WO2007069597A1 - Seal for rotating shaft and method of producing the same - Google Patents

Seal for rotating shaft and method of producing the same Download PDF

Info

Publication number
WO2007069597A1
WO2007069597A1 PCT/JP2006/324746 JP2006324746W WO2007069597A1 WO 2007069597 A1 WO2007069597 A1 WO 2007069597A1 JP 2006324746 W JP2006324746 W JP 2006324746W WO 2007069597 A1 WO2007069597 A1 WO 2007069597A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal
rubber
case
outer case
rotary shaft
Prior art date
Application number
PCT/JP2006/324746
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Baba
Hironori Oida
Original Assignee
Mitsubishi Cable Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005358839A external-priority patent/JP2007162802A/en
Priority claimed from JP2005358838A external-priority patent/JP2007162801A/en
Priority claimed from JP2005358840A external-priority patent/JP2007162803A/en
Priority claimed from JP2006050096A external-priority patent/JP2007225087A/en
Application filed by Mitsubishi Cable Industries, Ltd. filed Critical Mitsubishi Cable Industries, Ltd.
Publication of WO2007069597A1 publication Critical patent/WO2007069597A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3204Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip
    • F16J15/3232Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip having two or more lips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3204Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip
    • F16J15/3228Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip formed by deforming a flat ring

Definitions

  • the present invention relates to a rotary shaft seal and a method for manufacturing the rotary shaft seal, and more particularly to a rotary shaft seal used for a car air conditioner compressor and the like and a method for manufacturing the rotary shaft seal.
  • FIG. 39 and FIG. 40 illustrate the rotating shaft seal 31 proposed in Patent Documents 2 and 3, respectively
  • FIG. 41 is a cross-sectional view for explaining the operation of FIG. Side (high-pressure side) A has an inner flange part 32 and a cylindrical part 33 corresponding to the inner surface of the louver, and a rubber seal part 35 is formed by molding or the like on an approximately L-shaped outer case 34 As shown by solid lines in FIGS.
  • the end 33a on the low pressure side B of the cylindrical portion 33 of the outer case 34 is formed thin, and from the end 33a side, PTFE A seal element 36 and a metal inner case 37 are assembled, crimped as shown by arrow C, and the end 33a is bent into a small inner bowl shape as shown by a two-dot chain line.
  • a structure in which one case 34, seal element 36 and inner case 37 are assembled together To blink.
  • reference numeral 38 denotes a rubber lip portion, which is extended to the fluid storage chamber side (high pressure side) A and includes the seal portion 35 as a part thereof. Further, a screw groove 39 is formed in the seal element 36.
  • the seal portion 35 has a vertical wall portion 40 orthogonal to the U-shaped axis L that covers the inner flange portion 32 of the outer case 34.
  • the low pressure side wall portion of the vertical wall portion 40 and the outer periphery of the seal element 36 are provided.
  • the offset ring portion is subjected to the above-described force-clamping process in the direction of the arrow C so that the inner flange portion 32 and the inner case 37 are strongly pressed and held.
  • the rubber lip 38 has a sealing action when stationary and a PTFE shaft when the shaft rotates.
  • the graph shows the contact surface pressure P at which the contact inner peripheral edge 38a of the mulip portion 38 is in contact with the outer surface of the rotating shaft 29 on the vertical axis and the position on the horizontal axis.
  • the contact inner peripheral edge 38 a of the lip portion 38 is brought into sliding contact with the rotating shaft 29 evenly in the circumferential direction. Efforts have been made from design and manufacturing.
  • the fluid storage chamber side A has a high pressure.
  • the contact inner peripheral edge 38a (lip tip) contacts the rotating shaft 29 evenly with a large contact surface pressure P over the entire circumference (360 °). This makes it difficult for the lubricating oil in the sealing fluid to enter (introduce) the interface between the rotating shaft 29 and the contact inner peripheral edge 38a, and promotes wear of the contact inner peripheral edge 38a.
  • the inner peripheral edge 38a of the contact gradually wears, the sealability (sealability) deteriorates abruptly, and external leakage of the fluid occurs.
  • the tip (inner peripheral edge 38a) force of the rubber lip 38 is strongly pressed against the rotating shaft 29, and is uniformly pressed over the entire circumference of the rotating shaft 29. Therefore, the lubricating oil in the fluid such as refrigerant cannot enter the tip (the interface between the inner peripheral edge 38a and the rotary shaft 29, increases the frictional resistance, generates heat, and accompanying this, the tip of the lip 38 The part (inner peripheral edge 38a) wears out early.
  • Patent Document 1 Japanese Patent Laid-Open No. 2-240460
  • Patent Document 2 JP 2004-0119798
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-343737
  • the present invention provides a rotary shaft seal that can cope with severe use conditions and can be manufactured at low cost by a simplified manufacturing process and that stably exhibits high sealing performance, and a method for manufacturing the same.
  • the purpose is to do.
  • the rotary shaft seal of the present invention includes a rubber seal portion (4) having a rubber lip portion (5) slidably contacting the rotary shaft (29).
  • the rubber seal (4) has a concave groove (18) in the middle of the radial direction of the high pressure compatible surface (27) corresponding to the fluid storage chamber side (A).
  • the rubber lip portion (5) and the outer peripheral rubber portion (14) are each formed in an annular shape, and the rubber lip portion (5) and the outer peripheral rubber portion (14) are connected in the concave peripheral groove (18).
  • a radial rib portion (41) is provided.
  • the rotary shaft seal of the present invention includes a rubber seal portion (4) having a metal outer case (2), a metal inner case (3), and a rubber lip portion (5) in sliding contact with the rotary shaft (29). And a sealing element (7), By molding the seal part (4), the outer case (2), the seal element (7), the inner case (3), and the seal part (4) are integrated, and the rubber sheet
  • the groove portion (4) is provided with a concave groove (18) at the radial intermediate position of the high pressure corresponding surface (27) corresponding to the fluid storage chamber side (A), and the rubber lip portion ( 5) and the outer peripheral rubber part (14) are each formed into an annular shape, and the radial rib part connecting the rubber lip part (5) and the outer peripheral rubber part (14) in the concave peripheral groove (18) ( 41).
  • the rotary shaft seal of the present invention includes a rubber seal portion (4) having a rubber lip portion (5) slidably contacting the rotary shaft (29).
  • the rubber seal part (4) has a concave groove (18) formed in the radial intermediate position of the high pressure corresponding surface (27) corresponding to the fluid storage chamber side (A), and the rubber lip is formed along the inner periphery. And forming at least one of the depth dimension (N), width dimension (S), and cross-sectional shape of the concave circumferential groove (18) in the circumferential direction.
  • the contact surface pressure (P) of the rubber lip portion (5) to the rotating shaft (29) is configured to be uneven in the circumferential direction.
  • the rotary shaft seal of the present invention includes a rubber seal portion (4) having a metal outer case (2), a metal inner case (3), and a rubber lip portion (5) in sliding contact with the rotary shaft (29). And a sealing element (7),
  • the rubber lip (5) is formed along the inner periphery by forming a concave groove (18) at the radial intermediate position of the high pressure compatible surface (27) corresponding to the fluid storage chamber side (A). Is formed in an annular shape, and at least one of the depth dimension (N), width dimension (S), and cross-sectional shape of the concave circumferential groove (18) is set to change in the circumferential direction.
  • the contact surface pressure (P) of the rubber lip portion (5) to the rotating shaft (29) is configured to be uneven in the circumferential direction.
  • the rotary shaft seal of the present invention includes a metal outer case (2), a metal inner case (3), and a rubber seal portion (4) having a rubber lip portion (5) in sliding contact with the rotary shaft, A seal element (7) that is in sliding contact with the rotating shaft;
  • the outer casing (2), the sealing element (7), the inner case (3), and the sealing portion (4) are integrated with each other by omitting the crimping of the metallic outer case (2). It is characterized by.
  • the rotary shaft seal of the present invention includes a metal outer case (2), a metal inner case (3), and a rubber seal portion (4) having a rubber lip portion (5) in sliding contact with the rotary shaft, A seal element (7) that is in sliding contact with the rotating shaft;
  • the seal part (4) is an integral structure.
  • the method of manufacturing the rotary shaft seal of the present invention includes a metal outer case (2), a metal inner case (3), a seal element (7), and the outer case (2) and inner case (3 )
  • the sealing element (7) is fitted into a mold cavity, and then the fluidized rubber material is filled into the cavity and solidified to form a seal portion (4).
  • the outer case (2), the inner case (3), and the seal element (7) are integrated together with the molding.
  • the rotary shaft seal of the present invention includes a metal outer case (2), a metal inner case (3), a rubber seal portion (4) having a rubber lip portion (5) slidably contacting the rotary shaft, A seal element (7) that is in sliding contact with the rotating shaft;
  • the above-mentioned outer case (2), seal element (7), inner case (3), and seal part (4) are integrated into a single structure, eliminating the need for crimping of the metal outer case (2).
  • the high pressure side (A) is connected to the low pressure side (B ) Having a first gap portion (54) formed larger than the outer case (2) and the inner case (3) with a rubber layer (57) interposed in the first gap portion (54). It is characterized by its shape.
  • the rotary shaft seal of the present invention includes a metal outer case (2), a metal inner case (3), and a rubber seal portion (4) having a rubber lip portion (5) in sliding contact with the rotary shaft, A seal element (7) that is in sliding contact with the rotating shaft;
  • the above-mentioned outer case (2), seal element (7), inner case (3), and seal part (4) are integrated into a single structure, eliminating the need for crimping of the metal outer case (2).
  • the high pressure side end (70) of the cylindrical portion (8) of the outer case (2) and the inner case ( The cylindrical portion (10) of 3) is characterized by being arranged in a different shape so that one of the high-pressure side end portions (60) is on the high-pressure side (A) than the other.
  • the rotary shaft seal of the present invention includes a metal outer case (2), a metal inner case (3), and a rubber seal portion (4) having a rubber lip portion (5) in sliding contact with the rotary shaft, A seal element (7) that is in sliding contact with the rotating shaft;
  • outer case (2), seal element (7), inner case (3), and seal part (4) are integrated into a single structure, eliminating the need for crimping of the metal outer case (2).
  • From the high pressure side end face (8a) of the cylindrical portion (8) of the outer case (2) move the high pressure side end (60) of the cylindrical portion (10) of the inner case (3) to the high pressure side (A).
  • the outer case (2) and the inner case (3) are integrated with each other through a rubber layer (13) formed by intrusion when the seal portion (4) is formed.
  • the metal outer case (2) is externally fitted so that the high-pressure side half (59) of the outer peripheral surface of the metal inner case (3) is exposed.
  • the seal case (7) is fitted in the outer case (2) and the inner case (3) and inserted into the mold cavity, and then fluidized rubber material Is filled into the cavity and solidified, and the seal part (4) is molded, and at the same time, the outer case (2), the inner case (3) and the seal element (7) are integrated.
  • the rotary shaft seal of the present invention includes a metal outer case (2), a rubber seal portion (4) having a rubber lip portion (5) in sliding contact with the rotary shaft, and a seal in sliding contact with the rotary shaft.
  • the outer case (2) and the sealing element (7) are formed by molding the seal portion (4) by omitting the inner case that is configured with the element (7) and is fitted in the outer case (2).
  • a rotary shaft seal characterized in that 7) and the seal portion (4) are integrated.
  • the rotary shaft seal manufacturing method of the present invention has a substantially cross-sectional shape in which a through hole (28) is formed along the outer periphery of the seal element (7) and has a cylindrical portion (8) and a low pressure side inner flange portion (9). Insert the seal element (7) into the mold cavity so that it contacts the inner flange (9) of the L-shaped metal outer case (2).
  • the fluidized rubber material The inside flange portion (2) of the outer case (2) is filled with a rubber material filled in the through hole (28) of the seal element (7) at the same time as the seal portion (4) is molded. It is characterized in that it is bonded to 9) and integrated as a whole.
  • the rotary shaft seal manufacturing method of the present invention includes forming a notch (22) or a concavo-convex part (23) on the outer peripheral edge (21) of the seal element (7), and connecting the cylindrical part (8) to the low pressure side.
  • the mold cavity is formed by fitting the sealing element (7) into contact with the inner flange (9) of the outer L-shaped metal outer case (2) having an inner flange (9). Then, after filling the cavity with the fluidized rubber material and molding the seal part (4), the notch part (22) or the uneven part (23 ), The rubber material filled in the recess (23a) is adhered to the inner flange (9) of the outer case (2), and the whole is integrated.
  • the rotating shaft seal manufacturing method of the present invention is such that the outer peripheral edge (21) of the seal element (7) is formed into a polygonal shape having a plurality of sides (24), and the cylindrical portion (8)
  • the sealing element (7) is fitted into the mold cavity so that it comes into contact with the inner flange (9) of a metal outer case (2) having a substantially L-shaped cross section with a flange (9).
  • the fluidized rubber material is filled into the cavity and the seal portion (4) is molded, and at the same time, the circular inner surface (8c) of the cylindrical portion (8) and the outer peripheral edge are formed.
  • the rubber material filled in the gap (25) between the side (24) of (21) is bonded to the inner flange (9) of the outer case (2) and integrated as a whole. To do.
  • the present invention it is possible to omit the crimping process, which is essential in a rotary shaft seal (used in a car air conditioner compressor or the like) having a conventional seal element, and the number of processing steps can be reduced.
  • the production process is simplified, and the rotary shaft seal with excellent sealing performance can be mass-produced with stable quality at low cost.
  • FIG. 1 is a cross-sectional view of a main part of a rotary shaft seal according to a first embodiment.
  • FIG. 2 is an enlarged cross-sectional view of a main part of the rotary shaft seal according to the first embodiment.
  • FIG. 3 is a simplified cross-sectional view of a main part for explaining the method for manufacturing the rotary shaft seal according to the first embodiment.
  • FIG. 4 is a front view of the rotary shaft seal according to the first embodiment.
  • FIG. 5 is a cross-sectional view of a main part of the rotary shaft seal according to the first embodiment.
  • FIG. 6 is an operation explanatory view showing the pressure receiving state of the rotary shaft seal of the first embodiment.
  • FIG. 8 is a cross-sectional view of a main part of Modification 1 of the rotary shaft seal according to the first embodiment.
  • FIG. 9 is a cross-sectional view of a main part of Modification 2 of the rotary shaft seal according to Embodiment 1.
  • FIG. 10 is a cross-sectional view of the main part of Modification 3 of the rotary shaft seal according to the first embodiment.
  • FIG. 12 is a cross-sectional view of a main part of a rotary shaft seal according to Embodiment 2.
  • FIG. 13 is an enlarged cross-sectional view of a main part of the rotary shaft seal according to the second embodiment.
  • FIG. 15 is a cross-sectional view of a main part of Modification 1 of the rotary shaft seal according to the second embodiment.
  • FIG. 16 is an essential part enlarged cross-sectional view of a first modification of the rotary shaft seal according to the second embodiment.
  • FIG. 17 is a cross-sectional view of a main part of a second modification of the rotary shaft seal according to the second embodiment.
  • FIG. 18 is an essential part enlarged cross-sectional view of a second modification of the rotary shaft seal according to the second embodiment.
  • FIG. 19 is an enlarged cross-sectional view of the main part of Modification 3 of the rotary shaft seal of Embodiment 2.
  • FIG. 20 is a cross-sectional view of a main part of Modification 4 of the rotary shaft seal according to Embodiment 2.
  • FIG. 21 is an essential part enlarged cross-sectional view of Modification 4 of the rotary shaft seal of Embodiment 2.
  • FIG. 22 is a simplified cross-sectional view of a main part for explaining the manufacturing method of the fourth modification of the rotary shaft seal of the second embodiment.
  • FIG. 23 is a cross-sectional view of the main part of Modification 5 of the rotary shaft seal according to Embodiment 2.
  • FIG. 24 is an essential part enlarged cross-sectional view of a fifth modification of the rotary shaft seal of the second embodiment.
  • FIG. 25 is an essential part enlarged cross-sectional view of Modification 6 of the rotary shaft seal according to Embodiment 2.
  • FIG. 26 is an enlarged cross-sectional explanatory diagram of a main part of the rotary shaft seal of the first embodiment.
  • FIG. 27 is a cross-sectional view of a main part of a rotary shaft seal according to Embodiment 3.
  • FIG. 28 is an enlarged cross-sectional view of a main part of a rotary shaft seal according to Embodiment 3.
  • FIG. 29 is a front view showing an example of a sealing element before assembling in the third embodiment.
  • FIG. 30 is a cross-sectional view of a main part of the rotary shaft seal according to the first embodiment.
  • FIG. 31 is a front view showing Modification Example 1 of the seal element before assembly of Embodiment 3.
  • FIG. 32 is a front view showing Modification Example 2 of the seal element before assembly of Embodiment 3.
  • FIG. 33 is a front view showing Modification Example 3 of the seal element before assembly of Embodiment 3.
  • FIG. 34 is a front view showing Modification Example 4 of the seal element before assembly of Embodiment 3.
  • FIG. 35 is a front view showing Modification Example 5 of the seal element before assembly of Embodiment 3.
  • FIG. 36 is a front view showing Modification Example 6 of the seal element before assembly of Embodiment 3.
  • FIG. 37 is a front view showing Modification Example 7 of the seal element before assembly of Embodiment 3.
  • FIG. 38 is a cross-sectional view of a main part showing a modification of Embodiment 3.
  • FIG. 39 is a cross-sectional view of a principal part showing a conventional rotary shaft seal.
  • FIG. 40 is a cross-sectional view of a principal part showing a rotary shaft seal of another conventional example.
  • FIG. 41 is an operation explanatory diagram of a conventional rotary shaft seal.
  • FIG. 1 is an enlarged cross-sectional view of the main part showing the rotary shaft seal 1 of Embodiment 1
  • FIG. 2 is an enlarged cross-sectional view of the main part shown in FIG. 1
  • FIG. 3 is a cross-sectional explanatory view of a main part showing the manufacturing method of the shaft seal 1 in a simplified manner.
  • 4 is a front view of FIG. 1
  • FIG. 5 is a cross-sectional view of FIG. 4 (a-a) and an enlarged view of the main part of the (b-b) cross-section.
  • the rotary shaft seal 1 includes a metal outer case 2, a metal inner case 3, and a rubber seal portion 4 having a rubber lip portion 5 slidably contacting the rotary shaft 29 (see Figs. 6 and 7), A seal element 7 having a screw groove 6 that is in sliding contact with the rotating shaft is provided! /
  • the metal outer case 2 is assembled as a whole with the caulking process in the direction of arrow C described with reference to FIGS. 39 and 40 completely omitted.
  • the seal portion 4 is formed by molding (injection molding or compression molding).
  • the outer case 2, the seal element 7, the inner case 3, and the seal portion 4 are molded. As a result, the structure is integrated.
  • the outer case 2 has a cylindrical portion 8 and an inner flange portion 9 on the low pressure side B, and has a substantially L-shaped cross section.
  • the inner case 3 has a substantially L-shaped cross section having a cylindrical portion 10 and an inner flange portion 11 on the low pressure side B. Also, the inner flange 11 of the inner case 3 slightly moves to the low pressure side B.
  • the projecting shape and the convex part 12 are formed, and the cylindrical part of the inner case 3 10 force The force is a structure assembled so as to fit into the cylindrical part 8 of the outer case 2
  • the sealing element 7 includes the outer case 2 and The inner case 3 is held by both inner flanges 9 and 11. In addition, as shown in FIG.
  • a rubber layer 13 formed by intrusion when the seal portion 4 is molded is interposed in the fitting gap portion G between the cylindrical portions 8 and 10.
  • the cylindrical portion 8 of the outer case 2 and the cylindrical portion 10 of the inner case 3 are integrated with each other by the rubber layer 13 formed and solidified at the time of molding.
  • This press-fitting may be performed by using a press machine or hitting with a hammer or the like. Note that even when an intermediate product as shown in FIG. 3 is produced by press-fitting in this way, the fluidized rubber material does not flow into the molding gap G. As a result, a stronger integrated structure is obtained (by the combined use of the mechanical integrated film and the integrated film formed by the thin rubber layer 13).
  • the seal part 4 is composed of HNBR alone or a compounded rubber material based on HNBR, or uses other rubber materials.
  • the original shape of the seal element 7 is an annular flat plate.
  • the cross section is L-shaped, and the screw groove (spiral groove) 6 side is the rotary shaft.
  • the seal element 7 is preferably a fluorine-based resin such as PTFE.
  • the seal element 7 has a partial force closer to the outer diameter.
  • the inner flange 9 and the force that is held tightly by the inner flange 11 are formed on the inner flange 11 of the inner case 3.
  • the part near the diameter is pressed strongly (surface pressure is high) to prevent internal leakage. Even if the convex portion 12 is not provided, the same effect can be obtained by enlarging the inner diameter of the inner case 3.
  • the screw groove 6 in the seal element 7 it has a bombing action (hydride port dynamic action) that pushes the fluid back to the fluid storage chamber side (high pressure side) A by the rotation of the rotating shaft, and seals during rotation. Improve ing.
  • the inner flange portion 32 of the conventional outer case 34 is disposed on the fluid storage chamber side (high pressure side) A.
  • the inner flange portion 9 of the outer case 2 is disposed on the low pressure side B.
  • the inner flange portion 11 of the inner case 3 is on the low pressure side. Located in B. In this way, on the low pressure side B, the seal element 7 is clamped and held between the inner flange portions 9 and 11.
  • the seal portion 4 includes an outer circumferential concave and convex wavy fitting cylindrical wall portion 15 that covers both the cylindrical portions 8 and 10 fitted to each other from the outer peripheral surface side, and a high pressure side end surface of both the cylindrical portions 8 and 10 8a, 10a, and a block-shaped portion 17 as a main portion 30 corresponding to the inside of the inner case 3, and a high-pressure side A of the main portion 30 (block-shaped portion 17)
  • a U-shaped concave circumferential groove 18 is formed on the high pressure corresponding surface 27, and the main portion 30 (block-like portion 17) has a rubber lip portion 5 near the inner peripheral end of the high pressure side A.
  • the axial direction position of the rubber lip portion 5 and the axial direction direction position of the end surface covering wall portion 16 are substantially matched.
  • the main portion 30 of the seal portion 4 is disposed in the inner case 3 and the virtual high-pressure corresponding surface 27 in which the concave circumferential groove 18 is not formed is formed in a shape orthogonal to the axis. Since the concave circumferential groove 18 is formed, the main portion 30 has a substantially U-shaped cross section.
  • the contact inner peripheral edge 5a of the rubber lip portion 5 that contacts the outer peripheral surface of the rotating shaft 29 is disposed at substantially the same position in the axial direction as the end surface 8a on the high pressure side A of the outer case 2. Is done.
  • the rubber lip portion 5 hardly protrudes to the high pressure side A, and the overall width W of the rotary shaft seal 1 can be remarkably reduced. It can be seen that there is a habit. That is, outer case
  • FIG. 6 a front view 4 as viewed from the axial direction (high pressure side A), and FIGS. 5 (a), (b), and 5 (a), (b) showing the cross section of FIG.
  • FIG. 6 corresponding to the section (a-a) in FIG. 4
  • FIG. 7 corresponding to the section (b--b) in FIG. 4
  • the high-pressure corresponding surface 27 of the rubber seal 4 is shown in FIG.
  • the above-described concave circumferential groove 18 is provided at a radial intermediate position, and the rubber lip portion 5 and the outer circumferential rubber portion 14 are formed in an annular shape along the inner and outer circumferences.
  • a feature of the rotary shaft seal 1 is that a plurality of radial rib portions 41 for connecting the (inner circumference) rubber lip portion 5 and the outer circumference rubber portion 14 are provided in the concave circumferential groove 18. . 4 and 5, four rib portions 41 are provided at a central angle of 90 °. It is free to reduce this to 2 or 3 or vice versa.
  • the edge of the rib 41 on the high pressure side A is shown in the figure when it is at the same position in the axial center direction as the high pressure compatible surface 27. Even if it makes it, it is free (illustration omitted).
  • FIG. 6 and FIG. 7 the force simultaneously drawing the graphs showing the contact surface pressure P as the vertical axis and the axial center position as the horizontal axis.
  • the contact surface pressure P is increased at the position where the rib 41 is absent where the contact surface pressure P is low.
  • the contact surface pressure P of the contact inner peripheral edge 5a to the rotating shaft 29 is made uneven (uneven) in the circumferential direction.
  • the lubricant in the fluid in the fluid storage chamber side A immediately enters (introduces) and spreads around the entire slidable contact area.
  • the frictional resistance of the inner peripheral edge 5a can be reduced, heat generation can be prevented, and wear can be suppressed.
  • the convex portion 12 may be continuously formed over the entire circumference.
  • the convex portions 12 are intermittently formed in the circumferential direction alternately, the seal element is formed.
  • the surface pressure for repressing (pressing) 7 increases, and it is possible to prevent the seal element 7 from rotating together with the rotating shaft. Furthermore, the part that comes into contact with the seal element 7 becomes like a saw tooth! It is more preferable because it has better holding power.
  • FIG. 8, FIG. 9, and FIG. 10 show modified examples 1 to 3 of the rotary shaft seal 1 of the first embodiment. 3 is shown.
  • the concave circumferential groove 18 is provided at the radial intermediate position of the high pressure corresponding surface 27 of the rubber seal portion 4.
  • the rubber lip portion 5 is formed in an annular shape along the inner periphery, and at least one of the depth dimension N, the width dimension S, and the cross-sectional shape of the recessed peripheral groove 18 is formed.
  • the contact surface pressure P to the rotating shaft 29 (see FIGS. 6 and 7) of the rubber lip 5 is set unevenly in the circumferential direction as shown in FIG. 11 (b).
  • FIGS. 8 to 11 the outer case 2, the inner case 3, and the seal element 7 as already described in FIGS. 1 to 7 are provided, and all the parts are integrated by molding. Except for the concave circumferential groove 18 and the rubber lip portion 5 that are desired to be configured, the description is omitted because they are the same as those shown in FIGS. However, as described in FIGS. 1 to 7, one of the outer case 2 and the inner case 3 is omitted, each shape is changed variously, the seal element 7 is omitted, and vice versa. Design changes such as making more than one are free.
  • Fig. 11 (a) it is divided into 3 arcs. Deploy. Of course, it is also preferable to divide and arrange four or more arc portions.
  • the shaded circular arc part 42 is a dimension with a large depth dimension N.
  • each width dimension is allocated as an appropriate ratio from (1: 9) to (9: 1).
  • each width dimension is divided into three arcs.
  • a hatched circular arc portion 42 represents a portion of a dimension S having a large width dimension S.
  • the former is large enough. This former is indicated by the hatched area in FIG. 11 (a). The ratio of the total circumferential range of each of the former and the latter is distributed as an appropriate ratio of (1: 9) to (9: 1). [0051] Note that in FIG. 10 and FIG. 9, it is preferable to divide into four or more parts.
  • FIG. 11 (b) will be additionally described.
  • Fig. 11 is a graph showing the contact pressure P on the surface of the rotating shaft 29 of the rubber lip 5 in a circular shape in the pressure receiving state (see Figs. 6 and 7).
  • Fig. 11 (a) the depth dimensions N and Z or Although the case where each of the width dimensions S is arranged in three parts is shown, Fig. 11 (b) shows how the contact surface pressure P changes in the circumferential direction when each part is arranged in six parts. This is an example. As shown in Fig. 11 (b), the contact surface pressure P becomes non-uniform (non-uniform) in the same direction.
  • lubricating oil is applied from the part of the small contact surface pressure (valley part) to the contact inner peripheral edge of the rubber lip part 5. Introduce and permeate between the edge 5a and the rotating shaft 29 (see Figures 6 and 8), and with rotation, lubricate the entire circumference of the sliding contact area to prevent frictional heat and prevent early wear. Can be prevented and a long life can be achieved.
  • the fluidized rubber material is injected into the mold, the seal portion 4 is molded, and the rubber layer 13 is formed in the fitting gap portion G with a uniform thickness all around.
  • the thickness dimension of the rubber layer 13 varies depending on the strength and type of rubber. However, if the thickness is preferably too small, uneven thickness of the rubber layer 13 (at the circumferential direction) is likely to occur. .
  • the inner peripheral surface of the outer case 2 and the inner peripheral surface of the inner case 3 are fitted in a press-fitted form, they are assembled by pressing with a press machine, a nonmmer, or the like. As shown in Fig. 3, an intermediate product as shown in Fig.
  • the outer case 2, the inner case 3, and the seal element 7 can be integrally formed at the same time as the seal portion 4 is formed in the mold, and the conventional crimping process is completely omitted. .
  • each component can be assembled at the time of rubber injection molding or compression molding of the seal portion 4.
  • the convex portion 12 is formed on the inner flange portion 11 of the inner case 3, the contact surface pressure of the inner case 3 and the inner flange portions 11 and 9 of the outer case 2 is (locally). ) It has the advantage that it can effectively prevent internal leakage as the rotary shaft seal 1 and can prevent co-rotation of the seal element 7 and the rotary shaft. Even if the convex portion 12 is not provided, the same effect can be obtained by enlarging the inner diameter of the inner case 3.
  • the caulking process of the metal outer case 2 is omitted, and the outer case 2 and the seal element 7 are molded by molding the seal portion 4. Since the inner case 3 and the seal part 4 have an integrated structure, it is possible to mass-produce high-quality products at low cost, simplify production facilities, and produce efficiently.
  • the rotary shaft seal 1 of Embodiment 1 is the above-mentioned rubber shaft seal provided with the rubber seal portion 4 having the rubber lip portion 5 that is in sliding contact with the rotary shaft 29.
  • sticker Part 4 has a concave groove 18 in the radial intermediate position of the high pressure corresponding surface 27 corresponding to the fluid storage chamber side A, and the rubber lip part 5 and the outer rubber part 14 are annularly formed along the inner and outer circumferences, respectively.
  • a radial rib portion 41 for connecting the rubber lip portion 5 and the outer peripheral rubber portion 14 is provided in the concave circumferential groove 18, and the deformation of the rubber lip portion 5 is different on the circumference.
  • the contact surface pressure P becomes uneven on the circumference (non-uniform), and the lubricating oil in the sealing fluid can easily be introduced and infiltrated into the sliding portion between the rubber lip 5 and the rotating shaft 29 ( Lubricating oil can easily be introduced and infiltrated from a small contact surface pressure part), and as it rotates, it spreads all around the sliding contact part, reducing the generation of frictional heat, and the rubber lip part 5 (contact inner peripheral edge 5a) Can prevent premature friction and prolong the service life. In particular, a good seal life can be obtained even under high speed and high pressure conditions.
  • the rotary shaft seal provided with the metal outer case 2, the metal inner case 3, the rubber seal portion 4 having the rubber lip portion 5 that is in sliding contact with the rotary shaft 29, and the seal element 7 is provided.
  • the outer case 2, the seal element 7, the inner case 3, and the seal portion 4 are integrated with each other by molding the seal portion 4, and the rubber seal portion 4 is on the fluid storage chamber side.
  • a concave circumferential groove 18 is formed in the middle position in the radial direction of the high pressure corresponding surface 27 corresponding to A, the rubber lip portion 5 and the outer circumferential rubber portion 14 are formed in an annular shape along the inner circumference and the outer circumference, and Since the radial rib portion 41 for connecting the rubber lip portion 5 and the outer peripheral rubber portion 14 is provided in the concave circumferential groove 18, high-quality products can be stably produced in large quantities at low cost, and the manufacturing equipment Can be simplified and can be produced efficiently.
  • the sealing element bombing action prevents external leakage during the rotation of the rotary shaft 29, and the contact surface pressure P becomes non-uniform (non-uniform) on the circumference.
  • Lubricating oil in the sealing fluid can easily be introduced and infiltrated into the sliding contact part with 29 (the lubricating oil can be easily introduced and infiltrated from the small contact surface pressure part), and the entire circumference of the sliding contact part is accompanied by rotation. It is possible to reduce the generation of frictional heat, prevent premature friction of the rubber lip part 5 (the contact inner peripheral edge 5a), and achieve a long life. In particular, a good seal life can be obtained even under high speed and high pressure conditions.
  • the rubber seal portion 4 is a high pressure compatible surface 2 corresponding to the fluid storage chamber side A.
  • a concave groove 18 is formed in the radial intermediate position of 7 to form the rubber lip portion 5 in an annular shape along the inner circumference, and the depth dimension N, width dimension S, and cross section of the concave groove 18. Small in shape At least one is set to change in the circumferential direction, and the contact surface pressure P of the rubber lip 5 to the rotating shaft 29 is configured to be uneven in the circumferential direction.
  • Lubricating oil is introduced and infiltrated into the sliding contact part with the rotating shaft 29 from the part of this part, and along with the rotation, the lubricating oil is spread all around the sliding contact part to prevent the generation of frictional heat. Abrasion can be prevented and long life can be achieved. In addition, there is an advantage that there is no problem of poor airtightness in the case where unevenness is provided on the sliding contact part itself (contact inner peripheral edge 5a itself).
  • the rotary shaft seal provided with the metal outer case 2, the metal inner case 3, the rubber seal portion 4 having the rubber lip portion 5 that is in sliding contact with the rotary shaft 29, and the seal element 7 is provided.
  • the outer case 2, the seal element 7, the inner case 3, and the seal portion 4 are integrated with each other by molding the seal portion 4, and the rubber seal portion 4 is on the fluid storage chamber side.
  • a concave circumferential groove 18 is formed in the radial intermediate position of the high pressure corresponding surface 27 corresponding to A to form the rubber lip portion 5 in an annular shape along the inner circumference, and the depth dimension N of the concave circumferential groove 18 At least one of the width dimension S and the cross-sectional shape is set so as to change in the circumferential direction, so that the contact surface pressure P of the rubber lip portion 5 to the rotating shaft 29 becomes uneven in the circumferential direction.
  • Easy and cheap, with simple manufacturing equipment Enables production it is also suitable for multi-volume production.
  • the lubricating oil is introduced and infiltrated into the sliding contact area with the rotating shaft 29, and the lubricating oil is spread over the entire circumference of the sliding contact area with the rotation. Can be prevented, premature wear can be prevented, and a long life can be achieved.
  • cylindrical portions 8 and 10 are press-fitted so that the inner peripheral surface of the cylindrical portion 8 of the outer case 2 and the outer peripheral surface of the cylindrical portion 10 of the inner case 3 are pressed against each other.
  • the strength of the outer case 2 and the inner case 3 is sufficiently high (even if the crimping process described in FIGS. 39 and 40 of the outer case 34 is omitted). A solid seal with sufficient strength can be obtained.
  • the outer case 2 has a substantially L-shaped cross section having a cylindrical portion 8 and a low pressure side inner flange portion 9, and the inner case 3 has a cross section having a cylindrical portion 10 and a low pressure side inner flange portion 11. It is generally L-shaped, and the sealing element 7 is held tightly by the inner flanges 9 and 11 above.
  • the outer case 2 and the inner case are interposed by the rubber layer 13 formed by intrusion into the fitting gap portion G of the cylindrical portions 8 and 10 when the seal portion 4 is molded.
  • the outer case 2 and the inner case 3 are integrated with the rubber layer 13 formed by press-fitting when the seal 3 is not formed or when the seal portion 4 is not molded, and the seal portion
  • the main portion 30 of 4 is disposed in the inner case 3 having a substantially L-shaped cross section, and the high-pressure corresponding surface 27 in a virtual state in which the concave circumferential groove 18 is not formed is formed in a shape orthogonal to the axial center. Because it has a twisted configuration, the outer case 2 and the inner case 3 can be integrated with sufficient strength, the possibility of internal leakage can be reduced by the rubber layer 13, and the posture of the seal element 7 is stable (without rattling). Rotating shaft 29 Not around him to force Hyde port dynamic (bombing) acts always stably paragraph shall during the rotation of the rotary shaft 29, it is possible to more reliably prevent external leakage (leakage).
  • the metal outer case 2, the metal inner case 3, and the seal element 7 are attached to the mold cavity with the seal element 7 attached by the outer case 2 and the inner case 3.
  • the fluidized rubber material is filled into the cavity and solidified, and the seal portion 4 is molded.
  • the outer case 2, the inner case 3, and the seal element 7 are integrated together. According to the manufacturing method of the rotating shaft seal, the complicated conventional crimping process can be omitted at all, the manufacturing process can be simplified and the cost can be reduced, and the seal for a compressor for a car air conditioner can be severe. It is possible to reliably produce a large number of rotary shaft seals that can sufficiently meet the various usage conditions (requirements).
  • FIG. 12 is an enlarged cross-sectional view of a main part showing the rotary shaft seal 1 of Embodiment 2
  • FIG. 13 is an enlarged cross-sectional view of the main part of FIG. 12
  • FIG. 14 is a rotary shaft seal of Embodiment 2.
  • FIG. 2 is a cross-sectional explanatory view of the relevant part showing the production method 1 in a simplified manner. Parts having the same names as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment.
  • the rotary shaft seal 1 includes a metal outer case 2, a metal inner case 3, a rubber seal portion 4 having a rubber lip portion 5 slidably contacting the rotary shaft (not shown), and the rotary shaft A seal element 7 having a screw groove 6 that is slidably in contact with the! / [0069]
  • the metal outer case 2 is assembled as a whole with the caulking process in the direction of arrow C as described in FIGS. 39 and 40 being completely omitted.
  • the seal portion 4 is formed by molding (injection molding or compression molding).
  • the outer case 2, the seal element 7, the inner case 3, and the seal portion 4 are molded. By this, it becomes a monolithic structure.
  • the outer case 2 has a cylindrical portion 8 and an inner flange portion 9 on the low pressure side B, and has a substantially L-shaped cross section.
  • the inner case 3 has a substantially L-shaped cross section having a cylindrical portion 10 and an inner flange portion 11 on the low pressure side B.
  • the inner flange portion 11 of the inner case 3 has a slightly protruding shape and convex portion 12 formed on the low pressure side B, and is fitted into the cylindrical portion 8 of the inner case 3 and the cylindrical portion 8 of the outer case 2.
  • the force sealing element 7 having the structure assembled as described above is held by the inner flange portions 9 and 11 of the outer case 2 and the inner case 3 together.
  • the fitting gap G between the cylindrical portions 8 and 10 has a thin rubber layer 13 formed by intrusion of a fluid rubber material when the seal portion 4 is formed. Intervene. This thin rubber layer 13 is formed by intrusion when the seal portion 4 is molded.
  • FIG. 12 to FIG. 14 are further explained.
  • the cylindrical portion 8 of the outer case 2 has a stepped portion 51 (near the center in the axial direction), and is a slightly large-diameter cylindrical high-pressure side half portion. 52, and the low-pressure side half 53, which is slightly smaller in diameter than that, also has a force, so the inner diameter D of the high-pressure side half 52 is the low-pressure side.
  • the first gap dimension T of the first gap portion 54 on the high pressure side A is set to a low value corresponding to the low pressure side half 53.
  • the fitting gap portion G is larger than the second gap dimension T of the second gap portion 55 on the compression side B.
  • the fitting gap G between the cylindrical portions 8 and 10 has the first gap portion 54 formed by intrusion of the fluid rubber material when the seal portion 4 is formed.
  • a thick rubber layer 56 and a rubber layer 57 composed of the thin rubber layer 13 in the second gap portion 55 are interposed. That is, the first gap portion 54 is formed larger on the high pressure side (A) than on the low pressure side (B).
  • the first gap portion 54 is filled with a rubber material.
  • the rubber material flow is smooth and the thin rubber layer 13 is formed reliably and stably.
  • the cylindrical parts 8 and 10 can be firmly integrated.
  • the outer case 2 and the inner case 3 are fitted with a small second gap dimension T in the low-pressure side half 58 of the inner case 3 and the inner case 3 has a high pressure.
  • the side half 59 is fitted to the (outer case 2) with a large first gap dimension T.
  • the second gap dimension T is set to 0.005 mm ⁇ T ⁇ 0.20 mm.
  • the first gap dimension T is set to 0.5 mm ⁇ T ⁇ 3.0 mm, and the first gap part 54
  • FIGS. 15 and 16 show a first modification of the rotary shaft seal 1 of the second embodiment, and correspond to FIGS. 12 and 13 showing the second embodiment, respectively.
  • the first gap dimension T is low
  • the fitting gap G is formed so as to be larger than the second gap dimension T.
  • the outer case 2 has a cylindrical portion 8 and an inner flange portion 9 on the low pressure side B, and has a substantially L-shaped cross section.
  • the inner case 3 has a substantially L-shaped cross section having a cylindrical portion 10 and an inner flange portion 11 on the low pressure side B.
  • the force seal element 7 has a structure in which the cylindrical portion 10 of the inner case 3 is assembled so as to fit into the cylindrical portion 8 of the outer case 2, and both inner flange portions of the outer case 2 and the inner case 3 9 and 11 are held firmly.
  • Figure 1 As shown in FIG. 6, a thin rubber layer 13 formed by the inflow of a flowing rubber material is interposed in the fitting gap G between the cylindrical portions 8 and 10 when the seal portion 4 is formed. ing. This thin rubber layer 13 is formed by intrusion when the seal portion 4 is molded.
  • the cylindrical part 8 of the outer case 2 has a bent part 63 (near the center in the axial direction or close to the high pressure side A).
  • the high-pressure side half 52 which gradually increases in diameter toward the high-pressure side A, and the low-pressure side half 53, which is slightly smaller in diameter, have a force, so the average inner diameter D of the high-pressure side half 52 is low.
  • the first gap dimension T (as an average value) of the first gap portion 54 on the high pressure side A corresponding to the high pressure side half 52 is set to the low pressure side corresponding to the low pressure side half 53.
  • the fitting gap G is formed so as to be larger than the second gap dimension T of the second gap portion 55 of B.
  • the first gap dimension T is large (having a triangular cross section).
  • the rubber material enters from the first gap 54, and then the second gap portion 5 having a small second gap dimension T 5
  • the rubber layer 13 is formed in a thin-walled shape with certainty and stability, and the cylindrical portions 8 and 10 can be firmly integrated.
  • the outer case 2 and the inner case 3 are fitted with a small second gap dimension T at the low-pressure side half 58 of the inner case 3 and the inner case 3 has a high pressure.
  • the side half 59 is fitted to the (outer case 2) with a large first gap dimension T.
  • the second gap dimension T is set to 0.005 mm ⁇ T ⁇ 0.20 mm.
  • the first gap dimension T shown as an average value is set to 0.5 mm ⁇ T ⁇ 3.0 mm, and
  • the length dimension L in the axial direction of the gap 54 is 30% of the length dimension L of the inner case 3.
  • connection rigidity between the case 2 and the inner case 3 will be insufficient.
  • L ⁇ 0.3 XL In this case, the permeation distance of the rubber portion is insufficient and internal leakage of the sealing fluid is likely to occur.
  • FIG. 17 and FIG. 18 show Modification 2 of the rotary shaft seal 1 of Embodiment 2, wherein the outer case 2 has a substantially cylindrical cross section having a straight cylindrical portion 8 and a low pressure side inner flange portion 9.
  • the cylindrical part 10 of the inner case 3 has an outer diameter D of the high-pressure side half part 59 and the low-pressure side half part 59.
  • the shape is set smaller than the outer diameter D of the part 58. In this way, the first gap on the high pressure side A
  • the fitting gap G is formed so that the dimension T is larger than the second gap dimension T on the low-pressure side B.
  • the cylindrical portion 10 of the inner case 3 has a stepped portion 64 (near the center in the axial direction), and has a slightly small cylindrical shape.
  • the high pressure side half 59 and the slightly larger diameter cylindrical low pressure side half 58 have a force, so the outer diameter D of the high pressure side half 59 is set smaller than the inner diameter D of the low pressure side half 58. Has been. In this way
  • the fitting gap G is formed.
  • the first gap portion 54 formed by intrusion of the fluid rubber material into the fitting gap portion G of the cylindrical portions 8 and 10 when the seal portion 4 is formed.
  • the thick rubber layer 56 and the thin rubber layer 13 in the second gap portion 55 are interposed.
  • the rubber material 13 is smoothly flown, the thin rubber layer 13 is formed reliably and stably, and the cylindrical portions 8 and 10 can be firmly integrated.
  • FIG. 19 is an enlarged cross-sectional view of a main part showing a third modification of the rotary shaft seal 1 of the second embodiment.
  • the first gap dimension T is formed to gradually increase from the low pressure side B to the high pressure side A.
  • the shape of the high-pressure side half 59 of the cylindrical portion 10 of the inner case 3 is tapered so that the diameter gradually decreases to the high-pressure side A, and the average outer diameter D of the high-pressure side half 59 is reduced to 58.
  • the fitting gap G is formed so that the first gap dimension (average value) T on the high pressure side A is larger than the second gap dimension T on the low pressure side B.
  • the cylindrical portion 10 of the inner case 3 has a bent portion 65 (near the center in the axial direction or close to the high pressure side A).
  • the first gap dimension T (as an average value) of the first gap part 54 corresponding to the high pressure side half 59 is changed to the second gap dimension T of the second gap part 58 corresponding to the low pressure side half 58. than
  • a gap G is formed so as to be larger.
  • FIG. 26 is an enlarged cross-sectional view of a main part of the rotary shaft seal 1 of Embodiment 1, and shows a portion corresponding to FIG. 13, FIG. 16, FIG. 18, or FIG.
  • the thick rubber layer 56 in FIG. 13, FIG. 16, FIG. 18, or FIG. 19 is omitted, and the straight shape of the outer case 2 and the inner case 3 is omitted.
  • the fitting parts of the cylindrical parts 8 and 10 form the uniform fitting gap part G with the above-mentioned minute second gap dimension T.
  • the end faces 8a and 10a of the cylindrical portions 8 and 10 are connected to the outer rubber end face 4a (the strength when the seal is attached). Etc.) for close proximity, and is placed inside the rubber material. That is, the wall thickness dimension T of the end face covering wall portion 16 is small, so that FIG.
  • the sealing fluid permeates through the end surface covering wall portion 16 and continues (as described above).
  • internal leakage internal leakage occurs through the layer 13.
  • At least the first gap portion 54 having the relatively large first gap dimension T is completely filled with rubber, and
  • the fluid (especially gas) on the high-pressure side A is surely prevented from entering and permeating through the rubber end face 4a, and no internal leakage (as indicated by arrow F in FIG. 26) occurs. Excellent sealing performance.
  • FIG. 20, FIG. 21, and FIG. 22 show Modification 4 of the rotary shaft seal 1 of Embodiment 2
  • FIG. 20 is an enlarged cross-sectional view of the main part
  • FIG. FIG. 22 is a cross-sectional view of relevant parts for explaining the manufacturing method.
  • the inner case 3 is arranged in a stepped manner so that the high pressure side end 60 of the cylindrical portion 10 of the inner case 3 is on the high pressure side A of the high pressure side end 70 of the cylindrical portion 8 of the outer case 2. That is, the dimensional force S in the axial direction of the outer case 2 is set to be small, and the high-pressure side end 60 of the cylindrical portion 10 of the inner case 3 is set higher than the high-pressure side end surface 8a of the cylindrical portion 8 of the outer case 2.
  • the high-voltage side half 59 of the inner case 3 is not externally fitted by the outer case 2 and is exposed, and is covered with a rubber member (cylindrical wall 15). That is, the high-pressure side half 59 of the outer peripheral surface of the metal inner case 3 is exposed and covered with a rubber member.
  • the (thin film-like) rubber layer 13 includes the inner peripheral surface of the cylindrical portion 8 of the outer case 2 and the low pressure side half portion 58 (of the outer peripheral surface) of the cylindrical portion 10 of the inner case 3. In between.
  • the rubber layer 13 is formed by intrusion during molding, and the gap size of the gap G is the same as the second gap size T in FIGS. 12 to 14 described above. . That is,
  • the length L of the exposed high-pressure side half 59 is the length of the inner case 3. 30% of dimension L
  • the cylindrical wall portion 15 (which also has a rubber force) is elastically compressed and deformed on the inner peripheral surface of the mounting member 61 such as the casing inner peripheral surface indicated by the phantom line, and the fitting is performed.
  • the cylindrical wall portion 15 is provided with an uneven wave portion, a sealing property (seal property) is maintained, and a dense space is provided between the uneven wave portion and the inner peripheral surface of the mounting member 61. Since the sealed fluid (gas) does not enter, the distance from the position of the high pressure side end of the rubber layer 13 (indicated by point Q in FIG. 21) to the sealed fluid on the high pressure side A The permeation distance of the rubber part is , (T + L)
  • L is the uneven wave part of the cylindrical wall part 15.
  • this L or (T + L) is sufficiently larger than the wall thickness dimension T of the end face covering wall portion 16 in FIG.
  • FIG. 23 and FIG. 24 show Modification 5 of the rotary shaft seal 1 of Embodiment 2
  • FIG. 23 is an enlarged sectional view of an essential part thereof
  • FIG. 24 is an enlarged sectional view of an essential part thereof.
  • the rotary shaft seal 1 has the same basic configuration as that described with reference to FIGS. 12 to 19, and will not be described repeatedly. Hereinafter, mainly different configurations will be described.
  • the high pressure side end 70 of the cylindrical portion 8 of the outer case 2 is arranged in a stepped manner so that the cylindrical portion 10 of the inner case 3 is on the high pressure side A of the high pressure side end 60. That is, the axial dimension of the inner case 3 is set to be small, and the high-pressure side end 70 of the cylindrical portion 8 of the outer case 2 is set to the high-pressure side A rather than the high-pressure side end surface 10a of the cylindrical portion 10 of the inner case 3.
  • the high-pressure side half 52 of the outer case 2 is not fitted by the inner case 3 and is exposed on the inner diameter side, and is covered with a rubber member. That is, the inner peripheral surface of the high-pressure side half 52 of the metal outer case 2 is exposed (uncovered), and the rubber member is covered.
  • the (thin film-like) rubber layer 13 is formed on the outer peripheral surface of the cylindrical portion 10 of the inner case 3.
  • the cylindrical portion 8 of the outer case 2 is interposed between the low pressure side half 53 (in the inner peripheral surface).
  • the rubber layer 13 is formed by intrusion during molding, and the gap size of the gap G is the same as the second gap size T in FIGS. 12 to 14 described above. . That is,
  • the length L of the exposed high-pressure half 52 is the length of the inner case 3.
  • the L means the shortest distance from the point Q to the concave circumferential groove 18. Therefore, this L or
  • FIG. 25 shows a sixth modification of the rotary shaft seal 1 of the second embodiment.
  • the rotary shaft seal 1 is configured such that the rotary shaft seal 1 of the second embodiment and the modified example 5 are combined.
  • the basic configuration is the same as that described with reference to FIGS. 12 to 24, and repeated description is omitted.
  • the first gap dimension T is gradually increased from the low pressure side B to the high pressure side A.
  • the shape of the high pressure side half 52 of the cylindrical portion 8 of the outer case 2 is tapered so that the diameter gradually increases to the high pressure side A, and the average inner diameter D of the high pressure side half 52 is reduced.
  • Pressure side half 53 is set larger than inner diameter D. In this way, on the high pressure side A (average value
  • the first gap dimension T is larger than the second gap dimension T on the low pressure side B.
  • a gap G is formed.
  • the high pressure side end portion 70 of the cylindrical portion 8 of the outer case 2 is the cylindrical portion 1 of the inner case 3.
  • the high pressure side end 60 of 0 is arranged in a different shape so as to be on the high pressure side A! /. That is, the dimensional force S in the axial direction of the inner case 3 is set to be smaller, and the high-pressure side end 70 of the cylindrical portion 8 of the outer case 2 is set to the high-pressure side A than the high-pressure side end surface 10a of the cylindrical portion 10 of the inner case 3
  • the high-pressure side half 52 of the outer case 2 is not fitted by the inner case 3, but is exposed on the inner diameter side, and is covered with a rubber member. That is, the inner peripheral surface of the high-pressure side half 52 of the metal outer case 2 is exposed (uncovered) and is covered with the rubber member.
  • the seal portion 4 can be HNBR alone or based on HNBR.
  • the composition is made of rubber material or other rubber material is used.
  • the original shape (free state) of the seal element 7 is an annular flat plate shape.
  • the screw element (spiral groove) has an L-shaped cross section. ) 6 side contacts the outer peripheral surface of the rotating shaft.
  • the seal element 7 is preferably a fluorine-based resin such as PTFE.
  • the seal element 7 has a partial force close to the outer diameter, and is held by the inner flange portion 9 and the inner flange portion 11, but the convex portion 12 is formed on the inner flange portion 11 of the inner case 3, and the seal element 7 The part near the outer diameter is pressed strongly (surface pressure is high) to prevent internal leakage. Further, the same effect can be obtained by enlarging the inner diameter of the inner case 3 without providing the convex portion 12.
  • the rotating shaft rotates to push the fluid back to the fluid storage chamber side (high pressure side) A (hydride port dynamic action), improving sealing performance during rotation I am letting.
  • the inner flange portion 32 of the conventional outer case 34 is arranged on the fluid storage chamber side (high pressure side) A Embodiment 2
  • the inner flange portion 9 of the outer case 2 is disposed on the low pressure side B.
  • the inner flange portion of the conventional inner case 37 was disposed on the fluid storage chamber side (high pressure side) A.
  • the inner flange portion 11 of the inner case 3 is 11. Is arranged on the low pressure side B. In this way, on the low pressure side B, the seal element 7 is pressure-bonded and held by the inner flange portions 9 and 11.
  • the seal portion 4 is an outer surface that covers the cylindrical portions 8 and 10 fitted to each other from the outer peripheral surface side.
  • a U-shaped concave groove 18 is formed on the end surface of the block-shaped portion 17 on the high-pressure side A, and the rubber lip portion is inclined obliquely from the inner peripheral end of the block-shaped portion 17 on the high-pressure side A toward the inner diameter. 5 is connected in an elongated shape.
  • the axial center position of the rubber lip portion 5 and the axial center position of the end surface covering wall portion 16 are substantially matched.
  • the block-shaped portion 17 and the rubber lip portion 5 have a substantially U-shaped cross section by forming the concave circumferential groove 18.
  • the contact inner peripheral edge 5a of the rubber lip portion 5 that contacts the outer peripheral surface of the rotating shaft is the end on the high pressure side A of the inner case 3 in the illustrations of FIGS. 12, 15, 17, and 20.
  • the surface 10a is disposed at substantially the same position in the axial direction.
  • a contact inner peripheral edge 5a is disposed at substantially the same position as the end face 8a on the high pressure side A of the outer case 2 in the axial direction. Although not shown, it may be preferable to dispose the inner peripheral edge 5a on the low pressure side B rather than the end face 10a or 8a.
  • the rubber lip portion 5 hardly protrudes toward the high pressure side A as compared with Figs. 39 to 41 of the conventional example, and the overall width W of the rotary shaft seal 1 can be significantly reduced.
  • the rotary shaft seal 1 of the second embodiment is compacted to a full width dimension W that is substantially the same as the full width dimension of the outer case 2.
  • the defect rate due to external factors can be significantly reduced during the manufacturing process of rotary shaft seals and during the assembly of car air conditioner compressors using such seals.
  • the convex portion 12 may be continuously formed over the entire circumference.
  • the convex portions 12 are intermittently formed in the circumferential direction alternately, the seal element is formed.
  • the surface pressure for repressing (pressing) 7 increases, and it is possible to prevent the seal element 7 from rotating together with the rotating shaft.
  • the part that comes into contact with the seal element 7 looks like a saw tooth! It is more preferable because it improves the adhesive strength.
  • the inner peripheral surface of the outer case 2 and the inner peripheral surface of the inner case 3 may be assembled so as to be fitted in a press-fitted shape.
  • assemble it so that it can be pushed in with a press or nommer, or assemble it so that it is pushed in when the mold is closed, and make an intermediate product as shown in Fig. 14 or Fig. 22 and place it in the mold.
  • the outer case 2, the inner case 3, and the seal element 7 can be integrally formed simultaneously with the formation of the seal portion 4 in the mold, and the conventional crimping process is completely omitted. . In other words, each component can be assembled at the time of rubber injection molding or compression molding of the seal portion 4.
  • the convex portion 12 is formed on the inner flange portion 11 of the inner case 3, the contact surface pressure of both inner flange portions 11, 9 of the inner case 3 and the outer case 2 (locally) ) It has the advantage that it can effectively prevent internal leakage as the rotary shaft seal 1 and can prevent co-rotation of the seal element 7 and the rotary shaft. Even if the convex portion 12 is not provided, the same effect can be obtained by enlarging the inner diameter of the inner case 3.
  • the design can be freely changed, and the rotary shaft seal 1 of the second embodiment and the modification 5 are combined. It may be configured. Further, the configuration may be such that Modification 2 and Modification 4 are combined. Further, the configuration may be such that Modification 3 and Modification 4 are combined.
  • the rubber layer 57 may not be interposed in the second gap portion 55.
  • the screw groove 6 may be omitted at all, or a plurality of large and small circular grooves may be formed concentrically. If the inner peripheral surface of the outer case 2 and the inner peripheral surface of the inner case 3 may be fitted in a press-fit manner, assemble them so that they can be pushed in with a press or a nonmmer. An intermediate product such as 14 and 22 is manufactured, set in a mold, and fluidized rubber material is injected into the mold to form a seal portion 4. Fluid rubber material enters the minute fitting gap G to form a rubber layer 13, and it is integrated by the rubber layer 13 and mechanically integrated by press fitting (press fitting). By cooperating with each other, it is possible to obtain a rotating shaft seal with a stronger unitary structure.
  • the outer case 2, the inner case 3, and the seal element 7 can be integrally formed at the same time as the seal portion 4 is formed in the mold, so that the conventional crimping process is completely omitted. ing. In other words, each component can be assembled at the time of rubber injection molding or compression molding of the seal portion 4.
  • the convex portion 12 is formed on the inner flange portion 11 of the inner case 3, the contact surface pressures of the inner case 3 and the inner flange portions 11, 9 of the outer case 2 (locally) ) As a rotary shaft seal 1, there is an advantage that internal leakage can be effectively prevented. Further, the same effect can be obtained by enlarging the inner diameter of the inner case 3 without providing the convex portion 12.
  • one or a plurality of radial ribs are provided in the concave circumferential groove 18, and the contact inner peripheral edge 5a of the rubber lip portion 5 and the outer peripheral surface of the rotating shaft are arranged.
  • the contact surface pressure with the shaft is changed in the rotational circumferential direction, making it easier for the lubricating fluid to enter between the inner peripheral edge 5a and the outer peripheral surface of the rotating shaft, reducing the generation of frictional heat and extending the service life. Is preferred.
  • the rotary shaft seal 1 of Embodiment 2 includes the metal outer case 2, the metal inner case 3, the rubber seal portion 4 having the rubber lip portion 5 slidably contacting the rotary shaft, and the rotational seal.
  • the rotary shaft seal equipped with the seal element 7 slidably contacting the shaft the caulking process of the metal outer case 2 is omitted, and the outer case 2, the seal element 7, the inner case 3, and the seal portion 4 are A first gap is formed on the high pressure side A larger than the low pressure side B between the inner peripheral surface of the cylindrical portion 8 of the outer case 2 and the outer peripheral surface of the cylindrical portion 10 of the inner case 3.
  • the outer case 2 and the inner case 3 are formed with the part 54 and the rubber layer 57 interposed in the first gap part 54, it is possible to cope with severe use conditions. Can be manufactured at low cost A. High sealing performance is demonstrated stably. In particular, the rubber layer 57 in the first gap portion 54 effectively prevents leakage from the gaps between the parts (internal leak), and exhibits further sealing performance.
  • the outer outer casing 2, the sealing element 7, the inner casing 3, and the sealing section 4 are formed by molding the sealing section 4 while omitting the crimping process of the metallic outer casing 2. Therefore, high-quality products can be mass-produced at a low cost, and the production equipment can be simplified and can be produced efficiently.
  • the inner peripheral surface of the cylindrical portion 8 of the outer case 2 and the cylindrical portion of the inner case 3 If the above-mentioned cylindrical parts 8, 10 are integrated by press-fitting so that the outer peripheral surface of 10 is pressed against each other, the integrated strength of the outer case 2 and the inner case 3 is sufficiently large ( Even if the caulking process described in FIG. 39 and FIG. 40 of the outer case 34 is omitted, a seal having a sufficient strength can be obtained.
  • the outer case 2 has a substantially L-shaped cross section having a cylindrical portion 8 and a low pressure side inner flange portion 9, and the inner case 3 has a cross section having a cylindrical portion 10 and a low pressure side inner flange portion 11.
  • the seal element 7 is clamped and held by the inner flange portions 9 and 11, and the seal portion 4 is formed in the fitting gap portion G of the cylindrical portions 8 and 10.
  • the outer case 2 and the inner case 3 are integrated with each other through the rubber layer 13 formed by intrusion into the outer case 2, so that the outer case 2 and the inner case 3 can be formed with sufficient strength.
  • the rubber layer 13 can reduce the possibility of internal leakage.
  • the posture of the seal element 7 is stable (not rattling), and does not move with the rotational frictional force of the rotating shaft, and always performs stable hide-port dynamic (bombing) operation while the rotating shaft is rotating. .
  • the metal outer case 2, the metal inner case 3, and the seal element 7 are placed in the mold cavity with the outer case 2 and the inner case 3 fitting the seal element 7 together.
  • the fluidized rubber material is filled into the cavity and solidified, and the seal portion 4 is molded.
  • the outer case 2, the inner case 3, and the seal element 7 are integrated together. According to the manufacturing method of the rotating shaft seal, the complicated conventional crimping process can be omitted at all, the manufacturing process can be simplified and the cost can be reduced, and the seal for a compressor for a car air conditioner can be severe. It is possible to reliably produce a large number of rotary shaft seals that can sufficiently meet the various usage conditions (requirements).
  • the rotary shaft seal of Embodiment 2 includes a metal outer case 2, a metal inner case 3, a rubber seal portion 4 having a rubber lip portion 5 that is in sliding contact with the rotary shaft, and a slide on the rotary shaft.
  • the caulking process of the metal outer case 2 is omitted, and the outer case 2, the sealing element 7, the inner case 3, and the sealing portion 4 Is formed between the inner peripheral surface of the cylindrical portion 8 of the outer case 2 and the outer peripheral surface of the cylindrical portion 10 of the inner case 3.
  • the first gap dimension T on the high-pressure side A (which gradually increases toward the high-pressure side) A is low.
  • a metal outer case 2, a metal inner case 3, a rubber seal portion 4 having a rubber lip portion 5 that is in sliding contact with the rotating shaft, and a seal element 7 that is in sliding contact with the rotating shaft are provided.
  • the caulking process of the metal outer case 2 is omitted, and the outer case 2, the seal element 7, the inner case 3, and the seal part 4 are integrated, and the outer case Since one of the high-pressure side end 70 of the cylindrical portion 8 and the high-pressure side end 60 of the cylindrical portion 10 of the inner case 3 is arranged in a stepped manner so as to be on the high-pressure side A than the other, it penetrates the rubber.
  • the outer casing 2, the seal element 7, the inner case 3, and the seal portion 4 are integrated with each other by omitting the crimping of the metal outer case 2.
  • the high pressure side end 60 of the cylindrical portion 10 of the inner case 3 protrudes from the high pressure side end surface 8a of the cylindrical portion 8 of the case 2 to the high pressure side A, and the inner peripheral surface of the cylindrical portion 8 of the outer case 2 A rubber layer 13 formed by intrusion when the seal portion 4 is formed is interposed between the outer pressure surface half portion 58 of the outer peripheral surface of the cylindrical portion 10 of the inner case 3 and the outer case 2.
  • Inner case 3 As a result, the rubber layer is securely and stably provided in the (fine) fitting gap G between the outer peripheral surface of the cylindrical portion 10 of the inner case 3 and the inner peripheral surface of the cylindrical portion 8 of the outer case 2.
  • the fluid that penetrates the rubber (gas) ) Has an advantage that internal leakage with a large transmission distance can be effectively prevented, and rubber covering formation by molding is easy.
  • the outer casing 2, the seal element 7, the inner case 3, and the seal portion 4 are integrated with each other by omitting the crimping process of the metal outer case 2.
  • the cylindrical portion 10 of the case 3 is higher than the high pressure side end surface 10a of the cylindrical portion 10 of the outer case 2.
  • the high pressure side end portion 70 of the cylindrical portion 8 of the outer case 2 is projected to the high pressure side A, and the outer peripheral surface of the cylindrical portion 10 of the inner case 3 is Between the outer case 2 and the low pressure side half 53 of the inner peripheral surface of the cylindrical portion 8 of the outer case 2 is interposed a rubber layer 13 formed by intrusion when the seal portion 4 is formed.
  • Inner case 3 thus, the rubber layer 13 can be surely infiltrated into the (fine) fitting gap G.
  • a metal outer case 2, a metal inner case 3, a rubber seal portion 4 having a rubber lip portion 5 slidably contacting the rotating shaft, and a seal element 7 slidably contacting the rotating shaft are provided.
  • the outer outer casing 2, the sealing element 7, the inner casing 3, and the sealing section 4 are formed by molding the sealing section 4 while omitting the crimping process of the metallic outer casing 2.
  • the outer case 2 has a substantially L-shaped cross section having a cylindrical portion 8 and a low pressure side inner flange portion 9, and the inner case 3 has a section having a cylindrical portion 10 and a low pressure side inner flange portion 11.
  • the seal element 7 is clamped and held by the inner flange portions 9 and 11 and the cylindrical portion 10 of the inner case 3 and the cylindrical portion 8 of the outer case 2 are low-pressure side half portions.
  • a configuration in which the outer case 2 and the inner case 3 are integrated by interposing a rubber layer 13 formed by intrusion when the sealing portion 4 is molded into the fitting gap portion G formed by 53. If this is the case, the inner case 3 can be fitted to the outer case 2 by the rubber pressure at the time of molding, and manufacturing is easy and the quality is stable.
  • the seal element 7 can be integrated while being securely held.
  • the metal outer case 2 and the metal inner case 3 are connected to each other in a small second space at the low-pressure side half 58 of the inner case 3.
  • the inner case 3 is fitted with a gap T and the high-pressure side half 59 of the inner case 3 is straight.
  • the rubber layer 13 having the second gap dimension T can be formed, and the amount of permeation leakage inside the rubber part (internal
  • the metal outer case 2 is fitted into the outer case 2 and the inner case 3 so that the high-pressure side half 59 of the outer peripheral surface of the metal inner case 3 is exposed.
  • the seal element 7 is attached in a crease shape, and is inserted into the mold cavity.Then, the fluidized rubber material is filled into the cavity, solidified, and the seal portion 4 is molded. If the outer case 2, the inner case 3 and the seal element 7 are integrated, the outer case 2 can be easily pressed, can be manufactured at low cost, and has a solid integrated structure. Is possible. Moreover, the amount of permeation leakage (internal leakage amount) inside the rubber part can be reduced.
  • the inner case 3 and the inner case 3 are fitted into the inner case 3 so that the high-pressure side half 52 of the inner peripheral surface of the outer case 2 is exposed.
  • the sealing element 7 is attached in the form of an adhesive and is inserted into the mold cavity, and then the fluidized rubber material is filled into the cavity and solidified, and the seal portion 4 is molded at the same time.
  • the manufacturing method is easy and inexpensive.
  • the inner case 3 is moved in the back direction (low pressure) by the rubber pressure during molding. It can be fitted to side B), making it easier to manufacture.
  • the entire structure can be firmly integrated, and the amount of permeation leakage (internal leakage) inside the rubber portion can be reduced.
  • FIG. 27 is an enlarged cross-sectional view of a main part showing the rotary shaft seal 1 of Embodiment 3
  • FIG. 28 is an explanatory view
  • FIG. 29 is a side view of the main part.
  • the rotary shaft seal 1 includes a metal outer case 2, a rubber seal portion 4 having a rubber lip portion 5 that is in sliding contact with the rotary shaft (not shown), and a screw groove 6 that is in sliding contact with the rotary shaft. And a sealing element 7 having
  • the metal outer case 2 is completely integrated by omitting the crimping process in the direction of arrow C as described in Figs. 39 and 40, and omitting the inner case 37. It is assembled as a structure.
  • the sealing part 4 is a force formed by molding (injection molding or compression molding).
  • the outer case 2, the seal element 7, and the sealing part 4 are integrally formed by the molding.
  • the outer case 2 has a cylindrical portion 8 and an inner flange portion 9 on the low pressure side B, and has a substantially L-shaped cross section.
  • the seal element 7 has an annular flat plate shape in a free state, and has a hole portion 26 at the center, and a screw groove 6 is formed from an inner peripheral edge of the hole portion 26.
  • a plurality of (four in FIG. 29) through-holes 28 are formed at an equal pitch along the vicinity of the outer peripheral edge 27. As shown in FIGS. 27 and 28, the through hole 28 is a portion corresponding to the inner flange portion 9 of the outer case 2.
  • the seal element 7 is fitted in the outer case 2 having a substantially L-shaped cross section, and is in contact with one surface of the inner flange portion 9 (on the high pressure side A).
  • a plurality of through holes 28 are formed so as to correspond to intermediate positions in the radial direction.
  • the seal part 4 has a U-packing cross section, and the shallow concave groove 18 is arranged so as to face the high-pressure side (fluid storage chamber side) A.
  • This U-packing type The cylindrical portion 8 of the outer case 2 is embedded from the low pressure side B in the vicinity of the outer peripheral surface 29 of the seal portion 4 in an integrated manner.
  • the contact inner peripheral edge (lip tip portion) 5a of the rubber lip portion 5 of the seal portion 4 is positioned on the axis-perpendicular plane P substantially the same as the high-pressure side end surface 8a of the cylindrical portion 8 of the outer case 2. Yes. That is, the contact inner peripheral end is on the axis orthogonal plane P that is substantially the same as the axis orthogonal plane that is orthogonal to the axis L (of the rotation axis) and is in contact with the high pressure side end surface 8a of the cylindrical portion 8.
  • An edge 5a is provided. Therefore, the overall width dimension W in the axial direction is significantly smaller than the conventional Fig. 39 to Fig. 41 etc.
  • the overall cross-sectional shape is a substantially rectangular shape.
  • the contact inner peripheral edge (lip tip) 5a of the rubber lip portion 5 of the seal portion 4 is substantially the same axis as the high pressure side end surface 8a of the cylindrical portion 8 of the outer case 2. It is also preferable to locate the lower pressure side B than the orthogonal plane P. In other words, it is in contact with the low-pressure side B, which is perpendicular to the axis orthogonal plane P, which is substantially the same as the axis orthogonal plane P that is perpendicular to the axis L (rotary axis) and is in contact with the high-pressure end face 8a of the cylindrical portion 8.
  • An inner peripheral edge 5a is provided. Therefore, the overall width dimension W in the axial direction is significantly smaller than the conventional Fig. 39 to Fig. 41 etc.
  • the overall cross-sectional shape is substantially rectangular as in FIG.
  • the small column portion 30 into which the fluid rubber material has entered (filled) and solidified into the above-described through hole 28 is a surface of the high-pressure side A of the inner flange portion 9 of the outer case 2 like a shell column.
  • the seal element 7 can be firmly integrated with the outer case 2 and the seal portion 4 by bonding. As a result, when used in a car air conditioner compressor, etc., even if the seal element 7 rotates with the rotating shaft due to frictional force, the seal element 7 is securely held and firmly integrated. The structure can be maintained.
  • FIG. 30 is a sectional view of the rotary shaft seal 1 of the first embodiment, and the same reference numerals indicate the same configuration.
  • an inner case 3 having a substantially L-shaped cross section having a convex portion is added.
  • the inner case 3 has a cylindrical portion 10 and an inner flange portion 11.
  • the cylindrical portion 10 is fitted into the cylindrical portion 8 of the outer case 2, and the convex portion 12 of the inner flange portion 11 presses the seal element 7.
  • the seal element 7 is held in a negative pressure state in cooperation with the inner flange portion 9 of the outer case 2.
  • the rotary shaft seal 1 of the first embodiment is also produced by omitting the caulking process in the direction of arrow C in FIGS. 39 and 40, and when the seal portion 4 is molded, the fitting gap between the cylindrical portions 8 and 10 is It is a structure in which all parts are integrated with a thin rubber layer 13 formed by solidifying the fluid rubber material that has entered the part G.
  • the seal part 4 is composed of HNBR alone or a compounded rubber material based on HNBR, or uses other rubber materials.
  • the original shape of the seal element 7 is an annular flat plate shape.
  • the seal element 7 is preferably a fluorine-based resin such as PTFE.
  • the seal element 7 has a partial force close to the outer diameter.
  • the flange 9 is attached and held on the low pressure side of the block-shaped main body 17 of the rubber seal 4 and the small column (shell-shaped) At 30, the unity is further strengthened. Since the screw groove 6 is formed in the seal element 7, the rotating shaft rotates to push the fluid back to the fluid storage chamber side (high pressure side) A (hydride port dynamic action), and it is rotating. Improves hermeticity.
  • the inner flange portion 32 of the conventional outer case 34 is disposed on the fluid storage chamber side (high pressure side) A Embodiment 3
  • the inner flange portion 9 of the outer case 2 is disposed on the low pressure side B.
  • the conventional inner case 37 is completely omitted from the rotary shaft seal 1 of the third embodiment.
  • the seal portion 4 includes an outer circumferential uneven corrugated fitting cylindrical wall portion 15 that covers the cylindrical portion 8 also with an outer peripheral surface side force, an end surface covering wall portion 16 that covers the high-pressure side end surface 8a of the cylindrical portion 8, and an outer A block-shaped main body portion 17 that occupies most of the low-pressure side B inside the case 2, and a connecting portion 42 connected to the high-pressure side A of the block-shaped main body portion 17 to the end face covering wall portion 16.
  • the rubber lip portion 5 extending in the oblique direction of the inner diameter is integrally formed to form a shallow U-shaped concave circumferential groove 18.
  • the position of the rubber lip portion 5 in the axial center direction and the position of the end surface covering wall portion 16 in the axial center direction are substantially matched. Further, the contact inner peripheral edge 5a of the rubber lip portion 5 that contacts the outer peripheral surface of the rotating shaft (not shown) is disposed at substantially the same position as the end surface 8a on the high pressure side A of the outer case 2 in the axial direction. In the case shown in FIG. 38, the axial direction position of the rubber lip portion 5 is arranged on the low pressure side B than the axial direction position of the end surface covering wall portion 16.
  • the contact inner peripheral edge 5a of the rubber lip portion 5 that contacts the outer peripheral surface of the rotating shaft is closer to the low pressure side B (in the axial direction) than the end surface 8a of the high pressure side A of the outer case 2. It is arranged in! / In this regard, when compared with FIGS. 39 to 41 of the conventional example, the rubber lip portion 5 hardly protrudes to the high pressure side A, and the overall width W of the rotary shaft seal 1 can be remarkably reduced.
  • the rotary shaft seal 1 of the third embodiment is compacted to a full width dimension W substantially the same as the full width dimension of the outer case 2.
  • the defect rate due to external factors can be significantly reduced during the manufacturing process of rotary shaft seals and during the assembly of car air conditioner compressors using such seals.
  • the rubber contact (adhesion) portion of the outer case 2 is preliminarily formed by shot peening or the like It is preferable to increase the rubber adhesion by increasing the surface roughness, and in particular, increase the surface roughness of the high-pressure side surface of the inner flange 9 to increase the adhesion to the tip surface of the small column 30. It is good to increase.
  • a plurality of through holes 28 are formed along the outer periphery of the seal element 7, and the cylindrical portion 8 and the low-pressure side inner flange portion 9
  • the seal element 7 is fitted into the outer flange 9 of the outer case 2 having a substantially L-shaped cross section and is inserted into the mold cavity (not shown), and then fluidized rubber. Fill the cavity by injection molding or compression molding and mold the seal part 4 at the same time with the rubber material filled in the above-mentioned through holes 28.
  • the high pressure side of the inner flange part 9 of the outer case 2 Adhere to one side and integrate the whole.
  • the outer case 2 and the seal element 7 can be integrally formed at the same time as the seal portion 4 is formed in the mold, and the conventional crimping process is completely omitted, and the number of components is minimized. I'll do it.
  • FIG. 31 and FIG. 32 show Modifications 1 and 2 of the rotating shaft seal 1 of Embodiment 3, respectively, which replace FIG. 29 described above. That is, the through hole 28 of the seal element 7 is illustrated as being circular in FIG. 29, but may be rectangular in FIG. 31, and in FIG. 32, the through hole 28 is arcuate (or fan-shaped). However, the shape of the through hole 28 can be variously modified in addition to this.
  • FIG. 33 and FIG. 34 show modified examples 3 and 4 of the rotary shaft seal 1 of Embodiment 3, respectively, and FIG. 38 uses the seal element 7 shown in FIG. 33 or FIG.
  • An example of a rotating shaft seal is shown. That is, in FIG. 33 or FIG. 34 and FIG. 38, the outer peripheral edge 21 corresponding to the corner portion 20 between the cylindrical portion 8 and the inner flange portion 9 of the seal element 7 force outer case 2 is substantially triangular.
  • the shape notch 22 (FIG. 33) or the substantially semicircular notch 22 (FIG. 34) is formed. In FIG. 33 or FIG. 34, each notch 22 is shown with a dotted pattern. Of course, the shape of the notch 22 You can change or increase or decrease the number.
  • the rubber force notch portion 22 of the seal portion 4 is filled by molding, and the rubber of the seal portion 4 becomes the corner portion 20. Also, the inner flange 9 is bonded and integrated (see FIG. 38).
  • FIG. 35 shows a fifth modification of the rotary shaft seal 1 of the third embodiment, and an example of the rotary shaft seal using this seal element 7 can be shown in common with FIG. That is, in FIG. 38 and FIG. 35, the wavy uneven portion 23 is formed on the outer peripheral edge 21 corresponding to the corner portion 20 between the cylindrical portion 8 and the inner flange portion 9 of the seal element 7 force outer case 2 in FIGS. ing.
  • the concave portions 23a of the concave and convex portions 23 are indicated by a dotted pattern.
  • Figure 35 shows an example of a rounded uneven wave shape for the uneven part 23, but it is also possible to make this an uneven triangular wave shape with a triangular shape, trapezoid or tooth shape, or a complex uneven pattern (not shown). ).
  • the rubber of the seal portion 4 is filled in the concave portion 23a of the concave and convex portion 23 by molding, so that the seal portion 4 The rubber is bonded and integrated to the inner surfaces of the corner 20 and the inner flange 9 (see FIG. 38).
  • Fig. 36 shows a modified example 6 of the rotary shaft seal 1 of the third embodiment, in which the outer peripheral edge 21 corresponding to the corner portion 20 of the cylindrical portion 8 and the inner flange portion 9 is the sealing element 7 Formed in a polygonal shape, the gap 25 between the polygonal side 24 and the circular inner surface 8c of the cylindrical part 8 is filled with the rubber force of the seal part 4 by the above-mentioned molding, and the inner flange part Bonded to 9 (corner 20) and integrated as a whole.
  • the seal element 7 has a circular outer peripheral edge 21 but is eccentric, and the rotary shaft is inserted.
  • the center point O of the outer peripheral edge 21 is eccentric with respect to the axial center L of the center hole 4 4, so the cylindrical inner surface 8c (of the outer case 2) indicated by the two-dot chain line and the seal element 7
  • the gap 25 with the outer peripheral edge 21 is formed in a crescent shape. When the gap 25 is filled with the rubber force of the seal part 4 by molding, the whole is integrated. At the same time, the rotation of the seal element 7 with the rotating shaft can be prevented.
  • FIGS. 33 to 35 and FIG. A notch 22 or an uneven portion 23 is formed on the outer peripheral edge 21 of 7.
  • the seal element 7 is fitted into the mold cavity so as to contact the inner flange 9 of the L-shaped outer case 2 having the cylindrical portion 8 and the low pressure side inner flange 9.
  • the fluidized rubber material is filled into the cavity, and the seal portion 4 is molded.
  • the outer case 2 is filled with the rubber material filled in the notch 22 or the recess 23a of the uneven portion 23.
  • the rotary shaft seal 1 (see Fig. 38) is manufactured by bonding to the inner flange 9 and integrating the whole.
  • FIG. 36 A method for manufacturing the rotary shaft seal 1 having the seal element 7 shown in Fig. 36 or 37 will be described.
  • the seal element is described. 7 is formed in a polygonal shape (see FIG. 36) having a plurality of sides 24, or is formed in an eccentric circular shape as shown in FIG. 37, and is similarly formed on the inner flange portion 9 of the outer case 2.
  • the seal element 7 is fitted into the mold so as to come into contact with the mold, and is inserted into the mold cavity.Then, the fluidized rubber material is filled into the cavity, and the seal section 4 is molded.
  • the design can be freely changed, and the through hole 28 shown in Fig. 29, Fig. 31 or Fig. 32 is provided.
  • the case of having the notch 22 shown in 34 is also preferable.
  • the case of having the through hole 28 shown in FIG. 29, FIG. 31 or FIG. 32 and the case of the eccentricity of FIG. 37 can be freely combined (used together).
  • a plurality of radial ribs are provided in the concave circumferential groove 18, and the contact inner peripheral edge 5a of the rubber lip 5 and the outer peripheral surface of the rotary shaft are arranged.
  • the contact surface pressure is changed in the rotational circumferential direction, making it easier for the lubricating fluid to enter between the inner peripheral edge 5a and the outer peripheral surface of the rotating shaft, reducing the generation of frictional heat and extending the service life. Is preferred.
  • the above-described screw groove 6 of the seal element 7 may be omitted or a concentric circle may be formed. Even so, it's free.
  • the rotary shaft seal 1 of Embodiment 3 includes the metal outer case 2, the rubber seal portion 4 having the rubber lip portion 5 that is in sliding contact with the rotary shaft, and the seal element that is in sliding contact with the rotary shaft.
  • the outer case 2, the seal element 7, and the seal portion 4 are integrally formed by molding the seal portion 4 while omitting the inner case fitted in the outer case 2. Because of the structure, it is possible to mass-produce high-quality products with the smallest number of parts at low cost and simplify the manufacturing equipment.
  • the outer case 2 has a substantially L-shaped cross section having a cylindrical portion 8 and a low-pressure side inner flange portion 9. Further, the seal element 7 has a through hole 28 at a portion corresponding to the inner flange portion 9. Since the rubber of the seal part 4 is filled in the through hole 28 and bonded to the inner flange part 9 by molding, it can be manufactured at a low cost with the smallest number of parts. It reliably prevents the element 7 from rotating with the rotating shaft (so-called co-rotation) and exhibits excellent sealing performance (sealability).
  • the outer case 2 has a substantially L-shaped cross section having a cylindrical portion 8 and a low pressure side inner flange portion 9. Further, the seal element 7 has a corner portion between the cylindrical portion 8 and the inner flange portion 9. A notch 22 or an uneven portion 23 is formed on the outer peripheral edge 21 corresponding to 20, and the rubber force of the seal portion 4 by the molding, the notch portion 22 or the recessed portion 23 of the uneven portion 23 3a And is bonded to the inner flange 9 so that it can be manufactured at a low cost with a small number of parts, reliably preventing the seal element 7 from rotating together, and having excellent sealing performance (sealability) ).
  • the outer case 2 has a substantially L-shaped cross section having a cylindrical portion 8 and a low pressure side inner flange portion 9, and the seal element 7 has a corner portion between the cylindrical portion 8 and the inner flange portion 9.
  • An outer peripheral edge 21 corresponding to 20 is formed in a polygonal shape, and the seal portion 4 is formed in the gap portion 25 between the side 24 of the polygonal shape and the circular inner surface 8c of the cylindrical portion 8 by the molding.
  • the rubber is filled and bonded to the inner flange 9 so that it can be manufactured at a low cost with a small number of parts, and the seal element 7 can be prevented from rotating together with the rotating shaft. Excellent sealing performance (sealability).
  • the rotary shaft seal 1 of Embodiment 3 includes the outer case 2 which is connected to the cylindrical portion 8 and the low pressure side. It has a substantially L-shaped cross section having a flange portion 9, and the seal portion 4 has a U packing shape in cross section, and the outer case 29 from the low pressure side B near the outer peripheral surface 29 of the seal portion 4 of the U packing shape.
  • 2 is an integral structure in which the cylindrical portion 8 is embedded in an insertion shape, and the contact inner peripheral edge 5a of the rubber lip portion 5 is located on the axial orthogonal plane P substantially the same as the high pressure side end surface 8a of the cylindrical portion 8.
  • the rubber lip 5 (contact inner peripheral edge 5a) is excessive on the outer peripheral surface of the rotating shaft. Contact with surface pressure can prevent premature wear, and overall width dimension W can be reduced.
  • the lip 5 prevents the lip 5 from being damaged or deformed.
  • the rubber lip 5 can be prevented from being damaged or deformed during the manufacturing process of the rotary shaft seal 1 or when the seal 1 is assembled to a compressor or the like, and the defect rate due to external factors is markedly increased. Can be reduced.
  • the rotary shaft seal of Embodiment 3 When the rotary shaft seal of Embodiment 3 is used in a compressor for a car air conditioner, it can exhibit excellent sealing performance (sealability) and durability even under severe usage conditions of high speed, high pressure and high temperature. It is preferable.
  • the through-hole 28 is formed along the outer periphery of the seal element 7, and the cross section is substantially L-shaped having the cylindrical portion 8 and the low-pressure side inner flange portion 9.
  • the sealing element 7 is fitted into the metal outer case 2 so as to be in contact with the inner flange portion 9 of the metal outer case 2 and is inserted into the mold cavity, and then the fluidized rubber material is placed inside the cavity.
  • the seal portion 4 is molded, and at the same time, the rubber material filled in the through hole 28 of the seal element 7 is adhered to the inner flange portion 9 of the outer case 2 to integrally seal the whole.
  • a metal outer case 2 having a substantially L-shaped cross section having a cylindrical portion 8 and a low pressure side inner flange portion 9 formed with a notch portion 22 or an uneven portion 23 on the outer peripheral edge 21 of the seal element 7.
  • the seal element 7 is fitted into the inner flange portion 9 so as to contact the inner flange portion 9, and is inserted into the mold cavity.
  • the fluidized rubber material is filled into the cavity, and the seal portion 4 is At the same time as molding, the rubber material filled in the notch 22 or the concave portion 23a of the concave and convex portion 23 is adhered to the inner flange portion 9 of the outer case 2 so that the whole is integrated.
  • the conventional caulking process (as shown by arrow C in Fig. 39 and Fig. 40) can be omitted, the manufacturing process can be simplified, and high-performance seals that can withstand harsh usage conditions can be produced in large quantities with stable quality. Production becomes possible.
  • the outer peripheral edge 21 of the seal element 7 is formed in a polygonal shape having a plurality of sides 24, and a metal outer case 2 having a substantially L-shaped cross section having a cylindrical portion 8 and a low-pressure side inner flange portion 9.
  • the sealing element 7 is fitted into the inner flange portion 9 so as to be in contact with the inner flange portion 9 and is inserted into the mold cavity, and then the fluidized rubber material is filled into the cavity to form the seal portion 4.
  • the rubber material filled in the gap portion 25 between the circular inner surface 8c of the cylindrical portion 8 and the side 24 of the outer peripheral edge 21 is adhered to the inner flange portion 9 of the outer case 2.
  • the manufacturing method integrates the whole, the conventional crimping process (as shown by arrow C in Fig. 39 and Fig. 40) can be omitted, the manufacturing process can be simplified, and it can withstand harsh usage conditions. High-performance seals can be mass-produced with stable quality It becomes ability. Industrial applicability
  • the present invention is useful for a rotary shaft seal and a method for manufacturing the rotary shaft seal, and particularly for a rotary shaft seal used for a compressor for a car air conditioner and the like and a method for manufacturing the rotary shaft seal.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing With Elastic Sealing Lips (AREA)

Abstract

A seal (1) for a rotating shaft has a metal outer case (2), a metal inner case (3), a rubber seal section (4) having a rubber lip section (5) in sliding contact with a rotating shaft (29), and a seal element (7). When the seal section (4) is molded, the outer case (2), the seal element (7), the inner case (3), and the seal section (4) are formed as an integral structure.

Description

明 細 書  Specification
回転軸シール及びその製法  Rotating shaft seal and its manufacturing method
技術分野  Technical field
[0001] 本発明は、回転軸シール及びその製法に係り、特にカーエアコン用コンプレッサ等 に使用される回転軸シール及びその製法に関する。  TECHNICAL FIELD [0001] The present invention relates to a rotary shaft seal and a method for manufacturing the rotary shaft seal, and more particularly to a rotary shaft seal used for a car air conditioner compressor and the like and a method for manufacturing the rotary shaft seal.
背景技術  Background art
[0002] カーエアコン用コンプレッサ等は、高速化'高圧ィ匕 '高温ィ匕等の傾向にあって、これ に使用する回転軸シールへの要求が厳しい状況下にあり、本発明者等はこのような 要求に答えるべく多くの回転軸シールの提案をしてきた (例えば、特許文献 2及び 3 参照)。  [0002] Compressors for car air conditioners have a tendency to increase speed, 'high pressure', 'high temperature', etc., and there is a severe demand for a rotary shaft seal used for the compressor. Many rotary shaft seals have been proposed to meet such requirements (see, for example, Patent Documents 2 and 3).
[0003] 即ち、図 39及び図 40は、夫々、特許文献 2及び 3にて提案した回転軸シール 31を 例示し、図 41は図 40の作用説明用要部断面図であり、流体収納室側(高圧側) Aに 内フランジ部 32を有し、かつ、ノ、ウジング内面に対応する円筒部 33を有する略 L字 状のアウターケース 34に、ゴム製シール部 35をモールド成形等にて一体固着し、か つ、図 39及び図 40に実線にて示すように、アウターケース 34の上記円筒部 33の低 圧側 Bの端部 33aは薄肉として形成し、その端部 33a側から、 PTFE等のシールエレ メント 36及び金属製インナーケース 37を組み込み、矢印 Cの如くかしめ加工して、端 部 33aを 2点鎖線のように小内鍔状に折曲げて、シール部 35を一体に有するァウタ 一ケース 34と、シールエレメント 36とインナーケース 37を、一体状に組立てる構造で めつに。  That is, FIG. 39 and FIG. 40 illustrate the rotating shaft seal 31 proposed in Patent Documents 2 and 3, respectively, and FIG. 41 is a cross-sectional view for explaining the operation of FIG. Side (high-pressure side) A has an inner flange part 32 and a cylindrical part 33 corresponding to the inner surface of the louver, and a rubber seal part 35 is formed by molding or the like on an approximately L-shaped outer case 34 As shown by solid lines in FIGS. 39 and 40, the end 33a on the low pressure side B of the cylindrical portion 33 of the outer case 34 is formed thin, and from the end 33a side, PTFE A seal element 36 and a metal inner case 37 are assembled, crimped as shown by arrow C, and the end 33a is bent into a small inner bowl shape as shown by a two-dot chain line. A structure in which one case 34, seal element 36 and inner case 37 are assembled together To blink.
[0004] なお、 38はゴムリップ部であり、流体収納室側(高圧側) Aへ延伸状として、上記シ ール部 35がその一部として備えている。また、シールエレメント 36にはスクリュー溝 3 9が形成されている。アウターケース 34の内フランジ部 32を被覆する U字状の軸心 L と直交状の鉛直壁部 40をシール部 35が有し、この鉛直壁部 40の低圧側壁部と、シ ールエレメント 36の外周寄り円環部位とは、内フランジ部 32とインナーケース 37の間 に強く圧着保持されるように、前述の矢印 C方向への力しめ加工が行われる。  [0004] Note that reference numeral 38 denotes a rubber lip portion, which is extended to the fluid storage chamber side (high pressure side) A and includes the seal portion 35 as a part thereof. Further, a screw groove 39 is formed in the seal element 36. The seal portion 35 has a vertical wall portion 40 orthogonal to the U-shaped axis L that covers the inner flange portion 32 of the outer case 34. The low pressure side wall portion of the vertical wall portion 40 and the outer periphery of the seal element 36 are provided. The offset ring portion is subjected to the above-described force-clamping process in the direction of the arrow C so that the inner flange portion 32 and the inner case 37 are strongly pressed and held.
[0005] 従来から、ゴムリップ部 38による静止時の密封作用、及び、軸の回転時の PTFEシ ールエレメント 36 (のスクリュー溝 39)によるハイド口ダイナミック作用の両方によって、 カーエアコン用コンプレッサ等の既述の厳し 、要求に応えて 、る。 [0005] Conventionally, the rubber lip 38 has a sealing action when stationary and a PTFE shaft when the shaft rotates. In response to the above-mentioned stringent and demanded requirements for compressors for car air conditioners, etc., both by the dynamic action of the hide port by the screw element 36 (screw groove 39).
[0006] し力しながら、図 39 (特許文献 2)や図 40及び 41 (特許文献 3)に示した従来の回 転軸シール 31では、各部品をばらばらに製作し、アッセンプリを行う(組立てて一体 構造とする)ため、アウターケース 34の端部 33aを (矢印 C方向に)折り曲げる力しめ 加工を必須としており、加工工数が増加し (製造工程が煩雑ィ匕し、)、かつ、アッセン プリラインのための大きな設備費用を要していた。  [0006] With the conventional rotating shaft seal 31 shown in FIG. 39 (Patent Document 2) and FIGS. 40 and 41 (Patent Document 3), the parts are manufactured separately and assembled (assembled). Therefore, it is essential to force the end 33a of the outer case 34 to bend (in the direction of arrow C), which increases the number of processing steps (the manufacturing process is complicated) and the assembly. A large equipment cost for the pre-line was required.
[0007] なお、従来から、 V、わゆるオイルシールに於ては、力しめ加工を省略した製法が行 われている(特許文献 1参照)。しかし、接着剤を予め (インサート)金具に塗布するェ 程を要し、しかも、(インサート)金具とゴム製シール部のみ力 成る簡単な構成であ つて、図 39及び図 40のアウターケース 34とゴム製シール部 35のみを予め一体にモ 一ルド成形して 、るのと同等の技術に過ぎな 、と 、える。  [0007] Conventionally, in the V, so-called oil seal, a manufacturing method that omits the crimping process has been performed (see Patent Document 1). However, it requires a process to apply the adhesive to the (insert) bracket in advance, and it has a simple structure in which only the (insert) bracket and the rubber seal portion are used. Only the rubber seal 35 is molded in advance in one piece, and it is just a technique equivalent to this.
[0008] 上述の如ぐ従来、インサート(金具)とゴム製シール部のみ、又は、アウターケース とゴム製シール部のみの簡易な回転軸シール又は(そのための)部品に於て、モー ルド成形にてインサート (金具)やアウターケースと、ゴム製シール部とを、一体化する 技術は知られて 、たとしても、カーエアコン用コンプレッサ等の過酷な使用条件 (厳し い要求)下で使用に耐えるシールエレメントやインナーケース等の部品を具備する回 転軸シールでは、簡略ィ匕した製造工程によって、高いシール性能で安定した品質の ものを、安価に多量生産することは、至難なこととされてきた。  Conventionally, as described above, only molding (metal fittings) and rubber seals, or simple rotary shaft seals or parts (for them) only with outer cases and rubber seals are used for mold molding. The technology for integrating the insert (metal fitting) and outer case with the rubber seal is known, but even if it is used, it can withstand use under harsh conditions (strict requirements) such as compressors for car air conditioners. With rotary shaft seals that include parts such as seal elements and inner cases, it has been considered difficult to mass-produce low-quality products with high sealing performance and stable quality through a simplified manufacturing process. It was.
[0009] また、装着使用状態を示す図 41に於て、従来の回転軸シール 31のゴムリップ部 38 は流体収納室側(高圧側) Aへ大きく(L字状に)延伸して、回転軸 29の外周面に、 流体圧力 Pを受けて、摺動自在に圧接自在に圧接 (接触)していた。図 41中に、ゴ  [0009] Also, in Fig. 41 showing the mounted and used state, the rubber lip portion 38 of the conventional rotary shaft seal 31 extends greatly (in an L shape) to the fluid storage chamber side (high pressure side) A, so that the rotary shaft The outer peripheral surface of 29 was subjected to fluid pressure P and slidably slidably pressed (contacted). In Figure 41,
0  0
ムリップ部 38の接触内周端縁 38aが回転軸 29の外表面に接する接触面圧 Pを縦軸 にとり、位置を横軸にとって示したグラフ図を合わせて示す。そして、従来からこの種 の回転軸シール 31にあっては、リップ部 38の接触内周端縁 38a—摺接部—が、回 転軸 29に対して周方向に如何に均等に摺接させるか、設計上及び製造上から努力 が払われてきた。  The graph shows the contact surface pressure P at which the contact inner peripheral edge 38a of the mulip portion 38 is in contact with the outer surface of the rotating shaft 29 on the vertical axis and the position on the horizontal axis. Conventionally, in this type of rotating shaft seal 31, the contact inner peripheral edge 38 a of the lip portion 38 —the sliding contact portion—is brought into sliding contact with the rotating shaft 29 evenly in the circumferential direction. Efforts have been made from design and manufacturing.
[0010] 従来の図 39〜図 41等に示した回転軸シール 31に於て、流体収納室側 Aに高圧 が作用すると、図 41に示すように、接触内周端縁 38a (リップ先端部)は回転軸 29に 対して大きな接触面圧 Pで全周(360° )にわたつて均等に接触する。これによつて、 密封流体の中の潤滑油が回転軸 29と接触内周端縁 38aとの界面に浸入 (導入)する ことが困難となり、接触内周端縁部 38aの摩耗が促進され、この接触内周端縁 38aは 、えぐられるように摩耗が進行して、密封性 (シール性)が急に悪ィ匕し、流体の外部漏 洩を発生する。言い換えれば、高圧環境下に於て、ゴム製リップ部 38の先端部(内 周端縁 38a)力 回転軸 29に強く押し付けられることに加え、回転軸 29の全周にわた つて均一に圧接するため、冷媒等の流体中の潤滑油が、その先端部(内周端縁 38a と回転軸 29の界面に浸入できず、摩擦抵抗が増加し、発熱し、これに伴ってリップ部 38の先端部(内周端縁 38a)が早期に摩耗してしまう。 [0010] In the conventional rotary shaft seal 31 shown in FIGS. 39 to 41, etc., the fluid storage chamber side A has a high pressure. As shown in FIG. 41, the contact inner peripheral edge 38a (lip tip) contacts the rotating shaft 29 evenly with a large contact surface pressure P over the entire circumference (360 °). This makes it difficult for the lubricating oil in the sealing fluid to enter (introduce) the interface between the rotating shaft 29 and the contact inner peripheral edge 38a, and promotes wear of the contact inner peripheral edge 38a. The inner peripheral edge 38a of the contact gradually wears, the sealability (sealability) deteriorates abruptly, and external leakage of the fluid occurs. In other words, in a high-pressure environment, the tip (inner peripheral edge 38a) force of the rubber lip 38 is strongly pressed against the rotating shaft 29, and is uniformly pressed over the entire circumference of the rotating shaft 29. Therefore, the lubricating oil in the fluid such as refrigerant cannot enter the tip (the interface between the inner peripheral edge 38a and the rotary shaft 29, increases the frictional resistance, generates heat, and accompanying this, the tip of the lip 38 The part (inner peripheral edge 38a) wears out early.
特許文献 1:特開平 2— 240460号公報  Patent Document 1: Japanese Patent Laid-Open No. 2-240460
特許文献 2 :特開 2004— 019798号公報  Patent Document 2: JP 2004-0119798
特許文献 3:特開 2003 - 343737号公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-343737
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] 本発明は、過酷な使用条件にも対応可能であり、簡略ィ匕した製造工程によって安 価に製造可能な、高 、シール性能を安定して発揮する回転軸シール及びその製法 を提供することを目的とする。 [0011] The present invention provides a rotary shaft seal that can cope with severe use conditions and can be manufactured at low cost by a simplified manufacturing process and that stably exhibits high sealing performance, and a method for manufacturing the same. The purpose is to do.
[0012] 本発明の回転軸シールは、回転軸(29)に摺接するゴムリップ部(5)を有するゴム 製シール部 (4)を備えたものに於て、 [0012] The rotary shaft seal of the present invention includes a rubber seal portion (4) having a rubber lip portion (5) slidably contacting the rotary shaft (29).
上記ゴム製シール部 (4)が流体収納室側 (A)に対応する高圧対応面(27)の径方 向中間位置に凹周溝(18)を凹設して内周及び外周に沿って上記ゴムリップ部(5) 及び外周ゴム部(14)を夫々円環状に形成し、かつ、上記凹周溝(18)内に該ゴムリ ップ部(5)と上記外周ゴム部(14)を連結する径方向リブ部 (41)を設けたことを特徴 とする。  The rubber seal (4) has a concave groove (18) in the middle of the radial direction of the high pressure compatible surface (27) corresponding to the fluid storage chamber side (A). The rubber lip portion (5) and the outer peripheral rubber portion (14) are each formed in an annular shape, and the rubber lip portion (5) and the outer peripheral rubber portion (14) are connected in the concave peripheral groove (18). A radial rib portion (41) is provided.
[0013] 本発明の回転軸シールは、金属製アウターケース(2)と金属製インナーケース(3) と、回転軸(29)に摺接するゴムリップ部(5)を有するゴム製シール部 (4)と、シール エレメント(7)とを、備えたものに於て、 上記シール部(4)のモールド成形にて、上記アウターケース(2)とシールエレメント (7)とインナーケース(3)と上記シール部 (4)とを一体構造とし、さらに、上記ゴム製シ ール部 (4)が流体収納室側 (A)に対応する高圧対応面(27)の径方向中間位置に 凹周溝(18)を凹設して内周及び外周に沿って上記ゴムリップ部(5)及び外周ゴム部 (14)を夫々円環状に形成し、かつ、上記凹周溝(18)内に該ゴムリップ部(5)と上記 外周ゴム部(14)を連結する径方向リブ部 (41)を設けたこと特徴とする。 [0013] The rotary shaft seal of the present invention includes a rubber seal portion (4) having a metal outer case (2), a metal inner case (3), and a rubber lip portion (5) in sliding contact with the rotary shaft (29). And a sealing element (7), By molding the seal part (4), the outer case (2), the seal element (7), the inner case (3), and the seal part (4) are integrated, and the rubber sheet The groove portion (4) is provided with a concave groove (18) at the radial intermediate position of the high pressure corresponding surface (27) corresponding to the fluid storage chamber side (A), and the rubber lip portion ( 5) and the outer peripheral rubber part (14) are each formed into an annular shape, and the radial rib part connecting the rubber lip part (5) and the outer peripheral rubber part (14) in the concave peripheral groove (18) ( 41).
[0014] 本発明の回転軸シールは、回転軸(29)に摺接するゴムリップ部(5)を有するゴム 製シール部 (4)を備えたものに於て、 [0014] The rotary shaft seal of the present invention includes a rubber seal portion (4) having a rubber lip portion (5) slidably contacting the rotary shaft (29).
上記ゴム製シール部 (4)が流体収納室側 (A)に対応する高圧対応面(27)の径方 向中間位置に凹周溝(18)を凹設して内周に沿って上記ゴムリップ部(5)を円環状に 形成すると共に、上記凹周溝(18)の深さ寸法 (N)、幅寸法 (S)、断面形状の内の少 なくとも 1つを、周方向に変化するように設定して、上記ゴムリップ部(5)の回転軸(29 )への接触面圧 (P)を周方向に不均等となるように構成したことを特徴とする。  The rubber seal part (4) has a concave groove (18) formed in the radial intermediate position of the high pressure corresponding surface (27) corresponding to the fluid storage chamber side (A), and the rubber lip is formed along the inner periphery. And forming at least one of the depth dimension (N), width dimension (S), and cross-sectional shape of the concave circumferential groove (18) in the circumferential direction. Thus, the contact surface pressure (P) of the rubber lip portion (5) to the rotating shaft (29) is configured to be uneven in the circumferential direction.
[0015] 本発明の回転軸シールは、金属製アウターケース(2)と金属製インナーケース(3) と、回転軸(29)に摺接するゴムリップ部(5)を有するゴム製シール部 (4)と、シール エレメント(7)とを、備えたものに於て、 [0015] The rotary shaft seal of the present invention includes a rubber seal portion (4) having a metal outer case (2), a metal inner case (3), and a rubber lip portion (5) in sliding contact with the rotary shaft (29). And a sealing element (7),
上記シール部(4)のモールド成形にて、上記アウターケース(2)とシールエレメント (7)とインナーケース(3)と上記シール部 (4)とを一体構造とし、さらに、上記ゴム製シ ール部 (4)が流体収納室側 (A)に対応する高圧対応面(27)の径方向中間位置に 凹周溝(18)を凹設して内周に沿って上記ゴムリップ部(5)を円環状に形成すると共 に、上記凹周溝(18)の深さ寸法 (N)、幅寸法 (S)、断面形状の内の少なくとも 1つを 、周方向に変化するように設定して、上記ゴムリップ部(5)の回転軸(29)への接触面 圧 (P)を周方向に不均等となるように構成したことを特徴とする。  By molding the seal part (4), the outer case (2), the seal element (7), the inner case (3), and the seal part (4) are integrated, and the rubber sheet The rubber lip (5) is formed along the inner periphery by forming a concave groove (18) at the radial intermediate position of the high pressure compatible surface (27) corresponding to the fluid storage chamber side (A). Is formed in an annular shape, and at least one of the depth dimension (N), width dimension (S), and cross-sectional shape of the concave circumferential groove (18) is set to change in the circumferential direction. The contact surface pressure (P) of the rubber lip portion (5) to the rotating shaft (29) is configured to be uneven in the circumferential direction.
[0016] 本発明の回転軸シールは、金属製アウターケース(2)と、金属製インナーケース(3 )と、回転軸に摺接するゴムリップ部(5)を有するゴム製シール部 (4)と、上記回転軸 に摺接するシールエレメント(7)とを、備えたものに於て、 [0016] The rotary shaft seal of the present invention includes a metal outer case (2), a metal inner case (3), and a rubber seal portion (4) having a rubber lip portion (5) in sliding contact with the rotary shaft, A seal element (7) that is in sliding contact with the rotating shaft;
上記金属製アウターケース(2)の力しめ加工を省略して、上記アウターケース(2)と シールエレメント(7)とインナーケース(3)と上記シール部 (4)とを一体構造としたこと を特徴とする。 The outer casing (2), the sealing element (7), the inner case (3), and the sealing portion (4) are integrated with each other by omitting the crimping of the metallic outer case (2). It is characterized by.
[0017] 本発明の回転軸シールは、金属製アウターケース(2)と、金属製インナーケース(3 )と、回転軸に摺接するゴムリップ部(5)を有するゴム製シール部 (4)と、上記回転軸 に摺接するシールエレメント(7)とを、備えたものに於て、  [0017] The rotary shaft seal of the present invention includes a metal outer case (2), a metal inner case (3), and a rubber seal portion (4) having a rubber lip portion (5) in sliding contact with the rotary shaft, A seal element (7) that is in sliding contact with the rotating shaft;
上記金属製アウターケース(2)の力しめ加工を省略して、上記シール部 (4)のモー ルド成形にて、上記アウターケース(2)とシールエレメント(7)とインナーケース(3)と 上記シール部 (4)とを一体構造としたことを特徴とする。  By omitting the crimping of the metal outer case (2) and molding the seal part (4), the outer case (2), the seal element (7), the inner case (3) and the above The seal part (4) is an integral structure.
[0018] 本発明の回転軸シールの製法は、金属製アウターケース(2)と、金属製インナーケ ース(3)と、シールエレメント(7)を、該アウターケース(2)とインナーケース(3)にて 上記シールエレメント(7)を挾着状として、金型のキヤビティ内に装入し、次に、流動 化したゴム材料を上記キヤビティ内に充填して、固化させ、シール部 (4)をモールド 成形すると同時に、上記アウターケース(2)とインナーケース(3)とシールエレメント( 7)とを一体化することを特徴とする。  [0018] The method of manufacturing the rotary shaft seal of the present invention includes a metal outer case (2), a metal inner case (3), a seal element (7), and the outer case (2) and inner case (3 ) The sealing element (7) is fitted into a mold cavity, and then the fluidized rubber material is filled into the cavity and solidified to form a seal portion (4). The outer case (2), the inner case (3), and the seal element (7) are integrated together with the molding.
[0019] 本発明の回転軸シールは、金属製アウターケース(2)と、金属製インナーケース(3 )と、回転軸に摺接するゴムリップ部(5)を有するゴム製シール部 (4)と、上記回転軸 に摺接するシールエレメント(7)とを、備えたものに於て、  [0019] The rotary shaft seal of the present invention includes a metal outer case (2), a metal inner case (3), a rubber seal portion (4) having a rubber lip portion (5) slidably contacting the rotary shaft, A seal element (7) that is in sliding contact with the rotating shaft;
上記金属製アウターケース(2)の力しめ加工を省略して、上記アウターケース(2)と シールエレメント(7)とインナーケース(3)と上記シール部 (4)とを一体構造とし、さら に、上記アウターケース(2)の円筒部(8)の内周面と、上記インナーケース(3)の円 筒部(10)の外周面との間に、高圧側 (A)に低圧側 (B)よりも大きく形成された第 1間 隙部位 (54)を有し、該第 1間隙部位 (54)にゴム層 (57)が介在して上記アウターケ ース(2)とインナーケース(3)がー体ィ匕して 、ることを特徴とする。  The above-mentioned outer case (2), seal element (7), inner case (3), and seal part (4) are integrated into a single structure, eliminating the need for crimping of the metal outer case (2). Between the inner peripheral surface of the cylindrical portion (8) of the outer case (2) and the outer peripheral surface of the cylindrical portion (10) of the inner case (3), the high pressure side (A) is connected to the low pressure side (B ) Having a first gap portion (54) formed larger than the outer case (2) and the inner case (3) with a rubber layer (57) interposed in the first gap portion (54). It is characterized by its shape.
[0020] 本発明の回転軸シールは、金属製アウターケース(2)と、金属製インナーケース(3 )と、回転軸に摺接するゴムリップ部(5)を有するゴム製シール部 (4)と、上記回転軸 に摺接するシールエレメント(7)とを、備えたものに於て、  [0020] The rotary shaft seal of the present invention includes a metal outer case (2), a metal inner case (3), and a rubber seal portion (4) having a rubber lip portion (5) in sliding contact with the rotary shaft, A seal element (7) that is in sliding contact with the rotating shaft;
上記金属製アウターケース(2)の力しめ加工を省略して、上記アウターケース(2)と シールエレメント(7)とインナーケース(3)と上記シール部 (4)とを一体構造とし、さら に、上記アウターケース(2)の円筒部(8)の高圧側端部(70)と上記インナーケース( 3)の円筒部( 10)の高圧側端部(60)の一方が他方よりも高圧側 (A)になるように段 違 、状に配設したことを特徴とする。 The above-mentioned outer case (2), seal element (7), inner case (3), and seal part (4) are integrated into a single structure, eliminating the need for crimping of the metal outer case (2). , The high pressure side end (70) of the cylindrical portion (8) of the outer case (2) and the inner case ( The cylindrical portion (10) of 3) is characterized by being arranged in a different shape so that one of the high-pressure side end portions (60) is on the high-pressure side (A) than the other.
[0021] 本発明の回転軸シールは、金属製アウターケース(2)と、金属製インナーケース(3 )と、回転軸に摺接するゴムリップ部(5)を有するゴム製シール部 (4)と、上記回転軸 に摺接するシールエレメント(7)とを、備えたものに於て、  [0021] The rotary shaft seal of the present invention includes a metal outer case (2), a metal inner case (3), and a rubber seal portion (4) having a rubber lip portion (5) in sliding contact with the rotary shaft, A seal element (7) that is in sliding contact with the rotating shaft;
上記金属製アウターケース(2)の力しめ加工を省略して、上記アウターケース(2)と シールエレメント(7)とインナーケース(3)と上記シール部 (4)とを一体構造とし、さら に、上記アウターケース(2)の円筒部(8)の高圧側端面 (8a)よりも上記インナーケ一 ス(3)の円筒部(10)の高圧側端部(60)を高圧側 (A)へ突出させて、上記アウター ケース(2)の円筒部(8)の内周面と、上記インナーケース(3)の円筒部( 10)の外周 面の低圧側半部(58)との間に、上記シール部 (4)を形成する際に浸入して形成さ れたゴム層(13)が介在して上記アウターケース(2)とインナーケース(3)が一体化し ていることを特徴とする。  The above-mentioned outer case (2), seal element (7), inner case (3), and seal part (4) are integrated into a single structure, eliminating the need for crimping of the metal outer case (2). From the high pressure side end face (8a) of the cylindrical portion (8) of the outer case (2), move the high pressure side end (60) of the cylindrical portion (10) of the inner case (3) to the high pressure side (A). Protruding between the inner peripheral surface of the cylindrical portion (8) of the outer case (2) and the low pressure side half (58) of the outer peripheral surface of the cylindrical portion (10) of the inner case (3), The outer case (2) and the inner case (3) are integrated with each other through a rubber layer (13) formed by intrusion when the seal portion (4) is formed.
[0022] 本発明の回転軸シールの製法は、金属製インナーケース(3)の外周面の高圧側半 部(59)が露出状となるように金属製アウターケース(2)を外嵌状に嵌合して、該ァゥ ターケース(2)とインナーケース(3)にてシールエレメント(7)を挾着状として、金型の キヤビティ内に装入し、次に、流動化したゴム材料を上記キヤビティ内に充填して、固 化させ、シール部 (4)をモールド成形すると同時に、上記アウターケース(2)とインナ 一ケース(3)とシールエレメント(7)とを一体化することを特徴とする。  [0022] According to the method of manufacturing the rotary shaft seal of the present invention, the metal outer case (2) is externally fitted so that the high-pressure side half (59) of the outer peripheral surface of the metal inner case (3) is exposed. After fitting, the seal case (7) is fitted in the outer case (2) and the inner case (3) and inserted into the mold cavity, and then fluidized rubber material Is filled into the cavity and solidified, and the seal part (4) is molded, and at the same time, the outer case (2), the inner case (3) and the seal element (7) are integrated. Features.
[0023] 本発明の回転軸シールは、金属製アウターケース(2)と、回転軸に摺接するゴムリ ップ部(5)を有するゴム製シール部 (4)と、上記回転軸に摺接するシールエレメント( 7)とをもって、構成され、上記アウターケース(2)に内嵌されるインナーケースを省略 して、上記シール部(4)のモールド成形にて、上記アウターケース(2)とシールエレメ ント(7)とシール部 (4)とを、一体構造としたことを特徴とする回転軸シール。  [0023] The rotary shaft seal of the present invention includes a metal outer case (2), a rubber seal portion (4) having a rubber lip portion (5) in sliding contact with the rotary shaft, and a seal in sliding contact with the rotary shaft. The outer case (2) and the sealing element (7) are formed by molding the seal portion (4) by omitting the inner case that is configured with the element (7) and is fitted in the outer case (2). A rotary shaft seal characterized in that 7) and the seal portion (4) are integrated.
[0024] 本発明の回転軸シールの製法は、シールエレメント(7)の外周沿いに貫孔(28)を 形成し、円筒部 (8)と低圧側内フランジ部(9)とを有する断面略 L字形の金属製ァゥ ターケース(2)の該内フランジ部(9)に接触するように上記シールエレメント(7)を嵌 め込み状として、金型のキヤビティ内に装入し、次に、流動化したゴム材料を上記キ ャビティ内に充填して、上記シール部 (4)をモールド成形すると同時に上記シールェ レメント(7)の上記貫孔(28)に充填したゴム材料にて上記アウターケース(2)の内フ ランジ部(9)に接着させ、全体を一体化することを特徴とする。 [0024] The rotary shaft seal manufacturing method of the present invention has a substantially cross-sectional shape in which a through hole (28) is formed along the outer periphery of the seal element (7) and has a cylindrical portion (8) and a low pressure side inner flange portion (9). Insert the seal element (7) into the mold cavity so that it contacts the inner flange (9) of the L-shaped metal outer case (2). The fluidized rubber material The inside flange portion (2) of the outer case (2) is filled with a rubber material filled in the through hole (28) of the seal element (7) at the same time as the seal portion (4) is molded. It is characterized in that it is bonded to 9) and integrated as a whole.
[0025] 本発明の回転軸シールの製法は、シールエレメント(7)の外周端縁 (21)に、切欠 部(22)又は凹凸部(23)を形成し、円筒部 (8)と低圧側内フランジ部(9)とを有する 断面略 L字形の金属製アウターケース(2)の該内フランジ部(9)に接触するように上 記シールエレメント(7)を嵌め込み状として、金型のキヤビティ内に装入し、次に、流 動化したゴム材料を上記キヤビティ内に充填して、シール部 (4)をモールド成形する と同時に、上記切欠部(22)、又は、上記凹凸部(23)の凹部(23a)に充填したゴム 材料にて上記アウターケース(2)の内フランジ部(9)に接着させ、全体を一体化する ことを特徴とする。 [0025] The rotary shaft seal manufacturing method of the present invention includes forming a notch (22) or a concavo-convex part (23) on the outer peripheral edge (21) of the seal element (7), and connecting the cylindrical part (8) to the low pressure side. The mold cavity is formed by fitting the sealing element (7) into contact with the inner flange (9) of the outer L-shaped metal outer case (2) having an inner flange (9). Then, after filling the cavity with the fluidized rubber material and molding the seal part (4), the notch part (22) or the uneven part (23 ), The rubber material filled in the recess (23a) is adhered to the inner flange (9) of the outer case (2), and the whole is integrated.
[0026] 本発明の回転軸シールの製法は、シールエレメント(7)の外周端縁 (21)を、複数 の辺(24)を有する多角形状に形成し、円筒部 (8)と低圧側内フランジ部(9)とを有 する断面略 L字形の金属製アウターケース(2)の該内フランジ部(9)に接触するよう に上記シールエレメント(7)を嵌め込み状として、金型のキヤビティ内に装入し、次に 、流動化したゴム材料を上記キヤビティ内に充填して、シール部 (4)をモールド成形 すると同時に、上記円筒部(8)の円形内面 (8c)と上記外周端縁 (21)の辺(24)との 間の間隙部(25)に充填したゴム材料にて上記アウターケース(2)の内フランジ部(9 )に接着させ、全体を一体化することを特徴とする。  [0026] The rotating shaft seal manufacturing method of the present invention is such that the outer peripheral edge (21) of the seal element (7) is formed into a polygonal shape having a plurality of sides (24), and the cylindrical portion (8) The sealing element (7) is fitted into the mold cavity so that it comes into contact with the inner flange (9) of a metal outer case (2) having a substantially L-shaped cross section with a flange (9). Next, the fluidized rubber material is filled into the cavity and the seal portion (4) is molded, and at the same time, the circular inner surface (8c) of the cylindrical portion (8) and the outer peripheral edge are formed. The rubber material filled in the gap (25) between the side (24) of (21) is bonded to the inner flange (9) of the outer case (2) and integrated as a whole. To do.
[0027] 本発明によれば、従来のシールエレメントを有する(カーエアコン用コンプレッサ等 に使用される)回転軸シールでは必須であった力しめ加工を省略可能となって、加工 工数が低減でき、製造工程が簡略化されて、安価にシール性能の優れた回転軸シ ールを、安定した品質で多量生産可能となる。  [0027] According to the present invention, it is possible to omit the crimping process, which is essential in a rotary shaft seal (used in a car air conditioner compressor or the like) having a conventional seal element, and the number of processing steps can be reduced. The production process is simplified, and the rotary shaft seal with excellent sealing performance can be mass-produced with stable quality at low cost.
図面の簡単な説明  Brief Description of Drawings
[0028] [図 1]実施形態 1の回転軸シールの要部断面図である。 FIG. 1 is a cross-sectional view of a main part of a rotary shaft seal according to a first embodiment.
[図 2]実施形態 1の回転軸シールの要部拡大断面図である。  FIG. 2 is an enlarged cross-sectional view of a main part of the rotary shaft seal according to the first embodiment.
[図 3]実施形態 1の回転軸シールの製造方法を説明する簡略要部断面図である。  FIG. 3 is a simplified cross-sectional view of a main part for explaining the method for manufacturing the rotary shaft seal according to the first embodiment.
[図 4]実施形態 1の回転軸シールの正面図である。 [図 5]実施形態 1の回転軸シールの要部断面図である。 FIG. 4 is a front view of the rotary shaft seal according to the first embodiment. FIG. 5 is a cross-sectional view of a main part of the rotary shaft seal according to the first embodiment.
圆 6]実施形態 1の回転軸シールの装着受圧状態を示す作用説明図である。 6] FIG. 6 is an operation explanatory view showing the pressure receiving state of the rotary shaft seal of the first embodiment.
圆 7]実施形態 1の回転軸シールの装着受圧状態を示す作用説明図である。 圆 7] An operation explanatory view showing the pressure receiving state of the rotary shaft seal of the first embodiment.
[図 8]実施形態 1の回転軸シールの変形例 1の要部断面図である。  FIG. 8 is a cross-sectional view of a main part of Modification 1 of the rotary shaft seal according to the first embodiment.
[図 9]実施形態 1の回転軸シールの変形例 2の要部断面図である。  FIG. 9 is a cross-sectional view of a main part of Modification 2 of the rotary shaft seal according to Embodiment 1.
[図 10]実施形態 1の回転軸シールの変形例 3の要部断面図である。  FIG. 10 is a cross-sectional view of the main part of Modification 3 of the rotary shaft seal according to the first embodiment.
圆 11]実施形態 1の回転軸シールの構成と作用の説明図である。 圆 11] It is explanatory drawing of a structure and effect | action of the rotating shaft seal of Embodiment 1. FIG.
[図 12]実施形態 2の回転軸シールの要部断面図である。  FIG. 12 is a cross-sectional view of a main part of a rotary shaft seal according to Embodiment 2.
[図 13]実施形態 2の回転軸シールの要部拡大断面図である。  FIG. 13 is an enlarged cross-sectional view of a main part of the rotary shaft seal according to the second embodiment.
圆 14]実施形態 2の回転軸シールの製造方法を説明する簡略要部断面図である。 14] A simplified cross-sectional view of a main part for explaining the method of manufacturing the rotary shaft seal of the second embodiment.
[図 15]実施形態 2の回転軸シールの変形例 1の要部断面図である。  FIG. 15 is a cross-sectional view of a main part of Modification 1 of the rotary shaft seal according to the second embodiment.
[図 16]実施形態 2の回転軸シールの変形例 1の要部拡大断面図である。  FIG. 16 is an essential part enlarged cross-sectional view of a first modification of the rotary shaft seal according to the second embodiment.
[図 17]実施形態 2の回転軸シールの変形例 2の要部断面図である。  FIG. 17 is a cross-sectional view of a main part of a second modification of the rotary shaft seal according to the second embodiment.
[図 18]実施形態 2の回転軸シールの変形例 2の要部拡大断面図である。  FIG. 18 is an essential part enlarged cross-sectional view of a second modification of the rotary shaft seal according to the second embodiment.
[図 19]実施形態 2の回転軸シールの変形例 3の要部拡大断面図である。  FIG. 19 is an enlarged cross-sectional view of the main part of Modification 3 of the rotary shaft seal of Embodiment 2.
[図 20]実施形態 2の回転軸シールの変形例 4の要部断面図である。  FIG. 20 is a cross-sectional view of a main part of Modification 4 of the rotary shaft seal according to Embodiment 2.
[図 21]実施形態 2の回転軸シールの変形例 4の要部拡大断面図である。  FIG. 21 is an essential part enlarged cross-sectional view of Modification 4 of the rotary shaft seal of Embodiment 2.
圆 22]実施形態 2の回転軸シールの変形例 4の製造方法を説明するための簡略要 部断面図である。 FIG. 22 is a simplified cross-sectional view of a main part for explaining the manufacturing method of the fourth modification of the rotary shaft seal of the second embodiment.
[図 23]実施形態 2の回転軸シールの変形例 5の要部断面図である。  FIG. 23 is a cross-sectional view of the main part of Modification 5 of the rotary shaft seal according to Embodiment 2.
[図 24]実施形態 2の回転軸シールの変形例 5の要部拡大断面図である。  FIG. 24 is an essential part enlarged cross-sectional view of a fifth modification of the rotary shaft seal of the second embodiment.
[図 25]実施形態 2の回転軸シールの変形例 6の要部拡大断面図である。  FIG. 25 is an essential part enlarged cross-sectional view of Modification 6 of the rotary shaft seal according to Embodiment 2.
圆 26]実施形態 1の回転軸シールの要部拡大断面説明図である。 FIG. 26 is an enlarged cross-sectional explanatory diagram of a main part of the rotary shaft seal of the first embodiment.
[図 27]実施形態 3の回転軸シールの要部断面図である。  FIG. 27 is a cross-sectional view of a main part of a rotary shaft seal according to Embodiment 3.
[図 28]実施形態 3の回転軸シールの要部拡大断面図である。  FIG. 28 is an enlarged cross-sectional view of a main part of a rotary shaft seal according to Embodiment 3.
[図 29]実施形態 3の組み込み前のシールエレメントの一例を示す正面図である。  FIG. 29 is a front view showing an example of a sealing element before assembling in the third embodiment.
[図 30]実施形態 1の回転軸シールの要部断面図である。  FIG. 30 is a cross-sectional view of a main part of the rotary shaft seal according to the first embodiment.
[図 31]実施形態 3の組み込み前のシールエレメントの変形例 1を示す正面図である。 [図 32]実施形態 3の組み込み前のシールエレメントの変形例 2を示す正面図である。 FIG. 31 is a front view showing Modification Example 1 of the seal element before assembly of Embodiment 3. FIG. 32 is a front view showing Modification Example 2 of the seal element before assembly of Embodiment 3.
[図 33]実施形態 3の組み込み前のシールエレメントの変形例 3を示す正面図である。  FIG. 33 is a front view showing Modification Example 3 of the seal element before assembly of Embodiment 3.
[図 34]実施形態 3の組み込み前のシールエレメントの変形例 4を示す正面図である。  FIG. 34 is a front view showing Modification Example 4 of the seal element before assembly of Embodiment 3.
[図 35]実施形態 3の組み込み前のシールエレメントの変形例 5を示す正面図である。  FIG. 35 is a front view showing Modification Example 5 of the seal element before assembly of Embodiment 3.
[図 36]実施形態 3の組み込み前のシールエレメントの変形例 6を示す正面図である。  FIG. 36 is a front view showing Modification Example 6 of the seal element before assembly of Embodiment 3.
[図 37]実施形態 3の組み込み前のシールエレメントの変形例 7を示す正面図である。  FIG. 37 is a front view showing Modification Example 7 of the seal element before assembly of Embodiment 3.
[図 38]実施形態 3の変形例を示す要部断面図である。  FIG. 38 is a cross-sectional view of a main part showing a modification of Embodiment 3.
[図 39]従来例の回転軸シールを示す要部断面図である。  FIG. 39 is a cross-sectional view of a principal part showing a conventional rotary shaft seal.
[図 40]他の従来例の回転軸シールを示す要部断面図である。  FIG. 40 is a cross-sectional view of a principal part showing a rotary shaft seal of another conventional example.
[図 41]従来例の回転軸シールの作用説明図である。  FIG. 41 is an operation explanatory diagram of a conventional rotary shaft seal.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下、図面に基づいて実施形態を説明する。  Hereinafter, embodiments will be described with reference to the drawings.
[0030] (実施形態 1)  [Embodiment 1]
図 1は実施形態 1の回転軸シール 1を示す要部拡大断面図であり、図 2は図 1のさ らに拡大して示した要部断面図であり、図 3は実施形態 1の回転軸シール 1の製法を 簡略ィ匕して示す要部断面説明図である。また、図 4は図 1の正面図、図 5は図 4 (a— a )断面と、(b— b)断面の要部拡大図である。  1 is an enlarged cross-sectional view of the main part showing the rotary shaft seal 1 of Embodiment 1, FIG. 2 is an enlarged cross-sectional view of the main part shown in FIG. 1, and FIG. FIG. 3 is a cross-sectional explanatory view of a main part showing the manufacturing method of the shaft seal 1 in a simplified manner. 4 is a front view of FIG. 1, and FIG. 5 is a cross-sectional view of FIG. 4 (a-a) and an enlarged view of the main part of the (b-b) cross-section.
[0031] この回転軸シール 1は、金属製アウターケース 2と、金属製インナーケース 3と、回 転軸 29 (図 6及び 7参照)に摺接するゴムリップ部 5を有するゴム製シール部 4と、上 記回転軸に摺接するスクリュー溝 6を有するシールエレメント 7とを、備えて!/、る。  [0031] The rotary shaft seal 1 includes a metal outer case 2, a metal inner case 3, and a rubber seal portion 4 having a rubber lip portion 5 slidably contacting the rotary shaft 29 (see Figs. 6 and 7), A seal element 7 having a screw groove 6 that is in sliding contact with the rotating shaft is provided! /
[0032] そして、金属製アウターケース 2は、図 39及び図 40にて述べたところの矢印 C方向 へのカゝしめ加工を全く省略して、全体が一体構造として組立てられている。具体的に は、シール部 4はモールド成形 (射出モールド成形又はコンプレツシヨンモールド成 形)によって成形される力 アウターケース 2とシールエレメント 7とインナーケース 3と 上記シール部 4とを、上記モールド成形によって、一体構造として成る。  [0032] Then, the metal outer case 2 is assembled as a whole with the caulking process in the direction of arrow C described with reference to FIGS. 39 and 40 completely omitted. Specifically, the seal portion 4 is formed by molding (injection molding or compression molding). The outer case 2, the seal element 7, the inner case 3, and the seal portion 4 are molded. As a result, the structure is integrated.
[0033] アウターケース 2は、円筒部 8と低圧側 Bの内フランジ部 9とを有し、断面略 L字形で ある。また、インナーケース 3は、円筒部 10と低圧側 Bの内フランジ部 11とを有する断 面略 L字形である。し力も、インナーケース 3の内フランジ部 11は、低圧側 Bへ僅かに 突出状と凸部 12が形成され、インナーケース 3の円筒部 10力 アウターケース 2の円 筒部 8内に嵌合するように組立てられた構造である力 シールエレメント 7は、ァウタ 一ケース 2及びインナーケース 3の両内フランジ部 9, 11にて挾着保持される。かつ、 図 2に示すように、両円筒部 8, 10の嵌合間隙部 Gには、シール部 4のモールド成形 の際に浸入して形成されたゴム層 13が介在して 、る。このモールド成形時に形成さ れて固化したゴム層 13によって、アウターケース 2の円筒部 8と、インナーケース 3の 円筒部 10が、一体ィ匕している。 The outer case 2 has a cylindrical portion 8 and an inner flange portion 9 on the low pressure side B, and has a substantially L-shaped cross section. The inner case 3 has a substantially L-shaped cross section having a cylindrical portion 10 and an inner flange portion 11 on the low pressure side B. Also, the inner flange 11 of the inner case 3 slightly moves to the low pressure side B. The projecting shape and the convex part 12 are formed, and the cylindrical part of the inner case 3 10 force The force is a structure assembled so as to fit into the cylindrical part 8 of the outer case 2 The sealing element 7 includes the outer case 2 and The inner case 3 is held by both inner flanges 9 and 11. In addition, as shown in FIG. 2, a rubber layer 13 formed by intrusion when the seal portion 4 is molded is interposed in the fitting gap portion G between the cylindrical portions 8 and 10. The cylindrical portion 8 of the outer case 2 and the cylindrical portion 10 of the inner case 3 are integrated with each other by the rubber layer 13 formed and solidified at the time of molding.
[0034] また、他の形態について説明すると、モールド成形の前に、アウターケース 2の円筒 部 8の内周面と、インナーケース 3の円筒部 10の外周面とが、相互に圧接するように 、両円筒部 8, 10を圧入嵌合して一体ィ匕し、その後、モールド成形用金型内へ設置 して、シール部 4をモールド成形して、全体を一体化する。  [0034] Further, another form will be described. Before molding, the inner peripheral surface of the cylindrical portion 8 of the outer case 2 and the outer peripheral surface of the cylindrical portion 10 of the inner case 3 are in pressure contact with each other. Then, the cylindrical parts 8 and 10 are press-fitted and fitted together, and then installed in a mold for molding, and the seal part 4 is molded and integrated as a whole.
[0035] インナーケース 3とアウターケース 2の嵌合公差は、機械的に圧入して嵌合させる。  [0035] The fitting tolerance between the inner case 3 and the outer case 2 is mechanically press-fitted.
この圧入嵌合はプレス機を使用し、又は、ハンマー等で叩いて行えば良い。なお、こ のように圧入して図 3に示すような中間品を作成した場合にも、嵌合間隙部 Gが形成 されないというものではなぐそこにモールド成形の際に流動化したゴム材料が流入 して、(機械的一体ィ匕及び薄膜のゴム層 13による一体ィ匕の併用によって)一層強固 な一体構造となる。  This press-fitting may be performed by using a press machine or hitting with a hammer or the like. Note that even when an intermediate product as shown in FIG. 3 is produced by press-fitting in this way, the fluidized rubber material does not flow into the molding gap G. As a result, a stronger integrated structure is obtained (by the combined use of the mechanical integrated film and the integrated film formed by the thin rubber layer 13).
[0036] シール部 4は、 HNBR単独にて、あるいは、 HNBRを基本とする配合ゴム材にて、 構成したり、他のゴム材を用いる。シールエレメント 7は元の形状は、図 3に示すように 、円環平板状であり、回転軸を挿入状として組立てると、断面 L字状として、スクリュー 溝 (螺旋溝) 6の側が回転軸の外周面に接触する。このシールエレメント 7は、 PTFE 等のフッ素系榭脂が好適である。シールエレメント 7は外径寄りの部分力 内フランジ 部 9と、内フランジ部 11にて挾着保持されている力 凸部 12がインナーケース 3の内 フランジ部 11に形成され、シールエレメント 7の外径寄りの部位を強く押圧し (面圧が 高く)、内部リークを防止している。また、凸部 12を設けなくても、インナーケース 3の 内径を拡大することでも同じ効果を得ることができる。シールエレメント 7にスクリュー 溝 6を形成したことにより、回転軸の回転により流体を流体収納室側(高圧側) Aへ押 し戻すボンビング作用(ハイド口ダイナミック作用)をなし、回転中の密封性を向上させ ている。 [0036] The seal part 4 is composed of HNBR alone or a compounded rubber material based on HNBR, or uses other rubber materials. As shown in FIG. 3, the original shape of the seal element 7 is an annular flat plate. When the rotary shaft is assembled as an insertion shape, the cross section is L-shaped, and the screw groove (spiral groove) 6 side is the rotary shaft. Contact the outer peripheral surface. The seal element 7 is preferably a fluorine-based resin such as PTFE. The seal element 7 has a partial force closer to the outer diameter. The inner flange 9 and the force that is held tightly by the inner flange 11 are formed on the inner flange 11 of the inner case 3. The part near the diameter is pressed strongly (surface pressure is high) to prevent internal leakage. Even if the convex portion 12 is not provided, the same effect can be obtained by enlarging the inner diameter of the inner case 3. By forming the screw groove 6 in the seal element 7, it has a bombing action (hydride port dynamic action) that pushes the fluid back to the fluid storage chamber side (high pressure side) A by the rotation of the rotating shaft, and seals during rotation. Improve ing.
[0037] 従来例の図 39〜図 41と比較すれば明らかなように、従来のアウターケース 34の内 フランジ部 32は流体収納室側(高圧側) Aに配設されていた力 本実施形態 1の回 転軸シール 1では、アウターケース 2の内フランジ部 9は低圧側 Bに配設されている。 さらに、従来のインナーケース 37の内フランジ部は流体収納室側(高圧側) Aに配設 されていた力 本実施形態 1の回転軸シール 1では、インナーケース 3の内フランジ 部 11は低圧側 Bに配設されている。このようにして、低圧側 Bにて、シールエレメント 7 は両内フランジ部 9, 11にて挾持状に圧着保持されて 、る。  [0037] As is apparent from comparison with Figs. 39 to 41 of the conventional example, the inner flange portion 32 of the conventional outer case 34 is disposed on the fluid storage chamber side (high pressure side) A. This embodiment In the rotating shaft seal 1, the inner flange portion 9 of the outer case 2 is disposed on the low pressure side B. Furthermore, the force of the inner flange portion of the conventional inner case 37 disposed on the fluid storage chamber side (high pressure side) A In the rotary shaft seal 1 of Embodiment 1, the inner flange portion 11 of the inner case 3 is on the low pressure side. Located in B. In this way, on the low pressure side B, the seal element 7 is clamped and held between the inner flange portions 9 and 11.
[0038] そして、シール部 4は、相互に嵌合した両円筒部 8, 10を外周面側から被覆する外 周凹凸波状嵌着円筒壁部 15と、両円筒部 8, 10の高圧側端面 8a, 10aを被覆する 端面被覆壁部 16と、インナーケース 3の内部に対応する主要部 30としてのブロック 状部 17と、を具備し、この主要部 30 (ブロック状部 17)の高圧側 Aの高圧対応面 27 に、 U字状の凹周溝 18を形成すると共に、主要部 30 (ブロック状部 17)は高圧側 A の内周端寄りにゴムリップ部 5を有する。  [0038] Then, the seal portion 4 includes an outer circumferential concave and convex wavy fitting cylindrical wall portion 15 that covers both the cylindrical portions 8 and 10 fitted to each other from the outer peripheral surface side, and a high pressure side end surface of both the cylindrical portions 8 and 10 8a, 10a, and a block-shaped portion 17 as a main portion 30 corresponding to the inside of the inner case 3, and a high-pressure side A of the main portion 30 (block-shaped portion 17) A U-shaped concave circumferential groove 18 is formed on the high pressure corresponding surface 27, and the main portion 30 (block-like portion 17) has a rubber lip portion 5 near the inner peripheral end of the high pressure side A.
[0039] また、図 1では、このゴムリップ部 5の軸心方向位置と、端面被覆壁部 16の軸心方 向位置を、略一致させている。言い換えれば、上記シール部 4の主要部 30はインナ 一ケース 3の内部に配設すると共に凹周溝 18を凹設しない仮想状態の高圧対応面 27は軸心直交面状に形成されている。そして、凹周溝 18を形成したことにより、主要 部 30は、略 U字状断面を有している。また、回転軸 29 (図 6参照)の外周面に接触す るゴムリップ部 5の接触内周端縁 5aは、アウターケース 2の高圧側 Aの端面 8aと、軸 心方向略同一位置に配設される。この点について、従来例の図 39〜図 41と比較す れば、ゴムリップ部 5が高圧側 Aへ殆ど突出せず、回転軸シール 1の全体の幅寸法 W は、著しく減少できて、コンパクトィ匕が図られていることが判る。即ち、アウターケース In FIG. 1, the axial direction position of the rubber lip portion 5 and the axial direction direction position of the end surface covering wall portion 16 are substantially matched. In other words, the main portion 30 of the seal portion 4 is disposed in the inner case 3 and the virtual high-pressure corresponding surface 27 in which the concave circumferential groove 18 is not formed is formed in a shape orthogonal to the axis. Since the concave circumferential groove 18 is formed, the main portion 30 has a substantially U-shaped cross section. Also, the contact inner peripheral edge 5a of the rubber lip portion 5 that contacts the outer peripheral surface of the rotating shaft 29 (see FIG. 6) is disposed at substantially the same position in the axial direction as the end surface 8a on the high pressure side A of the outer case 2. Is done. Compared with FIGS. 39 to 41 of the conventional example, the rubber lip portion 5 hardly protrudes to the high pressure side A, and the overall width W of the rotary shaft seal 1 can be remarkably reduced. It can be seen that there is a habit. That is, outer case
0 0
2の全幅寸法と略同一の全幅寸法 Wにコンパクトィヒされている。  It is compacted to the full width dimension W which is almost the same as the full width dimension of 2.
0  0
[0040] このように、全幅寸法 W  [0040] Thus, the full width dimension W
0がコンパクトィ匕されているので、外的要因により、リップが傷 ついたり、変形したりすることが抑制される。具体的には、回転軸シールの製造工程 中や、そのシールを使ってカーエアコンのコンプレッサーを組み立てている最中に、 外的要因による不良率を格段に少なくすることが可能となる。 [0041] そして、軸心方向(高圧側 A)から見た正面図 4、及び、図 4の(a— a) , (b— b)断面 を示す図 5 (a) (b)、さらに、装着使用状態であって図 4の (a— a)断面に対応する図 6 、図 4の (b— b)断面に対応する図 7に於て、ゴム製シール部 4の高圧対応面 27の径 方向中間位置に、前述の凹周溝 18が凹設され、内周及び外周に沿って、ゴムリップ 部 5及び外周ゴム部 14を夫々円環状に形成している力 さらに、本実施形態 1の回 転軸シール 1の特徴とすべき点は、この凹周溝 18内に(内周の)ゴムリップ部 5と外周 ゴム部 14を連結する複数の径方向リブ部 41を設けている点である。図 4及び図 5に 示したものでは、 4本のリブ部 41が中心角 90° にて設けられている。これを 2本や 3 本に減らしたり、逆に、 5本以上に増加するも、自由である。また、リブ部 41の高圧側 Aの端縁は、高圧対応面 27と軸心方向同一位置とした場合を、図示しているが、所 望により、高圧対応面 27よりも低圧側 Bに存在させても、自由である(図示省略)。 Since 0 is compacted, the lip is prevented from being damaged or deformed due to external factors. Specifically, the defect rate due to external factors can be significantly reduced during the manufacturing process of rotary shaft seals and during the assembly of car air conditioner compressors using such seals. [0041] Then, a front view 4 as viewed from the axial direction (high pressure side A), and FIGS. 5 (a), (b), and 5 (a), (b) showing the cross section of FIG. In FIG. 6 corresponding to the section (a-a) in FIG. 4 and FIG. 7 corresponding to the section (b--b) in FIG. 4, the high-pressure corresponding surface 27 of the rubber seal 4 is shown in FIG. The above-described concave circumferential groove 18 is provided at a radial intermediate position, and the rubber lip portion 5 and the outer circumferential rubber portion 14 are formed in an annular shape along the inner and outer circumferences. A feature of the rotary shaft seal 1 is that a plurality of radial rib portions 41 for connecting the (inner circumference) rubber lip portion 5 and the outer circumference rubber portion 14 are provided in the concave circumferential groove 18. . 4 and 5, four rib portions 41 are provided at a central angle of 90 °. It is free to reduce this to 2 or 3 or vice versa. The edge of the rib 41 on the high pressure side A is shown in the figure when it is at the same position in the axial center direction as the high pressure compatible surface 27. Even if it makes it, it is free (illustration omitted).
[0042] なお、(図示省略したが、)この凹周溝 18内に径方向リブ部 41を設けた回転軸シー ノレ 1としては、アウターケース 2とインナーケース 3の一方を省略したり、図示のものと は相違する形状のものであっても良いと共に、シールエレメント 7を省略したり、 2枚以 上とすることも、あり得る。  [0042] It should be noted that (not shown), as the rotary shaft sheath 1 in which the radial rib portion 41 is provided in the concave circumferential groove 18, one of the outer case 2 and the inner case 3 is omitted or illustrated. The shape may be different from that of the above, and the sealing element 7 may be omitted or may be two or more.
[0043] 図 6及び図 7に於て、接触面圧 Pを縦軸にとって軸心方向位置を横軸にとって示し たグラフ図を同時に描いている力 凹周溝 18の内で径方向リブ部 41が存在する部 位では、接触面圧 Pが低ぐリブ部 41の不存在位置では、接触面圧 Pが高まる。この ようにして、接触内周端縁 5aの回転軸 29への接触面圧 Pを、周方向に不均等 (不均 一)となるようにしている。そして、図 7のように接触面圧 Pの小さい円周方向位置にて 、流体収納室側 Aの流体中の潤滑油が浸入 (導入)されやすぐ摺接部全周に行き 渡って、接触内周端縁 5aの摩擦抵抗を低減し、発熱を防ぎ、摩耗を抑制できる。  In FIG. 6 and FIG. 7, the force simultaneously drawing the graphs showing the contact surface pressure P as the vertical axis and the axial center position as the horizontal axis. The contact surface pressure P is increased at the position where the rib 41 is absent where the contact surface pressure P is low. In this way, the contact surface pressure P of the contact inner peripheral edge 5a to the rotating shaft 29 is made uneven (uneven) in the circumferential direction. Then, as shown in Fig. 7, at the circumferential position where the contact surface pressure P is small, the lubricant in the fluid in the fluid storage chamber side A immediately enters (introduces) and spreads around the entire slidable contact area. The frictional resistance of the inner peripheral edge 5a can be reduced, heat generation can be prevented, and wear can be suppressed.
[0044] また、上記凸部 12について、全周にわたって連続状に形成している態様でも良い 力 好ましくは、周方向に交互に凹凸状として凸部 12を断続的に形成すれば、シー ルエレメント 7を挾圧(押圧)する面圧が増大して、シールエレメント 7の回転軸との共 廻りを防止できる。さらにシールエレメント 7と接触する部分は、のこぎりの歯状 (ギザ ギザ)のようになって!/、る方が保持力が向上するのでより好ま U、。  [0044] Further, the convex portion 12 may be continuously formed over the entire circumference. Preferably, if the convex portions 12 are intermittently formed in the circumferential direction alternately, the seal element is formed. The surface pressure for repressing (pressing) 7 increases, and it is possible to prevent the seal element 7 from rotating together with the rotating shaft. Furthermore, the part that comes into contact with the seal element 7 becomes like a saw tooth! It is more preferable because it has better holding power.
[0045] 次に、図 8、図 9、及び図 10 (図 11)は、実施形態 1の回転軸シール 1の変形例 1〜 3を示している。 Next, FIG. 8, FIG. 9, and FIG. 10 (FIG. 11) show modified examples 1 to 3 of the rotary shaft seal 1 of the first embodiment. 3 is shown.
[0046] 即ち、回転軸に摺接するゴムリップ部 5を有するゴム製シール部 4を備えた回転軸 シールに於て、ゴム製シール部 4の高圧対応面 27の径方向中間位置に凹周溝 18を 円環状に凹設して、内周に沿ってゴムリップ部 5を円環状に形成し、そして、この凹周 溝 18の深さ寸法 N、幅寸法 S、断面形状の内の少なくとも 1つを、周方向に変化する ように設定して、ゴムリップ部 5の回転軸 29 (図 6及び 7参照)への接触面圧 Pを、図 1 1 (b)に示す如ぐ周方向に不均等となるように構成する。  That is, in the rotary shaft seal provided with the rubber seal portion 4 having the rubber lip portion 5 that is in sliding contact with the rotary shaft, the concave circumferential groove 18 is provided at the radial intermediate position of the high pressure corresponding surface 27 of the rubber seal portion 4. The rubber lip portion 5 is formed in an annular shape along the inner periphery, and at least one of the depth dimension N, the width dimension S, and the cross-sectional shape of the recessed peripheral groove 18 is formed. The contact surface pressure P to the rotating shaft 29 (see FIGS. 6 and 7) of the rubber lip 5 is set unevenly in the circumferential direction as shown in FIG. 11 (b). Configure to be
[0047] なお、図 8〜図 11では、図 1〜図 7にて既に説明したようなアウターケース 2とインナ 一ケース 3とシールエレメント 7を備え、かつ、モールド成形にて全ての部品を一体構 成とした構成が望ましぐ凹周溝 18及びゴムリップ部 5以外については、図 1〜図 7と 同様であるとして説明を省略する。但し、図 1〜図 7で述べたように、アウターケース 2 とインナーケース 3の内の一方を省略したり、各々の形状を種々変化させたり、シー ルエレメント 7を省略したり、逆に 2枚以上とする等の設計変更は自由である。  [0047] In FIGS. 8 to 11, the outer case 2, the inner case 3, and the seal element 7 as already described in FIGS. 1 to 7 are provided, and all the parts are integrated by molding. Except for the concave circumferential groove 18 and the rubber lip portion 5 that are desired to be configured, the description is omitted because they are the same as those shown in FIGS. However, as described in FIGS. 1 to 7, one of the outer case 2 and the inner case 3 is omitted, each shape is changed variously, the seal element 7 is omitted, and vice versa. Design changes such as making more than one are free.
[0048] ところで、図 8に示す変形例 1では、凹周溝 18の深さ寸法 Nを相違させ、 N >Nと  By the way, in the first modification shown in FIG. 8, the depth dimension N of the concave circumferential groove 18 is made different, and N> N
2 1 して、各々の深さの合計周方向範囲の割合を(1 : 9)〜(9 : 1)の適宜比率とし、例え ば、図 11 (a)のように各々 3円弧部に分割配置する。勿論、 4円弧部以上に分割配 置するも好ましい。なお、図 11に於て、斜線円弧部 42は深さ寸法 Nの大きい寸法 N  2 1 and set the ratio of the total circumferential range of each depth to an appropriate ratio of (1: 9) to (9: 1). For example, as shown in Fig. 11 (a), it is divided into 3 arcs. Deploy. Of course, it is also preferable to divide and arrange four or more arc portions. In FIG. 11, the shaded circular arc part 42 is a dimension with a large depth dimension N.
2 の部位を表す。  Represents 2 sites.
[0049] 次に、図 9に示す変形例 2では、凹周溝 18の幅寸法 Sを相違させ、 S >Sとして、  Next, in Modification 2 shown in FIG. 9, the width dimension S of the concave groove 18 is made different so that S> S,
2 1 各々の幅寸法の合計周方向範囲の割合を(1: 9)〜(9: 1)の適宜比率として配分す る。例えば、図 11 (a)に示すように、各々 3円弧部に分割配置する。なお、図 11 (a) に於て、斜線円弧部 42は幅寸法 Sの大きい寸法 Sの部位を表す。  2 1 The ratio of the total circumferential range of each width dimension is allocated as an appropriate ratio from (1: 9) to (9: 1). For example, as shown in Fig. 11 (a), each is divided into three arcs. In FIG. 11 (a), a hatched circular arc portion 42 represents a portion of a dimension S having a large width dimension S.
2  2
[0050] 次に、図 10に示した変形例 3では、凹周溝 18の深さ寸法 N及び幅寸法 Sを同時に 周方向に相違させている。図 10 (a)及び (b)とを比較すると、前者は、深さ寸法 N及  Next, in Modification 3 shown in FIG. 10, the depth dimension N and the width dimension S of the concave circumferential groove 18 are simultaneously made different in the circumferential direction. Comparing Fig. 10 (a) and (b), the former is
2 び幅寸法 S 1S 後者の深さ寸法 N及び幅寸法 Sよりも、大きぐ凹周溝 18の横断面  2 and width dimension S 1S Cross section of concave groove 18 larger than latter depth dimension N and width dimension S
2 1 1  2 1 1
形力 前者では十分に大きい。この前者を、図 11 (a)では斜線範囲にて示している。 前者と後者の各々の合計周方向範囲の割合を(1: 9)〜(9: 1)の適宜比率として、配 分する。 [0051] なお、図 10及び図 9に於て、 4分割以上として、分割配置するも好ましい。 Formability The former is large enough. This former is indicated by the hatched area in FIG. 11 (a). The ratio of the total circumferential range of each of the former and the latter is distributed as an appropriate ratio of (1: 9) to (9: 1). [0051] Note that in FIG. 10 and FIG. 9, it is preferable to divide into four or more parts.
[0052] 図 11 (b)について追加説明する。受圧状態(図 6及び 7参照)でゴムリップ部 5の回 転軸 29表面への接触面圧 Pを、円形状に図示したグラフ図であり、図 11 (a)では深 さ寸法 N及び Z又は幅寸法 Sが大小の各々のものを 3分割として配置した場合を示 したが、図 11 (b)では 6分割として各々を配置した場合の接触面圧 Pが周方向に如 何に変化しているかを、例示している。図 11 (b)に示すように接触面圧 Pが同方向に 不均等 (不均一)となるので、小さな接触面圧の部位 (谷部)から潤滑油を、ゴムリップ 部 5の接触内周端縁 5aと回転軸 29 (図 6及び 8参照)との間に、導入及び浸入させ、 回転に伴って、摺接部位全周に潤滑油を行き渡らせ、摩擦熱の発生を防ぎ、早期摩 耗を防止し、長寿命を図ることができる。  [0052] FIG. 11 (b) will be additionally described. Fig. 11 is a graph showing the contact pressure P on the surface of the rotating shaft 29 of the rubber lip 5 in a circular shape in the pressure receiving state (see Figs. 6 and 7). In Fig. 11 (a), the depth dimensions N and Z or Although the case where each of the width dimensions S is arranged in three parts is shown, Fig. 11 (b) shows how the contact surface pressure P changes in the circumferential direction when each part is arranged in six parts. This is an example. As shown in Fig. 11 (b), the contact surface pressure P becomes non-uniform (non-uniform) in the same direction. Therefore, lubricating oil is applied from the part of the small contact surface pressure (valley part) to the contact inner peripheral edge of the rubber lip part 5. Introduce and permeate between the edge 5a and the rotating shaft 29 (see Figures 6 and 8), and with rotation, lubricate the entire circumference of the sliding contact area to prevent frictional heat and prevent early wear. Can be prevented and a long life can be achieved.
[0053] 次に、本実施形態 1の回転軸シール 1の製法を説明する。アウターケース 2とシー ルエレメント 7とインナーケース 3を、図 3に示すように、金型のキヤビティ内に装入す る。シールエレメント 7は平板円環状として装入する。つまり、図 3に示すように、ァウタ 一ケース 2の内フランジ部 9、インナーケース 3の内フランジ部 11 (特には、内フランジ 部 11に形成した凸部 12)で、シールエレメント 7を挟んで固定した状態で、金型(図 示せず)内にセットする。次に、流動化ゴム材料を金型内に射出成形させ、図 1の断 面形状に示すゴムリップ部 5を有する回転軸シール 1を作製する。  Next, a method for manufacturing the rotary shaft seal 1 of Embodiment 1 will be described. Insert the outer case 2, seal element 7 and inner case 3 into the mold cavity as shown in Fig.3. The sealing element 7 is inserted as a flat plate ring. That is, as shown in FIG. 3, the seal element 7 is sandwiched between the inner flange portion 9 of the outer case 2 and the inner flange portion 11 of the inner case 3 (particularly, the convex portion 12 formed on the inner flange portion 11). Set in a mold (not shown) in a fixed state. Next, the fluidized rubber material is injection-molded in a mold to produce the rotary shaft seal 1 having the rubber lip portion 5 shown in the cross-sectional shape of FIG.
[0054] 上述の射出成形の際のゴム材料の流入と充填と加圧によって、ゴム材料は図 2のよ うに両円筒部 8, 10の嵌合間隙部 Gに浸入して、その後の加硫によって、両円筒部 8 , 10を強固に一体化する(ゴム層 13が形成される)。ところで、図 3に示すように、シ ールエレメント 7を挾持するように、アウターケース 2とインナーケース 3とが、圧入しな いで嵌合する状態 (遊嵌状)の場合には、ゴム層 13の偏肉を防止するため、アウター ケース及び Z又はインナーケースに、接着剤又は粘着剤を塗布して相互位置を固定 したり、コンピュータ制御によって相互位置を決定して、その状態下で、金型内にセッ トし、流動化ゴム材料を金型内に射出し、シール部 4を成形し、かつ、嵌合間隙部 G に全周均一厚さにゴム層 13を形成する。このゴム層 13の厚さ寸法は、ゴムの強度、 種類により異なるが、厚さは薄い方が好ましぐ厚さが大きすぎるとゴム層 13の (周方 向位置における)偏肉が起こり易い。 [0055] 他の形態としては、アウターケース 2の内周面とインナーケース 3の内周面力 圧入 状に嵌合させる場合には、プレス機やノヽンマー等にて押込むように組み立てたり、金 型の型閉め時に押込むように組み立てて、図 3に示すような中間品を作製して、これ を金型内にセットし、流動化ゴム材料を金型内に射出して、シール部 4を形成する。 微小な嵌合間隙部 Gへ流動ゴム材料が浸入して、ゴム層 13を形成し、このゴム層 13 による一体化、及び、前述の圧入状の嵌合 (圧入嵌合)による機械的一体化の共働 によって、一層強固な一体構造の回転軸シールが得られる。 [0054] By the inflow, filling and pressurization of the rubber material at the time of the above-described injection molding, the rubber material enters the fitting gap portion G of both cylindrical portions 8 and 10 as shown in FIG. Thus, the cylindrical portions 8 and 10 are firmly integrated (the rubber layer 13 is formed). By the way, as shown in FIG. 3, when the outer case 2 and the inner case 3 are fitted without press-fitting so as to hold the seal element 7 (free fitting shape), the rubber layer 13 In order to prevent uneven thickness, adhesive or adhesive is applied to the outer case and Z or inner case to fix the mutual position, or the mutual position is determined by computer control. Then, the fluidized rubber material is injected into the mold, the seal portion 4 is molded, and the rubber layer 13 is formed in the fitting gap portion G with a uniform thickness all around. The thickness dimension of the rubber layer 13 varies depending on the strength and type of rubber. However, if the thickness is preferably too small, uneven thickness of the rubber layer 13 (at the circumferential direction) is likely to occur. . [0055] As another form, when the inner peripheral surface of the outer case 2 and the inner peripheral surface of the inner case 3 are fitted in a press-fitted form, they are assembled by pressing with a press machine, a nonmmer, or the like. As shown in Fig. 3, an intermediate product as shown in Fig. 3 is manufactured, and this is set in a mold, and fluidized rubber material is injected into the mold to form a seal portion 4. . Fluid rubber material penetrates into the small fitting gap G to form a rubber layer 13, and integration by this rubber layer 13 and mechanical integration by the press-fit fitting (press fitting) described above By cooperating with each other, it is possible to obtain an even stronger, solid structure rotary shaft seal.
[0056] なお、 、ずれの製造方法にあっても、ゴムと接触する金属製のインナーケース 3とァ ウタ一ケース 2の表面に、接着剤を塗布しておけば、回転軸シールとしての強度及び 製品寿命の点で望ましい。  [0056] Even in the manufacturing method of displacement, if an adhesive is applied to the surfaces of the metal inner case 3 and the outer case 2 that are in contact with the rubber, the strength as a rotary shaft seal can be obtained. And desirable in terms of product life.
[0057] 以上述べたように、金型内でシール部 4を形成すると同時に、アウターケース 2とィ ンナーケース 3とシールエレメント 7とを一体ィ匕でき、従来の力しめ加工を全く省略し ている。つまり、シール部 4のゴムの射出成形又はコンプレツシヨン成形時に、各部品 のアッセンブリを行うことができる。  [0057] As described above, the outer case 2, the inner case 3, and the seal element 7 can be integrally formed at the same time as the seal portion 4 is formed in the mold, and the conventional crimping process is completely omitted. . In other words, each component can be assembled at the time of rubber injection molding or compression molding of the seal portion 4.
[0058] なお、インナーケース 3の内フランジ部 11に凸部 12を形成しておけば、インナーケ ース 3とアウターケース 2の両内フランジ部 11, 9の挾着面圧が(局部的に)高まって、 回転軸シール 1として内部リークを有効に防止できると共に、シールエレメント 7と回 転軸との共廻りを防止できるという利点がある。また、凸部 12を設けなくても、インナ 一ケース 3の内径を拡大することでも同じ効果を得ることができる。  [0058] If the convex portion 12 is formed on the inner flange portion 11 of the inner case 3, the contact surface pressure of the inner case 3 and the inner flange portions 11 and 9 of the outer case 2 is (locally). ) It has the advantage that it can effectively prevent internal leakage as the rotary shaft seal 1 and can prevent co-rotation of the seal element 7 and the rotary shaft. Even if the convex portion 12 is not provided, the same effect can be obtained by enlarging the inner diameter of the inner case 3.
[0059] 上述したように、金属製アウターケース 2と、金属製インナーケース 3と、回転軸に摺 接するゴムリップ部 5を有するゴム製シール部 4と、上記回転軸に摺接するスクリュー 溝 6を有するシールエレメント 7とを、備えた回転軸シールに於て、上記金属製ァウタ 一ケース 2のかしめ加工を省略して、上記シール部 4のモールド成形にて、上記ァゥ ターケース 2とシールエレメント 7とインナーケース 3と上記シール部 4とを一体構造と したものであるので、安価に高品質のものを多量生産可能であり、製造設備も簡略化 できて能率良く生産可能である。  [0059] As described above, the metal outer case 2, the metal inner case 3, the rubber seal portion 4 having the rubber lip portion 5 slidably contacting the rotating shaft, and the screw groove 6 slidably contacting the rotating shaft. In the rotary shaft seal provided with the seal element 7, the caulking process of the metal outer case 2 is omitted, and the outer case 2 and the seal element 7 are molded by molding the seal portion 4. Since the inner case 3 and the seal part 4 have an integrated structure, it is possible to mass-produce high-quality products at low cost, simplify production facilities, and produce efficiently.
[0060] 本実施形態 1の回転軸シール 1は以上説明したように、回転軸 29に摺接するゴムリ ップ部 5を有するゴム製シール部 4を備えた回転軸シールに於て、上記ゴム製シール 部 4が流体収納室側 Aに対応する高圧対応面 27の径方向中間位置に凹周溝 18を 凹設して内周及び外周に沿って上記ゴムリップ部 5及び外周ゴム部 14を夫々円環状 に形成し、かつ、上記凹周溝 18内に該ゴムリップ部 5と上記外周ゴム部 14を連結す る径方向リブ部 41を設けた構成であり、ゴムリップ部 5の変形が円周上異なることにな り、接触面圧 Pが円周上不均等 (不均一)となって、ゴムリップ部 5と回転軸 29との摺 接部位に、密封流体中の潤滑油が導入及び浸入しやすくなり(小さな接触面圧部位 から潤滑油が導入及び浸入しやすく)、回転に伴って、摺接部位の全周に行き渡り、 摩擦熱の発生を低減し、ゴムリップ部 5 (の接触内周端縁 5a)の早期摩擦を防ぎ、長 寿命を図り得る。特に、高速及び高圧条件下でも良好なシール寿命が得られる。 [0060] As described above, the rotary shaft seal 1 of Embodiment 1 is the above-mentioned rubber shaft seal provided with the rubber seal portion 4 having the rubber lip portion 5 that is in sliding contact with the rotary shaft 29. sticker Part 4 has a concave groove 18 in the radial intermediate position of the high pressure corresponding surface 27 corresponding to the fluid storage chamber side A, and the rubber lip part 5 and the outer rubber part 14 are annularly formed along the inner and outer circumferences, respectively. And a radial rib portion 41 for connecting the rubber lip portion 5 and the outer peripheral rubber portion 14 is provided in the concave circumferential groove 18, and the deformation of the rubber lip portion 5 is different on the circumference. As a result, the contact surface pressure P becomes uneven on the circumference (non-uniform), and the lubricating oil in the sealing fluid can easily be introduced and infiltrated into the sliding portion between the rubber lip 5 and the rotating shaft 29 ( Lubricating oil can easily be introduced and infiltrated from a small contact surface pressure part), and as it rotates, it spreads all around the sliding contact part, reducing the generation of frictional heat, and the rubber lip part 5 (contact inner peripheral edge 5a) Can prevent premature friction and prolong the service life. In particular, a good seal life can be obtained even under high speed and high pressure conditions.
[0061] また、金属製アウターケース 2と金属製インナーケース 3と、回転軸 29に摺接するゴ ムリップ部 5を有するゴム製シール部 4と、シールエレメント 7とを、備えた回転軸シー ルに於て、上記シール部 4のモールド成形にて、上記アウターケース 2とシールエレメ ント 7とインナーケース 3と上記シール部 4とを一体構造とし、さらに、上記ゴム製シー ル部 4が流体収納室側 Aに対応する高圧対応面 27の径方向中間位置に凹周溝 18 を凹設して内周及び外周に沿って上記ゴムリップ部 5及び外周ゴム部 14を夫々円環 状に形成し、かつ、上記凹周溝 18内に該ゴムリップ部 5と上記外周ゴム部 14を連結 する径方向リブ部 41を設けた構成であるので、安価に高品質のものを安定して多量 生産可能となり、製造設備も簡略ィヒできて能率良く生産可能であり、し力も、シール エレメントのボンビング作用によって回転軸 29の回転中の外部漏れが防止され、また 、接触面圧 Pが円周上不均等 (不均一)となって、ゴムリップ部 5と回転軸 29との摺接 部位に、密封流体中の潤滑油が導入及び浸入しやすくなり(小さな接触面圧部位か ら潤滑油が導入及び浸入しやすく)、回転に伴って、摺接部位の全周に行き渡り、摩 擦熱の発生を低減し、ゴムリップ部 5 (の接触内周端縁 5a)の早期摩擦を防ぎ、長寿 命を図り得る。特に、高速及び高圧条件下でも良好なシール寿命が得られる。  [0061] Further, the rotary shaft seal provided with the metal outer case 2, the metal inner case 3, the rubber seal portion 4 having the rubber lip portion 5 that is in sliding contact with the rotary shaft 29, and the seal element 7 is provided. In this case, the outer case 2, the seal element 7, the inner case 3, and the seal portion 4 are integrated with each other by molding the seal portion 4, and the rubber seal portion 4 is on the fluid storage chamber side. A concave circumferential groove 18 is formed in the middle position in the radial direction of the high pressure corresponding surface 27 corresponding to A, the rubber lip portion 5 and the outer circumferential rubber portion 14 are formed in an annular shape along the inner circumference and the outer circumference, and Since the radial rib portion 41 for connecting the rubber lip portion 5 and the outer peripheral rubber portion 14 is provided in the concave circumferential groove 18, high-quality products can be stably produced in large quantities at low cost, and the manufacturing equipment Can be simplified and can be produced efficiently. In addition, the sealing element bombing action prevents external leakage during the rotation of the rotary shaft 29, and the contact surface pressure P becomes non-uniform (non-uniform) on the circumference. Lubricating oil in the sealing fluid can easily be introduced and infiltrated into the sliding contact part with 29 (the lubricating oil can be easily introduced and infiltrated from the small contact surface pressure part), and the entire circumference of the sliding contact part is accompanied by rotation. It is possible to reduce the generation of frictional heat, prevent premature friction of the rubber lip part 5 (the contact inner peripheral edge 5a), and achieve a long life. In particular, a good seal life can be obtained even under high speed and high pressure conditions.
[0062] また、回転軸 29に摺接するゴムリップ部 5を有するゴム製シール部 4を備えた回転 軸シールに於て、上記ゴム製シール部 4が流体収納室側 Aに対応する高圧対応面 2 7の径方向中間位置に凹周溝 18を凹設して内周に沿って上記ゴムリップ部 5を円環 状に形成すると共に、上記凹周溝 18の深さ寸法 N、幅寸法 S、断面形状の内の少な くとも 1つを、周方向に変化するように設定して、上記ゴムリップ部 5の回転軸 29への 接触面圧 Pを周方向に不均等となるように構成したので、小さな接触面圧 Pの部位か ら潤滑油を、回転軸 29との摺接部位に、導入及び浸入させて、回転に伴って、摺接 部位全周に潤滑油を行き渡らせ、摩擦熱の発生を防止し、早期摩耗を防ぎ、長寿命 を図ることができる。かつ、摺接部位自体 (接触内周端縁 5a自体)に凹凸を付設する 等の場合の気密性不良の問題は生じないという、利点もある。 [0062] Further, in the rotary shaft seal provided with the rubber seal portion 4 having the rubber lip portion 5 slidably contacting the rotary shaft 29, the rubber seal portion 4 is a high pressure compatible surface 2 corresponding to the fluid storage chamber side A. A concave groove 18 is formed in the radial intermediate position of 7 to form the rubber lip portion 5 in an annular shape along the inner circumference, and the depth dimension N, width dimension S, and cross section of the concave groove 18. Small in shape At least one is set to change in the circumferential direction, and the contact surface pressure P of the rubber lip 5 to the rotating shaft 29 is configured to be uneven in the circumferential direction. Lubricating oil is introduced and infiltrated into the sliding contact part with the rotating shaft 29 from the part of this part, and along with the rotation, the lubricating oil is spread all around the sliding contact part to prevent the generation of frictional heat. Abrasion can be prevented and long life can be achieved. In addition, there is an advantage that there is no problem of poor airtightness in the case where unevenness is provided on the sliding contact part itself (contact inner peripheral edge 5a itself).
[0063] また、金属製アウターケース 2と金属製インナーケース 3と、回転軸 29に摺接するゴ ムリップ部 5を有するゴム製シール部 4と、シールエレメント 7とを、備えた回転軸シー ルに於て、上記シール部 4のモールド成形にて、上記アウターケース 2とシールエレメ ント 7とインナーケース 3と上記シール部 4とを一体構造とし、さらに、上記ゴム製シー ル部 4が流体収納室側 Aに対応する高圧対応面 27の径方向中間位置に凹周溝 18 を凹設して内周に沿って上記ゴムリップ部 5を円環状に形成すると共に、上記凹周溝 18の深さ寸法 N、幅寸法 S、断面形状の内の少なくとも 1つを、周方向に変化するよ うに設定して、上記ゴムリップ部 5の回転軸 29への接触面圧 Pを周方向に不均等とな るように構成したので、容易かつ安価に、簡易な製造設備にて、製造可能となり、多 量生産にも好適である。し力も、小さな接触面圧 Pの部位力も潤滑油を回転軸 29との 摺接部位に、導入及び浸入させて、回転に伴って、摺接部位全周に潤滑油を行き渡 らせ、摩擦熱の発生を防止し、早期摩耗を防ぎ、長寿命を図ることができる。かつ、摺 接部位自体 (接触内周端縁 5a自体)に凹凸を付設する等の場合の気密性不良の問 題が生じないという、禾 IJ点もある。  [0063] Further, the rotary shaft seal provided with the metal outer case 2, the metal inner case 3, the rubber seal portion 4 having the rubber lip portion 5 that is in sliding contact with the rotary shaft 29, and the seal element 7 is provided. In this case, the outer case 2, the seal element 7, the inner case 3, and the seal portion 4 are integrated with each other by molding the seal portion 4, and the rubber seal portion 4 is on the fluid storage chamber side. A concave circumferential groove 18 is formed in the radial intermediate position of the high pressure corresponding surface 27 corresponding to A to form the rubber lip portion 5 in an annular shape along the inner circumference, and the depth dimension N of the concave circumferential groove 18 At least one of the width dimension S and the cross-sectional shape is set so as to change in the circumferential direction, so that the contact surface pressure P of the rubber lip portion 5 to the rotating shaft 29 becomes uneven in the circumferential direction. Easy and cheap, with simple manufacturing equipment Enables production, it is also suitable for multi-volume production. As a result, the lubricating oil is introduced and infiltrated into the sliding contact area with the rotating shaft 29, and the lubricating oil is spread over the entire circumference of the sliding contact area with the rotation. Can be prevented, premature wear can be prevented, and a long life can be achieved. In addition, there is also a point IJ that the problem of poor airtightness does not occur when unevenness is added to the sliding part itself (contact inner peripheral edge 5a itself).
[0064] また、上記アウターケース 2の円筒部 8の内周面と、上記インナーケース 3の円筒部 10の外周面とが、相互に圧接するように上記両円筒部 8, 10を圧入嵌合にて一体ィ匕 されているので、アウターケース 2とインナーケース 3の一体ィ匕強度は十分に大きぐ ( アウターケース 34の図 39及び図 40で述べた力しめ加工を省略しても、 )十分な強度 の一体構造のシールが得られる。  [0064] Further, the cylindrical portions 8 and 10 are press-fitted so that the inner peripheral surface of the cylindrical portion 8 of the outer case 2 and the outer peripheral surface of the cylindrical portion 10 of the inner case 3 are pressed against each other. The strength of the outer case 2 and the inner case 3 is sufficiently high (even if the crimping process described in FIGS. 39 and 40 of the outer case 34 is omitted). A solid seal with sufficient strength can be obtained.
[0065] また、上記アウターケース 2は円筒部 8と低圧側内フランジ部 9とを有する断面略 L 字形であり、上記インナーケース 3は円筒部 10と低圧側内フランジ部 11とを有する断 面略 L字形であり、上記シールエレメント 7を上記両内フランジ部 9, 11にて挾着保持 すると共に、上記両円筒部 8, 10の嵌合間隙部 Gに、上記シール部 4のモールド成 形の際に浸入して形成されたゴム層 13が介在して上記アウターケース 2とインナーケ ース 3がー体ィ匕され、又は、シール部 4のモールド成形以外のときに圧入して形成し たゴム層 13が介在してアウターケース 2とインナーケース 3が一体化され、かつ、上記 シール部 4の主要部 30は上記断面略 L字形のインナーケース 3の内部に配設すると 共に上記凹周溝 18を凹設しない仮想状態の上記高圧対応面 27は、軸心直交面状 に形成されて ヽる構成であるので、アウターケース 2とインナーケス 3を十分な強度で 一体化でき、ゴム層 13によって内部リークの可能性も減少でき、さらに、シールエレメ ント 7の姿勢が(がたつくことなく)安定ィ匕でき、回転軸 29の回転摩擦力に連れ廻りせ ず、ハイド口ダイナミック (ボンビング)作用を、回転軸 29の回転中に常に安定して行 つて、外部リーク (漏洩)を一層確実に防止することができる。し力も、全体幅寸法 W The outer case 2 has a substantially L-shaped cross section having a cylindrical portion 8 and a low pressure side inner flange portion 9, and the inner case 3 has a cross section having a cylindrical portion 10 and a low pressure side inner flange portion 11. It is generally L-shaped, and the sealing element 7 is held tightly by the inner flanges 9 and 11 above. At the same time, the outer case 2 and the inner case are interposed by the rubber layer 13 formed by intrusion into the fitting gap portion G of the cylindrical portions 8 and 10 when the seal portion 4 is molded. The outer case 2 and the inner case 3 are integrated with the rubber layer 13 formed by press-fitting when the seal 3 is not formed or when the seal portion 4 is not molded, and the seal portion The main portion 30 of 4 is disposed in the inner case 3 having a substantially L-shaped cross section, and the high-pressure corresponding surface 27 in a virtual state in which the concave circumferential groove 18 is not formed is formed in a shape orthogonal to the axial center. Because it has a twisted configuration, the outer case 2 and the inner case 3 can be integrated with sufficient strength, the possibility of internal leakage can be reduced by the rubber layer 13, and the posture of the seal element 7 is stable (without rattling). Rotating shaft 29 Not around him to force Hyde port dynamic (bombing) acts always stably paragraph shall during the rotation of the rotary shaft 29, it is possible to more reliably prevent external leakage (leakage). Force, overall width dimension W
0 をコンパクトィ匕できる。  0 can be compacted.
[0066] また、金属製アウターケース 2と、金属製インナーケース 3と、シールエレメント 7を、 該アウターケース 2とインナーケース 3にて上記シールエレメント 7を挾着状として、金 型のキヤビティ内に装入し、次に、流動化したゴム材料を上記キヤビティ内に充填し て、固化させ、シール部 4をモールド成形すると同時に、上記アウターケース 2とイン ナーケース 3とシールエレメント 7とを一体ィ匕する回転軸シールの製法によれば、煩 雑な従来の力しめ加工が全く省略可能であり、製造工程の簡略化とコストダウンを達 成でき、かつ、カーエアコン用コンプレッサ等のシールとして、過酷な使用条件(要求 )に十分対応できる回転軸シールが確実に多量に生産可能となる。  [0066] In addition, the metal outer case 2, the metal inner case 3, and the seal element 7 are attached to the mold cavity with the seal element 7 attached by the outer case 2 and the inner case 3. Next, the fluidized rubber material is filled into the cavity and solidified, and the seal portion 4 is molded. At the same time, the outer case 2, the inner case 3, and the seal element 7 are integrated together. According to the manufacturing method of the rotating shaft seal, the complicated conventional crimping process can be omitted at all, the manufacturing process can be simplified and the cost can be reduced, and the seal for a compressor for a car air conditioner can be severe. It is possible to reliably produce a large number of rotary shaft seals that can sufficiently meet the various usage conditions (requirements).
[0067] (実施形態 2)  [0067] (Embodiment 2)
図 12は実施形態 2の回転軸シール 1を示す要部拡大断面図であり、図 13は図 12 のさらに拡大して示した要部断面図であり、図 14は実施形態 2の回転軸シール 1の 製法を簡略化して示す要部断面説明図である。なお、実施形態 1と同一名称の部分 は実施形態 1と同一符号で示す。  12 is an enlarged cross-sectional view of a main part showing the rotary shaft seal 1 of Embodiment 2, FIG. 13 is an enlarged cross-sectional view of the main part of FIG. 12, and FIG. 14 is a rotary shaft seal of Embodiment 2. FIG. 2 is a cross-sectional explanatory view of the relevant part showing the production method 1 in a simplified manner. Parts having the same names as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment.
[0068] この回転軸シール 1は、金属製アウターケース 2と、金属製インナーケース 3と、(図 示省略の)回転軸に摺接するゴムリップ部 5を有するゴム製シール部 4と、上記回転 軸に摺接するスクリュー溝 6を有するシールエレメント 7とを、備えて!/、る。 [0069] そして、金属製アウターケース 2は、図 39及び図 40にて述べたところの矢印 C方向 へのカゝしめ加工を全く省略して、全体が一体構造として組立てられている。具体的に は、シール部 4はモールド成形 (射出モールド成形又はコンプレツシヨンモールド成 形)によって成形される力 アウターケース 2とシールエレメント 7とインナーケース 3と 上記シール部 4とを、上記モールド成形によって、一体構造として成る。 [0068] The rotary shaft seal 1 includes a metal outer case 2, a metal inner case 3, a rubber seal portion 4 having a rubber lip portion 5 slidably contacting the rotary shaft (not shown), and the rotary shaft A seal element 7 having a screw groove 6 that is slidably in contact with the! / [0069] Then, the metal outer case 2 is assembled as a whole with the caulking process in the direction of arrow C as described in FIGS. 39 and 40 being completely omitted. Specifically, the seal portion 4 is formed by molding (injection molding or compression molding). The outer case 2, the seal element 7, the inner case 3, and the seal portion 4 are molded. By this, it becomes a monolithic structure.
[0070] アウターケース 2は、円筒部 8と低圧側 Bの内フランジ部 9とを有し、断面略 L字形で ある。また、インナーケース 3は、円筒部 10と低圧側 Bの内フランジ部 11とを有する断 面略 L字形である。し力も、インナーケース 3の内フランジ部 11は、低圧側 Bへ僅かに 突出状と凸部 12が形成され、インナーケース 3の円筒部 10力 アウターケース 2の円 筒部 8内に嵌合するように組立てられた構造である力 シールエレメント 7は、ァウタ 一ケース 2及びインナーケース 3の両内フランジ部 9, 11にて挾着保持される。かつ、 図 13に示すように、両円筒部 8, 10の嵌合間隙部 Gには、シール部 4の形成の際に 、流動ゴム材が浸入して形成された薄膜状のゴム層 13が介在している。この薄膜状 のゴム層 13は、シール部 4のモールド成形の際に浸入して形成される。  [0070] The outer case 2 has a cylindrical portion 8 and an inner flange portion 9 on the low pressure side B, and has a substantially L-shaped cross section. The inner case 3 has a substantially L-shaped cross section having a cylindrical portion 10 and an inner flange portion 11 on the low pressure side B. Also, the inner flange portion 11 of the inner case 3 has a slightly protruding shape and convex portion 12 formed on the low pressure side B, and is fitted into the cylindrical portion 8 of the inner case 3 and the cylindrical portion 8 of the outer case 2. The force sealing element 7 having the structure assembled as described above is held by the inner flange portions 9 and 11 of the outer case 2 and the inner case 3 together. In addition, as shown in FIG. 13, the fitting gap G between the cylindrical portions 8 and 10 has a thin rubber layer 13 formed by intrusion of a fluid rubber material when the seal portion 4 is formed. Intervene. This thin rubber layer 13 is formed by intrusion when the seal portion 4 is molded.
[0071] 図 12〜図 14について、さらに、説明すると、アウターケース 2の円筒部 8は段付部 5 1を (軸心方向中央近傍に)有し、やや大径筒状の高圧側半部 52と、それよりもやや 小径筒状の低圧側半部 53と、力も成り、従って、高圧側半部 52の内径 D は低圧側  [0071] FIG. 12 to FIG. 14 are further explained. The cylindrical portion 8 of the outer case 2 has a stepped portion 51 (near the center in the axial direction), and is a slightly large-diameter cylindrical high-pressure side half portion. 52, and the low-pressure side half 53, which is slightly smaller in diameter than that, also has a force, so the inner diameter D of the high-pressure side half 52 is the low-pressure side.
52 半部 53の内径 D よりも大きく設定されている。このようにして、高圧側半部 52に対応  52 It is set larger than the inner diameter D of the half 53. In this way, it corresponds to the high-pressure side half 52
53  53
する高圧側 Aの第 1間隙部位 54の第 1間隙寸法 Tを、低圧側半部 53に対応する低  The first gap dimension T of the first gap portion 54 on the high pressure side A is set to a low value corresponding to the low pressure side half 53.
1  1
圧側 Bの第 2間隙部位 55の第 2間隙寸法 Tよりも大きいように、上記嵌合間隙部 Gが  The fitting gap portion G is larger than the second gap dimension T of the second gap portion 55 on the compression side B.
2  2
形成されている。図 12で明らかなように、両円筒部 8, 10の嵌合間隙部 Gには、シー ル部 4の形成の際に、流動ゴム材が浸入して形成された、第 1間隙部位 54の厚膜ゴ ム層 56と、第 2間隙部位 55の薄膜状のゴム層 13から成るゴム層 57が介在している。 すなわち、第 1間隙部位 54は、高圧側 (A)に低圧側 (B)よりも大きく形成されている 。そして、第 1間隙部位 54にゴム材が充填されている。  Is formed. As is apparent from FIG. 12, the fitting gap G between the cylindrical portions 8 and 10 has the first gap portion 54 formed by intrusion of the fluid rubber material when the seal portion 4 is formed. A thick rubber layer 56 and a rubber layer 57 composed of the thin rubber layer 13 in the second gap portion 55 are interposed. That is, the first gap portion 54 is formed larger on the high pressure side (A) than on the low pressure side (B). The first gap portion 54 is filled with a rubber material.
[0072] そして、シール部 4の形成の際に、大きい第 1間隙寸法 Tの第 1間隙 54からゴム材 [0072] When forming the seal portion 4, the rubber material from the first gap 54 having the large first gap dimension T
1  1
が浸入して、引続いて小さな第 2間隙寸法 Tの第 2間隙部位 55に浸入するので、ゴ  Enters the second gap portion 55 having a small second gap dimension T,
2  2
ム材の流れがスムーズであり、薄肉状にゴム層 13が確実かつ安定して形成され、両 円筒部 8, 10は強固に一体ィ匕できる。 The rubber material flow is smooth and the thin rubber layer 13 is formed reliably and stably. The cylindrical parts 8 and 10 can be firmly integrated.
[0073] 言!、換えると、アウターケース 2とインナーケース 3とは、インナーケース 3の低圧側 半部 58に於て微小な第 2間隙寸法 Tをもって嵌合し、かつ、インナーケース 3の高圧 [0073] In other words, the outer case 2 and the inner case 3 are fitted with a small second gap dimension T in the low-pressure side half 58 of the inner case 3 and the inner case 3 has a high pressure.
2  2
側半部 59は大きな第 1間隙寸法 Tをもって (アウターケース 2)に嵌合している。  The side half 59 is fitted to the (outer case 2) with a large first gap dimension T.
1  1
[0074] この第 2間隙寸法 Tとして、 0.005mm≤T≤ 0.20mmのように設定する。好ましくは  [0074] The second gap dimension T is set to 0.005 mm ≤ T ≤ 0.20 mm. Preferably
2 2  twenty two
、 0.01mm≤T≤0.12mmである。 0.005mm>Tであると、インナーケース 3の外径と  0.01mm≤T≤0.12mm. If 0.005mm> T, the outer diameter of the inner case 3
2 2  twenty two
アウターケース 2の内径の寸法差の制御が困難となる傾向が大であり、逆に 0.20mm く Tであるとゴム層 13の(周方向位置における)偏肉が起こり易くなる欠点が生じる。  Control of the dimensional difference of the inner diameter of the outer case 2 tends to be difficult, and conversely, if it is 0.20 mm and T, the rubber layer 13 is likely to be uneven (at the circumferential position).
2  2
他方、第 1間隙寸法 Tは、 0.5mm≤T≤ 3.0mmに設定し、かつ、第 1間隙部位 54の  On the other hand, the first gap dimension T is set to 0.5 mm ≤ T ≤ 3.0 mm, and the first gap part 54
1 1  1 1
軸心方向の長さ寸法 Lを、インナーケース 3の長さ寸法 Lの 30%〜60%に設定す  Set the length L in the axial direction to 30% to 60% of the length L of the inner case 3.
1 3  13
る。つまり、 0.3 X L≤L≤0.6 X Lに設定する。ここで、 T < 0.5mmであると流動ゴ  The In other words, 0.3 X L≤L≤0.6 X L is set. Where T <0.5 mm
3 1 3 1  3 1 3 1
ム材料がモールド成形時に奥部側の第 2間隙部位 55へ浸入しに《なり、また、 T >  When the mold material is molded, it penetrates into the second gap part 55 on the back side, and T>
1 1
3.0mmではアウターケース 2のプレス加工が面倒となり、また、アウターケース 2とイン ナーケース 3の連結剛性が不足することとなる。そして、 L < 0.3 X Lでは、ゴム部分 At 3.0 mm, the pressing of the outer case 2 is troublesome, and the connecting rigidity between the outer case 2 and the inner case 3 is insufficient. And for L <0.3 X L, the rubber part
1 3  13
の透過距離が不足して密封流体の内部漏洩を発生し易い。また、 L >0.6 X L  The permeation distance is insufficient and internal leakage of the sealed fluid is likely to occur. L> 0.6 X L
1 3では アウターケース 2とインナーケース 3の嵌合一体強度が不足する。  With 1 3, the integrated strength of outer case 2 and inner case 3 is insufficient.
[0075] 次に、図 15及び図 16は実施形態 2の回転軸シール 1の変形例 1を示し、上記実施 形態 2を示す図 12及び図 13に、夫々対応している。まず、第 1間隙寸法 Tは、低圧 Next, FIGS. 15 and 16 show a first modification of the rotary shaft seal 1 of the second embodiment, and correspond to FIGS. 12 and 13 showing the second embodiment, respectively. First, the first gap dimension T is low
1 側 Bから高圧側 Aへしだいに増大するように形成されている。即ち、アウターケース 2 の円筒部 8の高圧側半部 52の形状が高圧側 Aへしだいに拡径するテーパ状とされ、 この高圧側半部 52の平均内径 D を、低圧側半部 53の内径 D よりも大きく設定して  It is formed so that it gradually increases from 1 side B to high pressure side A. That is, the shape of the high-pressure side half 52 of the cylindrical portion 8 of the outer case 2 is tapered so that the diameter gradually increases toward the high-pressure side A. Set larger than inner diameter D
52 53  52 53
いる。このようにして、高圧側 Aの(平均値としての)第 1間隙部寸法 Tを、低圧側 Bの  Yes. In this way, the first gap dimension T (as an average value) on the high pressure side A is
1  1
第 2間隙寸法 Tよりも大きいように嵌合間隙部 Gを形成している。  The fitting gap G is formed so as to be larger than the second gap dimension T.
2  2
[0076] アウターケース 2は、円筒部 8と低圧側 Bの内フランジ部 9とを有し、断面略 L字形で ある。また、インナーケース 3は、円筒部 10と低圧側 Bの内フランジ部 11とを有する断 面略 L字形である。しかも、インナーケース 3の円筒部 10が、アウターケース 2の円筒 部 8内に嵌合するように組立てられた構造である力 シールエレメント 7は、アウターケ ース 2及びインナーケース 3の両内フランジ部 9, 11にて挾着保持される。かつ、図 1 6に示すように、両円筒部 8, 10の嵌合間隙部 Gには、シール部 4の形成の際に、流 動ゴム材が浸入して形成された薄膜状のゴム層 13が介在している。この薄膜状のゴ ム層 13は、シール部 4のモールド成形の際に浸入して形成される。 The outer case 2 has a cylindrical portion 8 and an inner flange portion 9 on the low pressure side B, and has a substantially L-shaped cross section. The inner case 3 has a substantially L-shaped cross section having a cylindrical portion 10 and an inner flange portion 11 on the low pressure side B. In addition, the force seal element 7 has a structure in which the cylindrical portion 10 of the inner case 3 is assembled so as to fit into the cylindrical portion 8 of the outer case 2, and both inner flange portions of the outer case 2 and the inner case 3 9 and 11 are held firmly. And Figure 1 As shown in FIG. 6, a thin rubber layer 13 formed by the inflow of a flowing rubber material is interposed in the fitting gap G between the cylindrical portions 8 and 10 when the seal portion 4 is formed. ing. This thin rubber layer 13 is formed by intrusion when the seal portion 4 is molded.
[0077] 図 15及び図 16に示した変形例 1について、さらに、説明すると、アウターケース 2の 円筒部 8は折曲部 63を (軸心方向中央近傍乃至高圧側 A寄りに)有し、高圧側 Aへ しだいに拡径テーパ状の高圧側半部 52と、それよりもやや小径筒状の低圧側半部 5 3と、力も成り、従って、高圧側半部 52の平均内径 D は低圧側半部 53の内径 D よ 15 and FIG. 16, the cylindrical part 8 of the outer case 2 has a bent part 63 (near the center in the axial direction or close to the high pressure side A). The high-pressure side half 52, which gradually increases in diameter toward the high-pressure side A, and the low-pressure side half 53, which is slightly smaller in diameter, have a force, so the average inner diameter D of the high-pressure side half 52 is low. Side diameter 53 of side half 53
52 53 りも大きく設定されている。このようにして、高圧側半部 52に対応する高圧側 Aの第 1 間隙部位 54の (平均値として)第 1間隙寸法 Tを、低圧側半部 53に対応する低圧側  52 53 is set larger. In this way, the first gap dimension T (as an average value) of the first gap portion 54 on the high pressure side A corresponding to the high pressure side half 52 is set to the low pressure side corresponding to the low pressure side half 53.
1  1
Bの第 2間隙部位 55の第 2間隙寸法 Tよりも大きいように、上記嵌合間隙部 Gが形成  The fitting gap G is formed so as to be larger than the second gap dimension T of the second gap portion 55 of B.
2  2
されている。  Has been.
[0078] そして、シール部 4の形成の際に、大きい第 1間隙寸法 Tの(縦断面三角形状の)  [0078] When the seal portion 4 is formed, the first gap dimension T is large (having a triangular cross section).
1  1
第 1間隙 54からゴム材が浸入して、引続いて小さな第 2間隙寸法 Tの第 2間隙部位 5  The rubber material enters from the first gap 54, and then the second gap portion 5 having a small second gap dimension T 5
2  2
5に浸入するので、ゴム材の流れがスムーズであり、薄肉状にゴム層 13が確実かつ 安定して形成され、両円筒部 8, 10は強固に一体ィ匕できる。  5 so that the flow of the rubber material is smooth, the rubber layer 13 is formed in a thin-walled shape with certainty and stability, and the cylindrical portions 8 and 10 can be firmly integrated.
[0079] 言!ヽ換えると、アウターケース 2とインナーケース 3とは、インナーケース 3の低圧側 半部 58に於て微小な第 2間隙寸法 Tをもって嵌合し、かつ、インナーケース 3の高圧 [0079] In other words, the outer case 2 and the inner case 3 are fitted with a small second gap dimension T at the low-pressure side half 58 of the inner case 3 and the inner case 3 has a high pressure.
2  2
側半部 59は大きな第 1間隙寸法 Tをもって (アウターケース 2)に嵌合している。  The side half 59 is fitted to the (outer case 2) with a large first gap dimension T.
1  1
[0080] この第 2間隙寸法 Tとして、 0.005mm≤T≤ 0.20mmのように設定する。好ましくは  [0080] The second gap dimension T is set to 0.005 mm ≤ T ≤ 0.20 mm. Preferably
2 2  twenty two
、 0.01mm≤T≤0.12mmである。 0.005mm>Tであると、インナーケース 3の外径と  0.01mm≤T≤0.12mm. If 0.005mm> T, the outer diameter of the inner case 3
2 2  twenty two
アウターケース 2の内径の寸法差の制御が困難となる傾向が大であり、逆に 0.20mm く Tであるとゴム層 13の(周方向位置における)偏肉が起こり易くなる欠点が生じる。  Control of the dimensional difference of the inner diameter of the outer case 2 tends to be difficult, and conversely, if it is 0.20 mm and T, the rubber layer 13 is likely to be uneven (at the circumferential position).
2  2
他方、平均値にて示す第 1間隙寸法 Tは、 0.5mm≤T≤ 3.0mmに設定し、かつ、第  On the other hand, the first gap dimension T shown as an average value is set to 0.5 mm ≤ T ≤ 3.0 mm, and
1 1  1 1
1間隙部位 54の軸心方向の長さ寸法 Lを、インナーケース 3の長さ寸法 Lの 30%  1 The length dimension L in the axial direction of the gap 54 is 30% of the length dimension L of the inner case 3.
1 3 〜 13 ~
60%に設定する。つまり、 0.3 X L≤L≤0.6 X Lに設定する。ここで、 T < 0.5mm Set to 60%. In other words, 0.3 X L≤L≤0.6 X L is set. Where T <0.5mm
3 1 3 1 であると流動ゴム材料がモールド成形時に奥部側の第 2間隙部位 55へ浸入しにくく なり、また、 T > 3.0mmではアウターケース 2のプレス加工が面倒となり、また、ァウタ  3 1 3 1 makes it difficult for the fluid rubber material to enter the second gap portion 55 on the back side during molding, and when T> 3.0 mm, pressing of the outer case 2 becomes cumbersome, and
1  1
一ケース 2とインナーケース 3の連結剛性が不足することとなる。そして、 L < 0.3 X L では、ゴム部分の透過距離が不足して密封流体の内部漏洩を発生し易い。また、 L The connection rigidity between the case 2 and the inner case 3 will be insufficient. And L <0.3 XL In this case, the permeation distance of the rubber portion is insufficient and internal leakage of the sealing fluid is likely to occur. L
1 1
>0.6 X Lではアウターケース 2とインナーケース 3の嵌合一体強度が不足する。 With> 0.6 XL, the integrated strength of outer case 2 and inner case 3 is insufficient.
3  Three
[0081] 次に、図 17及び図 18は実施形態 2の回転軸シール 1の変形例 2を示し、アウター ケース 2はストレート状の円筒部 8と低圧側内フランジ部 9とを有する断面略 L字形で あり、他方、インナーケース 3の円筒部 10は、高圧側半部 59の外径 D を、低圧側半  Next, FIG. 17 and FIG. 18 show Modification 2 of the rotary shaft seal 1 of Embodiment 2, wherein the outer case 2 has a substantially cylindrical cross section having a straight cylindrical portion 8 and a low pressure side inner flange portion 9. On the other hand, the cylindrical part 10 of the inner case 3 has an outer diameter D of the high-pressure side half part 59 and the low-pressure side half part 59.
59  59
部 58の外径 D よりも小さく設定した形状である。このようにして、高圧側 Aの第 1間隙  The shape is set smaller than the outer diameter D of the part 58. In this way, the first gap on the high pressure side A
58  58
寸法 Tを低圧側 Bの第 2間隙寸法 Tよりも大きいように嵌合間隙部 Gを形成している The fitting gap G is formed so that the dimension T is larger than the second gap dimension T on the low-pressure side B.
1 2 1 2
[0082] 図 17及び図 18に示した変形例 2について、さらに、説明すると、インナーケース 3 の円筒部 10は段付部 64を (軸心方向中央近傍に)有し、やや小径筒状の高圧側半 部 59と、それよりもやや大径筒状の低圧側半部 58と、力 成り、従って、高圧側半部 59の外径 D は低圧側半部 58の内径 D よりも小さく設定されている。このようにして [0082] The modification 2 shown in Figs. 17 and 18 will be further described. The cylindrical portion 10 of the inner case 3 has a stepped portion 64 (near the center in the axial direction), and has a slightly small cylindrical shape. The high pressure side half 59 and the slightly larger diameter cylindrical low pressure side half 58 have a force, so the outer diameter D of the high pressure side half 59 is set smaller than the inner diameter D of the low pressure side half 58. Has been. In this way
59 58  59 58
、高圧側半部 59に対応する高圧側 Aの第 1間隙部位 54の第 1間隙寸法 Tを、低圧  The first gap dimension T of the first gap portion 54 on the high pressure side A corresponding to the high pressure side half 59
1 側半部 58に対応する低圧側 Bの第 2間隙部位 55の第 2間隙寸法 Tよりも大きいよう  It seems to be larger than the second gap dimension T of the second gap part 55 on the low pressure side B corresponding to the first half 58.
2  2
に、上記嵌合間隙部 Gが形成されている。図 17及び 18で明らかなように、両円筒部 8, 10の嵌合間隙部 Gには、シール部 4の形成の際に、流動ゴム材が浸入して形成 された、第 1間隙部位 54の厚膜ゴム層 56と、第 2間隙部位 55の薄膜状のゴム層 13 力も成るゴム層 57が介在している。  Further, the fitting gap G is formed. As apparent from FIGS. 17 and 18, the first gap portion 54 formed by intrusion of the fluid rubber material into the fitting gap portion G of the cylindrical portions 8 and 10 when the seal portion 4 is formed. The thick rubber layer 56 and the thin rubber layer 13 in the second gap portion 55 are interposed.
[0083] そして、シール部 4の形成の際に、大きい第 1間隙寸法 Tの第 1間隙 54からゴム材 [0083] When forming the seal portion 4, the rubber material from the first gap 54 having a large first gap dimension T
1  1
が浸入して、引続いて小さな第 2間隙寸法 Tの第 2間隙部位 55に浸入するので、ゴ  Enters the second gap portion 55 having a small second gap dimension T,
2  2
ム材の流れがスムーズであり、薄肉状にゴム層 13が確実かつ安定して形成され、両 円筒部 8, 10は強固に一体ィ匕できる。  The rubber material 13 is smoothly flown, the thin rubber layer 13 is formed reliably and stably, and the cylindrical portions 8 and 10 can be firmly integrated.
[0084] なお、図 17及び図 18に於ける Tと Tの関係、及び、寸法範囲は実施形態 2の回転 [0084] The relationship between T and T and the size range in Figs. 17 and 18 are the rotations of the second embodiment.
1 2  1 2
軸シール 1及びその変形例 1と同様とする。  The same applies to the shaft seal 1 and its modification example 1.
[0085] 次に、図 19は実施形態 2の回転軸シール 1の変形例 3を示す要部拡大断面図であ る。まず、第 1間隙寸法 Tは、低圧側 Bから高圧側 Aへしだいに増大するように形成さ Next, FIG. 19 is an enlarged cross-sectional view of a main part showing a third modification of the rotary shaft seal 1 of the second embodiment. First, the first gap dimension T is formed to gradually increase from the low pressure side B to the high pressure side A.
1  1
れている。即ち、インナーケース 3の円筒部 10の高圧側半部 59の形状が高圧側 Aへ しだいに縮径するテーパ状とされ、高圧側半部 59の平均外径 D を、低圧側半部 58 の外径 Dよりも小さく設定する。このようにして、高圧側 Aの第 1間隙寸法 (平均値) T を、低圧側 Bの第 2間隙寸法 Tよりも大きいように、嵌合間隙部 Gを形成する。 It is. That is, the shape of the high-pressure side half 59 of the cylindrical portion 10 of the inner case 3 is tapered so that the diameter gradually decreases to the high-pressure side A, and the average outer diameter D of the high-pressure side half 59 is reduced to 58. Set smaller than the outer diameter D ∞ of . In this manner, the fitting gap G is formed so that the first gap dimension (average value) T on the high pressure side A is larger than the second gap dimension T on the low pressure side B.
1 2  1 2
[0086] 図 19に示した変形例 3について、さらに、説明すると、インナーケース 3の円筒部 1 0は折曲部 65を (軸心方向中央近傍乃至高圧側 A寄りに)有し、高圧側 Aへしだいに 縮径テーパ状の高圧側半部 59と、それよりもやや大径筒状の高圧側半部 58と、力 成る。従って、高圧側半部 59の平均外径 D は、低圧側半部 58の外径 D よりも小さ  [0086] The modification 3 shown in FIG. 19 will be further described. The cylindrical portion 10 of the inner case 3 has a bent portion 65 (near the center in the axial direction or close to the high pressure side A). Gradually, the high pressure side half 59 with a reduced diameter taper and the high pressure side half 58 with a slightly larger diameter than that have a force. Therefore, the average outer diameter D of the high pressure side half 59 is smaller than the outer diameter D of the low pressure side half 58.
59 58 い。このようにして高圧側半部 59に対応する第 1間隙部位 54の(平均値としての)第 1間隙寸法 Tを、低圧側半部 58に対応する第 2間隙部位 58の第 2間隙寸法 Tよりも  59 58 Yes. In this way, the first gap dimension T (as an average value) of the first gap part 54 corresponding to the high pressure side half 59 is changed to the second gap dimension T of the second gap part 58 corresponding to the low pressure side half 58. than
1 2 大きいように、嵌合間隙部 Gが形成されている。  1 2 A gap G is formed so as to be larger.
[0087] それ以外の構成は実施形態 2の回転軸シール 1並びにその変形例 1及び 2と同様 である。また、 Tと Tの関係、及び、寸法範囲についても、既述の実施形態 2の回転 Other configurations are the same as those of the rotary shaft seal 1 and the modifications 1 and 2 of the second embodiment. In addition, regarding the relationship between T and T and the size range, the rotation of the above-described second embodiment is also used.
1 2  1 2
軸シール 1及び変形例 1と同様である。  Same as shaft seal 1 and modification 1.
[0088] 図 26は実施形態 1の回転軸シール 1の要部拡大断面図であって、図 13、図 16、図 18、又は図 19に対応する部位を示す。この図 26の実施形態 1の回転軸シール 1に 於て、図 13、図 16、図 18、又は図 19の厚膜ゴム層 56を省略して、アウターケース 2 とインナーケース 3のストレート状の両円筒部 8, 10の嵌合部は前述の微小な第 2間 隙寸法 Tをもって、均等な嵌合間隙部 Gを形成している。 FIG. 26 is an enlarged cross-sectional view of a main part of the rotary shaft seal 1 of Embodiment 1, and shows a portion corresponding to FIG. 13, FIG. 16, FIG. 18, or FIG. In the rotary shaft seal 1 of Embodiment 1 in FIG. 26, the thick rubber layer 56 in FIG. 13, FIG. 16, FIG. 18, or FIG. 19 is omitted, and the straight shape of the outer case 2 and the inner case 3 is omitted. The fitting parts of the cylindrical parts 8 and 10 form the uniform fitting gap part G with the above-mentioned minute second gap dimension T.
2  2
[0089] ゴム製シール部 4のモールド成形の際に、流動化したゴム材料力 このような第 2間 隙寸法 Tの嵌合間隙部 Gに浸入することが難しぐ浸入するゴム材料の量は、第 2間  [0089] When the rubber seal portion 4 is molded, the fluidized rubber material force The amount of the rubber material to be infiltrated that is difficult to enter the fitting gap portion G having the second gap size T is as follows. Between the second
2  2
隙寸法 Tのばらつきによって変化して、品質が不安定となるという問題があり、さらに  There is a problem that the quality becomes unstable due to variations in gap size T, and
2  2
、図 26に小さな矢印 Fにて示すように、密封流体 (気体)の内部漏洩(内部リーク)が 生ずるという問題があった。  As shown by a small arrow F in FIG. 26, there was a problem that internal leakage (internal leakage) of the sealed fluid (gas) occurred.
[0090] 図 26 (及び図 13、図 16、図 18、及び図 19)に於て、両円筒部 8, 10の端面 8a, 10 aは、外周側ゴム端面 4aに (シール装着時の強度等の理由で)接近してゴム材の内 部に配設されている。即ち、端面被覆壁部 16の肉厚寸法 T は小さぐ従って、図 26 In FIG. 26 (and FIG. 13, FIG. 16, FIG. 18, and FIG. 19), the end faces 8a and 10a of the cylindrical portions 8 and 10 are connected to the outer rubber end face 4a (the strength when the seal is attached). Etc.) for close proximity, and is placed inside the rubber material. That is, the wall thickness dimension T of the end face covering wall portion 16 is small, so that FIG.
16  16
に示した実施形態 1の回転軸シール 1のような構成では、密封流体 (気体)がこの端 面被覆壁部 16を透過して、引続 、て(上述のように)モールド成形時にゴム材料が完 全に入り込む (浸入する)ことが困難な軸心方向に長い微小な嵌合間隙部 G内のゴ ム層 13を透過して、矢印 Fのように、内部漏洩(内部リーク)を発生する。 In the configuration of the rotary shaft seal 1 of the first embodiment shown in FIG. 1, the sealing fluid (gas) permeates through the end surface covering wall portion 16 and continues (as described above). A small fitting gap G in the axial direction that is difficult to completely penetrate (enter). As shown by the arrow F, internal leakage (internal leakage) occurs through the layer 13.
[0091] これに対し、図 13、図 16、図 18、又は図 19に示したものでは、ゴム製シール部 4の モールド成形の際に、流動化したゴム材料は、まず、比較的大きい第 1間隙寸法 T On the other hand, in the case shown in FIG. 13, FIG. 16, FIG. 18, or FIG. 19, the fluidized rubber material is first relatively large when the rubber seal portion 4 is molded. 1 Gap size T
1 の第 1間隙部位 54からスムーズに浸入して、引続き微小な第 2間隙寸法 Tの第 2間  Smoothly penetrates from the first gap part 54 of 1 and continues to the second gap of the minute second gap dimension T.
2 隙部位 55へと浸入して、安定して高品質の製品が得られる。そして、少なくとも、比 較的大きい第 1間隙寸法 Tの第 1間隙部位 54には完全にゴムが充填され、かつ、そ  2 Penetration into the gap part 55 and stable and high-quality products can be obtained. At least the first gap portion 54 having the relatively large first gap dimension T is completely filled with rubber, and
1  1
の軸心方向長さ寸法 Lも大きいので、(ゴム部の透過距離が十分大に確保されてい  Since the length L in the axial direction of the shaft is also large, the transmission distance of the rubber part is sufficiently large.
1  1
るので、 )高圧側 Aの流体 (特に気体)がゴム端面 4aから浸入透過せんとしても確実 に阻止して、(図 26に矢印 Fにて示したような)内部漏洩を発生せず、優れたシール 性能を発揮する。  Therefore, the fluid (especially gas) on the high-pressure side A is surely prevented from entering and permeating through the rubber end face 4a, and no internal leakage (as indicated by arrow F in FIG. 26) occurs. Excellent sealing performance.
[0092] 次に、図 20、図 21、及び図 22は実施形態 2の回転軸シール 1の変形例 4を示し、 図 20はその要部拡大断面図、図 21はさらに拡大して示した要部断面図であり、図 2 2は製法説明のための要部断面説明図である。  Next, FIG. 20, FIG. 21, and FIG. 22 show Modification 4 of the rotary shaft seal 1 of Embodiment 2, FIG. 20 is an enlarged cross-sectional view of the main part, and FIG. FIG. 22 is a cross-sectional view of relevant parts for explaining the manufacturing method.
[0093] この回転軸シール 1は、基本的構成は図 12〜図 19で説明したものと同様であり、 繰返しての説明を省略する。以下、主として、相違する構成につき説明する。インナ 一ケース 3の円筒部 10の高圧側端部 60がアウターケース 2の円筒部 8の高圧側端 部 70よりも高圧側 Aになるように段違い状に配設されている。すなわち、アウターケー ス 2の軸心方向寸法力 S小さく設定されており、アウターケース 2の円筒部 8の高圧側 端面 8aよりも、インナーケース 3の円筒部 10の高圧側端部 60を高圧側 Aへ突出させ 、インナーケース 3の高圧側半部 59は、アウターケース 2によって外嵌されずに、露 出状として、その上にゴム部材(円筒壁部 15)が被覆している。即ち、金属製インナ 一ケース 3の外周面の高圧側半部 59が露出状として、ゴム部材が被覆されている。  [0093] The basic structure of the rotary shaft seal 1 is the same as that described with reference to Figs. 12 to 19, and repeated description will be omitted. Hereinafter, mainly different configurations will be described. The inner case 3 is arranged in a stepped manner so that the high pressure side end 60 of the cylindrical portion 10 of the inner case 3 is on the high pressure side A of the high pressure side end 70 of the cylindrical portion 8 of the outer case 2. That is, the dimensional force S in the axial direction of the outer case 2 is set to be small, and the high-pressure side end 60 of the cylindrical portion 10 of the inner case 3 is set higher than the high-pressure side end surface 8a of the cylindrical portion 8 of the outer case 2. The high-voltage side half 59 of the inner case 3 is not externally fitted by the outer case 2 and is exposed, and is covered with a rubber member (cylindrical wall 15). That is, the high-pressure side half 59 of the outer peripheral surface of the metal inner case 3 is exposed and covered with a rubber member.
[0094] このようにして、(薄膜状の)ゴム層 13は、アウターケース 2の円筒部 8の内周面と、 インナーケース 3の円筒部 10の(外周面の)低圧側半部 58との間に、介在して 、る。 このゴム層 13は、モールド成形の際に浸入して形成されるものであって、その間隙部 Gの間隙寸法は、前述の図 12〜図 14に於ける第 2間隙寸法 Tと同様である。即ち、  [0094] In this way, the (thin film-like) rubber layer 13 includes the inner peripheral surface of the cylindrical portion 8 of the outer case 2 and the low pressure side half portion 58 (of the outer peripheral surface) of the cylindrical portion 10 of the inner case 3. In between. The rubber layer 13 is formed by intrusion during molding, and the gap size of the gap G is the same as the second gap size T in FIGS. 12 to 14 described above. . That is,
2  2
0.005mm≤T≤ 0.20mmのように設定され、好ましくは、 0.01mm≤T≤0.12mmの  Set to 0.005mm≤T≤0.20mm, preferably 0.01mm≤T≤0.12mm
2 2  twenty two
ように設定する。露出状の高圧側半部 59の長さ寸法 L は、インナーケース 3の長さ 寸法 Lの 30% Set as follows. The length L of the exposed high-pressure side half 59 is the length of the inner case 3. 30% of dimension L
3 〜60%に設定する。つまり、 0.3 X L≤L ≤0.6 X Lに設定する。  Set to 3 to 60%. In other words, 0.3 X L≤L ≤0.6 X L is set.
3 59 3  3 59 3
[0095] 図 26に示した実施形態 1の回転軸シール 1に関する問題点は既述した通りである 力 これに対し、ゴム製シール部 4のモールド成形の際に、段付状となったアウターケ ース 2の端面 8aから、第 2間隙寸法 Tの嵌合間隙部 Gに流動化したゴム材料は比較  [0095] The problems associated with the rotary shaft seal 1 of Embodiment 1 shown in FIG. 26 are as described above. On the other hand, when the rubber seal portion 4 is molded, the outer casing that is stepped is molded. The rubber material fluidized from the end face 8a of the base 2 to the fitting gap G of the second gap dimension T is compared.
2  2
的浸入し易いように、誘導される。特に、嵌着使用状態では、仮想線にて示したケー シング内周面等の取付部材 61の内周面に、(ゴム力も成る)円筒壁部 15が弹性的に 圧縮変形して、嵌着され、かつ、この円筒壁部 15には凹凸波部が形成されているの で、密封性 (シール性)が保たれ、この凹凸波部と取付部材 61の内周面との間に、密 封流体 (気体)が浸入しな 、ので、ゴム層 13の高圧側端部の位置(図 21に点 Qにて 示す)から、高圧側 Aの密封流体までの距離 ゴム部の透過距離一は、(T +L )  It is guided so that it can easily enter. In particular, when the fitting is used, the cylindrical wall portion 15 (which also has a rubber force) is elastically compressed and deformed on the inner peripheral surface of the mounting member 61 such as the casing inner peripheral surface indicated by the phantom line, and the fitting is performed. In addition, since the cylindrical wall portion 15 is provided with an uneven wave portion, a sealing property (seal property) is maintained, and a dense space is provided between the uneven wave portion and the inner peripheral surface of the mounting member 61. Since the sealed fluid (gas) does not enter, the distance from the position of the high pressure side end of the rubber layer 13 (indicated by point Q in FIG. 21) to the sealed fluid on the high pressure side A The permeation distance of the rubber part is , (T + L)
16 59 及び L の内の小さな方の距離となる。なお、 L とは、円筒壁部 15の凹凸波部が、取 The smaller of 16 59 and L. Note that L is the uneven wave part of the cylindrical wall part 15.
15 15 15 15
付部材 61に圧接している高圧側 Aの最先点 62と、前記点 Qとの距離を言う。従って 、この L 又は (T +L )は、図 15の端面被覆壁部 16の肉厚寸法 T よりも、十分に This is the distance between the point Q on the high pressure side A that is in pressure contact with the attached member 61 and the point Q. Therefore, this L or (T + L) is sufficiently larger than the wall thickness dimension T of the end face covering wall portion 16 in FIG.
15 16 59 16 大きいことは、図 21より明らかであり、従って、ゴム部を透過する内部漏洩(図 26の矢 印 F参照)は、発生しない。 15 16 59 16 It is clear from Fig. 21 that there is no internal leakage through the rubber part (see arrow F in Fig. 26).
[0096] 次に、図 23及び図 24は実施形態 2の回転軸シール 1の変形例 5を示し、図 23はそ の要部拡大断面図、図 24はさらに拡大して示した要部断面図である。  Next, FIG. 23 and FIG. 24 show Modification 5 of the rotary shaft seal 1 of Embodiment 2, FIG. 23 is an enlarged sectional view of an essential part thereof, and FIG. 24 is an enlarged sectional view of an essential part thereof. FIG.
[0097] この回転軸シール 1は、基本的構成は図 12〜図 19で説明したものと同様であり、 繰返しての説明を省略する。以下、主として、相違する構成につき説明する。ァウタ 一ケース 2の円筒部 8の高圧側端部 70がインナーケース 3の円筒部 10が高圧側端 部 60よりも高圧側 Aになるように段違い状に配設されている。すなわち、インナーケ ース 3の軸心方向寸法が小さく設定されており、インナーケース 3の円筒部 10の高圧 側端面 10aよりも、アウターケース 2の円筒部 8の高圧側端部 70を高圧側 Aへ突出さ せ、アウターケース 2の高圧側半部 52は、インナーケース 3によって内嵌されずに、 内径側に露出状として、その上にゴム部材が被覆している。即ち、金属製アウターケ ース 2の高圧側半部 52の内周面が露出状 (非被覆状態)として、ゴム部材が被覆さ れている。  The rotary shaft seal 1 has the same basic configuration as that described with reference to FIGS. 12 to 19, and will not be described repeatedly. Hereinafter, mainly different configurations will be described. The high pressure side end 70 of the cylindrical portion 8 of the outer case 2 is arranged in a stepped manner so that the cylindrical portion 10 of the inner case 3 is on the high pressure side A of the high pressure side end 60. That is, the axial dimension of the inner case 3 is set to be small, and the high-pressure side end 70 of the cylindrical portion 8 of the outer case 2 is set to the high-pressure side A rather than the high-pressure side end surface 10a of the cylindrical portion 10 of the inner case 3. The high-pressure side half 52 of the outer case 2 is not fitted by the inner case 3 and is exposed on the inner diameter side, and is covered with a rubber member. That is, the inner peripheral surface of the high-pressure side half 52 of the metal outer case 2 is exposed (uncovered), and the rubber member is covered.
[0098] このようにして、(薄膜状の)ゴム層 13は、インナーケース 3の円筒部 10の外周面と 、アウターケース 2の円筒部 8の(内周面の)低圧側半部 53との間に、介在している。 このゴム層 13は、モールド成形の際に浸入して形成されるものであって、その間隙部 Gの間隙寸法は、前述の図 12〜図 14に於ける第 2間隙寸法 Tと同様である。即ち、 In this way, the (thin film-like) rubber layer 13 is formed on the outer peripheral surface of the cylindrical portion 10 of the inner case 3. The cylindrical portion 8 of the outer case 2 is interposed between the low pressure side half 53 (in the inner peripheral surface). The rubber layer 13 is formed by intrusion during molding, and the gap size of the gap G is the same as the second gap size T in FIGS. 12 to 14 described above. . That is,
2  2
0.005mm≤T≤ 0.20mmのように設定され、好ましくは、 0.01mm≤T≤0.12mmの  Set to 0.005mm≤T≤0.20mm, preferably 0.01mm≤T≤0.12mm
2 2  twenty two
ように設定する。露出状の高圧側半部 52の長さ寸法 L は、インナーケース 3の長さ  Set as follows. The length L of the exposed high-pressure half 52 is the length of the inner case 3.
52  52
寸法 Lの 20%〜60%に設定する。つまり、 0.2 X L≤L ≤0.6 X Lに設定する。  Set to 20% to 60% of dimension L. In other words, 0.2 X L≤L ≤0.6 X L.
3 3 52 3  3 3 52 3
[0099] 図 26に示した実施形態 1の回転軸シール 1に関する問題点は既述した通りである 力 これに対し、図 23及び図 24に示した変形例 5では、ゴム製シール部 4のモールド 成形の際に、段付状となったインナーケース 3の端面 10aから、第 2間隙寸法 Tの嵌  [0099] The problems associated with the rotary shaft seal 1 of the first embodiment shown in FIG. 26 are as described above. On the other hand, in the modified example 5 shown in FIG. 23 and FIG. When the mold is formed, the second gap dimension T is fitted from the end surface 10a of the stepped inner case 3.
2 合間隙部 Gに流動化したゴム材料は比較的浸入し易いように、誘導される。なお、上 記モールド成形の際のゴム圧によって、インナーケース 3をアウターケース 2の奥部( 低圧側 B)へ、嵌合させることができる点で、部品組立てが容易となる。  2 The rubber material fluidized in the gap G is guided so as to be relatively easy to enter. The assembly of the parts is facilitated because the inner case 3 can be fitted into the inner portion of the outer case 2 (low pressure side B) by the rubber pressure at the time of molding.
[0100] ゴム層 13の高圧側端部の位置(図 24に点 Qにて示す)から、高圧側 Aの密封流体 までの距離—ゴム部の透過距離—は、(T +L )及び L の内の小さな方の距離とな [0100] The distance from the position of the high pressure side end of rubber layer 13 (indicated by point Q in Fig. 24) to the sealing fluid on high pressure side A-the transmission distance of the rubber part-is (T + L) and L The distance of the smaller one of
16 52 18  16 52 18
る。なお、 L とは、前記点 Qから凹周溝 18までの最短距離を言う。従って、この L 又  The L means the shortest distance from the point Q to the concave circumferential groove 18. Therefore, this L or
18 18 は +L )は、図 15の端面被覆壁部 16の肉厚寸法 T よりも、十分に大きいことは 18 18 is + L) is not sufficiently larger than the wall thickness T of the end face covering wall 16 in FIG.
16 52 16 16 52 16
、図 24より明らかであり、従って、ゴム部を透過する内部漏洩(図 26の矢印 F参照)は 、発生しない。  It is clear from FIG. 24, and therefore, internal leakage that passes through the rubber part (see arrow F in FIG. 26) does not occur.
[0101] 図 25は実施形態 2の回転軸シール 1の変形例 6を示す。この回転軸シール 1は、実 施形態 2の回転軸シール 1と変形例 5を合わせたような構成になって 、る。基本構成 は図 12〜図 24で説明したものと同様であり、繰り返しての説明を省略する。  FIG. 25 shows a sixth modification of the rotary shaft seal 1 of the second embodiment. The rotary shaft seal 1 is configured such that the rotary shaft seal 1 of the second embodiment and the modified example 5 are combined. The basic configuration is the same as that described with reference to FIGS. 12 to 24, and repeated description is omitted.
[0102] 具体的には、第 1間隙寸法 Tは、低圧側 Bから高圧側 Aへしだいに増大するように  [0102] Specifically, the first gap dimension T is gradually increased from the low pressure side B to the high pressure side A.
1  1
形成されている。即ち、アウターケース 2の円筒部 8の高圧側半部 52の形状が高圧 側 Aへしだいに拡径するテーパ状とされ、この高圧側半部 52の平均内径 D を、低  Is formed. That is, the shape of the high pressure side half 52 of the cylindrical portion 8 of the outer case 2 is tapered so that the diameter gradually increases to the high pressure side A, and the average inner diameter D of the high pressure side half 52 is reduced.
52 圧側半部 53の内径 D よりも大きく設定している。このようにして、高圧側 Aの(平均値  52 Pressure side half 53 is set larger than inner diameter D. In this way, on the high pressure side A (average value
53  53
としての)第 1間隙部寸法 Tを、低圧側 Bの第 2間隙寸法 Tよりも大きいように嵌合間  The first gap dimension T is larger than the second gap dimension T on the low pressure side B.
1 2  1 2
隙部 Gを形成している。  A gap G is formed.
[0103] さらに、アウターケース 2の円筒部 8の高圧側端部 70がインナーケース 3の円筒部 1 0の高圧側端部 60よりも高圧側 Aになるように段違 、状に配設されて!/、る。すなわち 、インナーケース 3の軸心方向寸法力 S小さく設定されており、インナーケース 3の円筒 部 10の高圧側端面 10aよりも、アウターケース 2の円筒部 8の高圧側端部 70を高圧 側 Aへ突出させ、アウターケース 2の高圧側半部 52は、インナーケース 3によって内 嵌されずに、内径側に露出状として、その上にゴム部材が被覆している。即ち、金属 製アウターケース 2の高圧側半部 52の内周面が露出状 (非被覆状態)として、ゴム部 材が被覆されている。 [0103] Further, the high pressure side end portion 70 of the cylindrical portion 8 of the outer case 2 is the cylindrical portion 1 of the inner case 3. The high pressure side end 60 of 0 is arranged in a different shape so as to be on the high pressure side A! /. That is, the dimensional force S in the axial direction of the inner case 3 is set to be smaller, and the high-pressure side end 70 of the cylindrical portion 8 of the outer case 2 is set to the high-pressure side A than the high-pressure side end surface 10a of the cylindrical portion 10 of the inner case 3 The high-pressure side half 52 of the outer case 2 is not fitted by the inner case 3, but is exposed on the inner diameter side, and is covered with a rubber member. That is, the inner peripheral surface of the high-pressure side half 52 of the metal outer case 2 is exposed (uncovered) and is covered with the rubber member.
[0104] ところで、実施形態 2の回転軸シール 1及びその変形例 1〜6のいずれ(図 12〜図 25)に於ても、シール部 4は、 HNBR単独にて、あるいは、 HNBRを基本とする配合 ゴム材にて、構成したり、他のゴム材を用いる。シールエレメント 7は元の形状(自由 状態)は、図 14及び 22に示すように、円環平板状であり、回転軸を挿入状として組立 てると、断面 L字状として、スクリュー溝 (螺旋溝) 6の側が回転軸の外周面に接触する 。このシールエレメント 7は、 PTFE等のフッ素系榭脂が好適である。シールエレメント 7は外径寄りの部分力 内フランジ部 9と、内フランジ部 11にて挾着保持されているが 、凸部 12がインナーケース 3の内フランジ部 11に形成され、シールエレメント 7の外 径寄りの部位を強く押圧し (面圧が高く)、内部リークを防止している。また、凸部 12を 設けなくても、インナーケース 3の内径を拡大することでも同じ効果を得ることができる 。シールエレメント 7にスクリュー溝 6を形成したことにより、回転軸の回転により流体を 流体収納室側(高圧側) Aへ押し戻すボンビング作用(ハイド口ダイナミック作用)をな し、回転中の密封性を向上させている。  [0104] By the way, in any of the rotary shaft seal 1 of Embodiment 2 and its modifications 1 to 6 (Figs. 12 to 25), the seal portion 4 can be HNBR alone or based on HNBR. The composition is made of rubber material or other rubber material is used. As shown in FIGS. 14 and 22, the original shape (free state) of the seal element 7 is an annular flat plate shape. When the rotary shaft is assembled as an insertion shape, the screw element (spiral groove) has an L-shaped cross section. ) 6 side contacts the outer peripheral surface of the rotating shaft. The seal element 7 is preferably a fluorine-based resin such as PTFE. The seal element 7 has a partial force close to the outer diameter, and is held by the inner flange portion 9 and the inner flange portion 11, but the convex portion 12 is formed on the inner flange portion 11 of the inner case 3, and the seal element 7 The part near the outer diameter is pressed strongly (surface pressure is high) to prevent internal leakage. Further, the same effect can be obtained by enlarging the inner diameter of the inner case 3 without providing the convex portion 12. By forming the screw groove 6 in the seal element 7, the rotating shaft rotates to push the fluid back to the fluid storage chamber side (high pressure side) A (hydride port dynamic action), improving sealing performance during rotation I am letting.
[0105] 従来例の図 39〜図 41と比較すれば明らかなように、従来のアウターケース 34の内 フランジ部 32は流体収納室側(高圧側) Aに配設されていた力 実施形態 2の回転 軸シール 1では、アウターケース 2の内フランジ部 9は低圧側 Bに配設されている。さ らに、従来のインナーケース 37の内フランジ部は流体収納室側(高圧側) Aに配設さ れていたが、実施形態 2の回転軸シール 1では、インナーケース 3の内フランジ部 11 は低圧側 Bに配設されている。このようにして、低圧側 Bにて、シールエレメント 7は両 内フランジ部 9, 11にて挾持状に圧着保持されている。  As apparent from comparison with FIGS. 39 to 41 of the conventional example, the inner flange portion 32 of the conventional outer case 34 is arranged on the fluid storage chamber side (high pressure side) A Embodiment 2 In the rotary shaft seal 1, the inner flange portion 9 of the outer case 2 is disposed on the low pressure side B. Further, the inner flange portion of the conventional inner case 37 was disposed on the fluid storage chamber side (high pressure side) A. However, in the rotary shaft seal 1 of Embodiment 2, the inner flange portion 11 of the inner case 3 is 11. Is arranged on the low pressure side B. In this way, on the low pressure side B, the seal element 7 is pressure-bonded and held by the inner flange portions 9 and 11.
[0106] そして、シール部 4は、相互に嵌合した両円筒部 8, 10を外周面側から被覆する外 周凹凸波状嵌着円筒壁部 15と、両円筒部 8, 10の高圧側端面 8a, 10aを被覆する 端面被覆壁部 16と、インナーケース 3の内部に対応するブロック状部 17と、を具備し 、このブロック状部 17の高圧側 Aの端面に、 U字状の凹周溝 18を形成すると共に、 ブロック状部 17の高圧側 Aの内周端寄りから斜めに内径方向に、ゴムリップ部 5が延 伸状に連設される。 [0106] The seal portion 4 is an outer surface that covers the cylindrical portions 8 and 10 fitted to each other from the outer peripheral surface side. A circumferentially concave and convex wavy fitting cylindrical wall portion 15; end surface covering wall portions 16 covering the high pressure side end surfaces 8a and 10a of both cylindrical portions 8 and 10; and a block-like portion 17 corresponding to the inside of the inner case 3. A U-shaped concave groove 18 is formed on the end surface of the block-shaped portion 17 on the high-pressure side A, and the rubber lip portion is inclined obliquely from the inner peripheral end of the block-shaped portion 17 on the high-pressure side A toward the inner diameter. 5 is connected in an elongated shape.
[0107] また、図 12、図 15、図 17、図 20、及び図 23では、このゴムリップ部 5の軸心方向位 置と、端面被覆壁部 16の軸心方向位置を、略一致させている。言い換えれば、凹周 溝 18を形成したことにより、ブロック状部 17とゴムリップ部 5は、略 U字状断面を有し ている。また、図示省略の回転軸の外周面に接触するゴムリップ部 5の接触内周端縁 5aは、図 12、図 15、図 17、及び図 20の例示では、インナーケース 3の高圧側 Aの端 面 10aと、軸心方向略同一位置に配設される。また、図 23では、アウターケース 2の 高圧側 Aの端面 8aと、軸心方向略同一位置に、接触内周端縁 5aを配設している。な お、図示省略したが、この接触内周端縁 5aを、上記端面 10a又は 8aよりも、低圧側 B へ配設するも、好ましい場合がある。  [0107] Also, in Figs. 12, 15, 17, 17, and 23, the axial center position of the rubber lip portion 5 and the axial center position of the end surface covering wall portion 16 are substantially matched. Yes. In other words, the block-shaped portion 17 and the rubber lip portion 5 have a substantially U-shaped cross section by forming the concave circumferential groove 18. Further, the contact inner peripheral edge 5a of the rubber lip portion 5 that contacts the outer peripheral surface of the rotating shaft (not shown) is the end on the high pressure side A of the inner case 3 in the illustrations of FIGS. 12, 15, 17, and 20. The surface 10a is disposed at substantially the same position in the axial direction. In FIG. 23, a contact inner peripheral edge 5a is disposed at substantially the same position as the end face 8a on the high pressure side A of the outer case 2 in the axial direction. Although not shown, it may be preferable to dispose the inner peripheral edge 5a on the low pressure side B rather than the end face 10a or 8a.
[0108] この点について、従来例の図 39〜図 41と比較すれば、ゴムリップ部 5が高圧側 A へ殆ど突出せず、回転軸シール 1の全体の幅寸法 Wは、著しく減少できて、コンパク  [0108] In this regard, the rubber lip portion 5 hardly protrudes toward the high pressure side A as compared with Figs. 39 to 41 of the conventional example, and the overall width W of the rotary shaft seal 1 can be significantly reduced. Compact
0  0
ト化が図られていることが判る。即ち、実施形態 2の回転軸シール 1では、アウターケ ース 2の全幅寸法と略同一の全幅寸法 Wにコンパクトィ匕されている。  It can be seen that this is being achieved. That is, the rotary shaft seal 1 of the second embodiment is compacted to a full width dimension W that is substantially the same as the full width dimension of the outer case 2.
0  0
[0109] このように、全幅寸法 W  [0109] Thus, the full width dimension W
0力コンパクトィ匕されているので、外的要因により、リップが傷 ついたり、変形したりすることが抑制される。具体的には、回転軸シールの製造工程 中や、そのシールを使ってカーエアコンのコンプレッサーを組み立てている最中に、 外的要因による不良率を格段に少なくすることが可能となる。  Since it is compacted with zero force, it is possible to prevent the lip from being damaged or deformed due to external factors. Specifically, the defect rate due to external factors can be significantly reduced during the manufacturing process of rotary shaft seals and during the assembly of car air conditioner compressors using such seals.
[0110] また、上記凸部 12について、全周にわたって連続状に形成している態様でも良い 力 好ましくは、周方向に交互に凹凸状として凸部 12を断続的に形成すれば、シー ルエレメント 7を挾圧(押圧)する面圧が増大して、シールエレメント 7の回転軸との共 廻りを防止できる。さらにシールエレメント 7と接触する部分は、のこぎりの歯状 (ギザ ギザ)のようになって!/、る方が接着力が向上するのでより好ま U、。  [0110] Further, the convex portion 12 may be continuously formed over the entire circumference. Preferably, if the convex portions 12 are intermittently formed in the circumferential direction alternately, the seal element is formed. The surface pressure for repressing (pressing) 7 increases, and it is possible to prevent the seal element 7 from rotating together with the rotating shaft. Furthermore, the part that comes into contact with the seal element 7 looks like a saw tooth! It is more preferable because it improves the adhesive strength.
[0111] 次に、実施形態 2の回転軸シールの製法を説明する。アウターケース 2とシールェ レメント 7とインナーケース 3を、図 14又は図 22に示すように、金型のキヤビティ内に 装入する。シールエレメント 7は平板円環状として装入する。つまり、図 14又は図 22 に示すように、アウターケース 2の内フランジ部 9、インナーケース 3の内フランジ部 11 (特には、内フランジ部 11に形成した凸部 12)で、シールエレメント 7を挟んで固定し た状態で、金型(図示せず)内にセットする。次に、流動化ゴム材料を金型内に射出 成形させ、図 12、図 15、図 17、図 20、及び図 23等の断面形状に示すゴムリップ部 5 を有する回転軸シール 1を作製する。 [0111] Next, a method for manufacturing the rotary shaft seal of the second embodiment will be described. Outer case 2 and seal Insert the ment 7 and the inner case 3 into the mold cavity as shown in Fig. 14 or Fig. 22. The sealing element 7 is inserted as a flat plate ring. That is, as shown in FIG. 14 or FIG. 22, the seal element 7 is moved between the inner flange portion 9 of the outer case 2 and the inner flange portion 11 of the inner case 3 (particularly, the convex portion 12 formed on the inner flange portion 11). Set in a mold (not shown) with pinched and fixed. Next, the fluidized rubber material is injection-molded into a mold, and the rotary shaft seal 1 having the rubber lip portion 5 shown in the cross-sectional shape of FIG. 12, FIG. 15, FIG. 17, FIG.
[0112] 上述の射出成形の際のゴム材料の流入と加圧によって、ゴム材料は両円筒部 8, 1 0の嵌合間隙部 Gに浸入して、その後の加硫によって、両円筒部 8, 10を強固に一 体化する(ゴム層 13が形成される)。ところで、図 14及び 22に示すように、シールエレ メント 7を挾持するように、アウターケース 2とインナーケース 3とが、圧入しないで嵌合 する状態 (遊嵌状)の場合には、ゴム層 13の偏肉を防止するため、アウターケース及 び Z又はインナーケースに、接着剤又は粘着剤を塗布して相互位置を固定したり、 コンピュータ制御によって相互位置を決定して、その状態下で、金型内にセットし、流 動化ゴム材料を金型内に射出し、シール部 4を成形し、かつ、嵌合間隙部 Gに全周 均一厚さにゴム層 13を形成する。このゴム層 13の厚さ寸法 Tは、ゴムの強度、種類 [0112] By the inflow and pressurization of the rubber material at the time of the injection molding described above, the rubber material enters the fitting gap portion G of the two cylindrical portions 8, 10 and is then vulcanized so that both cylindrical portions 8 , 10 is firmly integrated (rubber layer 13 is formed). By the way, as shown in FIGS. 14 and 22, when the outer case 2 and the inner case 3 are fitted without press-fitting so as to hold the seal element 7 (free fitting), the rubber layer 13 To prevent uneven thickness, apply adhesive or adhesive to the outer case and Z or inner case to fix the mutual position, or determine the mutual position by computer control. Set in the mold, inject the fluidized rubber material into the mold, mold the seal portion 4, and form the rubber layer 13 in the fitting gap portion G to a uniform thickness all around. The thickness T of this rubber layer 13 is the strength and type of rubber.
2  2
により異なるが、厚さは薄い方が好ましぐ厚さが大きすぎると、ゴム層 13の(周方向 位置における)偏肉が起こり易い。  However, if the preferred thickness is too large, uneven thickness of the rubber layer 13 (at the circumferential position) tends to occur.
[0113] 他の形態としては、アウターケース 2の内周面とインナーケース 3の内周面力 圧入 状に嵌合するように組立てても良い。その場合には、プレス機やノヽンマー等にて押込 むように組み立てたり、金型の型閉め時に押込むように組み立てて、図 14や図 22の ような中間品を作製して、これを金型内にセットし、流動化ゴム材料を金型内に射出 して、シール部 4を形成する。嵌合間隙部へ流動ゴム材料が浸入して、ゴム層を形成 し、このゴム層による一体化、及び、前述の圧入状の嵌合 (圧入嵌合)による機械的 一体ィ匕の共働によって、一層強固な一体構造の回転軸シールが得られる。  [0113] As another form, the inner peripheral surface of the outer case 2 and the inner peripheral surface of the inner case 3 may be assembled so as to be fitted in a press-fitted shape. In that case, assemble it so that it can be pushed in with a press or nommer, or assemble it so that it is pushed in when the mold is closed, and make an intermediate product as shown in Fig. 14 or Fig. 22 and place it in the mold. Set and inject fluidized rubber material into the mold to form seal 4. Fluid rubber material penetrates into the fitting gap to form a rubber layer, which is integrated by this rubber layer and by the mechanical integration of the above-mentioned press fitting (press fitting). As a result, an even stronger integral rotating shaft seal can be obtained.
[0114] なお、いずれの製造方法にあっても、ゴムと接触する金属製のインナーケース 3及 びアウターケース 2の表面に、接着剤を予め塗布しておけば、回転軸シールとしての 強度及び製品寿命の点で望まし ヽ。 [0115] 以上述べたように、金型内でシール部 4を形成すると同時に、アウターケース 2とィ ンナーケース 3とシールエレメント 7とを一体ィ匕でき、従来の力しめ加工を全く省略し ている。つまり、シール部 4のゴムの射出成形又はコンプレツシヨン成形時に、各部品 のアッセンブリを行うことができる。 [0114] Regardless of the manufacturing method, if an adhesive is applied in advance to the surfaces of the metallic inner case 3 and outer case 2 that are in contact with rubber, the strength and rotational shaft seal will be improved. Desirable in terms of product life. [0115] As described above, the outer case 2, the inner case 3, and the seal element 7 can be integrally formed simultaneously with the formation of the seal portion 4 in the mold, and the conventional crimping process is completely omitted. . In other words, each component can be assembled at the time of rubber injection molding or compression molding of the seal portion 4.
[0116] なお、インナーケース 3の内フランジ部 11に凸部 12を形成しておけば、インナーケ ース 3とアウターケース 2の両内フランジ部 11, 9の挾着面圧が(局部的に)高まって、 回転軸シール 1として内部リークを有効に防止できると共に、シールエレメント 7と回 転軸との共廻りを防止できるという利点がある。また、凸部 12を設けなくても、インナ 一ケース 3の内径を拡大することでも同じ効果を得ることができる。  [0116] If the convex portion 12 is formed on the inner flange portion 11 of the inner case 3, the contact surface pressure of both inner flange portions 11, 9 of the inner case 3 and the outer case 2 (locally) ) It has the advantage that it can effectively prevent internal leakage as the rotary shaft seal 1 and can prevent co-rotation of the seal element 7 and the rotary shaft. Even if the convex portion 12 is not provided, the same effect can be obtained by enlarging the inner diameter of the inner case 3.
[0117] なお、上述の実施形態 2の回転軸シール 1及びその変形例 1〜6以外にも設計変 更自由であって、実施形態 2の回転軸シール 1と変形例 5を合わせたような構成とす るも良い。また、変形例 2と変形例 4を合わせたような構成とするも良い。また、変形例 3と変形例 4を合わせたような構成とするも良い。  [0117] In addition to the rotary shaft seal 1 of the second embodiment and its modifications 1 to 6, the design can be freely changed, and the rotary shaft seal 1 of the second embodiment and the modification 5 are combined. It may be configured. Further, the configuration may be such that Modification 2 and Modification 4 are combined. Further, the configuration may be such that Modification 3 and Modification 4 are combined.
[0118] また、実施形態 2の回転軸シール 1及びその変形例 1〜6のいずれかに於て、第 2 間隙部位 55にゴム層 57が介在していない構成とするも良い。また、シールエレメント 7として、スクリュー溝 6を全く省略するも自由であり、若しくは、同心円状に複数の大 小の円形溝を形成しても良い。また、アウターケース 2の内周面とインナーケース 3の 内周面が、圧入状に嵌合させても良ぐその場合には、プレス機やノヽンマー等にて押 込むように組み立てて、図 14及び 22のような中間品を作製して、これを金型内にセッ トし、流動化ゴム材料を金型内に射出して、シール部 4を形成する。微小な嵌合間隙 部 Gへ流動ゴム材料が浸入して、ゴム層 13を形成し、このゴム層 13による一体化、及 び、圧入状の嵌合 (圧入嵌合)による機械的一体ィ匕の共働によって、一層強固な一 体構造の回転軸シールが得られる。  [0118] In addition, in the rotary shaft seal 1 of Embodiment 2 and any one of the modifications 1 to 6, the rubber layer 57 may not be interposed in the second gap portion 55. Further, as the sealing element 7, the screw groove 6 may be omitted at all, or a plurality of large and small circular grooves may be formed concentrically. If the inner peripheral surface of the outer case 2 and the inner peripheral surface of the inner case 3 may be fitted in a press-fit manner, assemble them so that they can be pushed in with a press or a nonmmer. An intermediate product such as 14 and 22 is manufactured, set in a mold, and fluidized rubber material is injected into the mold to form a seal portion 4. Fluid rubber material enters the minute fitting gap G to form a rubber layer 13, and it is integrated by the rubber layer 13 and mechanically integrated by press fitting (press fitting). By cooperating with each other, it is possible to obtain a rotating shaft seal with a stronger unitary structure.
[0119] なお、いずれの製造方法にあっても、ゴムと接触する金属製のインナーケース 3及 びアウターケース 2の表面に、接着剤を予め塗布しておけば、回転軸シールとしての 強度及び製品寿命の点で望まし ヽ。  [0119] In any of the manufacturing methods, if an adhesive is applied in advance to the surfaces of the metal inner case 3 and the outer case 2 that are in contact with rubber, the strength and rotational shaft seal can be improved. Desirable in terms of product life.
[0120] 以上述べたように、金型内でシール部 4を形成すると同時に、アウターケース 2とィ ンナーケース 3とシールエレメント 7とを一体ィ匕でき、従来の力しめ加工を全く省略し ている。つまり、シール部 4のゴムの射出成形又はコンプレツシヨン成形時に、各部品 のアッセンブリを行うことができる。 [0120] As described above, the outer case 2, the inner case 3, and the seal element 7 can be integrally formed at the same time as the seal portion 4 is formed in the mold, so that the conventional crimping process is completely omitted. ing. In other words, each component can be assembled at the time of rubber injection molding or compression molding of the seal portion 4.
[0121] なお、インナーケース 3の内フランジ部 11に凸部 12を形成しておけば、インナーケ ース 3とアウターケース 2の両内フランジ部 11, 9の挾着面圧が(局部的に)高まって、 回転軸シール 1として内部リークを有効に防止できる利点がある。また、凸部 12を設 けなくても、インナーケース 3の内径を拡大することでも同じ効果を得ることができる。  [0121] If the convex portion 12 is formed on the inner flange portion 11 of the inner case 3, the contact surface pressures of the inner case 3 and the inner flange portions 11, 9 of the outer case 2 (locally) ) As a rotary shaft seal 1, there is an advantage that internal leakage can be effectively prevented. Further, the same effect can be obtained by enlarging the inner diameter of the inner case 3 without providing the convex portion 12.
[0122] なお、凹周溝 18に於て、(図示省略したが、)径方向リブを 1本又は複数本配設して 、ゴムリップ部 5の接触内周端縁 5aと、回転軸外周面との接触面圧を、回転周方向に 大小変化させ、潤滑流体が内周端縁 5aと回転軸外周面との間に浸入しやすくして、 摩擦熱の発生を低減し、寿命を延ばすことが好ましい。  [0122] It should be noted that one or a plurality of radial ribs (not shown) are provided in the concave circumferential groove 18, and the contact inner peripheral edge 5a of the rubber lip portion 5 and the outer peripheral surface of the rotating shaft are arranged. The contact surface pressure with the shaft is changed in the rotational circumferential direction, making it easier for the lubricating fluid to enter between the inner peripheral edge 5a and the outer peripheral surface of the rotating shaft, reducing the generation of frictional heat and extending the service life. Is preferred.
[0123] 実施形態 2の回転軸シール 1は上述したように、金属製アウターケース 2と、金属製 インナーケース 3と、回転軸に摺接するゴムリップ部 5を有するゴム製シール部 4と、回 転軸に摺接するシールエレメント 7とを、備えた回転軸シールに於て、金属製ァウタ 一ケース 2のかしめ加工を省略して、アウターケース 2とシールエレメント 7とインナー ケース 3とシール部 4とを一体構造とし、さらに、アウターケース 2の円筒部 8の内周面 と、インナーケース 3の円筒部 10の外周面との間に、高圧側 Aに低圧側 Bよりも大きく 形成された第 1間隙部位 54を有し、第 1間隙部位 54にゴム層 57が介在してアウター ケース 2とインナーケース 3がー体ィ匕しているので、過酷な使用条件にも対応可能で あり、簡略ィ匕した製造工程によって安価に製造可能である。高いシール性能を安定 して発揮する。特に、第 1間隙部位 54のゴム層 57によって、各部品間の間隙からの 漏れ(内部リーク)を有効に防止し、一層のシール性能を発揮する。  As described above, the rotary shaft seal 1 of Embodiment 2 includes the metal outer case 2, the metal inner case 3, the rubber seal portion 4 having the rubber lip portion 5 slidably contacting the rotary shaft, and the rotational seal. In the rotary shaft seal equipped with the seal element 7 slidably contacting the shaft, the caulking process of the metal outer case 2 is omitted, and the outer case 2, the seal element 7, the inner case 3, and the seal portion 4 are A first gap is formed on the high pressure side A larger than the low pressure side B between the inner peripheral surface of the cylindrical portion 8 of the outer case 2 and the outer peripheral surface of the cylindrical portion 10 of the inner case 3. Since the outer case 2 and the inner case 3 are formed with the part 54 and the rubber layer 57 interposed in the first gap part 54, it is possible to cope with severe use conditions. Can be manufactured at low cost A. High sealing performance is demonstrated stably. In particular, the rubber layer 57 in the first gap portion 54 effectively prevents leakage from the gaps between the parts (internal leak), and exhibits further sealing performance.
[0124] また、金属製アウターケース 2と、金属製インナーケース 3と、回転軸に摺接するゴ ムリップ部 5を有するゴム製シール部 4と、上記回転軸に摺接するシールエレメント 7と を、備えた回転軸シールに於て、上記金属製アウターケース 2の力しめ加工を省略し て、上記シール部 4のモールド成形にて、上記アウターケース 2とシールエレメント 7と インナーケース 3と上記シール部 4とを一体構造としたものであるので、安価に高品質 のものを多量生産可能であり、製造設備も簡略ィ匕できて能率良く生産可能である。  [0124] Further, it comprises a metal outer case 2, a metal inner case 3, a rubber seal portion 4 having a rubber lip portion 5 slidably contacting the rotating shaft, and a seal element 7 slidably contacting the rotating shaft. In the rotating shaft seal, the outer outer casing 2, the sealing element 7, the inner casing 3, and the sealing section 4 are formed by molding the sealing section 4 while omitting the crimping process of the metallic outer casing 2. Therefore, high-quality products can be mass-produced at a low cost, and the production equipment can be simplified and can be produced efficiently.
[0125] また、上記アウターケース 2の円筒部 8の内周面と、上記インナーケース 3の円筒部 10の外周面とが、相互に圧接するように上記両円筒部 8, 10を圧入嵌合にて一体ィ匕 すれば、アウターケース 2とインナーケース 3の一体ィ匕強度は十分に大きぐ(ァウタ 一ケース 34の図 39及び図 40で述べたかしめ加工を省略しても、 )十分な強度の一 体構造のシールが得られる。 [0125] Also, the inner peripheral surface of the cylindrical portion 8 of the outer case 2 and the cylindrical portion of the inner case 3 If the above-mentioned cylindrical parts 8, 10 are integrated by press-fitting so that the outer peripheral surface of 10 is pressed against each other, the integrated strength of the outer case 2 and the inner case 3 is sufficiently large ( Even if the caulking process described in FIG. 39 and FIG. 40 of the outer case 34 is omitted, a seal having a sufficient strength can be obtained.
[0126] また、上記アウターケース 2は円筒部 8と低圧側内フランジ部 9とを有する断面略 L 字形であり、上記インナーケース 3は円筒部 10と低圧側内フランジ部 11とを有する断 面略 L字形であり、上記シールエレメント 7を上記両内フランジ部 9, 11にて挾着保持 すると共に、上記両円筒部 8, 10の嵌合間隙部 Gに、上記シール部 4の形成の際に 浸入して形成されたゴム層 13が介在して上記アウターケース 2とインナーケース 3が 一体化して 、るので、十分な強度にてアウターケース 2とインナーケース 3がー体ィ匕 できる。かつ、ゴム層 13によって、内部リークの可能性も減少できる。さらに、シール エレメント 7の姿勢が(がたつかず)安定すると共に、回転軸の回転摩擦力に連れ廻り することもなく、回転軸の回転中は常に安定したハイド口ダイナミック(ボンビング)作 用を行う。  [0126] The outer case 2 has a substantially L-shaped cross section having a cylindrical portion 8 and a low pressure side inner flange portion 9, and the inner case 3 has a cross section having a cylindrical portion 10 and a low pressure side inner flange portion 11. The seal element 7 is clamped and held by the inner flange portions 9 and 11, and the seal portion 4 is formed in the fitting gap portion G of the cylindrical portions 8 and 10. The outer case 2 and the inner case 3 are integrated with each other through the rubber layer 13 formed by intrusion into the outer case 2, so that the outer case 2 and the inner case 3 can be formed with sufficient strength. In addition, the rubber layer 13 can reduce the possibility of internal leakage. In addition, the posture of the seal element 7 is stable (not rattling), and does not move with the rotational frictional force of the rotating shaft, and always performs stable hide-port dynamic (bombing) operation while the rotating shaft is rotating. .
[0127] また、金属製アウターケース 2と、金属製インナーケース 3と、シールエレメント 7を、 該アウターケース 2とインナーケース 3にて上記シールエレメント 7を挾着状として、金 型のキヤビティ内に装入し、次に、流動化したゴム材料を上記キヤビティ内に充填し て、固化させ、シール部 4をモールド成形すると同時に、上記アウターケース 2とイン ナーケース 3とシールエレメント 7とを一体ィ匕する回転軸シールの製法によれば、煩 雑な従来の力しめ加工が全く省略可能であり、製造工程の簡略化とコストダウンを達 成でき、かつ、カーエアコン用コンプレッサ等のシールとして、過酷な使用条件(要求 )に十分対応できる回転軸シールが確実に多量に生産可能となる。  [0127] Further, the metal outer case 2, the metal inner case 3, and the seal element 7 are placed in the mold cavity with the outer case 2 and the inner case 3 fitting the seal element 7 together. Next, the fluidized rubber material is filled into the cavity and solidified, and the seal portion 4 is molded. At the same time, the outer case 2, the inner case 3, and the seal element 7 are integrated together. According to the manufacturing method of the rotating shaft seal, the complicated conventional crimping process can be omitted at all, the manufacturing process can be simplified and the cost can be reduced, and the seal for a compressor for a car air conditioner can be severe. It is possible to reliably produce a large number of rotary shaft seals that can sufficiently meet the various usage conditions (requirements).
[0128] さらに、実施形態 2の回転軸シールは、金属製アウターケース 2と、金属製インナー ケース 3と、回転軸に摺接するゴムリップ部 5を有するゴム製シール部 4と、上記回転 軸に摺接するシールエレメント 7とを、備えた回転軸シールに於て、上記金属製ァゥ ターケース 2のかしめ加工を省略して、上記アウターケース 2とシールエレメント 7とィ ンナーケース 3と上記シール部 4とを一体構造とし、さらに、上記アウターケース 2の円 筒部 8の内周面と、上記インナーケース 3の円筒部 10の外周面との間に、ストレート 状又は (高圧側へしだいに増大する)テーパ状の高圧側 Aの第 1間隙寸法 Tが低圧 Furthermore, the rotary shaft seal of Embodiment 2 includes a metal outer case 2, a metal inner case 3, a rubber seal portion 4 having a rubber lip portion 5 that is in sliding contact with the rotary shaft, and a slide on the rotary shaft. In the rotary shaft seal provided with the sealing element 7 in contact, the caulking process of the metal outer case 2 is omitted, and the outer case 2, the sealing element 7, the inner case 3, and the sealing portion 4 Is formed between the inner peripheral surface of the cylindrical portion 8 of the outer case 2 and the outer peripheral surface of the cylindrical portion 10 of the inner case 3. The first gap dimension T on the high-pressure side A (which gradually increases toward the high-pressure side) A is low.
1 側 Βの第 2間隙寸法 Τよりも大きく形成された嵌合間隙部 Gを有し、上記シール部 4  1 side Β second gap dimension 有 し has a fitting gap G formed larger than Τ, and seal part 4
2  2
を形成する際、上記嵌合間隙部 Gの上記第 1間隙寸法 Τの第 1間隙部位 54から浸  Is formed from the first gap portion 54 of the first gap dimension Τ of the fitting gap G.
1  1
入して上記第 2間隙寸法 Τの第 2間隙部位 55に形成されたゴム層 13が介在して上  The rubber layer 13 formed in the second gap part 55 of the second gap dimension Τ
2  2
記アウターケース 2とインナーケース 3がー体ィ匕した構成であるので、第 2間隙寸法 Τ  Since the outer case 2 and the inner case 3 are composed of a single body, the second gap dimension Τ
2 の高圧側 Αの開口端の位置(図 13及び 16の点 Q参照)力もゴム部の高圧側 Aの端 面(図 13及び 16の端面 4a参照)までの透過距離が十分大きぐ密封流体 (気体)の ゴム内の透過洩れ 内部漏洩 を確実に防止できる。  2 High pressure side 透過 Open end position (see point Q in Figs. 13 and 16) Sealing fluid with a sufficiently large transmission distance to the high pressure side A end of the rubber part (see end surface 4a in Figs. 13 and 16) Permeation leakage of (gas) rubber can be reliably prevented.
[0129] また、金属製アウターケース 2と、金属製インナーケース 3と、回転軸に摺接するゴ ムリップ部 5を有するゴム製シール部 4と、回転軸に摺接するシールエレメント 7とを、 備えた回転軸シールに於て、金属製アウターケース 2の力しめ加工を省略して、ァゥ ターケース 2とシールエレメント 7とインナーケース 3とシール部 4とを一体構造とし、さ らに、アウターケース 2の円筒部 8の高圧側端部 70とインナーケース 3の円筒部 10の 高圧側端部 60の一方が他方よりも高圧側 Aになるように段違い状に配設したので、 ゴムを透過する流体 (気体)の透過距離が大きぐ内部漏洩を有効防止でき、かつ、 モールド成形によるゴム被覆形成が容易となる利点がある。  [0129] Also, a metal outer case 2, a metal inner case 3, a rubber seal portion 4 having a rubber lip portion 5 that is in sliding contact with the rotating shaft, and a seal element 7 that is in sliding contact with the rotating shaft are provided. In the rotary shaft seal, the caulking process of the metal outer case 2 is omitted, and the outer case 2, the seal element 7, the inner case 3, and the seal part 4 are integrated, and the outer case Since one of the high-pressure side end 70 of the cylindrical portion 8 and the high-pressure side end 60 of the cylindrical portion 10 of the inner case 3 is arranged in a stepped manner so as to be on the high-pressure side A than the other, it penetrates the rubber. There is an advantage that internal leakage with a large fluid (gas) permeation distance can be effectively prevented and rubber coating can be easily formed by molding.
[0130] また、金属製アウターケース 2と、金属製インナーケース 3と、回転軸に摺接するゴ ムリップ部 5を有するゴム製シール部 4と、上記回転軸に摺接するシールエレメント 7と を、備えた回転軸シールに於て、上記金属製アウターケース 2の力しめ加工を省略し て、上記アウターケース 2とシールエレメント 7とインナーケース 3と上記シール部 4とを 一体構造とし、さらに、上記アウターケース 2の円筒部 8の高圧側端面 8aよりも上記ィ ンナーケース 3の円筒部 10の高圧側端部 60を高圧側 Aへ突出させて、上記ァウタ 一ケース 2の円筒部 8の内周面と、上記インナーケース 3の円筒部 10の外周面の低 圧側半部 58との間に、上記シール部 4を形成する際に浸入して形成されたゴム層 13 が介在して上記アウターケース 2とインナーケース 3がー体ィ匕した構成であるので、ィ ンナーケース 3の円筒部 10の外周面と、アウターケース 2の円筒部 8の内周面との( 微小)嵌合間隙部 Gへも、確実かつ安定して、ゴム層 13を浸入形成させることができ 、し力も、図 21の寸法 L 又は(L +T )にて示すように、ゴムを透過する流体 (気体 )の透過距離が大きぐ内部漏洩を有効防止でき、かつ、モールド成形によるゴム被 覆形成が容易となる利点がある。 [0130] Further, it comprises a metal outer case 2, a metal inner case 3, a rubber seal portion 4 having a rubber lip portion 5 that is in sliding contact with the rotating shaft, and a seal element 7 that is in sliding contact with the rotating shaft. In the rotary shaft seal, the outer casing 2, the seal element 7, the inner case 3, and the seal portion 4 are integrated with each other by omitting the crimping of the metal outer case 2. The high pressure side end 60 of the cylindrical portion 10 of the inner case 3 protrudes from the high pressure side end surface 8a of the cylindrical portion 8 of the case 2 to the high pressure side A, and the inner peripheral surface of the cylindrical portion 8 of the outer case 2 A rubber layer 13 formed by intrusion when the seal portion 4 is formed is interposed between the outer pressure surface half portion 58 of the outer peripheral surface of the cylindrical portion 10 of the inner case 3 and the outer case 2. Inner case 3 As a result, the rubber layer is securely and stably provided in the (fine) fitting gap G between the outer peripheral surface of the cylindrical portion 10 of the inner case 3 and the inner peripheral surface of the cylindrical portion 8 of the outer case 2. As shown by the dimension L or (L + T) in FIG. 21, the fluid that penetrates the rubber (gas) ) Has an advantage that internal leakage with a large transmission distance can be effectively prevented, and rubber covering formation by molding is easy.
[0131] また、金属製アウターケース 2と、金属製インナーケース 3と、回転軸に摺接するゴ ムリップ部 5を有するゴム製シール部 4と、上記回転軸に摺接するシールエレメント 7と を、備えた回転軸シールに於て、上記金属製アウターケース 2の力しめ加工を省略し て、上記アウターケース 2とシールエレメント 7とインナーケース 3と上記シール部 4とを 一体構造とし、さらに、上記インナーケース 3の円筒部 10の高圧側端面 10aよりも上 記アウターケース 2の円筒部 8の高圧側端部 70を高圧側 Aへ突出させて、上記イン ナーケース 3の円筒部 10の外周面と、上記アウターケース 2の円筒部 8の内周面の 低圧側半部 53との間に、上記シール部 4を形成する際に浸入して形成されたゴム層 13が介在して上記アウターケース 2とインナーケース 3がー体ィ匕しているように構成し たので、(微小)嵌合間隙部 Gへも確実にゴム層 13を浸入形成できる。かつ、図 13に 示した寸法 L 又は (L +T )にて示すように、ゴムを透過する流体 (気体)の透過距  [0131] Further, it comprises a metal outer case 2, a metal inner case 3, a rubber seal portion 4 having a rubber lip portion 5 slidably contacting the rotating shaft, and a seal element 7 slidably contacting the rotating shaft. In the rotating shaft seal, the outer casing 2, the seal element 7, the inner case 3, and the seal portion 4 are integrated with each other by omitting the crimping process of the metal outer case 2. The cylindrical portion 10 of the case 3 is higher than the high pressure side end surface 10a of the cylindrical portion 10 of the outer case 2.The high pressure side end portion 70 of the cylindrical portion 8 of the outer case 2 is projected to the high pressure side A, and the outer peripheral surface of the cylindrical portion 10 of the inner case 3 is Between the outer case 2 and the low pressure side half 53 of the inner peripheral surface of the cylindrical portion 8 of the outer case 2 is interposed a rubber layer 13 formed by intrusion when the seal portion 4 is formed. Inner case 3 Thus, the rubber layer 13 can be surely infiltrated into the (fine) fitting gap G. As shown by the dimension L or (L + T) shown in Fig. 13, the transmission distance of the fluid (gas) that permeates the rubber
18 52 16  18 52 16
離が大きぐ内部漏洩を有効防止できる。  Effectively prevent internal leakage with large separation.
[0132] また、金属製アウターケース 2と、金属製インナーケース 3と、回転軸に摺接するゴ ムリップ部 5を有するゴム製シール部 4と、上記回転軸に摺接するシールエレメント 7と を、備えた回転軸シールに於て、上記金属製アウターケース 2の力しめ加工を省略し て、上記シール部 4のモールド成形にて、上記アウターケース 2とシールエレメント 7と インナーケース 3と上記シール部 4とを一体構造とし、さらに、上記インナーケース 3の 円筒部 10の高圧側端面 10aよりも上記アウターケース 2の円筒部 8の高圧側端部 70 を高圧側 Aへ突出させて、上記インナーケース 3の円筒部 10の外周面と、上記ァウタ 一ケース 2の円筒部 8の内周面の低圧側半部 53との間に、上記シール部 4のモール ド成形の際に浸入して形成されたゴム層 13が介在して上記アウターケース 2とインナ 一ケース 3がー体ィ匕して 、るように構成したので、(微小)嵌合間隙部 Gへも確実にゴ ム層 13を浸入形成できる。かつ、図 24に示した寸法 L 又は (L +T )にて示すよう [0132] In addition, a metal outer case 2, a metal inner case 3, a rubber seal portion 4 having a rubber lip portion 5 slidably contacting the rotating shaft, and a seal element 7 slidably contacting the rotating shaft are provided. In the rotating shaft seal, the outer outer casing 2, the sealing element 7, the inner casing 3, and the sealing section 4 are formed by molding the sealing section 4 while omitting the crimping process of the metallic outer casing 2. And the inner case 3 with the high pressure side end 70 of the cylindrical portion 8 of the outer case 2 projecting from the high pressure side end surface 10a of the cylindrical portion 10 of the inner case 3 to the high pressure side A. Formed between the outer peripheral surface of the cylindrical portion 10 and the low pressure side half 53 of the inner peripheral surface of the cylindrical portion 8 of the outer case 2 when the seal portion 4 is molded. The rubber layer 13 is interposed to Tha casing 2 and with the inner first case 3 Gar body I spoon, since it is configured to so that can intrusion forming reliably rubber layer 13 is also the interim gap section G fitting (minute). And as shown by dimension L or (L + T) shown in Fig. 24
18 52 16  18 52 16
に、ゴムを透過する流体 (気体)の透過距離が大きぐ内部漏洩を有効防止できる。  In addition, it is possible to effectively prevent internal leakage, where the permeation distance of fluid (gas) that permeates rubber is large.
[0133] また、上記アウターケース 2は円筒部 8と低圧側内フランジ部 9とを有する断面略 L 字形であり、上記インナーケース 3は円筒部 10と低圧側内フランジ部 11とを有する断 面略 L字形であり、上記シールエレメント 7を上記両内フランジ部 9, 11にて挾着保持 すると共に、上記インナーケース 3の円筒部 10と上記アウターケース 2の円筒部 8の 低圧側半部 53によって形成された嵌合間隙部 Gに、上記シール部 4のモールド成形 の際に浸入して形成されたゴム層 13が介在して上記アウターケース 2とインナーケ一 ス 3が一体化している構成とすれば、特に、モールド成形時のゴム圧でインナーケ一 ス 3をアウターケース 2と嵌合させることができて、製造容易で品質が安定する。そし て、シールエレメント 7を確実に挾着保持しつつ、一体化可能となる。 [0133] The outer case 2 has a substantially L-shaped cross section having a cylindrical portion 8 and a low pressure side inner flange portion 9, and the inner case 3 has a section having a cylindrical portion 10 and a low pressure side inner flange portion 11. The seal element 7 is clamped and held by the inner flange portions 9 and 11 and the cylindrical portion 10 of the inner case 3 and the cylindrical portion 8 of the outer case 2 are low-pressure side half portions. A configuration in which the outer case 2 and the inner case 3 are integrated by interposing a rubber layer 13 formed by intrusion when the sealing portion 4 is molded into the fitting gap portion G formed by 53. If this is the case, the inner case 3 can be fitted to the outer case 2 by the rubber pressure at the time of molding, and manufacturing is easy and the quality is stable. In addition, the seal element 7 can be integrated while being securely held.
[0134] また、実施形態 2の回転軸シールの製法によれば、金属製アウターケース 2と金属 製インナーケース 3とを、上記インナーケース 3の低圧側半部 58に於て微小な第 2間 隙寸法 Tをもって嵌合すると共に、該インナーケース 3の高圧側半部 59はストレート [0134] Also, according to the method of manufacturing the rotary shaft seal of the second embodiment, the metal outer case 2 and the metal inner case 3 are connected to each other in a small second space at the low-pressure side half 58 of the inner case 3. The inner case 3 is fitted with a gap T and the high-pressure side half 59 of the inner case 3 is straight.
2  2
状又は (高圧側へしだいに増大する)テーパ状の大きい第 1間隙寸法 Tをもって嵌合  With a large first gap dimension T, which is tapered or (increases gradually to the high pressure side)
1 し、かつ、該アウターケース 2とインナーケース 3にてシールエレメント 7を挾着状とし て、金型のキヤビティ内に装入し、次に、流動化したゴム材料を上記キヤビティ内に充 填して、固化させ、シール部 4をモールド成形すると同時に、上記アウターケース 2と インナーケース 3とシールエレメント 7とを一体ィ匕する方法であるので、大きい第 1間隙 寸法 T側力 流動ゴム材料は誘導されて小さな第 2間隙寸法 Tへ流入するので、確 1 and, with the outer case 2 and the inner case 3, the seal element 7 is fitted into the mold cavity, and then the fluidized rubber material is filled into the cavity. Since the outer case 2, the inner case 3, and the seal element 7 are integrated together at the same time as the seal portion 4 is molded and solidified, a large first gap dimension T side force Fluid rubber material is Is guided into the small second gap dimension T,
1 2 1 2
実に第 2間隙寸法 Tのゴム層 13が形成できて、ゴム部内部の透過洩れ量(内部リー  The rubber layer 13 having the second gap dimension T can be formed, and the amount of permeation leakage inside the rubber part (internal
2  2
ク量)を低減できる。  Can be reduced.
[0135] また、金属製インナーケース 3の外周面の高圧側半部 59が露出状となるように金属 製アウターケース 2を外嵌状に嵌合して、該アウターケース 2とインナーケース 3にて シールエレメント 7を挾着状として、金型のキヤビティ内に装入し、次に、流動化したゴ ム材料を上記キヤビティ内に充填して、固化させ、シール部 4をモールド成形すると 同時に、上記アウターケース 2とインナーケース 3とシールエレメント 7とを一体化する 製法とすれば、アウターケース 2のプレス加工も容易であり、安価に作製可能であり、 かつ、強固に一体構造とすることが可能である。しかも、ゴム部内部の透過洩れ量( 内部リーク量)を低減できる。  [0135] Further, the metal outer case 2 is fitted into the outer case 2 and the inner case 3 so that the high-pressure side half 59 of the outer peripheral surface of the metal inner case 3 is exposed. The seal element 7 is attached in a crease shape, and is inserted into the mold cavity.Then, the fluidized rubber material is filled into the cavity, solidified, and the seal portion 4 is molded. If the outer case 2, the inner case 3 and the seal element 7 are integrated, the outer case 2 can be easily pressed, can be manufactured at low cost, and has a solid integrated structure. Is possible. Moreover, the amount of permeation leakage (internal leakage amount) inside the rubber part can be reduced.
[0136] また、金属製アウターケース 2の内周面の高圧側半部 52が露出状となるように金属 製インナーケース 3を内嵌状に嵌合して、該アウターケース 2とインナーケース 3にて シールエレメント 7を挾着状として、金型のキヤビティ内に装入し、次に、流動化したゴ ム材料を上記キヤビティ内に充填して、固化させ、シール部 4をモールド成形すると 同時に、上記アウターケース 2とインナーケース 3とシールエレメント 7とを一体化する 製法とすれば、製作が容易かつ安価となり、特に、モールド成形時のゴム圧によって 、インナーケース 3がアウターケース 2の奥方向(低圧側 B)へ嵌合させることができて 、一層、製作が容易となる。そして、強固に全体を一体構造とでき、かつ、ゴム部内部 の透過洩れ量(内部リーク量)を低減できる。 [0136] Further, the inner case 3 and the inner case 3 are fitted into the inner case 3 so that the high-pressure side half 52 of the inner peripheral surface of the outer case 2 is exposed. At The sealing element 7 is attached in the form of an adhesive and is inserted into the mold cavity, and then the fluidized rubber material is filled into the cavity and solidified, and the seal portion 4 is molded at the same time. If the outer case 2, the inner case 3 and the seal element 7 are integrated, the manufacturing method is easy and inexpensive. In particular, the inner case 3 is moved in the back direction (low pressure) by the rubber pressure during molding. It can be fitted to side B), making it easier to manufacture. In addition, the entire structure can be firmly integrated, and the amount of permeation leakage (internal leakage) inside the rubber portion can be reduced.
[0137] (実施形態 3)  [0137] (Embodiment 3)
図 27は実施形態 3の回転軸シール 1を示す要部拡大断面図であり、図 28は説明 図であり、図 29は要部の側面図である。  27 is an enlarged cross-sectional view of a main part showing the rotary shaft seal 1 of Embodiment 3, FIG. 28 is an explanatory view, and FIG. 29 is a side view of the main part.
[0138] この回転軸シール 1は、金属製アウターケース 2と、(図示省略の)回転軸に摺接す るゴムリップ部 5を有するゴム製シール部 4と、上記回転軸に摺接するスクリュー溝 6を 有するシールエレメント 7とをもって構成される。  [0138] The rotary shaft seal 1 includes a metal outer case 2, a rubber seal portion 4 having a rubber lip portion 5 that is in sliding contact with the rotary shaft (not shown), and a screw groove 6 that is in sliding contact with the rotary shaft. And a sealing element 7 having
[0139] そして、金属製アウターケース 2は、図 39及び図 40にて述べたところの矢印 C方向 へのカゝしめ加工を全く省略し、かつ、インナーケース 37を省略して、全体が一体構造 として組立てられている。具体的には、シール部 4はモールド成形 (射出モールド成 形又はコンプレツシヨンモールド成形)によって成形される力 アウターケース 2とシー ルエレメント 7と上記シール部 4とを、上記モールド成形によって、一体構造として成る  [0139] The metal outer case 2 is completely integrated by omitting the crimping process in the direction of arrow C as described in Figs. 39 and 40, and omitting the inner case 37. It is assembled as a structure. Specifically, the sealing part 4 is a force formed by molding (injection molding or compression molding). The outer case 2, the seal element 7, and the sealing part 4 are integrally formed by the molding. As a structure
[0140] アウターケース 2は、円筒部 8と低圧側 Bの内フランジ部 9とを有し、断面略 L字形で ある。また、シールエレメント 7は、図 29に例示するように、自由状態では円環平板状 であって、中心に孔部 26を有し、その孔部 26の内周端縁からスクリュー溝 6が所定 幅にて一面側に形成され、かつ、外周縁 27の近傍に沿って、複数の(図 29では 4個 の)貫孔 28が等ピッチで配設される。この貫孔 28は、図 27及び図 28に示すように、 アウターケース 2の内フランジ部 9に対応する部位である。つまり、断面略 L字形のァ ウタ一ケース 2内にシールエレメント 7は嵌め込み状に内嵌されて、内フランジ部 9の( 高圧側 Aの)一面に接触するが、その内フランジ部 9の内外径方向の中間位置に対 応するように、複数の貫孔 28が形成されている。 [0141] モールド成形にてシール部 4が成形される際に、シール部 4を成形する流動化した ゴム(ゴム材料)が、シールエレメント 7の貫孔 28に充填されて、内フランジ部 9の一面 に接着し、もって、シールエレメント 7とシール部 4とアウターケース 2とは、一体化する [0140] The outer case 2 has a cylindrical portion 8 and an inner flange portion 9 on the low pressure side B, and has a substantially L-shaped cross section. In addition, as illustrated in FIG. 29, the seal element 7 has an annular flat plate shape in a free state, and has a hole portion 26 at the center, and a screw groove 6 is formed from an inner peripheral edge of the hole portion 26. A plurality of (four in FIG. 29) through-holes 28 are formed at an equal pitch along the vicinity of the outer peripheral edge 27. As shown in FIGS. 27 and 28, the through hole 28 is a portion corresponding to the inner flange portion 9 of the outer case 2. That is, the seal element 7 is fitted in the outer case 2 having a substantially L-shaped cross section, and is in contact with one surface of the inner flange portion 9 (on the high pressure side A). A plurality of through holes 28 are formed so as to correspond to intermediate positions in the radial direction. [0141] When the seal part 4 is molded by molding, the fluidized rubber (rubber material) for molding the seal part 4 is filled in the through-holes 28 of the seal element 7, and the inner flange part 9 Adhere to one surface, and seal element 7, seal 4 and outer case 2 are integrated.
[0142] さらに具体的に説明すれば、シール部 4は断面が Uパッキン形であり、浅い凹周溝 18が高圧側(流体収納室側) Aを向くように配設され、この Uパッキン形のシール部 4 の外周面 29近傍に、低圧側 Bから、アウターケース 2の円筒部 8を差込み状に埋設さ れた一体構造である。 [0142] More specifically, the seal part 4 has a U-packing cross section, and the shallow concave groove 18 is arranged so as to face the high-pressure side (fluid storage chamber side) A. This U-packing type The cylindrical portion 8 of the outer case 2 is embedded from the low pressure side B in the vicinity of the outer peripheral surface 29 of the seal portion 4 in an integrated manner.
[0143] シール部 4のゴムリップ部 5の接触内周端縁 (リップ先端部) 5aは、アウターケース 2 の円筒部 8の高圧側端面 8aと略同一の軸心直交面 P上に位置している。つまり、(回 転軸の)軸心 Lに直交すると共に円筒部 8の高圧側端面 8aに接する平面であるところ の軸心直交面と略同一の軸心直交面 P上に、接触内周端縁 5aが配設されている。 従って、軸心方向の全体幅寸法 Wは、従来の図 39〜図 41等と比べて、著しく小さく  [0143] The contact inner peripheral edge (lip tip portion) 5a of the rubber lip portion 5 of the seal portion 4 is positioned on the axis-perpendicular plane P substantially the same as the high-pressure side end surface 8a of the cylindrical portion 8 of the outer case 2. Yes. That is, the contact inner peripheral end is on the axis orthogonal plane P that is substantially the same as the axis orthogonal plane that is orthogonal to the axis L (of the rotation axis) and is in contact with the high pressure side end surface 8a of the cylindrical portion 8. An edge 5a is provided. Therefore, the overall width dimension W in the axial direction is significantly smaller than the conventional Fig. 39 to Fig. 41 etc.
0  0
、コンパクトィ匕が図られていることが分る。そして、全体の横断面形状は、略矩形であ る。なお、図 38に示すもののように、シール部 4のゴムリップ部 5の接触内周端縁 (リツ プ先端部) 5aは、アウターケース 2の円筒部 8の高圧側端面 8aと略同一の軸心直交 面 Pよりも低圧側 Bに位置させるも好ましい。つまり、(回転軸の)軸心 Lに直交すると 共に円筒部 8の高圧側端面 8aに接する平面であるところの軸心直交面と略同一の軸 心直交面 Pよりも低圧側 Bに、接触内周端縁 5aが配設されている。従って、軸心方向 の全体幅寸法 Wは、従来の図 39〜図 41等と比べて、著しく小さぐコンパクト化が図  It can be seen that compactness has been achieved. The overall cross-sectional shape is a substantially rectangular shape. As shown in FIG. 38, the contact inner peripheral edge (lip tip) 5a of the rubber lip portion 5 of the seal portion 4 is substantially the same axis as the high pressure side end surface 8a of the cylindrical portion 8 of the outer case 2. It is also preferable to locate the lower pressure side B than the orthogonal plane P. In other words, it is in contact with the low-pressure side B, which is perpendicular to the axis orthogonal plane P, which is substantially the same as the axis orthogonal plane P that is perpendicular to the axis L (rotary axis) and is in contact with the high-pressure end face 8a of the cylindrical portion 8. An inner peripheral edge 5a is provided. Therefore, the overall width dimension W in the axial direction is significantly smaller than the conventional Fig. 39 to Fig. 41 etc.
0  0
られていることが分る。そして、全体の横断面形状は、略矩形である点は、図 28と同 様である。  You can see that The overall cross-sectional shape is substantially rectangular as in FIG.
[0144] 上述の貫孔 28内に流動ゴム材が浸入して(充填して)固化した小柱部 30は、いわ ば貝柱の如ぐアウターケース 2の内フランジ部 9の高圧側 Aの一面に、接着して、シ ールエレメント 7を強固に、アウターケース 2及びシール部 4に一体化できる。これによ つて、カーエアコン用コンプレッサ等に装着されて使用される場合に、摩擦力にてシ ールエレメント 7が回転軸と共廻りせんとしても、シールエレメント 7を確実に保持して 、強固な一体構造を維持できる。 [0145] 図 30は、実施形態 1の回転軸シール 1を断面図にて示し、かつ、同一符号は同様 の構成であることを示している力 この図 30の実施形態 1の回転軸シール 1では、凸 部を有する横断面略 L字形のインナーケース 3が付加されて 、る。インナーケース 3 は円筒部 10と内フランジ部 11を有し、その円筒部 10を、アウターケース 2の円筒部 8 に内嵌し、内フランジ部 11の凸部 12が、シールエレメント 7を押圧して、アウターケー ス 2の内フランジ部 9と共働して、シールエレメント 7を挾圧状に保持している。しかも、 この実施形態 1の回転軸シール 1も、図 39及び図 40の矢印 C方向のかしめ加工を省 略して作製され、シール部 4のモールド成形時に、両円筒部 8, 10の嵌合間隙部 G に浸入した流動ゴム材料が固化して形成された薄肉のゴム層 13にて、全体の部品を 一体化した構造である。 [0144] The small column portion 30 into which the fluid rubber material has entered (filled) and solidified into the above-described through hole 28 is a surface of the high-pressure side A of the inner flange portion 9 of the outer case 2 like a shell column. The seal element 7 can be firmly integrated with the outer case 2 and the seal portion 4 by bonding. As a result, when used in a car air conditioner compressor, etc., even if the seal element 7 rotates with the rotating shaft due to frictional force, the seal element 7 is securely held and firmly integrated. The structure can be maintained. FIG. 30 is a sectional view of the rotary shaft seal 1 of the first embodiment, and the same reference numerals indicate the same configuration. The rotary shaft seal 1 of the first embodiment of FIG. Then, an inner case 3 having a substantially L-shaped cross section having a convex portion is added. The inner case 3 has a cylindrical portion 10 and an inner flange portion 11. The cylindrical portion 10 is fitted into the cylindrical portion 8 of the outer case 2, and the convex portion 12 of the inner flange portion 11 presses the seal element 7. Thus, the seal element 7 is held in a negative pressure state in cooperation with the inner flange portion 9 of the outer case 2. In addition, the rotary shaft seal 1 of the first embodiment is also produced by omitting the caulking process in the direction of arrow C in FIGS. 39 and 40, and when the seal portion 4 is molded, the fitting gap between the cylindrical portions 8 and 10 is It is a structure in which all parts are integrated with a thin rubber layer 13 formed by solidifying the fluid rubber material that has entered the part G.
[0146] し力し、図 30の実施形態 1の回転軸シール 1のこのような構造では、インナーケース 3という部品が付加されて部品点数が増えるのみならず、次のような問題がある。即ち 、インナーケース 3の凸部 12で、シールエレメント 7を押圧して、シールエレメント 7が 回転軸と共廻りすることを防止している力 実際の作製上、凸部 12を押圧してシール エレメント 7に食い込ませる量のバラツキが大きぐ品質が安定せず、回転軸と共廻り することが(場合によって)起こるのである。  [0146] In such a structure of the rotary shaft seal 1 of the first embodiment shown in Fig. 30, not only the number of the inner case 3 is added and the number of parts is increased, but there are the following problems. That is, the force that presses the seal element 7 with the convex portion 12 of the inner case 3 to prevent the seal element 7 from rotating together with the rotating shaft. In actual production, the seal element is pressed with the convex portion 12. The variation in the amount of bite into 7 is so large that the quality is not stable, and it may rotate with the rotating shaft (in some cases).
[0147] これに対し、図 27〜図 29に示したものでは、シールエレメント 7の貫孔 28に流入( 充填)した小柱部 30が、アウターケース 2の内フランジ部 9に強固に接着して、シール エレメント 7の(回転軸との)共廻りを阻止できる。  On the other hand, in the case shown in FIGS. 27 to 29, the small column portion 30 that flows (fills) into the through hole 28 of the seal element 7 is firmly bonded to the inner flange portion 9 of the outer case 2. This prevents the seal element 7 from rotating together (with the rotating shaft).
[0148] シール部 4は、 HNBR単独にて、あるいは、 HNBRを基本とする配合ゴム材にて、 構成したり、他のゴム材を用いる。シールエレメント 7は元の形状は、図 29に示すよう に、円環平板状であり、回転軸を挿入状として組立てると、断面 L字状として、スクリュ 一溝 (螺旋溝) 6の側が回転軸の外周面に接触する。このシールエレメント 7は、 PTF E等のフッ素系榭脂が好適である。シールエレメント 7は外径寄りの部分力 内フラン ジ部 9と、ゴム製シール部 4のブロック状本体部 17の低圧側面にて挾着保持されて ヽ ると共に、(貝柱状の)小柱部 30にて一層強固に一体ィ匕が図られている。シールエレ メント 7にスクリュー溝 6を形成したことにより、回転軸の回転により流体を流体収納室 側(高圧側) Aへ押し戻すボンビング作用(ハイド口ダイナミック作用)をなし、回転中 の密封性を向上させている。 [0148] The seal part 4 is composed of HNBR alone or a compounded rubber material based on HNBR, or uses other rubber materials. As shown in FIG. 29, the original shape of the seal element 7 is an annular flat plate shape.When the rotary shaft is assembled as an insertion shape, it is L-shaped in cross-section and the screw groove (spiral groove) 6 side is the rotary shaft. In contact with the outer circumferential surface. The seal element 7 is preferably a fluorine-based resin such as PTFE. The seal element 7 has a partial force close to the outer diameter. The flange 9 is attached and held on the low pressure side of the block-shaped main body 17 of the rubber seal 4 and the small column (shell-shaped) At 30, the unity is further strengthened. Since the screw groove 6 is formed in the seal element 7, the rotating shaft rotates to push the fluid back to the fluid storage chamber side (high pressure side) A (hydride port dynamic action), and it is rotating. Improves hermeticity.
[0149] 従来例の図 39〜図 41と比較すれば明らかなように、従来のアウターケース 34の内 フランジ部 32は流体収納室側(高圧側) Aに配設されていた力 実施形態 3の回転 軸シール 1では、アウターケース 2の内フランジ部 9は低圧側 Bに配設されている。さ らに、従来のインナーケース 37は、本実施形態 3の回転軸シール 1では全く省略され ている。  As apparent from comparison with FIGS. 39 to 41 of the conventional example, the inner flange portion 32 of the conventional outer case 34 is disposed on the fluid storage chamber side (high pressure side) A Embodiment 3 In the rotary shaft seal 1, the inner flange portion 9 of the outer case 2 is disposed on the low pressure side B. Further, the conventional inner case 37 is completely omitted from the rotary shaft seal 1 of the third embodiment.
[0150] そして、シール部 4は、円筒部 8を外周面側力も被覆する外周凹凸波状嵌着円筒 壁部 15と、円筒部 8の高圧側端面 8aを被覆する端面被覆壁部 16と、アウターケース 2の内部の低圧側 Bの大半部分を占めるブロック状本体部 17とを、具備し、このプロ ック状本体部 17の高圧側 Aに、端面被覆壁部 16に連結される連結部 42、及び、内 径斜め方向に延設されたゴムリップ部 5を一体形成して、浅い U字状の凹周溝 18が 形成されている。  [0150] Then, the seal portion 4 includes an outer circumferential uneven corrugated fitting cylindrical wall portion 15 that covers the cylindrical portion 8 also with an outer peripheral surface side force, an end surface covering wall portion 16 that covers the high-pressure side end surface 8a of the cylindrical portion 8, and an outer A block-shaped main body portion 17 that occupies most of the low-pressure side B inside the case 2, and a connecting portion 42 connected to the high-pressure side A of the block-shaped main body portion 17 to the end face covering wall portion 16. The rubber lip portion 5 extending in the oblique direction of the inner diameter is integrally formed to form a shallow U-shaped concave circumferential groove 18.
[0151] また、図 27では、このゴムリップ部 5の軸心方向位置と、端面被覆壁部 16の軸心方 向位置を、略一致させている。また、図示省略の回転軸の外周面に接触するゴムリツ プ部 5の接触内周端縁 5aは、アウターケース 2の高圧側 Aの端面 8aと、軸心方向略 同一位置に配設される。また、図 38に示したものでは、このゴムリップ部 5の軸心方 向位置は、端面被覆壁部 16の軸心方向位置よりも低圧側 Bに配設されている。また 、図示省略の回転軸の外周面に接触するゴムリップ部 5の接触内周端縁 5aは、ァゥ ターケース 2の高圧側 Aの端面 8aよりも、(軸心方向に)低圧側 B寄りに配設されて!/、 る。この点について、従来例の図 39〜図 41と比較すれば、ゴムリップ部 5が高圧側 A へ殆ど突出せず、回転軸シール 1の全体の幅寸法 Wは、著しく減少できて、コンパク  In FIG. 27, the position of the rubber lip portion 5 in the axial center direction and the position of the end surface covering wall portion 16 in the axial center direction are substantially matched. Further, the contact inner peripheral edge 5a of the rubber lip portion 5 that contacts the outer peripheral surface of the rotating shaft (not shown) is disposed at substantially the same position as the end surface 8a on the high pressure side A of the outer case 2 in the axial direction. In the case shown in FIG. 38, the axial direction position of the rubber lip portion 5 is arranged on the low pressure side B than the axial direction position of the end surface covering wall portion 16. Further, the contact inner peripheral edge 5a of the rubber lip portion 5 that contacts the outer peripheral surface of the rotating shaft (not shown) is closer to the low pressure side B (in the axial direction) than the end surface 8a of the high pressure side A of the outer case 2. It is arranged in! / In this regard, when compared with FIGS. 39 to 41 of the conventional example, the rubber lip portion 5 hardly protrudes to the high pressure side A, and the overall width W of the rotary shaft seal 1 can be remarkably reduced.
0  0
ト化が図られていることが判る。即ち、実施形態 3の回転軸シール 1では、アウターケ ース 2の全幅寸法と略同一の全幅寸法 Wにコンパクトィ匕されている。  It can be seen that this is being achieved. That is, the rotary shaft seal 1 of the third embodiment is compacted to a full width dimension W substantially the same as the full width dimension of the outer case 2.
0  0
[0152] このように、全幅寸法 Wがコンパクトィ匕されているので、外的要因により、リップが傷  [0152] Since the full width dimension W is compacted in this way, the lip is scratched due to external factors.
0  0
ついたり、変形したりすることが抑制される。具体的には、回転軸シールの製造工程 中や、そのシールを使ってカーエアコンのコンプレッサーを組み立てている最中に、 外的要因による不良率を格段に少なくすることが可能となる。  It is suppressed that it sticks or deforms. Specifically, the defect rate due to external factors can be significantly reduced during the manufacturing process of rotary shaft seals and during the assembly of car air conditioner compressors using such seals.
[0153] なお、アウターケース 2のゴム接触 (接着)部位には、予めショットピーユング等にて 表面粗さを大きくして、ゴム接着力を増加させるのが好ましぐ特に、内フランジ部 9の 高圧側の面の表面粗さを大きくして、小柱部 30の先端面との接着力を増加させるの が良い。 [0153] It should be noted that the rubber contact (adhesion) portion of the outer case 2 is preliminarily formed by shot peening or the like It is preferable to increase the rubber adhesion by increasing the surface roughness, and in particular, increase the surface roughness of the high-pressure side surface of the inner flange 9 to increase the adhesion to the tip surface of the small column 30. It is good to increase.
[0154] 次に、実施形態 3の回転軸シール 1の製法の一例を説明すれば、シールエレメント 7の外周沿いに貫孔 28を複数個形成し、円筒部 8と低圧側内フランジ部 9とを有する 断面略 L字形のアウターケース 2の内フランジ部 9に接触するようにシールエレメント 7 を嵌め込み状として、(図示省略の)金型のキヤビティ内に装入し、次に、流動化した ゴム材料を射出成形又はコンプレツシヨン成形にてキヤビティ内に充填して、シール 部 4をモールド成形すると同時に上記貫孔 28に充填したゴム材料にて、アウターケ ース 2の内フランジ部 9の高圧側の一面に接着させ、全体を一体化する。  [0154] Next, an example of a method for producing the rotary shaft seal 1 of Embodiment 3 will be described. A plurality of through holes 28 are formed along the outer periphery of the seal element 7, and the cylindrical portion 8 and the low-pressure side inner flange portion 9 The seal element 7 is fitted into the outer flange 9 of the outer case 2 having a substantially L-shaped cross section and is inserted into the mold cavity (not shown), and then fluidized rubber. Fill the cavity by injection molding or compression molding and mold the seal part 4 at the same time with the rubber material filled in the above-mentioned through holes 28. The high pressure side of the inner flange part 9 of the outer case 2 Adhere to one side and integrate the whole.
[0155] なお、ゴム材料のキヤビティ内への充填の後、加熱加圧にて、加硫し、全体を強固 に一体化する。また、予め接着剤を (金型装入前に)アウターケース 2に塗布 (付着) して、モールド成形後に金属製アウターケース 2とゴム製シール部 4とを、一層強固に 一体化するのが、回転軸シール 1としての強度及び製品寿命の点で、望ましい。  [0155] After filling the rubber material into the cavity, it is vulcanized by heating and pressurizing to firmly integrate the whole. It is also possible to apply (adhere) an adhesive in advance to the outer case 2 (before loading the mold) and to integrate the metal outer case 2 and the rubber seal portion 4 more firmly after molding. It is desirable in terms of strength and product life as a rotary shaft seal 1.
[0156] 以上のように、金型内でシール部 4を形成すると同時に、アウターケース 2とシール エレメント 7とを一体ィ匕でき、従来の力しめ加工を全く省略して、構成部品点数も最少 とでさる。  [0156] As described above, the outer case 2 and the seal element 7 can be integrally formed at the same time as the seal portion 4 is formed in the mold, and the conventional crimping process is completely omitted, and the number of components is minimized. I'll do it.
[0157] 次に、図 31及び図 32は、各々、実施形態 3の回転軸シール 1の変形例 1及び 2を 示し、既述の図 29に代わるものである。つまり、シールエレメント 7の貫孔 28は、図 29 では円形であつたのに対し、図 31では長方形としても良いことを例示し、また、図 32 では貫孔 28は円弧状 (又は扇型)にしても良いことを例示しており、貫孔 28の形状は これ以外にも種々設計変更可能である。  Next, FIG. 31 and FIG. 32 show Modifications 1 and 2 of the rotating shaft seal 1 of Embodiment 3, respectively, which replace FIG. 29 described above. That is, the through hole 28 of the seal element 7 is illustrated as being circular in FIG. 29, but may be rectangular in FIG. 31, and in FIG. 32, the through hole 28 is arcuate (or fan-shaped). However, the shape of the through hole 28 can be variously modified in addition to this.
[0158] 次に、図 33及び図 34は、各々、実施形態 3の回転軸シール 1の変形例 3及び 4を 示し、図 38は、この図 33又は図 34に示したシールエレメント 7を用いた回転軸シー ルの一例を示す。即ち、図 33又は図 34と、図 38に於て、シールエレメント 7力 ァゥ ターケース 2の円筒部 8と内フランジ部 9との隅部 20に対応する外周端縁 21に、略三 角形状切欠部 22 (図 33)、又は、略半円形状切欠部 22 (図 34)を、形成する。図 33 又は図 34に於て、各切欠部 22を散点模様をもって示した。勿論、切欠部 22の形状 変更や個数の増減は、 自由である。そして、既述の実施形態 3の回転軸シール 1と同 様の製造方法によって、モールド成形にて、シール部 4のゴム力 切欠部 22に充填 されて、シール部 4のゴムは、隅部 20及び内フランジ部 9の内面に、接着して、一体 化される(図 38参照)。 Next, FIG. 33 and FIG. 34 show modified examples 3 and 4 of the rotary shaft seal 1 of Embodiment 3, respectively, and FIG. 38 uses the seal element 7 shown in FIG. 33 or FIG. An example of a rotating shaft seal is shown. That is, in FIG. 33 or FIG. 34 and FIG. 38, the outer peripheral edge 21 corresponding to the corner portion 20 between the cylindrical portion 8 and the inner flange portion 9 of the seal element 7 force outer case 2 is substantially triangular. The shape notch 22 (FIG. 33) or the substantially semicircular notch 22 (FIG. 34) is formed. In FIG. 33 or FIG. 34, each notch 22 is shown with a dotted pattern. Of course, the shape of the notch 22 You can change or increase or decrease the number. Then, by the same manufacturing method as the rotary shaft seal 1 of the above-described Embodiment 3, the rubber force notch portion 22 of the seal portion 4 is filled by molding, and the rubber of the seal portion 4 becomes the corner portion 20. Also, the inner flange 9 is bonded and integrated (see FIG. 38).
[0159] 次に、図 35は、実施形態 3の回転軸シール 1の変形例 5を示し、このシールエレメ ント 7を用いた回転軸シールの一例は、図 38を共用して、示し得る。つまり、図 38及 び図 35に於て、シールエレメント 7力 アウターケース 2の円筒部 8と内フランジ部 9と の隅部 20に対応する外周端縁 21に、波状の凹凸部 23が形成されている。図 35〖こ 於て、この凹凸部 23の凹部 23aを散点模様にて示す。この凹凸部 23は丸味のある 凹凸波型の場合を図 35に示したが、これを角張った三角形や台形や歯形の凹凸波 型や、複雑な凹凸模様とするも、 自由である(図示省略)。  Next, FIG. 35 shows a fifth modification of the rotary shaft seal 1 of the third embodiment, and an example of the rotary shaft seal using this seal element 7 can be shown in common with FIG. That is, in FIG. 38 and FIG. 35, the wavy uneven portion 23 is formed on the outer peripheral edge 21 corresponding to the corner portion 20 between the cylindrical portion 8 and the inner flange portion 9 of the seal element 7 force outer case 2 in FIGS. ing. In FIG. 35, the concave portions 23a of the concave and convex portions 23 are indicated by a dotted pattern. Figure 35 shows an example of a rounded uneven wave shape for the uneven part 23, but it is also possible to make this an uneven triangular wave shape with a triangular shape, trapezoid or tooth shape, or a complex uneven pattern (not shown). ).
[0160] そして、既述の実施形態 3の回転軸シール 1と同様の製造方法によって、モールド 成形にて、シール部 4のゴムが、凹凸部 23の凹部 23aに充填されて、シール部 4のゴ ムは隅部 20及び内フランジ部 9の内面に、接着して、一体化される(図 38参照)。  [0160] Then, by the same manufacturing method as the rotary shaft seal 1 of Embodiment 3 described above, the rubber of the seal portion 4 is filled in the concave portion 23a of the concave and convex portion 23 by molding, so that the seal portion 4 The rubber is bonded and integrated to the inner surfaces of the corner 20 and the inner flange 9 (see FIG. 38).
[0161] 次に、図 36は実施形態 3の回転軸シール 1の変形例 6を示し、シールエレメント 7が 円筒部 8と内フランジ部 9との隅部 20に対応する外周端縁 21が、多角形状に形成さ れて、多角形状の辺 24と、円筒部 8の円形内面 8cとの間の間隙部 25に、上記モー ルド成形にてシール部 4のゴム力 充填されて、内フランジ部 9 (隅部 20)に接着され 、全体が一体化されている。  [0161] Next, Fig. 36 shows a modified example 6 of the rotary shaft seal 1 of the third embodiment, in which the outer peripheral edge 21 corresponding to the corner portion 20 of the cylindrical portion 8 and the inner flange portion 9 is the sealing element 7 Formed in a polygonal shape, the gap 25 between the polygonal side 24 and the circular inner surface 8c of the cylindrical part 8 is filled with the rubber force of the seal part 4 by the above-mentioned molding, and the inner flange part Bonded to 9 (corner 20) and integrated as a whole.
[0162] なお、図 37に示す実施形態 3の回転軸シール 1の変形例 7では、シールエレメント 7が、その外周端縁 21は円形であるが、偏芯状であり、回転軸が挿入される中心孔 4 4の軸心 Lに対して、外周端縁 21の中心点 Oは偏芯し、従って、 2点鎖線にて示した (アウターケース 2の)円筒部内面 8cと、シールエレメント 7の外周端縁 21との間隙部 25は三日月型に形成され、モールド成形にて、シール部 4のゴム力 図 38のように、 この間隙部 25に充填されると、全体が一体化されると共に、シールエレメント 7の回転 軸との連れ廻りを、阻止できる。  Note that in Modification 7 of the rotary shaft seal 1 of Embodiment 3 shown in FIG. 37, the seal element 7 has a circular outer peripheral edge 21 but is eccentric, and the rotary shaft is inserted. The center point O of the outer peripheral edge 21 is eccentric with respect to the axial center L of the center hole 4 4, so the cylindrical inner surface 8c (of the outer case 2) indicated by the two-dot chain line and the seal element 7 The gap 25 with the outer peripheral edge 21 is formed in a crescent shape. When the gap 25 is filled with the rubber force of the seal part 4 by molding, the whole is integrated. At the same time, the rotation of the seal element 7 with the rotating shaft can be prevented.
[0163] 次に、図 33〜図 35に示したシールエレメント 7を具備した回転軸シール 1を、製造 する方法について、説明すると、図 33〜図 35、及び、図 38に於て、シールエレメント 7の外周端縁 21に、切欠部 22又は凹凸部 23を形成する。次に、円筒部 8と低圧側 内フランジ部 9とを有する断面 L字形のアウターケース 2の内フランジ部 9に接触する ように、シールエレメント 7を嵌め込み状として、金型のキヤビティ内に装入する。次に 、流動化したゴム材料をキヤビティ内に充填して、シール部 4をモールド成形すると同 時に、切欠部 22、又は、凹凸部 23の凹部 23aに充填したゴム材料にてアウターケー ス 2の内フランジ部 9に接着させ、全体を一体化することで、回転軸シール 1 (図 38参 照)を製造する。 Next, a method for manufacturing the rotary shaft seal 1 having the seal element 7 shown in FIGS. 33 to 35 will be described. In FIGS. 33 to 35 and FIG. A notch 22 or an uneven portion 23 is formed on the outer peripheral edge 21 of 7. Next, the seal element 7 is fitted into the mold cavity so as to contact the inner flange 9 of the L-shaped outer case 2 having the cylindrical portion 8 and the low pressure side inner flange 9. To do. Next, the fluidized rubber material is filled into the cavity, and the seal portion 4 is molded. At the same time, the outer case 2 is filled with the rubber material filled in the notch 22 or the recess 23a of the uneven portion 23. The rotary shaft seal 1 (see Fig. 38) is manufactured by bonding to the inner flange 9 and integrating the whole.
[0164] また、図 36又は図 37に示したシールエレメント 7を具備した回転軸シール 1を、製 造する方法について、説明すると、図 36又は図 37、及び、図 38に於て、シールエレ メント 7の外周端縁 21を、複数の辺 24を有する多角形状(図 36参照)に形成し、又は 、図 37のように偏芯円形に形成し、同様にアウターケース 2の内フランジ部 9に接触 するようにシールエレメント 7を嵌め込み状として、金型のキヤビティ内に装入し、次に 、流動化したゴム材料をキヤビティ内に充填して、シール部 4をモールド成形すると同 時に、円筒部 8の円形内面 8cと、外周端縁 21の辺 24との間の間隙部 25に、又は、 円形内面 8cと偏芯円形外周端縁 21との間隙部 25に、充填したゴム材料にて、ァゥ ターケース 2の内フランジ部 9に接着させて、全体を一体化する。  [0164] A method for manufacturing the rotary shaft seal 1 having the seal element 7 shown in Fig. 36 or 37 will be described. In Fig. 36, Fig. 37, and Fig. 38, the seal element is described. 7 is formed in a polygonal shape (see FIG. 36) having a plurality of sides 24, or is formed in an eccentric circular shape as shown in FIG. 37, and is similarly formed on the inner flange portion 9 of the outer case 2. The seal element 7 is fitted into the mold so as to come into contact with the mold, and is inserted into the mold cavity.Then, the fluidized rubber material is filled into the cavity, and the seal section 4 is molded. In the gap 25 between the circular inner surface 8c of 8 and the side 24 of the outer peripheral edge 21 or the gap 25 between the circular inner surface 8c and the eccentric circular outer peripheral edge 21 is filled with a rubber material, Adhere to the inner flange 9 of the outer case 2 and integrate the whole.
[0165] なお、実施形態 3の回転軸シール 1及びその変形例 1〜7以外に設計変更自由で あって、図 29、図 31又は図 32に示した貫孔 28を有する場合と、図 33及び 34に示し た切欠部 22を有する場合とを、組み合わせる(併用する)も好ましい。また、図 29、図 31又は図 32に示した貫孔 28を有する場合と、図 35や図 36に示した凹凸部 23や辺 24を有する場合とを、組み合わせる(併用する)も好ましい。若しくは、図 29、図 31又 は図 32に示した貫孔 28を有する場合と、図 37の偏芯の場合とを、組み合わせる(併 用する)も自由である。  [0165] In addition to the rotary shaft seal 1 of the third embodiment and its modifications 1 to 7, the design can be freely changed, and the through hole 28 shown in Fig. 29, Fig. 31 or Fig. 32 is provided. And the case of having the notch 22 shown in 34 is also preferable. Further, it is also preferable to combine (use together) the case where the through hole 28 shown in FIG. 29, FIG. 31 or FIG. 32 is provided with the case where the uneven portion 23 and the side 24 shown in FIG. 35 and FIG. Alternatively, the case of having the through hole 28 shown in FIG. 29, FIG. 31 or FIG. 32 and the case of the eccentricity of FIG. 37 can be freely combined (used together).
[0166] なお、凹周溝 18に於て、(図示省略したが、)径方向リブを複数本配設して、ゴムリ ップ部 5の接触内周端縁 5aと、回転軸外周面との接触面圧を、回転周方向に大小変 化させ、潤滑流体が内周端縁 5aと回転軸外周面との間に浸入しやすくして、摩擦熱 の発生を低減し、寿命を延ばすことが好ましい。  [0166] It should be noted that a plurality of radial ribs (not shown) are provided in the concave circumferential groove 18, and the contact inner peripheral edge 5a of the rubber lip 5 and the outer peripheral surface of the rotary shaft are arranged. The contact surface pressure is changed in the rotational circumferential direction, making it easier for the lubricating fluid to enter between the inner peripheral edge 5a and the outer peripheral surface of the rotating shaft, reducing the generation of frictional heat and extending the service life. Is preferred.
[0167] また、シールエレメント 7の上述のスクリュー溝 6を省略したり、又は、同心円を形成 しても、自由である。 [0167] Further, the above-described screw groove 6 of the seal element 7 may be omitted or a concentric circle may be formed. Even so, it's free.
[0168] 実施形態 3の回転軸シール 1は上述したように、金属製アウターケース 2と、回転軸 に摺接するゴムリップ部 5を有するゴム製シール部 4と、上記回転軸に摺接するシー ルエレメント 7とをもって、構成され、上記アウターケース 2に内嵌されるインナーケ一 スを省略して、上記シール部 4のモールド成形にて、上記アウターケース 2とシールェ レメント 7とシール部 4とを、一体構造としたので、部品点数が最も少なぐ安価に高品 質のものを多量生産可能となり、製造設備も簡略ィ匕できる。  [0168] As described above, the rotary shaft seal 1 of Embodiment 3 includes the metal outer case 2, the rubber seal portion 4 having the rubber lip portion 5 that is in sliding contact with the rotary shaft, and the seal element that is in sliding contact with the rotary shaft. The outer case 2, the seal element 7, and the seal portion 4 are integrally formed by molding the seal portion 4 while omitting the inner case fitted in the outer case 2. Because of the structure, it is possible to mass-produce high-quality products with the smallest number of parts at low cost and simplify the manufacturing equipment.
[0169] また、上記アウターケース 2は円筒部 8と低圧側内フランジ部 9とを有する断面略 L 字形であり、さらに、上記シールエレメント 7が上記内フランジ部 9に対応する部位に 貫孔 28を形成して、上記モールド成形にて上記シール部 4のゴムが上記貫孔 28に 充填されて上記内フランジ部 9に接着されているので、部品点数が最も少なぐ安価 に製造可能で、シールエレメント 7が回転軸と共に回転 (いわゆる共廻り)することを、 確実に防止して、優れた密封性能 (シール性)を発揮する。  [0169] The outer case 2 has a substantially L-shaped cross section having a cylindrical portion 8 and a low-pressure side inner flange portion 9. Further, the seal element 7 has a through hole 28 at a portion corresponding to the inner flange portion 9. Since the rubber of the seal part 4 is filled in the through hole 28 and bonded to the inner flange part 9 by molding, it can be manufactured at a low cost with the smallest number of parts. It reliably prevents the element 7 from rotating with the rotating shaft (so-called co-rotation) and exhibits excellent sealing performance (sealability).
[0170] また、上記アウターケース 2は円筒部 8と低圧側内フランジ部 9とを有する断面略 L 字形であり、さらに、上記シールエレメント 7が上記円筒部 8と内フランジ部 9との隅部 20に対応する外周端縁 21に、切欠部 22又は凹凸部 23が形成されて、上記モール ド成形にて上記シール部 4のゴム力 上記切欠部 22、又は、上記凹凸部 23の凹部 2 3aに充填されて、上記内フランジ部 9に接着されている構成であるので、部品点数が 少なぐ安価製造が可能となり、確実にシールエレメント 7の共廻りを防止し、優れた 密封性能 (シール性)を発揮する。  [0170] The outer case 2 has a substantially L-shaped cross section having a cylindrical portion 8 and a low pressure side inner flange portion 9. Further, the seal element 7 has a corner portion between the cylindrical portion 8 and the inner flange portion 9. A notch 22 or an uneven portion 23 is formed on the outer peripheral edge 21 corresponding to 20, and the rubber force of the seal portion 4 by the molding, the notch portion 22 or the recessed portion 23 of the uneven portion 23 3a And is bonded to the inner flange 9 so that it can be manufactured at a low cost with a small number of parts, reliably preventing the seal element 7 from rotating together, and having excellent sealing performance (sealability) ).
[0171] また、上記アウターケース 2は円筒部 8と低圧側内フランジ部 9とを有する断面略 L 字形であり、さらに、上記シールエレメント 7が上記円筒部 8と内フランジ部 9との隅部 20に対応する外周端縁 21が、多角形状に形成されて、該多角形状の辺 24と上記 円筒部 8の円形内面 8cとの間の間隙部 25に、上記モールド成形にて上記シール部 4のゴムが、充填されて、上記内フランジ部 9に接着されている構成であるので、部品 点数が少なぐ安価に製造可能であって、シールエレメント 7が回転軸と共に回転す ることを防止でき、優れた密封性能 (シール性)を発揮する。  [0171] Further, the outer case 2 has a substantially L-shaped cross section having a cylindrical portion 8 and a low pressure side inner flange portion 9, and the seal element 7 has a corner portion between the cylindrical portion 8 and the inner flange portion 9. An outer peripheral edge 21 corresponding to 20 is formed in a polygonal shape, and the seal portion 4 is formed in the gap portion 25 between the side 24 of the polygonal shape and the circular inner surface 8c of the cylindrical portion 8 by the molding. The rubber is filled and bonded to the inner flange 9 so that it can be manufactured at a low cost with a small number of parts, and the seal element 7 can be prevented from rotating together with the rotating shaft. Excellent sealing performance (sealability).
[0172] また、実施形態 3の回転軸シール 1は、上記アウターケース 2は円筒部 8と低圧側内 フランジ部 9とを有する断面略 L字形であって、上記シール部 4は断面が Uパッキン 形であり、該 Uパッキン形の該シール部 4の外周面 29近傍に低圧側 Bから上記ァウタ 一ケース 2の円筒部 8を差込み状に埋設された一体構造であり、上記ゴムリップ部 5 の接触内周端縁 5aは上記円筒部 8の高圧側端面 8aと略同一の軸心直交面 P上に 位置している構成、又は、この軸心直交面 Pよりも低圧側 Bに位置している構成であ るので、ゴムリップ部 5 (の接触内周端縁 5a)が回転軸の外周面に過大な面圧で接触 して、早期摩耗することを防止でき、さらに、全体幅寸法 Wが小さくできて、ケーシン[0172] In addition, the rotary shaft seal 1 of Embodiment 3 includes the outer case 2 which is connected to the cylindrical portion 8 and the low pressure side. It has a substantially L-shaped cross section having a flange portion 9, and the seal portion 4 has a U packing shape in cross section, and the outer case 29 from the low pressure side B near the outer peripheral surface 29 of the seal portion 4 of the U packing shape. 2 is an integral structure in which the cylindrical portion 8 is embedded in an insertion shape, and the contact inner peripheral edge 5a of the rubber lip portion 5 is located on the axial orthogonal plane P substantially the same as the high pressure side end surface 8a of the cylindrical portion 8. The rubber lip 5 (contact inner peripheral edge 5a) is excessive on the outer peripheral surface of the rotating shaft. Contact with surface pressure can prevent premature wear, and overall width dimension W can be reduced.
0 0
グ等の装着側部材(図示省略)のシール溝を小型化でき、カーエアコン用コンプレツ サの小型化にも貢献し、また、全体幅寸法 wがコンパクトィ匕されているので、外的要  It is possible to reduce the size of the seal groove on the mounting side member (not shown) such as a car, contributing to the downsizing of the compressor for car air conditioners, and because the overall width w is compacted,
0  0
因にてリップ部 5が傷ついたり、変形したりすることを、防止できる。具体的には、回転 軸シール 1の製造工程中や、そのシール 1をコンプレッサ等に組み付ける際に、ゴム リップ部 5が傷付いたり、変形することを抑制でき、外的要因による不良率を格段に減 少できる。  This prevents the lip 5 from being damaged or deformed. Specifically, the rubber lip 5 can be prevented from being damaged or deformed during the manufacturing process of the rotary shaft seal 1 or when the seal 1 is assembled to a compressor or the like, and the defect rate due to external factors is markedly increased. Can be reduced.
[0173] そして、実施形態 3の回転軸シールは、カーエアコン用コンプレッサに使用すれば 、高速 ·高圧 ·高温という厳しい使用状況下でも、優れた密封性能 (シール性)と耐久 性を、発揮できて、好適である。  [0173] When the rotary shaft seal of Embodiment 3 is used in a compressor for a car air conditioner, it can exhibit excellent sealing performance (sealability) and durability even under severe usage conditions of high speed, high pressure and high temperature. It is preferable.
[0174] また、実施形態 3の回転軸シールの製法によれば、シールエレメント 7の外周沿い に貫孔 28を形成し、円筒部 8と低圧側内フランジ部 9とを有する断面略 L字形の金属 製アウターケース 2の該内フランジ部 9に接触するように上記シールエレメント 7を嵌 め込み状として、金型のキヤビティ内に装入し、次に、流動化したゴム材料を上記キ ャビティ内に充填して、上記シール部 4をモールド成形すると同時に上記シールエレ メント 7の上記貫孔 28に充填したゴム材料にて上記アウターケース 2の内フランジ部 9 に接着させ、全体を一体ィ匕する方法であるので、(図 39及び図 40に矢印 Cにて示し た)煩雑な従来の力しめ加工を全く省略して、製造工程の簡略化とコストダウンを図る ことができ、かつ、カーエアコン用コンプレッサ等のシールとして、過酷な使用状況に 十分に対応できるものを、安定した品質をもって、多量生産可能となる。  [0174] Also, according to the manufacturing method of the rotary shaft seal of the third embodiment, the through-hole 28 is formed along the outer periphery of the seal element 7, and the cross section is substantially L-shaped having the cylindrical portion 8 and the low-pressure side inner flange portion 9. The sealing element 7 is fitted into the metal outer case 2 so as to be in contact with the inner flange portion 9 of the metal outer case 2 and is inserted into the mold cavity, and then the fluidized rubber material is placed inside the cavity. The seal portion 4 is molded, and at the same time, the rubber material filled in the through hole 28 of the seal element 7 is adhered to the inner flange portion 9 of the outer case 2 to integrally seal the whole. Therefore, the complicated conventional crimping process (indicated by arrow C in FIG. 39 and FIG. 40) can be omitted completely, and the manufacturing process can be simplified and the cost can be reduced. Compressor seal To, those sufficiently accommodate severe operating conditions, with stable quality, it is possible mass production.
[0175] また、シールエレメント 7の外周端縁 21に、切欠部 22又は凹凸部 23を形成し、円 筒部 8と低圧側内フランジ部 9とを有する断面略 L字形の金属製アウターケース 2の 該内フランジ部 9に接触するように上記シールエレメント 7を嵌め込み状として、金型 のキヤビティ内に装入し、次に、流動化したゴム材料を上記キヤビティ内に充填して、 シール部 4をモールド成形すると同時に、上記切欠部 22、又は、上記凹凸部 23の凹 部 23aに充填したゴム材料にて上記アウターケース 2の内フランジ部 9に接着させ、 全体を一体化する製法であるので、従来の(図 39及び図 40の矢印 Cにて示したよう な)かしめ加工を省略できて、製造工程を簡略ィ匕でき、過酷な使用状況に耐える高 性能シールを、安定した品質にて多量生産可能となる。 [0175] In addition, a metal outer case 2 having a substantially L-shaped cross section having a cylindrical portion 8 and a low pressure side inner flange portion 9 formed with a notch portion 22 or an uneven portion 23 on the outer peripheral edge 21 of the seal element 7. of The seal element 7 is fitted into the inner flange portion 9 so as to contact the inner flange portion 9, and is inserted into the mold cavity. Next, the fluidized rubber material is filled into the cavity, and the seal portion 4 is At the same time as molding, the rubber material filled in the notch 22 or the concave portion 23a of the concave and convex portion 23 is adhered to the inner flange portion 9 of the outer case 2 so that the whole is integrated. The conventional caulking process (as shown by arrow C in Fig. 39 and Fig. 40) can be omitted, the manufacturing process can be simplified, and high-performance seals that can withstand harsh usage conditions can be produced in large quantities with stable quality. Production becomes possible.
[0176] また、シールエレメント 7の外周端縁 21を、複数の辺 24を有する多角形状に形成し 、円筒部 8と低圧側内フランジ部 9とを有する断面略 L字形の金属製アウターケース 2 の該内フランジ部 9に接触するように上記シールエレメント 7を嵌め込み状として、金 型のキヤビティ内に装入し、次に、流動化したゴム材料を上記キヤビティ内に充填し て、シール部 4をモールド成形すると同時に、上記円筒部 8の円形内面 8cと上記外 周端縁 21の辺 24との間の間隙部 25に充填したゴム材料にて上記アウターケース 2 の内フランジ部 9に接着させ、全体を一体化する製法とすれば、従来の(図 39及び 図 40の矢印 Cにて示したような)力しめ加工を省略できて、製造工程を簡略化でき、 過酷な使用状況に耐える高性能シールを、安定した品質にて多量生産可能となる。 産業上の利用可能性 [0176] Further, the outer peripheral edge 21 of the seal element 7 is formed in a polygonal shape having a plurality of sides 24, and a metal outer case 2 having a substantially L-shaped cross section having a cylindrical portion 8 and a low-pressure side inner flange portion 9. The sealing element 7 is fitted into the inner flange portion 9 so as to be in contact with the inner flange portion 9 and is inserted into the mold cavity, and then the fluidized rubber material is filled into the cavity to form the seal portion 4. At the same time as molding, the rubber material filled in the gap portion 25 between the circular inner surface 8c of the cylindrical portion 8 and the side 24 of the outer peripheral edge 21 is adhered to the inner flange portion 9 of the outer case 2. If the manufacturing method integrates the whole, the conventional crimping process (as shown by arrow C in Fig. 39 and Fig. 40) can be omitted, the manufacturing process can be simplified, and it can withstand harsh usage conditions. High-performance seals can be mass-produced with stable quality It becomes ability. Industrial applicability
[0177] 本発明は、回転軸シール及びその製法、特にカーエアコン用コンプレッサ等に使 用される回転軸シール及びその製法にっ 、て有用である。 The present invention is useful for a rotary shaft seal and a method for manufacturing the rotary shaft seal, and particularly for a rotary shaft seal used for a compressor for a car air conditioner and the like and a method for manufacturing the rotary shaft seal.

Claims

請求の範囲 The scope of the claims
[1] 回転軸(29)に摺接するゴムリップ部(5)を有するゴム製シール部 (4)を備えた回転 軸シールに於て、  [1] In a rotary shaft seal provided with a rubber seal portion (4) having a rubber lip portion (5) in sliding contact with the rotary shaft (29),
上記ゴム製シール部 (4)が流体収納室側 (A)に対応する高圧対応面(27)の径方 向中間位置に凹周溝(18)を凹設して内周及び外周に沿って上記ゴムリップ部(5) 及び外周ゴム部(14)を夫々円環状に形成し、かつ、上記凹周溝(18)内に該ゴムリ ップ部(5)と上記外周ゴム部(14)を連結する径方向リブ部 (41)を設けたことを特徴 とする回転軸シール。  The rubber seal (4) has a concave groove (18) in the middle of the radial direction of the high pressure compatible surface (27) corresponding to the fluid storage chamber side (A). The rubber lip portion (5) and the outer peripheral rubber portion (14) are each formed in an annular shape, and the rubber lip portion (5) and the outer peripheral rubber portion (14) are connected in the concave peripheral groove (18). The rotary shaft seal is provided with a radial rib portion (41).
[2] 金属製アウターケース(2)と金属製インナーケース(3)と、回転軸(29)に摺接する ゴムリップ部(5)を有するゴム製シール部 (4)と、シールエレメント(7)とを、備えた回 転軸シールに於て、  [2] A metal outer case (2), a metal inner case (3), a rubber seal portion (4) having a rubber lip portion (5) slidingly contacting the rotating shaft (29), a seal element (7), In the rotary shaft seal provided with
上記シール部(4)のモールド成形にて、上記アウターケース(2)とシールエレメント (7)とインナーケース(3)と上記シール部 (4)とを一体構造とし、さらに、上記ゴム製シ ール部 (4)が流体収納室側 (A)に対応する高圧対応面(27)の径方向中間位置に 凹周溝(18)を凹設して内周及び外周に沿って上記ゴムリップ部(5)及び外周ゴム部 (14)を夫々円環状に形成し、かつ、上記凹周溝(18)内に該ゴムリップ部(5)と上記 外周ゴム部(14)を連結する径方向リブ部 (41)を設けたこと特徴とする回転軸シール  By molding the seal part (4), the outer case (2), the seal element (7), the inner case (3), and the seal part (4) are integrated, and the rubber sheet The groove portion (4) is provided with a concave groove (18) at the radial intermediate position of the high pressure corresponding surface (27) corresponding to the fluid storage chamber side (A), and the rubber lip portion ( 5) and the outer peripheral rubber part (14) are each formed into an annular shape, and the radial rib part connecting the rubber lip part (5) and the outer peripheral rubber part (14) in the concave peripheral groove (18) ( 41) provided with a rotary shaft seal
[3] 回転軸(29)に摺接するゴムリップ部(5)を有するゴム製シール部 (4)を備えた回転 軸シールに於て、 [3] In a rotary shaft seal provided with a rubber seal portion (4) having a rubber lip portion (5) in sliding contact with the rotary shaft (29),
上記ゴム製シール部 (4)が流体収納室側 (A)に対応する高圧対応面(27)の径方 向中間位置に凹周溝(18)を凹設して内周に沿って上記ゴムリップ部(5)を円環状に 形成すると共に、上記凹周溝(18)の深さ寸法 (N)、幅寸法 (S)、断面形状の内の少 なくとも 1つを、周方向に変化するように設定して、上記ゴムリップ部(5)の回転軸(29 )への接触面圧 (P)を周方向に不均等となるように構成したことを特徴とする回転軸 シール。  The rubber seal part (4) has a concave groove (18) formed in the radial intermediate position of the high pressure corresponding surface (27) corresponding to the fluid storage chamber side (A), and the rubber lip is formed along the inner periphery. And forming at least one of the depth dimension (N), width dimension (S), and cross-sectional shape of the concave circumferential groove (18) in the circumferential direction. A rotary shaft seal characterized in that the contact surface pressure (P) of the rubber lip portion (5) to the rotary shaft (29) is set to be uneven in the circumferential direction.
[4] 金属製アウターケース(2)と金属製インナーケース(3)と、回転軸(29)に摺接する ゴムリップ部(5)を有するゴム製シール部 (4)と、シールエレメント(7)とを、備えた回 転軸シールに於て、 [4] A metal outer case (2), a metal inner case (3), a rubber seal portion (4) having a rubber lip portion (5) slidingly contacting the rotating shaft (29), a seal element (7), , Prepared times In the shaft seal,
上記シール部(4)のモールド成形にて、上記アウターケース(2)とシールエレメント (7)とインナーケース(3)と上記シール部 (4)とを一体構造とし、さらに、上記ゴム製シ ール部 (4)が流体収納室側 (A)に対応する高圧対応面(27)の径方向中間位置に 凹周溝(18)を凹設して内周に沿って上記ゴムリップ部(5)を円環状に形成すると共 に、上記凹周溝(18)の深さ寸法 (N)、幅寸法 (S)、断面形状の内の少なくとも 1つを 、周方向に変化するように設定して、上記ゴムリップ部(5)の回転軸(29)への接触面 圧 (P)を周方向に不均等となるように構成したことを特徴とする回転軸シール。  By molding the seal part (4), the outer case (2), the seal element (7), the inner case (3), and the seal part (4) are integrated, and the rubber sheet The rubber lip (5) is formed along the inner periphery by forming a concave groove (18) at the radial intermediate position of the high pressure compatible surface (27) corresponding to the fluid storage chamber side (A). Is formed in an annular shape, and at least one of the depth dimension (N), width dimension (S), and cross-sectional shape of the concave circumferential groove (18) is set to change in the circumferential direction. The rotary shaft seal is characterized in that the contact surface pressure (P) of the rubber lip portion (5) to the rotary shaft (29) is uneven in the circumferential direction.
[5] 上記アウターケース(2)は円筒部(8)と低圧側内フランジ部(9)とを有する断面略 L 字形であり、上記インナーケース(3)は円筒部(10)と低圧側内フランジ部(11)とを 有する断面略 L字形であり、上記シールエレメント(7)を上記両内フランジ部(9) (11 )にて挾着保持すると共に、上記両円筒部 (8) (10)の嵌合間隙部 (G)に、ゴム層(1 3)が介在して上記アウターケース(2)とインナーケース(3)がー体ィ匕され、かつ、上 記シール部 (4)の主要部(30)は上記断面略 L字形のインナーケース(3)の内部に 配設すると共に上記凹周溝(18)を凹設しない仮想状態の上記高圧対応面 (27)は 、軸心直交面状に形成されて 、る請求項 2又は 4記載の回転軸シール。  [5] The outer case (2) has a substantially L-shaped cross section having a cylindrical portion (8) and a low pressure side inner flange portion (9), and the inner case (3) has a cylindrical portion (10) and a low pressure side inner portion. The flange portion (11) has a substantially L-shaped cross section, and the seal element (7) is held by the inner flange portions (9) and (11), and the cylindrical portions (8) (10 ) With the rubber layer (13) interposed between the fitting case (G) and the outer case (2) and the inner case (3) together, and the seal portion (4) The main part (30) is disposed in the inner case (3) having a substantially L-shaped cross section, and the high-pressure corresponding surface (27) in a virtual state where the concave circumferential groove (18) is not provided is orthogonal to the axis. The rotary shaft seal according to claim 2 or 4, wherein the rotary shaft seal is formed in a planar shape.
[6] 上記アウターケース(2)は円筒部(8)と低圧側内フランジ部(9)とを有する断面略 L 字形であり、上記インナーケース(3)は円筒部(10)と低圧側内フランジ部(11)とを 有する断面略 L字形であり、上記シールエレメント(7)を上記両内フランジ部(9) (11 )にて挾着保持すると共に、上記両円筒部 (8) (10)の嵌合間隙部 (G)に、上記シー ル部 (4)のモールド成形の際に浸入して形成されたゴム層(13)が介在して上記ァゥ ターケース(2)とインナーケース(3)が一体化され、かつ、上記シール部(4)の主要 部(30)は上記断面略 L字形のインナーケース(3)の内部に配設すると共に上記凹 周溝(18)を凹設しない仮想状態の上記高圧対応面 (27)は、軸心直交面状に形成 されて 、る請求項 2又は 4記載の回転軸シール。  [6] The outer case (2) has a substantially L-shaped cross section having a cylindrical portion (8) and a low pressure side inner flange portion (9), and the inner case (3) has a cylindrical portion (10) and a low pressure side inner portion. The flange portion (11) has a substantially L-shaped cross section, and the seal element (7) is held by the inner flange portions (9) and (11), and the cylindrical portions (8) (10 ) With a rubber layer (13) formed by intrusion during molding of the seal part (4), and the outer case (2) and the inner case (G). (3) is integrated, and the main part (30) of the seal part (4) is disposed inside the inner case (3) having a substantially L-shaped cross section and the concave groove (18) is recessed. The rotary shaft seal according to claim 2 or 4, wherein the high-pressure corresponding surface (27) in a virtual state that is not provided is formed in a shape orthogonal to the axial center.
[7] カーエアコン用コンプレッサに使用される請求項 1乃至 6のいずれかに記載の回転 軸シーノレ。  7. The rotating shaft scenery according to any one of claims 1 to 6, which is used for a compressor for a car air conditioner.
[8] 金属製アウターケース (2)と、金属製インナーケース(3)と、回転軸に摺接するゴム リップ部(5)を有するゴム製シール部 (4)と、上記回転軸に摺接するシールエレメント[8] Metal outer case (2), metal inner case (3), and rubber in sliding contact with the rotating shaft A rubber seal part (4) having a lip part (5) and a seal element slidably contacting the rotating shaft
(7)とを、備えた回転軸シールに於て、 (7) In the rotary shaft seal provided with
上記金属製アウターケース(2)の力しめ加工を省略して、上記アウターケース(2)と シールエレメント(7)とインナーケース(3)と上記シール部 (4)とを一体構造としたこと を特徴とする回転軸シール。  The outer casing (2), the sealing element (7), the inner case (3), and the sealing portion (4) are integrated into one structure by omitting the crimping of the metallic outer case (2). The featured rotating shaft seal.
[9] 上記アウターケース(2)の円筒部(8)の内周面と、上記インナーケース(3)の円筒 部(10)の外周面とが、嵌合にて一体ィ匕されている請求項 8記載の回転軸シール。 [9] The inner peripheral surface of the cylindrical portion (8) of the outer case (2) and the outer peripheral surface of the cylindrical portion (10) of the inner case (3) are integrally joined by fitting. Item 10. The rotary shaft seal according to Item 8.
[10] 金属製アウターケース(2)と、金属製インナーケース(3)と、回転軸に摺接するゴム リップ部(5)を有するゴム製シール部 (4)と、上記回転軸に摺接するシールエレメント[10] A metal outer case (2), a metal inner case (3), a rubber seal portion (4) having a rubber lip portion (5) slidably contacting the rotating shaft, and a seal slidably contacting the rotating shaft element
(7)とを、備えた回転軸シールに於て、 (7) In the rotary shaft seal provided with
上記金属製アウターケース(2)の力しめ加工を省略して、上記シール部 (4)のモー ルド成形にて、上記アウターケース(2)とシールエレメント(7)とインナーケース(3)と 上記シール部 (4)とを一体構造としたことを特徴とする回転軸シール。  By omitting the crimping of the metal outer case (2) and molding the seal part (4), the outer case (2), the seal element (7), the inner case (3) and the above A rotary shaft seal characterized in that the seal portion (4) is integrated.
[11] 上記アウターケース(2)の円筒部(8)の内周面と、上記インナーケース(3)の円筒 部(10)の外周面との間に、上記シール部 (4)のモールド成形の際に浸入して形成さ れたゴム層(13)が介在して上記アウターケース(2)とインナーケース(3)が一体化し て 、る請求項 10記載の回転軸シール。 [11] Molding of the seal portion (4) between the inner peripheral surface of the cylindrical portion (8) of the outer case (2) and the outer peripheral surface of the cylindrical portion (10) of the inner case (3) The rotary shaft seal according to claim 10, wherein the outer case (2) and the inner case (3) are integrated with each other through a rubber layer (13) formed by intrusion at the time.
[12] 上記アウターケース(2)は円筒部(8)と低圧側内フランジ部(9)とを有する断面略 L 字形であり、上記インナーケース(3)は円筒部(10)と低圧側内フランジ部(11)とを 有する断面略 L字形であり、上記シールエレメント(7)を上記両内フランジ部(9) (11[12] The outer case (2) has a substantially L-shaped cross section having a cylindrical portion (8) and a low pressure side inner flange portion (9), and the inner case (3) has a cylindrical portion (10) and a low pressure side inner portion. It has a substantially L-shaped cross section with a flange portion (11), and the sealing element (7) is connected to both inner flange portions (9) (11
)にて挾着保持すると共に、上記アウターケース (2)とインナーケース(3)が一体化し て 、る請求項 10記載の回転軸シール。 The rotary shaft seal according to claim 10, wherein the outer case (2) and the inner case (3) are integrated with each other.
[13] カーエアコン用コンプレッサに使用される請求項 8乃至 11のいずれかに記載の回 転軸シーノレ。 [13] The rotating shaft scenery according to any one of claims 8 to 11, which is used for a compressor for a car air conditioner.
[14] 金属製アウターケース(2)と、金属製インナーケース(3)と、シールエレメント(7)を 、該アウターケース(2)とインナーケース(3)にて上記シールエレメント(7)を挾着状と して、金型のキヤビティ内に装入し、次に、流動化したゴム材料を上記キヤビティ内に 充填して、固化させ、シール部 (4)をモールド成形すると同時に、上記アウターケー ス(2)とインナーケース(3)とシールエレメント(7)とを一体化することを特徴とする回 転軸シールの製法。 [14] A metal outer case (2), a metal inner case (3), and a seal element (7). The outer case (2) and the inner case (3) As a fitting, it is inserted into the mold cavity, and then the fluidized rubber material is filled into the cavity and solidified to mold the seal portion (4), and at the same time, the outer casing. A method for producing a rotary shaft seal, characterized by integrating the sleeve (2), the inner case (3) and the seal element (7).
[15] 金属製アウターケース(2)と、金属製インナーケース(3)と、回転軸に摺接するゴム リップ部(5)を有するゴム製シール部 (4)と、上記回転軸に摺接するシールエレメント (7)とを、備えた回転軸シールに於て、  [15] A metal outer case (2), a metal inner case (3), a rubber seal portion (4) having a rubber lip portion (5) slidably contacting the rotating shaft, and a seal slidably contacting the rotating shaft In the rotary shaft seal provided with the element (7),
上記金属製アウターケース(2)の力しめ加工を省略して、上記アウターケース(2)と シールエレメント(7)とインナーケース(3)と上記シール部 (4)とを一体構造とし、さら に、上記アウターケース(2)の円筒部(8)の内周面と、上記インナーケース(3)の円 筒部(10)の外周面との間に、高圧側 (A)に低圧側 (B)よりも大きく形成された第 1間 隙部位 (54)を有し、該第 1間隙部位 (54)にゴム層 (57)が介在して上記アウターケ ース(2)とインナーケース(3)がー体ィ匕していることを特徴とする回転軸シール。  The above-mentioned outer case (2), seal element (7), inner case (3), and seal part (4) are integrated into a single structure, eliminating the need for crimping of the metal outer case (2). Between the inner peripheral surface of the cylindrical portion (8) of the outer case (2) and the outer peripheral surface of the cylindrical portion (10) of the inner case (3), the high pressure side (A) is connected to the low pressure side (B ) Having a first gap portion (54) formed larger than the outer case (2) and the inner case (3) with a rubber layer (57) interposed in the first gap portion (54). A rotary shaft seal characterized in that it has a large body.
[16] 上記第 1間隙部位 (54)の第 1間隙寸法 (T )は、低圧側 (B)から高圧側 (A)へしだ  [16] The first gap dimension (T) of the first gap portion (54) is from the low pressure side (B) to the high pressure side (A).
1  1
Vヽに増大するように形成されて!、る請求項 15記載の回転軸シール。  The rotary shaft seal according to claim 15, wherein the rotary shaft seal is formed so as to increase to V ヽ.
[17] 金属製アウターケース(2)と、金属製インナーケース(3)と、回転軸に摺接するゴム リップ部(5)を有するゴム製シール部 (4)と、上記回転軸に摺接するシールエレメント (7)とを、備えた回転軸シールに於て、 [17] A metal outer case (2), a metal inner case (3), a rubber seal portion (4) having a rubber lip portion (5) slidably contacting the rotating shaft, and a seal slidably contacting the rotating shaft In the rotary shaft seal provided with the element (7),
上記金属製アウターケース(2)の力しめ加工を省略して、上記アウターケース(2)と シールエレメント(7)とインナーケース(3)と上記シール部 (4)とを一体構造とし、さら に、上記アウターケース(2)の円筒部(8)の高圧側端部(70)と上記インナーケース( 3)の円筒部( 10)の高圧側端部(60)の一方が他方よりも高圧側 (A)になるように段 違 、状に配設したことを特徴とする回転軸シール。  The above-mentioned outer case (2), seal element (7), inner case (3), and seal part (4) are integrated into a single structure, eliminating the need for crimping of the metal outer case (2). One of the high pressure side end (70) of the cylindrical portion (8) of the outer case (2) and the high pressure side end (60) of the cylindrical portion (10) of the inner case (3) is higher than the other. (A) A rotating shaft seal characterized by being arranged in a different shape so as to become (A).
[18] 金属製アウターケース(2)と、金属製インナーケース(3)と、回転軸に摺接するゴム リップ部(5)を有するゴム製シール部 (4)と、上記回転軸に摺接するシールエレメント (7)とを、備えた回転軸シールに於て、 [18] A metal outer case (2), a metal inner case (3), a rubber seal portion (4) having a rubber lip portion (5) slidably contacting the rotating shaft, and a seal slidably contacting the rotating shaft In the rotary shaft seal provided with the element (7),
上記金属製アウターケース(2)の力しめ加工を省略して、上記アウターケース(2)と シールエレメント(7)とインナーケース(3)と上記シール部 (4)とを一体構造とし、さら に、上記アウターケース(2)の円筒部(8)の高圧側端面 (8a)よりも上記インナーケ一 ス(3)の円筒部(10)の高圧側端部(60)を高圧側 (A)へ突出させて、上記アウター ケース(2)の円筒部(8)の内周面と、上記インナーケース(3)の円筒部( 10)の外周 面の低圧側半部(58)との間に、上記シール部 (4)を形成する際に浸入して形成さ れたゴム層(13)が介在して上記アウターケース(2)とインナーケース(3)が一体化し て 、ることを特徴とする回転軸シール。 The above-mentioned outer case (2), seal element (7), inner case (3), and seal part (4) are integrated into a single structure, eliminating the need for crimping of the metal outer case (2). From the high pressure side end face (8a) of the cylindrical portion (8) of the outer case (2), move the high pressure side end (60) of the cylindrical portion (10) of the inner case (3) to the high pressure side (A). Let the outer Between the inner peripheral surface of the cylindrical portion (8) of the case (2) and the low pressure side half (58) of the outer peripheral surface of the cylindrical portion (10) of the inner case (3), the seal portion (4) The rotary shaft seal is characterized in that the outer case (2) and the inner case (3) are integrated by interposing a rubber layer (13) formed by intrusion when forming the seal.
[19] カーエアコン用コンプレッサに使用される請求項 15乃至 18のいずれかに記載の回 転軸シーノレ。 [19] The rotating shaft scenery according to any one of claims 15 to 18, which is used for a compressor for a car air conditioner.
[20] 金属製インナーケース(3)の外周面の高圧側半部(59)が露出状となるように金属 製アウターケース(2)を外嵌状に嵌合して、該アウターケース(2)とインナーケース(3 )にてシールエレメント(7)を挾着状として、金型のキヤビティ内に装入し、次に、流動 化したゴム材料を上記キヤビティ内に充填して、固化させ、シール部 (4)をモールド 成形すると同時に、上記アウターケース(2)とインナーケース(3)とシールエレメント( 7)とを一体化することを特徴とする回転軸シールの製法。  [20] Fit the metal outer case (2) in an outer fitting shape so that the high-pressure side half (59) of the outer peripheral surface of the metal inner case (3) is exposed, and the outer case (2 ) And the inner case (3), and the sealing element (7) is fitted into the mold cavity, and then the fluidized rubber material is filled into the cavity and solidified. A method for producing a rotary shaft seal, wherein the outer case (2), the inner case (3) and the seal element (7) are integrated at the same time as the seal portion (4) is molded.
[21] 金属製アウターケース(2)と、回転軸に摺接するゴムリップ部(5)を有するゴム製シ ール部 (4)と、上記回転軸に摺接するシールエレメント(7)とをもって、構成され、上 記アウターケース(2)に内嵌されるインナーケースを省略して、上記シール部 (4)の モールド成形にて、上記アウターケース(2)とシールエレメント(7)とシール部(4)とを 、一体構造としたことを特徴とする回転軸シール。  [21] Consists of a metal outer case (2), a rubber seal portion (4) having a rubber lip portion (5) slidably contacting the rotating shaft, and a seal element (7) slidably contacting the rotating shaft. The inner case fitted into the outer case (2) is omitted, and the outer case (2), the seal element (7), and the seal portion (4 ) And an integral structure.
[22] 上記アウターケース(2)は円筒部(8)と低圧側内フランジ部(9)とを有する断面略 L 字形であり、さらに、上記シールエレメント(7)が上記内フランジ部(9)に対応する部 位に貫孔(28)を形成して、上記モールド成形にて上記シール部 (4)のゴムが上記 貫孔(28)に充填されて上記内フランジ部(9)に接着されている請求項 21記載の回 転軸シーノレ。  [22] The outer case (2) has a substantially L-shaped cross section having a cylindrical portion (8) and a low-pressure side inner flange portion (9), and the seal element (7) is connected to the inner flange portion (9). A through hole (28) is formed in a portion corresponding to the above, and the rubber of the seal portion (4) is filled into the through hole (28) by the molding and bonded to the inner flange portion (9). The rotating shaft sheath according to claim 21.
[23] 上記アウターケース(2)は円筒部(8)と低圧側内フランジ部(9)とを有する断面略 L 字形であり、さらに、上記シールエレメント(7)が上記円筒部(8)と内フランジ部(9)と の隅部(20)に対応する外周端縁 (21)に、切欠部(22)又は凹凸部(23)が形成され て、上記モールド成形にて上記シール部 (4)のゴム力 上記切欠部(22)、又は、上 記凹凸部(23)の凹部(23a)に充填されて、上記内フランジ部(9)に接着されている 請求項 21記載の回転軸シール。 [23] The outer case (2) has a substantially L-shaped cross section having a cylindrical portion (8) and a low pressure side inner flange portion (9), and the seal element (7) is connected to the cylindrical portion (8). A notch (22) or a concavo-convex part (23) is formed on the outer peripheral edge (21) corresponding to the corner (20) with the inner flange part (9), and the sealing part (4 The rotating shaft seal according to claim 21, wherein the notched portion (22) or the concave portion (23a) of the concave-convex portion (23) is filled and bonded to the inner flange portion (9). .
[24] 上記アウターケース(2)は円筒部(8)と低圧側内フランジ部(9)とを有する断面略 L 字形であり、さらに、上記シールエレメント(7)が上記円筒部(8)と内フランジ部(9)と の隅部(20)に対応する外周端縁 (21)が、多角形状に形成されて、該多角形状の 辺(24)と上記円筒部(8)の円形内面(8c)との間の間隙部(25)に、上記モールド成 形にて上記シール部 (4)のゴムが、充填されて、上記内フランジ部(9)に接着されて V、る請求項 21記載の回転軸シール。 [24] The outer case (2) has a substantially L-shaped cross section having a cylindrical portion (8) and a low pressure side inner flange portion (9), and the seal element (7) is connected to the cylindrical portion (8). The outer peripheral edge (21) corresponding to the corner (20) of the inner flange (9) is formed in a polygonal shape, and the side (24) of the polygonal shape and the circular inner surface ( The rubber part of the seal part (4) is filled in the gap part (25) between the inner flange part (9) and the inner flange part (9) by filling the gap part (25) with the inner flange part (9). The rotary shaft seal described.
[25] 上記アウターケース(2)は円筒部(8)と低圧側内フランジ部(9)とを有する断面略 L 字形であって、上記シール部(4)は断面が Uパッキン形であり、該 Uパッキン形の該 シール部 (4)の外周面(29)近傍に低圧側(B)から上記アウターケース(2)の円筒部 (8)を差込み状に埋設された一体構造であり、上記ゴムリップ部(5)の接触内周端縁 (5a)は上記円筒部(8)の高圧側端面 (8a)と略同一の軸心直交面 (P)上、又は、該 軸心直交面 (P)よりも低圧側に、位置している請求項 21又は 22記載の回転軸シー ル。  [25] The outer case (2) has a substantially L-shaped cross section having a cylindrical portion (8) and a low pressure side inner flange portion (9), and the seal portion (4) has a U packing shape in cross section. The U-packing seal part (4) has an integral structure in which the cylindrical part (8) of the outer case (2) is embedded in the vicinity of the outer peripheral surface (29) of the seal part (4) from the low pressure side (B). The contact inner peripheral edge (5a) of the rubber lip part (5) is on the same axis orthogonal plane (P) as the high pressure side end face (8a) of the cylindrical part (8) or the axis orthogonal plane (P 23. The rotary shaft seal according to claim 21 or 22, wherein the rotary shaft seal is located on a lower pressure side than.
[26] カーエアコン用コンプレッサに使用される請求項 21乃至 25のいずれかに記載の回 転軸シーノレ。  [26] The rotating shaft scenery according to any one of claims 21 to 25, which is used in a compressor for a car air conditioner.
[27] シールエレメント(7)の外周沿いに貫孔(28)を形成し、円筒部(8)と低圧側内フラ ンジ部(9)とを有する断面略 L字形の金属製アウターケース(2)の該内フランジ部(9 )に接触するように上記シールエレメント(7)を嵌め込み状として、金型のキヤビティ内 に装入し、次に、流動化したゴム材料を上記キヤビティ内に充填して、上記シール部 (4)をモールド成形すると同時に上記シールエレメント(7)の上記貫孔(28)に充填し たゴム材料にて上記アウターケース(2)の内フランジ部(9)に接着させ、全体を一体 化することを特徴とする回転軸シールの製法。  [27] A metal outer case with a substantially L-shaped cross section (2) that has a through hole (28) along the outer periphery of the seal element (7) and has a cylindrical part (8) and a low-pressure side inner flange part (9). The sealing element (7) is inserted into the mold cavity so as to be in contact with the inner flange portion (9), and then the fluidized rubber material is filled into the cavity. The seal portion (4) is molded and simultaneously adhered to the inner flange portion (9) of the outer case (2) with a rubber material filled in the through hole (28) of the seal element (7). A method for producing a rotary shaft seal characterized by integrating the whole.
[28] シールエレメント(7)の外周端縁 (21)に、切欠部(22)又は凹凸部(23)を形成し、 円筒部(8)と低圧側内フランジ部(9)とを有する断面略 L字形の金属製アウターケー ス(2)の該内フランジ部(9)に接触するように上記シールエレメント(7)を嵌め込み状 として、金型のキヤビティ内に装入し、次に、流動化したゴム材料を上記キヤビティ内 に充填して、シール部 (4)をモールド成形すると同時に、上記切欠部(22)、又は、上 記凹凸部(23)の凹部(23a)に充填したゴム材料にて上記アウターケース(2)の内フ ランジ部(9)に接着させ、全体を一体化することを特徴とする回転軸シールの製法。 シールエレメント(7)の外周端縁 (21)を、複数の辺(24)を有する多角形状に形成 し、円筒部(8)と低圧側内フランジ部(9)とを有する断面略 L字形の金属製アウター ケース(2)の該内フランジ部(9)に接触するように上記シールエレメント(7)を嵌め込 み状として、金型のキヤビティ内に装入し、次に、流動化したゴム材料を上記キヤビテ ィ内に充填して、シール部 (4)をモールド成形すると同時に、上記円筒部(8)の円形 内面(8c)と上記外周端縁 (21)の辺(24)との間の間隙部(25)に充填したゴム材料 にて上記アウターケース(2)の内フランジ部(9)に接着させ、全体を一体化することを 特徴とする回転軸シールの製法。 [28] A cross-section having a cylindrical part (8) and a low-pressure side inner flange part (9) formed in the outer peripheral edge (21) of the sealing element (7) with a notch part (22) or an uneven part (23) Insert the seal element (7) into the mold cavity so that it comes into contact with the inner flange (9) of the substantially L-shaped metal outer case (2). The above rubber material is filled into the cavity and the seal portion (4) is molded, and at the same time, the rubber material is filled into the notch (22) or the recess (23a) of the uneven portion (23). In the outer case (2) A method for producing a rotary shaft seal, characterized by bonding to the lunge (9) and integrating the whole. The outer peripheral edge (21) of the sealing element (7) is formed in a polygonal shape having a plurality of sides (24), and has a substantially L-shaped cross section having a cylindrical portion (8) and a low pressure side inner flange portion (9). The sealing element (7) is fitted into the metal outer case (2) so that it comes into contact with the inner flange (9), inserted into the mold cavity, and then fluidized rubber. Filling the cavity with the material and molding the seal part (4), at the same time, between the circular inner surface (8c) of the cylindrical part (8) and the side (24) of the outer peripheral edge (21). A method for producing a rotary shaft seal, characterized in that a rubber material filled in a gap portion (25) is bonded to the inner flange portion (9) of the outer case (2) and integrated as a whole.
PCT/JP2006/324746 2005-12-13 2006-12-12 Seal for rotating shaft and method of producing the same WO2007069597A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005358839A JP2007162802A (en) 2005-12-13 2005-12-13 Rotating shaft seal and its manufacturing method
JP2005-358839 2005-12-13
JP2005-358840 2005-12-13
JP2005358838A JP2007162801A (en) 2005-12-13 2005-12-13 Rotating shaft seal
JP2005358840A JP2007162803A (en) 2005-12-13 2005-12-13 Rotating shaft seal and its manufacturing method
JP2005-358838 2005-12-13
JP2006-050096 2006-02-27
JP2006050096A JP2007225087A (en) 2006-02-27 2006-02-27 Seal for rotary shaft and method of producing the same

Publications (1)

Publication Number Publication Date
WO2007069597A1 true WO2007069597A1 (en) 2007-06-21

Family

ID=38162905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324746 WO2007069597A1 (en) 2005-12-13 2006-12-12 Seal for rotating shaft and method of producing the same

Country Status (1)

Country Link
WO (1) WO2007069597A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101952624A (en) * 2008-02-20 2011-01-19 卡尔·弗罗伊登伯格公司 Sealing arrangement and radial shaft seal made therefrom
EP3842671B1 (en) * 2019-12-23 2024-05-15 KACO GmbH + Co. KG Shaft seal, in particular radial shaft seal, with at least one sealing element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10159985A (en) * 1996-11-26 1998-06-16 Koyo Seiko Co Ltd Oil seal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10159985A (en) * 1996-11-26 1998-06-16 Koyo Seiko Co Ltd Oil seal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101952624A (en) * 2008-02-20 2011-01-19 卡尔·弗罗伊登伯格公司 Sealing arrangement and radial shaft seal made therefrom
CN101952624B (en) * 2008-02-20 2014-10-08 卡尔·弗罗伊登伯格公司 Sealing arrangement and radial shaft seal made therefrom
EP3842671B1 (en) * 2019-12-23 2024-05-15 KACO GmbH + Co. KG Shaft seal, in particular radial shaft seal, with at least one sealing element

Similar Documents

Publication Publication Date Title
JP5037682B2 (en) Lip type seal
JP5374591B2 (en) Lip type seal
JP5216084B2 (en) Lip type seal
US7780172B2 (en) Rotation shaft seal
JP5455911B2 (en) PRECISION POWDER METAL PART, ASSEMBLING PRECISION POWDER METAL PART
US20010030398A1 (en) Shaft seal
WO2018221727A1 (en) Sealing device
WO2007069597A1 (en) Seal for rotating shaft and method of producing the same
JP4822897B2 (en) Rotating shaft seal
JP2007162801A (en) Rotating shaft seal
JP2003097723A (en) Rotation shaft seal
JP4330875B2 (en) Sealing device
JP4872152B2 (en) Seal ring
US20200278028A1 (en) Sealing apparatus
JP2007162803A (en) Rotating shaft seal and its manufacturing method
JP5897693B2 (en) Shaft sealing structure
JP4559038B2 (en) Rotating shaft seal
JP2007162802A (en) Rotating shaft seal and its manufacturing method
JP2007225087A (en) Seal for rotary shaft and method of producing the same
JPH0615867B2 (en) Scroll compressor
WO2012017726A1 (en) Lip-type seal
JP2015161334A (en) rotary shaft seal
JP2005054827A (en) Sealing device
JP7285683B2 (en) Sealing device and sealing structure
KR102218831B1 (en) Seal for universal joint and injection apparatus thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834501

Country of ref document: EP

Kind code of ref document: A1