WO2007063764A1 - Metal-based composite material containing both micro-sized carbon fiber and nano-sized carbon fiber - Google Patents

Metal-based composite material containing both micro-sized carbon fiber and nano-sized carbon fiber Download PDF

Info

Publication number
WO2007063764A1
WO2007063764A1 PCT/JP2006/323399 JP2006323399W WO2007063764A1 WO 2007063764 A1 WO2007063764 A1 WO 2007063764A1 JP 2006323399 W JP2006323399 W JP 2006323399W WO 2007063764 A1 WO2007063764 A1 WO 2007063764A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
metal
composite material
nano
sized
Prior art date
Application number
PCT/JP2006/323399
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiyuki Ueno
Original Assignee
Shimane Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimane Prefectural Government filed Critical Shimane Prefectural Government
Priority to EP06833203A priority Critical patent/EP1956110B1/en
Priority to DE602006018188T priority patent/DE602006018188D1/en
Priority to US12/085,551 priority patent/US8206815B2/en
Priority to JP2007547911A priority patent/JP5364905B2/en
Publication of WO2007063764A1 publication Critical patent/WO2007063764A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/04Pretreatment of the fibres or filaments by coating, e.g. with a protective or activated covering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/04Light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/002Carbon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • Y10T428/24124Fibers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree

Definitions

  • the present invention relates to a metal-based carbon fiber composite material. More specifically, the present invention relates to a metal matrix composite material containing co-containing micron-size and nano-size carbon fibers and a method for producing the same. Background art
  • thermophysical properties of this material for the heat dissipation device greatly affect the cooling performance.
  • thermoelectric conductivity which is high! If the thermal conductivity is high, heat can be distributed throughout the heat dissipation device, and heat can be efficiently dissipated to the atmosphere.
  • the second thermophysical property to be noted is the coefficient of thermal expansion, which is desirably equivalent to the material of the heat generating portion to be cooled.
  • the heat of the heat generating part is transferred to the heat dissipation device by contact, but if the coefficient of thermal expansion of both does not match, the ideal contact state cannot be maintained and normal heat transfer is hindered.
  • the material of the heat dissipation device must satisfy the above conditions.
  • thermal conductivities are about 200WZ (mK) and about 400WZ (mK), respectively.
  • Common materials iron: 84WZ (mK), stainless steel 14WZ (mK), glass 1WZ (mK), and resin 1WZ (mK) Compared with the following), it is inexpensive and excellent in workability.
  • Materials such as aluminum nitride (thermal conductivity of 250 WZ (mK) or less) diamond (thermal conductivity 800 to 2000 WZ (mK)) are also used for parts that require some insulating properties and higher thermal conductivity. Being beaten but high Because it is a price, it is not common! /.
  • metal-based carbon fiber composite materials have been attracting attention in recent years and are relatively inexpensive and excellent in thermal conductivity. Although this material has a high thermal conductivity in the direction of carbon fibers (500WZ (mK) or more), the thermal conductivity in the direction perpendicular to the carbon fibers is 40WZ (mK) or less, which causes anisotropy in the low thermal expansion coefficient. (Fiber direction OppmZK, fiber orthogonal direction 14ppmZ K).
  • Carbon fiber and metal composite materials are disclosed in JP-A-2004-165665 and JP-A-2004-22828 (Patent Documents 1 and 2).
  • the method for producing a metal-based carbon fiber composite material disclosed here is considered to be a method (a molten metal impregnation method) in which molten metal is pressed into a void of a previously formed carbon fiber.
  • Patent Document 3 describes light weight and high thermal conductivity while suppressing the formation of metal carbide. A method for producing a metal-based carbon fiber composite material having a high rate and capable of controlling the direction of heat flow is disclosed.
  • This manufacturing method includes a step of physically mixing carbon fibers and metal powder to obtain a metal fiber mixture, a step of filling the metal fiber mixture into a jig, and a jig in the atmosphere. And placing in a vacuum or in an inert atmosphere, applying a pulsed current directly while applying pressure, and sintering by heat generated thereby.
  • the metal fiber mixture is unidirectionally arranged and there is no disclosure regarding thermal properties such as coefficient of thermal expansion.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-165665
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-22828
  • Patent Document 3 International Publication No. 2005Z059194 Pamphlet
  • Non-Patent Document 1 Furukawa Electric Times Issue 106, http://www.furukawa.co.jp/jiho/fj l06 / fj l06_01.pdf
  • Metal-based carbon fiber composite materials as described above are further improved in terms of thermal expansion coefficient and thermal conductivity in the direction perpendicular to the carbon fibers. is required.
  • thermal conductivity materials including unidirectional carbon fibers (micron size)
  • thermal conductivity in the direction perpendicular to the carbon fibers is required.
  • heat dissipation members there is a demand for smaller and lighter heat dissipation members.
  • the present invention has been made for the purpose of solving such problems.
  • an object of the present invention is to provide a metal-based carbon fiber composite material that is improved in thermal expansion coefficient and thermal conductivity in a direction orthogonal to the carbon fiber and is reduced in weight. Furthermore, the present invention provides a method for producing such a metal-based carbon composite material.
  • the present invention relates to a metal-based carbon fiber composite material that can be used as a material for a heat dissipation device or the like.
  • the composite material of the present invention comprises carbon fibers having a diameter of several microns to several tens of microns (also referred to as micron-sized carbon fibers or micron carbon fibers) and nano-sized carbon fibers having a diameter of several nanometers to several hundreds of nanometers. (Also referred to as nanofiber) is a composite addition of metal.
  • the present invention makes it possible to achieve both high thermal conductivity and an arbitrary coefficient of thermal expansion by controlling the orientation of each carbon fiber material in this composite material. Furthermore, this invention relates to the manufacturing method of this metal group carbon fiber composite material.
  • the metal-based carbon fiber composite material according to the first embodiment of the present invention includes a metal, and a metal group comprising a carbon fiber including a micron-size carbon fiber and a nano-size carbon fiber. It is a carbon fiber composite material.
  • the composite material has a first surface, and the micron-sized carbon fibers are oriented and packed in one direction parallel to the first surface of the composite material, At least 50% of the one end force of the surface is continuous to the other opposite end, and 80% of the nano-sized carbon fibers are oriented within 30 ° with respect to the first surface, and In a plane parallel to one surface. And features.
  • the metal-based carbon fiber composite material according to the first embodiment has a plurality of layers, and at least a part of the composition of the materials of each layer is It is different from each other.
  • Another embodiment of the metal-based carbon fiber composite material of the present invention is the metal-based carbon fiber composite material according to the first embodiment described above, wherein the inner region at a certain distance from the first surface is more than the other regions.
  • the other region is formed of a plurality of layers, and at least a part of the composition of the material of each layer may be different from each other. This constant distance of the first surface is from the surface
  • the carbon fibers of the micron sized the included 20 to 80 vol% in the double case material, the carbon fibers of the nano-sized is preferably included from 1 to 50 volume 0/0 in the composite material.
  • a method for producing a metal-based carbon fiber composite material includes the following steps.
  • a step of preparing metal powder nano-sized carbon fiber-attached fibers (c) a step of filling the metal powder nano-size carbon fiber-attached fibers into a jig while arranging the metal powder, and (d) heating the jig Then, the filling is heated and sintered.
  • a method for producing a metal-based carbon fiber composite material is a method for producing a metal-based carbon fiber composite material having a layer structure of two or more layers, and includes the following steps.
  • the metal powder nano-sized carbon fiber mixed Two or more kinds of materials selected from a compound, the metal powder nanosize carbon fiber-attached fiber, the metal nanosize carbon fiber mixture sintered product, or the metal nanosize carbon fiber attached fiber sintered product are stepwise A step of filling a jig to obtain a filler consisting of a plurality of layers; and (E) a step of heating and sintering the filler by heating the jig.
  • a mixture of the metal powder and nano-sized carbon fiber or a sintered product of the metal nano-sized carbon fiber mixture and the metal powder nano-sized carbon fiber is moved to a certain region. Less than the area of the fiber containing a micron-sized carbon fiber or no micron-sized carbon fiber, and the nano-sized carbon fiber has an orientation parallel to the surface of the composite material.
  • the metal-based carbon fiber composite material in which the certain region is 10 ⁇ m to 5 mm from the surface can be produced.
  • the micron-sized carbon fiber is selected from pitch-based carbon fiber, PAN-based carbon fiber or vapor-grown carbon fiber, and the nano-sized carbon fiber is vapor-grown carbon fiber. It is preferably selected from multi-walled carbon nanotubes or single-walled carbon nanotubes.
  • the metal is selected from a group force that also includes copper, aluminum, magnesium, and an alloy force based on these.
  • heat in a direction orthogonal to micron-sized carbon fibers which was a drawback of conventional metal-based carbon fiber composite materials, particularly high thermal conductivity materials including unidirectional carbon fibers (micron size). Conductivity, coefficient of thermal expansion, etc. can be improved. Furthermore, the composite material of the present invention can achieve light weight.
  • FIG. 1A is a schematic perspective view showing the structure of the metal-based carbon fiber composite material of the present invention.
  • FIG. 1B is a schematic diagram showing the structure of the metal-based carbon fiber composite material of the present invention when the Z-axis direction force shown in FIG. 1A is also seen.
  • FIG. 1C is a schematic view showing the structure of the metal-based carbon fiber composite material of the present invention when viewed from the X-axis direction side shown in FIG. 1A.
  • FIG. 2A is a schematic view showing the structure of a metal-based carbon fiber composite material according to another embodiment of the present invention.
  • FIG. 2B is a schematic view showing an example in which the composite material of FIG. 1A is applied to a heating element.
  • FIG. 3 is a diagram for explaining a process for producing metal powder-attached nanosized carbon fiber used in the present invention.
  • FIG. 4A is a diagram showing an example of an apparatus used for producing the metal-based carbon fiber composite material of the present invention.
  • FIG. 4B is an enlarged schematic view of the die, lower and upper punch portions.
  • FIG. 5 shows an electron micrograph of an Al-15 wt% VGCF composite material prepared by a pulse current sintering method.
  • FIG. 6A is a diagram for explaining how to fill a metal powder-nanosize carbon fiber mixture or the like when producing the metal-based carbon fiber composite material of the present invention.
  • FIG. 6B is a diagram for explaining how to fill a metal powder-nanosize carbon fiber mixture or the like when producing the metal-based carbon fiber composite material of the present invention.
  • FIG. 6C is a view for explaining how to fill a metal powder-nanosize carbon fiber mixture or the like when producing the metal-based carbon fiber composite material of the present invention.
  • FIG. 6D is a diagram for explaining how to fill a metal powder-nanosize carbon fiber mixture or the like when producing the metal-based carbon fiber composite material of the present invention.
  • FIG. 7 is an electron micrograph of an aluminum vapor-grown carbon fiber nanofiber pitch-based carbon fiber composite material prepared in an example.
  • FIG. 8A is an electron micrograph of the carbon fiber composite material of the present invention prepared in Example 2, showing the orientation of nano-sized fibers with respect to the composite material surface.
  • FIG. 8B is an electron micrograph of the carbon fiber composite material of the present invention prepared in Example 1, showing the orientation of nano-sized fibers relative to the composite material surface.
  • the present invention relates to a metal-based carbon fiber composite material composed of metal and carbon fiber.
  • the carbon fibers include micron-sized carbon fibers and nano-sized carbon fibers.
  • a metal-based carbon fiber composite material of the present invention will be described with reference to FIGS. 1A to 1C.
  • Fig. 1A is a perspective view of the metal-based carbon fiber composite material of the present invention (the outline of the internal structure is also shown).
  • Fig. 1B is a composite material in which the Z-axis direction force of the XYZ axis shown in Fig. 1A
  • Fig. 1C shows the composite material viewed from the X-axis direction of the X-Y-Z axis.
  • the forces described using the coordinate axes shown in FIG. 1A are for convenience.
  • the metal-based carbon fiber composite material 100 of the present invention is a composite material in which a micron-size carbon fiber 102, a nanosize carbon fiber 104, and a metal 106 are composited.
  • the metal-based carbon fiber composite material 100 of the present invention includes micron-sized carbon fibers 102 oriented in the X-axis direction in the metal matrix and nano-sized carbon fibers 104 dispersed and present in the metal matrix.
  • micron-sized carbon fiber 102 is shown from one end of the composite material (the surface indicated by 110 parallel to the Y-Z plane in FIG. 1A) to the other end (112 parallel to the Y-Z plane in FIG. 1A).
  • the degree is preferably 50% or more with respect to the total amount of micron-sized carbon fibers.
  • the nano-sized carbon fibers 104 are arranged in a random direction with respect to the in-plane perpendicular to the Z-axis as shown in FIG. 1B. However, as shown in FIG. 1C, the nano-sized carbon fibers 104 At least 80% of 104 is characterized by being oriented within 30 °, preferably within 10 ° with respect to the plane perpendicular to the Z axis (X-Y plane in Fig. 1A).
  • the composite material of the present invention has a first surface (for example, a surface 114 parallel to the XY plane of FIG. 1A), and the micron-sized carbon fiber is the first surface of the composite material. Oriented and packed in one direction parallel to the surface (eg, the X-axis direction in FIG. 1A), and at least 80% of the nanosized carbon fibers are relative to the first surface. It is characterized by being oriented within 30 °, preferably within 10 °, and randomly oriented in a plane parallel to the first surface.
  • the present invention includes the case where the composite material has a plurality of layers.
  • the composition of the metal, micron-sized carbon fiber, or nano-sized carbon fiber that is the constituent material of each layer is different from each other.
  • the micron-sized carbon fiber is preferably contained in the composite material at 20 to 80% by volume, and the nano-sized carbon fiber is preferably contained in the composite material at 1 to 50% by volume.
  • FIG. 2A is a schematic view showing the structure of the metal-based carbon fiber composite material of the present invention according to the second embodiment, and when viewed from the X plane when the same coordinate axes as those shown in FIGS. 1A to 1C are provided.
  • FIG. 2B is a diagram when the metal-based carbon fiber composite material is mounted on a heating element.
  • the metal-based carbon fiber composite material 200 includes a smaller amount of micron-sized carbon fibers 102 in the surface region 202 than in the other regions 204. It is characterized in that it does not contain any cocoons or micron-sized carbon fibers, and the nano-sized carbon fibers 104 have an orientation parallel to the surface 206 of the composite material.
  • FIG. 2A illustrates the case where the surface region does not include any micron-sized carbon fiber.
  • the composite material according to the second embodiment has an internal region force of a certain distance from the first surface (for example, the surface 206 parallel to the XY plane in FIG. 2A) than other regions.
  • a small amount of micron-sized carbon fiber or no micron-sized carbon fiber, and the nano-sized carbon fiber has a substantially parallel orientation to the first surface of the composite material. It is characterized by that. It is preferable that at least 90% of the nano-sized carbon fiber in which the first surface force is also in the inner region of a certain distance has an orientation substantially parallel to the first surface.
  • the constant distance from the first surface is the first surface (eg, X in FIG. 2A).
  • the surface region 202 contains little or no micron-sized carbon fibers, and nano-sized carbon fibers are formed on the surface 206.
  • the surface of the composite material is matched to the thermal expansion coefficient of the heat generating part by adopting a structure like the composite material according to the second embodiment. Can be adjusted. In other words, the surface of the composite material is matched to the thermal expansion coefficient of the heat generating part by appropriately selecting the carbon fiber composition in the surface region. Can be adjusted.
  • the composite material according to the second embodiment of the present invention may have a multilayer structure as well as two layers as described above.
  • the other region 204 can be composed of a plurality of layers.
  • the composition of the metal, micron-sized carbon fiber, or nano-sized carbon fiber that is a constituent material of each layer is different from each other including the surface region 202. By doing so, the thermal conductivity and the thermal expansion coefficient can be further improved.
  • the metal-based carbon fiber composite material of the present invention has a thermal conductivity of 300 to 1000 WZ (mK) in the orientation direction of micron-sized carbon fibers (for example, the X axis in FIG. 1A) (one direction). (Knots per meter per kelvin). Also, due to the contribution to the thermal conductivity of nano-sized carbon fibers, it has a thermal conductivity of 50 to 200 W Z (mK) in the direction perpendicular to micron-sized carbon fibers (for example, the Z axis in FIG. 1A).
  • the coefficient of thermal expansion is due to the effects of micron-sized carbon fibers and nano-sized carbon fibers randomly oriented in the plane perpendicular to the micron-sized carbon fibers (X-Y plane in Fig. 1A above). It has 20ppmZK. These values can be controlled by appropriately selecting the compounding ratio of micron-sized carbon fibers, the compounding ratio of nano-sized carbon fibers, and their orientation directions.
  • micron-sized carbon fiber used in the present invention examples include pitch-based carbon fiber, PAN-based carbon fiber, and vapor-grown carbon fiber. These carbon fibers are suitably fibers having a diameter of 1 ⁇ to 50 / ⁇ m. These carbon fibers also depend on the dimensions of the desired composite material, but it is preferable that the carbon fiber has a length of 1 mm or more. Particularly preferred.
  • the micron-sized carbon fibers are arranged in one direction in the composite material, and at least 50% of the total amount of the fiber is continuously extended to the other end in the orientation direction in the composite material. Preferred.
  • nano-sized carbon fiber examples include vapor-grown carbon fiber, multi-walled carbon nanotube (MWCNT), and single-walled carbon nanotube (SWCNT). These carbon fibers and carbon nanotubes preferably have a fiber length of l / zm dOOOnm) or less. Nano-sized carbon fibers have an aspect ratio (length Z diameter) of at least 1 Preferred to be 0 or more.
  • the metal used in the present invention is a metal having high thermal conductivity, and includes aluminum, an alloy of aluminum, copper, an alloy of copper, magnesium or an alloy of magnesium.
  • the primary purpose is to increase the thermal conductivity
  • copper or an alloy thereof can be used.
  • aluminum, an aluminum alloy, magnesium, or a magnesium alloy having a lower density can be used.
  • the metal density is preferably aluminum (2.7 gZcm 3 ), magnesium (1.8 gZcm 3 ), copper (8.9 gZcm 3 ), and an alloy mainly composed of these. By using such a material, the composite material of the present invention can be rubbed at a low density (light weight).
  • the metal is preferably a powder having an average particle size of 10 nm to 50 ⁇ m! /.
  • the total amount of the carbon fraction Overall the carbon fibers of the carbon fibers and nano micron size, preferably to be 20 to 80 volume 0/0 of the composite material.
  • the metal-based carbon fiber composite material of the present invention is, for example, an electronic device or a power module using a semiconductor. It is useful as a heat dissipation member (substrate, heat sink, heat spreader, etc.).
  • Electronic devices using semiconductors include, for example, central processing units (CPUs), storage elements (memory), controller ICs for various devices, flat panel display devices, image processing devices, Any device known in the art, such as a communication device (wireless and wired) or a photoelectric hybrid circuit, may be used.
  • Power modules include converters and inverters using elements such as thyristors, GTOs, IGBTs, and IEG Ts.
  • the metal-based carbon fiber composite material of the present invention is used as a heat radiating member such as a heat sink or a heat spreader, the material is processed into an appropriate shape so that heat generated in these devices can be used as an intermediate or final refrigerant. Mounted to transport to. In particular, in the case of a multi-layered metal-based carbon fiber composite material as shown in FIG. 2B, it is preferable to bring the surface region 202 side into contact with the heating element side (see FIG. 2B).
  • a flexible heat transfer medium for filling the surface irregularities in the composite material of the present invention and the joint portion of these devices For example, disperse highly thermally conductive particles such as silver, silicone dull, heat conductive sheet, etc. to achieve uniform heat transfer from the device to the composite material.
  • One embodiment of the production method of the present invention includes (a) a step of preparing a metal powder nanosize carbon fiber mixture by mixing metal powder and nanosize carbon fiber, and (b) said metal powder nano Attaching a size carbon fiber mixture to a micron-size carbon fiber to prepare a metal powder nano-size carbon fiber-attached fiber; and (c) arranging the metal powder nano-size carbon fiber-attached fiber in a jig A step of filling, and (d) a step of heat-sintering the filling by heating the jig.
  • the first step of the production method of the present invention is a step of mixing metal powder and nano-sized carbon fiber to form a metal powder-nano-sized carbon fiber mixture.
  • a metal powder and nano-sized carbon fibers are mixed. Since the mixing method tends to agglomerate both nano-sized carbon fibers and metal powders, it is desirable to use wet methods.
  • a solvent for the mixed solution an organic solvent can be used when aluminum, magnesium, or an alloy based on these is used. In the case of copper and copper-based alloys, water can also be used as a solvent.
  • the organic solvent is not particularly limited, but alcohol (methanol, ethanol, propanol, etc.), hydrocarbon solvent (eg hexane, benzene, xylene, toluene, etc.), ketone (acetone, etc.), ether (dimethyl ether, jetyl ether, etc.) , Ethyl ether, etc.), halogenated hydrocarbons (eg black mouth form), mineral spirits, etc. can also be selected. If necessary, it is preferable to add 0.1 to 2% by weight of a dispersant on a solvent basis. Examples of the dispersant include polyethylene glycol, pull mouth nick type dispersant (Pull mouth-Cook (registered trademark) F68), and the like.
  • the solvent is added in an amount of about 50 to 90% by volume of solid components (metal powder and nano-sized carbon fiber).
  • the solvent, metal, and nano-sized carbon fiber are mixed by using a stirrer, ultrasonic mixing, ball mill mixing, or a combination thereof. For example, mixing by a stirrer and mixing by ultrasonic waves can be performed simultaneously. These mixing conditions can be appropriately selected depending on the material, and can be easily selected by those skilled in the art.
  • the second step is a step of preparing the metal powder nano-size carbon fiber-attached fiber by attaching the metal powder nano-size carbon fiber mixture to the micron-size carbon fiber.
  • the suspension of the metal powder nanosize carbon fiber mixture prepared in the first step is mixed. Adhere to long carbon fiber.
  • the attachment method is by immersion in the suspension. Since commercially available micron carbon fiber is in a state where 2000 to 20000 bundles are wound around a bobbin, it can be continuously attached by immersion in a suspension via a roller as shown in FIG.
  • the immersion speed can be set to, for example, 10 to 200 mmZs. This process may be automatic dipping or manual dipping.
  • the fiber bundle 304 is unwound from the brewing bobbin 302, and the metal powder in the container 308 that is stirred by the stirring device 306 Nano-size carbon fiber mixture (metal powder suspension) 310
  • the metal powder nano-sized carbon fiber-attached fiber (fiber bundle to which the metal powder is attached) 312 is wound around the take-up bobbin 314.
  • the metal powder nano-sized carbon fiber-attached fiber is dried. It is possible to apply methods such as natural drying, drying with a warm (hot) air dryer, and drying at room temperature under reduced pressure with a rotary pump before or after winding. These drying conditions can be selected as appropriate depending on the material, and can be easily selected by those skilled in the art.
  • Metal powder The nano-sized carbon fiber mixture has low strength, and therefore, almost no desorption occurs due to the electrostatic force that naturally occurs even after drying. If desorption is a problem, 0.1-2% by weight of a binder such as paraffin wax is mixed in the metal powder suspension solvent to hold the metal powder-nanosized carbon fiber mixture on the micron-sized carbon fiber. In this case, a process of dewaxing in an inert atmosphere at a temperature of 500 ° C. or higher is required. Therefore, when using a metal having a low melting point, such as aluminum or magnesium, a separate method (for example, the method described later) is required.
  • a binder such as paraffin wax
  • the third step of the present invention is a step of filling the jig into the jig while arranging the metal powder-nano-sized carbon fiber-attached fibers.
  • the fourth step of the present invention is a step of heating and sintering the filler filled in the third step.
  • a uniaxial pressure sintering method can be used.
  • One example of a highly productive method is the pulse current sintering method.
  • a hot press method can also be applied. The following describes the third step and the fourth step together.
  • FIGS. 4A and 4B A pressure sintering apparatus that can be used in the present invention is shown in FIGS. 4A and 4B.
  • 4A is a schematic diagram showing the overall configuration of the apparatus, and FIG. 4B shows the die, lower punch, and upper part. It is an enlarged view of a punch part (jig part).
  • 4A includes a pressure sintering container 400, a die 402 having a through hole, a jig composed of a lower punch 404 and an upper punch 406 that fit into the through hole, A platen 408 and a plunger 410 that apply pressure to the lower punch 404 and the upper punch 406, and a power source 414 that is connected to the lower punch 404 and the upper punch 400 6 and flows current to the material 412.
  • the metal powder nano-sized carbon fiber-attached fiber is cut into a predetermined length and filled in the jig of the pressure sintering apparatus.
  • the material 412 is filled while the fibers are arranged in the recess formed by fitting the lower punch 404 to the die 402.
  • the metal powder nano-sized carbon fiber adhering fiber obtained by the suspension dipping method described above the carbon fiber unrolled from the take-up bobbin is cut to an appropriate length, and the cut metal Powder nano-sized carbon fiber-attached fibers can be filled while being arranged in the recess formed by the die 402 and the lower punch 404.
  • a dispersant when used in the metal powder suspension, before placing the upper punch 406 or after placing the upper punch 406 1 ⁇ : in a low pressure state of LOMPa, in vacuum or not Filled metal powder under active atmosphere (nitrogen, argon, helium, etc.) — Nano-sized carbon fiber-attached fiber is heated to a temperature of 200-400 ° C to remove the dispersant, and the metal powder and metal with carbon fiber strength It is desirable to form a powder-nanosized carbon fiber-attached fiber.
  • the step of removing the dispersant by heating may be performed in a pulse current sintering apparatus further provided with a heating means, or may be performed in a separate heating apparatus.
  • the heat removal step of the dispersant may be performed in an oxidizing atmosphere (such as air, oxygen-enriched air, or pure oxygen).
  • the upper punch 406 is placed on the filled material (metal powder-nano-size carbon fiber-attached fiber) 412 and the combined jig is pressed in the pressure sintering vessel 400. Place between the machine platen 408 and the plunger 410 to perform the sintering process.
  • the sintering step is preferably performed in the air, in a vacuum, or in an inert atmosphere.
  • the pressure sintering container 400 may have an exhaust port (not shown) connected to an appropriate vacuum exhaust system.
  • the pressure be 0 to 20 Pa, preferably 0 to 5 Pa.
  • the pressurized sintering container 400 has an inert gas inlet and a gas outlet (both not shown), and the pressurized sintering container 400 is made of inert gas (nitrogen, argon, helium, etc.).
  • An inert atmosphere may be achieved by purging.
  • the upper punch 406 is pressed with a plunger to apply pressure to the material (metal powder—nanosize carbon fiber-attached fiber) 412.
  • the applied pressure is preferably 5 to 300 MPa, for example.
  • the sintering temperature varies depending on the metal type. For example, when the metal type is pure aluminum or pure magnesium, it is about 500 to 650 ° C, and when pure metal is about 700 to 1050 ° C.
  • the sintering atmosphere is preferably a vacuum of 50 Pa or less or an inert atmosphere of nitrogen, argon or the like of 0.1 lMPa (l atm) or less.
  • a pulsed current is passed through the material 412 to perform sintering.
  • the panel width of the current used in this case is less than 0.005 to 0.02, preferably less than 0.005 to 0.01, and the current density (cut through hole of the die 402) is low. It is desirable that the area is 5 to 10 5 to 2 ⁇ 10 7 AZm 2 , preferably 5 ⁇ 10 6 to 1 ⁇ 10 7 AZm 2 .
  • the voltage to achieve such a current density is typically in the range of 2-8V, depending on the resistance of the conductive path including material 412.
  • the energization of the pulse current is continued until the desired sintering is completed, and the duration varies depending on the dimensions of the composite material, the current density, the mixing ratio of the carbon fibers, and the like.
  • the plasma generated in the initial stage of energization is more advantageous than the normal resistance heating method in that it has actions such as removal of the powder adsorption gas and oxide film.
  • a plane perpendicular to the pressing axis for example, the Z axis in FIG. 1A.
  • the XY plane in FIG. 1A is oriented within 30 °, preferably within 10 °.
  • VGCF size carbon fiber is structured along a plane perpendicular to the pressure axis (that is, the horizontal direction in the paper of Fig. 5).
  • FIGS. 6A to 6D Another embodiment of the production method of the present invention will be described with reference to FIGS. 6A to 6D.
  • the different structures are filled in multiple stages.
  • a metal-based carbon fiber composite material having a portion substantially free of micron-sized carbon fibers in the surface portion of the composite material as shown in FIG. 2A can be produced.
  • a first example of the present embodiment is one in which raw materials of different unsintered metal-based carbon fiber composite materials are filled in two stages and pressure-sintered as shown in FIG. 6A.
  • the different raw materials include metal powder nanosize carbon fiber mixture and metal powder nanosize carbon fiber-attached fiber. Filling can include, for example, the procedure of filling a metal powder-nanosize carbon fiber mixture and then filling the metal powder nanosize carbon fiber attached fibers, or vice versa.
  • a pre-sintered metal-based carbon fiber composite material and raw materials of an unsintered metal-based carbon fiber composite material can be combined and filled.
  • a procedure for filling a sintered product 602 of a metal powder nano-sized carbon fiber mixture and then filling a metal powder nano-sized carbon fiber attached fiber 312 in the next step can be mentioned.
  • the reverse procedure is also possible (see Figure 6C).
  • different sintered metal-based carbon fiber composites can be refilled and sintered.
  • a sintered body 604 of pre-sintered metal nano-sized carbon fiber-attached fibers and a sintered body 602 of pre-sintered metal nano-sized carbon fiber mixture 602 are in a desired order.
  • the layer structure can be reversed.
  • the above example is an example of producing a two-layer metal-based carbon fiber composite material, but this embodiment can be further multi-staged for the purpose of reducing thermal stress and the like. In order to increase the number of stages, any of the above methods may be applied to fill different materials in multiple stages and sinter them.
  • materials having different compositions can be produced in a plurality of layers.
  • Aluminum powder Showa Denko: average particle size 5 ⁇ m
  • VGCF vapor-grown carbon fiber nanofiber
  • Showa Denko diameter 150 nm, aspect ratio 60 or more
  • pitch-based carbon fiber pitch-based carbon fiber (diameter 10 ⁇ m) m, 2000 fiber bundles).
  • a fiber bundle of pitch-based carbon fibers was immersed in the suspension obtained as described above, and an aluminum-nanofiber mixture was adhered to the fiber bundle.
  • a metal powder-nano-sized carbon fiber-attached fiber having 7% by weight and 65% by weight of pitch-based carbon fiber was obtained.
  • the metal powder—the nano-sized carbon fiber-attached fiber was cut into 20 mm, and filled into a sintered graphite die having a 20 mm square cross section. This die was sintered with a pulse current sintering machine in a lOPa vacuum at a pressure of 50 MPa and a sintering temperature of 600 ° C. to obtain a composite material.
  • Table 2 shows the thermophysical properties of the resulting composite material, along with the thermophysical properties of the aluminum pitch-based carbon fiber composite.
  • X, Y, and ⁇ represent the respective directions when the obtained composite material is arranged like the ⁇ - ⁇ - ⁇ axis.
  • FIG. 7 and FIG. 8B an electron micrograph of the obtained composite material is shown in FIG. 7 and FIG. 8B.
  • 80% of the nanofibers are within a certain range relative to the surface of the composite material (in Figure 1A, the XY plane as the first surface of the composite material), ie within 30 °, preferably It can be seen that is oriented within 10 ° (in FIG. 8B, the angle is shown only for those oriented within 10 °).
  • the micron-sized carbon fiber has one end of the first surface of the composite material opposite to the other end (in FIG. 1A, the Y-Z plane of the composite material is balanced). From 110 to 112), at least 50% of them are continuous! /
  • Aluminum powder manufactured by Showa Denko: average particle size 5 ⁇ m
  • VGCF vapor-grown carbon fiber nanofiber
  • VGCF vapor-grown carbon fiber nanofiber
  • pitch-based carbon fiber pitch-based carbon fiber (diameter 10 ⁇ m) m, 2000 fiber bundles).
  • This mixed powder was filled into a graphite sintered die having a 20 mm square cross section.
  • This die was sintered in a pulse current sintering machine in a vacuum of lOPa at a pressure of 50 MPa and a sintering temperature of 600 ° C. to obtain a composite material.
  • Table 3 shows the thermophysical properties of the resulting composite material.
  • an electron micrograph of the obtained composite material is shown in FIGS. 5 and 8A.
  • 80% of the fibers are oriented within a certain range, ie within 30 °, preferably within 10 °, relative to the surface of the composite material (in Figure 1A, the XY plane as the first surface of the composite material). (In the figure, the angle is shown only for those oriented within 10 °).
  • Each composite material obtained in Examples 1 and 2 was filled into a sintered graphite die having a 20 mm square cross section. This die was sintered with a pulse current sintering machine in a vacuum of lOPa at a pressure of 50 MPa and a sintering temperature of 600 ° C. to obtain a composite material containing no micron-sized carbon fibers in the surface area. This composite material was a composite material provided with the characteristics obtained in Examples 1 and 2 in each layer.

Abstract

Disclosed is a metal-based carbon fiber composite material improved in thermal expansion rate and thermal conductivity and having light weight. The composite material comprises a metal and carbon fibers comprising micron carbon fibers and nanofiber and has a first surface. The micron carbon fibers are oriented in a direction parallel to the first surface and run from one end to the other end continuously. 80% of the nanofibers are oriented at an angle within 30˚ with respect to the first surface. In the surface parallel to the first surface, the nanofibers are oriented randomly. In the surface area of the composite material, the micron carbon fibers may be present in a less amount than that in other area or no carbon fiber may be present. In the composite material, the nanofibers may be oriented in a direction parallel to the surface of the composite material. Also disclosed is a method for production of the composite material.

Description

明 細 書  Specification
ミクロンサイズおよびナノサイズの炭素繊維を共含有する金属基複合材料 技術分野  Technical field of metal matrix composites containing both micron-sized and nano-sized carbon fibers
[0001] 本発明は金属基炭素繊維複合材料に関する。より詳細には、ミクロンサイズおよび ナノサイズの炭素繊維を共含有する金属基複合材料およびその製造方法に関する。 背景技術  [0001] The present invention relates to a metal-based carbon fiber composite material. More specifically, the present invention relates to a metal matrix composite material containing co-containing micron-size and nano-size carbon fibers and a method for producing the same. Background art
[0002] 近年、半導体装置をはじめとする電子機器の発熱量は増大の一途を迪つている。 P C用 CPUを例に取ると、過去 5年間で 2倍のペースで消費電力量が増加しており(古 河電工時報第 106号、 http : ZZwww. furukawa. co. jp/jiho/fj 106/fj 106 —01. pdf (非特許文献 1) )、これにともなって発熱量も増大している。  In recent years, the amount of heat generated by electronic devices such as semiconductor devices has been increasing. Taking a PC CPU as an example, power consumption has increased at a double rate over the past five years (Furukawa Electric Time Report No. 106, http: ZZwww. Furukawa. Co.jp/jiho/fj 106 / fj 106 —01. pdf (Non-patent document 1)), the amount of heat generated is also increasing.
[0003] このような電子機器の放熱対策としては、ヒートシンク等の放熱装置を用いる方法が 一般的である。放熱装置を用いて冷却を行う場合、この放熱装置用材料の熱物性が 冷却性能に大きく影響を及ぼす。  As a heat dissipation measure for such an electronic device, a method using a heat dissipation device such as a heat sink is generally used. When cooling is performed using a heat dissipation device, the thermophysical properties of this material for the heat dissipation device greatly affect the cooling performance.
[0004] 注目すべき第一の熱物性は熱伝導率であり、これは高!、方が望ま 、。熱伝導率 が高ければ、放熱装置全体に熱を行きわたらせることができ、熱を効率よく大気へ放 散することが可能となる。  [0004] The first thermophysical property to be noticed is thermal conductivity, which is high! If the thermal conductivity is high, heat can be distributed throughout the heat dissipation device, and heat can be efficiently dissipated to the atmosphere.
[0005] 次に、注目すべき第二の熱物性は、熱膨張率であり、これは、冷却されるべき発熱 部の材料と同等であることが望ましい。発熱部の熱は、接触により放熱装置へと伝達 されるが、両者の熱膨張率に不整合があると、理想的な接触状態が保たれず、正常 な熱伝達が妨げられる。  [0005] Next, the second thermophysical property to be noted is the coefficient of thermal expansion, which is desirably equivalent to the material of the heat generating portion to be cooled. The heat of the heat generating part is transferred to the heat dissipation device by contact, but if the coefficient of thermal expansion of both does not match, the ideal contact state cannot be maintained and normal heat transfer is hindered.
[0006] 放熱装置の材料には上記の条件が満たされて 、る必要がある。  [0006] The material of the heat dissipation device must satisfy the above conditions.
[0007] 従来から用いられて!/、る放熱装置の材料は、主にアルミニウムと銅である。これらの 熱伝導率はそれぞれ約 200WZ (mK)および約 400WZ (mK)と、一般的な材料 ( 鉄: 84WZ (mK)、ステンレス 14WZ (mK)、ガラス 1WZ (mK)、榭脂 1WZ (mK) 以下)と比較して高ぐ安価かつ加工性に優れている。一部の絶縁性や更に高い熱 伝導性が要求される部分には窒化アルミニウム (熱伝導率 250WZ (mK)以下)ゃダ ィャモンド (熱伝導率 800〜2000WZ (mK) )のような材料も用いられて ヽるが、高 価であるため一般的ではな!/、。 [0007] Conventionally used materials of the heat dissipation device are mainly aluminum and copper. These thermal conductivities are about 200WZ (mK) and about 400WZ (mK), respectively. Common materials (iron: 84WZ (mK), stainless steel 14WZ (mK), glass 1WZ (mK), and resin 1WZ (mK) Compared with the following), it is inexpensive and excellent in workability. Materials such as aluminum nitride (thermal conductivity of 250 WZ (mK) or less) diamond (thermal conductivity 800 to 2000 WZ (mK)) are also used for parts that require some insulating properties and higher thermal conductivity. Being beaten but high Because it is a price, it is not common! /.
[0008] また、アルミニウムおよび銅につ!、ては、熱膨張率が高!、(それぞれ 23ppmZKお よび 17ppmZK (ともに室温 (RT)〜100°C) )。一方、半導体材料であるシリコンは 熱膨張率が低い(2. 6ppmZK(RT〜100°C) )。このため、両者を接触させて放熱 させる場合、両者間の熱膨張率に不整合を生じる。このため、これらの材料を放熱装 置に用いる場合には、接触部にグリスなどを用いて両者の接触が保たれるようにして いるが、グリスの熱伝導率は榭脂と同様の lWZ (mK)程度であるために、大きな熱 抵抗となる。  [0008] In addition, aluminum and copper have a high coefficient of thermal expansion (23 ppmZK and 17 ppmZK (both at room temperature (RT) to 100 ° C, respectively)). On the other hand, silicon, which is a semiconductor material, has a low coefficient of thermal expansion (2.6 ppmZK (RT to 100 ° C)). For this reason, when heat is released by bringing both into contact, there is a mismatch in the coefficient of thermal expansion between them. For this reason, when these materials are used in a heat dissipation device, the contact between the two is maintained by using grease or the like, but the thermal conductivity of grease is lWZ ( mK), so it has a large thermal resistance.
[0009] さらに、近年注目されて ヽる、比較的安価で熱伝導性に優れた材料として、金属基 炭素繊維複合材料がある。この材料は、炭素繊維方向の熱伝導率は高い(500WZ (mK)以上)ものの、炭素繊維に直交する方向の熱伝導率は 40WZ (mK)以下と低 ぐ熱膨張率に異方性も生じている(繊維方向 OppmZK、繊維直交方向 14ppmZ K)。  [0009] Furthermore, metal-based carbon fiber composite materials have been attracting attention in recent years and are relatively inexpensive and excellent in thermal conductivity. Although this material has a high thermal conductivity in the direction of carbon fibers (500WZ (mK) or more), the thermal conductivity in the direction perpendicular to the carbon fibers is 40WZ (mK) or less, which causes anisotropy in the low thermal expansion coefficient. (Fiber direction OppmZK, fiber orthogonal direction 14ppmZ K).
[0010] 炭素繊維と金属の複合材料は、特開 2004— 165665号公報ゃ特開 2004— 228 28号公報 (特許文献 1および 2)に開示がある。ここに開示されている金属基炭素繊 維複合材料の製造方法は、予め成型した炭素繊維の空隙に溶融金属を圧入する方 法 (溶湯含浸法)と考えられる。特に、上記文献はいずれもマトリックスへナノファイバ を含有させてはおらず、これらの文献に開示されて 、る方法では金属中にナノフアイ バを分散させることは困難である(ナノファイバと、溶融アルミニウムおよび溶融マグネ シゥムは反応してしまい、溶融銅とナノファイバは濡れ性が悪く混ざらない。 ) οさらに 、 WO2005Z059194号パンフレット(特許文献 3)には、金属炭化物の生成を抑制 しつつ、軽量で高熱伝導率を有し、かつ熱流の方向制御を可能とする金属基炭素繊 維複合材料の製造方法が開示されている。この製造方法は、炭素繊維と金属の粉末 とを物理的に混合して金属繊維混合物を得る工程と、金属繊維混合物を配列させな 力 治具中に充填する工程と、治具を大気中、真空中または不活性雰囲気中に設 置し、加圧しながら直接パルス電流を通電させ、それによる発熱で焼結をする工程と を含む。この刊行物では、金属繊維混合物は一方向に配列されており、熱膨張率な どの熱特'性に関する開示はない。 [0011] 特許文献 1 :特開 2004— 165665号公報 [0010] Carbon fiber and metal composite materials are disclosed in JP-A-2004-165665 and JP-A-2004-22828 (Patent Documents 1 and 2). The method for producing a metal-based carbon fiber composite material disclosed here is considered to be a method (a molten metal impregnation method) in which molten metal is pressed into a void of a previously formed carbon fiber. In particular, none of the above documents contains nanofibers in the matrix, and it is difficult to disperse nanofibers in the metal by the methods disclosed in these documents (nanofibers, molten aluminum and Molten magnesium reacts, and molten copper and nanofibers do not mix well due to poor wettability.) Ο Furthermore, WO2005Z059194 pamphlet (Patent Document 3) describes light weight and high thermal conductivity while suppressing the formation of metal carbide. A method for producing a metal-based carbon fiber composite material having a high rate and capable of controlling the direction of heat flow is disclosed. This manufacturing method includes a step of physically mixing carbon fibers and metal powder to obtain a metal fiber mixture, a step of filling the metal fiber mixture into a jig, and a jig in the atmosphere. And placing in a vacuum or in an inert atmosphere, applying a pulsed current directly while applying pressure, and sintering by heat generated thereby. In this publication, the metal fiber mixture is unidirectionally arranged and there is no disclosure regarding thermal properties such as coefficient of thermal expansion. Patent Document 1: Japanese Patent Application Laid-Open No. 2004-165665
特許文献 2:特開 2004 - 22828号公報  Patent Document 2: Japanese Patent Laid-Open No. 2004-22828
特許文献 3:国際公開第 2005Z059194号パンフレット  Patent Document 3: International Publication No. 2005Z059194 Pamphlet
非特許文献 1 :古河電工時報第 106号、 http : //www. furukawa. co. jp/jiho /fj l06/fj l06_01. pdf  Non-Patent Document 1: Furukawa Electric Times Issue 106, http://www.furukawa.co.jp/jiho/fj l06 / fj l06_01.pdf
発明の開示  Disclosure of the invention
[0012] 上記のような金属基炭素繊維複合材料、特に一方向の炭素繊維 (ミクロンサイズ) を含む高熱伝導材料は、熱膨張率および炭素繊維と直交する方向の熱伝導率に関 しさらなる改良が必要である。また、電子機器の小型軽量ィ匕に伴い、放熱部材の小 型軽量化も求められてきている。  [0012] Metal-based carbon fiber composite materials as described above, particularly high thermal conductivity materials including unidirectional carbon fibers (micron size), are further improved in terms of thermal expansion coefficient and thermal conductivity in the direction perpendicular to the carbon fibers. is required. In addition, with the reduction in size and weight of electronic devices, there is a demand for smaller and lighter heat dissipation members.
[0013] 本発明はこのような問題点を解決することを目的としてなされたものである。  [0013] The present invention has been made for the purpose of solving such problems.
[0014] 従って、本発明は、熱膨張率および炭素繊維と直交方向の熱伝導率が改善され、 軽量化された金属基炭素繊維複合材料を提供することを目的とする。さらに、本発明 は、このような金属基炭素複合材料の製造方法を提供する。  Accordingly, an object of the present invention is to provide a metal-based carbon fiber composite material that is improved in thermal expansion coefficient and thermal conductivity in a direction orthogonal to the carbon fiber and is reduced in weight. Furthermore, the present invention provides a method for producing such a metal-based carbon composite material.
[0015] 本発明では放熱装置などの材料として使用可能な金属基炭素繊維複合材料に関 する。本発明の複合材料は、直径数ミクロンカゝら数十ミクロンの炭素繊維 (ミクロンサイ ズの炭素繊維またはミクロン炭素繊維とも称する)と直径数ナノメートルカゝら数百ナノ メートルのナノサイズの炭素繊維 (ナノファイバとも称する)を金属へ複合添加したもの である。本発明は、この複合材料において、それぞれの炭素繊維材料の配向性を制 御することで、高い熱伝導率と任意の熱膨張率を両立することを可能にする。さらに 本発明は、この金属基炭素繊維複合材料の製造方法に関する。  The present invention relates to a metal-based carbon fiber composite material that can be used as a material for a heat dissipation device or the like. The composite material of the present invention comprises carbon fibers having a diameter of several microns to several tens of microns (also referred to as micron-sized carbon fibers or micron carbon fibers) and nano-sized carbon fibers having a diameter of several nanometers to several hundreds of nanometers. (Also referred to as nanofiber) is a composite addition of metal. The present invention makes it possible to achieve both high thermal conductivity and an arbitrary coefficient of thermal expansion by controlling the orientation of each carbon fiber material in this composite material. Furthermore, this invention relates to the manufacturing method of this metal group carbon fiber composite material.
[0016] 具体的には、本発明の第一の実施形態に係る金属基炭素繊維複合材料は、金属 と、ミクロンサイズの炭素繊維およびナノサイズの炭素繊維を含む炭素繊維カゝらなる 金属基炭素繊維複合材料である。この複合材料は、第一の表面を有し、ミクロンサイ ズの炭素繊維は、複合材料の第一の表面に対して平行な一方向に向けて配向され て充填されており、前記第一の面の一端力も対向する他端まで、その少なくとも 50% が連続しており、ナノサイズの炭素繊維はその 80%が第一の表面に対して 30° 以 内に配向されており、且つ、第一の表面と平行な面内ではランダムに配向しているこ とを特徴とする。本発明の金属基炭素繊維複合材料の他の実施形態は、上記の第 一の実施形態に係る金属基炭素繊維複合材料が複数の層を有し、各層の材料の組 成の少なくとも一部が互いに異なることを特徴とする。本発明の金属基炭素繊維複合 材料の別の実施形態は、上記の第一の実施形態に係る金属基炭素繊維複合材料 において、第一の表面から一定距離の内部領域が、他の領域よりも少ない量のミクロ ンサイズの炭素繊維を含むカゝもしくは全くミクロンサイズの炭素繊維を含まず、且つ、 ナノサイズの炭素繊維が前記複合材料の第一の表面に平行な配向を有することを特 徴とする。この実施形態では、他の領域が複数層からなり、各層の材料の組成の少 なくとも一部が互いに異なっていてもよい。この第一の表面の一定距離は、表面から[0016] Specifically, the metal-based carbon fiber composite material according to the first embodiment of the present invention includes a metal, and a metal group comprising a carbon fiber including a micron-size carbon fiber and a nano-size carbon fiber. It is a carbon fiber composite material. The composite material has a first surface, and the micron-sized carbon fibers are oriented and packed in one direction parallel to the first surface of the composite material, At least 50% of the one end force of the surface is continuous to the other opposite end, and 80% of the nano-sized carbon fibers are oriented within 30 ° with respect to the first surface, and In a plane parallel to one surface. And features. In another embodiment of the metal-based carbon fiber composite material of the present invention, the metal-based carbon fiber composite material according to the first embodiment has a plurality of layers, and at least a part of the composition of the materials of each layer is It is different from each other. Another embodiment of the metal-based carbon fiber composite material of the present invention is the metal-based carbon fiber composite material according to the first embodiment described above, wherein the inner region at a certain distance from the first surface is more than the other regions. Features including a small amount of micron-sized carbon fibers or no micron-sized carbon fibers, and nano-sized carbon fibers having an orientation parallel to the first surface of the composite material. To do. In this embodiment, the other region is formed of a plurality of layers, and at least a part of the composition of the material of each layer may be different from each other. This constant distance of the first surface is from the surface
10 /ζ πι〜5πιπιであることが好ましい。また、前記ミクロンサイズの炭素繊維は前記複 合材料中に 20〜80体積%含まれ、前記ナノサイズの炭素繊維は前記複合材料中 に 1〜50体積0 /0含まれることが好ましい。 10 / ζ πι to 5πιπι is preferable. Further, the carbon fibers of the micron sized the included 20 to 80 vol% in the double case material, the carbon fibers of the nano-sized is preferably included from 1 to 50 volume 0/0 in the composite material.
[0017] 本発明の一実施形態に係る金属基炭素繊維複合材料の製造方法は、以下の工程 を含む。(a)金属粉末とナノサイズの炭素繊維の混合して、金属粉末-ナノサイズ炭 素繊維混合物を調製する工程、 (b)前記金属粉末 ナノサイズ炭素繊維混合物をミ クロンサイズの炭素繊維に付着させて、金属粉末 ナノサイズ炭素繊維付着繊維を 調製する工程、 (c)前記金属粉末 ナノサイズ炭素繊維付着繊維を配列させながら 、治具中に充填する工程、および (d)前記治具を加熱して充填物を加熱焼結するェ 程。 [0017] A method for producing a metal-based carbon fiber composite material according to an embodiment of the present invention includes the following steps. (A) a step of preparing a metal powder-nanosize carbon fiber mixture by mixing metal powder and nanosize carbon fiber; (b) attaching the metal powder nanosize carbon fiber mixture to a micron size carbon fiber; A step of preparing metal powder nano-sized carbon fiber-attached fibers, (c) a step of filling the metal powder nano-size carbon fiber-attached fibers into a jig while arranging the metal powder, and (d) heating the jig Then, the filling is heated and sintered.
[0018] 本発明の別の実施形態に係る金属基炭素繊維複合材料の製造方法は、 2層以上 の層構造を有する金属基炭素繊維複合材料の製造方法であり、以下の工程を含む 。 (A)金属粉末とナノサイズの炭素繊維の混合して、金属粉末—ナノサイズ炭素繊 維混合物を調製する工程、 (B)前記金属粉末 ナノサイズ炭素繊維混合物をミクロ ンサイズの炭素繊維に付着させて、金属粉末 ナノサイズ炭素繊維付着繊維を調製 する工程、(C)金属粉末 ナノサイズ炭素繊維混合物または前記金属粉末 ナノサ ィズ炭素繊維付着繊維を配列させながら治具中に充填し、前記治具を加熱して充填 物を加熱焼結し、金属 ナノサイズ炭素繊維混合物焼結物または金属 ナノサイズ 炭素繊維付着繊維焼結物を得る工程、 (D)前記金属粉末 ナノサイズ炭素繊維混 合物、前記金属粉末 ナノサイズ炭素繊維付着繊維、前記金属 ナノサイズ炭素繊 維混合物焼結物、または前記金属 ナノサイズ炭素繊維付着繊維焼結物から選択 される 2種以上の材料を段階的に治具中に充填し、複数層からなる充填物得る工程 、および (E)前記治具を加熱して充填物を加熱焼結する工程。 [0018] A method for producing a metal-based carbon fiber composite material according to another embodiment of the present invention is a method for producing a metal-based carbon fiber composite material having a layer structure of two or more layers, and includes the following steps. (A) a step of preparing a metal powder-nanosize carbon fiber mixture by mixing metal powder and nanosize carbon fiber; (B) attaching the metal powder nanosize carbon fiber mixture to a micron size carbon fiber; (C) a metal powder nano-sized carbon fiber mixture or the metal powder nano-sized carbon fiber-adhered fiber is arranged in a jig while being arranged, and the jig is prepared. To heat and sinter the filler to obtain a sintered metal nano-sized carbon fiber mixture or metal nano-sized carbon fiber-attached fiber sintered product, (D) the metal powder nano-sized carbon fiber mixed Two or more kinds of materials selected from a compound, the metal powder nanosize carbon fiber-attached fiber, the metal nanosize carbon fiber mixture sintered product, or the metal nanosize carbon fiber attached fiber sintered product are stepwise A step of filling a jig to obtain a filler consisting of a plurality of layers; and (E) a step of heating and sintering the filler by heating the jig.
[0019] この実施形態では、特に工程 (D)にお 、て、前記金属粉末とナノサイズの炭素繊 維の混合物または前記金属 ナノサイズ炭素繊維混合物焼結物と、前記金属粉末 ナノサイズ炭素繊維付着繊維または前記金属 ナノサイズ炭素繊維付着繊維焼 結物の 2種の材料を段階的に治具中に充填することで、上記の、金属基炭素繊維複 合材料の表面から一定領域に、他の領域よりも少な 、量のミクロンサイズの炭素繊維 を含むカゝもしくは全くミクロンサイズの炭素繊維を含まず、且つ、ナノサイズの炭素繊 維が前記複合材料の前記表面に平行な配向を有し、前記一定領域が前記表面から 10 μ m〜5mmである金属基炭素繊維複合材料を製造することができる。  In this embodiment, particularly in the step (D), a mixture of the metal powder and nano-sized carbon fiber or a sintered product of the metal nano-sized carbon fiber mixture and the metal powder nano-sized carbon fiber. By filling the jig with the two types of materials, the attached fiber or the metal nano-sized carbon fiber attached fiber sintered product, in a stepwise manner, the surface of the metal-based carbon fiber composite material is moved to a certain region. Less than the area of the fiber containing a micron-sized carbon fiber or no micron-sized carbon fiber, and the nano-sized carbon fiber has an orientation parallel to the surface of the composite material. The metal-based carbon fiber composite material in which the certain region is 10 μm to 5 mm from the surface can be produced.
[0020] 本発明にお ヽては、ミクロンサイズの炭素繊維は、ピッチ系炭素繊維、 PAN系炭素 繊維または気相成長炭素繊維から選択され、ナノサイズの炭素繊維は、気相成長炭 素繊維、多層カーボンナノチューブまたは単層カーボンナノチューブから選択される ことが好ましい。また、金属は、銅、アルミニウム、マグネシウムおよびこれらを基とす る合金力もなる群力も選択されることが好まし 、。  In the present invention, the micron-sized carbon fiber is selected from pitch-based carbon fiber, PAN-based carbon fiber or vapor-grown carbon fiber, and the nano-sized carbon fiber is vapor-grown carbon fiber. It is preferably selected from multi-walled carbon nanotubes or single-walled carbon nanotubes. In addition, it is preferable that the metal is selected from a group force that also includes copper, aluminum, magnesium, and an alloy force based on these.
[0021] 本発明によれば、従来の金属基炭素繊維複合材料、特に一方向の炭素繊維 (ミク ロンサイズ)を含む高熱伝導材料の欠点であった、ミクロンサイズの炭素繊維と直交 方向の熱伝導率、熱膨張率等を改善することができる。さらに、本発明の複合材料は 軽量ィ匕を図ることができる。  [0021] According to the present invention, heat in a direction orthogonal to micron-sized carbon fibers, which was a drawback of conventional metal-based carbon fiber composite materials, particularly high thermal conductivity materials including unidirectional carbon fibers (micron size). Conductivity, coefficient of thermal expansion, etc. can be improved. Furthermore, the composite material of the present invention can achieve light weight.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1A]図 1Aは、本発明の金属基炭素繊維複合材料の構造を示す概略斜視図であ る。  FIG. 1A is a schematic perspective view showing the structure of the metal-based carbon fiber composite material of the present invention.
[図 1B]図 1Bは、図 1A中に示す Z軸方向力も見た場合の本発明の金属基炭素繊維 複合材料の構造を示す概略図である。  FIG. 1B is a schematic diagram showing the structure of the metal-based carbon fiber composite material of the present invention when the Z-axis direction force shown in FIG. 1A is also seen.
[図 1C]図 1Cは、図 1A中に示す X軸方向カゝら見た場合の本発明の金属基炭素繊維 複合材料の構造を示す概略図である。 圆 2A]図 2Aは、本発明の別の実施形態の金属基炭素繊維複合材料の構造を示す 概略図である。 FIG. 1C is a schematic view showing the structure of the metal-based carbon fiber composite material of the present invention when viewed from the X-axis direction side shown in FIG. 1A. [2A] FIG. 2A is a schematic view showing the structure of a metal-based carbon fiber composite material according to another embodiment of the present invention.
圆 2B]図 2Bは、図 1Aの複合材料を発熱体に適用した例を示す概略図である。 [2B] FIG. 2B is a schematic view showing an example in which the composite material of FIG. 1A is applied to a heating element.
[図 3]図 3は、本発明で使用する金属粉末 ナノサイズ炭素繊維付着繊維を製造す る工程を説明するための図である。 FIG. 3 is a diagram for explaining a process for producing metal powder-attached nanosized carbon fiber used in the present invention.
圆 4A]図 4Aは、本発明の金属基炭素繊維複合材料の製造に用いる装置の一例を 示す図である。 [4A] FIG. 4A is a diagram showing an example of an apparatus used for producing the metal-based carbon fiber composite material of the present invention.
[図 4B]図 4Bは、ダイ、下部および上部パンチの部分の拡大概略図である。  FIG. 4B is an enlarged schematic view of the die, lower and upper punch portions.
[図 5]図 5は、パルス通電焼結法により作成した Al— 15wt%VGCF複合材料の電子 顕微鏡写真を示す。  [FIG. 5] FIG. 5 shows an electron micrograph of an Al-15 wt% VGCF composite material prepared by a pulse current sintering method.
[図 6A]図 6Aは、本発明の金属基炭素繊維複合材料を製造する際の金属粉末ーナ ノサイズ炭素繊維混合物等の充填の仕方を説明する図である。  [FIG. 6A] FIG. 6A is a diagram for explaining how to fill a metal powder-nanosize carbon fiber mixture or the like when producing the metal-based carbon fiber composite material of the present invention.
圆 6B]図 6Bは、本発明の金属基炭素繊維複合材料を製造する際の金属粉末—ナ ノサイズ炭素繊維混合物等の充填の仕方を説明する図である。 [6B] FIG. 6B is a diagram for explaining how to fill a metal powder-nanosize carbon fiber mixture or the like when producing the metal-based carbon fiber composite material of the present invention.
[図 6C]図 6Cは、本発明の金属基炭素繊維複合材料を製造する際の金属粉末ーナ ノサイズ炭素繊維混合物等の充填の仕方を説明する図である。  [FIG. 6C] FIG. 6C is a view for explaining how to fill a metal powder-nanosize carbon fiber mixture or the like when producing the metal-based carbon fiber composite material of the present invention.
[図 6D]図 6Dは、本発明の金属基炭素繊維複合材料を製造する際の金属粉末ーナ ノサイズ炭素繊維混合物等の充填の仕方を説明する図である。  [FIG. 6D] FIG. 6D is a diagram for explaining how to fill a metal powder-nanosize carbon fiber mixture or the like when producing the metal-based carbon fiber composite material of the present invention.
[図 7]図 7は、実施例で作成したアルミニウム 気相成長炭素繊維ナノファイバ ピッ チ系炭素繊維複合材料の電子顕微鏡写真である。  FIG. 7 is an electron micrograph of an aluminum vapor-grown carbon fiber nanofiber pitch-based carbon fiber composite material prepared in an example.
[図 8A]図 8Aは、実施例 2で作成した本発明の炭素繊維複合材料の電子顕微鏡写 真であり、ナノサイズ繊維の複合材料表面に対する配向を示す図である。  FIG. 8A is an electron micrograph of the carbon fiber composite material of the present invention prepared in Example 2, showing the orientation of nano-sized fibers with respect to the composite material surface.
圆 8B]図 8Bは、実施例 1で作成した本発明の炭素繊維複合材料の電子顕微鏡写真 であり、ナノサイズ繊維の複合材料表面に対する配向を示す図である。 [8B] FIG. 8B is an electron micrograph of the carbon fiber composite material of the present invention prepared in Example 1, showing the orientation of nano-sized fibers relative to the composite material surface.
符号の説明 Explanation of symbols
100 金属基炭素繊維複合材料  100 Metal-based carbon fiber composite material
102 ミクロンサイズの炭素繊維 102 micron carbon fiber
104 ナノサイズの炭素繊維 106 金属 104 Nano-sized carbon fiber 106 metal
110 面  110 faces
112 面  112 faces
114 面 ト 1  114 side 1
Λ  Λ
200 金属基炭素繊維複合材料  200 Metal-based carbon fiber composite material
202 表面領域  202 Surface area
204 他の領域  204 Other areas
206 表面  206 Surface
302 卷出ボビン  302 Boiled bobbin
304 繊維束  304 fiber bundle
306 攪拌装置  306 Stirrer
308 容器  308 containers
310 金属粉末懸濁液  310 Metal powder suspension
312 ナノサイズ炭素繊維付着繊維  312 Nano-sized carbon fiber-attached fiber
314 卷取ボビン  314 Bobbin
400 加圧焼結容器  400 Pressure sintering vessel
402 ダイ  402 die
404 下部パンチ  404 Bottom punch
406 上部パンチ  406 Upper punch
408  408
410 プラ、 、、5410 plastic,,, 5
412 材料  412 Materials
414 電源  414 power supply
602 焼結物  602 Sintered product
604 焼結物  604 Sintered product
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、金属と炭素繊維からなる金属基炭素繊維複合材料に関する。本発明で は、炭素繊維は、ミクロンサイズの炭素繊維とナノサイズの炭素繊維を含む。 [0025] 以下に、第一の実施形態の例示として、図 1Aから図 1Cを参照して本発明の金属 基炭素繊維複合材料を説明する。図 1Aは、本発明の金属基炭素繊維複合材料の 斜視図(内部構造の概略も示したもの)であり、図 1Bは、図 1Aに示す X— Y— Z軸の Z軸方向力も複合材料を見た場合の図であり、図 1Cは X— Y— Z軸の X軸方向から 複合材料を見た場合の図である。なお、以下では、図 1Aに示される座標軸を用いて 説明する力 これらは、便宜上の方向付けをするためのものであることに留意された い。 The present invention relates to a metal-based carbon fiber composite material composed of metal and carbon fiber. In the present invention, the carbon fibers include micron-sized carbon fibers and nano-sized carbon fibers. Hereinafter, as an example of the first embodiment, a metal-based carbon fiber composite material of the present invention will be described with reference to FIGS. 1A to 1C. Fig. 1A is a perspective view of the metal-based carbon fiber composite material of the present invention (the outline of the internal structure is also shown). Fig. 1B is a composite material in which the Z-axis direction force of the XYZ axis shown in Fig. 1A Fig. 1C shows the composite material viewed from the X-axis direction of the X-Y-Z axis. In the following, it should be noted that the forces described using the coordinate axes shown in FIG. 1A are for convenience.
[0026] 本発明の金属基炭素繊維複合材料 100は、ミクロンサイズの炭素繊維 102、ナノサ ィズの炭素繊維 104、および金属 106が複合ィ匕された複合材料である。特に本発明 の金属基炭素繊維複合材料 100は、金属マトリック内において X軸方向に配向され たミクロンサイズの炭素繊維 102と、金属マトリック内に分散して存在するナノサイズ の炭素繊維 104を含む。  [0026] The metal-based carbon fiber composite material 100 of the present invention is a composite material in which a micron-size carbon fiber 102, a nanosize carbon fiber 104, and a metal 106 are composited. In particular, the metal-based carbon fiber composite material 100 of the present invention includes micron-sized carbon fibers 102 oriented in the X-axis direction in the metal matrix and nano-sized carbon fibers 104 dispersed and present in the metal matrix.
[0027] ミクロンサイズの炭素繊維 102は、複合材料の一端(図 1Aの Y—Z面に平行な 110 で示される面)から他端(図 1Aの Y—Z面に平行な 112で示される面)まで連続して いるが、その程度は、ミクロンサイズの炭素繊維の総量に対して 50%以上であること が好ましい。  [0027] The micron-sized carbon fiber 102 is shown from one end of the composite material (the surface indicated by 110 parallel to the Y-Z plane in FIG. 1A) to the other end (112 parallel to the Y-Z plane in FIG. 1A). However, the degree is preferably 50% or more with respect to the total amount of micron-sized carbon fibers.
[0028] ナノサイズの炭素繊維 104は、図 1Bに示されるように Z軸に垂直な面内に関してラ ンダムな方向に配列しているが、図 1Cに示されるように、ナノサイズの炭素繊維 104 の少なくとも 80%はこの Z軸に垂直な面(図 1Aの X— Y面)に対して 30° 以内、好ま しくは、 10° 以内に配向されていることを特徴とする。  [0028] The nano-sized carbon fibers 104 are arranged in a random direction with respect to the in-plane perpendicular to the Z-axis as shown in FIG. 1B. However, as shown in FIG. 1C, the nano-sized carbon fibers 104 At least 80% of 104 is characterized by being oriented within 30 °, preferably within 10 ° with respect to the plane perpendicular to the Z axis (X-Y plane in Fig. 1A).
[0029] このように、本発明の複合材料は、第一の表面(例えば、図 1Aの X—Y平面に平行 な面 114)を有し、ミクロンサイズの炭素繊維は、複合材料の第一の表面に対して平 行な一方向(例えば、図 1Aの X軸方向)に向けて配向されて充填されており、ナノサ ィズの炭素繊維はその少なくとも 80%が第一の表面に対して 30° 以内、好ましくは 10° 以内に配向されており、且つ、第一の表面と平行な面内ではランダムに配向し ていることを特徴とする。本発明は、図 1 Aから図 1Cに示した態様に加え、この複合 材料が複数層を有する場合も包含する。この場合、各層の構成材料である、金属、ミ クロンサイズの炭素繊維またはナノサイズの炭素繊維の組成は、互いに異なって 、る [0030] ミクロンサイズの炭素繊維は、複合材料中に 20〜80体積%含まれ、ナノサイズの 炭素繊維は、複合材料中に 1〜50体積%含まれることが好ましい。 [0029] Thus, the composite material of the present invention has a first surface (for example, a surface 114 parallel to the XY plane of FIG. 1A), and the micron-sized carbon fiber is the first surface of the composite material. Oriented and packed in one direction parallel to the surface (eg, the X-axis direction in FIG. 1A), and at least 80% of the nanosized carbon fibers are relative to the first surface. It is characterized by being oriented within 30 °, preferably within 10 °, and randomly oriented in a plane parallel to the first surface. In addition to the embodiment shown in FIGS. 1A to 1C, the present invention includes the case where the composite material has a plurality of layers. In this case, the composition of the metal, micron-sized carbon fiber, or nano-sized carbon fiber that is the constituent material of each layer is different from each other. [0030] The micron-sized carbon fiber is preferably contained in the composite material at 20 to 80% by volume, and the nano-sized carbon fiber is preferably contained in the composite material at 1 to 50% by volume.
[0031] 次に、第二の実施形態に係る本発明の金属基炭素繊維複合材料について、図 2A および図 2Bを参照して説明する。図 2Aは、第二の実施形態に係る本発明の金属基 炭素繊維複合材料の構造を示す概略図であり、図 1Aから図 1Cと同様の座標軸を設 けた場合、 X面カゝら見た場合の図である。図 2Bは、この金属基炭素繊維複合材料を 発熱体に装着した場合の図である。  Next, the metal-based carbon fiber composite material according to the second embodiment of the present invention will be described with reference to FIGS. 2A and 2B. FIG. 2A is a schematic view showing the structure of the metal-based carbon fiber composite material of the present invention according to the second embodiment, and when viewed from the X plane when the same coordinate axes as those shown in FIGS. 1A to 1C are provided. FIG. FIG. 2B is a diagram when the metal-based carbon fiber composite material is mounted on a heating element.
[0032] 図 2Aに示されるように、第二の実施形態に係る金属基炭素繊維複合材料 200は、 その表面領域 202に、他の領域 204よりも少ない量のミクロンサイズの炭素繊維 102 を含むカゝもしくは全くミクロンサイズの炭素繊維を含まず、且つ、ナノサイズの炭素繊 維 104が複合材料の表面 206に平行な配向を有することを特徴とする。なお、図 2A は、表面領域が全くミクロンサイズの炭素繊維を含まな 、場合を例示して 、る。  [0032] As shown in FIG. 2A, the metal-based carbon fiber composite material 200 according to the second embodiment includes a smaller amount of micron-sized carbon fibers 102 in the surface region 202 than in the other regions 204. It is characterized in that it does not contain any cocoons or micron-sized carbon fibers, and the nano-sized carbon fibers 104 have an orientation parallel to the surface 206 of the composite material. FIG. 2A illustrates the case where the surface region does not include any micron-sized carbon fiber.
[0033] このように、第二の実施形態に係る複合材料は、第一の表面 (例えば、図 2Aの X— Y平面に平行な面 206)から一定距離の内部領域力 他の領域よりも少ない量のミク ロンサイズの炭素繊維を含むカゝ、もしくは全くミクロンサイズの炭素繊維を含まず、且 つ、ナノサイズの炭素繊維が前記複合材料の第一の表面にほぼ平行な配向を有す ることを特徴とする。第一の表面力も一定距離の内部領域にあるナノサイズの炭素繊 維は、その少なくとも 90%が第一の表面にほぼ平行な配向を有することが好ましい。  [0033] Thus, the composite material according to the second embodiment has an internal region force of a certain distance from the first surface (for example, the surface 206 parallel to the XY plane in FIG. 2A) than other regions. A small amount of micron-sized carbon fiber or no micron-sized carbon fiber, and the nano-sized carbon fiber has a substantially parallel orientation to the first surface of the composite material. It is characterized by that. It is preferable that at least 90% of the nano-sized carbon fiber in which the first surface force is also in the inner region of a certain distance has an orientation substantially parallel to the first surface.
[0034] 本発明では、この第一の表面からの一定距離は、第一の表面(例えば、図 2Aの X  [0034] In the present invention, the constant distance from the first surface is the first surface (eg, X in FIG. 2A).
Y平面に平行な面 206)から 10 μ m〜5mmであることが好ましい。  It is preferably 10 μm to 5 mm from the plane 206) parallel to the Y plane.
[0035] 本発明の第二の実施形態に係る複合材料は、表面領域 202において、ミクロンサ ィズの炭素繊維の配合量が少ないか、もしくは全く含まず、且つ、ナノサイズの炭素 繊維が表面 206に沿った配向を有する構造とすることで面内に等方的な熱膨張率を 有することができる。ミクロンサイズの炭素繊維の配向方向は、熱膨張の抑制が大き いため、第二の実施形態に係る複合材料のような構造とすることで、複合材料の表面 を発熱部の熱膨張率に合わせて調節することができる。すなわち、表面領域の炭素 繊維の配合を適宜選択することで、複合材料の表面を発熱部の熱膨張率に合わせ て調節することができる。 [0035] In the composite material according to the second embodiment of the present invention, the surface region 202 contains little or no micron-sized carbon fibers, and nano-sized carbon fibers are formed on the surface 206. By having a structure having an orientation along the surface, it is possible to have an isotropic thermal expansion coefficient in the plane. Since the orientation of micron-sized carbon fibers greatly suppresses thermal expansion, the surface of the composite material is matched to the thermal expansion coefficient of the heat generating part by adopting a structure like the composite material according to the second embodiment. Can be adjusted. In other words, the surface of the composite material is matched to the thermal expansion coefficient of the heat generating part by appropriately selecting the carbon fiber composition in the surface region. Can be adjusted.
[0036] なお、本発明の第二の実施形態に係る複合材料は、上述のように二層のみではな ぐ多層構造とすることも可能である。例えば、他の領域 204を複数の層で構成するこ とができる。この場合、各層の構成材料である、金属、ミクロンサイズの炭素繊維また はナノサイズの炭素繊維の組成は、表面領域 202を含め互いに異なっている。このよ うにすることで、熱伝導率および熱膨張率をさらに改善することができる。  [0036] Note that the composite material according to the second embodiment of the present invention may have a multilayer structure as well as two layers as described above. For example, the other region 204 can be composed of a plurality of layers. In this case, the composition of the metal, micron-sized carbon fiber, or nano-sized carbon fiber that is a constituent material of each layer is different from each other including the surface region 202. By doing so, the thermal conductivity and the thermal expansion coefficient can be further improved.
[0037] 本発明の金属基炭素繊維複合材料は、熱伝導率につ ヽて、ミクロンサイズの炭素 繊維の配向方向(例えば、図 1Aでは X軸)(一方向)に 300〜1000WZ (mK) (ヮッ ト毎メートル毎ケルビン)を有する。また、ナノサイズの炭素繊維の熱伝導率への寄与 により、ミクロンサイズの炭素繊維と直角(例えば、図 1Aでは Z軸)方向に 50〜200W Z (mK)の熱伝導率を有する。熱膨張率については、ミクロンサイズの炭素繊維、お よびミクロンサイズの炭素繊維に直角な面内(上記図 1Aの X— Y平面)にランダムに 配向したナノサイズの炭素繊維の効果により― l〜20ppmZKを有する。これらの値 はミクロンサイズの炭素繊維の配合率、ナノサイズの炭素繊維の配合率と、これらの 配向方向を適切に選択することで制御することができる。  [0037] The metal-based carbon fiber composite material of the present invention has a thermal conductivity of 300 to 1000 WZ (mK) in the orientation direction of micron-sized carbon fibers (for example, the X axis in FIG. 1A) (one direction). (Knots per meter per kelvin). Also, due to the contribution to the thermal conductivity of nano-sized carbon fibers, it has a thermal conductivity of 50 to 200 W Z (mK) in the direction perpendicular to micron-sized carbon fibers (for example, the Z axis in FIG. 1A). The coefficient of thermal expansion is due to the effects of micron-sized carbon fibers and nano-sized carbon fibers randomly oriented in the plane perpendicular to the micron-sized carbon fibers (X-Y plane in Fig. 1A above). It has 20ppmZK. These values can be controlled by appropriately selecting the compounding ratio of micron-sized carbon fibers, the compounding ratio of nano-sized carbon fibers, and their orientation directions.
[0038] 次に本発明の金属基炭素繊維複合材料の各成分について説明する。 Next, each component of the metal-based carbon fiber composite material of the present invention will be described.
[0039] 1.炭素繊維 [0039] 1. Carbon fiber
