WO2007060935A1 - Probe pin and method for manufacturing probe pin - Google Patents

Probe pin and method for manufacturing probe pin Download PDF

Info

Publication number
WO2007060935A1
WO2007060935A1 PCT/JP2006/323182 JP2006323182W WO2007060935A1 WO 2007060935 A1 WO2007060935 A1 WO 2007060935A1 JP 2006323182 W JP2006323182 W JP 2006323182W WO 2007060935 A1 WO2007060935 A1 WO 2007060935A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe pin
groove
pins
mold
forming
Prior art date
Application number
PCT/JP2006/323182
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyoshi Takekoshi
Tsuyoshi Tawara
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2007060935A1 publication Critical patent/WO2007060935A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07342Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being at an angle other than perpendicular to test object, e.g. probe card
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips

Definitions

  • the present invention relates to a probe pin for contacting an object to be inspected and inspecting electrical characteristics of the object to be inspected, and a method for manufacturing the same.
  • the probe card usually has a circuit board and a contactor. A large number of probe pins are supported on the lower surface of the contactor facing the wafer, and the electrical characteristics of the wafer are inspected by bringing these probe pins into contact with the respective electrodes of the electronic circuit.
  • a conventional probe pin is generally composed of a linear beam portion 100 and a contact portion 101 protruding in a direction perpendicular to the tip end portion of the beam portion 100, and has a substantially L-shaped shape. ing.
  • Such a probe pin is generally manufactured by being integrally formed by a measuring technique such as electric plating (see Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-52779
  • the probe pin has a relatively high aspect ratio (ratio of the width and height of the contact portion 101) because it is necessary to reduce the width of the contact portion 101 and ensure the height of the contact portion 101. .
  • a cavity may be formed near the corner where the contact portion 101 and the beam portion 100 contact each other, and the production efficiency and dimensional accuracy of the probe pin may be reduced. If the dimensional accuracy of the probe pin is reduced, the contact between the probe pin and the wafer becomes unstable, and inspection cannot be performed with high reliability! /.
  • the present invention has been made in view of the strong point, and provides a probe pin sufficiently high in the direction of an object to be inspected while maintaining high dimensional accuracy and high production efficiency, and a method for manufacturing the probe pin. Its purpose is to provide.
  • the present invention provides a probe pin for contacting an object to be inspected to inspect the electrical characteristics of the object to be inspected, having a groove on a side surface, The tip end side with the contact portion that comes into contact with the groove is partially refracted by the groove.
  • the groove is formed on the side surface of the probe pin, and the tip portion of the probe pin is also refracted by the partial force of the groove, so that the aspect ratio is high and the force is increased as in the prior art. Even if this is not done, a sufficient height is secured to the probe pin. In addition, productivity is increased because high-aspect ratio processing is not required. Since the probe pin is formed by bending the partial force of the groove, the length and height of the tip side with the contact portion can be made constant, and the height and dimensional accuracy of the probe pin can be secured.
  • a tip on the tip side may be formed in a pointed shape to form the contact portion. Further, the tip on the tip side is formed into a protrusion having a constant width and becomes the contact portion.
  • the refraction angle on the tip end side may be set to 45 ° to 60 °.
  • a conical apex serving as the contact portion is formed on the side surface of the refracted front end portion side, and the inner angle of the apex portion is defined by a vertical line when the rear end side of the groove is kept horizontal.
  • the top may be formed so that is equally divided.
  • Another aspect of the present invention is a method of manufacturing a probe pin for inspecting the electrical characteristics of an object to be inspected by contacting the object to be inspected, in parallel from a linear end surface of a substrate.
  • a step of forming a plurality of linear pins projecting, and a tip side of the plurality of pins A step of forming a groove on the surface, a step of bending a front end portion of the plurality of pins at a partial force of the groove, and a step of cutting the plurality of pins from the end surface of the base material.
  • a photolithography technique is used to form the base material and the plurality of pin molds on a mother die, and the mother die and the base material are formed on the mother die by a measuring technique.
  • a plurality of pins may be integrally formed.
  • the method of manufacturing the probe pin includes a step of forming a conical hole in a portion corresponding to a tip portion of each pin of the master die, and the base is formed in the master die by the Met technique.
  • a cone-shaped top is formed on the side surface on the tip end side of each pin, and the rear end side is maintained horizontally with respect to the grooves of the plurality of pins,
  • the tops may be formed so that the inner angles of the tops are equally divided by a vertical line when the tip end sides of the plurality of pins are bent.
  • Another aspect of the present invention is a method of manufacturing a probe pin for contacting an object to be inspected to inspect the electrical characteristics of the object to be inspected, and using a photolithography technique,
  • the groove is formed on the side surface of the probe pin, and the tip portion of the probe pin is also bent by the partial force of the groove.
  • a sufficiently high probe pin can be manufactured.
  • the probe pin has high positional accuracy and dimensional accuracy! Since the ridge groove can be formed, the probe pin refracted from the groove can be formed with high accuracy. Also, since multiple probe pins are formed with a common mold force, a large number of probe pins can be formed at the same groove position at the same time, increasing the manufacturing efficiency of probe pins. be able to.
  • a substrate mold in which the plurality of pins are connected in parallel is also formed, and in the step of molding the plurality of pins, the previous technique is used.
  • the base material is removed from the mother die together with the plurality of pins, and tip portions of the plurality of pins
  • the plurality of pins may be cut by the base material force after the side is bent by the partial force of the groove.
  • the base material may have a linear end surface, and the plurality of pins may be formed so as to protrude in parallel from the end surface of the base material.
  • a thin film may be coated on the surface of the mother mold.
  • the step of forming the probe pin groove mold includes forming a resist film on the mother mold, forming a linear groove on the resist film on the mother mold, and a groove of the resist film. And a step of embedding a mold material with a mesh and a step of removing the resist film from the mother mold to form a mold of a groove of the probe pin that is the mold material cover.
  • FIG. 1 is a side view showing the outline of the configuration of a probe device.
  • FIG. 2 is an explanatory view of a longitudinal section showing a configuration of a probe pin mounting portion.
  • FIG. 3 is a plan view of the probe pin.
  • FIG. 4 is a plan view of a comb-like body.
  • FIG. 5 (a) is an explanatory view of a longitudinal section showing a state in which a resist film is formed on a matrix.
  • (B) is explanatory drawing of the longitudinal cross-section which shows the state which formed the type
  • (C) is an explanatory view of a longitudinal section showing a state in which a comb-like body is formed on a matrix.
  • FIG. 6 is an enlarged view of a plurality of pins of a comb-like body. [7] FIG. 7 is a perspective view showing a state where the pin is bent.
  • FIG. 8 is a plan view of a probe pin having a protrusion formed at the tip.
  • FIG. 9 is a perspective view of a probe pin having a top portion.
  • FIG. 10 is an explanatory view showing a state where a probe pin having a top portion is attached to a contactor.
  • FIG. 11 (a) is an explanatory view of a longitudinal section showing a state in which a hole is drilled with a cone in the matrix.
  • (B) is explanatory drawing of the longitudinal cross-section which shows the state which formed the type
  • (c) is an explanatory view of a longitudinal section showing a state in which a comb-like body having a top is formed on a matrix.
  • D is explanatory drawing of the longitudinal cross-section which shows the state which removed the comb-shaped object from the mother mold.
  • FIG. 12 is a plan view of a probe pin having a flat surface at the top.
  • FIG. 13 (a) is an explanatory view of a longitudinal section showing a state in which a resist film is formed on a matrix.
  • (b) is an explanatory view of a longitudinal section showing a state in which a groove is formed in a mother resist film.
  • (C) is an explanatory view of a longitudinal section showing a state where nickel is embedded in a groove of a resist film.
  • (D) is an explanatory view of a longitudinal section showing a state in which a groove mold is formed on the mother mold.
  • FIG. 14 is a perspective view of a mother die in which a groove die is formed.
  • FIG. 15 (a) is an explanatory view of a longitudinal section showing a state in which a resist film is formed on a mother mold on which a groove mold is formed.
  • (B) is an explanatory view of a longitudinal section showing a state in which a comb-like mold is formed on a mother mold.
  • (C) is explanatory drawing of the longitudinal cross-section which shows the state which formed the comb-shaped body in the mother die.
  • FIG. 16 is a perspective view of a part of a mother die in a state where a comb-like die is formed.
  • FIG. 17 is a perspective view of a part of the matrix with the resist film removed.
  • FIG. 18 is a perspective view showing a state where the comb-like body is removed from the matrix.
  • FIG. 19 is an explanatory view showing a conventional probe pin.
  • FIG. 1 is an explanatory diagram showing an outline of the configuration of the probe apparatus 1.
  • the probe device 1 is provided with, for example, a probe card 2 and a mounting table 3 on which a wafer W as an object to be inspected is mounted.
  • the probe card 2 includes, for example, a contactor 11 that supports a plurality of probe pins 10 that are in contact with the electrodes of the wafer W, and a printed wiring board that transmits and receives electrical signals to the probe pins 10 through the main body of the contactor 11. It has twelve. Contactor 11 and printed wiring board
  • the printed wiring board 12 is formed in a substantially disk shape, for example, and the printed wiring board 12 is arranged on the upper surface side of the contactor 11 so as to be able to energize the contactor 11.
  • the probe pin 10 is joined to a connection terminal 11a formed on the lower surface of the main body of the contactor 11, for example.
  • the probe pin 10 is formed of a metal conductive material such as a nickel alloy, for example.
  • the probe pin 10 is formed in an elongated, substantially rectangular parallelepiped shape, for example, as shown in FIG.
  • a groove 20 is formed on the lower side surface (lower surface) of the probe pin 10.
  • the groove 20 is formed at a predetermined position closer to the tip than the center of the probe pin 10, for example, with a width of about 50 / z m and a depth of about 20 / z m.
  • the rear end side of the probe pin 10 with respect to the groove 20 is formed horizontally and joined to the connection terminal 11a.
  • the tip end side of the probe pin 10 with respect to the groove 20 is refracted downward from the groove 20 portion.
  • the refraction angle 0 on the distal end side of the probe pin 10 is set, for example, in the range of 45 ° to 60 °, more preferably 55 °.
  • the tip of the probe pin 10 is formed to have a pointed shape as seen from the plane force, and the tip becomes a contact portion 21 with the wafer W.
  • the mounting table 3 is configured to be movable, for example, left and right and up and down.
  • the mounting wafer 3 is moved three-dimensionally, and the probe card 2 is moved to a desired position on the wafer W.
  • the probe pin 10 can be brought into contact.
  • a comb-like body 33 is formed that includes a rectangular flat plate-like base material 30 and a plurality of pins 31 protruding in parallel from one end surface of the base material 30 in a comb-blade shape.
  • the plurality of pins 31 are portions that later become the probe pins 10 and are formed in accordance with the dimensions of the desired probe pins 10.
  • the base material 30 is formed with a positioning hole 34 for fixing the comb-like body 33 at a predetermined position during processing to be described later.
  • the comb-like body 33 is formed using, for example, a photolithography technique and an electroplating technique.
  • a film-like resist HR is formed on a stainless steel flat plate serving as a mother die 40 (FIG. 5 (a)).
  • the resist HR is exposed to a predetermined pattern and developed to form the mold 40a of the comb-like body 33 on the mother mold 40 ((b) of FIG. 5).
  • the die 40a of the mother die 40 is covered with a nickel alloy to form a comb-like body 33 (FIG. 5 (c)).
  • each pin 31 of the comb 33 is fixed to a processing machine (not shown), and a groove 20 is formed on the tip end side of each pin 31 of the comb 33 as shown in FIG.
  • the groove 20 of each pin 31 is formed in a lump by, for example, dicer cutting, and is formed along a straight line L orthogonal to a plurality of pins 31 arranged in parallel as shown in FIG. Thereby, the groove 20 of each pin 31 is formed at a position equidistant from the tip.
  • the groove 20 may be formed by etching. After the formation of the groove 20, the comb-like body 33 is removed from the matrix 40.
  • each pin 31 is cut by the end face force of the base material 30 by, for example, a dicer, and a plurality of probe pins 10 having the same shape are formed. As described above, the formed probe pin 10 is joined to the lower surface of the contactor 11 so that the groove 20 faces downward and the tip end side is bent downward.
  • the wafer W When the electrical characteristics of the electronic elements on the wafer W are inspected, the wafer W is placed on the mounting table 3, and the wafer W is raised to the contactor 11 side by the mounting table 3. Then, each electrode of wafer W is brought into contact with the contact portion 21 of the corresponding probe pin 10. An electrical signal is exchanged with the wafer W through the probe pin 10 through the printed wiring board 12 and the contactor 11, and the electrical characteristics of the electronic elements on the wafer W are inspected.
  • the groove 20 is formed in the probe pin 10, and the probe pin 10 Therefore, the contact portion 21 having a sufficiently high height can be formed without performing a high aspect ratio integral molding as in the prior art.
  • productivity is increased because there is no need to perform integral molding with a high aspect ratio. Since the light is refracted from the position of the groove 20, the position and height of the contact portion 21 are stabilized, and the probe pin 10 with high dimensional accuracy can be formed. Furthermore, the height of the contact portion 21 can be easily set by adjusting the position of the groove 20 and the refraction angle.
  • the refraction angle 0 of the probe pin 10 is set in the range of 45 ° to 60 °, the contact between the probe pin 10 and the wafer W can be further stabilized.
  • the comb-like body 33 including the base material 30 and the plurality of pins 31 is formed, and the plurality of pins 31 are collectively formed in that state. Since the groove 20 is formed and the tip side of each pin 31 is also bent with the partial force of the groove 20, a large number of probe pins 10 of the same size can be manufactured at a time, and probe pins 10 with high dimensional accuracy can be produced. Highly productive.
  • the mold 40a of the comb-like body 33 is formed on the mother die 40 by photolithography technology, and the comb-like body 33 is integrally formed on the die 40a by the electroplating technology, the comb shape has high dimensional accuracy.
  • the body 33 can be formed relatively easily.
  • the positioning hole 34 is formed in the base material 30 of the comb-like body 33, high-precision processing for the pin 31 can be realized.
  • the force at which the tip of the probe pin 10 is formed in a pointed shape as shown in Fig. 8, the tip of the probe pin 10 is formed in a protruding shape having a constant width, and the contact portion 21 It may be.
  • the width of the protrusion at this time is set to about 10 111 to 15 111, for example. In such a case, even if the contact portion 21 of the probe pin 10 is worn due to multiple contact between the probe pin 10 and the wafer W, the width of the contact portion 21 is maintained constant. Can be stabilized. As a result, stable inspection can be maintained.
  • the force at which the tip of the probe pin 10 became the contact portion 21 is formed with a quadrangular pyramid apex 50 on the side surface on the tip portion side of the probe pin 10 as shown in FIG.
  • the top portion 50 may be the contact portion 21.
  • the top 50 is formed on the same side as the groove 20 of the probe pin 10. As shown in FIG. 10, when the rear end side of the groove 20 of the probe pin 10 is horizontal and joined to the contact terminal 11a of the contactor 11, the vertical line Z is equal to the inner angle ⁇ 1 of the top 50 by 2 etc. As can be seen, a top 50 is formed.
  • a hole 61 serving as a mold of the top 50 is formed in the above-mentioned stainless steel mother die 40 by, for example, a diamond cone 60 inclined at a predetermined angle ((a) of FIG. 11).
  • the hole 61 is formed at a position where it will later become the mold 40a on the tip end side of the pin 31.
  • the direction of the apex 50 is set according to the inclination angle of the cone 60 at this time.
  • the inclination angle of the cone 60 becomes the final bending angle ⁇ 2 of the probe pin 10 (shown in FIG. 10).
  • the inclination angle ⁇ 2 of the cone 60 is set so as to satisfy the condition of ⁇ 2 ⁇ 1/2.
  • ⁇ 2 is preferably about 30 °, for example.
  • the comb-like body 33 is taken out from the matrix 40, and the comb-like body 33 having the pin 31 with the top 50 is formed ((d) of FIG. 11). Thereafter, as described above, the groove 20 is formed in the pin 31, the tip end side of the pin 31 is bent, the pin 31 is cut from the base material 30, and the probe pin 10 is formed.
  • the apex 50 is formed at the refracted tip of the probe pin 10, and the apex 50 is formed so that the inner angle ⁇ 1 is divided into two equal parts by the vertical line Z.
  • the vertical component of the force acting on the wafer W from the probe pin 10 is increased, and the contact between the probe pin 10 and the wafer W can be stabilized.
  • the hole 61 is drilled by the cone 60 in the master die 40 and the top 50 is integrally formed with the comb-like body 33 by electric heating, the probe pin 10 having the top 50 can be formed easily with relatively few processes. wear.
  • the shape of the top 50 is not limited to a quadrangular pyramid, and other pyramid shapes are used. It may also be conical. Further, as shown in FIG. 12, a minute flat surface 50a may be formed at the tip of the top 50. By doing so, the contact between the probe pin 10 and the wafer W can be further stabilized, and the wear of the tip of the top 50 due to the contact can be suppressed.
  • the comb-like body 33 shown in FIG. 4 is formed by using, for example, a photolithography technique and an electroplating technique.
  • a film-like resist HR is formed on a stainless steel flat plate serving as a mother die 40.
  • the resist HR is exposed to a predetermined pattern and developed as shown in FIG. 13 (b), and a linear, constant width groove R 1 is formed in the resist film R.
  • nickel which is a mold material, is filled in the groove R1 of the resist film R by means of electric power, and the groove R1 is filled with nickel.
  • the resist film R is removed, and a die 4 Ob (bump) for the groove of the probe pin 10 is formed on the mother die 40 as shown in FIG. 13 (d).
  • the groove mold 40b is formed in a linear ridge directed in a predetermined direction (X direction).
  • the entire surface of the mother die 40 is coated with a thin film so as to cover the groove die 40b by a plating process or a sputtering process. This improves the adhesion between the groove mold 40b and the mother mold 40 body.
  • a film-like resist film R is formed again on the mother die 40.
  • the resist HR is exposed to a predetermined pattern and developed to form the mold 40c of the comb-like body 33 that also has the mold of the substrate 30 and the mold 31 of the pin 31. Is done.
  • the mold 40d of the pin 31 is formed so as to be orthogonal to the groove mold 40b and arranged in parallel in the forming direction (X direction) of the groove mold 40b.
  • a nickel alloy is plated on the mold 40c of the mother mold 40 by electric plating to form the comb-like body 33.
  • the resist film R is removed from the mother die 40 as shown in FIG.
  • the comb-shaped body 33 is removed from the mother die 40, and the comb-shaped body 33 is completed.
  • the groove 20 of each pin 31 of the comb 33 is formed on a straight line L in the X direction orthogonal to the pin 31 as shown in FIG.
  • the groove 20 of each pin 31 is formed at a predetermined position where the tip portion force is also equidistant.
  • each pin 31 from the groove 20 is refracted by an angle ⁇ to the side where the groove 20 is present, as shown in FIG. Is done.
  • the end face force of the base material 30 is cut by, for example, a dicer, and a plurality of probe pins 10 having the same shape are formed.
  • the groove mold 40b is formed on the mother die 40 by using the photolithography technique, and the die 40c of the comb-like body 33 is formed on the mother mold 40 by the photolithography technique. Further, the comb-like body 33 is formed on the mother die 40 by an electric technique. In this way, the groove mold 40b is formed by using a photolithography technology capable of microfabrication, and the groove 20 is formed in the probe pin 10 by the mold 4 Ob. Therefore, the groove has high positional accuracy and dimensional accuracy. 20 can be formed on pin 31. Then, since the probe pin 10 is formed by bending from the groove 20 portion, it can be formed with high accuracy.
  • the groove mold 40b is formed in a straight ridge, and the mold 40d of each pin 31 is formed orthogonally to the groove mold 40b and in parallel along the forming direction of the mold 40b. Therefore, a large number of probe pins 10 having the same groove 20 can be formed at a time. Thereby, the manufacturing efficiency of the probe pin 10 can be improved.
  • the mold 40c of the comb-like body 33 in which the plurality of pins 31 and the base material 30 are formed in the mother die 40 is formed, and the plurality of pins 31 and the base material 30 are integrated. Since it was molded, it can be bent together with a plurality of pins 31 attached to the substrate 30. Thereby, the bending position and bending angle of each probe pin 10 can be matched.
  • the thin film is treated on the entire surface of the mother mold 40, so that the adhesion between the groove mold 40b and the mother mold 40 can be improved.
  • the groove die 40b can be prevented from being separated from the mother die 40 together with the probe pins 10.
  • the base material 30 integrally molded with the pin 31 has a rectangular flat plate shape, but may have another shape. Alternatively, only the pin 31 connected by the base material 30 may be molded.
  • resists used for photolithography using photolithography technology are not more than film. It may be an external liquid.
  • the material of the mother die 40 is not limited to stainless steel, and may be a conductive material or a non-conductive base material coated with a conductive material.
  • the material of the groove mold 40b and the probe pin 10 is not limited to nickel, and may be another electrodeposited metal.
  • the present invention can also be applied to a case where the object to be inspected is another substrate such as an FPD (flat panel display) other than the wafer W.
  • the present invention is useful in realizing a high probe pin with high dimensional accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

[PROBLEMS] To ensure high dimensional accuracy and productivity of a probe pin having a height. [MEANS FOR SOLVING PROBLEMS] A groove is formed on a side plane of the probe pin, and a leading end side having a contact section is bent from a groove portion. The leading end of the probe pin is sharply formed to be the contact section. The rear end side from the groove on the probe pin is bonded to a connection terminal of a contactor, and the leading end side of the probe pin is bent from the groove portion to the lower side where a wafer is arranged. Electrical characteristics of the wafer are inspected by bringing the contact section of the probe pin into contact with the wafer.

Description

明 細 書  Specification
プローブピンとプローブピンの製造方法  Probe pin and method of manufacturing probe pin
技術分野  Technical field
[0001] 本発明は、被検査体に接触して被検査体の電気的特性を検査するためのプロ一 ブピンと、その製造方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a probe pin for contacting an object to be inspected and inspecting electrical characteristics of the object to be inspected, and a method for manufacturing the same.
背景技術  Background art
[0002] 例えば半導体ウェハ上に形成された IC、 LSIなどの電子回路の電気的特性の検査 は、プローブ装置に装着されたプローブカードを用いて行われている。プローブカー ドは、通常、回路基板やコンタクタを有している。ウェハに対向するコンタクタの下面 には、多数のプローブピンが支持されており、この多数のプローブピンを、電子回路 の各電極に接触させることにより、ウェハの電気的特性の検査を行っている。  For example, inspection of electrical characteristics of electronic circuits such as ICs and LSIs formed on a semiconductor wafer is performed using a probe card mounted on a probe device. The probe card usually has a circuit board and a contactor. A large number of probe pins are supported on the lower surface of the contactor facing the wafer, and the electrical characteristics of the wafer are inspected by bringing these probe pins into contact with the respective electrodes of the electronic circuit.
[0003] 従来のプローブピンは、通常図 19に示すように直線状の梁部 100と、梁部 100の 先端部に直角方向に突出した接触部 101から構成され、略 L型形状を有している。こ のようなプローブピンは、一般的に電铸などのメツキ技術により一体成型されて製造 されている (特許文献 1参照)。  [0003] As shown in FIG. 19, a conventional probe pin is generally composed of a linear beam portion 100 and a contact portion 101 protruding in a direction perpendicular to the tip end portion of the beam portion 100, and has a substantially L-shaped shape. ing. Such a probe pin is generally manufactured by being integrally formed by a measuring technique such as electric plating (see Patent Document 1).
特許文献 1:特開 2001— 52779号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-52779
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかしながら、プローブピンは、接触部 101の幅を細くし、接触部 101の高さを確保 する必要があるため、比較的アスペクト比 (接触部 101の幅と高さの比)が高い。この ため、一体成型時に、例えば接触部 101と梁部 100が接触する角付近に空洞ができ たりして、プローブピンの生産効率や寸法精度が低下する場合があった。プローブピ ンの寸法精度が低下すると、プローブピンとウェハとの接触が不安定となり、信頼性 の高 、検査を行うことができな!/、。 [0004] However, the probe pin has a relatively high aspect ratio (ratio of the width and height of the contact portion 101) because it is necessary to reduce the width of the contact portion 101 and ensure the height of the contact portion 101. . For this reason, at the time of integral molding, for example, a cavity may be formed near the corner where the contact portion 101 and the beam portion 100 contact each other, and the production efficiency and dimensional accuracy of the probe pin may be reduced. If the dimensional accuracy of the probe pin is reduced, the contact between the probe pin and the wafer becomes unstable, and inspection cannot be performed with high reliability! /.
[0005] また、ウェハに、ウェハの欠片などの異物が付着していて、その異物が梁部 100の 下方に位置している場合には、検査時に異物が梁部 100に接触しプローブピンを破 損する可能性がある。この可能性を低くするため、プローブピンの接触部 101に、より 高さのあるものが要求されている。し力しながら、実際、従来のプローブピンのァスぺ タト比は 2程度が限界であり、これ以上アスペクト比が高くなると、生産効率や寸法精 度が著しく低下する。このため、従来のプローブピンでは、接触部 101を十分に高く することができず、ウェハなどの被検査体のある方向に十分に長いプローブピンを実 現することができな力つた。 [0005] In addition, when a foreign object such as a piece of wafer adheres to the wafer and the foreign object is located below the beam part 100, the foreign object contacts the beam part 100 during inspection and the probe pin is inserted. There is a possibility of damage. To reduce this possibility, the probe pin contact 101 Something that is tall is required. However, the actual probe pin aspect ratio is limited to about 2, and if the aspect ratio is higher than this, the production efficiency and the dimensional accuracy are significantly reduced. For this reason, with the conventional probe pin, the contact portion 101 could not be made sufficiently high, and it was impossible to realize a sufficiently long probe pin in a certain direction of an object to be inspected such as a wafer.
[0006] 本発明は、力かる点に鑑みてなされたものであり、高い寸法精度と高い生産効率を 維持しながら、被検査体の方向に十分に高さのあるプローブピンと、その製造方法を 提供することをその目的とする。 [0006] The present invention has been made in view of the strong point, and provides a probe pin sufficiently high in the direction of an object to be inspected while maintaining high dimensional accuracy and high production efficiency, and a method for manufacturing the probe pin. Its purpose is to provide.
課題を解決するための手段  Means for solving the problem
[0007] 上記目的を達成するための本発明は、被検査体に接触して被検査体の電気的特 性を検査するためのプローブピンであって、側面に溝を有し、被検査体と接触する接 触部のある先端部側が前記溝の部分力 屈折していることを特徴とする。  [0007] To achieve the above object, the present invention provides a probe pin for contacting an object to be inspected to inspect the electrical characteristics of the object to be inspected, having a groove on a side surface, The tip end side with the contact portion that comes into contact with the groove is partially refracted by the groove.
[0008] 本発明によれば、プローブピンの側面に溝が形成され、プローブピンの先端部側が その溝の部分力も屈折して 、るので、従来のようにアスペクト比の高 、力卩ェを行わな くても、プローブピンに十分な高さを確保される。また、アスペクト比の高い加工が必 要ないので、生産性を上げることができる。プローブピンが溝の部分力も折り曲げて 形成されて 、るので、接触部のある先端部側の長さや高さを一定にすることができ、 プローブピンの高 1、寸法精度を確保できる。  [0008] According to the present invention, the groove is formed on the side surface of the probe pin, and the tip portion of the probe pin is also refracted by the partial force of the groove, so that the aspect ratio is high and the force is increased as in the prior art. Even if this is not done, a sufficient height is secured to the probe pin. In addition, productivity is increased because high-aspect ratio processing is not required. Since the probe pin is formed by bending the partial force of the groove, the length and height of the tip side with the contact portion can be made constant, and the height and dimensional accuracy of the probe pin can be secured.
[0009] 前記先端部側の先端が尖状に形成されて前記接触部になっていてもよい。また、 前記先端部側の先端は、幅が一定の突起状に形成されて前記接触部になって 、て ちょい。  [0009] A tip on the tip side may be formed in a pointed shape to form the contact portion. Further, the tip on the tip side is formed into a protrusion having a constant width and becomes the contact portion.
[0010] 前記先端部側の屈折角は、 45° 〜60° に設定されていてもよい。  [0010] The refraction angle on the tip end side may be set to 45 ° to 60 °.
[0011] 屈折した前記先端部側の側面には、前記接触部となる錐状の頂部が形成され、前 記溝よりも後端部側が水平に維持されたときに鉛直線により前記頂部の内角が等分 されるように、前記頂部が形成されていてもよい。  [0011] A conical apex serving as the contact portion is formed on the side surface of the refracted front end portion side, and the inner angle of the apex portion is defined by a vertical line when the rear end side of the groove is kept horizontal. The top may be formed so that is equally divided.
[0012] 別の観点による本発明は、被検査体に接触して被検査体の電気的特性を検査す るためのプローブピンを製造する方法であって、基材の直線状の端面から並列的に 突出する直線状の複数のピンを形成する工程と、前記複数のピンの先端部側の側 面に溝を形成する工程と、前記複数のピンの先端部側を溝の部分力 折り曲げるェ 程と、前記複数のピンを前記基材の端面から切断する工程と、を有することを特徴と する。 [0012] Another aspect of the present invention is a method of manufacturing a probe pin for inspecting the electrical characteristics of an object to be inspected by contacting the object to be inspected, in parallel from a linear end surface of a substrate. A step of forming a plurality of linear pins projecting, and a tip side of the plurality of pins A step of forming a groove on the surface, a step of bending a front end portion of the plurality of pins at a partial force of the groove, and a step of cutting the plurality of pins from the end surface of the base material. .
[0013] 前記複数のピンを形成する工程では、フォトリソグラフィー技術を用いて、母型に前 記基材と前記複数のピンの型を形成し、当該母型にメツキ技術により前記基材と前記 複数のピンを一体的に形成してもよ 、。  [0013] In the step of forming the plurality of pins, a photolithography technique is used to form the base material and the plurality of pin molds on a mother die, and the mother die and the base material are formed on the mother die by a measuring technique. A plurality of pins may be integrally formed.
[0014] 前記プローブピンの製造方法は、前記母型の前記各ピンの先端部に対応する部 分に、錐状の穴を形成する工程を有し、前記メツキ技術により前記母型に前記基材と 前記複数のピンを一体的に形成する際に、前記各ピンの先端部側の側面に錐状の 頂部が形成され、前記複数のピンの溝よりも後端部側が水平に維持され、前記複数 のピンの先端部側が折り曲げられた状態のときに、鉛直線により前記頂部の内角が 等分されるように、前記頂部が形成されるようにしてもょ ヽ。  [0014] The method of manufacturing the probe pin includes a step of forming a conical hole in a portion corresponding to a tip portion of each pin of the master die, and the base is formed in the master die by the Met technique. When the material and the plurality of pins are integrally formed, a cone-shaped top is formed on the side surface on the tip end side of each pin, and the rear end side is maintained horizontally with respect to the grooves of the plurality of pins, The tops may be formed so that the inner angles of the tops are equally divided by a vertical line when the tip end sides of the plurality of pins are bent.
[0015] 別の観点による本発明は、被検査体に接触して被検査体の電気的特性を検査す るためのプローブピンを製造する方法であって、フォトリソグラフィー技術を用いて、 母型に、プローブピンの溝の型を直線状の突条に形成する工程と、その後、フォトリソ グラフィー技術を用いて、前記母型に、前記溝の型に対し直角方向に交差しなおか つ前記溝の型の直線方向に沿って並列的に並べられた複数のピンの型を形成する 工程と、その後、メツキ技術を用いて、前記母型に、溝を有する複数のピンを成型す る工程と、前記複数のピンを前記母型力 取り外す工程と、前記複数のピンの先端 部側を溝の部分力も折り曲げる工程と、を有することを特徴とする。なお、ここで言う「 フォトリソグラフィー技術を用いて」の内容には、他の技術と併用する場合も含まれる  [0015] Another aspect of the present invention is a method of manufacturing a probe pin for contacting an object to be inspected to inspect the electrical characteristics of the object to be inspected, and using a photolithography technique, The step of forming the groove shape of the probe pin into a linear protrusion, and then using the photolithographic technique, the mother die is crossed in a direction perpendicular to the groove shape and the groove is formed. Forming a plurality of pin molds arranged in parallel along the linear direction of the mold, and thereafter molding a plurality of pins having grooves in the master mold using a Mecking technique. And a step of removing the matrix force of the plurality of pins, and a step of bending a partial force of the groove on the tip end side of the plurality of pins. Note that the content of “Using photolithography technology” mentioned here includes cases where it is used in combination with other technologies.
[0016] 本発明によれば、プローブピンの側面に溝が形成され、プローブピンの先端部側が その溝の部分力も折り曲げられるので、従来のようにアスペクト比の高い力卩ェを行わ なくても、十分に高さのあるプローブピンを製造できる。また、プローブピンに位置精 度と寸法精度の高!ヽ溝を形成できるので、この溝から屈折したプローブピンも高 ヽ精 度で形成できる。また、共通の型力も複数のプローブピンが形成されるので、同じ溝 の位置のプローブピンが一度に多量に形成でき、プローブピンの製造効率を上げる ことができる。 [0016] According to the present invention, the groove is formed on the side surface of the probe pin, and the tip portion of the probe pin is also bent by the partial force of the groove. A sufficiently high probe pin can be manufactured. The probe pin has high positional accuracy and dimensional accuracy! Since the ridge groove can be formed, the probe pin refracted from the groove can be formed with high accuracy. Also, since multiple probe pins are formed with a common mold force, a large number of probe pins can be formed at the same groove position at the same time, increasing the manufacturing efficiency of probe pins. be able to.
[0017] 前記複数のピンの型を形成する工程では、前記複数のピンが並列的に接続された 基材の型も形成し、前記複数のピンを成型する工程では、前記メツキ技術により、前 記複数のピンと前記基材を一体的に成型し、前記複数のピンを前記母型から取り外 す工程では、前記基材を前記複数のピンと共に前記母型から取り外し、複数のピン の先端部側を溝の部分力 折り曲げた後に、前記複数のピンを前記基材力 切断し てもよい。  [0017] In the step of forming the plurality of pin molds, a substrate mold in which the plurality of pins are connected in parallel is also formed, and in the step of molding the plurality of pins, the previous technique is used. In the step of integrally molding the plurality of pins and the base material and removing the plurality of pins from the mother die, the base material is removed from the mother die together with the plurality of pins, and tip portions of the plurality of pins The plurality of pins may be cut by the base material force after the side is bent by the partial force of the groove.
[0018] 前記基材は、直線状の端面を有し、前記複数のピンは、前記基材の端面から並列 的に突出するように形成されてもょ ヽ。  [0018] The base material may have a linear end surface, and the plurality of pins may be formed so as to protrude in parallel from the end surface of the base material.
[0019] 前記溝の型を形成する工程と前記複数のピンの型を形成する工程との間において 、前記母型の表面に薄膜を被覆してもよい。  [0019] Between the step of forming the groove mold and the step of forming the plurality of pin molds, a thin film may be coated on the surface of the mother mold.
[0020] 前記プローブピンの溝の型を形成する工程は、前記母型上にレジスト膜を形成し、 その母型上のレジスト膜に直線状の溝を形成する工程と、そのレジスト膜の溝にメッ キにより型材料を埋設する工程と、前記母型から前記レジスト膜を除去して、前記型 材料カゝらなる前記プローブピンの溝の型を形成する工程と、を有するようにしてもよ!ヽ 発明の効果  [0020] The step of forming the probe pin groove mold includes forming a resist film on the mother mold, forming a linear groove on the resist film on the mother mold, and a groove of the resist film. And a step of embedding a mold material with a mesh and a step of removing the resist film from the mother mold to form a mold of a groove of the probe pin that is the mold material cover. Yo! ヽ Effect of the Invention
[0021] 本発明によれば、十分に高さのあるプローブピンを高い寸法精度で効率よく製造す ることがでさる。  [0021] According to the present invention, it is possible to efficiently manufacture a sufficiently high probe pin with high dimensional accuracy.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]プローブ装置の構成の概略を示す側面図である。 FIG. 1 is a side view showing the outline of the configuration of a probe device.
[図 2]プローブピンの取付け部の構成を示す縦断面の説明図である。  FIG. 2 is an explanatory view of a longitudinal section showing a configuration of a probe pin mounting portion.
[図 3]プローブピンの平面図である。  FIG. 3 is a plan view of the probe pin.
[図 4]櫛状体の平面図である。  FIG. 4 is a plan view of a comb-like body.
[図 5] (a)は、母型にレジスト膜を成膜した状態を示す縦断面の説明図である。(b)は、 母型に櫛状体の型を形成した状態を示す縦断面の説明図である。(c)は、母型に櫛 状体を形成した状態を示す縦断面の説明図である。  FIG. 5 (a) is an explanatory view of a longitudinal section showing a state in which a resist film is formed on a matrix. (B) is explanatory drawing of the longitudinal cross-section which shows the state which formed the type | mold of the comb-like body in the mother die. (C) is an explanatory view of a longitudinal section showing a state in which a comb-like body is formed on a matrix.
[図 6]櫛状体の複数のピンの拡大図である。 圆 7]ピンが曲げられた状態を示す斜視図である。 FIG. 6 is an enlarged view of a plurality of pins of a comb-like body. [7] FIG. 7 is a perspective view showing a state where the pin is bent.
圆 8]先端に突起が形成されたプローブピンの平面図である。 [8] FIG. 8 is a plan view of a probe pin having a protrusion formed at the tip.
[図 9]頂部を有するプローブピンの斜視図である。  FIG. 9 is a perspective view of a probe pin having a top portion.
[図 10]頂部を有するプローブピンをコンタクタに取り付けた状態の説明図である。  FIG. 10 is an explanatory view showing a state where a probe pin having a top portion is attached to a contactor.
[図 11] (a)は、母型に錐により穴を空けた状態を示す縦断面の説明図である。(b)は 、母型に頂部のある櫛状体の型を形成した状態を示す縦断面の説明図である。 (c) は、母型に頂部のある櫛状体を形成した状態を示す縦断面の説明図である。(d)は 、櫛状体を母型から取り外した状態を示す縦断面の説明図である。 FIG. 11 (a) is an explanatory view of a longitudinal section showing a state in which a hole is drilled with a cone in the matrix. (B) is explanatory drawing of the longitudinal cross-section which shows the state which formed the type | mold of the comb-like body which has a top part in a mother die. (c) is an explanatory view of a longitudinal section showing a state in which a comb-like body having a top is formed on a matrix. (D) is explanatory drawing of the longitudinal cross-section which shows the state which removed the comb-shaped object from the mother mold.
[図 12]頂部に平坦面を有するプローブピンの平面図である。 FIG. 12 is a plan view of a probe pin having a flat surface at the top.
[図 13] (a)は、母型にレジスト膜を成膜した状態を示す縦断面の説明図である。 (b) は、母型のレジスト膜に溝を形成した状態を示す縦断面の説明図である。(c)は、レ ジスト膜の溝にニッケルを埋設した状態を示す縦断面の説明図である。(d)は、母型 に溝の型を形成した状態を示す縦断面の説明図である。 FIG. 13 (a) is an explanatory view of a longitudinal section showing a state in which a resist film is formed on a matrix. (b) is an explanatory view of a longitudinal section showing a state in which a groove is formed in a mother resist film. (C) is an explanatory view of a longitudinal section showing a state where nickel is embedded in a groove of a resist film. (D) is an explanatory view of a longitudinal section showing a state in which a groove mold is formed on the mother mold.
[図 14]溝の型が形成された母型の斜視図である。 FIG. 14 is a perspective view of a mother die in which a groove die is formed.
[図 15] (a)は、溝の型が形成された母型にレジスト膜を成膜した状態を示す縦断面の 説明図である。(b)は、母型に櫛状体の型を形成した状態を示す縦断面の説明図で ある。(c)は、母型に櫛状体を形成した状態を示す縦断面の説明図である。  FIG. 15 (a) is an explanatory view of a longitudinal section showing a state in which a resist film is formed on a mother mold on which a groove mold is formed. (B) is an explanatory view of a longitudinal section showing a state in which a comb-like mold is formed on a mother mold. (C) is explanatory drawing of the longitudinal cross-section which shows the state which formed the comb-shaped body in the mother die.
[図 16]櫛状体の型が形成された状態の母型の一部の斜視図である。  FIG. 16 is a perspective view of a part of a mother die in a state where a comb-like die is formed.
