthermore, at a temperature close to the melting point of the crystal, the crystal lattice plane is subjected to a point convergence condition by applying a load to the crystal plate with high yield stress such as Si, entirely or locally, and plastically deforming the crystal plate. Alternatively, a complete curvature distribution crystal lens having a curvature distribution that satisfies the line convergence condition can be manufactured.
[0082] ここで、結晶の融点未満の温度とは、結晶板の塑性変形が始まる温度(Siの場合 1 120°C)から加圧時に一部融解が始まる温度直前までの加熱温度をいう。また、結晶 の融点近傍温度とは、曲面状の凸部が得られる加熱温度、すなわち所定の曲率を有 する完全な曲率分布結晶レンズを作製することができる加熱温度を ヽ、 Siの場合 には、当該結晶の融点以下 280°Cの温度から加圧時に一部溶解が始まる温度直前 までの加熱温度をいう。なお、上述の一部融解が始まる温度、塑性変形が始まる温 度、および結晶の融点近傍の温度は、加工する結晶材料により異なるものである。  Here, the temperature below the melting point of the crystal means a heating temperature from a temperature at which plastic deformation of the crystal plate starts (1 120 ° C. in the case of Si) to just before a temperature at which partial melting starts at the time of pressurization. In addition, the temperature near the melting point of the crystal is a heating temperature at which a curved convex portion is obtained, that is, a heating temperature at which a complete curvature distribution crystal lens having a predetermined curvature can be produced. The heating temperature from 280 ° C below the melting point of the crystal to just before the temperature at which partial dissolution starts during pressurization. The temperature at which partial melting starts, the temperature at which plastic deformation begins, and the temperature near the melting point of the crystal differ depending on the crystal material to be processed.
[0083] そして、上述のように得られる曲率分布結晶レンズにおいては、曲面状の凸部を構 成する Si単結晶が、結晶格子が元の単結晶状態を維持したまま塑性変形しているか ら、表面の曲面形状に沿った (平行な)結晶格子面を有するものとなっている。なお、 Si (100)単結晶による曲率分布結晶レンズ以外にも、たとえば Si (111)単結晶のよ うに、他の面を利用した曲率分布結晶レンズも同様に作製することができる。  Then, in the curvature distribution crystal lens obtained as described above, the Si single crystal constituting the curved convex portion is plastically deformed while maintaining the original single crystal state of the crystal lattice. It has a (parallel) crystal lattice plane along the curved surface shape of the surface. In addition to a curvature distribution crystal lens made of Si (100) single crystal, a curvature distribution crystal lens using other surfaces can be similarly produced, for example, Si (111) single crystal.
[0084] このように上部ボードおよび下部ボートを用いて、予備研磨された結晶板を型押し することで、 R— Hで定義される曲面を有する曲率分布結晶レンズが完成する。  [0084] By using the upper board and the lower boat as described above, the pre-polished crystal plate is embossed to complete a curvature distribution crystal lens having a curved surface defined by RH.
[0085] (2- 3.製造方法 1の利点)  [0085] (2-3. Advantages of Manufacturing Method 1)
上述した (A)高降伏応力の結晶を予備研磨し、(B) 2次元曲面を型押しするという 2工程カゝらなる曲率分布結晶レンズの製造方法の利点は、予備研磨工程が、 1次元 曲面の研磨加工だけで済むという点である。つまり、曲率分布結晶レンズを製造する にあたり、複雑な 2次元曲面を削り出す必要がないので、簡易に曲率分布結晶レン ズを製造できる点が、製造方法 1の利点であると 、える。 The advantage of the method of manufacturing a curvature distribution crystal lens, which is a two-step process of (A) pre-polishing a high yield stress crystal and (B) embossing a two-dimensional curved surface, is that the pre-polishing step is one-dimensional. It is a point that only polishing processing of the curved surface is required. In other words, in producing a curvature distribution crystal lens, it is not necessary to cut out a complicated two-dimensional curved surface. The advantage of manufacturing method 1 is that it can be manufactured.
[0086] (3.曲率分布結晶レンズの製造方法 2)  [0086] (3. Manufacturing method of curvature distribution crystal lens 2)
本発明に係る曲率分布結晶レンズの製造方法に係るさらに他の実施形態を説明 する。本実施形態の製造方法の概略を説明すると、(A)高降伏応力の結晶を 2次元 的に型押し成型し、(B)型押し成型後、 2次元曲面を研磨するという 2工程を経ること で、曲率分布結晶レンズを製造することができる。以下、これら 2工程の詳細につい て説明する。  Still another embodiment of the method of manufacturing a curvature distribution crystal lens according to the present invention will be described. The outline of the manufacturing method of this embodiment will be described. (A) A high yield stress crystal is two-dimensionally embossed, and (B) After the embossing, a two-dimensional curved surface is polished. Thus, a curvature distribution crystal lens can be manufactured. The details of these two steps will be described below.
[0087] (3— 1.型押し成型工程)  [0087] (3— 1. Embossing process)
図 7 (a)および図 7 (b)に示される、型押し成型工程に用いられる型押し部材の一例 としての上部ボートおよび下部ボートを用いて、半球状の Si単結晶板を型押しを行う 。型押しの方法は、製造方法 1と同様である。  The hemispherical Si single crystal plate is embossed using the upper boat and the lower boat as examples of the embossing member used in the embossing molding process shown in FIGS. 7 (a) and 7 (b). . The embossing method is the same as in manufacturing method 1.
[0088] なお、図 7 (b)に示すように、下部ボートには、曲面状の窪み(凹部)が形成されて いる。また、図 7 (a)に示すように、上部ボートには、下部ボートの窪みに少し余裕をも つてちようど嵌まり込む形状の曲面状の突起(凸部)が形成されている。なお、凹部や 凸部の曲面形状は、半球状であってもよいし、円筒面であってもよいし、 R—Hで定 義される曲面であってもよい。特に、円筒面形状は、線収束条件を満たすような曲率 分布結晶レンズを製造するのに好適である。また、 R—Hで定義される曲面は、 X線 の回折角が 90° でないような曲率分布結晶レンズを製造するのに好適である。  [0088] As shown in FIG. 7 (b), the lower boat is formed with a curved depression (concave portion). In addition, as shown in FIG. 7 (a), the upper boat is formed with a curved projection (convex portion) that fits in the recess of the lower boat with a slight margin. The curved surface shape of the concave portion or the convex portion may be a hemispherical shape, a cylindrical surface, or a curved surface defined by RH. In particular, the cylindrical surface shape is suitable for manufacturing a curvature distribution crystal lens that satisfies the line convergence condition. Further, the curved surface defined by R—H is suitable for manufacturing a curvature distribution crystal lens whose X-ray diffraction angle is not 90 °.
[0089] このような上部ボートおよび下部ボートを用いる型押し成型工程により、 2R ( Θ )— Hで定義される曲面、すなわち 2方向に異なる曲率を有する曲率分布結晶レンズを 得ることができる。 2R( Θ )—Hで定義される曲面は、以下に説明するような形状を有 している。  A curved surface defined by 2R (Θ) —H, that is, a curvature distribution crystal lens having different curvatures in two directions can be obtained by such an embossing process using an upper boat and a lower boat. The curved surface defined by 2R (Θ) —H has the shape described below.
[0090] つまり、図 4 (a)に示すように、 X線発生源の位置を A点とし、さらに、曲率分布結晶 レンズの集光点を B点とする。そして、上記型押し成型工程により得られた曲率分布 結晶レンズの結晶表面と、点 Aと、点 Bとを通る円の半径が Rで定義されるとする。  That is, as shown in FIG. 4 (a), the position of the X-ray generation source is point A, and the condensing point of the curvature distribution crystal lens is point B. Then, let R be defined as the radius of the circle that passes through the crystal surface of the curvature distribution crystal lens, point A, and point B obtained by the above-described die-molding process.
[0091] このとき、曲率分布結晶レンズは、 2R ( Θ )— Hで定義される曲面、すなわち結晶格 子面の曲率半径が 2R ( 0 )であり、なおかつ yz平面における切断形状力 点 Aと点 B とを結ぶ直線に対する曲率分布結晶レンズからの垂線 Hを半径とする円弧を形成す る曲面形状(図 4 (c)参照)を有して 、る。 At this time, the curvature distribution crystal lens has a curved surface defined by 2R (Θ) —H, that is, the radius of curvature of the crystal lattice plane is 2R (0), and the cutting shape force point A in the yz plane and Form an arc with radius H perpendicular to the straight line connecting the point B with the curvature distribution crystal lens It has a curved surface shape (see Fig. 4 (c)).