本発明に用いられるミクロンサイズの炭素繊維として、ピッチ系炭素繊維、 PAN系 炭素繊維、気相成長炭素繊維が挙げられる。これらの炭素繊維は、 1 μ πι〜50 /ζ m の直径を有する繊維が適当である。また、これら炭素繊維は、所望される複合材料の 寸法にも依存するが、 1mm以上の長さを有することが好ましぐ所望される複合材料 の一端力も他端までの長さを有することが特に好ましい。本発明では、ミクロンサイズ の炭素繊維は、複合材料中で 1方向に配列させ、その全量の少なくとも 50%が、複 合材料にお 、て配向方向の一端力も他端まで連続して 、ることが好ま 、。  Examples of the micron-sized carbon fiber used in the present invention include pitch-based carbon fiber, PAN-based carbon fiber, and vapor-grown carbon fiber. These carbon fibers are suitably fibers having a diameter of 1 μπι to 50 / ζ m. These carbon fibers also depend on the dimensions of the desired composite material, but it is preferable that the carbon fiber has a length of 1 mm or more. Particularly preferred. In the present invention, the micron-sized carbon fibers are arranged in one direction in the composite material, and at least 50% of the total amount of the fiber is continuously extended to the other end in the orientation direction in the composite material. Preferred.
[0040] ナノサイズの炭素繊維としては、気相成長炭素繊維、多層カーボンナノチューブ( MWCNT)または単層カーボンナノチューブ(SWCNT)を挙げることができる。これ らの炭素繊維およびカーボンナノチューブは、 l /z m dOOOnm)以下の繊維長のも のが好適である。ナノサイズの炭素繊維は、アスペクト比 (長さ Z直径)が少なくとも 1 0以上であることが好まし 、。 [0040] Examples of the nano-sized carbon fiber include vapor-grown carbon fiber, multi-walled carbon nanotube (MWCNT), and single-walled carbon nanotube (SWCNT). These carbon fibers and carbon nanotubes preferably have a fiber length of l / zm dOOOnm) or less. Nano-sized carbon fibers have an aspect ratio (length Z diameter) of at least 1 Preferred to be 0 or more.
[0041] 2.金属 [0041] 2. Metal
本発明に用いる金属は、高い熱伝導性を有する金属であり、アルミニウム、アルミ二 ゥムの合金、銅、銅の合金、マグネシウムまたはマグネシウムの合金を含む。例えば、 熱伝導性を高くすることが第一義的目的である場合、銅またはその合金を用いること ができる。また、例えば、軽量であることが第一義的目的である場合、より小さい密度 を有するアルミニウム、アルミニウムの合金、マグネシウムまたはマグネシウムの合金 を用いることができる。金属の密度は、アルミニウム(2. 7gZcm3)、マグネシウム(1. 8gZcm3)、銅(8. 9gZcm3)とこれらを主とする合金であることが好ましい。このよう な材料を用いることで、本発明の複合材料は低密度 (軽量)〖こすることができる。 The metal used in the present invention is a metal having high thermal conductivity, and includes aluminum, an alloy of aluminum, copper, an alloy of copper, magnesium or an alloy of magnesium. For example, when the primary purpose is to increase the thermal conductivity, copper or an alloy thereof can be used. Further, for example, when light weight is the primary purpose, aluminum, an aluminum alloy, magnesium, or a magnesium alloy having a lower density can be used. The metal density is preferably aluminum (2.7 gZcm 3 ), magnesium (1.8 gZcm 3 ), copper (8.9 gZcm 3 ), and an alloy mainly composed of these. By using such a material, the composite material of the present invention can be rubbed at a low density (light weight).
[0042] 金属は、平均粒径 10nm〜50 μ mの粉末であることが好まし!/、。  [0042] The metal is preferably a powder having an average particle size of 10 nm to 50 μm! /.
[0043] 金属と 2種類の炭素繊維を複合化することによりアルミニウム基炭素繊維複合材料  [0043] Aluminum-based carbon fiber composite material by combining metal and two types of carbon fiber
(2. 6g/cm3以下)、マグネシウム基炭素繊維複合材料 (2. 2g/cm3以下)または 銅基炭素繊維複合材料 (7. 6gZcm3以下)を得ることができる。このような複合材料 では、ミクロンサイズの炭素繊維とナノサイズの炭素繊維を総合した炭素分の総量は 、複合材料の 20〜80体積0 /0であることが好まし 、。 (2.6 g / cm 3 or less), a magnesium-based carbon fiber composite material (2.2 g / cm 3 or less) or a copper-based carbon fiber composite material (7.6 gZcm 3 or less) can be obtained. In such composite materials, the total amount of the carbon fraction Overall the carbon fibers of the carbon fibers and nano micron size, preferably to be 20 to 80 volume 0/0 of the composite material.
[0044] 代表的な炭素繊維および金属の熱物性を以下の表 1に示す。  [0044] The thermal properties of typical carbon fibers and metals are shown in Table 1 below.
[0045] [表 1]  [0045] [Table 1]
表 1 原材料の物性値  Table 1 Physical properties of raw materials
材料 熱伝導率 熱膨張率 密度  Material Thermal conductivity Thermal expansion coefficient Density
(W / ( m K ) ) ( ρ ρ m/ K ) ( g  (W / (m K)) (ρ ρ m / K) (g
グラフアイ ト C軸 1 9 5 0 - 1 5 2 . 2  Graph item C axis 1 9 5 0-1 5 2. 2
a軸 2 0以下 2 . 8  a-axis 2 0 or less 2.8
アルミニゥム 2 3 8 2 3 2 . 7 マグネシゥム 1 5 6 2 6 1 . 8 銅 3 9 8 1 7 8 . 9 本発明の金属基炭素繊維複合材料は、例えば、半導体を用いた電子装置または パワーモジュールの放熱部材 (基板、ヒートシンク、ヒートスプレッダなど)として有用 である。半導体を用いた電子装置は、たとえば中央処理装置 (CPU)、記憶素子 (メ モリ)、各種装置のコントローラ IC、フラットパネルディスプレイ装置、画像処理装置、 通信装置 (無線および有線)、光電ハイブリッド回路など当該技術において知られて いる任意のものであってもよい。パワーモジュールは、サイリスタ、 GTO、 IGBT、 IEG Tなどの素子を用いたコンバータ、インバータなどを含む。本発明の金属基炭素繊維 複合材料をヒートシンクまたはヒートスプレッダのような放熱部材として用いる場合、該 材料は適当な形状に加工されて、これらの装置において発生する熱を、中間的ない し最終的な冷媒へと輸送するように取り付けられる。特に、図 2Αに示されるような多 層の金属基炭素繊維複合材料の場合には、発熱体側に、上述の表面領域 202の側 を接触させるようにすることが好ま 、(図 2Β参照)。 Aluminum 2 3 8 2 3 2 .7 Magnesium 1 5 6 2 6 1 .8 Copper 3 9 8 1 7 8 .9 The metal-based carbon fiber composite material of the present invention is, for example, an electronic device or a power module using a semiconductor. It is useful as a heat dissipation member (substrate, heat sink, heat spreader, etc.). Electronic devices using semiconductors include, for example, central processing units (CPUs), storage elements (memory), controller ICs for various devices, flat panel display devices, image processing devices, Any device known in the art, such as a communication device (wireless and wired) or a photoelectric hybrid circuit, may be used. Power modules include converters and inverters using elements such as thyristors, GTOs, IGBTs, and IEG Ts. When the metal-based carbon fiber composite material of the present invention is used as a heat radiating member such as a heat sink or a heat spreader, the material is processed into an appropriate shape so that heat generated in these devices can be used as an intermediate or final refrigerant. Mounted to transport to. In particular, in the case of a multi-layered metal-based carbon fiber composite material as shown in FIG. 2B, it is preferable to bring the surface region 202 side into contact with the heating element side (see FIG. 2B).
[0047] さらに、金属基炭素繊維複合材料と発熱体を接触させる際に、本発明の複合材料 およびそれら装置の接合部において、それぞれの表面の凹凸を充填するための柔 軟な伝熱媒体 (たとえば、銀などの高熱伝導性粒子を分散させてもょ 、シリコーンダリ ース、熱伝導シートなど)を用いて、装置から複合材料への均一な熱伝導を達成して ちょい。 [0047] Further, when the metal-based carbon fiber composite material and the heating element are brought into contact with each other, a flexible heat transfer medium for filling the surface irregularities in the composite material of the present invention and the joint portion of these devices ( For example, disperse highly thermally conductive particles such as silver, silicone dull, heat conductive sheet, etc.) to achieve uniform heat transfer from the device to the composite material.
[0048] 次に、本発明の金属基炭素繊維複合材料の製造方法について説明する。  [0048] Next, a method for producing the metal-based carbon fiber composite material of the present invention will be described.
[0049] 本発明の製造方法の一実施形態は、 (a)金属粉末とナノサイズの炭素繊維の混合 して、金属粉末 ナノサイズ炭素繊維混合物を調製する工程と、(b)前記金属粉末 ナノサイズ炭素繊維混合物をミクロンサイズの炭素繊維に付着させて、金属粉末 ナノサイズ炭素繊維付着繊維を調製する工程と、 (c)前記金属粉末 ナノサイズ 炭素繊維付着繊維を配列させながら、治具中に充填する工程と、(d)前記治具をカロ 熱して充填物を加熱焼結する工程とを含む。 [0049] One embodiment of the production method of the present invention includes (a) a step of preparing a metal powder nanosize carbon fiber mixture by mixing metal powder and nanosize carbon fiber, and (b) said metal powder nano Attaching a size carbon fiber mixture to a micron-size carbon fiber to prepare a metal powder nano-size carbon fiber-attached fiber; and (c) arranging the metal powder nano-size carbon fiber-attached fiber in a jig A step of filling, and (d) a step of heat-sintering the filling by heating the jig.
[0050] 別の実施形態では、(A)金属粉末とナノサイズの炭素繊維の混合して、金属粉末 ナノサイズ炭素繊維混合物を調製する工程と、 (B)前記金属粉末 ナノサイズ炭 素繊維混合物をミクロンサイズの炭素繊維に付着させて、金属粉末 ナノサイズ炭 素繊維付着繊維を調製する工程と、(C)金属粉末 ナノサイズ炭素繊維混合物また は前記金属粉末 ナノサイズ炭素繊維付着繊維を配列させながら治具中に充填し、 前記治具を加熱して充填物を加熱焼結し、金属 ナノサイズ炭素繊維混合物焼結 物または金属 ナノサイズ炭素繊維付着繊維焼結物を得る工程と、(D)前記金属粉 末 ナノサイズ炭素繊維混合物、前記金属粉末 ナノサイズ炭素繊維付着繊維、前 記金属 ナノサイズ炭素繊維混合物焼結物、または前記金属 ナノサイズ炭素繊 維付着繊維焼結物から選択される 2種以上の材料を段階的に治具中に充填し、複 数層からなる充填物得る工程と、 (E)前記治具を加熱して充填物を加熱焼結するェ 程とを含む。 [0050] In another embodiment, (A) mixing a metal powder and nano-sized carbon fiber to prepare a metal powder nano-sized carbon fiber mixture; and (B) the metal powder nano-sized carbon fiber mixture. And (C) a metal powder nano-size carbon fiber mixture or the metal powder nano-size carbon fiber-attached fibers are arranged. Filling the jig while heating the jig to heat and sinter the filler to obtain a sintered metal nano-sized carbon fiber mixture or a metal nano-sized carbon fiber-attached fiber sintered article (D ) The metal powder nano-size carbon fiber mixture, the metal powder nano-size carbon fiber adhering fiber, before The metal nano-sized carbon fiber mixture sintered product or two or more materials selected from the metal nano-sized carbon fiber-attached fiber sintered product are filled into the jig step by step and filled with a plurality of layers. And (E) heating the jig to heat and sinter the filler.
[0051] 以下、図面を参照しながら本発明の製造方法を詳細に説明する。  Hereinafter, the production method of the present invention will be described in detail with reference to the drawings.
[0052] 本発明の製造方法の第一の工程は、金属粉末とナノサイズの炭素繊維とを混合し て、金属粉末—ナノサイズ炭素繊維混合物を形成する工程である。  [0052] The first step of the production method of the present invention is a step of mixing metal powder and nano-sized carbon fiber to form a metal powder-nano-sized carbon fiber mixture.
[0053] 金属の粉末とナノサイズの炭素繊維を混合する。混合法はナノサイズの炭素繊維、 金属粉ともに凝集しやすいため、湿式が望ましい。混合液の溶媒には、アルミニウム 、マグネシウムおよびこれらを基とする合金を用いる場合、有機溶媒を用いることがで きる。なお、銅および銅を基とする合金の場合は水を溶媒として用いることも可能であ る。有機溶媒は特に限定されないが、アルコール (メタノール、エタノール、プロパノ ールなど)、炭化水素溶媒 (例えばへキサン、ベンゼン、キシレン、トルエンなど)、ケト ン(アセトンなど)、エーテル(ジメチルエーテル、ジェチルエーテル、ェチルメチルェ 一テルなど)、ハロゲンィ匕炭化水素(クロ口ホルムなど)、ミネラルスピリット等力も選択 することができる。必要に応じて、溶媒規準で 0. 1〜2重量%の分散剤を加えること が好ましい。分散剤には、ポリエチレングリコール、プル口ニック系分散剤(プル口-ッ ク (登録商標) F68)などが挙げられる。  [0053] A metal powder and nano-sized carbon fibers are mixed. Since the mixing method tends to agglomerate both nano-sized carbon fibers and metal powders, it is desirable to use wet methods. As a solvent for the mixed solution, an organic solvent can be used when aluminum, magnesium, or an alloy based on these is used. In the case of copper and copper-based alloys, water can also be used as a solvent. The organic solvent is not particularly limited, but alcohol (methanol, ethanol, propanol, etc.), hydrocarbon solvent (eg hexane, benzene, xylene, toluene, etc.), ketone (acetone, etc.), ether (dimethyl ether, jetyl ether, etc.) , Ethyl ether, etc.), halogenated hydrocarbons (eg black mouth form), mineral spirits, etc. can also be selected. If necessary, it is preferable to add 0.1 to 2% by weight of a dispersant on a solvent basis. Examples of the dispersant include polyethylene glycol, pull mouth nick type dispersant (Pull mouth-Cook (registered trademark) F68), and the like.
[0054] 溶媒は、固形成分 (金属粉末とナノサイズの炭素繊維)の 50〜90体積%程度加え られる。溶媒、金属およびナノサイズの炭素繊維は、スターラー、超音波混合、ボー ルミル混合のいずれか、または、これらを組み合わせて用いることにより混合される。 例えば、スターラーによる混合と超音波による混合は同時に行うことができる。これら の混合条件は、材料により適宜選択すればよぐ条件の選択は当業者により容易に 行うことができる。  [0054] The solvent is added in an amount of about 50 to 90% by volume of solid components (metal powder and nano-sized carbon fiber). The solvent, metal, and nano-sized carbon fiber are mixed by using a stirrer, ultrasonic mixing, ball mill mixing, or a combination thereof. For example, mixing by a stirrer and mixing by ultrasonic waves can be performed simultaneously. These mixing conditions can be appropriately selected depending on the material, and can be easily selected by those skilled in the art.
[0055] 第二の工程は、前記金属粉末 ナノサイズ炭素繊維混合物をミクロンサイズの炭 素繊維に付着させて、金属粉末 ナノサイズ炭素繊維付着繊維を調製する工程で ある。  [0055] The second step is a step of preparing the metal powder nano-size carbon fiber-attached fiber by attaching the metal powder nano-size carbon fiber mixture to the micron-size carbon fiber.
[0056] 第一の工程で調製された、金属粉末 ナノサイズ炭素繊維混合物の懸濁液をミク ロンサイズの炭素繊維に付着させる。付着方法は懸濁液への浸漬による。市販のミク ロン炭素繊維は 2000〜20000本の束がボビンに巻かれた状態であるため、図 3に 示すようにローラーを介した懸濁液への浸漬により連続的に付着が可能である。浸漬 速度は、例えば 10〜200mmZsとすることができる。なお、この工程は、自動浸漬で あっても手作業による浸漬であってもよ 、。 [0056] The suspension of the metal powder nanosize carbon fiber mixture prepared in the first step is mixed. Adhere to long carbon fiber. The attachment method is by immersion in the suspension. Since commercially available micron carbon fiber is in a state where 2000 to 20000 bundles are wound around a bobbin, it can be continuously attached by immersion in a suspension via a roller as shown in FIG. The immersion speed can be set to, for example, 10 to 200 mmZs. This process may be automatic dipping or manual dipping.
[0057] 図 3の装置では、卷出ボビン 302から繊維束 304が巻き解かれ、攪拌装置 306によ り攪拌される容器 308内の金属粉末 ナノサイズ炭素繊維混合物 (金属粉末懸濁液 ) 310中に浸潰され、金属粉末 ナノサイズ炭素繊維付着繊維 (金属粉末が付着し た繊維束) 312が卷取ボビン 314に巻き取られる。  In the apparatus of FIG. 3, the fiber bundle 304 is unwound from the brewing bobbin 302, and the metal powder in the container 308 that is stirred by the stirring device 306 Nano-size carbon fiber mixture (metal powder suspension) 310 The metal powder nano-sized carbon fiber-attached fiber (fiber bundle to which the metal powder is attached) 312 is wound around the take-up bobbin 314.
[0058] 次に、金属粉末 ナノサイズ炭素繊維付着繊維を乾燥させる。卷取ボビン 314〖こ 巻き取る前または後に、自然乾燥、温 (熱)風乾燥機による乾燥、ロータリーポンプに よる常温減圧乾燥等の方法を適用することが可能である。これらの乾燥条件は、材料 により適宜選択すればよぐ条件の選択は当業者により容易に行うことができる。  [0058] Next, the metal powder nano-sized carbon fiber-attached fiber is dried. It is possible to apply methods such as natural drying, drying with a warm (hot) air dryer, and drying at room temperature under reduced pressure with a rotary pump before or after winding. These drying conditions can be selected as appropriate depending on the material, and can be easily selected by those skilled in the art.
[0059] 金属粉末 ナノサイズ炭素繊維混合物は細力、いため、乾燥後も自然に発生する静 電力により脱離はほとんど生じない。脱離が問題となる場合は金属粉末懸濁液溶媒 中にパラフィンワックス等のバインダを 0. 1〜2重量%混合させて金属粉一ナノサイ ズ炭素繊維混合物をミクロンサイズの炭素繊維に保持する。なお、この場合には 500 °C以上の温度で、不活性雰囲気中において脱ワックスを行う工程が必要となるため、 融点の低!、アルミニウム、マグネシウム等の金属を用いる場合には別途の方法 (例え ば後述するような方法)が必要となる。  [0059] Metal powder The nano-sized carbon fiber mixture has low strength, and therefore, almost no desorption occurs due to the electrostatic force that naturally occurs even after drying. If desorption is a problem, 0.1-2% by weight of a binder such as paraffin wax is mixed in the metal powder suspension solvent to hold the metal powder-nanosized carbon fiber mixture on the micron-sized carbon fiber. In this case, a process of dewaxing in an inert atmosphere at a temperature of 500 ° C. or higher is required. Therefore, when using a metal having a low melting point, such as aluminum or magnesium, a separate method ( For example, the method described later) is required.
[0060] 次に、本発明の第三の工程は、前記金属粉末—ナノサイズ炭素繊維付着繊維を 配列させながら、治具中に充填する工程である。また、本発明の第四の工程は、第 三の工程で充填した充填物を加熱焼結する工程である。本発明では、一軸加圧焼 結法を用いることができる。生産性の高い方法としてはパルス通電焼結法が挙げられ る。この他、ホットプレス法も適用可能である。以下に第三の工程と第四の工程を併 せて説明する。  [0060] Next, the third step of the present invention is a step of filling the jig into the jig while arranging the metal powder-nano-sized carbon fiber-attached fibers. Further, the fourth step of the present invention is a step of heating and sintering the filler filled in the third step. In the present invention, a uniaxial pressure sintering method can be used. One example of a highly productive method is the pulse current sintering method. In addition, a hot press method can also be applied. The following describes the third step and the fourth step together.
[0061] 本発明において用いることができる加圧焼結装置を図 4Aおよび図 4Bに示す。図 4 Aは、装置の全体構成を示す概略図であり、図 4Bは、ダイ、下部パンチおよび上部 パンチの部分 (治具部分)の拡大図である。図 4Aの加圧焼結装置は、加圧焼結容 器 400と、貫通孔を有するダイ 402ならびに該貫通孔に嵌合する下部パンチ 404お よび上部パンチ 406とで構成される治具と、下部パンチ 404と上部パンチ 406に対し て圧力を加えるプラテン 408およびプランジャ 410と、下部パンチ 404と上部パンチ 4 06に接続され、材料 412に対して電流を流すための電源 414とを備える。 [0061] A pressure sintering apparatus that can be used in the present invention is shown in FIGS. 4A and 4B. 4A is a schematic diagram showing the overall configuration of the apparatus, and FIG. 4B shows the die, lower punch, and upper part. It is an enlarged view of a punch part (jig part). The pressure sintering apparatus of FIG. 4A includes a pressure sintering container 400, a die 402 having a through hole, a jig composed of a lower punch 404 and an upper punch 406 that fit into the through hole, A platen 408 and a plunger 410 that apply pressure to the lower punch 404 and the upper punch 406, and a power source 414 that is connected to the lower punch 404 and the upper punch 400 6 and flows current to the material 412.
[0062] まず、金属粉末 ナノサイズ炭素繊維付着繊維を所定の長さに切断し、上記加圧 焼結装置の治具内に充填する。  [0062] First, the metal powder nano-sized carbon fiber-attached fiber is cut into a predetermined length and filled in the jig of the pressure sintering apparatus.
[0063] 図 4Bに示されるように、ダイ 402に下部パンチ 404を嵌合させて形成される凹部に 、繊維を配列させながら、材料 412を充填する。例えば、前述の懸濁液浸漬法によつ て得られる金属粉末 ナノサイズ炭素繊維付着繊維を用いる場合、卷取ボビンから 巻き解かれたこの炭素繊維を適当な長さに切断し、切断した金属粉末 ナノサイズ 炭素繊維付着繊維を、ダイ 402および下部パンチ 404から形成される凹部に配列さ せながら充填することができる。さらに、金属粉末懸濁液中に分散剤を用いた場合に は、上部パンチ 406を載置する前、あるいは上部パンチ 406を載置後 1〜: LOMPaの 低加圧状態において、真空中または不活性雰囲気 (窒素、アルゴン、ヘリウムなど) 下、充填した金属粉末—ナノサイズ炭素繊維付着繊維を 200〜400°Cの温度にカロ 熱して分散剤を除去して、金属粉末および炭素繊維力もなる金属粉末—ナノサイズ 炭素繊維付着繊維を形成することが望ましい。分散剤の加熱除去工程は、加熱手段 をさらに備えたパルス通電焼結装置中で行ってもよいし、あるいは別個の加熱装置 中で行ってもよい。なお、金属粉末として銅粉末を用いる場合には、分散剤の加熱除 去工程を酸化性雰囲気 (空気、酸素富化空気または純酸素など)において行っても よい。  [0063] As shown in FIG. 4B, the material 412 is filled while the fibers are arranged in the recess formed by fitting the lower punch 404 to the die 402. For example, when using the metal powder nano-sized carbon fiber adhering fiber obtained by the suspension dipping method described above, the carbon fiber unrolled from the take-up bobbin is cut to an appropriate length, and the cut metal Powder nano-sized carbon fiber-attached fibers can be filled while being arranged in the recess formed by the die 402 and the lower punch 404. Furthermore, when a dispersant is used in the metal powder suspension, before placing the upper punch 406 or after placing the upper punch 406 1 ~: in a low pressure state of LOMPa, in vacuum or not Filled metal powder under active atmosphere (nitrogen, argon, helium, etc.) — Nano-sized carbon fiber-attached fiber is heated to a temperature of 200-400 ° C to remove the dispersant, and the metal powder and metal with carbon fiber strength It is desirable to form a powder-nanosized carbon fiber-attached fiber. The step of removing the dispersant by heating may be performed in a pulse current sintering apparatus further provided with a heating means, or may be performed in a separate heating apparatus. When copper powder is used as the metal powder, the heat removal step of the dispersant may be performed in an oxidizing atmosphere (such as air, oxygen-enriched air, or pure oxygen).
[0064] 次に、充填された材料 (金属粉末―ナノサイズ炭素繊維付着繊維) 412の上に上 部パンチ 406を載置し、組み合わせられた治具を、加圧焼結容器 400内のプレス機 のプラテン 408およびプランジャ 410の間に配置し、焼結工程を実施する。焼結工程 は、大気中、真空中または不活性雰囲気中で実施することが好ましい。加圧焼結容 器 400内を真空とするために、加圧焼結容器 400は適切な真空排気系と接続される 排気口(不図示)を有していてもよい。真空中で焼結工程を行う場合、容器内圧力を 0〜20Pa、好ましくは 0〜5Paとすることが望ましい。あるいはまた、加圧焼結容器 40 0が不活性ガス導入口およびガス排出口(ともに不図示)を有して、加圧焼結容器 40 0を不活性ガス(窒素、アルゴン、ヘリウムなど)でパージして不活性雰囲気を実現し てもよい。 [0064] Next, the upper punch 406 is placed on the filled material (metal powder-nano-size carbon fiber-attached fiber) 412 and the combined jig is pressed in the pressure sintering vessel 400. Place between the machine platen 408 and the plunger 410 to perform the sintering process. The sintering step is preferably performed in the air, in a vacuum, or in an inert atmosphere. In order to evacuate the pressure sintering container 400, the pressure sintering container 400 may have an exhaust port (not shown) connected to an appropriate vacuum exhaust system. When performing the sintering process in a vacuum, It is desirable that the pressure be 0 to 20 Pa, preferably 0 to 5 Pa. Alternatively, the pressurized sintering container 400 has an inert gas inlet and a gas outlet (both not shown), and the pressurized sintering container 400 is made of inert gas (nitrogen, argon, helium, etc.). An inert atmosphere may be achieved by purging.
[0065] 次に、上部パンチ 406をプランジャで押圧して、材料 (金属粉末—ナノサイズ炭素 繊維付着繊維) 412に圧力を印加する。印加される圧力は、例えば 5〜300MPaが 好ましい。焼結温度は金属種により異なる力 金属種が純アルミニウム、純マグネシ ゥムの場合、例えば 500〜650°C、純銅の場合は 700〜1050°C程度である。焼結 の雰囲気は、 50Pa以下の真空もしくは 0. lMPa (l気圧)以下の窒素、アルゴン等 の不活性雰囲気であることが好まし 、。  Next, the upper punch 406 is pressed with a plunger to apply pressure to the material (metal powder—nanosize carbon fiber-attached fiber) 412. The applied pressure is preferably 5 to 300 MPa, for example. The sintering temperature varies depending on the metal type. For example, when the metal type is pure aluminum or pure magnesium, it is about 500 to 650 ° C, and when pure metal is about 700 to 1050 ° C. The sintering atmosphere is preferably a vacuum of 50 Pa or less or an inert atmosphere of nitrogen, argon or the like of 0.1 lMPa (l atm) or less.
[0066] そして、下部パンチ 404および上部パンチ 406に接続される電源 414を用いて、パ ルス状の電流を材料 412に通電して焼結を実施する。この際に用 、られる電流のパ ノレス幅 ίま、 0. 005〜0. 02禾少、好ましく ίま 0. 005〜0. 01禾少であり、電流密度(ダイ 4 02の貫通孔の断面積を規準とする)が 5 Χ 105〜2 X 107AZm2、好ましくは 5 X 106 〜1 X 107AZm2であることが望ましい。そのような電流密度を達成するための電圧 は、材料 412を含めた導電経路の抵抗値に依存する力 通常 2〜8Vの範囲内であ る。パルス状電流の通電は、所望される焼結が完了するまで継続され、その継続時 間は複合材料の寸法、電流密度、炭素繊維の混合比などに依存して変化する。 [0066] Then, using a power source 414 connected to the lower punch 404 and the upper punch 406, a pulsed current is passed through the material 412 to perform sintering. The panel width of the current used in this case is less than 0.005 to 0.02, preferably less than 0.005 to 0.01, and the current density (cut through hole of the die 402) is low. It is desirable that the area is 5 to 10 5 to 2 × 10 7 AZm 2 , preferably 5 × 10 6 to 1 × 10 7 AZm 2 . The voltage to achieve such a current density is typically in the range of 2-8V, depending on the resistance of the conductive path including material 412. The energization of the pulse current is continued until the desired sintering is completed, and the duration varies depending on the dimensions of the composite material, the current density, the mixing ratio of the carbon fibers, and the like.
[0067] 前述のようにパルス状電流を通電することによって、金属粒子の塑性変形および粉 末間の融着が生じて焼結が進行する。本工程のようにパルス状電流を用いた場合、 金属繊維混合物全体を加熱するのとは異なり金属粒子が結合を起こすべき部位に 発熱が集中するので、電流のエネルギーをより効率的に利用し、より速やかに焼結を 行うことが可能となる。そして、金属繊維混合物全体の温度はそれほど上昇すること がなぐ金属—炭素繊維間の反応による炭化物が生成しないという点において、従来 の溶湯含浸法よりも有利である。したがって、コーティングなどを施されていない安価 な炭素繊維を用いて、優れた特性を有する金属基炭素繊維複合材料を得ることが可 能である。また、通電初期に発生するプラズマが、粉末の吸着ガスおよび酸化被膜 の除去などの作用を有する点においても、通常の抵抗加熱法よりも有利である。 [0068] このような一軸加圧プロセスを行う事で、少なくとも 80%のナノサイズの炭素繊維が 加圧軸と垂直面へ倒れ、加圧軸(例えば、図 1Aの Z軸)と垂直な面(例えば、図 1A の X—Y平面)に対して 30° 以内、好ましくは 10° 以内に沿った配向となる。図 5に Al- 15wt%VGCF (前述した図 2Aで示されるような、表面領域がミクロンサイズの 炭素繊維を実質的に含まないものの、表層部分に相当)のパルス通電焼結法による 複合材料の電子顕微鏡写真を示す。 VGCFけノサイズの炭素繊維)が加圧軸に垂 直な面 (すなわち、図 5の紙面内の左右方向)に沿った構造となっている。 [0067] By applying a pulsed current as described above, plastic deformation of metal particles and fusion between powders occur, and sintering proceeds. When pulsed current is used as in this process, heat is concentrated at the site where the metal particles should be bonded, unlike when the entire metal fiber mixture is heated. Sintering can be performed more quickly. The temperature of the entire metal fiber mixture is advantageous over the conventional molten metal impregnation method in that no carbide is generated due to the reaction between the metal and carbon fibers that does not increase so much. Therefore, it is possible to obtain a metal-based carbon fiber composite material having excellent characteristics by using inexpensive carbon fibers that are not coated. In addition, the plasma generated in the initial stage of energization is more advantageous than the normal resistance heating method in that it has actions such as removal of the powder adsorption gas and oxide film. [0068] By performing such a uniaxial pressing process, at least 80% of the nano-sized carbon fiber falls to a plane perpendicular to the pressing axis, and a plane perpendicular to the pressing axis (for example, the Z axis in FIG. 1A). (For example, the XY plane in FIG. 1A) is oriented within 30 °, preferably within 10 °. Fig. 5 shows the composite material produced by pulsed electric current sintering of Al-15wt% VGCF (corresponding to the surface layer portion, although the surface area does not contain micron-sized carbon fibers as shown in Fig. 2A). An electron micrograph is shown. VGCF size carbon fiber) is structured along a plane perpendicular to the pressure axis (that is, the horizontal direction in the paper of Fig. 5).
[0069] 本発明の製造方法の別の実施形態を図 6Aから図 6Dを参照して説明する。本実施 形態は、ダイ 402内の下部パンチ 404上に材料を充填するときに多段階で異なる組 成のものを充填する。この実施形態により、図 2Aに示したような、複合材料の表面部 分にミクロンサイズの炭素繊維を実質的に含まない部分を有する金属基炭素繊維複 合材料を製造することができる。  [0069] Another embodiment of the production method of the present invention will be described with reference to FIGS. 6A to 6D. In the present embodiment, when the material is filled on the lower punch 404 in the die 402, the different structures are filled in multiple stages. According to this embodiment, a metal-based carbon fiber composite material having a portion substantially free of micron-sized carbon fibers in the surface portion of the composite material as shown in FIG. 2A can be produced.
[0070] 本実施形態の第一の例は、図 6Aに示されるように、異なる未焼結の金属基炭素繊 維複合材料の原料を二段階で充填し、加圧焼結するものである。異なる原料として は、例えば金属粉末 ナノサイズ炭素繊維混合物および金属粉末 ナノサイズ炭素 繊維付着繊維を挙げることができる。充填は例えば、金属粉末—ナノサイズ炭素繊 維混合物を充填し、次いで金属粉末 ナノサイズ炭素繊維付着繊維を充填する手 順、またはこの逆の手順を挙げることができる。  [0070] A first example of the present embodiment is one in which raw materials of different unsintered metal-based carbon fiber composite materials are filled in two stages and pressure-sintered as shown in FIG. 6A. . Examples of the different raw materials include metal powder nanosize carbon fiber mixture and metal powder nanosize carbon fiber-attached fiber. Filling can include, for example, the procedure of filling a metal powder-nanosize carbon fiber mixture and then filling the metal powder nanosize carbon fiber attached fibers, or vice versa.
[0071] 別法 (第二および第三の例)として、予め焼結された金属基炭素繊維複合材料と、 未焼結の金属基炭素繊維複合材料の原料を組み合わせて充填することもできる。例 えば、図 6Bに示されるように、金属粉末 ナノサイズ炭素繊維混合物の焼結物 602 を充填し、次 ヽで金属粉末 ナノサイズ炭素繊維付着繊維 312を充填する手順を挙 げることができる。なお、この逆の手順も可能である(図 6C参照)。  [0071] As another method (second and third examples), a pre-sintered metal-based carbon fiber composite material and raw materials of an unsintered metal-based carbon fiber composite material can be combined and filled. For example, as shown in FIG. 6B, a procedure for filling a sintered product 602 of a metal powder nano-sized carbon fiber mixture and then filling a metal powder nano-sized carbon fiber attached fiber 312 in the next step can be mentioned. . The reverse procedure is also possible (see Figure 6C).
[0072] さらなる方法 (第四の例)として、異なる焼結された金属基炭素繊維複合材料を再 充填し、焼結接合することもできる。例えば、図 6Dに示されるように、予め焼結された 金属 ナノサイズ炭素繊維付着繊維の焼結物 604と、予め焼結された金属 ナノサ ィズ炭素繊維混合物の焼結物 602を所望の順序(図では、金属—ナノサイズ炭素繊 維付着繊維の焼結物、次いで予め焼結された金属 ナノサイズ炭素繊維混合物の 焼結物の順であるが、層構成は逆にすることもできる。 )に充填し、焼結接合する。 [0072] As a further method (fourth example), different sintered metal-based carbon fiber composites can be refilled and sintered. For example, as shown in FIG. 6D, a sintered body 604 of pre-sintered metal nano-sized carbon fiber-attached fibers and a sintered body 602 of pre-sintered metal nano-sized carbon fiber mixture 602 are in a desired order. (In the figure, a sintered product of metal-nanosized carbon fiber-attached fibers and then a pre-sintered metal nanosized carbon fiber mixture. Although the order is the sintered product, the layer structure can be reversed. ) And sintered and joined.
[0073] 上記の例は、二層の金属基炭素繊維複合材料を製造する例であるが、本実施形 態は、熱応力の緩和等を目的として、さらに多段化することも可能である。多段化す るには、上記のいずれかの方法を適用して、異なる材料を多段に充填し、焼結すれ ばよい。  [0073] The above example is an example of producing a two-layer metal-based carbon fiber composite material, but this embodiment can be further multi-staged for the purpose of reducing thermal stress and the like. In order to increase the number of stages, any of the above methods may be applied to fill different materials in multiple stages and sinter them.
[0074] 本実施形態により、複数層で組成 (配合比、構造等)が異なる材料を作製すること ができる。  [0074] According to the present embodiment, materials having different compositions (mixing ratio, structure, etc.) can be produced in a plurality of layers.
実施例 1  Example 1
[0075] アルミニウム一気相成長炭素繊維ナノファイバーピッチ系炭素繊維複合材料の実 施例を示す。  [0075] An example of an aluminum single vapor growth carbon fiber nanofiber pitch-based carbon fiber composite material is shown.
[0076] アルミニウム粉末 (昭和電工製:平均粒径 5 μ m)、気相成長炭素繊維ナノファイバ ( 以下 VGCF、昭和電工製:直径 150nm、アスペクト比 60以上)、ピッチ系炭素繊維( 直径 10 μ m、 2000本の繊維束)を用いた。  [0076] Aluminum powder (Showa Denko: average particle size 5 μm), vapor-grown carbon fiber nanofiber (hereinafter VGCF, Showa Denko: diameter 150 nm, aspect ratio 60 or more), pitch-based carbon fiber (diameter 10 μm) m, 2000 fiber bundles).
[0077] アルミニウム粉末 47. 5g、 VGCF2. 5gにイソプロパノール 80ccを加え、超音波混 合装置により 1時間混合してアルミニウム—ナノファイバ混合物を得た。 [0077] 80 cc of isopropanol was added to 47.5 g of aluminum powder and 2.5 g of VGCF, and mixed for 1 hour with an ultrasonic mixer to obtain an aluminum-nanofiber mixture.
[0078] ピッチ系炭素繊維の繊維束を上記のようにして得られた懸濁液に浸漬させ、繊維 束にアルミニウム一ナノファイバ混合物を付着させた。 [0078] A fiber bundle of pitch-based carbon fibers was immersed in the suspension obtained as described above, and an aluminum-nanofiber mixture was adhered to the fiber bundle.
[0079] 24時間の風乾により乾燥した。この結果アルミニウム粉末 33. 3重量0 /0、 VGCF1. [0079] It was dried by air drying for 24 hours. Consequently aluminum powder 33.3 wt 0/0, VGCF1.
7重量%、ピッチ系炭素繊維 65重量%となる金属粉末—ナノサイズ炭素繊維付着繊 維を得た。  A metal powder-nano-sized carbon fiber-attached fiber having 7% by weight and 65% by weight of pitch-based carbon fiber was obtained.
[0080] 金属粉末—ナノサイズ炭素繊維付着繊維を 20mmに切断し、 20mm正方断面を 有する黒鉛製焼結ダイ中へ充填した。このダイをパルス通電焼結機にて lOPaの真 空中、加圧力 50MPa、焼結温度 600°Cにて焼結し、複合材料を得た。得られた複 合材料の熱物性をアルミニウム ピッチ系炭素繊維複合材の熱物性と共に表 2に示 す。なお、表 2において、 X、 Y、 Ζは、得られた複合材料を Χ—Υ—Ζ軸のように配置 した場合の各方向を表す。  [0080] The metal powder—the nano-sized carbon fiber-attached fiber was cut into 20 mm, and filled into a sintered graphite die having a 20 mm square cross section. This die was sintered with a pulse current sintering machine in a lOPa vacuum at a pressure of 50 MPa and a sintering temperature of 600 ° C. to obtain a composite material. Table 2 shows the thermophysical properties of the resulting composite material, along with the thermophysical properties of the aluminum pitch-based carbon fiber composite. In Table 2, X, Y, and Ζ represent the respective directions when the obtained composite material is arranged like the Χ-Υ-Ζ axis.
[0081] [表 2] 表 2 複合材料の熱物性 [0081] [Table 2] Table 2 Thermophysical properties of composite materials
Figure imgf000021_0001
Figure imgf000021_0001
[0082] また、得られた複合材料の電子顕微鏡写真を図 7および図 8Bに示す。図 8Bに示し たように、ナノファイバの 80%が複合材料の表面(図 1Aでは、複合材料の第一の面 としての X—Y平面)に対して一定の範囲、すなわち 30° 以内、好ましくは 10° 以内 に配向していることがわかる(なお、図 8B中では、 10° 以内に配向しているものにつ いてのみ角度を示した)。また、図 7および図 8Bから明らかなように、ミクロンサイズの 炭素繊維は、複合材料の第一の面の一端カゝら対向する他端(図 1Aでは、複合材料 の Y— Z面に平衡な 110から 112)まで、その少なくとも 50%が連続して!/、る。 [0082] Further, an electron micrograph of the obtained composite material is shown in FIG. 7 and FIG. 8B. As shown in Figure 8B, 80% of the nanofibers are within a certain range relative to the surface of the composite material (in Figure 1A, the XY plane as the first surface of the composite material), ie within 30 °, preferably It can be seen that is oriented within 10 ° (in FIG. 8B, the angle is shown only for those oriented within 10 °). As is clear from FIGS. 7 and 8B, the micron-sized carbon fiber has one end of the first surface of the composite material opposite to the other end (in FIG. 1A, the Y-Z plane of the composite material is balanced). From 110 to 112), at least 50% of them are continuous! /
実施例 2  Example 2
[0083] アルミニウム一気相成長炭素繊維ナノファイバ複合材料の実施例を示す。  [0083] An example of an aluminum single vapor growth carbon fiber nanofiber composite material is shown.
[0084] アルミニウム粉末 (昭和電工製:平均粒径 5 μ m)、気相成長炭素繊維ナノファイバ( 以下 VGCF、昭和電工製:直径 150nm、アスペクト比 60以上)、ピッチ系炭素繊維( 直径 10 μ m、 2000本の繊維束)を用いた。  [0084] Aluminum powder (manufactured by Showa Denko: average particle size 5 μm), vapor-grown carbon fiber nanofiber (hereinafter VGCF, Showa Denko: diameter 150 nm, aspect ratio 60 or more), pitch-based carbon fiber (diameter 10 μm) m, 2000 fiber bundles).
[0085] アルミニウム粉末 42. 5g、 VGCF7. 5gにイソプロパノール 80ccを加え、超音波混 合装置により 1時間混合した。 [0085] 80 cc of isopropanol was added to 42.5 g of aluminum powder and 7.5 g of VGCF, and mixed for 1 hour using an ultrasonic mixer.
[0086] 24時間の風乾により乾燥した。この結果アルミニウム粉末 75重量%、 VGCF15重 量%となる混合粉末を得た。 [0086] It was dried by air drying for 24 hours. As a result, a mixed powder of 75 wt% aluminum powder and 15 wt% VGCF was obtained.
[0087] この混合粉末を 20mm正方断面を有する黒鉛製焼結ダイ中へ充填した。このダイ をパルス通電焼結機にて lOPaの真空中、加圧力 50MPa、焼結温度 600°Cにて焼 結し、複合材料を得た。得られた複合材料の熱物性を表 3に示す。また、得られた複 合材料の電子顕微鏡写真を図 5および図 8Aに示す。図 8Aに示したように、ナノファ ィバの 80%が複合材料の表面(図 1Aでは、複合材料の第一の面としての X— Y平 面)に対して一定の範囲、すなわち 30° 以内、好ましくは 10° 以内に配向している ことがわかる(なお、図中では、 10° 以内に配向しているものについてのみ角度を示 した)。 [0087] This mixed powder was filled into a graphite sintered die having a 20 mm square cross section. This die was sintered in a pulse current sintering machine in a vacuum of lOPa at a pressure of 50 MPa and a sintering temperature of 600 ° C. to obtain a composite material. Table 3 shows the thermophysical properties of the resulting composite material. Also, an electron micrograph of the obtained composite material is shown in FIGS. 5 and 8A. As shown in Fig. 80% of the fibers are oriented within a certain range, ie within 30 °, preferably within 10 °, relative to the surface of the composite material (in Figure 1A, the XY plane as the first surface of the composite material). (In the figure, the angle is shown only for those oriented within 10 °).
[0088] [表 3] [0088] [Table 3]
表 3 複合材料の熱物性  Table 3 Thermophysical properties of composite materials
アルミ二ゥムー VGC F複合材料  Aluminum double VGC F composite material
VG C F (v 0 L %) 1 5  VG C F (v 0 L%) 1 5
熱伝導率 (W/ (πιΚ) ) X 1 1 2  Thermal conductivity (W / (πιΚ)) X 1 1 2
Y 1 1 2  Y 1 1 2
z 6 7  z 6 7
熱膨張率 ι, p p m/ K) X 1 5. 8 Coefficient of thermal expansion ι, p p m / K) X 1 5. 8
T- 、 1 00。c Y 1 5. 8  T-, 1 00. c Y 1 5. 8
z ―  z ―
実施例 3  Example 3
[0089] 上記実施例 1および 2で得られた各複合材料を、 20mm正方断面を有する黒鉛製 焼結ダイ中へ充填した。このダイをパルス通電焼結機で lOPaの真空中、加圧力 50 MPa、焼結温度 600°Cにて焼結し、表面領域にミクロンサイズの炭素繊維を含まな い複合材料を得た。この複合材料は、上記実施例 1および 2で得られた特性をそれ ぞれの層に備える複合材料であった。  [0089] Each composite material obtained in Examples 1 and 2 was filled into a sintered graphite die having a 20 mm square cross section. This die was sintered with a pulse current sintering machine in a vacuum of lOPa at a pressure of 50 MPa and a sintering temperature of 600 ° C. to obtain a composite material containing no micron-sized carbon fibers in the surface area. This composite material was a composite material provided with the characteristics obtained in Examples 1 and 2 in each layer.