圆 17]レジスト膜が除去された状態の母型の一部の斜視図である。 FIG. 17 is a perspective view of a part of the matrix with the resist film removed.
[図 18]櫛状体を母型から取り外した様子を示す斜視図である。  FIG. 18 is a perspective view showing a state where the comb-like body is removed from the matrix.
[図 19]従来のプローブピンを示す説明図である。  FIG. 19 is an explanatory view showing a conventional probe pin.
符号の説明 Explanation of symbols
1 プローブ装置  1 Probe device
2 プローブカード  2 Probe card
10 プローブピン  10 Probe pin
11 コンタクタ  11 Contactor
11a 接続端子  11a Connection terminal
20 溝 21 接触部 20 groove 21 Contact area
W ウェハ  W wafer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、本発明の好ましい実施の形態について説明する。図 1は、プローブ装置 1の 構成の概略を示す説明図である。 [0024] Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 is an explanatory diagram showing an outline of the configuration of the probe apparatus 1.
[0025] プローブ装置 1には、例えばプローブカード 2と、被検査体としてのウェハ Wを載置 する載置台 3が設けられて 、る。 The probe device 1 is provided with, for example, a probe card 2 and a mounting table 3 on which a wafer W as an object to be inspected is mounted.
[0026] プローブカード 2は、例えばウェハ Wの電極に接触する複数のプローブピン 10を下 面に支持したコンタクタ 11と、プローブピン 10に対しコンタクタ 11の本体を通じて電 気信号を授受するプリント配線基板 12を備えている。コンタクタ 11とプリント配線基板[0026] The probe card 2 includes, for example, a contactor 11 that supports a plurality of probe pins 10 that are in contact with the electrodes of the wafer W, and a printed wiring board that transmits and receives electrical signals to the probe pins 10 through the main body of the contactor 11. It has twelve. Contactor 11 and printed wiring board
12は、例えば略円盤状に形成され、プリント配線基板 12は、コンタクタ 11の上面側 にコンタクタ 11と通電可能に配置されている。 12 is formed in a substantially disk shape, for example, and the printed wiring board 12 is arranged on the upper surface side of the contactor 11 so as to be able to energize the contactor 11.
[0027] プローブピン 10は、例えばコンタクタ 11の本体の下面に形成された接続端子 11a に接合されている。  The probe pin 10 is joined to a connection terminal 11a formed on the lower surface of the main body of the contactor 11, for example.
[0028] プローブピン 10は、例えばニッケル合金などの金属の導電性材料により形成され ている。プローブピン 10は、例えば図 2に示すように細長の略直方体形状に形成さ れている。プローブピン 10の下側の側面(下面)には、溝 20が形成されている。溝 20 は、例えばプローブピン 10の中央よりも先端寄りの所定の位置に、例えば幅 50 /z m 、深さ 20 /z m程度に形成されている。プローブピン 10の溝 20よりも後端部側は、水 平に形成され、接続端子 11aに接合されている。プローブピン 10の溝 20よりも先端 部側は、溝 20の部分から下方側に屈折されている。プローブピン 10の先端部側の 屈折角 0は、例えば 45° 〜60° の範囲、より好ましくは 55° に設定されている。プ ローブピン 10の先端は、例えば図 3に示すように平面力も見て尖状に形成され、その 先端がウェハ Wとの接触部 21になって 、る。  The probe pin 10 is formed of a metal conductive material such as a nickel alloy, for example. The probe pin 10 is formed in an elongated, substantially rectangular parallelepiped shape, for example, as shown in FIG. A groove 20 is formed on the lower side surface (lower surface) of the probe pin 10. The groove 20 is formed at a predetermined position closer to the tip than the center of the probe pin 10, for example, with a width of about 50 / z m and a depth of about 20 / z m. The rear end side of the probe pin 10 with respect to the groove 20 is formed horizontally and joined to the connection terminal 11a. The tip end side of the probe pin 10 with respect to the groove 20 is refracted downward from the groove 20 portion. The refraction angle 0 on the distal end side of the probe pin 10 is set, for example, in the range of 45 ° to 60 °, more preferably 55 °. For example, as shown in FIG. 3, the tip of the probe pin 10 is formed to have a pointed shape as seen from the plane force, and the tip becomes a contact portion 21 with the wafer W.
[0029] 載置台 3は、図 1に示すように例えば左右及び上下に移動自在に構成されており、 載置したウェハ Wを三次元移動させ、ウェハ W上の所望の位置にプローブカード 2の プローブピン 10を接触させることができる。  As shown in FIG. 1, the mounting table 3 is configured to be movable, for example, left and right and up and down. The mounting wafer 3 is moved three-dimensionally, and the probe card 2 is moved to a desired position on the wafer W. The probe pin 10 can be brought into contact.
[0030] 次に、上述したプローブピン 10の製造方法について説明する。先ず、図 4に示すよ うに方形の平板状の基材 30と、その基材 30の一端面から並列的に櫛刃状に突出す る複数のピン 31からなる櫛状体 33が形成される。この複数のピン 31は、後にプロ一 ブピン 10となる部分であり、所望のプローブピン 10の寸法に合わせて形成される。基 材 30には、後述する加工時に櫛状体 33を所定の位置に固定するための位置決め 穴 34が形成されている。 Next, a method for manufacturing the probe pin 10 described above will be described. First, it's shown in Figure 4. A comb-like body 33 is formed that includes a rectangular flat plate-like base material 30 and a plurality of pins 31 protruding in parallel from one end surface of the base material 30 in a comb-blade shape. The plurality of pins 31 are portions that later become the probe pins 10 and are formed in accordance with the dimensions of the desired probe pins 10. The base material 30 is formed with a positioning hole 34 for fixing the comb-like body 33 at a predetermined position during processing to be described later.
[0031] 櫛状体 33の形成は、例えばフォトリソグラフィー技術と電铸技術を用いて行われる。  The comb-like body 33 is formed using, for example, a photolithography technique and an electroplating technique.
例えば先ず、図 5に示すように母型 40となるステンレス製の平板上に、フィルム状の レジスト HRが成膜される(図 5 (a) )。そのレジスト HRが所定のパターンに露光され 現像されて、母型 40に櫛状体 33の型 40aが形成される(図 5の (b) )。その母型 40の 型 40aにニッケル合金カ^ッキされて櫛状体 33が成型される(図 5 (c) )。  For example, first, as shown in FIG. 5, a film-like resist HR is formed on a stainless steel flat plate serving as a mother die 40 (FIG. 5 (a)). The resist HR is exposed to a predetermined pattern and developed to form the mold 40a of the comb-like body 33 on the mother mold 40 ((b) of FIG. 5). The die 40a of the mother die 40 is covered with a nickel alloy to form a comb-like body 33 (FIG. 5 (c)).
[0032] 次に、母型 40が図示しない加工機に固定され、図 6に示すように櫛状体 33の各ピ ン 31の先端部側に溝 20が形成される。各ピン 31の溝 20は、例えばダイサー切削に より一括して形成され、例えば図 4に示すように並列的に配置された複数のピン 31に 対し直交する直線 Lに沿って形成される。これにより、各ピン 31の溝 20は、先端部か らの等距離の位置に形成される。なお、この溝 20は、エッチング加工により形成され てもよい。溝 20の形成後、櫛状体 33は、母型 40から取り外される。  Next, the mother die 40 is fixed to a processing machine (not shown), and a groove 20 is formed on the tip end side of each pin 31 of the comb 33 as shown in FIG. The groove 20 of each pin 31 is formed in a lump by, for example, dicer cutting, and is formed along a straight line L orthogonal to a plurality of pins 31 arranged in parallel as shown in FIG. Thereby, the groove 20 of each pin 31 is formed at a position equidistant from the tip. The groove 20 may be formed by etching. After the formation of the groove 20, the comb-like body 33 is removed from the matrix 40.
[0033] その後、図 7に示すように各ピン 31の溝 20よりも先端部側が、溝 20のある側に角度  [0033] After that, as shown in FIG.
Θだけ屈折される。このピン 31の屈折は、例えばプレスカ卩ェにより行われる。その後 、各ピン 31が、例えばダイサーにより基材 30の端面力 切断され、同じ形状の複数 のプローブピン 10が形成される。形成されたプローブピン 10は、上述したように溝 20 が下側を向 、て先端部側が下方に折り曲がるようにコンタクタ 11の下面に接合される  Refracted by Θ. The refraction of the pin 31 is performed by, for example, a press carriage. Thereafter, each pin 31 is cut by the end face force of the base material 30 by, for example, a dicer, and a plurality of probe pins 10 having the same shape are formed. As described above, the formed probe pin 10 is joined to the lower surface of the contactor 11 so that the groove 20 faces downward and the tip end side is bent downward.
[0034] ウェハ W上の電子素子の電気的特性が検査される際には、ウェハ Wが載置台 3上 に載置され、ウェハ Wが載置台 3によってコンタクタ 11側に上昇される。そして、ゥェ ハ Wの各電極が対応するプローブピン 10の接触部 21に接触される。プリント配線基 板 12とコンタクタ 11を介し、プローブピン 10を通じてウェハ Wとの間で電気信号が授 受されて、ウェハ W上の電子素子の電気的特性が検査される。 When the electrical characteristics of the electronic elements on the wafer W are inspected, the wafer W is placed on the mounting table 3, and the wafer W is raised to the contactor 11 side by the mounting table 3. Then, each electrode of wafer W is brought into contact with the contact portion 21 of the corresponding probe pin 10. An electrical signal is exchanged with the wafer W through the probe pin 10 through the printed wiring board 12 and the contactor 11, and the electrical characteristics of the electronic elements on the wafer W are inspected.
[0035] 以上の実施の形態によれば、プローブピン 10に溝 20が形成され、プローブピン 10 の先端部側が溝 20の部分力 屈折して 、るので、従来のようにアスペクト比の高!ヽ 一体成型を行わなくても、十分に高さのある接触部 21を形成できる。また、アスペクト 比の高い一体成型をする必要がないので、生産性を上げることができる。溝 20の位 置から屈折しているので、接触部 21の位置や高さが安定し、寸法精度の高いプロ一 ブピン 10を形成できる。さら〖こ、溝 20の位置や屈折角度を調整することにより、接触 部 21の高さを容易に設定できる。 According to the above embodiment, the groove 20 is formed in the probe pin 10, and the probe pin 10 Therefore, the contact portion 21 having a sufficiently high height can be formed without performing a high aspect ratio integral molding as in the prior art. In addition, productivity is increased because there is no need to perform integral molding with a high aspect ratio. Since the light is refracted from the position of the groove 20, the position and height of the contact portion 21 are stabilized, and the probe pin 10 with high dimensional accuracy can be formed. Furthermore, the height of the contact portion 21 can be easily set by adjusting the position of the groove 20 and the refraction angle.
[0036] また、プローブピン 10の先端を尖状にして接触部 21にしたので、接触部 21とゥェ ハ Wとの間で高い接触圧を確保することができ、プローブピン 10による検査を安定さ せることができる。 [0036] Further, since the tip of the probe pin 10 is pointed to form the contact portion 21, a high contact pressure can be secured between the contact portion 21 and the wafer W, and inspection with the probe pin 10 can be performed. It can be stabilized.
[0037] プローブピン 10の屈折角度 0を 45° 〜60° の範囲に設定したので、さらにプロ一 ブピン 10とウェハ Wとの接触を安定させることができる。  [0037] Since the refraction angle 0 of the probe pin 10 is set in the range of 45 ° to 60 °, the contact between the probe pin 10 and the wafer W can be further stabilized.
[0038] 以上の実施の形態によれば、プローブピン 10を製造するにあたって、基材 30と複 数のピン 31からなる櫛状体 33を形成し、その状態で一括して複数のピン 31に溝 20 を形成し、さらに各ピン 31の先端部側を溝 20の部分力も折り曲げるようにしたので、 同じ寸法のプローブピン 10を一度に多数個製造でき、高い寸法精度を有するプロ一 ブピン 10を高 、生産性で製造できる。  According to the above embodiment, when manufacturing the probe pin 10, the comb-like body 33 including the base material 30 and the plurality of pins 31 is formed, and the plurality of pins 31 are collectively formed in that state. Since the groove 20 is formed and the tip side of each pin 31 is also bent with the partial force of the groove 20, a large number of probe pins 10 of the same size can be manufactured at a time, and probe pins 10 with high dimensional accuracy can be produced. Highly productive.
[0039] また、フォトリソグラフィー技術により母型 40に、櫛状体 33の型 40aを形成し、その 型 40aに電铸技術により櫛状体 33を一体成型したので、高 ヽ寸法精度の櫛状体 33 を比較的簡単に形成できる。  [0039] In addition, since the mold 40a of the comb-like body 33 is formed on the mother die 40 by photolithography technology, and the comb-like body 33 is integrally formed on the die 40a by the electroplating technology, the comb shape has high dimensional accuracy. The body 33 can be formed relatively easily.
[0040] 櫛状体 33の基材 30には、位置決め穴 34が形成されているので、ピン 31に対する 高 、精度の加工を実現できる。  [0040] Since the positioning hole 34 is formed in the base material 30 of the comb-like body 33, high-precision processing for the pin 31 can be realized.
[0041] 以上の実施の形態では、プローブピン 10の先端が尖状に形成されていた力 図 8 に示すようにプローブピン 10の先端は、幅が一定の突起状に形成されて接触部 21 になっていてもよい。このときの突起の幅は、例ぇば10 111〜15 111程度に設定さ れる。かかる場合、プローブピン 10とウェハ Wとの多数回の接触によりプローブピン 1 0の接触部 21が磨耗しても、接触部 21の幅が一定に維持されるので、プローブピン 10とウェハ Wとの接触を安定させることができる。これにより、安定した検査を持続さ せることができる。 [0042] 以上の実施の形態では、プローブピン 10の先端が接触部 21になっていた力 図 9 に示すようにプローブピン 10の先端部側の側面に、四角錐状の頂部 50を形成して、 その頂部 50を接触部 21にしてもよい。この場合、頂部 50は、プローブピン 10の溝 2 0と同じ側面に形成される。図 10に示すように、プローブピン 10の溝 20より後端部側 が水平の状態でコンタクタ 11の接触端子 11aに接合されたときに、鉛直線 Zが頂部 5 0の内角 θ 1を 2等分するように、頂部 50が形成される。 [0041] In the above embodiment, the force at which the tip of the probe pin 10 is formed in a pointed shape, as shown in Fig. 8, the tip of the probe pin 10 is formed in a protruding shape having a constant width, and the contact portion 21 It may be. The width of the protrusion at this time is set to about 10 111 to 15 111, for example. In such a case, even if the contact portion 21 of the probe pin 10 is worn due to multiple contact between the probe pin 10 and the wafer W, the width of the contact portion 21 is maintained constant. Can be stabilized. As a result, stable inspection can be maintained. In the embodiment described above, the force at which the tip of the probe pin 10 became the contact portion 21 is formed with a quadrangular pyramid apex 50 on the side surface on the tip portion side of the probe pin 10 as shown in FIG. The top portion 50 may be the contact portion 21. In this case, the top 50 is formed on the same side as the groove 20 of the probe pin 10. As shown in FIG. 10, when the rear end side of the groove 20 of the probe pin 10 is horizontal and joined to the contact terminal 11a of the contactor 11, the vertical line Z is equal to the inner angle θ 1 of the top 50 by 2 etc. As can be seen, a top 50 is formed.
[0043] ここで、頂部 50を有するプローブピン 10の形成方法を説明する。図 11に示すよう に所定角度傾けられた例えばダイアモンド製の錐 60により、上述のステンレス製の母 型 40に、頂部 50の型となる穴 61が空けられる(図 11の(a) )。この穴 61は、後にピン 31の先端部側の型 40aになる位置に空けられる。このときの錐 60の傾き角度により、 頂部 50の向きが設定される。この錐 60の傾き角度は、最終的なプローブピン 10の屈 折角度 Θ 2 (図 10に示す)になり、この錐 60の傾き角度 Θ 2が Θ 1/2よりも大きくなる と、鉛直線 Zにより 2等分するような頂部 50の内角 θ 1が形成できなくなる。このため、 θ 2< Θ 1/2の条件を満たすように、錐 60の傾き角度 Θ 2が設定される。なお、頂部 50の内角 θ 1が 70° の場合、 Θ 2は、例えば 30° 程度が望ましい。その後、母型 40 には、櫛状体 33の型 40aとなるレジストパターンが形成される(図 11の(b) )。その後 電铸により、母型 40に櫛状体 33が成型される(図 11の(c) )。櫛状体 33が母型 40か ら取り出され、頂部 50のあるピン 31を有する櫛状体 33が形成される(図 11の(d) )。 その後、上述したようにピン 31に溝 20が形成され、ピン 31の先端部側が折り曲げら れ、ピン 31が基材 30から切断されて、プローブピン 10が形成される。  [0043] Here, a method of forming the probe pin 10 having the top 50 will be described. As shown in FIG. 11, a hole 61 serving as a mold of the top 50 is formed in the above-mentioned stainless steel mother die 40 by, for example, a diamond cone 60 inclined at a predetermined angle ((a) of FIG. 11). The hole 61 is formed at a position where it will later become the mold 40a on the tip end side of the pin 31. The direction of the apex 50 is set according to the inclination angle of the cone 60 at this time. The inclination angle of the cone 60 becomes the final bending angle Θ 2 of the probe pin 10 (shown in FIG. 10). When the inclination angle Θ 2 of the cone 60 is larger than Θ 1/2, the vertical line The interior angle θ 1 of the top 50 that is divided into two equal parts by Z cannot be formed. Therefore, the inclination angle Θ 2 of the cone 60 is set so as to satisfy the condition of θ 2 <Θ 1/2. When the inner angle θ 1 of the top 50 is 70 °, Θ 2 is preferably about 30 °, for example. Thereafter, a resist pattern to be the mold 40a of the comb-shaped body 33 is formed on the mother mold 40 ((b) of FIG. 11). Thereafter, the comb-like body 33 is formed on the mother die 40 by electric heating ((c) in FIG. 11). The comb-like body 33 is taken out from the matrix 40, and the comb-like body 33 having the pin 31 with the top 50 is formed ((d) of FIG. 11). Thereafter, as described above, the groove 20 is formed in the pin 31, the tip end side of the pin 31 is bent, the pin 31 is cut from the base material 30, and the probe pin 10 is formed.
[0044] 力かる例によれば、プローブピン 10の屈折した先端部に頂部 50が形成され、その 頂部 50は、内角 θ 1が鉛直線 Zにより 2等分されるように形成されるので、プローブピ ン 10とウェハ Wとの接触時に、プローブピン 10からウェハ Wに作用する力の鉛直方 向の成分が大きくなり、プローブピン 10とウェハ Wとの接触を安定させることができる 。また、母型 40に錐 60により穴 61を空けて、電铸により頂部 50を櫛状体 33と一体成 型したので、頂部 50を有するプローブピン 10を比較的少な 、工程で簡単に形成で きる。  According to a powerful example, the apex 50 is formed at the refracted tip of the probe pin 10, and the apex 50 is formed so that the inner angle θ 1 is divided into two equal parts by the vertical line Z. When the probe pin 10 and the wafer W are in contact with each other, the vertical component of the force acting on the wafer W from the probe pin 10 is increased, and the contact between the probe pin 10 and the wafer W can be stabilized. In addition, since the hole 61 is drilled by the cone 60 in the master die 40 and the top 50 is integrally formed with the comb-like body 33 by electric heating, the probe pin 10 having the top 50 can be formed easily with relatively few processes. wear.
[0045] なお、上記例において頂部 50の形状は、四角錐に限られず、他の角錐形状であつ てもよく、また円錐形状であってもよい。また、図 12に示すように頂部 50の先端部に 微小な平坦面 50aを形成してもよい。こうすることにより、プローブピン 10とウェハ Wと の接触をさらに安定させ、また接触による頂部 50の先端部の磨耗を抑制できる。 In the above example, the shape of the top 50 is not limited to a quadrangular pyramid, and other pyramid shapes are used. It may also be conical. Further, as shown in FIG. 12, a minute flat surface 50a may be formed at the tip of the top 50. By doing so, the contact between the probe pin 10 and the wafer W can be further stabilized, and the wear of the tip of the top 50 due to the contact can be suppressed.
[0046] 次に、第 2の実施の形態に力かるプローブピン 10の製造方法について説明する。  [0046] Next, a method of manufacturing the probe pin 10 that works according to the second embodiment will be described.
先ず、図 4に示した櫛状体 33は、例えばフォトリソグラフィー技術と電铸技術を用いて 形成される。例えば図 13 (a)に示すように先ず母型 40となるステンレス製の平板上に 、フィルム状のレジスト HRが成膜される。次に、レジスト HRが図 13 (b)に示すように 所定のパターンに露光され現像されて、レジスト膜 Rに、直線状で一定幅の溝 R1が 形成される。その後、図 13 (c)に示すようにレジスト膜 Rの溝 R1に、例えば型材料で あるニッケルが電铸によりメツキされ、溝 R1がニッケルにより埋められる。その後レジス ト膜 Rが除去されて、図 13 (d)に示すように母型 40に、プローブピン 10の溝用の型 4 Ob (バンプ)が形成される。溝用の型 40bは、図 14に示すように所定方向(X方向)に 向けた直線状の突条に形成される。その後、母型 40の表面全体には、メツキ処理或 いはスパッタ処理により、溝用の型 40bを覆うように薄膜が被覆される。これにより、溝 用の型 40bと母型 40本体との接着性が向上される。  First, the comb-like body 33 shown in FIG. 4 is formed by using, for example, a photolithography technique and an electroplating technique. For example, as shown in FIG. 13 (a), first, a film-like resist HR is formed on a stainless steel flat plate serving as a mother die 40. Next, the resist HR is exposed to a predetermined pattern and developed as shown in FIG. 13 (b), and a linear, constant width groove R 1 is formed in the resist film R. Thereafter, as shown in FIG. 13 (c), for example, nickel, which is a mold material, is filled in the groove R1 of the resist film R by means of electric power, and the groove R1 is filled with nickel. Thereafter, the resist film R is removed, and a die 4 Ob (bump) for the groove of the probe pin 10 is formed on the mother die 40 as shown in FIG. 13 (d). As shown in FIG. 14, the groove mold 40b is formed in a linear ridge directed in a predetermined direction (X direction). Thereafter, the entire surface of the mother die 40 is coated with a thin film so as to cover the groove die 40b by a plating process or a sputtering process. This improves the adhesion between the groove mold 40b and the mother mold 40 body.
[0047] 続いて、図 15 (a)に示すように母型 40に、再びフィルム状のレジスト膜 Rが成膜さ れる。次に図 15 (b)に示すようにレジスト HRが所定のパターンに露光され現像され て、母型 40に、基材 30の型とピン 31の型力もなる櫛状体 33の型 40cが形成される。 この際、図 16に示すようにピン 31の型 40dは、溝用の型 40bと直交し、溝用の型 40b の形成方向(X方向)に並列的に並ぶように形成される。  Subsequently, as shown in FIG. 15A, a film-like resist film R is formed again on the mother die 40. Next, as shown in FIG. 15 (b), the resist HR is exposed to a predetermined pattern and developed to form the mold 40c of the comb-like body 33 that also has the mold of the substrate 30 and the mold 31 of the pin 31. Is done. At this time, as shown in FIG. 16, the mold 40d of the pin 31 is formed so as to be orthogonal to the groove mold 40b and arranged in parallel in the forming direction (X direction) of the groove mold 40b.
[0048] 図 15 (c)に示すように母型 40の型 40cに例えばニッケル合金が電铸によりメツキさ れて櫛状体 33が成型される。その後、例えば洗浄処理により図 17に示すように母型 40からレジスト膜 Rが取り除かれる。次に図 18に示すように櫛状体 33が母型 40から 取り外されて、櫛状体 33が出来上がる。このとき、櫛状体 33の各ピン 31の溝 20は、 例えば図 6に示したようにピン 31に対し直交する X方向の直線 L上に形成されている 。このように各ピン 31の溝 20は、先端部力も等距離の所定位置に形成されている。  [0048] As shown in FIG. 15 (c), for example, a nickel alloy is plated on the mold 40c of the mother mold 40 by electric plating to form the comb-like body 33. Thereafter, the resist film R is removed from the mother die 40 as shown in FIG. Next, as shown in FIG. 18, the comb-shaped body 33 is removed from the mother die 40, and the comb-shaped body 33 is completed. At this time, the groove 20 of each pin 31 of the comb 33 is formed on a straight line L in the X direction orthogonal to the pin 31 as shown in FIG. As described above, the groove 20 of each pin 31 is formed at a predetermined position where the tip portion force is also equidistant.
[0049] 次に、上記第 1の実施の形態と同様に、プレスカ卩ェにより、図 7に示すように各ピン 31の溝 20よりも先端部側が、溝 20のある側に角度 Θだけ屈折される。その後、各ピ ン 31が、例えばダイサ一により基材 30の端面力 切断され、同じ形状の複数のプロ ーブピン 10が形成される。 [0049] Next, as in the first embodiment described above, as shown in FIG. 7, the tip portion side of each pin 31 from the groove 20 is refracted by an angle Θ to the side where the groove 20 is present, as shown in FIG. Is done. After that, The end face force of the base material 30 is cut by, for example, a dicer, and a plurality of probe pins 10 having the same shape are formed.
[0050] 以上の実施の形態によれば、フォトリソグラフィー技術を用いて、溝用の型 40bを母 型 40に形成し、その母型 40に、フォトリソグラフィー技術により櫛状体 33の型 40cを 形成し、さらに電铸技術により、その母型 40に櫛状体 33を成型している。このように、 微細加工が可能なフォトリソグラフィー技術を用いて溝用の型 40bを形成し、その型 4 Obによってプローブピン 10に溝 20を形成しているので、位置精度と寸法精度が高い 溝 20をピン 31に形成できる。そして、その溝 20の部分から曲げてプローブピン 10を 形成して!/ヽるので、精度の高 ヽプローブピン 10を形成できる。  [0050] According to the embodiment described above, the groove mold 40b is formed on the mother die 40 by using the photolithography technique, and the die 40c of the comb-like body 33 is formed on the mother mold 40 by the photolithography technique. Further, the comb-like body 33 is formed on the mother die 40 by an electric technique. In this way, the groove mold 40b is formed by using a photolithography technology capable of microfabrication, and the groove 20 is formed in the probe pin 10 by the mold 4 Ob. Therefore, the groove has high positional accuracy and dimensional accuracy. 20 can be formed on pin 31. Then, since the probe pin 10 is formed by bending from the groove 20 portion, it can be formed with high accuracy.
[0051] また、溝用の型 40bが直線の突条に形成され、各ピン 31の型 40dが溝用の型 40b に直交しなおかつその型 40bの形成方向に沿って並列的に形成されるので、同じ溝 20を有するプローブピン 10を一度に大量に形成できる。これによつて、プローブピン 10の製造効率を向上できる。  [0051] Further, the groove mold 40b is formed in a straight ridge, and the mold 40d of each pin 31 is formed orthogonally to the groove mold 40b and in parallel along the forming direction of the mold 40b. Therefore, a large number of probe pins 10 having the same groove 20 can be formed at a time. Thereby, the manufacturing efficiency of the probe pin 10 can be improved.
[0052] 以上の実施の形態では、母型 40に、複数のピン 31と基材 30がー体となった櫛状 体 33の型 40cを形成し、複数のピン 31と基材 30を一体成型したので、複数のピン 3 1を基材 30に取り付けた状態で一括して曲げることができる。これにより、各プローブ ピン 10の曲げ位置や曲げ角度を一致させることができる。  [0052] In the above-described embodiment, the mold 40c of the comb-like body 33 in which the plurality of pins 31 and the base material 30 are formed in the mother die 40 is formed, and the plurality of pins 31 and the base material 30 are integrated. Since it was molded, it can be bent together with a plurality of pins 31 attached to the substrate 30. Thereby, the bending position and bending angle of each probe pin 10 can be matched.
[0053] 溝用の型 40bが形成された後に、母型 40の表面全面に薄膜のメツキ処理を施した ので、溝用の型 40bと母型 40との接着性を高めることができる。この結果、櫛状体 33 を母型 40から取り外す際に、溝用の型 40bがプローブピン 10と共に母型 40から剥 離することを防止できる。  [0053] After the groove mold 40b is formed, the thin film is treated on the entire surface of the mother mold 40, so that the adhesion between the groove mold 40b and the mother mold 40 can be improved. As a result, when the comb-like body 33 is removed from the mother die 40, the groove die 40b can be prevented from being separated from the mother die 40 together with the probe pins 10.
[0054] 以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、 本発明はカゝかる例に限定されない。当業者であれば、特許請求の範囲に記載された 思想の範疇内において、各種の変更例または修正例に相到し得ることは明らかであ り、それらについても当然に本発明の技術的範囲に属するものと了解される。例えば 以上の実施の形態において、ピン 31と共に一体成型された基材 30は、方形の平板 形状であつたが、他の形状であってもよい。また基材 30がなぐピン 31だけを成型し てもよい。また、フォトリソグラフィー技術を用いてカ卩ェする際のレジストは、フィルム以 外の液体のものであってもよい。母型 40の材質は、ステンレス鋼に限られず、導電性 のあるもの、或いは非導電性の基材の表面に導電性の素材を被覆したものであって もよい。溝の型 40bやプローブピン 10の材質も、ニッケルに限られず、他の電着金属 であってもよい。本発明は、被検査体がウェハ W以外の FPD (フラットパネルディスプ レイ)などの他の基板である場合にも適用できる。 As described above, the preferred embodiments of the present invention have been described with reference to the accompanying drawings, but the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes and modifications can be made within the spirit and scope of the claims as set forth in the appended claims. It is understood that it belongs to. For example, in the above embodiment, the base material 30 integrally molded with the pin 31 has a rectangular flat plate shape, but may have another shape. Alternatively, only the pin 31 connected by the base material 30 may be molded. In addition, resists used for photolithography using photolithography technology are not more than film. It may be an external liquid. The material of the mother die 40 is not limited to stainless steel, and may be a conductive material or a non-conductive base material coated with a conductive material. The material of the groove mold 40b and the probe pin 10 is not limited to nickel, and may be another electrodeposited metal. The present invention can also be applied to a case where the object to be inspected is another substrate such as an FPD (flat panel display) other than the wafer W.
産業上の利用可能性 Industrial applicability
本発明は、高い寸法精度で高さのあるプローブピンを実現する際に有用である。  The present invention is useful in realizing a high probe pin with high dimensional accuracy.

Claims

請求の範囲 The scope of the claims
[1] 被検査体に接触して被検査体の電気的特性を検査するためのプローブピンであつ て、  [1] A probe pin for contacting the object to be inspected to inspect the electrical characteristics of the object to be inspected.
側面に溝を有し、  Has a groove on the side,
被検査体と接触する接触部のある先端部側が前記溝の部分力 屈折している。  The front end side with the contact portion that contacts the object to be inspected is partially refracted by the groove.
[2] 請求項 1に記載のプローブピンにぉ 、て、  [2] The probe pin according to claim 1, wherein
前記先端部側の先端が尖状に形成されて前記接触部になっている。  The tip on the tip side is formed into a pointed shape and serves as the contact portion.
[3] 請求項 1に記載のプローブピンにぉ 、て、 [3] The probe pin according to claim 1, wherein
前記先端部側の先端は、幅が一定の突起状に形成されて前記接触部になって 、 る。  The tip on the tip side is formed as a protrusion having a constant width and serves as the contact portion.
[4] 請求項 1に記載のプローブピンにぉ 、て、  [4] The probe pin according to claim 1, wherein
前記先端部側の屈折角は、 45° 〜60° に設定されている。  The angle of refraction on the tip side is set to 45 ° to 60 °.
[5] 請求項 1に記載のプローブピンにぉ 、て、 [5] The probe pin according to claim 1, wherein
屈折した前記先端部側の側面には、前記接触部となる錐状の頂部が形成され、 前記溝よりも後端部側が水平に維持されたときに鉛直線により前記頂部の内角が 等分されるように、前記頂部が形成されている。  A cone-shaped apex serving as the contact portion is formed on the side surface of the refracted front end portion, and the inner angle of the apex portion is equally divided by a vertical line when the rear end side of the groove is kept horizontal. As described above, the top portion is formed.
[6] 被検査体に接触して被検査体の電気的特性を検査するためのプローブピンを製造 する方法であって、 [6] A method of manufacturing a probe pin for contacting an object to be inspected to inspect the electrical characteristics of the object to be inspected,
基材の直線状の端面から並列的に突出する直線状の複数のピンを形成する工程 と、  Forming a plurality of linear pins protruding in parallel from the linear end surface of the substrate;
前記複数のピンの先端部側の側面に溝を形成する工程と、  Forming a groove on a side surface on the tip end side of the plurality of pins;
前記複数のピンの先端部側を溝の部分力 折り曲げる工程と、  Bending the partial force of the groove on the tip side of the plurality of pins;
前記複数のピンを前記基材の端面力 切断する工程と、を有する。  Cutting the end surface force of the base material with the plurality of pins.
[7] 請求項 6に記載のプローブピンの製造方法にぉ 、て、 [7] In the method for manufacturing the probe pin according to claim 6,
前記複数のピンを形成する工程では、フォトリソグラフィー技術を用いて、母型に前 記基材と前記複数のピンの型を形成し、当該母型にメツキ技術により前記基材と前記 複数のピンを一体的に形成する。  In the step of forming the plurality of pins, a photolithography technique is used to form the base material and the plurality of pin molds on a mother mold, and the base material and the plurality of pins are formed on the mother mold by a measuring technique. Are integrally formed.
[8] 請求項 7に記載のプローブピンの製造方法にぉ 、て、 前記母型の前記各ピンの先端部に対応する部分に、錐状の穴を形成する工程を 有し、 [8] In the method for manufacturing the probe pin according to claim 7, Forming a conical hole in a portion corresponding to the tip of each pin of the matrix,
前記メツキ技術により前記母型に前記基材と前記複数のピンを一体的に形成する 際に、前記各ピンの先端部側の側面に錐状の頂部が形成され、  When the base material and the plurality of pins are integrally formed on the matrix by the Mecking technique, a conical top is formed on the side surface on the tip end side of each pin,
前記複数のピンの溝よりも後端部側が水平に維持され、前記複数のピンの先端部 側が折り曲げられた状態のときに、鉛直線により前記頂部の内角が等分されるように 、前記頂部が形成される。  When the rear end side of the plurality of pin grooves is kept horizontal and the tip end side of the plurality of pins is bent, the inner angle of the top part is equally divided by a vertical line. Is formed.
[9] 被検査体に接触して被検査体の電気的特性を検査するためのプローブピンを製造 する方法であって、  [9] A method of manufacturing a probe pin for contacting an object to be inspected to inspect the electrical characteristics of the object to be inspected,
フォトリソグラフィー技術を用いて、母型に、プローブピンの溝の型を直線状の突条 に形成する工程と、  Using a photolithographic technique, forming a probe pin groove mold into a linear protrusion on the mother mold; and
その後、フォトリソグラフィー技術を用いて、前記母型に、前記溝の型に対し直角方 向に交差しなおかつ前記溝の型の直線方向に沿って並列的に並べられた複数のピ ンの型を形成する工程と、  Thereafter, using a photolithographic technique, a plurality of pin dies that intersects the groove die in a direction perpendicular to the groove die and is arranged in parallel along the linear direction of the groove die is used. Forming, and
その後、メツキ技術を用いて、前記母型に、溝を有する複数のピンを成型する工程 と、  Thereafter, using a Mecky technique, forming a plurality of pins having grooves in the matrix,
前記複数のピンを前記母型力 取り外す工程と、  Removing the plurality of pins from the matrix force;
前記複数のピンの先端部側を溝の部分力 折り曲げる工程と、を有する。  And bending the partial force of the groove on the tip side of the plurality of pins.
[10] 請求項 9に記載のプローブピンの製造方法において、 [10] In the method of manufacturing a probe pin according to claim 9,
前記複数のピンの型を形成する工程では、前記複数のピンが並列的に取り付けら れる基材の型も形成し、  In the step of forming the plurality of pin molds, a substrate mold to which the plurality of pins are attached in parallel is also formed.
前記複数のピンを成型する工程では、前記メツキ技術により、前記複数のピンと前 記基材を一体的に成型し、  In the step of molding the plurality of pins, the plurality of pins and the base material are integrally molded by the Met technique,
前記複数のピンを前記母型から取り外す工程では、前記基材を前記複数のピンと 共に前記母型から取り外し、  In the step of removing the plurality of pins from the matrix, the substrate is removed from the matrix together with the plurality of pins,
複数のピンの先端部側を溝の部分力 折り曲げた後に、前記複数のピンを前記基 材から切断する。  The plurality of pins are cut from the base material after the front end side of the plurality of pins is bent by a partial force of the groove.
[11] 請求項 10に記載のプローブピンの製造方法において、 前記基材は、直線状の端面を有し、前記複数のピンは、前記基材の端面から並列 的に突出するように形成される。 [11] In the method of manufacturing a probe pin according to claim 10, The substrate has a linear end surface, and the plurality of pins are formed so as to protrude in parallel from the end surface of the substrate.
[12] 請求項 9に記載のプローブピンの製造方法において、  [12] In the method of manufacturing a probe pin according to claim 9,
前記溝の型を形成する工程と前記複数のピンの型を形成する工程との間において 、前記母型の表面に薄膜を被覆する。  A thin film is coated on the surface of the mother mold between the step of forming the groove mold and the step of forming the plurality of pin molds.
[13] 請求項 9に記載のプローブピンの製造方法において、 [13] In the method of manufacturing a probe pin according to claim 9,
前記プローブピンの溝の型を形成する工程は、  Forming the probe pin groove mold,
前記母型上にレジスト膜を形成し、その母型上のレジスト膜に直線状の溝を形成す る工程と、  Forming a resist film on the matrix and forming a linear groove in the resist film on the matrix;
そのレジスト膜の溝にメツキにより型材料を埋設する工程と、  A step of embedding a mold material in the groove of the resist film by means of plating;
前記母型から前記レジスト膜を除去して、前記型材料からなる前記プローブピンの 溝の型を形成する工程と、を有する。  Removing the resist film from the matrix and forming a groove mold of the probe pin made of the mold material.
PCT/JP2006/323182 2005-11-25 2006-11-21 Probe pin and method for manufacturing probe pin WO2007060935A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-340132 2005-11-25
JP2005340132A JP5053542B2 (en) 2005-11-25 2005-11-25 Probe pin and method of manufacturing probe pin

Publications (1)

Publication Number Publication Date
WO2007060935A1 true WO2007060935A1 (en) 2007-05-31

Family

ID=38067162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323182 WO2007060935A1 (en) 2005-11-25 2006-11-21 Probe pin and method for manufacturing probe pin

Country Status (3)

Country Link
JP (1) JP5053542B2 (en)
TW (1) TW200728726A (en)
WO (1) WO2007060935A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111721980A (en) * 2019-03-22 2020-09-29 中华精测科技股份有限公司 Vertical probe card and rectangular probe thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256643A (en) * 1992-01-17 1993-10-05 Olympus Optical Co Ltd Cantilever chip for scanning type probe microscope
JPH1164383A (en) * 1997-08-12 1999-03-05 Mitsubishi Materials Corp Plated body having thin film part and its formation contact probe using plated body and its production
JP2000294711A (en) * 1999-04-06 2000-10-20 Sony Corp Lead frame
JP2001230041A (en) * 1999-12-15 2001-08-24 Xerox Corp Method of interconnecting devices with use of adhesive
JP2004125435A (en) * 2002-09-30 2004-04-22 Sumitomo Electric Ind Ltd Method of manufacturing minute component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256643A (en) * 1992-01-17 1993-10-05 Olympus Optical Co Ltd Cantilever chip for scanning type probe microscope
JPH1164383A (en) * 1997-08-12 1999-03-05 Mitsubishi Materials Corp Plated body having thin film part and its formation contact probe using plated body and its production
JP2000294711A (en) * 1999-04-06 2000-10-20 Sony Corp Lead frame
JP2001230041A (en) * 1999-12-15 2001-08-24 Xerox Corp Method of interconnecting devices with use of adhesive
JP2004125435A (en) * 2002-09-30 2004-04-22 Sumitomo Electric Ind Ltd Method of manufacturing minute component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111721980A (en) * 2019-03-22 2020-09-29 中华精测科技股份有限公司 Vertical probe card and rectangular probe thereof

Also Published As

Publication number Publication date
TW200728726A (en) 2007-08-01
TWI317018B (en) 2009-11-11
JP5053542B2 (en) 2012-10-17
JP2007147362A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
KR100548902B1 (en) Probe card and method of manufacturing the same
KR20070120430A (en) Probe card
JP2001284421A (en) Contact structure
US20080309363A1 (en) Probe assembly with wire probes
KR20050086803A (en) Probe array and method of its manufacture
KR101019554B1 (en) Probe and menufacturing method of the same
KR101826663B1 (en) Bi-directional conductive socket for testing semiconductor device, bi-directional conductive module for testing semiconductor device, and manufacturing method thereof
US20010009376A1 (en) Probe arrangement assembly, method of manufacturing probe arrangement assembly, probe mounting method using probe arrangement assembly, and probe mounting apparatus
WO2007060935A1 (en) Probe pin and method for manufacturing probe pin
JP2009257910A (en) Double elastic mechanism probe card and its method for manufacturing
JP2010038803A (en) Contact probe and method for manufacturing the same
JP2002139547A (en) Probing device and probing sheet structure in electric characteristic inspection device, and manufacturing method of printed wiring board with pyramid bump
JP5276836B2 (en) Probe card
JP5058032B2 (en) Contact probe manufacturing method
KR100815494B1 (en) Probe card and method of manufacturing the same, and method for repairing of probe card
JP2011075532A (en) Probe card, and method for manufacturing the same
CN101111772A (en) Method of shaping lithographically-produced probe elements
JP2000304772A (en) Terminal device for inspection and its manufacture
JP2009092532A (en) Probe manufacturing method
CN1397805A (en) Contact member and its mfg. method
US20120132615A1 (en) Manufacturing method of probe card
JP2009300079A (en) Contact probe and probe card
JP2009216554A (en) Manufacturing method of contact probe
KR101301738B1 (en) Method for producing probe card and probe card thereby
JP2013088174A (en) Inspection probe, probe unit and inspection jig

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833032

Country of ref document: EP

Kind code of ref document: A1