[0092] ここで、 2R ( 0 )という曲率半径が 、かなるパラメータであるかにっ 、て説明する。点 Aと点 Bとを結ぶ弦の垂直 2等分線は、 2箇所において焦点円と交わる。この 2箇所の 交点のうち、曲率分布結晶レンズと反対側に形成されるものを点 Xとして図 4 (a)に図 示している。このとき、曲率半径 2R( 0 )は、曲率分布結晶レンズの結晶格子面にお ける各点 Ρ ( Θ )と、点 Xとを結んだ線分の長さとして定義される。  Here, the description will be made based on whether or not the radius of curvature of 2R (0) is a reasonable parameter. The perpendicular bisector of the string connecting point A and point B intersects the focal circle at two points. Of these two intersections, the point formed on the opposite side of the curvature distribution crystal lens is shown as point X in Fig. 4 (a). In this case, the radius of curvature 2R (0) is defined as the length of the line segment connecting each point Ρ (Θ) and the point X on the crystal lattice plane of the curvature distribution crystal lens.
[0093] 特に、曲率分布結晶レンズと X線発生源との距離が、曲率分布結晶レンズと集光点 との距離と等しくなるように配置すると、上記曲率半径 2R( 0 )は、焦点円の直径であ る 2Rと等しくなる。  [0093] In particular, when the distance between the curvature distribution crystal lens and the X-ray generation source is set to be equal to the distance between the curvature distribution crystal lens and the focal point, the radius of curvature 2R (0) is It is equal to the diameter 2R.
[0094] (3- 2.研磨工程)  [0094] (3- 2. Polishing process)
研磨工程においては、上述の型押し成型により得られる曲率分布結晶レンズの曲 面力 R— Hの曲面となるように、曲率分布結晶レンズの表面を研磨する。  In the polishing step, the surface of the curvature distribution crystal lens is polished so as to have a curved surface having a curvature force R—H of the curvature distribution crystal lens obtained by the above-described embossing molding.
[0095] なお、このように曲率分布結晶レンズを研磨するために用いる器具としては、通常 の結晶研磨に用いられているものを用いることができる。たとえば、研磨用のダイヤモ ンドコンパウンド等を用いた NCカ卩ェにより曲率分布結晶レンズを研磨してもよい。あ るいは、セリア等の研磨粉を利用して、機械的または化学的に曲率分布結晶レンズ を研磨してもよ ヽ。  [0095] As an instrument used for polishing the curvature distribution crystal lens as described above, a tool used for normal crystal polishing can be used. For example, the curvature distribution crystal lens may be polished by an NC cage using a diamond compound for polishing. Alternatively, the curvature distribution crystal lens may be polished mechanically or chemically using polishing powder such as ceria.
[0096] (3- 3.製造方法 2の利点)  [0096] (3-3. Advantages of Production Method 2)
上述した (A)高降伏応力の結晶を 2次元的に型押し成型し、(B)型押し成型後、 2 次元曲面を研磨するという 2工程力 なる曲率分布結晶レンズの製造方法の利点は 、型押し成型工程のあとに、単結晶板の表面を研磨するので、厳密あるいは近似的 に Johanssonの回折条件を満たすよう、確実に結晶表面の形状を制御できることであ る。すなわち、精度の高い曲率分布結晶レンズを製造することができる。  The advantage of the method of manufacturing a curvature distribution crystal lens that has the two-step power of (A) two-dimensionally embossing a crystal with high yield stress and (B) polishing the two-dimensional curved surface after the die-molding is Since the surface of the single crystal plate is polished after the embossing process, the shape of the crystal surface can be reliably controlled to meet the Johansson diffraction condition strictly or approximately. That is, a highly accurate curvature distribution crystal lens can be manufactured.
[0097] さらに、 X線発生源として CuK o;特性 X線を発するものを用いるとともに、 Ge (l l l) 結晶を用いて曲率分布結晶レンズを作製すると、 333回折線 2 Θが約 90度となる。こ れは、上述の研磨工程において、球面を研磨すればよいことを意味している。これに より、研磨工程を簡略ィ匕できるので、より効率よく曲率分布結晶レンズを製造すること ができる。 [0098] (4.型押し成型工程における最適条件) [0097] Furthermore, using a CuKo; X-ray source that emits characteristic X-rays, and making a curvature distribution crystal lens using Ge (lll) crystal, the 333 diffraction line 2 Θ is about 90 degrees. . This means that the spherical surface may be polished in the above-described polishing step. As a result, the polishing process can be simplified, and the curvature distribution crystal lens can be manufactured more efficiently. [0098] (4. Optimum conditions in the stamping molding process)
上述したように、半導体単結晶板に対して、加熱加圧により変更を行う。本発明者ら は、実験により、結晶の融点未満の温度、または、結晶の融点近傍の温度が適して いるという知見を得た。なお、結晶の融点未満の温度とは、結晶板の塑性変形が始 まる温度(Siの場合 1120°C)から加圧時に一部融解が始まる温度直前までの加熱 温度をいう。また、結晶の融点近傍温度とは、完全な半球状の凸部が得られる加熱 温度、すなわち所定の曲率を有する完全な曲率分布結晶レンズを作製することがで きる加熱温度をいい、 Siの場合には、当該結晶の融点以下 280°Cの温度から加圧 時に一部溶解が始まる温度直前までの加熱温度をいう。なお、上述の一部融解が始 まる温度、塑性変形が始まる温度、および結晶の融点近傍の温度は、加工する結晶 材料により異なるものである。  As described above, the semiconductor single crystal plate is changed by heating and pressing. The present inventors have found through experiments that a temperature below the melting point of the crystal or a temperature near the melting point of the crystal is suitable. The temperature below the melting point of the crystal refers to the heating temperature from the temperature at which plastic deformation of the crystal plate begins (1120 ° C for Si) to just before the temperature at which partial melting starts during pressurization. The temperature near the melting point of the crystal refers to the heating temperature at which a complete hemispherical convex part is obtained, that is, the heating temperature at which a complete curvature distribution crystal lens having a predetermined curvature can be produced. Refers to the heating temperature from a temperature of 280 ° C below the melting point of the crystal to just before the temperature at which partial dissolution begins upon pressurization. The temperature at which the partial melting starts, the temperature at which plastic deformation begins, and the temperature near the melting point of the crystal differ depending on the crystal material to be processed.
[0099] ここでは、 Siにおける最適条件について説明する。図 8は、 Si(lOO)単結晶につい て、厚み及び温度を変えたときの変形状態の評価結果を示す図である。図において 、◎は塑性変形により所望どおりの形状が完全に得られたことを示しており、〇は塑 性変形によりほぼ所望の形状が得られたことを示しており、△は表面が溶融したこと を示している。図 8に示されるように、 Si (100)単結晶については、融点より 55〜27 °C低い範囲が最も好ましいことがわかる。また、図 9は、 Si (l l l)単結晶について、厚 み及び温度を変えたときの変形状態の評価結果を示す図である。図示されるように、 Si (111)単結晶につ 、ては、融点より 57〜25°C低 、範囲が最も好まし 、ことがわか る。  [0099] Here, the optimum conditions for Si will be described. FIG. 8 is a diagram showing the evaluation results of the deformation state of the Si (lOO) single crystal when the thickness and temperature are changed. In the figure, ◎ indicates that the desired shape was completely obtained by plastic deformation, ○ indicates that almost the desired shape was obtained by plastic deformation, and △ indicates that the surface was melted. It is shown that. As shown in FIG. 8, it is understood that the Si (100) single crystal is most preferably in the range of 55 to 27 ° C. below the melting point. FIG. 9 is a diagram showing the evaluation results of the deformation state of the Si (ll l) single crystal when the thickness and temperature are changed. As shown, the Si (111) single crystal is most preferably in the range of 57-25 ° C. below the melting point.
[0100] なお、 Si単結晶(融点 1414°C)の場合、融点以下 1134°C以上であればよぐ望ま しくは 1300〜 1410°C (融点より 114〜4°C低 、温度)であればょ 、。さらに好ましく は、 1350〜1403°Cであれば、曲率分布結晶レンズの特性として問題の塑性変形を 安定して実現できる。  [0100] In the case of a Si single crystal (melting point: 1414 ° C), it should be 1134 ° C or higher, preferably 1300-1410 ° C (114-4 ° C lower than the melting point, temperature). Yeah. More preferably, when the temperature is 1350 to 1403 ° C, the plastic deformation in question can be stably realized as the characteristic of the curvature distribution crystal lens.
[0101] また、 Ge単結晶の場合、融点よりも 100〜2°C低い温度で曲率分布結晶レンズの 特性として問題の塑性変形を安定して実現できる。  [0101] In the case of a Ge single crystal, the plastic deformation in question can be stably realized as a characteristic of the curvature distribution crystal lens at a temperature 100 to 2 ° C lower than the melting point.
[0102] (5.曲率分布結晶レンズの構成) [0102] (5. Configuration of curvature distribution crystal lens)
次に、上述した曲率分布結晶レンズの製造方法 1または製造方法 2により得られる 曲率分布結晶レンズの構成について説明する。 Next, obtained by manufacturing method 1 or manufacturing method 2 of the curvature distribution crystal lens described above The configuration of the curvature distribution crystal lens will be described.
[0103] 上述したように、図 4 (a)は、曲率分布結晶レンズに関して X線発生源と集光位置と が対称となるよう、曲率分布結晶レンズを配置した構成を示す図であり、図 4 (b)は、 曲率分布結晶レンズに関して X線発生源と集光位置とが非対称となるよう、曲率分布 結晶レンズを配置した構成を示す図である。さら〖こ、図 4 (c)は、曲率分布結晶レンズ の曲率を説明するための図である。  [0103] As described above, Fig. 4 (a) is a diagram showing a configuration in which the curvature distribution crystal lens is arranged so that the X-ray generation source and the condensing position are symmetrical with respect to the curvature distribution crystal lens. 4 (b) is a diagram showing a configuration in which the curvature distribution crystal lens is arranged so that the X-ray generation source and the condensing position are asymmetric with respect to the curvature distribution crystal lens. Sarako, Fig. 4 (c) is a diagram for explaining the curvature of the curvature distribution crystal lens.
[0104] 上述の製造方法 1または製造方法 2により得られる曲率分布結晶レンズは、図 4 (a) および図 4 (b)に示すように、光源位置 A、集光位置 Bに対して、平面 ABC内では Jo hansson型モノクロの形状を有しており、図 4 (c)〖こ示すように、 z方向については、半 径 Hの曲率を有している。なお、このような 2次曲面の表面を有する曲率分布結晶レ ンズを、「2次元 Johansson結晶」と呼ぶ場合もある。  [0104] The curvature distribution crystal lens obtained by the manufacturing method 1 or the manufacturing method 2 described above is flat with respect to the light source position A and the condensing position B, as shown in FIGS. 4 (a) and 4 (b). In ABC, it has a Johansson type monochrome shape, and as shown in Fig. 4 (c), it has a radius of curvature H in the z direction. Such a curvature distribution crystal lens having a quadric surface is sometimes referred to as a “two-dimensional Johansson crystal”.
[0105] そして、このような曲率分布結晶レンズによれば、 Johanssonの回折結晶の条件が広 い角度範囲にわたって厳密に満たされており、広角度での集光が可能となる。たとえ ば Ge ( 1 1 1)結晶を用いて曲率分布結晶レンズを作製すると、 CuK a特性 X線に対 して 333回折線 2 Θが約 90度となり、広角度での集光が実現される。なお、 1 1 1反射 または 220反射を利用すれば、より直線的な光学系での集光を実現することも可能と なる。  [0105] According to such a curvature distribution crystal lens, the conditions of Johansson's diffraction crystal are strictly satisfied over a wide angle range, and light can be condensed at a wide angle. For example, when a curvature distribution crystal lens is fabricated using Ge (1 1 1) crystal, the 333 diffraction line 2Θ is about 90 degrees with respect to the CuKa characteristic X-ray, and condensing at a wide angle is realized. . If 1 1 1 reflection or 220 reflection is used, it is also possible to achieve light collection with a more linear optical system.
[0106] また、曲率分布結晶レンズは、図 10 (a)に示すように、 z方向についての曲率を有さ ず直線的に形成されていてもよい。すなわち、曲率分布結晶レンズを、図 10 (b)に示 すように、線状の X線発生源が延びる軸に直交する平面で切断すると、その切断面 が常に同じ Johansson型又は Johann型モノクロの形状を有するように形成してもよ!/、。  [0106] Further, as shown in Fig. 10 (a), the curvature distribution crystal lens may be formed linearly without having a curvature in the z direction. That is, as shown in Fig. 10 (b), when the curvature distribution crystal lens is cut along a plane perpendicular to the axis along which the linear X-ray generation source extends, the cut surface always has the same Johansson type or Johann type monochrome. It may be formed to have a shape! /
[0107] この場合、上述の予備研磨工程にお!ヽては、下記の式を満たすように、オフセット 量 y (X)を設定する必要がある。  In this case, the offset amount y (X) needs to be set so as to satisfy the following formula for the preliminary polishing step described above.
[0108] [数 1]  [0108] [Equation 1]
= R t an-' Cx/R)
Figure imgf000022_0001
なお、上式において、点 P 'は、型押し成型前の点 Pに対応する点である(図 3 (b) 参照)。なお、型押し成型時には、点 Poと点 P'との間における距離と、点 Poと点 Pと の間における距離とが等しい状態で、結晶板が塑性変形するものとする。
= R t an- 'Cx / R)
Figure imgf000022_0001
In the above equation, the point P 'corresponds to the point P before the stamping (Fig. 3 (b) reference). It is assumed that the crystal plate is plastically deformed in the state where the distance between the point Po and the point P ′ and the distance between the point Po and the point P are equal at the time of stamping.
[0109] (6.結晶成長工程について) [0109] (6. About crystal growth process)
上述した製造方法 1および製造方法 2の ヽずれにぉ 、ても、結晶が高温加圧塑性 変形される。この場合、本来平面である格子面が、曲面状に曲げ塑性変形されること になる。その曲げ塑性変形による歪量は、結晶の曲率半径に反比例し、基板の厚さ に比例する。  Even if the manufacturing method 1 and the manufacturing method 2 described above are different, the crystal is plastically deformed at high temperature and pressure. In this case, the lattice plane which is originally a flat surface is bent and plastically deformed into a curved surface. The amount of strain due to bending plastic deformation is inversely proportional to the radius of curvature of the crystal and proportional to the thickness of the substrate.
[0110] そして、曲げ塑性変形による変形量に相当する転位が、結晶中に平衡状態として 存在することになる。この結晶中の転位量は、半径数 cmの曲率半径の結晶において 107cm2台という非常に大きな値となる。さらに、この転位密度 (欠陥密度)での X線回 折半値幅は、完全結晶と比較するときわめて高くなつてしまう。 [0110] Then, dislocations corresponding to the deformation due to bending plastic deformation exist in the crystal as an equilibrium state. The amount of dislocations in this crystal is a very large value of 10 7 cm 2 in a crystal with a radius of curvature of several centimeters. Furthermore, the X-ray diffraction half-width at this dislocation density (defect density) becomes extremely high compared to a perfect crystal.
[0111] そこで、上述の製造方法 1および製造方法 2において、高温加圧加工処理による変 形の後、すなわち上部ボートおよび下部ボートを用いた型押し成型の後に、 X線回折 に使う面(凹面側)に、欠陥密度が数ミクロン〜 100 m程度の低欠陥密度層を、新 たにェピタキシャルに結晶成長させることが好ましい。これにより、 X線が侵入する深 さまではほぼ完全結晶である理想的な回折レンズ結晶が得られる。  [0111] Therefore, in the manufacturing method 1 and the manufacturing method 2 described above, the surface used for X-ray diffraction (concave surface) after deformation by high-temperature pressurization processing, that is, after embossing using the upper boat and the lower boat. On the other hand, it is preferable to newly epitaxially grow a low defect density layer having a defect density of several microns to 100 m. As a result, an ideal diffractive lens crystal that is almost perfect at the depth of penetration of X-rays can be obtained.
[0112] このェピタキシャルな成長は、結晶表面への気相または液相成長により実現されて もよいし、またはランプアニールを用いて結晶表面を融解した後、低欠陥密度層を再 成長させてもよい。  [0112] This epitaxial growth may be realized by vapor phase or liquid phase growth on the crystal surface, or after the crystal surface is melted using lamp annealing, the low defect density layer is regrown. Also good.
[0113] このようなごく薄いェピタキシャル層の再成長によって、低欠陥密度層が形成される 理由について以下説明する。  [0113] The reason why the low defect density layer is formed by the regrowth of such an extremely thin epitaxial layer will be described below.
[0114] 曲げ変形による最大歪量は、レイヤー厚さ tと曲率半径 Rとにより値 tZ2Rとなる。と ころが、一旦高温塑性変形で作成された結晶表面における歪量は、曲げ弾性変形 による歪量力 結晶中の転位量による緩和量が差し引かれた値となり、弾性歪成分 はほとんど残って ヽな 、値となる。  [0114] The maximum amount of strain due to bending deformation is the value tZ2R depending on the layer thickness t and the radius of curvature R. However, the amount of strain at the surface of the crystal once created by high-temperature plastic deformation is the value obtained by subtracting the amount of strain due to flexural elastic deformation and the amount of relaxation due to the amount of dislocation in the crystal, leaving almost no elastic strain component. Value.
[0115] そのため、厚さ dの層を結晶表面に再成長させた場合、曲げ塑性変形により発生す る歪量は dZ2Rであり、これは d< <tであれば圧倒的に小さな歪量となる。したがつ て、再成長した薄膜部分の結晶は、弾性変形するにとどまって、転位をほとんど発生 させない。 [0115] Therefore, when a layer of thickness d is regrown on the crystal surface, the strain generated by bending plastic deformation is dZ2R, which is overwhelmingly small if d <<t. Become. Therefore, the crystal of the re-grown thin film part is only elastically deformed and almost generates dislocations. I won't let you.
[0116] このようにして、良好な結晶性をもちながら、大きな曲げ半径、力学的にも十分な強 度を持ち、さらに、 Johansson条件を満たすような表面の研磨を許容できる十分な結 晶厚さが設けられた Johansson結晶を製造することが可能となる。  [0116] In this way, the crystal has a sufficient crystal thickness that has a large bend radius and sufficient mechanical strength while having good crystallinity, and is capable of polishing a surface that satisfies Johansson conditions. It is possible to produce a Johansson crystal having a thickness.
[0117] (7.偏光制御装置について)  [0117] (7. About polarization controller)
ところで、従来技術では、 CuK o;特性 X線に対し、 Ge333回折条件では 2 Θ力 0 ° となる。そして、図 11 (a)に示すように、 X線発生源 Sから出射され、 yz平面内で完 全にランダムな電場ベクトルを持っていた X線は、 z軸となす角を φとすると、一回の 回折ごとに sin2 φの偏光因子分の強度変化をする。  By the way, in the prior art, the Cuθ; characteristic X-ray is 2 Θ force 0 ° under Ge333 diffraction condition. Then, as shown in Fig. 11 (a), X-rays emitted from the X-ray source S and having a completely random electric field vector in the yz plane can be expressed as follows: The intensity changes by the sin2φ polarization factor for each diffraction.
[0118] そのため、 z軸に平行な方向の電場ベクトルを持つ X線は、 n回の回折後も同じ強 度であるのに対して、 z軸から Y軸方向に φだけ傾いた方向を向いた電場ベクトルを もつ X線は、 n回の回折後、 sinn φの強度し力持たず、 90° 方向(y方向)では強度 は 0〖こなる。つまり、繰り返し反射により、 Z軸方向への直線偏光 X線を作ることができ る。 [0118] Therefore, X-rays with an electric field vector in the direction parallel to the z-axis have the same intensity after being diffracted n times, but are directed in a direction inclined by φ from the z-axis to the Y-axis. X-rays having an electric field vector had after n times of diffraction, no strength force of sin n phi, 90 ° direction (y-direction), the intensity 0 〖Konaru. In other words, linearly polarized X-rays in the Z-axis direction can be created by repeated reflection.
[0119] ところが、従来技術では、チャネルカット結晶を使うため、 X線発生源 Sのうち、この 繰り返し反射で伝わる X線の角度幅はきわめて小さい。すなわち、全方位に放出され る X線のうち、ごく一部、たとえば 0. 01度以下の角度幅の X線を取り出して偏光制御 することになつてしまう。  [0119] However, in the prior art, since the channel cut crystal is used, among the X-ray generation source S, the angular width of the X-ray transmitted by this repeated reflection is very small. In other words, only a part of the X-rays emitted in all directions, for example, X-rays with an angle width of 0.01 degrees or less are extracted and polarization control is performed.
[0120] ところ力 図 11 (b)に示すように、上述した製造方法により得られる 1次元または 2次 元 Johansson結晶を直列に配置して偏光制御装置を構成し、当該偏光制御装置によ り X線発生源からの X線を回折させると、広い角度幅にわたり、 2 Θ = 90度の回折が 満たされる。したがって、図 11 (a)に示す従来技術と同様に、無偏光 X線源から直線 偏光 X線を作り出すことができるにもかかわらず、 X線発生源 Sからの X線を広い取込 み角にわたって利用できるため、 X線強度は、条件によっては従来技術の 100倍以 上となる。なお、 X線の電場、磁場ベクトルは、必ず yz平面内にある。  [0120] However, as shown in Fig. 11 (b), a one-dimensional or two-dimensional Johansson crystal obtained by the above-described manufacturing method is arranged in series to form a polarization control device. Diffracting X-rays from an X-ray source satisfies 2 Θ = 90 degrees of diffraction over a wide angular width. Therefore, similar to the conventional technology shown in Fig. 11 (a), a linearly polarized X-ray can be generated from an unpolarized X-ray source, but the X-ray from the X-ray source S has a wide angle of capture. The X-ray intensity is more than 100 times that of the prior art depending on conditions. The X-ray electric and magnetic field vectors are always in the yz plane.
[0121] (8. X線反射率測定装置の構成例 1)  [0121] (8. Configuration example 1 of X-ray reflectivity measuring device)
次に、図 4 (a)〜図 4 (c)を用いて説明した曲率分布結晶レンズを用いた X線反射 率測定装置の構成について説明する。 [0122] 図 12に示すように、 X線反射率測定装置 1は、曲率分布結晶レンズ 2と、 X線発生 源 3と、発散角制御スリット 4と、整形スリット 5と、光学調整ブレード 6と、位置敏感検出 器 7とを備えている。なお、位置敏感検出器 7としては、 PSPC、 IP (Imaging Plate)の ような輝尽性フィルム、 CCD (Charge Coupled Device)、 PD (PhotoDiode) -array等を 用いることができる。すなわち、本明細書において、位置敏感検出器 7には、 PSPC、 IP (Imaging Plate)のような輝尽性フィルム、 CCD (Charge Coupled Device)ゝ PD (Pho toDiode)—arrayが含まれる。 Next, the configuration of the X-ray reflectivity measuring apparatus using the curvature distribution crystal lens described with reference to FIGS. 4 (a) to 4 (c) will be described. [0122] As shown in FIG. 12, the X-ray reflectivity measuring apparatus 1 includes a curvature distribution crystal lens 2, an X-ray generation source 3, a divergence angle control slit 4, a shaping slit 5, and an optical adjustment blade 6. And a position sensitive detector 7. As the position sensitive detector 7, a stimulable film such as PSPC, IP (Imaging Plate), CCD (Charge Coupled Device), PD (PhotoDiode) -array or the like can be used. That is, in the present specification, the position sensitive detector 7 includes a PSPC, a stimulable film such as IP (Imaging Plate), and a CCD (Charge Coupled Device) DevicePD (PhotoDiode) -array.
[0123] 上記構成の X線反射率測定装置 1にお ヽて、 X線発生源 3から照射された X線は、 発散角制御スリット 4により、 xy平面内での発散角が規定される。その後、 X線は、曲 率分布結晶レンズ 2 (レンズの構成にっ 、ては図 4 (a)〜図 4 (c)参照)にて回折する  In the X-ray reflectivity measuring apparatus 1 having the above configuration, the divergence angle in the xy plane of the X-ray irradiated from the X-ray generation source 3 is defined by the divergence angle control slit 4. Thereafter, the X-ray is diffracted by the curvature distribution crystal lens 2 (refer to FIGS. 4 (a) to 4 (c) depending on the lens configuration).
[0124] そして、曲率分布結晶レンズ 2で回折した X線は、整形スリット 5にて整形され、試料 上の集光位置に入射する。そして、試料にて反射した X線は、位置敏感検出器 7〖こ 入射する。なお、光学調整ブレード 6により、試料上で反射した X線以外の外乱光が 位置敏感検出器 7に入射することが防止されている。 [0124] Then, the X-ray diffracted by the curvature distribution crystal lens 2 is shaped by the shaping slit 5 and is incident on the condensing position on the sample. The X-ray reflected from the sample then enters 7 position sensitive detectors. The optical adjustment blade 6 prevents ambient light other than X-rays reflected on the sample from entering the position sensitive detector 7.
[0125] 次に、上記構成の X線反射率測定装置 1を動作させる原理について、図 13を用い て説明する。なお、図 13においては、図 12における発散角制御スリット 4、整形スリツ ト 5、および光学調整ブレード 6の記載を省略して ヽる。  Next, the principle of operating the X-ray reflectivity measuring apparatus 1 having the above configuration will be described with reference to FIG. In FIG. 13, the description of the divergence angle control slit 4, the shaping slit 5, and the optical adjustment blade 6 in FIG. 12 may be omitted.
[0126] 図 13に示すように、位置敏感検出器 7は、反射率測定用配置および入射光強度分 布測定用配置という 2つの位置の間を、 xy平面内で移動可能である。  As shown in FIG. 13, the position sensitive detector 7 is movable in the xy plane between two positions, a reflectance measurement arrangement and an incident light intensity distribution measurement arrangement.
[0127] まず、 X線の強度分布を測定するために、試料を測定位置カゝら退避させるとともに、 位置敏感検出器 7を入射光強度分布用配置まで移動させる。これにより、 X線発生源 3から照射され、曲率分布結晶レンズ 2で回折した X線が、位置敏感検出器 7に直接 入射する。このように位置敏感検出器7に直接入射した X線から、 X線の強度分布を 知ることができる。なお、位置敏感検出器 7に入射する X線の強度を検出器の性能に あわせて調整するため、アツテネータ 8を位置敏感検出器 7の前段に設けてもよい。 [0127] First, in order to measure the X-ray intensity distribution, the sample is retracted from the measurement position and the position sensitive detector 7 is moved to the incident light intensity distribution arrangement. As a result, the X-rays irradiated from the X-ray generation source 3 and diffracted by the curvature distribution crystal lens 2 are directly incident on the position sensitive detector 7. Thus, the X-ray intensity distribution can be known from the X-rays directly incident on the position sensitive detector 7 . Note that an attenuator 8 may be provided before the position sensitive detector 7 in order to adjust the intensity of X-rays incident on the position sensitive detector 7 in accordance with the performance of the detector.
[0128] 次に、試料を測定位置に移動させ、位置敏感検出器 7を反射率測定用配置まで移 動させる。これにより、試料上で反射した X線の反射率を、位置敏感検出器 7で測定 することが可能となる。 [0128] Next, the sample is moved to the measurement position, and the position sensitive detector 7 is moved to the reflectance measurement arrangement. This allows the position sensitive detector 7 to measure the reflectivity of the X-rays reflected on the sample. It becomes possible to do.
[0129] また、上記構成の X線反射率測定装置 1を上面(図 12および図 13における紙面上 側)から見た状態を図 14に示す。図 14に示すように、 X線発生源 3から照射された X 線は曲率分布結晶レンズ 2により試料上で集光された後、位置敏感検出器 7に入射 する。  Further, FIG. 14 shows a state where the X-ray reflectivity measuring apparatus 1 having the above configuration is viewed from the upper surface (upper side of the paper in FIGS. 12 and 13). As shown in FIG. 14, the X-rays emitted from the X-ray generation source 3 are collected on the sample by the curvature distribution crystal lens 2 and then enter the position sensitive detector 7.
[0130] 上記構成の X線反射率測定装置 1によれば、曲率分布結晶レンズ 2を用いている ので、 X線発生源 3から照射された X線を、広い取込み角で試料上において集光す ることが可能となる。したがって、試料へ入射する X線の入射角を広く設定し、広い角 度範囲における X線の反射率を一度に測定することができるので、 X線反射率を高 速で測定することが可能となる。  [0130] According to the X-ray reflectivity measuring apparatus 1 configured as described above, since the curvature distribution crystal lens 2 is used, the X-rays irradiated from the X-ray generation source 3 are condensed on the sample with a wide angle of capture. Can be performed. Therefore, it is possible to measure the X-ray reflectivity at high speed because the X-ray reflectivity in a wide angle range can be measured at a time by setting the X-ray incident angle to the sample widely. Become.
[0131] 特に、上記構成の X線反射率測定装置 1は、 X線発生源 3から照射された X線を、 曲率分布結晶レンズ 2により、 xy平面内で集光させることができるとともに(図 12参照 )、 xz平面内でも集光させることができる(図 14参照)。このように、 X線反射率測定装 置 1は、曲率分布結晶レンズ 2により X線の 2次元的な集光が可能となるので、試料に おける微小な部分に X線を照射するのに好適な構成といえる。  [0131] In particular, the X-ray reflectivity measuring apparatus 1 having the above-described configuration can condense X-rays emitted from the X-ray generation source 3 in the xy plane by the curvature distribution crystal lens 2 (see FIG. 12), and can be focused even in the xz plane (see Fig. 14). As described above, the X-ray reflectivity measuring apparatus 1 can collect two-dimensional X-rays by the curvature distribution crystal lens 2 and is therefore suitable for irradiating a minute portion of the sample with X-rays. It can be said that it is a simple configuration.
[0132] (3. X線反射率測定装置の構成例 2)  [0132] (3. Configuration example 2 of X-ray reflectivity measuring device)
上述した X線反射率測定装置 1は、試料における微小な部分に X線を照射するの に好適な構成であった力 曲率分布結晶レンズ 2の構成を変更することにより、比較 的大きな試料について、 X線発生装置を大出力で駆動可能な線状ビームを用いて X 線反射率を測定することが可能となる。そこで、以下では、大きな試料に対して X線を 照射するのに適した曲率分布結晶レンズの構成を説明した後に、その曲率分布結晶 レンズを用いる X線反射率測定装置の構成にっ 、て説明する。  The X-ray reflectivity measuring apparatus 1 described above can be used for comparatively large samples by changing the configuration of the curvature curvature crystal lens 2 that was suitable for irradiating a minute portion of the sample with X-rays. X-ray reflectivity can be measured using a linear beam that can drive the X-ray generator with high output. Therefore, in the following, after describing the configuration of a curvature distribution crystal lens suitable for irradiating a large sample with X-rays, the configuration of an X-ray reflectivity measuring apparatus using the curvature distribution crystal lens will be described. To do.
[0133] 曲率分布結晶レンズ 10は、図 10 (a)に示すように、線状 X線発生源である光源位 置 A、集光位置(焦点線) Bに対して、平面 ABC内では Johansson型又は Johann型モ ノクロの形状を有している。この点は、図 4 (a)を用いて説明した曲率分布結晶レンズ の構成と同じである。  As shown in FIG. 10 (a), the curvature distribution crystal lens 10 has Johansson in the plane ABC with respect to the light source position A and the condensing position (focal line) B, which are linear X-ray generation sources. It has the shape of a mold or Johann type monochrome. This is the same as the configuration of the curvature distribution crystal lens described with reference to Fig. 4 (a).
[0134] 曲率分布結晶レンズ 10と、図 4 (a)〜図 4 (c)に示す曲率分布結晶レンズとの相違 点は、曲率分布結晶レンズ 10が、図 10 (a)に示すように、 z方向についての曲率を有 さず直線的に形成されている点である。 [0134] The difference between the curvature distribution crystal lens 10 and the curvature distribution crystal lens shown in Figs. 4 (a) to 4 (c) is that the curvature distribution crystal lens 10 is shown in Fig. 10 (a). Has curvature in the z direction It is a point that is formed linearly.
[0135] 図 15に、上述した曲率分布結晶レンズ 10を用いる X線反射率測定装置 11の構成 を示す。図 15に示すように、 X線反射率測定装置 11は、曲率分布結晶レンズ 10と、 線状の X線発生源 12と、取込スリット 13と、整形スリット 14と、位置敏感検出器 7とを 備えている。 FIG. 15 shows the configuration of the X-ray reflectivity measuring apparatus 11 using the curvature distribution crystal lens 10 described above. As shown in FIG. 15, the X-ray reflectivity measuring device 11 includes a curvature distribution crystal lens 10, a linear X-ray generation source 12, an intake slit 13, a shaping slit 14, a position sensitive detector 7, It is equipped with.
[0136] 上記構成の X線反射率測定装置 11にお ヽて、 X線発生源 12から照射された X線 は、取込スリット 13を介して必要な取り込み角度のみに切り取られて、曲率分布結晶 レンズ 10へ導かれる。そして、曲率分布結晶レンズ 10で回折した X線は、整形スリツ ト 14により、結晶レンズ周辺部の質が劣る回折線が遮蔽'整形され、試料上の集光位 置に入射する。そして、試料にて反射した X線は、位置敏感検出器 7に入射する。  [0136] In the X-ray reflectivity measuring apparatus 11 having the above-described configuration, the X-rays irradiated from the X-ray generation source 12 are cut out only at a required capture angle through the capture slit 13, and the curvature distribution is obtained. Guided to crystal lens 10. Then, the X-ray diffracted by the curvature distribution crystal lens 10 is shielded and shaped by the shaping slit 14 so that the diffracted rays having poor quality at the periphery of the crystal lens are incident on the light converging position on the sample. Then, the X-ray reflected from the sample enters the position sensitive detector 7.
[0137] なお、 X線反射率測定装置 11における位置敏感検出器 7は、反射率測定用配置 および入射光強度分布測定用配置と!/ヽぅ 2つの位置の間を移動可能である。反射率 測定用配置および入射光強度分布測定用配置につ!ヽては、反射率測定を行う場合 および X線の強度分布を調べる場合に応じて、図 13に示した X線反射率測定装置 1 と同様に移動させればよい。  It should be noted that the position sensitive detector 7 in the X-ray reflectivity measuring apparatus 11 is movable between two positions: a reflectance measurement arrangement and an incident light intensity distribution measurement arrangement. For the reflectance measurement arrangement and the incident light intensity distribution measurement arrangement, the X-ray reflectance measurement device shown in Fig. 13 is used according to the reflectance measurement and the X-ray intensity distribution. Move as in 1.
[0138] 上記構成の X線反射率測定装置 11によれば、線状の X線発生源 12から発生した X線が、曲率分布結晶レンズ 10により、試料上に線状に集光される(図 10 (b)および 図 15参照)。このように X線を線状に集光させれば、試料の広い範囲を迅速にスキヤ ンすることが可能となる。したがって、 X線反射率測定装置 11は、大きな試料に対し て X線を照射するのに適したものといえる。  [0138] According to the X-ray reflectivity measuring apparatus 11 having the above-described configuration, X-rays generated from the linear X-ray generation source 12 are linearly collected on the sample by the curvature distribution crystal lens 10 ( (See Figure 10 (b) and Figure 15). Concentrating X-rays in this way makes it possible to quickly scan a wide range of samples. Therefore, it can be said that the X-ray reflectivity measuring apparatus 11 is suitable for irradiating a large sample with X-rays.
産業上の利用の可能性  Industrial applicability
[0139] 上述のように製造される曲率分布結晶レンズは、種々の X線装置に適用可能であ る。まず、曲率分布結晶レンズは、点状の X線発生源を持つ X線発生装置に対して、 特定の X線のみを分別するモノクロメータ機能を有している。さらに、上述の製造方法 により製造された曲率分布結晶レンズによれば、大立体角での X線の取り込みが可 能となるので、 X線発生源のサイズと同等のサイズまで集光を行うことができる。  [0139] The curvature distribution crystal lens manufactured as described above can be applied to various X-ray apparatuses. First, the curvature distribution crystal lens has a monochromator function that separates only specific X-rays from an X-ray generator having a point-like X-ray generation source. Furthermore, according to the curvature distribution crystal lens manufactured by the above-described manufacturing method, X-rays can be captured at a large solid angle, so that the light is condensed to a size equivalent to the size of the X-ray generation source. Can do.
[0140] さらに、上述のように製造される曲率分布結晶レンズは、超高輝度の X線回折'散 乱装置、超小型の X線回折装置、高輝度の X線蛍光分析装置、偏光 X線光電子分 光装置、あるいは光電子顕微鏡装置等に適用することができる。 [0140] Further, the curvature distribution crystal lens manufactured as described above includes an ultra-bright X-ray diffraction 'scattering device, an ultra-compact X-ray diffractometer, a high-brightness X-ray fluorescence analyzer, and a polarized X-ray. Photoelectron content The present invention can be applied to an optical device or a photoelectron microscope device.
本発明は、サブナノメートルの薄膜の厚さを高速に評価する要請がある産業、たと えば、工場等における超薄膜の品質管理において利用することが可能である。  The present invention can be used in quality control of ultra-thin films in industries that require high-speed evaluation of the thickness of sub-nanometer thin films, for example, factories.

Claims

請求の範囲 The scope of the claims
[1] Si,Ge,GaAS等の半導体単結晶板を用い、研磨加工と高温型押しによる塑性変形と の組み合わせにより、結晶表面形状と結晶格子面形状とを独立な曲面に形成する曲 率分布結晶レンズの製造方法。 [1] Si, Ge, using a semiconductor single crystal plate such GaA S, by the combination of the plastic deformation due to polishing and hot stamping, the curvature forming the crystal surface shape and the crystal lattice plane shape independently curved surface Manufacturing method of distributed crystal lens.
[2] Si,Ge,GaAs等の半導体単結晶板が型押し部材に挟み込まれて高温加圧により塑 性変形された場合に、当該半導体単結晶板の結晶格子面の結晶表面に対する傾き 力 Johanssonの回折条件を満たすために必要なオフセット量を、上記半導体単結晶 板の片面上に残すように上記半導体単結晶板を研磨する予備研磨工程と、 集光円を回転させた凸状の 2次曲面を持つ凸状型押し部材と、 Johanssonの回折条 件を満たすために上記半導体単結晶板の結晶格子が満たすべき曲率の凹状の 2次 曲面を持つ凹状型押し部材との間に、上記の研磨がされた半導体単結晶板を、研磨 された面が上記凸状型押し部材の 2次曲面に対向し、上記の研磨がされていない面 が上記凹状型押し部材の 2次曲面に対向するように挟み込み、高温高圧下で塑性 変形させる型押し成型工程とを有していることを特徴とする曲率分布結晶レンズの製 造方法。  [2] When a semiconductor single crystal plate such as Si, Ge, or GaAs is sandwiched between stamping members and plastically deformed by high-temperature pressurization, the tilting force of the crystal lattice plane of the semiconductor single crystal plate relative to the crystal surface Johansson A pre-polishing step of polishing the semiconductor single crystal plate so that an offset amount necessary to satisfy the diffraction condition of the semiconductor single crystal plate is left on one side of the semiconductor single crystal plate, and a convex secondary that rotates the condensing circle Between the convex embossing member having a curved surface and the concave embossing member having a concave second curved surface with a curvature that should be satisfied by the crystal lattice of the semiconductor single crystal plate in order to satisfy Johansson's diffraction condition, In the polished semiconductor single crystal plate, the polished surface faces the secondary curved surface of the convex embossing member, and the unpolished surface faces the secondary curved surface of the concave embossing member. So that it is sandwiched and plastically deformed under high temperature and pressure Manufacturing method of the curvature distribution crystal lens characterized by having and.
[3] Si,Ge,GaAS等の半導体単結晶板を型押し部材に挟み込み、高温加圧して塑性変 形させ、その表面が 2方向に異なる曲率を有するように形成する型押し成型工程と、 上記塑性変形された単結晶板における結晶格子面の結晶表面に対する傾きが、 厳密あるいは近似的な Johanssonの回折条件を満たすよう、上記半導体単結晶板の 表面を研磨する研磨工程とを有して 、ることを特徴とする曲率分布結晶レンズの製 造方法。 [3] An embossing process in which a semiconductor single crystal plate such as Si, G e , GaA S, etc. is sandwiched between embossing members and subjected to plastic deformation by pressurizing at a high temperature so that the surface has different curvatures in two directions. And a polishing step of polishing the surface of the semiconductor single crystal plate so that the tilt of the crystal lattice plane of the plastically deformed single crystal plate with respect to the crystal surface satisfies a strict or approximate Johansson diffraction condition. A method of manufacturing a curvature distribution crystal lens characterized by the above.
[4] 請求項 3に記載の曲率分布結晶レンズの製造方法であって、  [4] The method of manufacturing a curvature distribution crystal lens according to claim 3,
上記単結晶板が、 Ge (l l l)結晶であるとともに、  The single crystal plate is a Ge (l l l) crystal,
CuK a特性 X線の回折に用いられる曲率分布結晶レンズを製造するための方法。  CuKa characteristic A method for producing a curvature distribution crystal lens used for X-ray diffraction.
[5] 上記型押し成型工程の後、上記結晶の X線回折に用いられる面に、低欠陥密度層 を成長させることを特徴とする請求項 2または 3に記載の曲率分布結晶レンズの製造 方法。 [5] The method of manufacturing a curvature distribution crystal lens according to claim 2 or 3, wherein a low defect density layer is grown on a surface used for X-ray diffraction of the crystal after the embossing step. .
[6] 上記半導体単結晶板が Siであり、 上記型押し成形工程において、上記半導体単結晶板を、融点の 0. 80倍の温度以 上で融点より 4°C以下、すなわち融点より 280〜4°C低い温度になるように加熱するこ とを特徴とする請求項 2または 3に記載の曲率分布結晶レンズの製造方法。 [6] The semiconductor single crystal plate is Si, In the embossing step, the semiconductor single crystal plate is heated to a temperature not lower than 0.80 times the melting point and not higher than the melting point and not higher than 4 ° C, that is, 280 to 4 ° C lower than the melting point. The method of manufacturing a curvature distribution crystal lens according to claim 2 or 3.
[7] 上記半導体単結晶板が Geであり、  [7] The semiconductor single crystal plate is Ge,
上記型押し成形工程において、上記半導体単結晶板を、融点の 0. 80倍の温度以 上で融点より 2°C以下、すなわち融点より 170〜2°C低い温度になるように加熱するこ とを特徴とする請求項 2または 3に記載の曲率分布結晶レンズの製造方法。  In the embossing process, the semiconductor single crystal plate is heated to a temperature of 0.80 times the melting point or higher and 2 ° C or lower than the melting point, that is, 170 to 2 ° C lower than the melting point. The method of manufacturing a curvature distribution crystal lens according to claim 2 or 3.
[8] 請求項 1ないし 7のいずれか 1項に記載の製造方法により製造された曲率分布結晶 レンズを備え、無偏光 X線源より直線偏光 X線を取り出す集光機能を持つ偏光制御 装置。  [8] A polarization control device comprising the curvature distribution crystal lens manufactured by the manufacturing method according to any one of claims 1 to 7, and having a condensing function of extracting linearly polarized X-rays from a non-polarized X-ray source.
[9] X線発生源と、  [9] X-ray source,
請求項 1ないし 7のいずれか 1項に記載の製造方法により製造された曲率分布結晶 レンズと、  A curvature distribution crystal lens manufactured by the manufacturing method according to any one of claims 1 to 7,
位置敏感検出器とを備えたことを特徴とする X線反射率測定装置。  An X-ray reflectivity measuring apparatus comprising a position sensitive detector.
[10] X線発生源と、 [10] X-ray source,
Si,Ge,GaAS等の半導体単結晶板を高温型押しにより塑性変形させた結晶レンズで あって、下記の(1)または(2)の条件を満たす曲率分布結晶レンズと、 A crystal lens obtained by plastic deformation of a semiconductor single crystal plate such as Si, G e , and GaA S by high-temperature embossing, and a curvature distribution crystal lens that satisfies the following condition (1) or (2):
位置敏感検出器とを備えたことを特徴とする X線反射率測定装置。  An X-ray reflectivity measuring device comprising a position sensitive detector.
(1)結晶格子面が点収束条件または線収束条件を満たす曲率分布を有しており、 当該結晶格子面と、レンズ表面とが平行になっている;  (1) The crystal lattice plane has a curvature distribution that satisfies the point convergence condition or the line convergence condition, and the crystal lattice plane and the lens surface are parallel;
(2)結晶格子面およびレンズ表面の双方が点収束条件または線収束条件を満た す曲率分布を有している。  (2) Both the crystal lattice plane and the lens surface have a curvature distribution that satisfies the point convergence condition or the line convergence condition.
[11] 上記曲率分布結晶レンズは、 2次曲面で表される表面を有していることを特徴とす る請求項 10に記載の X線反射率測定装置。  11. The X-ray reflectivity measuring apparatus according to claim 10, wherein the curvature distribution crystal lens has a surface represented by a quadratic curved surface.
[12] 上記 X線発生源は、線状光源であり、 [12] The X-ray generation source is a linear light source,
上記曲率分布結晶レンズは、上記 X線発生源が延びる軸に直交する平面で切断 すると、その切断面が常に同じ Johansson型又は Johann型モノクロの形状を有すること を特徴とする請求項 10に記載の X線反射率測定装置。 11. The curvature distribution crystal lens according to claim 10, wherein the cut surface always has the same Johansson type or Johann type monochrome shape when cut along a plane orthogonal to an axis along which the X-ray generation source extends. X-ray reflectivity measuring device.
[13] X線発生源力も発生される X線を、 Si,Ge,GaAS等の半導体単結晶板を高温型押し により塑性変形させた結晶レンズであって、下記の(1)または(2)の条件を満たす曲 率分布結晶レンズにより回折し、 [13] The X-ray X-ray source power is also generated, Si, G e, a crystalline lens is plastically deformed by hot embossing of a semiconductor single crystal plate such GaA S, the following (1) or ( Diffracted by a curvature distribution crystal lens that satisfies the condition of 2),
その回折された X線を、 X線反射率の測定対象となる試料に導き、当該試料にて反 射された X線の強度を位置敏感検出器により測定することを特徴とする X線反射率測 定方法。  The X-ray reflectivity is characterized in that the diffracted X-ray is guided to a sample whose X-ray reflectivity is to be measured, and the intensity of the X-ray reflected from the sample is measured by a position sensitive detector. Measuring method.
(1)結晶格子面が点収束条件または線収束条件を満たす曲率分布を有しており、 当該結晶格子面と、レンズ表面とが平行になっている;  (1) The crystal lattice plane has a curvature distribution that satisfies the point convergence condition or the line convergence condition, and the crystal lattice plane and the lens surface are parallel;
(2)結晶格子面およびレンズ表面の双方が点収束条件または線収束条件を満た す曲率分布を有している。  (2) Both the crystal lattice plane and the lens surface have a curvature distribution that satisfies the point convergence condition or the line convergence condition.
[14] 上記曲率分布結晶レンズは、 2次曲面で表される表面を有していることを特徴とす る請求項 13に記載の X線反射率測定方法。  14. The X-ray reflectivity measuring method according to claim 13, wherein the curvature distribution crystal lens has a surface represented by a quadric surface.
[15] 上記 X線発生源は、線状光源であり、 [15] The X-ray generation source is a linear light source,
上記曲率分布結晶レンズは、上記 X線発生源が延びる軸に直交する平面で切断 すると、その切断面が常に同じ Johansson型モノクロの形状を有することを特徴とする 請求項 13に記載の X線反射率測定方法。  14. The X-ray reflection according to claim 13, wherein the curvature distribution crystal lens has a same Johansson-type monochrome shape when cut along a plane orthogonal to an axis along which the X-ray generation source extends. Rate measurement method.
PCT/JP2006/325491 2005-12-21 2006-12-21 Method for manufacturing curvature distribution crystal lens, polarization control device, x-ray reflectance measuring device, and x-ray reflectance measuring method WO2007072906A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007551145A JP4759750B2 (en) 2005-12-21 2006-12-21 Method of manufacturing curvature distribution crystal lens, polarization control device, X-ray reflectivity measuring device, and X-ray reflectivity measuring method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005368305 2005-12-21
JP2005-368305 2005-12-21
JP2006015686 2006-01-24
JP2006-015686 2006-01-24

Publications (1)

Publication Number Publication Date
WO2007072906A1 true WO2007072906A1 (en) 2007-06-28

Family

ID=38188681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325491 WO2007072906A1 (en) 2005-12-21 2006-12-21 Method for manufacturing curvature distribution crystal lens, polarization control device, x-ray reflectance measuring device, and x-ray reflectance measuring method

Country Status (2)

Country Link
JP (1) JP4759750B2 (en)
WO (1) WO2007072906A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028613A1 (en) 2007-08-31 2009-03-05 Kyoto University Curvature distribution crystal lens and x-ray reflectance measuring instrument
WO2010008086A1 (en) * 2008-07-18 2010-01-21 独立行政法人宇宙航空研究開発機構 X-ray reflecting mirror, x-ray reflecting apparatus and x-ray reflector using the x-ray reflecting mirror, and method for preparing x-ray reflecting mirror
WO2010026750A1 (en) * 2008-09-02 2010-03-11 国立大学法人京都大学 Total-reflection fluorescent x-ray analysis device, and total-reflection fluorescent x-ray analysis method
CN101937730A (en) * 2010-07-15 2011-01-05 北京工商大学 Reflective polarizing element and method for improving linear polarization degree of soft X-rays
JP2013026400A (en) * 2011-07-20 2013-02-04 Murata Mfg Co Ltd Method for processing semiconductor crystal body
WO2016059672A1 (en) * 2014-10-14 2016-04-21 株式会社リガク X-ray thin film inspection device
KR20170068562A (en) * 2014-10-14 2017-06-19 가부시키가이샤 리가쿠 X-ray thin film inspection device
CN113459314A (en) * 2021-07-21 2021-10-01 钢研纳克检测技术股份有限公司 Hyperboloid crystal forming device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231198A (en) * 1986-03-31 1987-10-09 株式会社島津製作所 Curved crystal element for x-ray diffraction
JPH01142442A (en) * 1987-11-30 1989-06-05 Toshiba Corp Apparatus for measuring optical rotatory dispersion curve
JP2002286658A (en) * 2001-03-28 2002-10-03 Rigaku Corp Apparatus and method for measurement of x-ray reflectance
JP2005142370A (en) * 2003-11-06 2005-06-02 Kazuo Nakajima Method for working semiconductor crystalline, wafer crystalline for optic/electron device, and solar cell system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231198A (en) * 1986-03-31 1987-10-09 株式会社島津製作所 Curved crystal element for x-ray diffraction
JPH01142442A (en) * 1987-11-30 1989-06-05 Toshiba Corp Apparatus for measuring optical rotatory dispersion curve
JP2002286658A (en) * 2001-03-28 2002-10-03 Rigaku Corp Apparatus and method for measurement of x-ray reflectance
JP2005142370A (en) * 2003-11-06 2005-06-02 Kazuo Nakajima Method for working semiconductor crystalline, wafer crystalline for optic/electron device, and solar cell system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8406379B2 (en) 2007-08-31 2013-03-26 Kyoto University Curvature distribution crystal lens and X-ray reflectometer
WO2009028613A1 (en) 2007-08-31 2009-03-05 Kyoto University Curvature distribution crystal lens and x-ray reflectance measuring instrument
JP4973960B2 (en) * 2007-08-31 2012-07-11 国立大学法人京都大学 Curvature distribution crystal lens and X-ray reflectivity measuring apparatus
WO2010008086A1 (en) * 2008-07-18 2010-01-21 独立行政法人宇宙航空研究開発機構 X-ray reflecting mirror, x-ray reflecting apparatus and x-ray reflector using the x-ray reflecting mirror, and method for preparing x-ray reflecting mirror
JP2010025723A (en) * 2008-07-18 2010-02-04 Japan Aerospace Exploration Agency X-ray reflector
US8824631B2 (en) 2008-07-18 2014-09-02 Japan Aerospace Exploration Agency X-ray reflecting device
WO2010026750A1 (en) * 2008-09-02 2010-03-11 国立大学法人京都大学 Total-reflection fluorescent x-ray analysis device, and total-reflection fluorescent x-ray analysis method
CN101937730A (en) * 2010-07-15 2011-01-05 北京工商大学 Reflective polarizing element and method for improving linear polarization degree of soft X-rays
JP2013026400A (en) * 2011-07-20 2013-02-04 Murata Mfg Co Ltd Method for processing semiconductor crystal body
WO2016059672A1 (en) * 2014-10-14 2016-04-21 株式会社リガク X-ray thin film inspection device
KR20170068562A (en) * 2014-10-14 2017-06-19 가부시키가이샤 리가쿠 X-ray thin film inspection device
KR20170070163A (en) * 2014-10-14 2017-06-21 가부시키가이샤 리가쿠 X-ray thin film inspection device
JPWO2016059672A1 (en) * 2014-10-14 2017-08-17 株式会社リガク X-ray thin film inspection equipment
TWI630384B (en) * 2014-10-14 2018-07-21 日商理學股份有限公司 X-ray thin film inspection apparatus
KR102144281B1 (en) * 2014-10-14 2020-08-13 가부시키가이샤 리가쿠 X-ray thin film inspection device
KR102144273B1 (en) 2014-10-14 2020-08-13 가부시키가이샤 리가쿠 X-ray thin film inspection device
CN113459314A (en) * 2021-07-21 2021-10-01 钢研纳克检测技术股份有限公司 Hyperboloid crystal forming device

Also Published As

Publication number Publication date
JPWO2007072906A1 (en) 2009-06-04
JP4759750B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4759750B2 (en) Method of manufacturing curvature distribution crystal lens, polarization control device, X-ray reflectivity measuring device, and X-ray reflectivity measuring method
Liu et al. Achromatic nested Kirkpatrick–Baez mirror optics for hard X-ray nanofocusing
JP4710022B2 (en) Curvature distribution crystal lens, X-ray apparatus having curvature distribution crystal lens, and method of manufacturing curvature distribution crystal lens
KR102549668B1 (en) How to create a short subcritical crack in a solid body
Pateras et al. Combining Laue diffraction with Bragg coherent diffraction imaging at 34-ID-C
Axe et al. Composite germanium monochromators for high resolution neutron powder diffraction applications
US6498830B2 (en) Method and apparatus for fabricating curved crystal x-ray optics
JP2022008892A (en) Method and device for forming at least one modification in solid
CN101957498A (en) The method of assembling light scanning apparatus
US6236710B1 (en) Curved crystal x-ray optical device and method of fabrication
US9761340B2 (en) Method of preparing strain released strip-bent x-ray crystal analyzers
US8406379B2 (en) Curvature distribution crystal lens and X-ray reflectometer
Neri et al. Ordered stacking of crystals with adjustable curvatures for hard X-and γ-ray broadband focusing
Snigireva et al. Focusing high energy X‐rays with stacked Fresnel zone plates
US8557149B2 (en) System and method for implementing enhanced optics fabrication
Bowen et al. A novel digital x-ray topography system
US11919264B2 (en) Method of printing and implementing refractive X-ray optical components
Signorato et al. Performance of an adaptive u-focusing Kirkpatrick-Baez system for high-pressure studies at the Advanced Photon Source
Alianelli et al. Characterization of germanium linear kinoform lenses at Diamond Light Source
CN112259262A (en) X-ray diffraction imaging double-crystal spectrometer
Hudec et al. Novel technologies for x-ray multi-foil optics
Buffagni et al. Crystal bending by surface damaging in mosaic GaAs crystals for the LAUE project
Okuda et al. Si wafers having one-and two-dimensionally curved (111) planes examined by X-ray diffraction
CZ304312B6 (en) Heat shaped silicon lamellas for precise X-ray optics
JP2976029B1 (en) Monochromator and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007551145

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06842999

Country of ref document: EP

Kind code of ref document: A1