Claims

請求の範囲 The scope of the claims
[1] 金属と、ミクロンサイズの炭素繊維およびナノサイズの炭素繊維を含む炭素繊維か らなる金属基炭素繊維複合材料であって、前記複合材料は、第一の表面を有し、前 記ミクロンサイズの炭素繊維は、前記複合材料の前記第一の表面に対して平行な一 方向に向けて配向されて充填されており、前記第一の面の一端力 対向する他端ま で、その少なくとも 50%が連続しており、ナノサイズの炭素繊維はその 80%が前記第 一の表面に対して 30° 以内に配向されており、且つ、前記第一の表面と平行な面内 ではランダムに配向していることを特徴とする金属基炭素繊維複合材料。  [1] A metal-based carbon fiber composite material comprising a metal and a carbon fiber including a micron-size carbon fiber and a nano-size carbon fiber, the composite material having a first surface, The carbon fiber of the size is oriented and filled in one direction parallel to the first surface of the composite material, and at least one end force of the first surface is opposed to the other end. 50% is continuous, 80% of the nano-sized carbon fibers are oriented within 30 ° with respect to the first surface, and randomly in a plane parallel to the first surface. A metal-based carbon fiber composite material characterized by being oriented.
[2] 複数層を有する請求項 1に記載の金属基炭素繊維複合材料であって、各層の金 属、ミクロンサイズの炭素繊維またはナノサイズの炭素繊維の組成が互いに異なるこ とを特徴とする請求項 1に記載の金属基炭素繊維複合材料。  [2] The metal-based carbon fiber composite material according to claim 1, having a plurality of layers, wherein the composition of metal, micron-size carbon fiber, or nano-size carbon fiber in each layer is different from each other. The metal-based carbon fiber composite material according to claim 1.
[3] 前記金属基炭素繊維複合材料の第一の表面から一定距離の内部領域が、他の領 域よりも少ない量のミクロンサイズの炭素繊維を含む力もしくは全くミクロンサイズの炭 素繊維を含まず、且つ、ナノサイズの炭素繊維が前記複合材料の第一の表面に平 行な配向を有することを特徴とする請求項 1に記載の金属基炭素繊維複合材料。  [3] The internal region at a certain distance from the first surface of the metal-based carbon fiber composite material includes a force containing micron-sized carbon fibers in a smaller amount than the other regions, or completely micron-sized carbon fibers. 2. The metal-based carbon fiber composite material according to claim 1, wherein the nano-sized carbon fibers have a parallel orientation on the first surface of the composite material.
[4] 前記他の領域が複数層からなり、各層の金属、ミクロンサイズの炭素繊維またはナ ノサイズの炭素繊維の組成が互 、に異なることを特徴とする請求項 3に記載の金属 基炭素繊維複合材料。  [4] The metal-based carbon fiber according to [3], wherein the other region includes a plurality of layers, and the compositions of the metal, micron-size carbon fiber, or nano-size carbon fiber of each layer are different from each other. Composite material.
[5] 前記第一の表面の一定距離が表面から 10 m〜5mmであることを特徴とする請 求項 3または 4に記載の金属基炭素繊維複合材料。  [5] The metal-based carbon fiber composite material according to claim 3 or 4, wherein the fixed distance of the first surface is 10 m to 5 mm from the surface.
[6] 前記ミクロンサイズの炭素繊維は前記複合材料中に 20〜80体積%含まれ、前記 ナノサイズの炭素繊維は前記複合材料中に 1〜 50体積%含まれることを特徴とする 請求項 1から 4に記載の金属基炭素繊維複合材料。 6. The micron-sized carbon fiber is contained in the composite material by 20 to 80% by volume, and the nano-sized carbon fiber is contained in the composite material by 1 to 50% by volume. 5. Metal-based carbon fiber composite material according to 4.
[7] 前記ミクロンサイズの炭素繊維は、ピッチ系炭素繊維、 PAN系炭素繊維または気 相成長炭素繊維から選択され、前記ナノサイズの炭素繊維は、気相成長炭素繊維、 多層カーボンナノチューブまたは単層カーボンナノチューブから選択されることを特 徴とする請求項 1から 4に記載の金属基炭素繊維複合材料。 [7] The micron-sized carbon fiber is selected from pitch-based carbon fiber, PAN-based carbon fiber, or vapor-grown carbon fiber, and the nano-sized carbon fiber is vapor-grown carbon fiber, multi-walled carbon nanotube, or single-walled carbon fiber 5. The metal-based carbon fiber composite material according to claim 1, wherein the metal-based carbon fiber composite material is selected from carbon nanotubes.
[8] 前記金属は、銅、アルミニウム、マグネシウムおよびこれらを基とする合金力もなる 群から選択されることを特徴とする請求項 1から 4に記載の金属基炭素繊維複合材料 [8] The metal also has copper, aluminum, magnesium and alloy strength based on these The metal-based carbon fiber composite material according to claim 1, which is selected from the group
[9] (a)金属粉末とナノサイズの炭素繊維の混合して、金属粉末 ナノサイズ炭素繊維 混合物を調製する工程と、 [9] (a) mixing a metal powder and nano-sized carbon fiber to prepare a metal powder nano-sized carbon fiber mixture;
(b)前記金属粉末 ナノサイズ炭素繊維混合物をミクロンサイズの炭素繊維に付着 させて、金属粉末 ナノサイズ炭素繊維付着繊維を調製する工程と、  (b) attaching the metal powder nanosize carbon fiber mixture to micron size carbon fibers to prepare metal powder nanosize carbon fiber attached fibers;
(c)前記金属粉末 ナノサイズ炭素繊維付着繊維を配列させながら、治具中に充 填する工程と、  (c) filling the metal powder into the jig while arranging the nano-sized carbon fiber-attached fibers;
(d)前記治具を加熱して充填物を加熱焼結する工程と  (d) heating the jig and heating and sintering the filler;
を含むことを特徴とする金属基炭素繊維複合材料の製造方法。  A method for producing a metal-based carbon fiber composite material comprising:
[10] (A)金属粉末とナノサイズの炭素繊維の混合して、金属粉末—ナノサイズ炭素繊 維混合物を調製する工程と、 [10] (A) a step of preparing a metal powder-nanosize carbon fiber mixture by mixing metal powder and nanosize carbon fiber;
(B)前記金属粉末 ナノサイズ炭素繊維混合物をミクロンサイズの炭素繊維に付 着させて、金属粉末 ナノサイズ炭素繊維付着繊維を調製する工程と、  (B) attaching the metal powder nanosize carbon fiber mixture to micron size carbon fiber to prepare metal powder nanosize carbon fiber-attached fiber;
(C)金属粉末 ナノサイズ炭素繊維混合物または前記金属粉末 ナノサイズ炭素 繊維付着繊維を配列させながら治具中に充填し、前記治具を加熱して充填物をカロ 熱焼結し、金属 ナノサイズ炭素繊維混合物焼結物または金属 ナノサイズ炭素繊 維付着繊維焼結物を得る工程と、  (C) Metal powder Nano-sized carbon fiber mixture or the metal powder Nano-sized carbon Filled in a jig while arranging fiber-attached fibers, heated the jig to calo-thermally sinter, the metal nano-sized Obtaining a sintered carbon fiber mixture or a sintered metal nano-sized carbon fiber-attached fiber; and
(D)前記金属粉末—ナノサイズ炭素繊維混合物、前記金属粉末—ナノサイズ炭素 繊維付着繊維、前記金属 ナノサイズ炭素繊維混合物焼結物、または前記金属 ナノサイズ炭素繊維付着繊維焼結物カゝら選択される 2種以上の材料を段階的に治具 中に充填し、複数層力 なる充填物得る工程と、  (D) The metal powder-nanosize carbon fiber mixture, the metal powder-nanosize carbon fiber-attached fiber, the metal nanosize carbon fiber mixture sintered product, or the metal nanosize carbon fiber-attached fiber sintered product A step of filling a jig with two or more selected materials step by step to obtain a filling material having multiple layer strength;
(E)前記治具を加熱して充填物を加熱焼結する工程と  (E) heating the jig and heating and sintering the filler;
を含むことを特徴とする金属基炭素繊維複合材料の製造方法。  A method for producing a metal-based carbon fiber composite material comprising:
[11] 前記工程 (D)において、前記金属粉末とナノサイズの炭素繊維の混合物または前 記金属 ナノサイズ炭素繊維混合物焼結物と、前記金属粉末 ナノサイズ炭素繊 維付着繊維または前記金属 ナノサイズ炭素繊維付着繊維焼結物の 2種の材料を 段階的に治具中に充填し、金属基炭素繊維複合材料の表面から一定領域に、他の 領域よりも少ない量のミクロンサイズの炭素繊維を含む力もしくは全くミクロンサイズの 炭素繊維を含まず、且つ、ナノサイズの炭素繊維が前記複合材料の前記表面に平 行な配向を有し、前記一定領域が前記表面から 10 m〜5mmである金属基炭素繊 維複合材料を製造することを特徴とするする請求項 10に記載の金属基炭素繊維複 合材料の製造方法。 [11] In the step (D), the mixture of the metal powder and nano-sized carbon fiber or the sintered metal nano-size carbon fiber mixture, and the metal powder nano-sized carbon fiber-attached fiber or the metal nano-size Two materials of carbon fiber-attached fiber sintered product are filled into the jig step by step, and from the surface of the metal-based carbon fiber composite material to a certain area, the other materials A force containing micron-sized carbon fibers in an amount less than the region or no micron-sized carbon fibers, and the nano-sized carbon fibers have a parallel orientation on the surface of the composite material and the constant 11. The method for producing a metal-based carbon fiber composite material according to claim 10, wherein a metal-based carbon fiber composite material having an area of 10 m to 5 mm from the surface is produced.
[12] 前記ミクロンサイズの炭素繊維は、ピッチ系炭素繊維、 PAN系炭素繊維または気 相成長炭素繊維から選択され、前記ナノサイズの炭素繊維は、気相成長炭素繊維、 多層カーボンナノチューブまたは単層カーボンナノチューブから選択されることを特 徴とする請求項 9から 11に記載の金属基炭素繊維複合材料の製造方法。  [12] The micron-sized carbon fiber is selected from pitch-based carbon fiber, PAN-based carbon fiber, or vapor-grown carbon fiber, and the nano-sized carbon fiber is vapor-grown carbon fiber, multi-walled carbon nanotube, or single-walled carbon fiber 12. The method for producing a metal-based carbon fiber composite material according to claim 9, wherein the material is selected from carbon nanotubes.
[13] 前記金属または金属粉末は、銅、アルミニウム、マグネシウムおよびこれらを基とす る合金からなる群から選択されることを特徴とする請求項 9から 11に記載の金属基炭 素繊維複合材料の製造方法。  [13] The metal-based carbon fiber composite material according to [9] to [11], wherein the metal or metal powder is selected from the group consisting of copper, aluminum, magnesium, and alloys based on these. Manufacturing method.
PCT/JP2006/323399 2005-11-30 2006-11-24 Metal-based composite material containing both micro-sized carbon fiber and nano-sized carbon fiber WO2007063764A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06833203A EP1956110B1 (en) 2005-11-30 2006-11-24 Metal-based composite material containing both micro-sized carbon fiber and nano-sized carbon fiber
DE602006018188T DE602006018188D1 (en) 2005-11-30 2006-11-24 METAL-BASED COMPOSITE, CONTAINING BOTH MICROSCALE CARBON FIBER AND NANOSCAL CARBON FIBER
US12/085,551 US8206815B2 (en) 2005-11-30 2006-11-24 Metal-based composite material containing both micron-size carbon fiber and nano-size carbon fiber
JP2007547911A JP5364905B2 (en) 2005-11-30 2006-11-24 Metal matrix composite containing co-containing micron-sized and nano-sized carbon fibers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-346367 2005-11-30
JP2005346367 2005-11-30

Publications (1)

Publication Number Publication Date
WO2007063764A1 true WO2007063764A1 (en) 2007-06-07

Family

ID=38092099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323399 WO2007063764A1 (en) 2005-11-30 2006-11-24 Metal-based composite material containing both micro-sized carbon fiber and nano-sized carbon fiber

Country Status (7)

Country Link
US (1) US8206815B2 (en)
EP (1) EP1956110B1 (en)
JP (1) JP5364905B2 (en)
KR (1) KR101007621B1 (en)
CN (1) CN101321887A (en)
DE (1) DE602006018188D1 (en)
WO (1) WO2007063764A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038048A1 (en) * 2007-09-18 2009-03-26 Shimane Prefectural Government Metal covered carbon material and carbon-metal composite material using the metal covered carbon material
WO2009063366A2 (en) * 2007-11-13 2009-05-22 Eads Deutschland Gmbh Method for producing a metal composite
JP2009164552A (en) * 2007-12-11 2009-07-23 Fujitsu Ltd Sheet-like structure, manufacturing method thereof, and electronic unit
WO2009107124A1 (en) * 2008-02-25 2009-09-03 Netafim Ltd Plant support structure
WO2009140147A1 (en) * 2008-05-12 2009-11-19 Gm Global Technology Operations, Inc. Corrosion isolation of magnesium components
JP2010196098A (en) * 2009-02-24 2010-09-09 Shinshu Univ Metal matrix composite and method for producing the same
US20110024694A1 (en) * 2009-02-17 2011-02-03 Lockheed Martin Corporation Composites comprising carbon nanotubes on fiber
JP2011096832A (en) * 2009-10-29 2011-05-12 Fujitsu Ltd Sheet type member and electronic apparatus
JP2013507761A (en) * 2009-10-07 2013-03-04 バレオ・エチユード・エレクトロニク Electronic power module and method for manufacturing said module
CN102978543A (en) * 2012-12-07 2013-03-20 太原理工大学 Carbon fiber/copper composite material and preparation method thereof
CN104451473A (en) * 2014-12-05 2015-03-25 沈阳工业大学 Method for preparing metal-based carbon fiber composite by using vibrating process
US8999453B2 (en) 2010-02-02 2015-04-07 Applied Nanostructured Solutions, Llc Carbon nanotube-infused fiber materials containing parallel-aligned carbon nanotubes, methods for production thereof, and composite materials derived therefrom
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
JP2016181644A (en) * 2015-03-25 2016-10-13 株式会社平安製作所 Cooling member using carbon material, cooling structure, heat exchange component, mounting structure, substrate, and electronic device
JP2017088913A (en) * 2015-11-04 2017-05-25 昭和電工株式会社 Method for producing complex of aluminum and carbon particle
US9780316B2 (en) 2015-03-16 2017-10-03 Universal Display Corporation Organic electroluminescent materials and devices
US10418568B2 (en) 2015-06-01 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
CN111321359A (en) * 2020-04-16 2020-06-23 泰州俊宇不锈钢材料有限公司 Special alloy micro-wire mesh for high-strength impact-resistant equipment
US11711969B2 (en) 2016-10-03 2023-07-25 Universal Display Corporation Organic electroluminescent materials and devices
US11711968B2 (en) 2016-10-07 2023-07-25 Universal Display Corporation Organic electroluminescent materials and devices

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8951631B2 (en) * 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US8158217B2 (en) * 2007-01-03 2012-04-17 Applied Nanostructured Solutions, Llc CNT-infused fiber and method therefor
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
US20090081383A1 (en) * 2007-09-20 2009-03-26 Lockheed Martin Corporation Carbon Nanotube Infused Composites via Plasma Processing
US20090081441A1 (en) * 2007-09-20 2009-03-26 Lockheed Martin Corporation Fiber Tow Comprising Carbon-Nanotube-Infused Fibers
US8580342B2 (en) 2009-02-27 2013-11-12 Applied Nanostructured Solutions, Llc Low temperature CNT growth using gas-preheat method
TWI380486B (en) 2009-03-02 2012-12-21 Everlight Electronics Co Ltd Heat dissipation module for a light emitting device and light emitting diode device having the same
US20100227134A1 (en) 2009-03-03 2010-09-09 Lockheed Martin Corporation Method for the prevention of nanoparticle agglomeration at high temperatures
CN101832528B (en) * 2009-03-09 2014-07-16 亿光电子工业股份有限公司 Heat radiating module for light-emitting device and LED device
US20100260998A1 (en) * 2009-04-10 2010-10-14 Lockheed Martin Corporation Fiber sizing comprising nanoparticles
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
CA2758568A1 (en) 2009-04-24 2010-10-28 Applied Nanostructured Solutions, Llc Cnt-infused emi shielding composite and coating
CA2760144A1 (en) 2009-04-27 2010-11-11 Applied Nanostructured Solutions, Llc Cnt-based resistive heating for deicing composite structures
US9643168B2 (en) * 2009-05-21 2017-05-09 Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd. Metal entrapped compounds
EP2449562B1 (en) * 2009-06-29 2014-06-18 Siemens Aktiengesellschaft Strand-shaped element
KR20120036890A (en) 2009-08-03 2012-04-18 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. Incorporation of nanoparticles in composite fibers
US8168291B2 (en) 2009-11-23 2012-05-01 Applied Nanostructured Solutions, Llc Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof
US20110124253A1 (en) * 2009-11-23 2011-05-26 Applied Nanostructured Solutions, Llc Cnt-infused fibers in carbon-carbon composites
CN102596713A (en) 2009-11-23 2012-07-18 应用纳米结构方案公司 Cnt-tailored composite air-based structures
WO2011142785A2 (en) 2009-12-14 2011-11-17 Applied Nanostructured Solutions, Llc Flame-resistant composite materials and articles containing carbon nanotube-infused fiber materials
US9163354B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
US9167736B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
KR101419627B1 (en) * 2010-02-05 2014-07-15 미쓰비시 마테리알 가부시키가이샤 Substrate for power module, and power module
WO2011109485A1 (en) 2010-03-02 2011-09-09 Applied Nanostructured Solutions,Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
AU2011223738B2 (en) 2010-03-02 2015-01-22 Applied Nanostructured Solutions, Llc Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof
US8780526B2 (en) 2010-06-15 2014-07-15 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
US8784937B2 (en) 2010-09-14 2014-07-22 Applied Nanostructured Solutions, Llc Glass substrates having carbon nanotubes grown thereon and methods for production thereof
BR112013005529A2 (en) 2010-09-22 2016-05-03 Applied Nanostructured Sols carbon fiber substrates having carbon nanotubes developed therein, and processes for producing them
EP2447990B1 (en) * 2010-11-02 2020-12-23 ABB Power Grids Switzerland AG Base plate
CN103106988B (en) * 2011-11-11 2015-10-14 聚鼎科技股份有限公司 Thermistor element
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
CN102605208B (en) * 2012-04-13 2014-01-15 上海交通大学 High thermal conductivity metal-based composite material with hierarchical structure, and preparation method thereof
US8482188B1 (en) 2012-06-15 2013-07-09 Federal-Mogul Ignition Company Spark plug electrode with nanocarbon enhanced copper core
US10106672B2 (en) * 2012-07-07 2018-10-23 Dexerials Corporation Heat conductive sheet
EP2892859A2 (en) 2012-09-04 2015-07-15 OCV Intellectual Capital, LLC Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
KR102040150B1 (en) * 2013-09-02 2019-11-04 삼성전자주식회사 Field emission element and method of manufacturing emitter of field emission element
FR3014596B1 (en) * 2013-12-11 2017-04-21 Commissariat Energie Atomique THERMALLY CONDUCTIVE FILM FOR PREFERENTIALLY DISCHARGING HEAT IN ONE OR MORE DIRECTIONS OF ITS PLAN
US9482477B2 (en) * 2014-07-28 2016-11-01 Northrop Grumman Systems Corporation Nano-thermal agents for enhanced interfacial thermal conductance
CN105903959A (en) * 2016-06-13 2016-08-31 东南大学 Preparation method of titanium carbide coated carbon fibers
CN106868432B (en) * 2016-12-05 2018-07-10 上海阿莱德实业股份有限公司 Gallium alloy heat sink material and its production technology equipped with fiber reinforcement
JP7144149B2 (en) * 2018-02-06 2022-09-29 日東電工株式会社 carbon nanotube assembly
CN110577403A (en) * 2018-06-07 2019-12-17 有研稀土新材料股份有限公司 high-purity aluminum nitride powder and preparation method thereof
CN108994300B (en) * 2018-07-03 2021-03-26 中国科学院金属研究所 Carbon/metal composite material with micro-oriented structure for electric contact and preparation method thereof
CN108994301B (en) * 2018-07-03 2021-03-26 中国科学院金属研究所 Metal-based bionic composite material reinforced by nano carbon material and preparation method thereof
CN109061920A (en) * 2018-07-04 2018-12-21 苏州环明电子科技有限公司 A kind of display radiator
CN111195723B (en) * 2018-11-20 2022-05-27 有研工程技术研究院有限公司 Design and preparation method of high-thermal-conductivity system with fractal structure of thermal-conductivity phase
CN114172296B (en) * 2022-02-08 2022-05-13 爱柯迪股份有限公司 Sapphire reinforced aluminum alloy motor shell for electric automobile and preparation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195417A (en) * 2004-01-06 2005-07-21 Nissin Ion Equipment Co Ltd Ion beam measurement method and ion implantation apparatus
JP2005200676A (en) * 2004-01-13 2005-07-28 Shimane Pref Gov Composite material and its production method
WO2006027879A1 (en) * 2004-09-06 2006-03-16 Mitsubishi Corporation CARBON FIBER Ti-Al COMPOSITE MATERIAL AND PROCESS FOR PRODUCING THE SAME

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013371A (en) * 1997-11-20 2000-01-11 Motorcarbon Llc Carbon artifacts and compositions and processes for their manufacture
JP2004022828A (en) 2002-06-17 2004-01-22 Mitsubishi Electric Corp Composite material heat dissipating substrate
AT412265B (en) 2002-11-12 2004-12-27 Electrovac HEAT EXTRACTION COMPONENT
JP4224418B2 (en) * 2003-12-11 2009-02-12 日信工業株式会社 Manufacturing method of fiber composite metal material
JP4106395B2 (en) * 2003-12-18 2008-06-25 島根県 Metal-based carbon fiber composite material and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195417A (en) * 2004-01-06 2005-07-21 Nissin Ion Equipment Co Ltd Ion beam measurement method and ion implantation apparatus
JP2005200676A (en) * 2004-01-13 2005-07-28 Shimane Pref Gov Composite material and its production method
WO2006027879A1 (en) * 2004-09-06 2006-03-16 Mitsubishi Corporation CARBON FIBER Ti-Al COMPOSITE MATERIAL AND PROCESS FOR PRODUCING THE SAME

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1956110A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038048A1 (en) * 2007-09-18 2009-03-26 Shimane Prefectural Government Metal covered carbon material and carbon-metal composite material using the metal covered carbon material
JP4431681B2 (en) * 2007-09-18 2010-03-17 島根県 Metal-coated carbon material and carbon-metal composite material using the same
JPWO2009038048A1 (en) * 2007-09-18 2011-01-06 島根県 Metal-coated carbon material and carbon-metal composite material using the same
US20120114874A1 (en) * 2007-09-18 2012-05-10 Shimane Prefectural Government Methods for producing metal-coated carbon material and carbon-metal composite material using the same
WO2009063366A2 (en) * 2007-11-13 2009-05-22 Eads Deutschland Gmbh Method for producing a metal composite
WO2009063366A3 (en) * 2007-11-13 2010-01-21 Eads Deutschland Gmbh Method for producing a metal composite
JP2009164552A (en) * 2007-12-11 2009-07-23 Fujitsu Ltd Sheet-like structure, manufacturing method thereof, and electronic unit
WO2009107124A1 (en) * 2008-02-25 2009-09-03 Netafim Ltd Plant support structure
WO2009140147A1 (en) * 2008-05-12 2009-11-19 Gm Global Technology Operations, Inc. Corrosion isolation of magnesium components
US20110024694A1 (en) * 2009-02-17 2011-02-03 Lockheed Martin Corporation Composites comprising carbon nanotubes on fiber
US8585934B2 (en) * 2009-02-17 2013-11-19 Applied Nanostructured Solutions, Llc Composites comprising carbon nanotubes on fiber
JP2010196098A (en) * 2009-02-24 2010-09-09 Shinshu Univ Metal matrix composite and method for producing the same
JP2013507761A (en) * 2009-10-07 2013-03-04 バレオ・エチユード・エレクトロニク Electronic power module and method for manufacturing said module
US8958209B2 (en) 2009-10-07 2015-02-17 Valeo Equipements Electriques Moteur Electronic power module, and method for manufacturing said module
JP2011096832A (en) * 2009-10-29 2011-05-12 Fujitsu Ltd Sheet type member and electronic apparatus
US8999453B2 (en) 2010-02-02 2015-04-07 Applied Nanostructured Solutions, Llc Carbon nanotube-infused fiber materials containing parallel-aligned carbon nanotubes, methods for production thereof, and composite materials derived therefrom
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
CN102978543A (en) * 2012-12-07 2013-03-20 太原理工大学 Carbon fiber/copper composite material and preparation method thereof
CN104451473A (en) * 2014-12-05 2015-03-25 沈阳工业大学 Method for preparing metal-based carbon fiber composite by using vibrating process
US9780316B2 (en) 2015-03-16 2017-10-03 Universal Display Corporation Organic electroluminescent materials and devices
JP2016181644A (en) * 2015-03-25 2016-10-13 株式会社平安製作所 Cooling member using carbon material, cooling structure, heat exchange component, mounting structure, substrate, and electronic device
US10418568B2 (en) 2015-06-01 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
JP2017088913A (en) * 2015-11-04 2017-05-25 昭和電工株式会社 Method for producing complex of aluminum and carbon particle
US11711969B2 (en) 2016-10-03 2023-07-25 Universal Display Corporation Organic electroluminescent materials and devices
US11711968B2 (en) 2016-10-07 2023-07-25 Universal Display Corporation Organic electroluminescent materials and devices
CN111321359A (en) * 2020-04-16 2020-06-23 泰州俊宇不锈钢材料有限公司 Special alloy micro-wire mesh for high-strength impact-resistant equipment

Also Published As

Publication number Publication date
US20090136707A1 (en) 2009-05-28
EP1956110B1 (en) 2010-11-10
JP5364905B2 (en) 2013-12-11
EP1956110A4 (en) 2009-09-02
DE602006018188D1 (en) 2010-12-23
EP1956110A1 (en) 2008-08-13
US8206815B2 (en) 2012-06-26
KR20080066833A (en) 2008-07-16
KR101007621B1 (en) 2011-01-12
JPWO2007063764A1 (en) 2009-05-07
CN101321887A (en) 2008-12-10

Similar Documents

Publication Publication Date Title
JP5364905B2 (en) Metal matrix composite containing co-containing micron-sized and nano-sized carbon fibers
KR100816412B1 (en) Metal-based carbon fiber composite material and method for producing the same
Zhang et al. Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms
Guo et al. A review of carbon-based thermal interface materials: Mechanism, thermal measurements and thermal properties
Razeeb et al. Present and future thermal interface materials for electronic devices
JP4441768B2 (en) Metal-graphite composite material having high thermal conductivity and method for producing the same
Li et al. Boosting the heat dissipation performance of graphene/polyimide flexible carbon film via enhanced through‐plane conductivity of 3D hybridized structure
KR101442070B1 (en) Radiant heat sheet comprising complex of graphene, graphite nanoplate, carbon nanotube and nanometal, and preparing method thereof
JP4711165B2 (en) High thermal conductivity / low thermal expansion composite and method for producing the same
WO2005040065A1 (en) Method for producing carbon nanotube-dispersed composite material
JP2014531382A (en) Dynamic thermal interface material
WO2005040066A1 (en) Carbon nanotube-dispersed composite material, method for producing same and article same is applied to
Guillemet et al. An innovative process to fabricate copper/diamond composite films for thermal management applications
Pietrzak et al. Effects of carbon allotropic forms on microstructure and thermal properties of Cu-C composites produced by SPS
Billah et al. Thermal conductivity of Ni-coated MWCNT reinforced 70Sn-30Bi alloy
Hirota et al. Fabrication of carbon nanofiber (CNF)-dispersed Al 2 O 3 composites by pulsed electric-current pressure sintering and their mechanical and electrical properties
Chen et al. Solid porous Ag–Ag interface bonding and its application in the die-attached modules
JP6383670B2 (en) Method for producing composite material of aluminum and carbon particles and method for producing insulating substrate
Silvain et al. The role of controlled interfaces in the thermal management of copper–carbon composites
Deng et al. Bonding below 150 C using nano-ag film for power electronics packaging
JP2020191347A (en) Cooling device
Chung A critical review of carbon-based thermal interface materials
Hansson Solder Matrix Fiber Composite Thermal Interface Materials
Hansson Exploration of Metal Composites and Carbon Nanotubes for Thermal Interfaces
Chen Characterization of Nanomaterials for Interconnect and Thermal Management in Electronic Packaging

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680044996.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12085551

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087012981

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007547911

Country of ref document: JP

Ref document number: 2006833203

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE