WO2007063993A1 - 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 - Google Patents

含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2007063993A1
WO2007063993A1 PCT/JP2006/324113 JP2006324113W WO2007063993A1 WO 2007063993 A1 WO2007063993 A1 WO 2007063993A1 JP 2006324113 W JP2006324113 W JP 2006324113W WO 2007063993 A1 WO2007063993 A1 WO 2007063993A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
organic
carbon atoms
Prior art date
Application number
PCT/JP2006/324113
Other languages
English (en)
French (fr)
Inventor
Hiroshi Yamamoto
Masahide Matsuura
Mineyuki Kubota
Masahiro Kawamura
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to EP06833883A priority Critical patent/EP1956007A1/en
Publication of WO2007063993A1 publication Critical patent/WO2007063993A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B

Definitions

  • the present invention relates to a novel nitrogen-containing heterocyclic derivative, an organic electoluminescence (EL) device material using the same, and an organic EL device, and particularly, a nitrogen-containing compound useful as a component of the organic EL device.
  • the present invention relates to an organic EL device having a high luminous efficiency while using a heterocyclic derivative in at least one organic compound layer at a low voltage.
  • an EL element is composed of a light emitting layer and a pair of counter electrodes sandwiching the layer.
  • light emission when an electric field is applied between both electrodes, electrons are injected from the cathode side, and positive holes are injected from the anode side. Furthermore, the electrons recombine with holes in the light emitting layer to generate an excited state, and energy is emitted as light when the excited state returns to the ground state.
  • Patent Document 1 discloses an element using a compound having a benzimidazole structure as a light-emitting material, and the element emits light at a luminance of 200 cd / m 2 at a voltage of 9 V. Is described. Patent Document 2 describes a compound having a benzimidazole ring and an anthracene skeleton. However, there is a demand for light emission luminance and light emission efficiency higher than those of organic EL devices using these compounds.
  • Patent Document 1 US Pat. No. 5,645,948
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-38141 Disclosure of the invention
  • the present invention has been made to solve the above-mentioned problems, and provides a novel nitrogen-containing heterocyclic derivative useful as a constituent component of an organic EL device.
  • the nitrogen-containing heterocyclic derivative is an organic compound.
  • An object of the present invention is to realize an organic EL element having a high light emission luminance and high light emission efficiency while being low in voltage by being used in at least one layer.
  • the present inventors use a novel nitrogen-containing heterocyclic derivative having a specific structure in at least one organic compound layer of an organic EL device. As a result, it was found that low voltage and high efficiency of the organic EL element can be achieved, and the present invention has been completed.
  • the present invention provides a nitrogen-containing heterocyclic derivative represented by the following general formula (1).
  • Ri to R 5 are a hydrogen atom, a substituted or unsubstituted aryl group having 5 to 60 nuclear atoms, a substituted or unsubstituted heteroaryl having 5 to 60 nuclear atoms Group, substituted or unsubstituted pyridyl group, substituted or unsubstituted quinolyl group, substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms, substituted Or an unsubstituted aralkyl group having 6 to 50 nuclear atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aryl group having 5 to 50 nuclear atoms Substituted with an oxy group, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms,
  • R a is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms
  • Adjacent groups of R 2 to R 5 may be bonded to each other to form an aromatic ring.
  • At least one of Ri to R 5 is a substituent represented by the following general formula (2).
  • (L is a substituted or unsubstituted arylene group having 6 to 60 carbon atoms, a substituted or unsubstituted pyridylene group, a substituted or unsubstituted quinolylene group, or a substituted or unsubstituted fluorenylene group.
  • Ar 1 is a substituted or unsubstituted arylene group having 6 to 60 carbon atoms, a substituted or unsubstituted pyridylene group, or a substituted or unsubstituted quinolylene group,
  • Ar 2 is a hydrogen atom, a substituted or unsubstituted aryl group having 5 to 60 nuclear atoms, a substituted or unsubstituted pyridyl group, a substituted or unsubstituted quinolyl group, a substituted or unsubstituted carbon number of 1 to 50.
  • the present invention also has a single-layer or multi-layer force including at least a light-emitting layer between the cathode and the anode.
  • a single-layer or multi-layer force including at least a light-emitting layer between the cathode and the anode.
  • an organic EL device in which an organic thin film layer is sandwiched, at least one layer of the organic thin film layer is provided.
  • the organic EL device contains the nitrogen-containing heterocyclic derivative alone or as a component of a mixture.
  • the nitrogen-containing heterocyclic derivative of the present invention and the organic EL device using the same are excellent in electron transport property, high light emission efficiency and high light emission efficiency at a low voltage.
  • the present invention provides a nitrogen-containing heterocyclic derivative represented by the following general formula (1).
  • Ri to R 5 are a hydrogen atom, a substituted or unsubstituted aryl group having 5 to 60 nuclear atoms, and a substituted or unsubstituted heteroaryl group having 5 to 60 nuclear atoms.
  • L is a substituted or unsubstituted arylene group having 6 to 60 carbon atoms, a substituted or unsubstituted pyridylene group, a substituted or unsubstituted quinolyl-
  • Ar 1 is a substituted or unsubstituted arylene group having 6 to 60 carbon atoms, a substituted or unsubstituted pyridylene group or a substituted or unsubstituted quinolyl group.
  • Ar 2 is a hydrogen atom, a substituted or unsubstituted aryl group having 5 to 60 nuclear atoms, a substituted or unsubstituted pyridyl group, a substituted or unsubstituted quinolyl group, a substituted or unsubstituted carbon.
  • the present invention provides a nitrogen-containing heterocyclic derivative in which the compound represented by the general formula (1) is a compound represented by the following general formula (1a) or (1b).
  • the above-and Ar 2 aryl groups and heteroaryl groups include, for example, a phenol group, a 1 naphthyl group, a 2 naphthyl group, a 1 anthryl group, a 2 anthryl group, a 9-anthryl group, 1 Phenanthryl group, 2 Phenanthryl group, 3 Phenanthryl group, 4 Phenanthryl group, 9 Phenanthryl group, 1 Naphthasel group, 2 Naphthasel group, 9-Naphthal group, 1-pyrole group, 2 Pyre group Group, 4-pyrole group, 2-biphenyl group, 3-biphenyl group, 4-biphenyl group, p-telphyl group 4-pyl group, p-telphyl group 3-yl group , P-Terhu-Lue 2-yl group, m-Terhu-Lu 4-Yle group, m-Terhu-Lu 3-yl group ,
  • a phenyl group, a naphthyl group, a biphenyl group, an anthracenyl group, a phenanthryl group, a pyraryl group, a chrysyl group, a fluoranthuric group, and a fluorine group are preferable.
  • Said ⁇ , And R a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms includes methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, and n-pentyl group.
  • substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms of Ar 2 include, for example, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a 4-methylcyclohexyl group.
  • Examples of the substituted or unsubstituted aralkyl group having 6 to 50 nucleus atoms of Ri to R 5 and Ar 2 include benzyl group, 1-phenyl group, 2-phenyl group, 1-phenyl isopropyl group.
  • the substituted or unsubstituted aryloxy group having 5 to 50 nucleus atoms of Ri to R 5 and Ar 2 is represented as OY ′, and examples of Y ′ include the same examples as those described for the aryl group. I can get lost.
  • the aryl or thio group having 5 to 50 substituted or unsubstituted nuclear atoms of Ri to R 5 and Ar 2 is represented as SY ′, and examples of Y ′ include the same examples as those described for the aryl group. I can get lost.
  • the substituted or unsubstituted C1-C50 alkoxycarbo group of Ri to R 5 and Ar 2 is a group represented by COOY, and examples of Y are those described for the alkyl group. The same example is given.
  • aryl group in the amino group substituted by the Ri to R 5 and Ar 2 substituted or unsubstituted aryl groups having 5 to 50 nuclear atoms are the same as those described for the aryl group. Is mentioned.
  • halogen atom of Ri to R 5 and Ar 2 examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a pair of adjacent groups R 2 to R 5 may be bonded to each other to form an aromatic ring.
  • the ring formed at this time is preferably a 5-membered ring or a 6-membered ring, particularly a 6-membered ring.
  • an arylene group having 6 to 60 carbon atoms of L and Ar 1 ! ⁇ 1 to! ⁇ 5 and a divalent substituent formed by removing one hydrogen atom from the substituents described for the aryl group of Ar 2 preferably a phenylene group, a naphthylene group, a biphenyl group.
  • the pyridylene group and quinolinylene group of L and Ar 1 are divalent substituents that can be obtained by further removing one hydrogen atom from the pyridyl group or quinolinyl group.
  • the fluorenylene group of L is a divalent substituent formed by removing one hydrogen atom from the fluorene group.
  • the nitrogen-containing heterocyclic derivative of the present invention is preferably a light-emitting material for an organic EL element, an electron injection material for an organic EL element, or an electron transport material for an organic EL element, which is preferably an organic EL element material. preferable.
  • the organic EL device of the present invention is an organic EL device in which an organic thin film layer composed of one or more layers including at least a light emitting layer is sandwiched between a cathode and an anode, and at least one layer of the organic thin film layer is Contains nitrogen-containing heterocyclic derivatives alone or as a component of a mixture.
  • the organic thin film layer preferably has an electron transport layer, and the electron transport layer preferably contains the nitrogen-containing heterocyclic derivative of the present invention alone or as a component of a mixture. Furthermore, the electron transport layer preferably contains a nitrogen-containing heterocyclic derivative as a main component.
  • the light emitting layer preferably contains a nitrogen-containing heterocyclic derivative, an arylamine compound, and Z or a styrylamine compound.
  • arylamine compounds include compounds represented by the following general formula (A), and examples of styrylamine compounds include compounds represented by the following general formula (B).
  • Ar represents a fuel, a bifuel, a terpheal, a stilbene, a distil
  • Luaryl force is a selected group, Ar and Ar are each a hydrogen atom or a carbon number.
  • Ar to Ar may be substituted.
  • p is an integer from 1 to 4.
  • Ar and Z or Ar are substituted with a styryl group.
  • the aromatic group having 6 to 20 carbon atoms is preferably a phenyl group, a naphthyl group, an anthracyl group, a phenanthryl group, a terphenyl group, or the like.
  • Ar to Ar are optionally substituted nuclear carbon atoms 5
  • aryl groups having 5 to 40 nuclear atoms include phenyl, naphthyl, anthracenyl, phenanthryl, pyrenyl, coloninole, biphenyl, terphenyl, pyrrolyl, furanyl, thiophenyl, benzothiophenyl, oxadiazolyl, Preference is given to diphenylanthracenyl, indolyl, carbazolyl, pyridyl, benzoquinolyl, fluoranthenyl, isenaftfluoroolturyl, stilbene and the like.
  • the aryl group having 5 to 40 nucleus atoms may be further substituted with a substituent.
  • Examples of the preferable substituent include an alkyl group having 1 to 6 carbon atoms (ethyl group, methyl group, i-propyl group). , N-propyl group, s butyl group, t-butyl group, pentyl group, hexyl group, cyclopentyl group, cyclohexyl group, etc.), C1-C6 alkoxy group (ethoxy group, methoxy group, i-propoxy) Group, n-propoxy group, s butoxy group, t butoxy group, pentoxy group, hexyloxy group, cyclopentoxy group, cyclohexyloxy group, etc.), aryl group having 5 to 40 nuclear atoms, and 5 to 40 nuclear atoms An aryl group substituted with an aryl group of the above, an ester group having an aryl group of 5 to 40 nuclear atoms, an ester group having an alkyl group of 1 to 6 carbon atoms,
  • the force for which the configuration of (8) is preferably used is not limited to these.
  • the nitrogen-containing heterocyclic derivative of the present invention may be used in any organic thin film layer of an organic EL device.
  • it can be used in an emission band or an electron transport band, and particularly preferably an electron injection layer, an electron transport layer and a light emission. Used for layers.
  • the organic EL device of the present invention is manufactured on a light-transmitting substrate.
  • the translucent substrate mentioned here is a substrate that supports the organic EL device, and a smooth substrate with a light transmittance of 50% or more in the visible region of 400 to 700 nm is preferable.
  • soda Examples include lime glass, norlium strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the anode of the organic EL device of the present invention has a function of injecting holes into the hole transport layer or the light emitting layer, and it is effective to have a work function of 4.5 eV or more.
  • Specific examples of the anode material used in the present invention include indium tin oxide alloy (ITO), acid-tin tin (NE SA), indium-zinc oxide (IZO), gold, silver, platinum, copper, and the like. Can be mentioned.
  • the anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance of the anode for light emission is greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ or less.
  • the film thickness of the anode is a force depending on the material. Usually, it is selected in the range of 10 nm to l ⁇ m, preferably 10 to 200 nm.
  • the light emitting layer of the organic EL device has the following functions (1) to (3).
  • Injection function Function that can inject holes from the anode or hole injection layer when an electric field is applied, and can inject electrons from the cathode or electron injection layer
  • Transport function Function to move injected charges (electrons and holes) by the force of electric field
  • Light emission function A function to provide a field for recombination of electrons and holes and connect this to light emission.However, there is no difference between the ease of hole injection and the ease of electron injection.
  • the transport capacity expressed by the mobility of holes and electrons may be large or small, but it is preferable to move one of the charges.
  • the light emitting layer is particularly preferably a molecular deposited film.
  • the molecular deposited film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidifying from a material compound in a solution state or a liquid phase state.
  • this molecular deposited film can be distinguished from the thin film (molecular accumulated film) formed by the LB method by the difference in aggregated structure and higher-order structure and the functional difference resulting from it.
  • a binder such as rosin and a material compound are dissolved in a solvent to form a solution, which is then thin-filmed by spin coating or the like.
  • the light emitting layer can also be formed by twisting.
  • a known light emitting material other than the light emitting material comprising the nitrogen-containing heterocyclic derivative of the present invention may be contained in the light emitting layer as desired, as long as the object of the present invention is not impaired.
  • a light emitting layer containing another known light emitting material may be laminated on the light emitting layer containing the light emitting material comprising the nitrogen-containing heterocyclic derivative of the present invention.
  • Examples of the light-emitting material or doping material that can be used in the light-emitting layer together with the nitrogen-containing heterocyclic derivative of the present invention include, for example, anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, taricene, fluorescein, perylene, phthalate perylene, Naphthal Perylene, Perinone, Phthal Perinone, Naphthal Perinone, Diphenyl Butadiene, Tetraphenyl Butagen, Coumarin, Oxadiazole, Ardazine, Bisbenzoxazoline, Bisstyryl, Pyrazine, Cyclopentagen, Quinoline Metal Complex, Aminoquinoline Metal complex, benzoquinoline metal complex, imine, diphenylethylene, buranthracene, diaminocarbazole, pyran, thiopyran, polymethine, merocyanine, imidazole chelate oxi
  • Ar is a substituted or unsubstituted condensed aromatic group having 10 to 50 nuclear carbon atoms.
  • Ar is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • X is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • a, b and c are each an integer of 0-4.
  • n is an integer of 1 to 3. When n is 2 or more, the values in [] may be the same or different. )
  • ⁇ ! ⁇ Is independently a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted Is an unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, Substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, substituted or unsubstituted alkoxycarbo group having 1 to 50 carbon atoms, substituted or unsubstituted Substituted
  • Ar and Ar ′ are each a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • L and L are each a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthalene group, a substituted or unsubstituted fluorenylene group, or a substituted or unsubstituted dibenzosilolylene group.
  • n is an integer from 1 to 4
  • s is an integer from 0 to 2
  • t is an integer from 0 to 4.
  • L or Ar is bonded to any of the 1-5 positions of pyrene, and L or Ar, is bonded to any of the 6-10 positions of pyrene.
  • a 1 and A 2 are each independently a substituted or unsubstituted condensed aromatic ring group having 10 to 20 nuclear carbon atoms.
  • Ar 1 and Ar 2 are each independently a hydrogen atom or a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms.
  • ⁇ ! ⁇ Is independently a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted Is an unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, Substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, substituted or unsubstituted alkoxycarbo group having 1 to 50 carbon atoms, substituted or unsubstituted Substituted
  • 1 ⁇ to 1 ⁇ ° are independently hydrogen atom, alkyl group, cycloalkyl group, optionally substituted aryl group, alkoxyl group, aryloxy group, alkylamino group, alkenyl group.
  • An arylamino group or an optionally substituted heterocyclic group, a and b each represent an integer of 1 to 5, and when they are 2 or more, R 1 or R 2 are each be the same or different Yogumata R1 together or R2 may be bonded to each other to form a ring, R 3 and R 4, R 5 and R 6, R 7 and R 8, R 9 and R 1Q may be bonded to each other to form a ring L 1 is a single bond, —O—, 1 S—, — N (R) — (R is an alkyl group or an optionally substituted aryl group. A) an alkylene group or an arylene group.
  • R u to! ⁇ are each independently a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an alkoxyl group, an aryloxy group, an alkylamino group, an arylamino group, or Cd, e and f each represent an integer of 1 to 5, and when they are 2 or more, R 11 , R 12 , R 16, or R 17 In each case, they may be the same or different, and R 11 , R 12 , R 16, or R 17 may combine to form a ring, or R 13 and R 14 , R 18 and R 19 may be bonded to each other to form a ring L 2 is a single bond, —O—, 1 S—, — N (R) — (R is an alkyl group or an optionally substituted aryl) Group), an alkylene group or an arylene group.
  • a 5 to A 8 are each independently a substituted or unsubstituted biphenyl group or a substituted or unsubstituted naphthyl group.
  • R 21 to R 23 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, An alkoxyl group having 1 to 6 carbon atoms, an aryloxy group having 5 to 18 carbon atoms, an aralkyloxy group having 7 to 18 carbon atoms, an arylamino group having 5 to 16 carbon atoms, a nitro group, a cyano group, and an ester group having 1 to 6 carbon atoms. Or a halogen atom, and at least one of A 9 to A 14 is a group having three or more condensed aromatic rings.
  • R and R are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or It represents an unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, a substituted amino group, a cyano group or a halogen atom.
  • Rs bonded to different fluorene groups, Rs may be the same or different, and the same fluorene group
  • R and R bonded to may be the same or different.
  • R and R are hydrogen
  • R and R bonded to the same fluorene group may be the same or different.
  • 3 4 1 and Ar are substituted or unsubstituted condensed polycyclic aromatics with a total of 3 or more benzene rings
  • n an integer of 1 to 10.
  • an anthracene derivative is preferable, a monoanthracene derivative is more preferable, and an asymmetric anthracene is particularly preferable.
  • a phosphorescent compound can also be used as the dopant light-emitting material.
  • a compound containing a force rubazole ring as a host material is preferable.
  • the dopant is a compound capable of emitting triplet exciton force, and is not particularly limited as long as the triplet exciton force also emits light. However, at least one group force including Ir, Ru, Pd, Pt, Os and Re force is also selected.
  • a metal complex containing two metals is preferred.
  • a host suitable for phosphorescence emission with a compound power containing a strong rubazole ring is a compound having the function of emitting a phosphorescent compound as a result of energy transfer from its excited state to the phosphorescent compound. is there.
  • the host compound is not particularly limited as long as it is a compound that can transfer the exciton energy to the phosphorescent compound, and can be appropriately selected according to the purpose. It may have an arbitrary heterocyclic ring in addition to the force rubazole ring.
  • host compounds include force rubazole derivatives, triazole derivatives, oxazole derivatives, oxaziazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, furendyleneamine derivatives, Arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, anthra Quinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiobilane dioxide derivatives, carpositimide derivatives, fluorenylidenemethane derivatives, distyrylvirazine derivatives, heterocyclic tetracarboxylic anhydrides such
  • the phosphorescent dopant is a compound capable of emitting triplet exciton power.
  • the triplet exciton force is not particularly limited as long as it emits light, but it is preferably a metal complex containing at least one metal selected from the group force Ir, Ru, Pd, Pt, Os and Re force, and is preferably a porphyrin metal complex or orthometal ion. ⁇ Metal complexes are preferred.
  • the porphyrin metal complex is preferably a porphyrin platinum complex.
  • the phosphorescent compound may be used alone or in combination of two or more.
  • ligands that form ortho-metal complexes
  • preferred ligands include 2 phenyl pyridine derivatives, 7, 8 benzoquinoline derivatives, and 2- (2-Che) pyridine derivatives. , 2- (1 naphthyl) pyridine derivatives, 2-phenol-quinoline derivatives, and the like. These derivatives may have a substituent as necessary. In particular, it is preferred as a blue dopant with a fluoride or trifluoromethyl group introduced. Further, it may have a ligand other than the above ligands such as acetylylacetonate and picric acid as an auxiliary ligand.
  • the content of the phosphorescent dopant in the light-emitting layer is a force that can be appropriately selected according to the purpose of restriction, for example, 0.1 to 70% by mass, and 1 to 30% by mass. preferable.
  • the phosphorescent emissive compound content is less than 0.1% by mass, the light emission is weak and the effect of the content is not fully exhibited.
  • the content exceeds 70% by mass a phenomenon called concentration quenching occurs. It becomes remarkable and the device performance deteriorates.
  • the light emitting layer may contain a hole transport material, an electron transport material, and a polymer binder as necessary.
  • the thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and most preferably 10 to 50 nm. If the thickness is less than 5 nm, it is difficult to form a light emitting layer, and it may be difficult to adjust the chromaticity. If it exceeds 50 nm, the driving voltage may increase.
  • the hole injection 'transport layer is a layer that helps injecting holes into the light emitting layer and transports it to the light emitting region, and has a high ion mobility with a high hole mobility, usually less than 5.5 eV.
  • a hole injection / transport layer a material that transports holes to the light-emitting layer with a lower electric field strength is preferable.
  • the mobility force of holes for example, 10 4 ⁇ : When an electric field of LO Zcm is applied, At least 10 4 cm 2 ZV ⁇ sec is preferred! /.
  • the nitrogen-containing heterocyclic derivative of the present invention alone is used by mixing with other materials that may form a hole injection or transport layer. Also good.
  • the material for forming the hole injection / transport layer by mixing with the nitrogen-containing heterocyclic derivative of the present invention is not particularly limited as long as it has the above-mentioned preferred properties. Any of those commonly used as materials and known materials used for hole injection and transport layers of organic EL devices can be selected and used.
  • JP-A-54-59143 55-52063, 55-52064, 55-46760, 55-85495, 57-11350, 57-148749 No. 1, JP-A-2-311591, etc.
  • stilbene derivatives JP-A 61-210363, 61-228451, 61-14642, 61-72255, 62) -47646, 62-36674, 62-10652, 62-30255, 60-93455, 60-94462, 60-174749, 60 — See No. 175052, etc.
  • silazane derivatives US Pat. No.
  • JP-A-2-204996 polysilanes
  • ani Emissions copolymer JP-A-2 282 263
  • the above-described materials can be used. Volphiline compounds (disclosed in JP-A-63-29556965, etc.), aromatic tertiary amine compounds And styrylamine compounds (US Pat. No. 4,127,412, JP-A 53-27033, 54-58445, 54-149634, 54-64299) No. 55-79450, No. 55-144250, No. 56-119132, No. 61-295558, No. 61-98353, No. 63-295695, etc.), especially fragrance It is preferable to use a group III tertiary amine compound.
  • inorganic compounds such as p-type Si and p-type SiC can be used as the material for the hole injection / transport layer in addition to the above-mentioned aromatic dimethylidin-based compounds shown as the material for the light emitting layer.
  • the hole-injecting 'transport layer is formed by using the nitrogen-containing heterocyclic derivative of the present invention, for example, by vacuum deposition or spin. It can be formed by thinning by a known method such as a coating method, a casting method, or an LB method.
  • the thickness of the hole injection 'transport layer is not particularly limited, but is usually 5 ⁇ ! ⁇ 5 m.
  • This hole injecting / transporting layer may be composed of one or more layers of the above-mentioned materials as long as it contains the nitrogen-containing heterocyclic derivative of the present invention in the hole transporting zone.
  • the hole injection / transport layer may be a laminate of a hole injection / transport layer made of a different kind of compound from the hole injection / transport layer.
  • a hole injection or electron injection organic semiconductor layer provided as a layer to help Moyogu 10- 1Q SZcm more of the conductivity of the light-emitting layer.
  • Examples of the material of such an organic semiconductor layer include thiophene oligomers, conductive oligomers such as allylamin oligomers disclosed in JP-A-8-193191, and conductive properties such as allylamin dendrimers. Dendrimers and the like can be used.
  • Electron injection 'transport layer (electron transport zone)
  • the electron injection layer 'transport layer is a layer that assists the injection of electrons into the light emitting layer and transports it to the light emitting region, and has a large electron mobility and usually a high electron affinity of 2.5 eV or more.
  • a material that transports electrons to the light emitting layer with a lower electric field strength is preferred.
  • an electron mobility force of, for example, 10 4 to: at least 10 6 cm when an electric field of LO Zcm is applied. 2 ZV 'seconds are preferred!
  • the electron-injecting / transporting layer may be formed of the nitrogen-containing heterocyclic derivative of the present invention alone or may be mixed with other materials.
  • the material for mixing with the nitrogen-containing heterocyclic derivative of the present invention to form an electron injecting / transporting layer is not particularly limited as long as it has the above-mentioned preferable properties. Any one of commonly used ones and known ones used for the electron injection / transport layer of organic EL devices can be selected and used.
  • the adhesion improving layer is a layer made of a material that has a particularly good adhesion to the cathode in the electron injection layer.
  • the compound of the present invention is preferably used as an electron injection layer, a transport layer, and an adhesion improving layer.
  • a preferred form of the organic EL device of the present invention includes an electron transporting region or a cathode and an organic There is an element containing a reducing dopant in the interface region of the layer.
  • an organic EL device containing a reducing dopant in the compound of the present invention is preferable.
  • the reducing dopant is defined as a substance capable of reducing an electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, such as alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earths.
  • preferable reducing dopants include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV), and Cs (work function: 1).
  • 95eV) Force Group Force At least one selected alkali metal, Ca (work function: 2.9 eV;), Sr (work function: 2.0 to 2.5 eV), and Ba (work function: 2.
  • a more preferable reducing dopant is at least one alkali metal selected from the group force consisting of K, Rb and Cs, more preferably Rb or Cs, and most preferably Cs. .
  • alkali metals in particular, can improve the emission brightness and extend the life of organic EL devices by adding a relatively small amount to the electron injection region where the reducing ability is high.
  • a reducing dopant having a work function of 2.9 eV or less a combination of two or more alkali metals is also preferable. Particularly, combinations containing Cs, for example, Cs and Na, Cs and K, and Cs. A combination of Rb or Cs, Na and ⁇ is preferred. By including Cs in combination, the reducing ability can be efficiently exhibited, and by adding it to the electron injection region, the emission luminance of the organic EL element can be improved and the lifetime can be extended.
  • an electron injection layer composed of an insulator or a semiconductor may be further provided between the cathode and the organic layer.
  • Such insulators include alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. It is preferred to use at least one metal compound selected from the group consisting of halides. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • preferred alkali metal chalcogenides include, for example, Li 0, K 0, Na S, Na Se, and Na 2 O,
  • Preferred alkaline earth metal chalcogenides include, for example, CaO, BaO, SrO, BeO, BaS, and CaSe.
  • Preferred alkali metal halides include, for example, LiF, NaF, KF, LiCl, KC1, and NaCl.
  • Preferred alkaline earth metal halides include, for example, CaF, BaF, SrF, MgF, and the like.
  • Examples include fluorides such as 2 2 2 2 and BeF, and halides other than fluorides.
  • the inorganic compound constituting the electron transport layer is preferably a microcrystalline or amorphous insulating thin film. If the electron transport layer is composed of these insulating thin films, a more uniform thin film is formed, so that pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include the alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides described above.
  • the cathode in order to inject electrons into the electron injecting / transporting layer or the light emitting layer, a material having a small work function (4 eV or less) metal, an alloy, an electrically conductive compound, and a mixture thereof is used.
  • electrode materials include sodium, sodium 'potassium alloy, magnesium, lithium, magnesium' silver alloy, aluminum / acid aluminum, aluminum 'lithium alloy, indium, and rare earth metals. It is done.
  • This cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance for the light emission of the cathode is preferably larger than 10%.
  • the sheet resistance as a cathode is several hundred ⁇ or less.
  • the preferred film thickness is usually ⁇ ! To 1 m, preferably 50 to 200 nm.
  • organic EL devices apply an electric field to ultra-thin films, pixel defects are likely to occur due to leaks and shorts. In order to prevent this, it is preferable to insert an insulating thin film layer between the pair of electrodes.
  • Examples of materials used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, and titanium oxide. , Silicon oxide, oxide germanium, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, vanadium oxide, and the like, and a mixture or laminate thereof may be used.
  • anode By forming the anode, the light-emitting layer, the hole injection 'transport layer, and the electron injection' transport layer as necessary, and the cathode by forming the anode and the light-emitting layer, if necessary, by the materials and formation methods exemplified above, and further forming the cathode
  • An element can be manufactured.
  • An organic EL element can also be fabricated from the cathode to the anode in the reverse order.
  • an organic EL device having a configuration in which an anode, a hole injection layer, a Z light emitting layer, a Z electron injection layer, and a Z cathode are sequentially provided on a light transmitting substrate will be described.
  • a thin film made of an anode material is formed on a suitable translucent substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm, to produce an anode.
  • a hole injection layer is provided on the anode.
  • the hole injection layer can be formed by a vacuum deposition method, a spin coating method, a casting method, an LB method, or the like, but a homogeneous film can be obtained immediately and pinholes are generated. It is preferable to form by a vacuum vapor deposition method.
  • the deposition conditions vary depending on the compound used (material of the hole injection layer), the crystal structure and recombination structure of the target hole injection layer, etc.
  • the formation of a light-emitting layer in which a light-emitting layer is provided on a hole injection layer is also performed using a desired organic light-emitting material by a method such as vacuum deposition, sputtering, spin coating, or casting.
  • the film by a vacuum evaporation method from the viewpoint that a homogeneous film can be obtained immediately and pinholes are not easily generated.
  • the deposition conditions vary depending on the compound used, but can generally be selected from the same condition range as the hole injection layer.
  • an electron injection layer is provided on the light emitting layer.
  • a vacuum deposition method because a uniform film is required.
  • the vapor deposition conditions can be selected from the same condition ranges as those for the hole injection layer and the light emitting layer.
  • the nitrogen-containing heterocyclic derivative of the present invention varies depending on which layer in the emission band or the hole transport band, but when using the vacuum evaporation method, co-evaporation with other materials should be performed. Can do. Moreover, when using a spin coat method, it can be contained by mixing with other materials.
  • a cathode can be stacked to obtain an organic EL device.
  • the cathode also has a metallic force, and vapor deposition and sputtering can be used. In order to protect the underlying organic layer from the damage when forming the film, vacuum deposition is preferred. It is preferable to fabricate the organic EL element from the anode to the cathode consistently by a single vacuum.
  • the method of forming each layer of the organic EL device of the present invention is not particularly limited. Conventionally known methods such as vacuum deposition and spin coating can be used.
  • the organic thin film layer containing the compound represented by the general formula (1) used in the organic EL device of the present invention is a vacuum deposition method, a molecular beam deposition method (MBE method) or a dating method of a solution dissolved in a solvent, It can be formed by a known method such as a spin coating method, a casting method, a bar coating method, or a roll coating method.
  • each organic layer of the organic EL device of the present invention is not particularly limited, but in general, if the film thickness is too thin, defects such as pinholes are generated. Usually, the range of several nm to 1 ⁇ m is preferable because of worsening.
  • Compound (4) was prepared by the same procedure as in the synthesis of Compound (1) except that 2-biphenol-norethanthracene 9 boronic acid was used instead of 10-naphthalene 2-inoleanthracene 9 boronic acid. Obtained as a yellow powder. Yield 2.5 g (45% yield) was obtained. This was identified as Compound (4) by measurement of FD-MS (Field Deisobuty Mass Spectrum).
  • 2,5-Dib mouth molo-trobenzene 50 g (0.18 mol), sodium acetate 59 g (0.72 mol), arrin 17 g (0.18 mol) were calored and heated and stirred at 120 ° C for 8 hours.
  • the product was purified by silica gel column chromatography (developing solvent: dichloromethane), and the resulting crystal was washed with methanol to obtain 24 g of an intermediate Bl. Yield 45%.
  • Compound (10) was prepared by the same procedure as in the synthesis of compound (8) except that 4-biphenol-noranthracene 9 boronic acid was used instead of 10-naphthalene 2-inoleanthracene 9 boronic acid. Obtained as a yellow powder. Yield 2.2 g (39% yield) was obtained. This was identified as Compound (10) by FD-MS (Field Deisobuty Mass Spectrum) measurement.
  • Compound (11) was prepared by the same procedure as the synthesis of compound (8) except that 2-biphenol-norethanthracene 9 boronic acid was used instead of 10-naphthalene 2-inoleanthracene 9 boronic acid. Obtained as a yellow powder. Yield 2.8 g (36% yield) was obtained. This was identified as Compound (11) by measurement of FD-MS (Field Deisobuty Mass Spectrum).
  • Example 1 (Preparation of an organic EL device using the compound of the present invention in an electron transport layer)
  • a 25 mm X 75 mm X 1.1 mm thick glass substrate with ITO transparent electrode (anode) (Zomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes.
  • the glass substrate with the transparent electrode line after cleaning is mounted on the substrate holder of the vacuum evaporation system, and first, the transparent electrode is covered on the surface on which the transparent electrode line is formed to cover the transparent electrode with ⁇ , N, ⁇ ', ⁇ , -tetra (-diamino-1,1, -biphenyl) diaminobiphenylene film (hereinafter abbreviated as "TPD232 film”) was deposited.
  • This TPD232 film functions as a hole injection layer.
  • this TPD23 A tetrakis-N- (4-biphenyl) benzidine film (hereinafter abbreviated as “TBB film”) having a thickness of 20 nm was formed on the two films.
  • TBB film functions as a hole transport layer.
  • a styryl derivative DPVDPA N represented by the following formula and a styrylamine derivative S1 represented by the following formula were formed at a film thickness ratio of 40: 2 to form a blue light emitting layer.
  • the compound (1) was deposited as an electron transport layer with a thickness of 20 nm by vapor deposition. Thereafter, LiF was deposited to a thickness of 1 nm. On this LiF film, 150 nm of metal A1 was deposited to form a metal cathode to form an organic EL light emitting device.
  • Example 1 the same procedure was performed except that compound (2) was used instead of compound (1).
  • Example 1 an organic EL device was produced in the same manner except that the compound (3) was used instead of the compound (1).
  • An organic EL device was produced in the same manner as in Example 1, except that compound (4) was used instead of compound (1).
  • Example 1 the same procedure was performed except that compound (5) was used instead of compound (1).
  • An organic EL device was fabricated.
  • Example 1 an organic EL device was produced in the same manner except that the following compound A described in International Publication WO 04/080975 A1 was used instead of the compound (1).
  • Example 1 an organic EL device was produced in the same manner except that the following compound B described in International Publication WO 04/080975 A1 was used instead of the compound (1).
  • Example 1 instead of compound (1), Alq (8-hydroxyquinoline aluminum The organic EL device was prepared in the same manner except that the (a) complex was used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 特定の構造を有する新規な含窒素複素環誘導体、並びに陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも1層が、前記含窒素複素環誘導体を単独もしくは混合物の成分として含有することによって、有機EL素子の構成成分として有用な新規な含窒素複素環誘導体を提供し、この含窒素複素環誘導体を有機化合物層の少なくとも一層に用いることにより、低電圧でありながら発光輝度及び発光効率が高い有機EL素子を実現する。

Description

明 細 書
含窒素複素環誘導体及びそれを用いた有機エレクト口ルミネッセンス素子 技術分野
[0001] 本発明は、新規な含窒素複素環誘導体及びそれを用いたに有機エレクト口ルミネッ センス (EL)素子用材料、有機 EL素子に関し、特に、有機 EL素子の構成成分として 有用な含窒素複素環誘導体を有機化合物層の少なくとも一層に用いることにより、低 電圧でありながら発光効率が高い有機 EL素子に関するものである。
背景技術
[0002] 有機物質を使用した有機エレクト口ルミネッセンス (EL)素子は、固体発光型の安価 な大面積フルカラー表示素子としての用途が有望視され、多くの開発が行われてい る。一般に EL素子は、発光層及び該層をはさんだ一対の対向電極から構成されて いる。発光は、両電極間に電界が印加されると、陰極側から電子が注入され、陽極側 力 正孔が注入される。さらに、この電子が発光層において正孔と再結合し、励起状 態を生成し、励起状態が基底状態に戻る際にエネルギーを光として放出する現象で ある。
従来の有機 EL素子は、無機発光ダイオードに比べて駆動電圧が高ぐ発光輝度 や発光効率も低かった。また、特性劣化も著しく実用化には至っていな力つた。最近 の有機 EL素子は徐々に改良されているものの、さらに低電圧での、高発光輝度及 び高発光効率が要求されて!、る。
これらを解決するものとして、例えば、特許文献 1に、ベンゾイミダゾール構造を有 する化合物を発光材料として用いた素子が開示され、この素子が電圧 9Vにて 200c d/m2の輝度で発光することが記載されている。また、特許文献 2には、ベンゾイミダ ゾール環及びアントラセン骨格を有する化合物が記載されている。し力しながら、これ らの化合物を用いた有機 EL素子よりもさらなる発光輝度及び発光効率のものが求め られている。
[0003] 特許文献 1 :米国特許第 5, 645, 948号明細書
特許文献 2 :特開 2002— 38141号公報 発明の開示
発明が解決しょうとする課題
[0004] 本発明は、前記の課題を解決するためになされたもので、有機 EL素子の構成成分 として有用な新規な含窒素複素環誘導体を提供し、この含窒素複素環誘導体を有 機化合物層の少なくとも一層に用いることにより、低電圧でありながら発光輝度及び 発光効率が高 、有機 EL素子を実現することを目的とする。
課題を解決するための手段
[0005] 本発明者らは、前記目的を達成するために、鋭意研究を重ねた結果、特定の構造 を有する新規な含窒素複素環誘導体を、有機 EL素子の有機化合物層の少なくとも 一層に用いることにより、有機 EL素子の低電圧化と高効率ィ匕を達成できることを見出 し、本発明を完成するに至った。
[0006] すなわち、本発明は、下記一般式(1)で表される含窒素複素環誘導体を提供する ものである。
[化 1]
Figure imgf000003_0001
[0007] {前記一般式(1)において、 Ri〜R5は、水素原子、置換もしくは無置換の核原子数 5 〜60のァリール基、置換もしくは無置換の核原子数 5〜60のへテロアリール基、置 換もしくは無置換のピリジル基、置換もしくは無置換のキノリル基、置換もしくは無置 換の炭素数 1〜50のアルキル基、置換もしくは無置換の炭素数 3〜50のシクロアル キル基、置換もしくは無置換の核原子数 6〜50のァラルキル基、置換もしくは無置換 の炭素数 1〜50のアルコキシ基、置換もしくは無置換の核原子数 5〜50のァリール ォキシ基、置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無 置換の炭素数 1〜50のアルコキシカルボニル基、置換もしくは無置換の核原子数 5 〜50のァリール基で置換されたァミノ基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキ シル基又はカルボキシル基であり、
Raは、置換もしくは無置換の炭素数 1〜50のアルキル基であり、
R2〜R5の隣り合う基が互いに結合して芳香環を形成していてもよぐ
Ri〜R5の少なくとも 1つは下記一般式(2)で示される置換基である。
[0008] [化 2]
L〜Ar1 - Ar2
(2)
[0009] (Lは、置換もしくは無置換の炭素数 6〜60のァリーレン基、置換もしくは無置換のピ リジ-レン基、置換もしくは無置換のキノリ-レン基、又は置換もしくは無置換のフル ォレニレン基であり、
Ar1は、置換もしくは無置換の炭素数 6〜60のァリーレン基、置換もしくは無置換の ピリジ-レン基又は置換もしくは無置換のキノリ-レン基であり、
Ar2は、水素原子、置換もしくは無置換の核原子数 5〜60のァリール基、置換もしく は無置換のピリジル基、置換もしくは無置換のキノリル基、置換もしくは無置換の炭素 数 1〜50のアルキル基、置換もしくは無置換の炭素数 3〜50のシクロアルキル基、置 換もしくは無置換の核原子数 6〜50のァラルキル基、置換もしくは無置換の炭素数 1 〜50のアルコキシ基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭 素数 1〜50のアルコキシカルボ-ル基、置換もしくは無置換の核原子数 5〜50のァ リール基で置換されたァミノ基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基又 はカルボキシル基である。 )}
[0010] また、本発明は、陰極と陽極間に少なくとも発光層を含む一層又は複数層力もなる 有機薄膜層が挟持されている有機 EL素子において、該有機薄膜層の少なくとも 1層 力 前記含窒素複素環誘導体を単独もしくは混合物の成分として含有する有機 EL 素子を提供するものである。
発明の効果
[0011] 本発明の含窒素複素環誘導体及びそれを用いた有機 EL素子は、低電圧でありな 力 発光効率が高ぐ電子輸送性が優れ、高発光効率なものである。
発明を実施するための最良の形態
[0012] すなわち、本発明は、下記一般式 (1)で表される含窒素複素環誘導体を提供する ものである。
[化 3]
Figure imgf000005_0001
[0013] 前記一般式(1)において、 Ri〜R5は、水素原子、置換もしくは無置換の核原子数 5 〜60のァリール基、置換もしくは無置換の核原子数 5〜60のへテロアリール基、置 換もしくは無置換のピリジル基、置換もしくは無置換のキノリル基、置換もしくは無置 換の炭素数 1〜50のアルキル基、置換もしくは無置換の炭素数 3〜50のシクロアル キル基、置換もしくは無置換の核原子数 6〜50のァラルキル基、置換もしくは無置換 の炭素数 1〜50のアルコキシ基、置換もしくは無置換の核原子数 5〜50のァリール ォキシ基、置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無 置換の炭素数 1〜50のアルコキシカルボニル基、置換もしくは無置換の核原子数 5 〜50のァリール基で置換されたァミノ基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキ シル基又はカルボキシル基であり、 Raは、置換もしくは無置換の炭素数 1〜50のアル キル基であり、 R2〜R5の隣り合う基が互いに結合して芳香環を形成していてもよぐ R の少なくとも 1つは下記一般式 (2)で示される置換基である。
[化 4]
L— Ar1-Ar"
(2)
[0015] 式(2)にお!/、て、 Lは、置換もしくは無置換の炭素数 6〜60のァリーレン基、置換も しくは無置換のピリジ-レン基、置換もしくは無置換のキノリ-レン基、又は置換もしく は無置換のフルォレニレン基であり、 Ar1は、置換もしくは無置換の炭素数 6〜60の ァリーレン基、置換もしくは無置換のピリジ-レン基又は置換もしくは無置換のキノリ 二レン基であり、 Ar2は、水素原子、置換もしくは無置換の核原子数 5〜60のァリール 基、置換もしくは無置換のピリジル基、置換もしくは無置換のキノリル基、置換もしくは 無置換の炭素数 1〜50のアルキル基、置換もしくは無置換の炭素数 3〜50のシクロ アルキル基、置換もしくは無置換の核原子数 6〜50のァラルキル基、置換もしくは無 置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の核原子数 5〜50のァリ ールォキシ基、置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしく は無置換の炭素数 1〜50のアルコキシカルボニル基、置換もしくは無置換の核原子 数 5〜50のァリール基で置換されたァミノ基、ハロゲン原子、シァノ基、ニトロ基、ヒド 口キシル基又はカルボキシル基である。
[0016] 本発明は、一般式(1)で表される化合物が、下記一般式(1 a)又は(l—b)で表 される化合物である含窒素複素環誘導体を提供する。
Figure imgf000007_0001
( 1 - a ) ( 1一 b )
[0017] 前記一般式(l— a)及び(l—b)において、 〜 、
Figure imgf000007_0002
及び Ar2は、それ ぞれ前記一般式(1)におけるものと同じである。前記一般式( 1 a)及び( 1 b)に ぉ 、て、 R2〜R5の隣り合う基の一組が互 、に結合して芳香環を形成して 、てもよ!/、。
[0018] 前記 〜 、及び Ar2のァリール基及びへテロアリール基、としては、例えば、フエ -ル基、 1 ナフチル基、 2 ナフチル基、 1 アントリル基、 2 アントリル基、 9ーァ ントリル基、 1 フエナントリル基、 2 フエナントリル基、 3 フエナントリル基、 4 フエ ナントリル基、 9 フエナントリル基、 1 ナフタセ-ル基、 2 ナフタセ-ル基、 9ーナ フタセ-ル基、 1—ピレ-ル基、 2 ピレ-ル基、 4 ピレ-ル基、 2 ビフエ-ルイル 基、 3—ビフエ-ルイル基、 4—ビフエ-ルイル基、 p—テルフエ-ルー 4—ィル基、 p —テルフエ-ルー 3—ィル基、 p—テルフエ-ルー 2—ィル基、 m—テルフエ-ルー 4 ーィル基、 m—テルフ -ルー 3—ィル基、 m—テルフ -ルー 2—ィル基、 o トリル 基、 m—トリル基、 ρ トリル基、 p— t—ブチルフエ-ル基、 p— (2—フエ-ルプロピル )フエ-ル基、 3—メチルー 2 ナフチル基、 4ーメチルー 1 ナフチル基、 4 メチル 1 アントリル基、 4,ーメチルビフエ-ルイル基、 4"—tーブチルー p—テルフエ- ルー 4ーィル基、フルオランテュル基、フルォレ -ル基、 1 ピロリル基、 2 ピロリル 基、 3 ピロリル基、ピラジュル基、 2 ピリジニル基、 3 ピリジニル基、 4 ピリジ- ル基、 1 インドリル基、 2 インドリル基、 3 インドリル基、 4 インドリル基、 5 イン ドリル基、 6—インドリル基、 7—インドリル基、 1—イソインドリル基、 2—イソインドリル 基、 3—イソインドリル基、 4—イソインドリル基、 5—イソインドリル基、 6—イソインドリ ル基、 7 イソインドリル基、 2 フリル基、 3 フリル基、 2 べンゾフラ-ル基、 3 べ ンゾフラ-ル基、 4一べンゾフラ-ル基、 5—べンゾフラ-ル基、 6—ベンゾフラ -ル基 、 7 べンゾフラ-ル基、 1 イソべンゾフラ-ル基、 3 イソべンゾフラ-ル基、 4ーィ ソベンゾフラ -ル基、 5—イソべンゾフラ-ル基、 6—イソべンゾフラ-ル基、 7—イソべ ンゾフラニル基、キノリル基、 3—キノリル基、 4 キノリル基、 5—キノリル基、 6—キノリ ル基、 7 キノリル基、 8 キノリル基、 1 イソキノリル基、 3 イソキノリル基、 4 イソ キノリル基、 5—イソキノリル基、 6—イソキノリル基、 7—イソキノリル基、 8—イソキノリ ル基、 2 キノキサリニル基、 5 キノキサリニル基、 6 キノキサリニル基、 1一力ルバ ゾリル基、 2—力ルバゾリル基、 3—力ルバゾリル基、 4一力ルバゾリル基、 9一力ルバ ゾリル基、 1—フエナントリジ-ル基、 2—フエナントリジ-ル基、 3—フエナントリジ-ル 基、 4—フエナントリジ-ル基、 6—フエナントリジ-ル基、 7—フエナントリジ-ル基、 8 フエナントリジ-ル基、 9—フエナントリジ-ル基、 10—フエナントリジ-ル基、 1ーァ タリジ-ル基、 2—アタリジニル基、 3—アタリジニル基、 4—アタリジニル基、 9—アタリ ジ-ル基、 1, 7 フエナント口リンー2—ィル基、 1, 7 フエナント口リンー3 ィル基 、 1, 7 フエナント口リン— 4—ィル基、 1, 7 フエナント口リン— 5—ィル基、 1, 7— フエナント口リン— 6—ィル基、 1, 7 フエナント口リン— 8—ィル基、 1, 7 フエナント 口リン一 9—ィル基、 1, 7 フエナント口リン一 10—ィル基、 1, 8 フエナント口リン一
2—ィル基、 1, 8 フエナント口リン— 3—ィル基、 1, 8 フエナント口リン— 4—ィル基 、 1, 8 フ mナン卜 Pジン 5—ィノレ基、 1, 8 フ mナン卜 Pジン 6—ィノレ基、 1, 8— フエナント口リン— 7—ィル基、 1, 8 フエナント口リン— 9—ィル基、 1, 8 フエナント 口リン一 10—ィル基、 1, 9 フエナント口リン一 2—ィル基、 1, 9 フエナント口リン一
3—ィル基、 1, 9 フエナント口リン— 4—ィル基、 1, 9 フエナント口リン— 5—ィル基 、 1, 9ーフ mナン卜 Pジン 6—ィノレ基、 1, 9ーフ mナン卜 Pジン 7—ィノレ基、 1, 9 フエナント口リン— 8—ィル基、 1, 9 フエナント口リン— 10—ィル基、 1, 10 フエナ ントロリン— 2—ィル基、 1, 10 フエナント口リン— 3—ィル基、 1, 10 フエナントロリ ン— 4—ィル基、 1, 10 フエナント口リン— 5—ィル基、 2, 9 フエナント口リン— 1— ィル基、 2, 9 フエナント口リン一 3—ィル基、 2, 9 フエナント口リン一 4—ィル基、 2
, 9 フエナント口リン一 5—ィル基、 2, 9 フエナント口リン一 6—ィル基、 2, 9 フエ ナント口リン一 7—ィル基、 2, 9 フエナント口リン一 8—ィル基、 2, 9 フエナントロリ ン一 10—ィル基、 2, 8 フエナント口リン一 1—ィル基、 2, 8 フエナント口リン一 3— ィル基、 2, 8 フエナント口リン一 4—ィル基、 2, 8 フエナント口リン一 5—ィル基、 2 , 8 フエナント口リン一 6—ィル基、 2, 8 フエナント口リン一 7—ィル基、 2, 8 フエ ナント口リン一 9—ィル基、 2, 8 フエナント口リン一 10—ィル基、 2, 7 フエナント口 リン一 1—ィル基、 2, 7 フエナント口リン一 3—ィル基、 2, 7 フエナント口リン一 4— ィル基、 2, 7 フエナント口リン一 5—ィル基、 2, 7 フエナント口リン一 6—ィル基、 2 , 7 フエナント口リン一 8—ィル基、 2, 7 フエナント口リン一 9—ィル基、 2, 7 フエ ナント口リン 10—ィル基、 1 フエナジ-ル基、 2—フエナジ-ル基、 1ーフエノチア ジ-ル基、 2 フエノチアジ-ル基、 3 フエノチアジ-ル基、 4 フエノチアジ-ル基 、 10 フエノチアジ-ル基、 1 フエノキサジ-ル基、 2 フエノキサジ-ル基、 3 フ エノキサジ-ル基、 4 フエノキサジ-ル基、 10 フエノキサジ-ル基、 2 ォキサゾリ ル基、 4ーォキサゾリル基、 5—ォキサゾリル基、 2 ォキサジァゾリル基、 5 ォキサ ジァゾリル基、 3 フラザ-ル基、 2 チェ-ル基、 3 チェ-ル基、 2 メチルピロ一 ルー 1ーィル基、 2—メチルピロール— 3—ィル基、 2—メチルピロール— 4—ィル基、 2 メチルピロ一ルー 5—ィル基、 3 メチルピロ一ルー 1ーィル基、 3 メチルピロ一 ルー 2—ィル基、 3—メチルピロール— 4—ィル基、 3—メチルピロール— 5—ィル基、 2 t ブチルピロ一ルー 4ーィル基、 3—(2 フエ-ルプロピル)ピロ一ルー 1ーィル 基、 2—メチルー 1 インドリル基、 4ーメチルー 1 インドリル基、 2—メチルー 3—ィ ンドリル基、 4ーメチルー 3 インドリル基、 2—t—ブチルー 1 インドリル基、 4 t— ブチルー 1 インドリル基、 2 tーブチルー 3 インドリル基、 4 tーブチルー 3—ィ ンドリル基等が挙げられる。
これらの中で、好ましくはフヱニル基、ナフチル基、ビフヱニル基、アントラセニル基 、フエナントリル基、ピレ-ル基、クリセ-ル基、フルオランテュル基、フルォレ -ル基 である。
前記 〜 、
Figure imgf000009_0001
及び Raの置換もしくは無置換の炭素数 1〜50のアルキル基とし ては、メチル基、ェチル基、プロピル基、イソプロピル基、 n ブチル基、 s ブチル基 、イソブチル基、 t ブチル基、 n ペンチル基、 n—へキシル基、 n—へプチル基、 n ーォクチル基、ヒドロキシメチル基、 1ーヒドロキシェチル基、 2—ヒドロキシェチル基、 2 ヒドロキシイソブチル基、 1 , 2 ジヒドロキシェチル基、 1 , 3 ジヒドロキシイソプロ ピル基、 2, 3 ジヒドロキシ一 t—ブチル基、 1 , 2, 3 トリヒドロキシプロピル基、クロ ロメチル基、 1—クロ口ェチル基、 2—クロ口ェチル基、 2—クロ口イソブチル基、 1 , 2 ージクロ口ェチル基、 1 , 3 ジクロ口イソプロピル基、 2, 3 ジクロロー t—ブチル基、 1 , 2, 3 トリクロ口プロピル基、ブロモメチル基、 1 ブロモェチル基、 2 ブロモェチ ル基、 2 ブロモイソブチル基、 1 , 2 ジブロモェチル基、 1 , 3 ジブロモイソプロピ ル基、 2, 3 ジブ口モー t ブチル基、 1 , 2, 3 トリブロモプロピル基、ョードメチル 基、 1ーョードエチル基、 2—ョードエチル基、 2—ョードイソブチル基、 1 , 2—ジョー ドエチル基、 1 , 3 ジョードイソプロピル基、 2, 3 ジョードー t ブチル基、 1 , 2, 3 —トリョードプロピル基、アミノメチル基、 1—アミノエチル基、 2—アミノエチル基、 2 - ァミノイソブチル基、 1 , 2 ジアミノエチル基、 1 , 3 ジァミノイソプロピル基、 2, 3— ジァミノ— t—ブチル基、 1 , 2, 3 トリァミノプロピル基、シァノメチル基、 1—シァノエ チル基、 2—シァノエチル基、 2—シァノイソブチル基、 1 , 2—ジシァノエチル基、 1 , 3 ジシァノイソプロピル基、 2, 3 ジシァノー t—ブチル基、 1 , 2, 3 トリシアノプロ ピル基、ニトロメチル基、 1 -トロェチル基、 2— -トロェチル基、 2— -トロイソブチ ル基、 1 , 2 ジ-トロェチル基、 1 , 3 ジ-トロイソプロピル基、 2, 3 ジ-トロー t— ブチル基、 1 , 2, 3 トリ-トロプロピル基、シクロプロピル基、シクロブチル基、シクロ ペンチル基、シクロへキシル基、 4ーメチルシクロへキシル基、 1ーァダマンチル基、 2 ーァダマンチル基、 1 ノルボル-ル基、 2—ノルボル-ル基等が挙げられる。
前記 〜 、及び Ar2の置換もしくは無置換の炭素数 3〜50のシクロアルキル基の 具体例としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シク 口へキシル基、 4ーメチルシクロへキシル基、 1ーァダマンチル基、 2 ァダマンチル 基、 1 ノルボルニル基、 2—ノルボルニル基等が挙げられる。
前記 Ri〜R5、及び Ar2の置換もしくは無置換の核原子数 6〜50のァラルキル基の 例としては、ベンジル基、 1 フエ-ルェチル基、 2—フエ-ルェチル基、 1 フエ- ルイソプロピル基、 2—フエ-ルイソプロピル基、フエ-ルー t ブチル基、 α ナフチ ルメチル基、 1— α—ナフチルェチル基、 2 - a—ナフチルェチル基、 1— α ナフ チルイソプロピル基、 2— a ナフチルイソプロピル基、 β ナフチルメチル基、 1 β ナフチノレエチノレ基、 2- β ナフチノレエチノレ基、 1 - β ナフチルイソプロピル 基、 2 |8—ナフチルイソプロピル基、 1—ピロリルメチル基、 2— (1—ピロリル)ェチ ル基、 ρ—メチルベンジル基、 m—メチルベンジル基、 o メチルベンジル基、 p—クロ 口べンジル基、 m クロ口べンジル基、 o クロ口べンジル基、 p ブロモベンジル基、 m—ブロモベンジル基、 o ブロモベンジル基、 p ョードベンジル基、 m—ョードベ ンジル基、 o ョードベンジル基、 p ヒドロキシベンジル基、 m—ヒドロキシベンジル 基、 o ヒドロキシベンジル基、 p ァミノべンジル基、 m—ァミノべンジル基、 o アミ ノベンジノレ基、 p 二トロべンジノレ基、 m—二トロべンジノレ基、 o 二トロべンジノレ基、 p —シァノベンジル基、 m—シァノベンジル基、 o シァノベンジル基、 1—ヒドロキシ一 2—フエ-ルイソプロピル基、 1—クロ口一 2—フエ-ルイソプロピル基等が挙げられる 前記 〜 、及び Ar2の置換もしくは無置換の炭素数 1〜50のアルコキシ基は OYで表される基であり、 Yの例としては、前記アルキル基で説明したものと同様の例 が挙げられる。
前記 Ri〜R5、及び Ar2の置換もしくは無置換の核原子数 5〜50のァリールォキシ基 は OY'と表され、 Y'の例としては前記ァリール基で説明したものと同様の例が挙 げられる。
前記 Ri〜R5、及び Ar2の置換もしくは無置換の核原子数 5〜50のァリールチオ基 は SY'と表され、 Y'の例としては前記ァリール基で説明したものと同様の例が挙 げられる。
前記 Ri〜R5、及び Ar2の置換もしくは無置換の炭素数 1〜50のアルコキシカルボ- ル基は COOYで表される基であり、 Yの例としては、前記アルキル基で説明したも のと同様の例が挙げられる。
前記 Ri〜R5、及び Ar2の置換もしくは無置換の核原子数 5〜50のァリール基で置 換されたアミノ基におけるァリール基の例としては前記ァリール基で説明したものと同 様の例が挙げられる。
前記 Ri〜R5、及び Ar2のハロゲン原子としては、フッ素原子、塩素原子、臭素原子 、ヨウ素原子等が挙げられる。 [0022] 一般式(1)、 (1 a)、及び(1 b)において、 R2〜R5の隣り合う基の一組は互いに 結合して芳香環を形成していてもよい。この際形成した環は、 5員環及び 6員環が好 ましぐ特に 6員環が好ましい。
[0023] L、及び Ar1の炭素数 6〜60のァリーレン基としては、!^1〜!^5、及び Ar2のァリール 基で説明した置換基から、さらに 1つの水素原子を除くことによりできる 2価の置換基 であり、好ましくはフエ-レン基、ナフチレン基、ビフエ二レン基、アントラ-レン基、フ ェナントリレン基、ピレニレン基、クリセ-レン基、フルオランテ-レン基、フルォレ -レ ン基である。
L、及び Ar1のピリジ-レン基及びキノリニレン基としては、前記ピリジ-ル基又はキ ノリニル基から、さらに 1つの水素原子を除くことによりできる 2価の置換基である。
Lのフルォレニレン基としては、前記フルオレン基から、さらに 1つの水素原子を除く ことによりできる 2価の置換基である。
[0024] 本発明の含窒素複素環誘導体は、有機 EL素子用材料であると好ましぐ有機 EL 素子用発光材料、有機 EL素子用電子注入材料又は有機 EL素子用電子輸送材料 であるとさらに好ましい。
本発明の一般式(1)で表される含窒素複素環誘導体の具体例を以下に示すが、こ れら例示化合物に限定されるものではない。
[0025] [化 6]
//:/ O επ3ε900ί1£ ε66ε90/-00ίAV
Figure imgf000013_0001
墓〔19
//:/ O επ3ε900ί1£ ε66ε90/-00ίAV ε_·
Figure imgf000014_0001
Figure imgf000015_0001
[0028] [ィ匕 9]
Figure imgf000015_0002
[0029] 次に、本発明の有機 EL素子について説明する。
本発明の有機 EL素子は、陰極と陽極間に少なくとも発光層を含む一層又は複数 層からなる有機薄膜層が挟持されている有機 EL素子において、該有機薄膜層の少 なくとも 1層が、前記含窒素複素環誘導体を単独もしくは混合物の成分として含有す る。
本発明の有機 EL素子は、前記有機薄膜層が電子輸送層を有し、該電子輸送層が 、本発明の含窒素複素環誘導体を単独もしくは混合物の成分として含有すると好ま しい。さらに、前記電子輸送層が、主成分として含窒素複素環誘導体を含有すると好 ましい。
また、本発明の有機 EL素子は、発光層が、含窒素複素環誘導体、ァリールァミン 化合物及び Z又はスチリルァミン化合物を含有すると好ましい。
ァリールアミンィ匕合物としては下記一般式 (A)で表される化合物などが挙げられ、 スチリルアミンィ匕合物としては下記一般式 (B)で表される化合物などが挙げられる。
[0030] [化 10]
Figure imgf000016_0001
[一般式(A)中、 Arは、フエ-ル、ビフエ-ル、テルフエ-ル、スチルベン、ジスチリ
8
ルァリール力 選ばれる基であり、 Ar及び Ar は、それぞれ水素原子又は炭素数が
9 10
6〜20の芳香族基であり、 Ar〜Ar は置換されいてもよい。 p,は、 1〜4の整数であ
9 10
る。さらに好ましくは Ar及び Z又は Ar はスチリル基が置換されている。 ] ここで、炭素数が 6〜20の芳香族基としては、フエニル基、ナフチル基、アントラセ -ル基、フエナントリル基、テルフエ-ル基等が好ましい。
[0032] [化 11]
Figure imgf000017_0001
( B)
[0033] [一般式(B)中、 Ar〜Ar は、置換されていてもよい核炭素数 5
11 13 〜40のァリール基 である。 q,は、 1〜4の整数である。 ]
ここで、核原子数が 5〜40のァリール基としては、フエニル、ナフチル、アントラセ- ル、フエナントリル、ピレニル、コロニノレ、ビフエニル、テルフエニル、ピロ一リル、フラニ ル、チォフエニル、ベンゾチォフエニル、ォキサジァゾリル、ジフエ二ルアントラセニル 、インドリル、カルバゾリル、ピリジル、ベンゾキノリル、フルオランテニル、ァセナフトフ ルオランテュル、スチルベン等が好ましい。なお、核原子数が 5〜40のァリール基は 、さらに置換基により置換されていてもよぐ好ましい置換基としては、炭素数 1〜6の アルキル基(ェチル基、メチル基、 i—プロピル基、 n—プロピル基、 s ブチル基、 t— ブチル基、ペンチル基、へキシル基、シクロペンチル基、シクロへキシル基等)、炭素 数 1〜6のアルコキシ基(エトキシ基、メトキシ基、 i—プロポキシ基、 n—プロポキシ基、 s ブトキシ基、 t ブトキシ基、ペントキシ基、へキシルォキシ基、シクロペントキシ基 、シクロへキシルォキシ基等)、核原子数 5〜40のァリール基、核原子数 5〜40のァ リール基で置換されたァミノ基、核原子数 5〜40のァリール基を有するエステル基、 炭素数 1〜6のアルキル基を有するエステル基、シァノ基、ニトロ基、ハロゲン原子( 塩素、臭素、ヨウ素等)が挙げられる。
[0034] 以下、本発明の有機 EL素子の素子構成について説明する。
(1)有機 EL素子の構成
本発明の有機 EL素子の代表的な素子構成としては、
(1)陽極 Z発光層 Z陰極
(2)陽極 Z正孔注入層 Z発光層 Z陰極
(3)陽極 Z発光層 Z電子注入層 Z陰極
(4)陽極 Z正孔注入層 Z発光層 Z電子注入層 Z陰極
(5)陽極 Z有機半導体層 Z発光層 Z陰極
(6)陽極 Z有機半導体層 Z電子障壁層 Z発光層 Z陰極
(7)陽極 Z有機半導体層 Z発光層 Z付着改善層 Z陰極
(8)陽極 Z正孔注入層 Z正孔輸送層 Z発光層 Z電子注入層 Z陰極
(9)陽極 Z絶縁層 Z発光層 Z絶縁層 Z陰極
(10)陽極 Z無機半導体層 Z絶縁層 Z発光層 Z絶縁層 Z陰極
(11)陽極 Z有機半導体層 Z絶縁層 Z発光層 Z絶縁層 Z陰極
(12)陽極 z絶縁層 Z正孔注入層 Z正孔輸送層 Z発光層 Z絶縁層 Z陰極
(13)陽極 z絶縁層 Z正孔注入層 Z正孔輸送層 Z発光層 Z電子注入層 Z陰極 などの構造を挙げることができる。
これらの中で通常 (8)の構成が好ましく用いられる力 これらに限定されるものでは ない。
本発明の含窒素複素環誘導体は、有機 EL素子のどの有機薄膜層に用いてもよい 力 好ましくは発光帯域又は電子輸送帯域に用いることができ、特に好ましくは電子 注入層、電子輸送層及び発光層に用いる。
[0035] (2)透光性基板
本発明の有機 EL素子は、透光性の基板上に作製する。ここでいう透光性基板は 有機 EL素子を支持する基板であり、 400〜700nmの可視領域の光の透過率が 50 %以上で平滑な基板が好まし ヽ。
具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ 石灰ガラス、ノ リウム 'ストロンチウム含有ガラス、鉛ガラス、アルミノケィ酸ガラス、ホウ ケィ酸ガラス、ノリウムホウケィ酸ガラス、石英等が挙げられる。またポリマー板として は、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルスルフイド、 ポリスルホン等を挙げることができる。
[0036] (3)陽極
本発明の有機 EL素子の陽極は、正孔を正孔輸送層又は発光層に注入する機能 を有するものであり、 4. 5eV以上の仕事関数を有することが効果的である。本発明に 用いられる陽極材料の具体例としては、酸化インジウム錫合金 (ITO)、酸ィ匕錫 (NE SA)、インジウム—亜鉛酸ィ匕物 (IZO)、金、銀、白金、銅等が挙げられる。
陽極は、これらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させ ること〖こより作製することができる。
このように発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率 が 10%より大きくすることが好ましい。また、陽極のシート抵抗は、数百 ΩΖ口以下が 好ましい。陽極の膜厚は材料にもよる力 通常 10nm〜l μ m、好ましくは 10〜200n mの範囲で選択される。
[0037] (4)発光層
有機 EL素子の発光層は以下 (1)〜(3)の機能を併せ持つものである。
(1)注入機能;電界印加時に陽極又は正孔注入層より正孔を注入することができ、 陰極又は電子注入層より電子を注入することができる機能
(2)輸送機能;注入した電荷 (電子と正孔)を電界の力で移動させる機能
(3)発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能 ただし、正孔の注入されやすさと電子の注入されやすさに違いがあってもよぐまた
、正孔と電子の移動度で表される輸送能に大小があってもよいが、どちらか一方の電 荷を移動することが好まし 、。
この発光層を形成する方法としては、例えば蒸着法、スピンコート法、 LB法等の公 知の方法を適用することができる。発光層は、特に分子堆積膜であることが好ましい 。ここで分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、 溶液状態又は液相状態の材料化合物から固体化され形成された膜のことであり、通 常この分子堆積膜は、 LB法により形成された薄膜 (分子累積膜)とは凝集構造、高 次構造の相違や、それに起因する機能的な相違により区分することができる。
また、特開昭 57— 51781号公報に開示されているように、榭脂等の結着剤と材料 化合物とを溶剤に溶力して溶液とした後、これをスピンコート法等により薄膜ィ匕するこ とによっても、発光層を形成することができる。
本発明においては、本発明の目的が損なわれない範囲で、所望により発光層に本 発明の含窒素複素環誘導体からなる発光材料以外の他の公知の発光材料を含有さ せてもよぐまた、本発明の含窒素複素環誘導体からなる発光材料を含む発光層に 、他の公知の発光材料を含む発光層を積層してもよい。
[0038] 本発明の含窒素複素環誘導体と共に発光層に使用できる発光材料又はドーピン グ材料としては、例えば、アントラセン、ナフタレン、フエナントレン、ピレン、テトラセン 、コロネン、タリセン、フノレォレセイン、ペリレン、フタ口ペリレン、ナフタ口ペリレン、ペリ ノン、フタ口ペリノン、ナフタ口ペリノン、ジフエニルブタジエン、テトラフエニルブタジェ ン、クマリン、ォキサジァゾール、アルダジン、ビスべンゾキサゾリン、ビススチリル、ピ ラジン、シクロペンタジェン、キノリン金属錯体、ァミノキノリン金属錯体、ベンゾキノリ ン金属錯体、ィミン、ジフエ-ルエチレン、ビュルアントラセン、ジァミノカルバゾール、 ピラン、チォピラン、ポリメチン、メロシアニン、イミダゾールキレートィ匕ォキシノイド化合 物、キナクリドン、ルブレン及び蛍光色素等が挙げられるが、これらに限定されるもの ではない。
[0039] 本発明の含窒素複素環誘導体と共に発光層に使用できるホスト材料としては、下 記 (i)〜 (ix)で表される化合物が好ま 、。
[0040] 下記一般式 (i)で表される非対称アントラセン。
[化 12]
Figure imgf000021_0001
[0041] (式中、 Arは置換もしくは無置換の核炭素数 10〜50の縮合芳香族基である。
Ar,は置換もしくは無置換の核炭素数 6〜50の芳香族基である。
Xは、置換もしくは無置換の核炭素数 6〜50の芳香族基、置換もしくは無置換の核 原子数 5〜50の芳香族複素環基、置換もしくは無置換の炭素数 1〜50のアルキル 基、置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素 数 6〜50のァラルキル基、置換もしくは無置換の核原子数 5〜50のァリールォキシ 基、置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の 炭素数 1〜50のアルコキシカルボ-ル基、カルボキシル基、ハロゲン原子、シァノ基 、ニトロ基、ヒドロキシル基である。
a、 b及び cは、それぞれ 0〜4の整数である。
nは 1〜3の整数である。また、 nが 2以上の場合は、 [ ]内は、同じでも異なってい てちよい。 )
[0042] 下記一般式 (ii)で表される非対称モノアントラセン誘導体。
[化 13]
Figure imgf000022_0001
[0043] (式中、 Ar1及び Ar2は、それぞれ独立に、置換もしくは無置換の核炭素数 6〜50の 芳香族環基であり、 m及び nは、それぞれ 1〜4の整数である。ただし、 m=n= lで力 つ Ar1と Ar2のベンゼン環への結合位置が左右対称型の場合には、 Ar1と Ar2は同一 ではなぐ m又は nが 2〜4の整数の場合には mと nは異なる整数である。
〜!^は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6〜50の 芳香族環基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もしく は無置換の炭素数 1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、 置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素数 6 〜50のァラルキル基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭 素数 1〜50のアルコキシカルボ-ル基、置換もしくは無置換のシリル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。 )
[0044] 下記一般式 (iii)で表される非対称ピレン誘導体。
[化 14]
Figure imgf000023_0001
[式中、 Ar及び Ar'は、それぞれ置換もしくは無置換の核炭素数 6〜50の芳香族基 である。
L及び L,は、それぞれ置換もしくは無置換のフエ-レン基、置換もしくは無置換の ナフタレ-レン基、置換もしくは無置換のフルォレニレン基又は置換もしくは無置換 のジベンゾシロリレン基である。
mは 0〜2の整数、 nは 1〜4の整数、 sは 0〜2の整数、 tは 0〜4の整数である。 また、 L又は Arは、ピレンの 1〜5位のいずれかに結合し、 L,又は Ar,は、ピレンの 6〜10位のいずれかに結合する。
ただし、 n+tが偶数の時、 Ar, Ar' , L, L'は下記 (1)又は (2)を満たす。
(1) Ar≠Ar'及び Z又は L≠L' (ここで≠は、異なる構造の基であることを示す。 )
(2) Ar = Ar,かつ L = L,の時
(2-1) m≠s及び Z又は n≠t、又は
(2-2) m=sかつ n=tの時、
(2-2-1) L及び L'、又はピレン力 それぞれ Ar及び Ar,上の異なる結合位置に 結合している力、 (2-2-2) L及び L,、又はピレン力 Ar及び Ar,上の同じ結合位置で 結合している場合、 L及び L,又は Ar及び Ar,のピレンにおける置換位置が 1位と 6位 、又は 2位と 7位である場合はない。 ] [0046] 下記一般式 (iv)で表される非対称アントラセン誘導体。
[化 15]
Figure imgf000024_0001
[0047] (式中、 A1及び A2は、それぞれ独立に、置換もしくは無置換の核炭素数 10〜20の 縮合芳香族環基である。
Ar1及び Ar2は、それぞれ独立に、水素原子、又は置換もしくは無置換の核炭素数 6〜50の芳香族環基である。
〜!^は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6〜50の 芳香族環基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もしく は無置換の炭素数 1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、 置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素数 6 〜50のァラルキル基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭 素数 1〜50のアルコキシカルボ-ル基、置換もしくは無置換のシリル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基又はヒドロキシル基である。
Figure imgf000025_0001
R9及び R1Qは、それぞれ複数であってもよぐ隣接するもの同士で飽和も しくは不飽和の環状構造を形成して 、てもよ 、。
ただし、一般式(1)において、中心のアントラセンの 9位及び 10位に、該アントラセ ン上に示す X— Y軸に対して対称型となる基が結合する場合はない。)
下記一般式 (V)で表されるアントラセン誘導体。
[化 16]
Figure imgf000025_0002
[0049] (式中、 1^〜1^°は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,置換 しても良いァリール基,アルコキシル基,ァリーロキシ基,アルキルアミノ基,ァルケ- ル基,ァリールアミノ基又は置換しても良い複素環式基を示し、 a及び bは、それぞれ 1〜5の整数を示し、それらが 2以上の場合、 R1同士又は R2同士は、それぞれにおい て、同一でも異なっていてもよぐまた R1 同士または R2 同士が結合して環を形成 していてもよいし、 R3と R4, R5と R6, R7と R8, R9と R1Qがたがいに結合して環を形成して いてもよい。 L1は単結合、—O—, 一 S— , — N (R)—(Rはアルキル基又は置換して も良いァリール基である)、アルキレン基又はァリーレン基を示す。 )
[0050] 下記一般式 (vi)で表されるアントラセン誘導体。
[化 17]
Figure imgf000026_0001
[0051] (式中、 Ru〜! ^は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,ァリ ール基,アルコキシル基,ァリーロキシ基,アルキルアミノ基,ァリールアミノ基又は置 換しても良い複数環式基を示し、 c d, e及び fは、それぞれ 1〜5の整数を示し、それ らが 2以上の場合、 R11同士, R12同士, R16同士又は R17同士は、それぞれにおいて、 同一でも異なっていてもよぐまた R11同士, R12同士, R16同士又は R17同士が結合して 環を形成していてもよいし、 R13と R14, R18と R19がたがいに結合して環を形成していて もよい。 L2は単結合、—O—, 一 S— , — N (R)—(Rはアルキル基又は置換しても良 ぃァリール基である)、アルキレン基又はァリーレン基を示す。 )
[0052] 下記一般式 (vii)で表されるスピロフルオレン誘導体。
[化 18]
Figure imgf000026_0002
[0053] (式中、 A5〜A8は、それぞれ独立に、置換もしくは無置換のビフエ-ル基又は置換も しくは無置換のナフチル基である。 ) [0054] 下記一般式 (viii)で表される縮合環含有化合物。
[化 19]
Figure imgf000027_0001
[0055] (式中、 A9〜A14は前記と同じ、 R21〜R23は、それぞれ独立に、水素原子、炭素数 1〜 6のアルキル基、炭素数 3〜6のシクロアルキル基、炭素数 1〜6のアルコキシル基、 炭素数 5〜18のァリールォキシ基、炭素数 7〜18のァラルキルォキシ基、炭素数 5 〜16のァリールアミノ基、ニトロ基、シァノ基、炭素数 1〜6のエステル基又はハロゲ ン原子を示し、 A9〜A14のうち少なくとも 1つは 3環以上の縮合芳香族環を有する基で ある。)
[0056] 下記一般式 (ix)で表されるフルオレンィ匕合物。
[化 20]
Figure imgf000027_0002
[0057] (式中、 Rおよび Rは、水素原子、置換あるいは無置換のアルキル基、置換あるいは 無置換のァラルキル基、置換あるいは無置換のァリール基,置換あるいは無置換の 複素環基、置換アミノ基、シァノ基またはハロゲン原子を表わす。異なるフルオレン基 に結合する R同士、 R同士は、同じであっても異なっていてもよく、同じフルオレン基
1 2
に結合する Rおよび Rは、同じであっても異なっていてもよい。 Rおよび Rは、水素
1 2 3 4 原子、置換あるいは無置換のアルキル基、置換あるいは無置換のァラルキル基、置 換あるいは無置換のァリール基または置換ある 、は無置換の複素環基を表わし、異 なるフルオレン基に結合する R同士、 R同士は、同じであっても異なっていてもよぐ
3 4
同じフルオレン基に結合する Rおよび Rは、同じであっても異なっていてもよい。 Ar
3 4 1 および Arは、ベンゼン環の合計が 3個以上の置換あるいは無置換の縮合多環芳香
2
族基またはベンゼン環と複素環の合計が 3個以上の置換あるいは無置換の炭素でフ ルオレン基に結合する縮合多環複素環基を表わし、 Arおよび Arは、同じであって
1 2
も異なっていてもよい。 nは、 1乃至 10の整数を表す。 )
[0058] 以上のホスト材料の中でも、好ましくはアントラセン誘導体、さらに好ましくはモノア ントラセン誘導体、特に好ましくは非対称アントラセンである。
また、ドーパントの発光材料としては、りん光発光性の化合物を用いることもできる。 りん光発光性の化合物としては、ホスト材料に力ルバゾール環を含む化合物が好まし い。ドーパントとしては三重項励起子力 発光することのできる化合物であり、三重項 励起子力も発光する限り特に限定されないが、 Ir、 Ru、 Pd、 Pt、 Os及び Re力もなる 群力も選択される少なくとも一つの金属を含む金属錯体であることが好ましい。
力ルバゾール環を含む化合物力 なるりん光発光に好適なホストは、その励起状態 からりん光発光性ィ匕合物へエネルギー移動が起こる結果、りん光発光性化合物を発 光させる機能を有する化合物である。ホストイ匕合物としては励起子エネルギーをりん 光発光性ィ匕合物にエネルギー移動できる化合物ならば特に制限はなぐ 目的に応じ て適宜選択することができる。力ルバゾール環以外に任意の複素環などを有して ヽ ても良い。
[0059] このようなホストイ匕合物の具体例としては、力ルバゾール誘導体、トリァゾール誘導 体、ォキサゾール誘導体、ォキサジァゾール誘導体、イミダゾール誘導体、ポリアリー ルアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フ -レンジァミン誘導体、 ァリールァミン誘導体、ァミノ置換カルコン誘導体、スチリルアントラセン誘導体、フル ォレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三 ァミン化合物、スチリルアミンィ匕合物、芳香族ジメチリデン系化合物、ポルフィリン系 化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフヱ-ルキノン誘導体、チ オビランジオキシド誘導体、カルポジイミド誘導体、フルォレニリデンメタン誘導体、ジ スチリルビラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フ タロシアニン誘導体、 8-キノリノール誘導体の金属錯体ゃメタルフタロシアニン、ベン ゾォキサゾールやべンゾチアゾールを配位子とする金属錯体に代表される各種金属 錯体ポリシラン系化合物、ポリ(N-ビュルカルバゾール)誘導体、ァ-リン系共重合体 、チォフェンオリゴマー、ポリチォフェン等の導電性高分子オリゴマー、ポリチォフェン 誘導体、ポリフ 二レン誘導体、ポリフ 二レンビニレン誘導体、ポリフルオレン誘導 体等の高分子化合物等が挙げられる。ホストイ匕合物は単独で使用しても良いし、 2種 以上を併用しても良い。
具体例としては、以下のような化合物が挙げられる。
[0060] [化 21]
Figure imgf000029_0001
[0061] りん光発光性のドーパントは三重項励起子力 発光することのできる化合物である 。三重項励起子力も発光する限り特に限定されないが、 Ir、 Ru、 Pd、 Pt、 Os及び Re 力 なる群力 選択される少なくとも一つの金属を含む金属錯体であることが好ましく 、ポルフィリン金属錯体又はオルトメタルイ匕金属錯体が好ましい。ポルフィリン金属錯 体としては、ポルフィリン白金錯体が好ましい。りん光発光性ィ匕合物は単独で使用し ても良いし、 2種以上を併用しても良い。
オルトメタルイ匕金属錯体を形成する配位子としては種々のものがあるが、好ましい 配位子としては、 2 フエ二ルビリジン誘導体、 7, 8 べンゾキノリン誘導体、 2— (2— チェ-ル)ピリジン誘導体、 2— (1 ナフチル)ピリジン誘導体、 2—フエ-ルキノリン誘 導体等が挙げられる。これらの誘導体は必要に応じて置換基を有しても良い。特に、 フッ素化物、トリフルォロメチル基を導入したもの力 青色系ドーパントとしては好まし い。さらに補助配位子としてァセチルァセトナート、ピクリン酸等の上記配位子以外の 配位子を有して 、ても良 、。
りん光発光性のドーパントの発光層における含有量としては、特に制限はなぐ目 的に応じて適宜選択することができる力 例えば、 0. 1〜70質量%であり、 1〜30質 量%が好ましい。りん光発光性ィヒ合物の含有量が 0. 1質量%未満では発光が微弱 であり、その含有効果が十分に発揮されず、 70質量%を超える場合は、濃度消光と 言われる現象が顕著になり素子性能が低下する。
また、発光層は、必要に応じて正孔輸送材、電子輸送材、ポリマーバインダーを含 有しても良い。
さらに、発光層の膜厚は、好ましくは 5〜50nm、より好ましくは 7〜50nm、最も好ま しくは 10〜50nmである。 5nm未満では発光層形成が困難となり、色度の調整が困 難となる恐れがあり、 50nmを超えると駆動電圧が上昇する恐れがある。
(5)正孔注入'輸送層(正孔輸送帯域)
正孔注入'輸送層は発光層への正孔注入を助け、発光領域まで輸送する層であつ て、正孔移動度が大きぐイオンィ匕エネルギーが通常 5. 5eV以下と小さい。このよう な正孔注入 ·輸送層としては、より低 、電界強度で正孔を発光層に輸送する材料が 好ましぐさらに正孔の移動度力 例えば 104〜: LO Zcmの電界印加時に、少なくと も 10 4 cm2ZV ·秒であれば好まし!/、。 本発明の含窒素複素環誘導体を正孔輸送帯域に用いる場合、本発明の含窒素複 素環誘導体単独で正孔注入、輸送層を形成してもよぐ他の材料と混合して用いても よい。
本発明の含窒素複素環誘導体と混合して正孔注入 ·輸送層を形成する材料として は、前記の好ましい性質を有するものであれば特に制限はなぐ従来、光導伝材料 において正孔の電荷輸送材料として慣用されているものや、有機 EL素子の正孔注 入'輸送層に使用される公知のものの中から任意のものを選択して用いることができ る。
具体例としては、トリァゾール誘導体 (米国特許 3, 112, 197号明細書等参照)、ォ キサジァゾール誘導体 (米国特許 3, 189, 447号明細書等参照)、イミダゾール誘導 体 (特公昭 37— 16096号公報等参照)、ポリアリールアルカン誘導体 (米国特許 3, 615, 402号明細書、同第 3, 820, 989号明細書、同第 3, 542, 544号明細書、特 公昭 45— 555号公報、同 51— 10983号公報、特開昭 51— 93224号公報、同 55 — 17105号公報、同 56— 4148号公報、同 55— 108667号公報、同 55— 156953 号公報、同 56— 36656号公報等参照)、ピラゾリン誘導体及びピラゾロン誘導体( 米国特許第 3, 180, 729号明細書、同第 4, 278, 746号明細書、特開昭 55— 880 64号公報、同 55— 88065号公報、同 49— 105537号公報、同 55— 51086号公報 、同 56— 80051号公報、同 56— 88141号公報、同 57— 45545号公報、同 54— 1 12637号公報、同 55— 74546号公報等参照)、フ -レンジァミン誘導体 (米国特 許第 3, 615, 404号明細書、特公昭 51— 10105号公報、同 46— 3712号公報、同 47— 25336号公報、特開昭 54— 53435号公報、同 54— 110536号公報、同 54— 119925号公報等参照)、ァリールァミン誘導体 (米国特許第 3, 567, 450号明細書 、同第 3, 180, 703号明細書、同第 3, 240, 597号明細書、同第 3, 658, 520号 明細書、同第 4, 232, 103号明細書、同第 4, 175, 961号明細書、同第 4, 012, 3 76号明糸田書、特公昭 49— 35702号公報、同 39— 27577号公報、特開昭 55— 14 4250号公報、同 56— 119132号公報、同 56— 22437号公報、***特許第 1, 110 , 518号明細書等参照)、ァミノ置換カルコン誘導体 (米国特許第 3, 526, 501号明 細書等参照)、ォキサゾール誘導体 (米国特許第 3, 257, 203号明細書等に開示の もの)、スチリルアントラセン誘導体 (特開昭 56— 46234号公報等参照)、フルォレノ ン誘導体 (特開昭 54— 110837号公報等参照)、ヒドラゾン誘導体 (米国特許第 3, 7 17, 462号明細書、特開昭 54— 59143号公報、同 55— 52063号公報、同 55— 52 064号公報、同 55— 46760号公報、同 55— 85495号公報、同 57— 11350号公報 、同 57— 148749号公報、特開平 2— 311591号公報等参照)、スチルベン誘導体( 特開昭 61— 210363号公報、同第 61— 228451号公報、同 61— 14642号公報、 同 61— 72255号公報、同 62— 47646号公報、同 62— 36674号公報、同 62— 10 652号公報、同 62— 30255号公報、同 60— 93455号公報、同 60— 94462号公報 、同 60— 174749号公報、同 60— 175052号公報等参照)、シラザン誘導体 (米国 特許第 4, 950, 950号明細書)、ポリシラン系(特開平 2— 204996号公報)、ァニリ ン系共重合体 (特開平 2— 282263号公報)、特開平 1— 211399号公報に開示され て 、る導電性高分子オリゴマー(特にチォフェンオリゴマー)等を挙げることができる。
[0064] 正孔注入'輸送層の材料としては上記のものを使用することができる力 ボルフイリ ン化合物 (特開昭 63— 2956965号公報等に開示のもの)、芳香族第三級アミンィ匕 合物及びスチリルアミンィ匕合物(米国特許第 4, 127, 412号明細書、特開昭 53— 2 7033号公報、同 54— 58445号公報、同 54— 149634号公報、同 54— 64299号 公報、同 55— 79450号公報、同 55— 144250号公報、同 56— 119132号公報、同 61— 295558号公報、同 61— 98353号公報、同 63— 295695号公報等参照)、特 に芳香族第三級アミンィ匕合物を用いることが好まし 、。
また、米国特許第 5, 061, 569号に記載されている 2個の縮合芳香族環を分子内 に有する、例えば、 4, 4,一ビス(N— (1—ナフチル) N フエ-ルァミノ)ビフエ- ル (以下 NPDと略記する)、また特開平 4— 308688号公報に記載されて 、るトリフエ -ルァミンユニットが 3つスターバースト型に連結された 4, 4,, 4"—トリス(N— (3—メ チルフエ-ル)—N—フエ-ルァミノ)トリフエ-ルァミン(以下 MTDATAと略記する) 等を挙げることができる。
さらに、発光層の材料として示した前述の芳香族ジメチリディン系化合物の他、 p型 Si、 p型 SiC等の無機化合物も正孔注入'輸送層の材料として使用することができる。
[0065] 正孔注入'輸送層は本発明の含窒素複素環誘導体を、例えば、真空蒸着法、スピ ンコート法、キャスト法、 LB法等の公知の方法により薄膜化することにより形成するこ とができる。正孔注入'輸送層としての膜厚は特に制限はないが、通常は 5ηπ!〜 5 mである。この正孔注入 ·輸送層は、正孔輸送帯域に本発明の含窒素複素環誘導体 を含有して ヽれば、上述した材料の一種又は二種以上カゝらなる一層で構成されても よぐ前記正孔注入 ·輸送層とは別種の化合物カゝらなる正孔注入 ·輸送層を積層した ものであってもよい。
また、発光層への正孔注入又は電子注入を助ける層として有機半導体層を設けて もよぐ 10— 1QSZcm以上の導電率を有するものが好適である。このような有機半導体 層の材料としては、含チォフェンオリゴマーゃ特開平 8— 193191号公報に開示して ある含ァリールァミンオリゴマー等の導電性オリゴマー、含ァリールァミンデンドリマー 等の導電性デンドリマー等を用いることができる。
[0066] (6)電子注入'輸送層(電子輸送帯域)
電子注入層'輸送層は、発光層への電子の注入を助け、発光領域まで輸送する層 であって、電子移動度が大きぐ電子親和力が通常 2. 5eV以上と大きい。このような 電子注入 ·輸送層としては、より低い電界強度で電子を発光層に輸送する材料が好 ましぐさらに電子の移動度力 例えば 104〜: LO Zcmの電界印加時に、少なくとも 10 6 cm2ZV'秒であれば好まし!/、。
本発明の含窒素複素環誘導体を電子輸送帯域に用いる場合、本発明の含窒素複 素環誘導体単独で電子注入 ·輸送層を形成してもよく、他の材料と混合してもよ 、。 本発明の含窒素複素環誘導体と混合して電子注入'輸送層を形成する材料として は、前記の好ましい性質を有するものであれば特に制限はなぐ従来、光導伝材料 において電子の電荷輸送材料として慣用されているものや、有機 EL素子の電子注 入'輸送層に使用される公知のものの中から任意のものを選択して用いることができ る。
また付着改善層は、この電子注入層の中で特に陰極との付着が良い材料カゝらなる 層である。本発明の有機 EL素子においては、上記本発明化合物を電子注入層 '輸 送層、付着改善層として用いることが好ましい。
[0067] 本発明の有機 EL素子の好ま 、形態に、電子を輸送する領域または陰極と有機 層の界面領域に、還元性ドーパントを含有する素子がある。本発明では、本発明化 合物に還元性ドーパントを含有する有機 EL素子が好ましい。ここで、還元性ドーパン トとは、電子輸送性化合物を還元ができる物質と定義される。したがって、一定の還 元性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ 土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲンィ匕物、アル カリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物ま たは希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有 機錯体、希土類金属の有機錯体からなる群から選択される少なくとも一つの物質を 好適に使用することができる。
また、より具体的に、好ましい還元性ドーパントとしては、 Na (仕事関数: 2. 36eV) 、K (仕事関数: 2. 28eV)、Rb (仕事関数: 2. 16eV)および Cs (仕事関数: 1. 95eV )力 なる群力 選択される少なくとも一つのアルカリ金属や、 Ca (仕事関数: 2. 9eV ;)、 Sr (仕事関数: 2. 0〜2. 5eV)、および Ba (仕事関数: 2. 52eV)からなる群から 選択される少なくとも一つのアルカリ土類金属が挙げられる仕事関数が 2. 9eV以下 のものが特に好ましい。これらのうち、より好ましい還元性ドーパントは、 K、 Rbおよび Csからなる群力 選択される少なくとも一つのアルカリ金属であり、さらに好ましくは、 Rbまたは Csであり、最も好ましのは、 Csである。これらのアルカリ金属は、特に還元 能力が高ぐ電子注入域への比較的少量の添加により、有機 EL素子における発光 輝度の向上や長寿命化が図られる。また、仕事関数が 2. 9eV以下の還元性ドーパ ントとして、これら 2種以上のアルカリ金属の組合わせも好ましぐ特に、 Csを含んだ 組み合わせ、例えば、 Csと Na、 Csと K、 Csと Rbあるいは Csと Naと Κとの組み合わせ であることが好ましい。 Csを組み合わせて含むことにより、還元能力を効率的に発揮 することができ、電子注入域への添加により、有機 EL素子における発光輝度の向上 や長寿命化が図られる。
本発明においては陰極と有機層の間に絶縁体や半導体で構成される電子注入層 をさらに設けても良い。この時、電流のリークを有効に防止して、電子注入性を向上さ せることができる。このような絶縁体としては、アルカリ金属カルコゲ -ド、アルカリ土 類金属カルコゲニド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲ ン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好まし い。電子注入層がこれらのアルカリ金属カルコゲニド等で構成されていれば、電子注 入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ金属 カルコゲ-ドとしては、例えば、 Li 0、 K 0、 Na S、 Na Seおよび Na Oが挙げられ、
2 2 2 2 2
好ましいアルカリ土類金属カルコゲ-ドとしては、例えば、 CaO、 BaO、 SrO、 BeO、 BaS、および CaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物として は、例えば、 LiF、 NaF、 KF、 LiCl、 KC1および NaCl等が挙げられる。また、好まし いアルカリ土類金属のハロゲン化物としては、例えば、 CaF、 BaF、 SrF、 MgFお
2 2 2 2 よび BeFといったフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
2
また、電子輸送層を構成する半導体としては、 Ba、 Ca、 Sr、 Yb、 Al、 Ga、 In、 Li、 Na、 Cd、 Mg、 Si、 Ta、 Sbおよび Znの少なくとも一つの元素を含む酸化物、窒化物 または酸ィ匕窒化物等の一種単独または二種以上の組み合わせが挙げられる。また、 電子輸送層を構成する無機化合物が、微結晶または非晶質の絶縁性薄膜であるこ とが好ましい。電子輸送層がこれらの絶縁性薄膜で構成されていれば、より均質な薄 膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお 、このような無機化合物としては、上述したアルカリ金属カルコゲ -ド、アルカリ土類金 属カルコゲニド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲン化 物等が挙げられる。
(7)陰極
陰極としては、電子注入'輸送層又は発光層に電子を注入するため、仕事関数の 小さい (4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質 とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム 'カリウム合金、マグネシウム、リチウム、マグネシウム '銀合金、アルミニウム/酸ィ匕ァ ルミ-ゥム、アルミニウム 'リチウム合金、インジウム、希土類金属などが挙げられる。 この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成さ せること〖こより、作製することができる。
ここで発光層からの発光を陰極力 取り出す場合、陰極の発光に対する透過率は 1 0%より大きくすることが好ましい。 また、陰極としてのシート抵抗は数百 Ω Ζ口以下が好ましぐ膜厚は通常 ΙΟηπ!〜 1 m、好ましくは 50〜200nmである。
[0070] (8)絶縁層
有機 EL素子は超薄膜に電界を印可するために、リークやショートによる画素欠陥 が生じやすい。これを防止するために、一対の電極間に絶縁性の薄膜層を挿入する ことが好ましい。
絶縁層に用いられる材料としては例えば酸ィ匕アルミニウム、弗化リチウム、酸化リチ ゥム、弗化セシウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化カル シゥム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸ィ匕ゲルマニウ ム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が 挙げられ、これらの混合物や積層物を用いてもよい。
[0071] (9)有機 EL素子の製造方法
以上例示した材料及び形成方法により陽極、発光層、必要に応じて正孔注入 '輸 送層、及び必要に応じて電子注入'輸送層を形成し、さらに陰極を形成することによ り有機 EL素子を作製することができる。また陰極から陽極へ、前記と逆の順序で有 機 EL素子を作製することもできる。
以下、透光性基板上に陽極 Z正孔注入層 Z発光層 Z電子注入層 Z陰極が順次 設けられた構成の有機 EL素子の作製例を記載する。
まず、適当な透光性基板上に陽極材料からなる薄膜を 1 μ m以下、好ましくは 10〜 200nmの範囲の膜厚になるように蒸着やスパッタリング等の方法により形成して陽極 を作製する。次に、この陽極上に正孔注入層を設ける。正孔注入層の形成は、前述 したように真空蒸着法、スピンコート法、キャスト法、 LB法等の方法により行うことがで きるが、均質な膜が得られやすぐかつピンホールが発生しにくい等の点力 真空蒸 着法により形成することが好ましい。真空蒸着法により正孔注入層を形成する場合、 その蒸着条件は使用する化合物 (正孔注入層の材料)、目的とする正孔注入層の結 晶構造や再結合構造等により異なるが、一般に蒸着源温度 50〜450°C、真空度 10— 7〜: LO— 3Torr、蒸着速度 0. 01〜50nmZ秒、基板温度— 50〜300°C、膜厚 5nm〜 5 μ mの範囲で適宜選択することが好ましい。 [0072] 次に、正孔注入層上に発光層を設ける発光層の形成も、所望の有機発光材料を 用いて真空蒸着法、スパッタリング、スピンコート法、キャスト法等の方法により有機発 光材料を薄膜ィ匕することにより形成できるが、均質な膜が得られやすぐかつピンホ ールが発生しにく 、等の点から真空蒸着法により形成することが好まし 、。真空蒸着 法により発光層を形成する場合、その蒸着条件は使用する化合物により異なるが、 一般的に正孔注入層と同じような条件範囲の中から選択することができる。
次に、この発光層上に電子注入層を設ける。正孔注入層、発光層と同様、均質な 膜を得る必要から真空蒸着法により形成することが好ま ヽ。蒸着条件は正孔注入 層、発光層と同様の条件範囲から選択することができる。
本発明の含窒素複素環誘導体は、発光帯域ゃ正孔輸送帯域のいずれの層に含 有させるかによつて異なるが、真空蒸着法を用いる場合は他の材料との共蒸着をす ることができる。また、スピンコート法を用いる場合は、他の材料と混合することによつ て含有させることができる。
最後に陰極を積層して有機 EL素子を得ることができる。
陰極は金属力も構成されるもので、蒸着法、スパッタリングを用いることができる。し 力 下地の有機物層を製膜時の損傷力も守るためには真空蒸着法が好ましい。 この有機 EL素子の作製は一回の真空引きで一貫して陽極から陰極まで作製する ことが好ましい。
[0073] 本発明の有機 EL素子の各層の形成方法は特に限定されない。従来公知の真空 蒸着法、スピンコーティング法等による形成方法を用いることができる。本発明の有 機 EL素子に用いる、前記一般式 (1)で示される化合物を含有する有機薄膜層は、 真空蒸着法、分子線蒸着法 (MBE法)あるいは溶媒に解かした溶液のデイツビング 法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布 法による公知の方法で形成することができる。
本発明の有機 EL素子の各有機層の膜厚は特に制限されないが、一般に膜厚が薄 すぎるとピンホール等の欠陥が生じやすぐ逆に厚すぎると高い印加電圧が必要とな り効率が悪くなるため、通常は数 nmから 1 μ mの範囲が好ましい。
なお、有機 EL素子に直流電圧を印加する場合、陽極を +、陰極を一の極性にして 、 5〜40Vの電圧を印加すると発光が観測できる。また、逆の極性で電圧を印加して も電流は流れず、発光は全く生じない。さらに交流電圧を印加した場合には陽極が +、陰極が一の極性になった時のみ均一な発光が観測される。印加する交流の波形 は任意でよい。
実施例
[0074] (1 1)中間体 A1の合成
[化 22]
Figure imgf000038_0001
中間体 A 1
2 フルォロ-トロベンゼン 39g (0. 27mol)、酢酸ナトリウム 90g (l. lmol)、 4— プロモア-リン 47g (0. 27mol)を加え、 8時間 120°Cで加熱攪拌した後、ジクロロメ タン 300mLに溶かし、水、飽和食塩水で順次洗浄した。無水硫酸ナトリウムで乾燥 し、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー(展開溶媒:ジクロロメタ ン)にて精製し、得られた結晶をメタノールで洗浄し、中間体 Al 41gを得た。収率 50 %。
[0075] (1 3)中間体 A3の合成
[化 23]
Figure imgf000039_0001
中間体 A3 中間体 A3 13. 5g (51mmol)を N—メチルピロリドン lOOmLに溶力し、更に無水 酢酸 7. 8g (76mmol)を滴下し、室温で 3時間攪拌した。反応終了後、反応混合物 を水 500mLにいれ、析出した固体をろ別し、減圧乾燥することにより、中間体 A3 9 . 6gを得た。収率 61%。
(1 4)中間体 A4の合成
[化 24]
Figure imgf000039_0002
中間体 A4 中間体 A3 9. 6g (31mmol)をキシレン lOOmLに溶解させ、 p トルエンスルホン 酸一水和物 0. 6g (3. 2mmol)をカ卩え、窒素雰囲気下、 8時間加熱還流しながら共 沸脱水を行った。反応液を室温まで冷却した後、シリカゲルカラムクロマトグラフィー( 展開溶媒:ジクロロメタン)にて精製し、得られた結晶を、中間体 A4 5. 8gを得た。収 率 64%。
Figure imgf000040_0001
中間体 A 5 中間体 A2 4. 5g (17mmol)を酢酸ェチル 50mLに溶力し、更にトリェチルァミン 2. 6g (26mmol)、塩化プロピオ-ル 2. 4g (25mmol)を滴下し、室温で 3時間攪拌 した。反応終了後、反応混合物を水 200mLにいれ、ジクロロメタンで抽出し、有機 層を 5%塩酸、飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。ロータリーエバポレ 一ターを溶媒を留去し、中間体 A5 5. 5gを得た。収率 100%。
(1 6)中間体 A6の合成
[化 26]
Figure imgf000040_0002
中間体 A6 中間体 A3の代わりに、中間体 A5を用いた以外は、中間体 A4の合成と同様の操 作を行うことで中間体 A6を白色結晶として得た。収量 1. 6g (収率 31%)を得た。 (1 7)中間体 A7の合成
[化 27]
Figure imgf000041_0001
中間体 A7 塩ィ匕プロピオ-ルの代わりに、塩化イソブチリルを用いた以外は、中間体 A5の合 成と同様の操作を行うことで中間体 A7を白色結晶として得た。収量 5. Og (収率 90 %)を得た。
(1 8)中間体 A8の合成
[化 28]
Figure imgf000041_0002
中間体 A 8 中間体 A3の代わりに、中間体 A7を用いた以外は、中間体 A4の合成と同様の操 作を行うことで中間体 A8を白色結晶として得た。収量 2. Og (収率 42%)を得た。 (1 - 9) 化合物(1)の合成
[化 29]
Figure imgf000042_0001
化合物 ( 1 ) アルゴン気流下 300mL三口フラスコに、中間体 A4 5. 8g (20mmol)、 10-ナフタ レン一 2—ィル一アントラセン一 9 ボロン酸 8. lg (23mmol)、テトラキストリフエ- ルホスフィンパラジウム(0) 0. 47g (0. 4mmol)、 1, 2 ジメトキシェタン 70mL、 2 M炭酸ナトリウム水溶液 35mL (70mmol)をカ卩え、 8時間加熱還流した。反応終了 後、有機層を水洗し、硫酸マグネシウムで乾燥後、ロータリーエバポレーターを溶媒 を留去した。得られた粗結晶を、トルエン 50mL、メタノール lOOmUこて洗浄し、淡 黄色粉末 6. 9gを得た。このものは、 FD— MS (フィールドデイソブーシヨンマススぺ タトル)の測定により、化合物(1)と同定した (収率 66%)
(1 10) 化合物(2)の合成
[化 30]
Figure imgf000043_0001
化合物 (2 )
10-ナフタレン一 2—ィル一アントラセン一 9 ボロン酸の代わりに、 10-ナフタレン 1ーィルーアントラセンー9 ボロン酸を用いた以外は、化合物(1)の合成と同様 の操作を行うことで化合物(2)を淡黄色粉末として得た。収量 3. lg (収率 58%)を 得た。このものは、 FD— MS (フィールドデイソブーシヨンマススペクトル)の測定により 、化合物(2)と同定した。
(1 - 11) 化合物(3)の合成
[化 31]
Figure imgf000043_0002
化合物 (3 )
10-ナフタレン 2 ィノレ -アントラセン 9 ボロン酸の代わりに、 4 ビフエ-ノレ アントラセン 9 ボロン酸を用 、た以外は、化合物(1)の合成と同様の操作を行 うことで化合物(3)を淡黄色粉末として得た。収量 2. 8g (収率 50%)を得た。このも のは、 FD— MS (フィールドデイソブーシヨンマススペクトル)の測定により、化合物(3 )と同定した。
(1 - 12) 化合物 (4)の合成
[化 32]
Figure imgf000044_0001
化合物 (4 )
10-ナフタレン 2—ィノレ アントラセン 9 ボロン酸の代わりに、 2 ビフエ-ノレ アントラセン 9 ボロン酸を用 、た以外は、化合物(1)の合成と同様の操作を行 うことで化合物 (4)を淡黄色粉末として得た。収量 2. 5g (収率 45%)を得た。このも のは、 FD— MS (フィールドデイソブーシヨンマススペクトル)の測定により、化合物(4 )と同定した。
(1 13) 化合物(5)の合成
[化 33]
Figure imgf000045_0001
化合物 (5 )
10-ナフタレン一 2—ィルーアントラセン一 9 ボロン酸の代わりに、 4— (1—ナフチ ル)フエ二ルーアントラセンー9 ボロン酸を用いた以外は、化合物(1)の合成と同様 の操作を行うことで化合物 (4)を淡黄色粉末として得た。収量 3. Og (収率 49%)を 得た。このものは、 FD— MS (フィールドデイソブーシヨンマススペクトル)の測定により 、化合物(5)と同定した。
(1 - 14) 化合物(6)の合成
[化 34]
Figure imgf000045_0002
化合物 (6 ) 中間体 A4の代わりに、中間体 A6を用いた以外は、化合物(1)の合成と同様の操 作を行うことで化合物(6)を淡黄色粉末として得た。収量 1. 7g (収率 61%)を得た。 このものは、 FD— MS (フィールドデイソブーシヨンマススペクトル)の測定により、化 合物 (6)と同定した。
(1 - 15) 化合物(7)の合成
[化 35]
Figure imgf000046_0001
化合物 (7 ) 中間体 A4の代わりに、中間体 A8を用いた以外は、化合物(1)の合成と同様の操 作を行うことで化合物(7)を淡黄色粉末として得た。収量 2. 3g (収率 67%)を得た。 このものは、 FD— MS (フィールドデイソブーシヨンマススペクトル)の測定により、ィ匕 合物 (7)と同定した。
(2— 1)中間体 B1の合成
[化 36]
Figure imgf000046_0002
中間体 B 1
2, 5—ジブ口モロ-トロベンゼン 50g (0. 18mol)、酢酸ナトリウム 59g (0. 72mol )、ァ-リン 17g (0. 18mol)をカロえ、 8時間 120°Cで加熱攪拌した後、ジクロロメタン 300mLに溶かし、水、飽和食塩水で順次洗浄した。無水硫酸ナトリウムで乾燥し、溶 媒を減圧留去した。シリカゲルカラムクロマトグラフィー(展開溶媒:ジクロロメタン)に て精製し、得られた結晶をメタノールで洗浄し、中間体 Bl 24gを得た。収率 45%。
[0086] (2— 2)中間体 B2の合成
[化 37]
Figure imgf000047_0001
中間体 B2 中間体 Bl 20g (68mmol)をテトラヒドロフラン 200mLに溶解させ、アルゴン雰囲 気下、室温で攪拌しているところに、ハイドロサルファイトナトリウム 60g (0. 35mol) Z水 200mLの溶液を滴下した。更にメタノール 10mLをカ卩えて、 3時間攪拌した。 反応溶液が透明になって反応が終了した後、酢酸ェチル 200mLを加えて、更に炭 酸水素ナトリウム水溶液を加え、中和した。次いで、有機層を分離し、飽和食塩水で 洗浄した後、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去し、中間体 B2 18gを 得た。収率 100%。
[0087] (2— 3)中間体 B3の合成
[化 38]
Figure imgf000048_0001
中間体 B3 中間体 B2 18g (68mmol)を N—メチルピロリドン 200mLに溶力し、更に無水酢 酸 10g (98mmol)を滴下し、室温で 3時間攪拌した。反応終了後、反応混合物を水 500mLにいれ、析出した固体をろ別し、減圧乾燥することにより、中間体 B3 9. 7g を得た。収率 47%。
(2— 4)中間体 B4の合成
[化 39]
Figure imgf000048_0002
中間体 B4 中間体 B3 9. 7g (32mmol)をキシレン lOOmLに溶解させ、 p—トルエンスルホン 酸一水和物 0. 6g (3. 2mmol)をカ卩え、窒素雰囲気下、 8時間加熱還流しながら共 沸脱水を行った。反応液を室温まで冷却した後、シリカゲルカラムクロマトグラフィー( 展開溶媒:ジクロロメタン)にて精製し、得られた結晶を、中間体 B4 6. 7gを得た。収 率 74%。 [0089] (2— 5)中間体 B5の合成
[化 40]
Figure imgf000049_0001
中間体 B5 中間体 B2 7. 0g (27mmol)を酢酸ェチル 80mLに溶力し、更にトリェチルァミン 4. Og (39mmol)、塩化プロピオ-ル 3. 7g (40mmol)を滴下し、室温で 3時間攪拌 した。反応終了後、反応混合物を水 300mLにいれ、ジクロロメタンで抽出し、有機 層を 5%塩酸、飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。ロータリーエバポレ 一ターを溶媒を留去し、中間体 B5 6. 2gを得た。収率 74%。
[0090] (2— 6)中間体 B6の合成
[化 41]
Figure imgf000049_0002
中間体 B6 中間体 B3の代わりに、中間体 B5を用いた以外は、中間体 B4の合成と同様の操作 を行うことで中間体 B6を白色結晶として得た。収量 2. 8g (収率 47%)を得た。 (2— 7)中間体 B7の合成
[化 42]
Figure imgf000050_0001
中間体 B 7
塩ィ匕プロピオ-ルの代わりに、塩化イソプチリルを用いた以外は、中間体 B5の合成 と同様の操作を行うことで中間体 B7を白色結晶として得た。収量 8. 2g (収率 92%) を得た。
(2— 8)中間体 B8の合成
[化 43]
Figure imgf000050_0002
中間体 B8 中間体 B3の代わりに、中間体 B7を用いた以外は、中間体 B4の合成と同様の操作 を行うことで中間体 B8を白色結晶として得た。収量 1. lg (収率 14%)を得た。
(2- 9) 化合物(8)の合成
[化 44]
Figure imgf000051_0001
化合物 (8 ) アルゴン気流下 300mL三口フラスコに、中間体 B4 6. 7g (23mmol)、 10-ナフタ レン一 2—ィル一アントラセン一 9—ボロン酸 9. 3g (27mmol)、テトラキストリフエ- ルホスフィンパラジウム(0) 0. 54g (0. 5mmol)、 1, 2—ジメトキシェタン 80mL、 2 M炭酸ナトリウム水溶液 40mL (80mmol)をカ卩え、 8時間加熱還流した。反応終了 後、有機層を水洗し、硫酸マグネシウムで乾燥後、ロータリーエバポレーターを溶媒 を留去した。得られた粗結晶を、トルエン 50mL、メタノール lOOmUこて洗浄し、淡 黄色粉末 8. 2gを得た。このものは、 FD— MS (フィールドデイソブーシヨンマススぺ タトル)の測定により、化合物(8)と同定した (収率 69%)
(2— 10) 化合物(9)の合成
[化 45]
Figure imgf000052_0001
化合物 (9 )
10-ナフタレン一 2—ィル一アントラセン一 9 ボロン酸の代わりに、 10-ナフタレン 1ーィルーアントラセンー9 ボロン酸を用いた以外は、化合物(8)の合成と同様 の操作を行うことで化合物(9)を淡黄色粉末として得た。収量 2. 5g (収率 47%)を 得た。このものは、 FD— MS (フィールドデイソブーシヨンマススペクトル)の測定により 、化合物(9)と同定した。
(2- 11) 化合物(10)の合成
[化 46]
Figure imgf000053_0001
化合物 ( 1 0 )
10-ナフタレン 2—ィノレ アントラセン 9 ボロン酸の代わりに、 4 ビフエ-ノレ アントラセン 9 ボロン酸を用 、た以外は、化合物(8)の合成と同様の操作を行 うことで化合物(10)を淡黄色粉末として得た。収量 2. 2g (収率 39%)を得た。このも のは、 FD— MS (フィールドデイソブーシヨンマススペクトル)の測定により、化合物(1 0)と同定した。
(2— 12) 化合物(11)の合成
[化 47]
Figure imgf000054_0001
化合物 ( 1 1 )
10-ナフタレン 2—ィノレ アントラセン 9 ボロン酸の代わりに、 2 ビフエ-ノレ アントラセン 9 ボロン酸を用 、た以外は、化合物(8)の合成と同様の操作を行 うことで化合物(11)を淡黄色粉末として得た。収量 2. 8g (収率 36%)を得た。このも のは、 FD— MS (フィールドデイソブーシヨンマススペクトル)の測定により、化合物(1 1)と同定した。
(2— 13) 化合物(12)の合成
[化 48]
Figure imgf000055_0001
化合物 ( 1 2)
10-ナフタレン一 2—ィルーアントラセン一 9 ボロン酸の代わりに、 4— (1—ナフチ ル)フエ-ルーアントラセン 9 ボロン酸を用いた以外は、化合物(8)の合成と同様 の操作を行うことで化合物(12)を淡黄色粉末として得た。収量 2.8g (収率 46%)を 得た。このものは、 FD— MS (フィールドデイソブーシヨンマススペクトル)の測定により 、化合物(12)と同定した。
(2-14) 化合物(13)の合成
[化 49]
Figure imgf000055_0002
化合物 ( 1 3) 中間体 B4の代わりに、中間体 B6を用いた以外は、化合物(8)の合成と同様の操 作を行うことで化合物(13)を淡黄色粉末として得た。収量 2. 7g (収率 55%)を得た 。このものは、 FD— MS (フィールドデイソブーシヨンマススペクトル)の測定により、化 合物(13)と同定した。
(2- 15) 化合物(14)の合成
[化 50]
Figure imgf000056_0001
化合物 ( 1 4 ) 中間体 B4の代わりに、中間体 B8を用いた以外は、化合物(8)の合成と同様の操 作を行うことで化合物(14)を淡黄色粉末として得た。収量 1. 3g (収率 69%)を得た 。このものは、 FD— MS (フィールドデイソブーシヨンマススペクトル)の測定により、化 合物(14)と同定した。
実施例 1 (本発明化合物を電子輸送層に用いた有機 EL素子の作製)
25mm X 75mm X 1. 1mm厚の ITO透明電極(陽極)付きガラス基板(ジォマティ ック社製)をイソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン 洗浄を 30分間行なった。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の 基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に前記透明 電極を覆うようにして膜厚 60nmの Ν, N, Ν' , Ν,—テトラ(—ジァミノ— 1, 1,—ビフ ェニル)ジアミノビフエ-レン膜 (以下「TPD232膜」と略記する)を成膜した。この TP D232膜は、正孔注入層として機能する。 TPD232膜の成膜に続けて、この TPD23 2膜上に膜厚 20nmのテトラキス— N— (4—ビフエ-ル)ベンジジン膜 (以下「TBB膜 」と略記する)を成膜した。この TBB膜は正孔輸送層として機能する。
さらに、この TBB膜上に膜厚 40nmで下記式で示されるスチリル誘導体 DPVDPA Nと下記式で示されるスチリルアミン誘導体 S1を 40 : 2の膜厚比で成膜し青色系発光 層とした。
この膜上に電子輸送層として膜厚 20nmで化合物(1)を蒸着により成膜した。この 後、 LiFを膜厚 lnmで成膜した。この LiF膜上に金属 A1を 150nm蒸着させ金属陰極 を形成し有機 EL発光素子を形成した。
[0101] [化 51]
Figure imgf000057_0001
T P D 2 3 2 T
Figure imgf000057_0002
D P V D P A N S
[0102] 実施例 2
実施例 1において、化合物(1)の代わりに、化合物(2)を用いた以外は同様にして
Figure imgf000058_0001
化合物 (2 ) 実施例 3
実施例 1において、化合物(1)の代わりに、化合物(3)を用いた以外は同様にして 有機 EL素子を作製した。
[化 53]
Figure imgf000058_0002
化合物 (3 )
[0104] 実施例 4
実施例 1において、化合物(1)の代わりに、化合物 (4)を用いた以外は同様にして 有機 EL素子を作製した。
[化 54]
Figure imgf000058_0003
化合物 (4 )
[0105] 実施例 5
実施例 1において、化合物(1)の代わりに、化合物(5)を用いた以外は同様にして 有機 EL素子を作製した。
[化 55]
Figure imgf000059_0001
化合物 ( 5 ) 比較例 1
実施例 1において、化合物(1)の代わりに、国際公開 WO 04/080975 A1号公 報に記載の下記化合物 Aを用いた以外は同様にして有機 EL素子を作製した。
[化 56]
Figure imgf000059_0002
化合物 A 比較例 2
実施例 1において、化合物(1)の代わりに、国際公開 WO 04/080975 A1号公 報に記載の下記化合物 Bを用いた以外は同様にして有機 EL素子を作製した。
[化 57]
Figure imgf000059_0003
化合物 B
比較例 3
実施例 1において、化合物(1)の代わりに、 Alq (8—ヒドロキシキノリンのアルミ-ゥ ム錯体)を用いた以外は同様にして有機 EL素子を作製した。
[0109] (有機 EL素子の評価)
上記実施例 1〜5及び比較例 1〜3で得られた有機 EL素子について、下記表 1に 記載された直流電圧を印力!]した条件で、発光輝度、発光効率及び色度を測定し、発 光色を観察した。それらの結果を表 1に示す。
[0110] [表 1] 表 1
Figure imgf000060_0001
上記表 1の結果から、上記の化合物を電子注入層に用いることで、極めて高い発光 輝度及び発光効率の素子を製造できることがわかる。

Claims

請求の範囲 下記一般式(1)で表される含窒素複素環誘導体。
(1)
{前記一般式(1)において、 Ri〜R5は、水素原子、置換もしくは無置換の核原子数 5 〜60のァリール基、置換もしくは無置換の核原子数 5〜60のへテロアリール基、置 換もしくは無置換のピリジル基、置換もしくは無置換のキノリル基、置換もしくは無置 換の炭素数 1〜50のアルキル基、置換もしくは無置換の炭素数 3〜50のシクロアル キル基、置換もしくは無置換の核原子数 6〜50のァラルキル基、置換もしくは無置換 の炭素数 1〜50のアルコキシ基、置換もしくは無置換の核原子数 5〜50のァリール ォキシ基、置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無 置換の炭素数 1〜50のアルコキシカルボニル基、置換もしくは無置換の核原子数 5 〜50のァリール基で置換されたァミノ基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキ シル基又はカルボキシル基であり、
Raは、置換もしくは無置換の炭素数 1〜50のアルキル基であり、
R2〜R5の隣り合う基が互 、に結合して芳香環を形成して 、てもよく、
R -R5の少なくとも 1つは下記一般式 (2)で示される置換基である。
[化 2] L— A^-Ar2 (2)
(Lは、置換もしくは無置換の炭素数 6〜60のァリーレン基、置換もしくは無置換のピ リジ-レン基、置換もしくは無置換のキノリ-レン基、又は置換もしくは無置換のフル ォレニレン基であり、
Ar1は、置換もしくは無置換の炭素数 6〜60のァリーレン基、置換もしくは無置換の ピリジ-レン基又は置換もしくは無置換のキノリ-レン基であり、
Ar2は、水素原子、置換もしくは無置換の核原子数 5〜60のァリール基、置換もしく は無置換のピリジル基、置換もしくは無置換のキノリル基、置換もしくは無置換の炭素 数 1〜50のアルキル基、置換もしくは無置換の炭素数 3〜50のシクロアルキル基、置 換もしくは無置換の核原子数 6〜50のァラルキル基、置換もしくは無置換の炭素数 1 〜50のアルコキシ基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭 素数 1〜50のアルコキシカルボ-ル基、置換もしくは無置換の核原子数 5〜50のァ リール基で置換されたァミノ基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基又 はカルボキシル基である。 )}
一般式(1)で表される化合物が、下記一般式( 1 a)又は( 1 b)で表される化合 物である請求項 1記載の含窒素複素環誘導体。
[化 3]
Figure imgf000063_0001
a ) ( 1— b )
{前記一般式(1 a)及び(1 b)において、 〜 、 Ra、 L、
Figure imgf000063_0002
及び Ar2は、それ ぞれ前記一般式(1)におけるものと同じである。
前記一般式( 1 a)及び( 1 b)にお 、て、 R2〜R5の隣り合う基の一組が互 、に結 合して芳香環を形成していてもよい。 }
[3] 有機エレクト口ルミネッセンス素子用材料である請求項 1又は請求項 2に記載の含 窒素複素環誘導体。
[4] 有機エレクト口ルミネッセンス素子用電子注入材料又は電子輸送材料である請求 項 1又は請求項 2に記載の含窒素複素環誘導体。
[5] 有機エレクト口ルミネッセンス素子用発光材料である請求項 1又は請求項 2に記載 の含窒素複素環誘導体。
[6] 陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟 持されている有機エレクト口ルミネッセンス素子において、該有機薄膜層の少なくとも 1層が、請求項 1又は請求項 2に記載の含窒素複素環誘導体を単独もしくは混合物 の成分として含有する有機エレクト口ルミネッセンス素子。
[7] 前記有機薄膜層が電子注入層又は電子輸送層を有し、該電子注入層又は該電子 輸送層が、請求項 1又は請求項 2に記載の含窒素複素環誘導体を単独もしくは混合 物の成分として含有する請求項 6に記載の有機エレクト口ルミネッセンス素子。
[8] 陰極と陽極間に少なくとも発光層を含む一層又は二層以上からなる有機薄膜層が 挟持されて 、る有機エレクト口ルミネッセンス素子にぉ 、て、発光層に請求項 1又は 請求項 2に記載の含窒素複素環誘導体を単独又は混合物の成分として含有する請 求項 6に記載の有機エレクト口ルミネッセンス素子。
[9] 電子注入材料又は電子輸送材料である請求項 1又は請求項 2に記載の含窒素複 素環誘導体に還元性ドーパントを含有することを特徴とする請求項 7に記載の有機 エレクトロノレミネッセンス素子。
[10] 還元性ドーパントが、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属 の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類 金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ 金属の有機錯体、アルカリ土類金属の有機錯体及び希土類金属の有機錯体力もな る群力 選択される 1種又は 2種以上の物質であることを特徴とする請求項 9に記載 の有機エレクト口ルミネッセンス素子。
PCT/JP2006/324113 2005-12-02 2006-12-01 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子 WO2007063993A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06833883A EP1956007A1 (en) 2005-12-02 2006-12-01 Nitrogenous heterocyclic derivative and organic electroluminescence device making use of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-349170 2005-12-02
JP2005349170A JP2007153778A (ja) 2005-12-02 2005-12-02 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子

Publications (1)

Publication Number Publication Date
WO2007063993A1 true WO2007063993A1 (ja) 2007-06-07

Family

ID=38092325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324113 WO2007063993A1 (ja) 2005-12-02 2006-12-01 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US20070138950A1 (ja)
EP (1) EP1956007A1 (ja)
JP (1) JP2007153778A (ja)
KR (1) KR20080077615A (ja)
CN (1) CN101321735A (ja)
TW (1) TW200735711A (ja)
WO (1) WO2007063993A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118591A (ja) * 2008-11-14 2010-05-27 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料
US8329914B2 (en) 2008-10-31 2012-12-11 Merck Sharp & Dohme Corp Cyclic benzimidazole derivatives useful as anti-diabetic agents
US8394969B2 (en) 2008-09-26 2013-03-12 Merck Sharp & Dohme Corp. Cyclic benzimidazole derivatives useful as anti-diabetic agents
US8410284B2 (en) 2008-10-22 2013-04-02 Merck Sharp & Dohme Corp Cyclic benzimidazole derivatives useful as anti-diabetic agents
US8563746B2 (en) 2008-10-29 2013-10-22 Merck Sharp & Dohme Corp Cyclic benzimidazole derivatives useful as anti-diabetic agents
WO2014017094A1 (ja) * 2012-07-25 2014-01-30 出光興産株式会社 有機エレクトロルミネッセンス素子
US8895596B2 (en) 2010-02-25 2014-11-25 Merck Sharp & Dohme Corp Cyclic benzimidazole derivatives useful as anti-diabetic agents
US9419231B2 (en) 2012-07-25 2016-08-16 Idemitsu Kosan Co., Ltd. Organic electroluminescence device

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7867629B2 (en) * 2003-01-10 2011-01-11 Idemitsu Kosan Co., Ltd. Nitrogenous heterocyclic derivative and organic electroluminescent element employing the same
KR20100106414A (ko) 2007-11-22 2010-10-01 이데미쓰 고산 가부시키가이샤 유기 el 소자
CN101959867A (zh) * 2007-12-27 2011-01-26 出光兴产株式会社 含氮杂环衍生物及使用该衍生物的有机电致发光元件
CN102471269B (zh) * 2010-01-15 2016-02-03 出光兴产株式会社 含氮杂环衍生物及含有它的有机电致发光元件
EP2452946B1 (en) 2010-11-16 2014-05-07 Novaled AG Pyridylphosphinoxides for organic electronic device and organic electronic device
EP2463927B1 (en) 2010-12-08 2013-08-21 Novaled AG Material for organic electronic device and organic electronic device
JP2012195054A (ja) 2011-03-14 2012-10-11 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
TWI597875B (zh) 2011-11-30 2017-09-01 Novaled Gmbh 有機電子裝置及其用途
EP2786434B1 (en) 2011-11-30 2015-09-30 Novaled GmbH Organic electronic device
KR102028940B1 (ko) * 2012-03-26 2019-10-07 도레이 카부시키가이샤 발광 소자 재료 및 발광 소자
KR102030584B1 (ko) * 2013-01-08 2019-10-10 에스에프씨주식회사 헤테로아릴 치환기를 갖는 페닐기를 포함하는 안트라센 유도체 및 이를 포함하는 유기 발광 소자
KR102248083B1 (ko) * 2013-01-09 2021-05-04 에스에프씨주식회사 두 개의 페닐기를 포함하는 비대칭 안트라센 유도체 및 이를 포함하는 유기 발광 소자
US9828348B2 (en) 2013-11-08 2017-11-28 Purdue Pharma L.P. Benzimidazole derivatives and use thereof
EP3002801B1 (en) 2014-09-30 2018-07-18 Novaled GmbH Organic electronic device
US9929361B2 (en) 2015-02-16 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US11056657B2 (en) 2015-02-27 2021-07-06 University Display Corporation Organic electroluminescent materials and devices
US9859510B2 (en) 2015-05-15 2018-01-02 Universal Display Corporation Organic electroluminescent materials and devices
US10418568B2 (en) 2015-06-01 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US11127905B2 (en) 2015-07-29 2021-09-21 Universal Display Corporation Organic electroluminescent materials and devices
US10672996B2 (en) 2015-09-03 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US20170229663A1 (en) 2016-02-09 2017-08-10 Universal Display Corporation Organic electroluminescent materials and devices
US10236456B2 (en) 2016-04-11 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US10862054B2 (en) 2016-06-20 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US11482683B2 (en) 2016-06-20 2022-10-25 Universal Display Corporation Organic electroluminescent materials and devices
US10672997B2 (en) 2016-06-20 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
CN107778249B (zh) * 2016-08-25 2020-10-16 武汉尚赛光电科技有限公司 苯并咪唑桥联蒽类的衍生物及其制备方法和应用
US10608186B2 (en) 2016-09-14 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
US10680187B2 (en) 2016-09-23 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11196010B2 (en) 2016-10-03 2021-12-07 Universal Display Corporation Organic electroluminescent materials and devices
US11011709B2 (en) 2016-10-07 2021-05-18 Universal Display Corporation Organic electroluminescent materials and devices
US20180130956A1 (en) 2016-11-09 2018-05-10 Universal Display Corporation Organic electroluminescent materials and devices
US10680188B2 (en) 2016-11-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11780865B2 (en) 2017-01-09 2023-10-10 Universal Display Corporation Organic electroluminescent materials and devices
US11744142B2 (en) 2017-08-10 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US20190161504A1 (en) 2017-11-28 2019-05-30 University Of Southern California Carbene compounds and organic electroluminescent devices
EP3492480B1 (en) 2017-11-29 2021-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US11937503B2 (en) 2017-11-30 2024-03-19 Universal Display Corporation Organic electroluminescent materials and devices
CN112823434A (zh) * 2018-10-16 2021-05-18 出光兴产株式会社 有机电致发光元件和电子设备

Citations (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1110515B (de) 1960-04-14 1961-07-06 Agfa Ag Fotografische Rollfilmkamera
US3112197A (en) 1956-06-27 1963-11-26 Azoplate Corp Electrophotographic member
US3180703A (en) 1963-01-15 1965-04-27 Kerr Mc Gee Oil Ind Inc Recovery process
US3180729A (en) 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction
US3189447A (en) 1956-06-04 1965-06-15 Azoplate Corp Electrophotographic material and method
US3240597A (en) 1961-08-21 1966-03-15 Eastman Kodak Co Photoconducting polymers for preparing electrophotographic materials
US3257203A (en) 1958-08-20 1966-06-21 Azoplate Corp Electrophotographic reproduction material
JPS45555B1 (ja) 1966-03-24 1970-01-09
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3542544A (en) 1967-04-03 1970-11-24 Eastman Kodak Co Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types
JPS463712B1 (ja) 1966-04-14 1971-01-29
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3615402A (en) 1969-10-01 1971-10-26 Eastman Kodak Co Tetra-substituted methanes as organic photoconductors
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
US3658520A (en) 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
JPS4725336B1 (ja) 1969-11-26 1972-07-11
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
US3820989A (en) 1969-09-30 1974-06-28 Eastman Kodak Co Tri-substituted methanes as organic photoconductors
JPS4935702B1 (ja) 1969-06-20 1974-09-25
JPS49105587A (ja) 1973-02-08 1974-10-05
JPS5110105B2 (ja) 1972-02-09 1976-04-01
JPS5110983B2 (ja) 1971-09-10 1976-04-08
JPS5193224A (ja) 1974-12-20 1976-08-16
US4012376A (en) 1975-12-29 1977-03-15 Eastman Kodak Company Photosensitive colorant materials
JPS5327033A (en) 1976-08-23 1978-03-13 Xerox Corp Image forming member and image forming method
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
JPS5453435A (en) 1977-10-01 1979-04-26 Yoshikatsu Kume Portable bicycle equipped with foldable type triangle frame
JPS5458445A (en) 1977-09-29 1979-05-11 Xerox Corp Electrostatic photosensitive device
JPS5459143A (en) 1977-10-17 1979-05-12 Ibm Electronic photographic material
JPS5464299A (en) 1977-10-29 1979-05-23 Toshiba Corp Beam deflector for charged particles
JPS54110837A (en) 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54110536A (en) 1978-02-20 1979-08-30 Ichikoh Ind Ltd Device for time-lag putting out room lamp for motorcar
JPS54112637A (en) 1978-02-06 1979-09-03 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54119925A (en) 1978-03-10 1979-09-18 Ricoh Co Ltd Photosensitive material for electrophotography
JPS54149634A (en) 1978-05-12 1979-11-24 Xerox Corp Image forming member and method of forming image using same
US4175961A (en) 1976-12-22 1979-11-27 Eastman Kodak Company Multi-active photoconductive elements
JPS5517105A (en) 1978-07-21 1980-02-06 Konishiroku Photo Ind Co Ltd Electrophotographic photoreceptor
JPS5546760A (en) 1978-09-29 1980-04-02 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5551086A (en) 1978-09-04 1980-04-14 Copyer Co Ltd Novel pyrazoline compound, its preparation, and electrophotographic photosensitive substance comprising it
JPS5552064A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5552063A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5574546A (en) 1978-11-30 1980-06-05 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5579450A (en) 1978-12-04 1980-06-14 Xerox Corp Image formation device
JPS5588065A (en) 1978-12-12 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5588064A (en) 1978-12-05 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS55108667A (en) 1979-02-13 1980-08-21 Ricoh Co Ltd Electrophotographic receptor
US4232103A (en) 1979-08-27 1980-11-04 Xerox Corporation Phenyl benzotriazole stabilized photosensitive device
JPS55144250A (en) 1979-04-30 1980-11-11 Xerox Corp Image formation device
JPS55156953A (en) 1979-05-17 1980-12-06 Mitsubishi Paper Mills Ltd Organic semiconductor electrophotographic material
JPS564148A (en) 1979-06-21 1981-01-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5622437A (en) 1979-08-01 1981-03-03 Ricoh Co Ltd Electrophotographic receptor
JPS5636656A (en) 1979-09-03 1981-04-09 Mitsubishi Paper Mills Ltd Electrophotographic material
JPS5646234A (en) 1979-09-21 1981-04-27 Ricoh Co Ltd Electrophotographic receptor
JPS5680051A (en) 1979-12-04 1981-07-01 Ricoh Co Ltd Electrophotographic receptor
US4278746A (en) 1978-06-21 1981-07-14 Konishiroku Photo Industry Co., Ltd. Photosensitive elements for electrophotography
JPS5688141A (en) 1979-12-20 1981-07-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS56119132A (en) 1979-11-23 1981-09-18 Xerox Corp Image forming element
JPS5711350A (en) 1980-06-24 1982-01-21 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS5745545A (en) 1980-09-03 1982-03-15 Mitsubishi Paper Mills Ltd Electrophotographic receptor
JPS5751781A (en) 1980-07-17 1982-03-26 Eastman Kodak Co Organic electroluminiscent cell and method
JPS57148749A (en) 1981-03-11 1982-09-14 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS6093455A (ja) 1983-10-28 1985-05-25 Fuji Xerox Co Ltd 電子写真用現像剤
JPS6094462A (ja) 1983-10-28 1985-05-27 Ricoh Co Ltd スチルベン誘導体及びその製造法
JPS60175052A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd 電子写真用感光体
JPS60174749A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd スチリル化合物及びその製造法
JPS6114642A (ja) 1984-06-29 1986-01-22 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6172255A (ja) 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6198353A (ja) 1984-10-19 1986-05-16 ゼロツクス コーポレーシヨン 芳香族エーテル正孔移送層を含む感光装置
JPS61210363A (ja) 1985-03-15 1986-09-18 Canon Inc 電子写真感光体
JPS61228451A (ja) 1985-04-03 1986-10-11 Canon Inc 電子写真感光体
JPS61295558A (ja) 1985-06-24 1986-12-26 ゼロツクス コ−ポレ−シヨン アルコキシアミン電荷移送分子を含有する光導電性像形成部材
JPS6210652A (ja) 1985-07-08 1987-01-19 Minolta Camera Co Ltd 感光体
JPS6230255A (ja) 1985-07-31 1987-02-09 Minolta Camera Co Ltd 電子写真感光体
JPS6236674A (ja) 1985-08-05 1987-02-17 Fuji Photo Film Co Ltd 電子写真感光体
JPS6247646A (ja) 1985-08-27 1987-03-02 Konishiroku Photo Ind Co Ltd 感光体
JPS63256965A (ja) 1987-04-15 1988-10-24 Canon Inc 静電荷像現像用トナ−
JPS63295695A (ja) 1987-02-11 1988-12-02 イーストマン・コダック・カンパニー 有機発光媒体をもつ電場発光デバイス
JPH01211399A (ja) 1988-02-19 1989-08-24 Toshiba Corp スキャン機能付きダイナミックシフトレジスタ
JPH02204996A (ja) 1989-02-01 1990-08-14 Nec Corp 有機薄膜el素子
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
JPH02282263A (ja) 1988-12-09 1990-11-19 Nippon Oil Co Ltd ホール輸送材料
JPH02311591A (ja) 1989-05-25 1990-12-27 Mitsubishi Kasei Corp 有機電界発光素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH08193191A (ja) 1995-01-19 1996-07-30 Idemitsu Kosan Co Ltd 有機電界発光素子及び有機薄膜
US5645948A (en) 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
JP2002038141A (ja) 2000-07-28 2002-02-06 Fuji Photo Film Co Ltd 新規縮合へテロ環化合物、発光素子材料およびそれを使用した発光素子
WO2004080975A1 (ja) 2003-03-13 2004-09-23 Idemitsu Kosan Co., Ltd. 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2005006816A1 (ja) * 2003-07-11 2005-01-20 Idemitsu Kosan Co., Ltd. 白色系有機エレクトロルミネッセンス素子
WO2005097756A1 (ja) * 2004-04-07 2005-10-20 Idemitsu Kosan Co., Ltd. 含窒素複素環誘導体およびそれを用いた有機エレクトロルミネッセンス素子
JP3716096B2 (ja) 1998-04-02 2005-11-16 三菱重工業株式会社 微粉炭セパレータ装置
JP3927577B2 (ja) 1994-11-10 2007-06-13 マイケルスン、ガーリー、ケィー 電動骨鉗子

Patent Citations (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3189447A (en) 1956-06-04 1965-06-15 Azoplate Corp Electrophotographic material and method
US3112197A (en) 1956-06-27 1963-11-26 Azoplate Corp Electrophotographic member
US3180729A (en) 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction
US3257203A (en) 1958-08-20 1966-06-21 Azoplate Corp Electrophotographic reproduction material
DE1110515B (de) 1960-04-14 1961-07-06 Agfa Ag Fotografische Rollfilmkamera
US3240597A (en) 1961-08-21 1966-03-15 Eastman Kodak Co Photoconducting polymers for preparing electrophotographic materials
US3180703A (en) 1963-01-15 1965-04-27 Kerr Mc Gee Oil Ind Inc Recovery process
JPS45555B1 (ja) 1966-03-24 1970-01-09
JPS463712B1 (ja) 1966-04-14 1971-01-29
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3542544A (en) 1967-04-03 1970-11-24 Eastman Kodak Co Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3658520A (en) 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
JPS4935702B1 (ja) 1969-06-20 1974-09-25
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
US3820989A (en) 1969-09-30 1974-06-28 Eastman Kodak Co Tri-substituted methanes as organic photoconductors
US3615402A (en) 1969-10-01 1971-10-26 Eastman Kodak Co Tetra-substituted methanes as organic photoconductors
JPS4725336B1 (ja) 1969-11-26 1972-07-11
JPS5110983B2 (ja) 1971-09-10 1976-04-08
JPS5110105B2 (ja) 1972-02-09 1976-04-01
JPS49105587A (ja) 1973-02-08 1974-10-05
JPS5193224A (ja) 1974-12-20 1976-08-16
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
US4012376A (en) 1975-12-29 1977-03-15 Eastman Kodak Company Photosensitive colorant materials
JPS5327033A (en) 1976-08-23 1978-03-13 Xerox Corp Image forming member and image forming method
US4175961A (en) 1976-12-22 1979-11-27 Eastman Kodak Company Multi-active photoconductive elements
JPS5458445A (en) 1977-09-29 1979-05-11 Xerox Corp Electrostatic photosensitive device
JPS5453435A (en) 1977-10-01 1979-04-26 Yoshikatsu Kume Portable bicycle equipped with foldable type triangle frame
JPS5459143A (en) 1977-10-17 1979-05-12 Ibm Electronic photographic material
JPS5464299A (en) 1977-10-29 1979-05-23 Toshiba Corp Beam deflector for charged particles
JPS54112637A (en) 1978-02-06 1979-09-03 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54110837A (en) 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54110536A (en) 1978-02-20 1979-08-30 Ichikoh Ind Ltd Device for time-lag putting out room lamp for motorcar
JPS54119925A (en) 1978-03-10 1979-09-18 Ricoh Co Ltd Photosensitive material for electrophotography
JPS54149634A (en) 1978-05-12 1979-11-24 Xerox Corp Image forming member and method of forming image using same
US4278746A (en) 1978-06-21 1981-07-14 Konishiroku Photo Industry Co., Ltd. Photosensitive elements for electrophotography
JPS5517105A (en) 1978-07-21 1980-02-06 Konishiroku Photo Ind Co Ltd Electrophotographic photoreceptor
JPS5551086A (en) 1978-09-04 1980-04-14 Copyer Co Ltd Novel pyrazoline compound, its preparation, and electrophotographic photosensitive substance comprising it
JPS5546760A (en) 1978-09-29 1980-04-02 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5552064A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5552063A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5574546A (en) 1978-11-30 1980-06-05 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5579450A (en) 1978-12-04 1980-06-14 Xerox Corp Image formation device
JPS5588064A (en) 1978-12-05 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5588065A (en) 1978-12-12 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS55108667A (en) 1979-02-13 1980-08-21 Ricoh Co Ltd Electrophotographic receptor
JPS55144250A (en) 1979-04-30 1980-11-11 Xerox Corp Image formation device
JPS55156953A (en) 1979-05-17 1980-12-06 Mitsubishi Paper Mills Ltd Organic semiconductor electrophotographic material
JPS564148A (en) 1979-06-21 1981-01-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5622437A (en) 1979-08-01 1981-03-03 Ricoh Co Ltd Electrophotographic receptor
US4232103A (en) 1979-08-27 1980-11-04 Xerox Corporation Phenyl benzotriazole stabilized photosensitive device
JPS5636656A (en) 1979-09-03 1981-04-09 Mitsubishi Paper Mills Ltd Electrophotographic material
JPS5646234A (en) 1979-09-21 1981-04-27 Ricoh Co Ltd Electrophotographic receptor
JPS56119132A (en) 1979-11-23 1981-09-18 Xerox Corp Image forming element
JPS5680051A (en) 1979-12-04 1981-07-01 Ricoh Co Ltd Electrophotographic receptor
JPS5688141A (en) 1979-12-20 1981-07-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5711350A (en) 1980-06-24 1982-01-21 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS5751781A (en) 1980-07-17 1982-03-26 Eastman Kodak Co Organic electroluminiscent cell and method
JPS5745545A (en) 1980-09-03 1982-03-15 Mitsubishi Paper Mills Ltd Electrophotographic receptor
JPS57148749A (en) 1981-03-11 1982-09-14 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS6093455A (ja) 1983-10-28 1985-05-25 Fuji Xerox Co Ltd 電子写真用現像剤
JPS6094462A (ja) 1983-10-28 1985-05-27 Ricoh Co Ltd スチルベン誘導体及びその製造法
JPS60175052A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd 電子写真用感光体
JPS60174749A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd スチリル化合物及びその製造法
JPS6114642A (ja) 1984-06-29 1986-01-22 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6172255A (ja) 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6198353A (ja) 1984-10-19 1986-05-16 ゼロツクス コーポレーシヨン 芳香族エーテル正孔移送層を含む感光装置
JPS61210363A (ja) 1985-03-15 1986-09-18 Canon Inc 電子写真感光体
JPS61228451A (ja) 1985-04-03 1986-10-11 Canon Inc 電子写真感光体
JPS61295558A (ja) 1985-06-24 1986-12-26 ゼロツクス コ−ポレ−シヨン アルコキシアミン電荷移送分子を含有する光導電性像形成部材
JPS6210652A (ja) 1985-07-08 1987-01-19 Minolta Camera Co Ltd 感光体
JPS6230255A (ja) 1985-07-31 1987-02-09 Minolta Camera Co Ltd 電子写真感光体
JPS6236674A (ja) 1985-08-05 1987-02-17 Fuji Photo Film Co Ltd 電子写真感光体
JPS6247646A (ja) 1985-08-27 1987-03-02 Konishiroku Photo Ind Co Ltd 感光体
JPS63295695A (ja) 1987-02-11 1988-12-02 イーストマン・コダック・カンパニー 有機発光媒体をもつ電場発光デバイス
JPS63256965A (ja) 1987-04-15 1988-10-24 Canon Inc 静電荷像現像用トナ−
JPH01211399A (ja) 1988-02-19 1989-08-24 Toshiba Corp スキャン機能付きダイナミックシフトレジスタ
JPH02282263A (ja) 1988-12-09 1990-11-19 Nippon Oil Co Ltd ホール輸送材料
JPH02204996A (ja) 1989-02-01 1990-08-14 Nec Corp 有機薄膜el素子
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
JPH02311591A (ja) 1989-05-25 1990-12-27 Mitsubishi Kasei Corp 有機電界発光素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JP3927577B2 (ja) 1994-11-10 2007-06-13 マイケルスン、ガーリー、ケィー 電動骨鉗子
JPH08193191A (ja) 1995-01-19 1996-07-30 Idemitsu Kosan Co Ltd 有機電界発光素子及び有機薄膜
US5645948A (en) 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
JP3716096B2 (ja) 1998-04-02 2005-11-16 三菱重工業株式会社 微粉炭セパレータ装置
JP2002038141A (ja) 2000-07-28 2002-02-06 Fuji Photo Film Co Ltd 新規縮合へテロ環化合物、発光素子材料およびそれを使用した発光素子
WO2004080975A1 (ja) 2003-03-13 2004-09-23 Idemitsu Kosan Co., Ltd. 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2005006816A1 (ja) * 2003-07-11 2005-01-20 Idemitsu Kosan Co., Ltd. 白色系有機エレクトロルミネッセンス素子
WO2005097756A1 (ja) * 2004-04-07 2005-10-20 Idemitsu Kosan Co., Ltd. 含窒素複素環誘導体およびそれを用いた有機エレクトロルミネッセンス素子

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8394969B2 (en) 2008-09-26 2013-03-12 Merck Sharp & Dohme Corp. Cyclic benzimidazole derivatives useful as anti-diabetic agents
US8410284B2 (en) 2008-10-22 2013-04-02 Merck Sharp & Dohme Corp Cyclic benzimidazole derivatives useful as anti-diabetic agents
US8563746B2 (en) 2008-10-29 2013-10-22 Merck Sharp & Dohme Corp Cyclic benzimidazole derivatives useful as anti-diabetic agents
US8329914B2 (en) 2008-10-31 2012-12-11 Merck Sharp & Dohme Corp Cyclic benzimidazole derivatives useful as anti-diabetic agents
JP2010118591A (ja) * 2008-11-14 2010-05-27 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料
US8895596B2 (en) 2010-02-25 2014-11-25 Merck Sharp & Dohme Corp Cyclic benzimidazole derivatives useful as anti-diabetic agents
WO2014017094A1 (ja) * 2012-07-25 2014-01-30 出光興産株式会社 有機エレクトロルミネッセンス素子
JPWO2014017094A1 (ja) * 2012-07-25 2016-07-07 出光興産株式会社 有機エレクトロルミネッセンス素子
US9419231B2 (en) 2012-07-25 2016-08-16 Idemitsu Kosan Co., Ltd. Organic electroluminescence device

Also Published As

Publication number Publication date
KR20080077615A (ko) 2008-08-25
US20070138950A1 (en) 2007-06-21
TW200735711A (en) 2007-09-16
EP1956007A1 (en) 2008-08-13
CN101321735A (zh) 2008-12-10
JP2007153778A (ja) 2007-06-21

Similar Documents

Publication Publication Date Title
WO2007063993A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US8088901B2 (en) Azaindenofluorenedione derivative, material for organic electroluminescence device and organic electroluminescence device
JP5213705B2 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子用材料
WO2007007464A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007018004A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007111263A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007111262A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007018007A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2008032631A1 (fr) Dérivé d'amine aromatique et dispositif électroluminescent organique l'employant
WO2008023550A1 (fr) Dérivé d'amine aromatique et dispositif électroluminescent organique utilisant celui-ci
WO2007007463A1 (ja) 電子吸引性置換基を有する含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2008072400A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2006073054A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006001333A1 (ja) 多環芳香族系化合物、発光性塗膜形成用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2007114358A1 (ja) ベンズアントラセン誘導体、及びそれを用いた有機エレクトロルミネッセンス素子
WO2007125714A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2007080704A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006114921A1 (ja) 芳香族トリアミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2006006505A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006046441A1 (ja) 芳香族アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2007017995A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007100010A1 (ja) 有機エレクトロルミネッセンス素子
KR20100038193A (ko) 방향족 아민 유도체 및 그것을 사용한 유기 전기 발광 소자
WO2005121057A1 (ja) アントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
WO2009145016A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680045300.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2724/CHENP/2008

Country of ref document: IN

Ref document number: 1020087013142

Country of ref document: KR

Ref document number: 2006833883

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE