WO2007060771A1 - 冷媒組成物 - Google Patents

冷媒組成物 Download PDF

Info

Publication number
WO2007060771A1
WO2007060771A1 PCT/JP2006/316087 JP2006316087W WO2007060771A1 WO 2007060771 A1 WO2007060771 A1 WO 2007060771A1 JP 2006316087 W JP2006316087 W JP 2006316087W WO 2007060771 A1 WO2007060771 A1 WO 2007060771A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
carbon dioxide
pressure
dimethyl ether
dme
Prior art date
Application number
PCT/JP2006/316087
Other languages
English (en)
French (fr)
Inventor
Seijyuro Maiya
Osamu Nakagome
Hideyuki Suzuki
Yasuhisa Kotani
Toshifumi Hatanaka
Toshihiro Wada
Original Assignee
Japan Petroleum Exploration Co., Ltd.
Showa Tansan Co., Ltd.
Toyota Tsusho Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Petroleum Exploration Co., Ltd., Showa Tansan Co., Ltd., Toyota Tsusho Corporation filed Critical Japan Petroleum Exploration Co., Ltd.
Priority to EP06796447A priority Critical patent/EP1956067A1/en
Priority to US12/094,400 priority patent/US20090267018A1/en
Publication of WO2007060771A1 publication Critical patent/WO2007060771A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/106Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/11Ethers

Definitions

  • the present invention relates to a refrigerant composition containing dimethyl ether and carbon dioxide, which is used in car air conditioners, heat pumps for vending machines, commercial use home air conditioners, and the like.
  • CFCs CFC black-out fluorocarbons, HCFC hide-out fluorocarbons
  • CFCs CFC black-out fluorocarbons, HCFC hide-out fluorocarbons
  • Halofluorocarbons HFC Hyde mouth fluorocarbon, PFC perfluorocarbon, SP6
  • PFC perfluorocarbon SP6
  • this alternative CFC does not destroy the ozone layer, it has a very high global warming potential, so it is left to the voluntary action of the industry that does not have specific regulations, but its use will be abolished in the near future. Or it will be heavily regulated.
  • carbon dioxide is nonflammable, has low toxicity, and has a large sensible heat effect. Therefore, it has recently been used in EHP refrigerants such as Ecocute for heating and hot water supply. However, carbon dioxide, on the other hand, has a low latent heat effect, so it is extremely inefficient to use for cooling. Furthermore, when carbon dioxide is used as a refrigerant for car air conditioners, the operating pressure on the condenser side of car air conditioners is supercritical at a high pressure of 8 MPa or more (C0 critical pressure: 7.4 MPa, critical temperature).
  • the refrigerant needs to be 31 ° C or lower.
  • the outside air temperature frequently exceeds 31 ° C.
  • the carbon dioxide-only refrigerant is not liquefied (condensed) at all in the condenser, so heat cannot be released by condensation.
  • the cooling effect due to the heat of vaporization cannot be obtained at all only by the cooling effect due to the adiabatic expansion accompanying the pressure drop. Therefore, the cooling cycle becomes a supercritical pressure that changes between the subcritical pressure and the supercritical pressure, the cycle efficiency (COP) under cooling conditions is low, and the operating pressure of the compressor is extremely high.
  • DME dimethyl ether
  • An object of the present invention is to provide a refrigerant composition for a refrigerating machine that has a low adverse effect on global warming without risk of destruction of the ozone layer and that has no toxicity and has an excellent cooling capacity.
  • the present inventors have found that carbon dioxide dissolves well in dimethyl ether, and found that a mixed refrigerant of dimethyl ether Z carbon dioxide can be used in refrigerators, hot water supply / heating, and patent application 2004.
  • a mixed refrigerant of dimethyl ether Z carbon dioxide can be used in refrigerators, hot water supply / heating, and patent application 2004.
  • No. 167210 application date: June 4, 2004
  • Japanese Patent Application No. 200—55957 application date: March 1, 2005, priority date: June 4, 2004, and one other case
  • Invention relating to a novel refrigerant comprising a carbon-dimethyl ether mixed gas was described.
  • the present inventors further mixed dimethyl ether with carbon dioxide by utilizing the fact that the boiling point of dimethyl ether is -25 ° C and that of carbon dioxide is -78.45 ° C.
  • Vapor pressure drop can be promoted by this, and condensation (liquefaction) in the condenser can be promoted, which makes it possible to build a vapor compression cycle (condensation cycle) under cooling conditions.
  • condensation condensation
  • condensation cycle condensation cycle
  • the present invention is, based on the total moles of dimethyl ether and carbon dioxide, a dimethylcarbamoyl ether 10-40 mole 0/0, the refrigerant refrigerator containing a carbon dioxide 90-60 mole 0/0 Relates to the composition.
  • a refrigerant having an excellent cooling ability that does not destroy the ozone layer, has a very low global warming potential (GWP is about 3), and has no toxicity.
  • GWP global warming potential
  • the refrigerant composition of the present invention for a car air conditioner or the like, it becomes possible to construct a vapor compression cycle (condensation cycle) under cooling conditions, and a higher COP than a carbon dioxide-only refrigerant.
  • the dimethyl ether used in the refrigerant composition of the present invention includes, for example, coal gasification gas, LNG tank BG (Boil of Gas), natural gas, steelworks by-product gas, petroleum residue, waste It can be obtained from biogas as a raw material, the ability to synthesize dimethyl ether directly from hydrogen and carbon monoxide, and indirectly from methanol and hydrogen monoxide via methanol synthesis.
  • the carbon dioxide used in the refrigerant composition of the present invention is obtained, for example, by compression, liquefaction, and refinement using by-product gas generated from ammonia synthesis gas, hydrogen production plant for heavy oil desulfurization, or the like as a raw material.
  • the mixing ratio of dimethyl ether and carbon dioxide in the refrigerant composition of the present invention is appropriately determined according to the type of refrigerator such as a car air conditioner or vending machine refrigerator in which the refrigerant is used.
  • the refrigerant composition is preferably based on the total number of moles of dimethyl ether and carbon dioxide, preferably 10-40 mol% dimethyl ether and 9 carbon dioxide. Containing a 0 to 60 mole 0/0. When dimethyl ether is less than 10 mole 0/0, not obtained sufficient coefficient of performance to be described later, inferior properties as a refrigerant. On the other hand, when dimethyl ether is larger than 40 mol%, the refrigerant composition is out of the flame-retardant region, which is not preferable for safety.
  • an appropriate amount container such as a service can is filled with a predetermined amount of liquefied dimethyl ether from a liquefied dimethyl ether filling tank according to its capacity, and thereafter By filling a predetermined amount of liquefied carbon dioxide from a liquefied carbon dioxide filling tank, a refrigerant composition having the above mixing ratio can be obtained.
  • the refrigerant composition of the present invention is filled with liquefied dimethyl ether in an appropriate amount container such as a service can according to the capacity of the car air conditioner, and then filled with carbon dioxide gas in the gas phase portion of the container and dissolved under pressure in dimethyl ether. It can also be prepared by mixing.
  • the refrigerant composition of the present invention may be composed only of dimethyl ether and carbon dioxide, or may contain other components in addition to the mixed medium.
  • Other components that can be added to the refrigerant composition of the present invention include alcohols such as ethanol.
  • the principle of the cooling system is based on continuous heat exchange between the latent heat and the surrounding medium, which takes heat energy from the surrounding medium force when the substance (refrigerant) is vaporized.
  • the evaporation temperature of the refrigerant depends on the pressure, if the pressure is lowered, the evaporation temperature also decreases, so a lower temperature can be obtained.
  • the principle of the heating / hot water supply system is achieved by continuous heat exchange with water, air, etc. because heat is taken away from the surroundings by evaporation of the refrigerant and further compressed into a high-temperature gas. It is possible.
  • a system for a car air conditioner is also based on the principle of such a cooling Z heating system, and is a refrigerant cycle system including a compressor, a condenser, an expansion valve, and an evaporator.
  • a refrigerant cycle system in which the refrigerant composition of the present invention is used, a non-limiting example of a refrigerant cycle system for a car air conditioner is shown in FIG.
  • the refrigerant that has been heated to high pressure and high temperature by the compressor is cooled by the outside air in the condenser and becomes a liquid phase.
  • This liquid-phase refrigerant evaporates by heat absorption with the interior air in the evaporator and cools the interior air.
  • EQ1 compressor The cold refrigerant that has become gas in the evaporator is sucked and compressed into a high-temperature and high-pressure gas.
  • EQ2 condenser Compressor power The discharged high-temperature and high-pressure gaseous medium is cooled with water or air (outside air) and condensed to form a liquid (for heating / hot water supply).
  • EQ3 expansion valve expands high-temperature and high-pressure liquid refrigerant into low-temperature and low-pressure refrigerant.
  • the refrigerant cycle described above is numerically modeled, and a known method (for example, “non-azeotropic mixing” by Miyara et al. Is used, using a general-purpose numerical chemical process simulator.
  • a general-purpose numerical chemical process simulator has a built-in database of thermodynamic properties of various components, and performs equilibrium thermodynamic calculations between chemical components corresponding to the mechanical engineering functions of various systems.
  • each of the systems comprising the compressor, the circulator, the expansion valve, and the evaporator in which the refrigerant circulates is digitized, and the compressor outlet pressure (hereinafter referred to as “compressor pressure” or “discharge pressure”).
  • compressor pressure or discharge pressure
  • P1 condenser outlet temperature
  • T3 evaporator temperature
  • concentration of refrigerant composition are parameters 1
  • cooling / heating / hot water supply capacity is evaluated as coefficient of performance (COP).
  • Cooling coefficient of performance total absorbed heat in the cooling evaporator ⁇ compressor power
  • the conditions under which the condensation cycle can be established include that the discharge pressure is greater than or equal to a threshold value.
  • the ambient outside air temperature is required to be lower than the critical temperature of the refrigerant and the outlet temperature of the condenser.
  • the discharge pressure varies depending on the mixing ratio of carbon dioxide and dimethyl ether.
  • the refrigerant composition of the present invention is used in principle as it is for car air conditioners, vending machine heat pumps, commercial air conditioners, GHPs, EHPs, etc. that use existing refrigerants such as R22. be able to.
  • Carbon dioxide is injected to a certain pressure with a booster pump.
  • the test was carried out by standing in a vertical position.
  • Table 1 shows the obtained results. As shown in Table 1, the CO and DME K_volume
  • the values are 0.66 KDME 0.80 and 2.59 ⁇ KCO ⁇ 3 under the measurement conditions, respectively.
  • ⁇ KC0 2 YC0 2 / XC0 2
  • COP coefficient of performance
  • the state quantities (volume, enthalpy, entropy, etc.) of streams (1) to (4) in the refrigerant cycle system in Fig. 1 are determined by simulation, and the coefficient of performance COP is calculated using the following equation.
  • H2 Compressor power from (4) to (1)
  • Refrigerant evaporation temperature around 8 ° C
  • the condenser outlet temperature T2 needs to be lowered to 31 ° C or lower in this cooling cycle, but the car air conditioner condenser heat source is outside air, and in the case of outside air above 31 ° C, the above condensation cycle is This simulation was not performed because it did not hold.
  • DME is an oxygen-containing low-molecular-weight compound.
  • the typical example is ethanol, which has a boiling point of 78 ° C, while DME has a boiling point of 25 ° C. It can be seen that it has no strong polarity. Therefore, the regular dissolution model can be applied to ⁇ (Q) of DME.
  • K_v of CO and DME From the solubility test data of DMEZCO obtained above (Table 1), K_v of CO and DME
  • the olume values are in the range of 0.66 KDME 0.80 and 2.59 ⁇ KCO ⁇ 3.42 under the measurement conditions, respectively, and there should be no significant difference in volatility between DME and C0.
  • the vapor pressure model can be applied to f (Q) .
  • Bubble points were calculated under the given composition and P1 (compressor pressure).
  • COP was obtained as follows for the mixed refrigerant composition containing dimethyl ether and carbon dioxide.
  • Example 1 To evaluate the cooling capacity of dimethyl ether / carbon dioxide mixed refrigerant, the compressor pressure (P1), condenser outlet temperature (T2), evaporator pressure (P3), and DME / CO mixing ratio were:
  • a cooling cycle can be established with the DME / CO mixed refrigerant below the critical pressure of CO.
  • the DME / CO mixing ratio is incombustible region (DME molar ratio is 10 ( ⁇ 12%), the compressor pressure is about 6.8MPa even when the condenser outlet temperature is 35 ° C, and C0P is 2.0.
  • the concentration of DME increases with the DMEZCO mixing ratio.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】ジメチルエーテルと二酸化炭素とを混合し、オゾン層を破壊しない、地球温暖化係数の極めて小さい安全で毒性のない優れた性能を有する冷媒を提供する。 【解決手段】ジメチルエーテルを10~40モル%、二酸化炭素を90~60モル%含有する冷凍機用冷媒組成物

Description

明 細 書
冷媒組成物
技術分野
[0001] 本発明は、カーエアコン、 自動販売機用ヒートポンプ、業務用'家庭用エアコン等に 使用される、ジメチルエーテルと二酸化炭素を含有する冷媒組成物に関る。
背景技術
[0002] これまでフロン(CFCクロ口フルォロカーボン、 HCFCハイド口クロ口フルォロカーボ ン)は優れた冷媒能力を有するので全世界でカーエアコン等用の冷媒として広く使 用されてきた。し力 ながら、現在、フロンは塩素を含んでいるのでオゾン層を破壊す るとレ、うこと力ら、 1996年、 日本及び欧米先進国において特定フロンのうち CFCの 生産が全廃された。その同じ特定フロンである HCFC (ハイド口クロ口フルォロカーボ ン)も 2004年以降順次生産が規制され、ヨーロッパでは 2010年までに、その他の先 進国でも 2020年までに全廃されることになつている。
[0003] また、上記特定フロンに替わる代替フロン(HFCハイド口フルォロカーボン、 PFCパ 一フルォロカーボン, SP6)は、オゾン層破壊係数ゼロ、低毒性、不燃、満足できる特 性、性能を有するものの、鉱油との非相溶性、潤滑性の劣化という課題を有している 。特に、この代替フロンは、オゾン層を破壊しないものの地球温暖化係数が非常に高 レ、ことから、現在具体的な規制がなぐ業界の自主行動に任されているものの、近い 将来その使用が廃止または大きく規制されることになるであろう。
[0004] 最近、開発が進められている、二酸化炭素、アンモニア、水及び空気などの自然系 冷媒もオゾン層破壊係数ゼロ、温暖化係数ほぼゼロの特徴を有するものの、安全性 、性能、利便性などにそれぞれ難点がある。アンモニアは HFCと同等効率を有する 力 毒性、刺激臭、銅との不適合性がある。水 ·空気は不燃 ·無毒であるものの極め て低効率である。
[0005] 一方、二酸化炭素は不燃 ·低毒性であり、顕熱効果が大きいので、暖房 ·温熱水供 給用としてェコキュートなどの EHP冷媒に近年使用されている。し力 ながら、二酸 化炭素は、逆に潜熱効果が小さいので冷房用に使用するには極めて効率が悪い。 更に、二酸化炭素をカーエアコン用の冷媒として用いる場合は、カーエアコンの凝縮 器側の作動圧力は 8MPa以上の高圧で超臨界(C〇臨界圧力: 7. 4MPa、臨界温
2
度: 31°C)になり、この高圧気相冷媒を凝縮器で液化するためには、 COのモリエル
2 線図から分かるように、冷媒を 31°C以下にする必要がある。し力 ながら、カーエアコ ン等が最もよく使用される夏場には外気温度が 31°Cを越えることは頻繁にある。この ような外気温度の条件下では、二酸化炭素単独冷媒は凝縮器内で全く液化 (凝縮) しないため凝縮による放熱ができなくなる。即ち、単に圧力降下に伴う断熱膨張によ る冷却効果のみで気化熱による冷却効果を全く得ることができない。したがって、冷 却サイクルは亜臨界圧と超臨界圧の間で変化する超臨界圧力になり、冷却条件下の サイクル効率(COP)は低く、且つ圧縮機の作動圧が極めて高くなる。
[0006] この点を防止するために、カーエアコンの凝縮器周囲を水で循環したり、特殊な冷凍 機用ガスで回して凝縮器を冷やすか、又はガスクーラーで取り入れる外気温度を十 分に熱交換できる温度まで下げる等の特別な工夫が必要とされる。し力 ながら、こ のような工夫を施すとコスト面で不利となる。
[0007] 一方、ジメチルエーテル(DME)は潜熱効果が極めて高ぐ冷房用に使用するのに 都合がよいことが知られている力 可燃性であるために安全性の点から実用上使用さ れていない。
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、オゾン層破壊の危険性がなぐ地球温暖化に及ぼす悪影響が小さぐ 毒性のない、優れた冷房能力を有する冷凍機用の冷媒組成物を提供することを目的 とする。
課題を解決するための手段
[0009] 本発明者等は、ジメチルエーテルに二酸化炭素が良く溶解することを知見し、ジメ チルエーテル Z二酸化炭素の混合冷媒が冷凍機、給湯/暖房用において使用し得 ることを見出し、特願 2004— 167210号(出願日平成 16年 6月 4日)および特願 200 5— 55957号(出願日平成 17年 3月 1日、優先日平成 16年 6月 4日他 1件)それぞれ において、二酸化炭素ージメチルエーテル混合ガスからなる新規な冷媒に係る発明 を記載した。今回、本発明者等は、更に、ジメチルエーテルの沸点が— 25°Cに対し て二酸化炭素の沸点は— 78. 45°Cであることを利用して、二酸化炭素にジメチルェ 一テルを混合させることによって蒸気圧降下を促し、凝縮器内での凝縮 (液化)を促 進させることができ、これにより、冷却条件下での蒸気圧縮サイクル (凝縮サイクル)の 構築が可能となるのではなレ、かと考えて種々検討した結果、本発明に到達したもの である。
[0010] 即ち、本発明は、ジメチルエーテルと二酸化炭素の総モル数を基準として、ジメチ ルエーテルを 10〜40モル0 /0、二酸化炭素を 90〜60モル0 /0とを含有する冷凍機用 冷媒組成物に関る。これにより、オゾン層を破壊することのなレ、、地球温暖化係数が 極めて小さく(GWPが約 3)毒性がなぐ優れた冷房能力を有する冷媒を提供するこ とができる。更に、本発明の冷媒組成物をカーエアコン等に使用することにより、冷却 条件下での蒸気圧縮サイクル (凝縮サイクル)の構築が可能になり、二酸化炭素単独 冷媒に比較して、より高い COPが得られると同時に圧縮器の作動圧を低減させること 力 Sできること力ら、二酸化炭素単独冷媒のように;凝縮器の周囲を冷やしたり、ガスクー ラー等の特別な工夫が必要でなくなるという有利な効果を奏することができる。 発明を実施するための最良の形態
[0011] 以下、本発明の好適な実施態様について詳細に説明する。
[0012] 本発明の冷媒組成物に使用されるジメチルエーテルは、例えば、石炭ガス化ガス、 LNGタンクの B〇G (Boil of Gas)、天然ガス、製鉄所の副生ガス、石油残渣、廃棄 物及びバイオガスを原料として、水素と一酸化炭素から直接ジメチルエーテルを合成 する力、、水素と一酸化炭素から間接的にメタノール合成を経由して得られる。
[0013] 本発明の冷媒組成物に使用される二酸化炭素は、例えば、アンモニア合成ガスや 重油脱硫用水素製造プラントなどから発生する副生ガスを原料として圧縮 ·液化 ·精 製して得られる。
[0014] 本発明の冷媒組成物におけるジメチルエーテルと二酸化炭素の混合割合は、冷媒 が用いられるカーエアコン又は自動販売機用冷凍機等の冷凍機の種類等に応じて 適宜定められるが、本発明の冷媒組成物は、ジメチルエーテルと二酸化炭素の総モ ル数を基準として、好ましくは、ジメチルエーテルを 10〜40モル%、二酸化炭素を 9 0〜60モル0 /0とを含有する。ジメチルエーテルが 10モル0 /0未満であると、後述する 十分な成績係数が得られず、冷媒としての特性が劣る。一方、ジメチルエーテルが 4 0モル%より大きいと、冷媒組成物が難燃性領域から外れて安全上好ましくない。
[0015] 本発明の冷媒組成物は、例えばカーエアコンに使用する場合は、その容量に応じ てサービス缶等の適量容器に液化ジメチルエーテル充填タンクから所定量の液化ジ メチルエーテルを充填し、その後に液化二酸化炭素充填タンクから所定量の液化二 酸化炭素を充填することにより、前記混合比の冷媒組成物を得ることができる。また、 本発明の冷媒組成物は、カーエアコンの容量に応じてサービス缶等の適量容器に 液化ジメチルエーテルを充填した後、容器の気相部に二酸化炭素のガスを充填し、 ジメチルエーテルに加圧溶解、混合させて調製することもできる。
[0016] 本発明の冷媒組成物は、ジメチルエーテルと二酸化炭素のみから構成されていて もよいし、当該混合媒体に加えて他の成分を含有していてもよい。本発明の冷媒組 成物に加えることができる他の成分としては、エタノール等のアルコール類がある。
[0017] 冷房システムの原理は、物質 (冷媒)が気化する時、周辺媒体力ら熱エネルギーを 奪う潜熱と周辺媒体との連続的な熱交換に基づいている。また、冷媒の蒸発温度は 圧力に依存するため、圧力を下げれば蒸発温度も低下するので、より低い温度が得 られる。
[0018] 一方、暖房/給湯システムの原理は、冷媒の蒸発により周辺から熱を奪レ、、更に圧 縮された高温の気体となるため、水や空気等との連続的な熱交換により成し遂げられ る。
[0019] カーエアコン用システムも、このような冷房 Z暖房システムの原理に基本的に基づ いており、圧縮器、凝縮器、膨張弁及び蒸発器から構成された冷媒サイクルシステム である。本発明の冷媒組成物が使用される冷媒サイクルシステムの一例として、カー エアコン用冷媒サイクルシステムの非限定的例を図 1に示す。ここで、冷房空調は圧 縮器で高圧高温化された冷媒が凝縮器で外気により冷やされ液相になる。この液相 冷媒は蒸発器で車内空気との吸熱交換により蒸発し車内空気を冷却する。
[0020] 図 1の各機器の役割は以下の通りである。
•EQ1圧縮器:蒸発器で気体となった冷たい冷媒を吸引圧縮して高温高圧気体とす る。
•EQ2凝縮器:圧縮器力 吐出された高温高圧気体媒体を水や空気 (外気)で冷や して凝縮させ、液体とする(暖房/給湯用)。
•EQ3膨張弁:高温高圧の液体冷媒を膨張させ低温低圧の冷媒とする。
• EQ4蒸発器:膨張弁の出口で低温低圧の冷媒を周辺気体と接触させてその熱を奪 うことで蒸発 ·気化させ、気体とする (冷房用)。
[0021] 実際に冷媒の冷房能力を評価するためには、上述の冷媒サイクルを数値モデル化 し、汎用の数値ケミカルプロセスシミュレーターを用いて、公知の方法(例えば、宮良 等の「非共沸混合冷媒ヒートポンプサイクルの性能に及ぼす熱交換器の伝熱特性の 影響」日本冷凍協会論文集第 7卷、第 1号、 65— 73頁、 1990年等を参照)により、そ の能力を解析'評価することができる。汎用の数値ケミカルプロセスシミュレータ一は 多種多様な成分の熱力学物性のデータベースを内蔵し、さまざまなシステムの機械 工学的機能に対応した化学成分相互の平衡熱力学計算を行う。
[0022] 数値シミュレーションでは、冷媒が循環する圧縮器、循環器、膨張弁、蒸発器を構 成するシステムを各々数値化し、圧縮器出口圧力(以下、「圧縮器圧力」又は「吐出 圧」と略記する) (P1)、凝縮器出口温度 (T2)、蒸発器温度 (T3)及び冷媒組成物成 分の濃度をパラメータ一とし、冷房/暖房/給湯能力を成績係数 (COP)として評価 する。
[0023] 冷房の成績係数 =冷房の蒸発器での総吸収熱量 ÷圧縮器動力量
暖房/給湯の成績係数 =冷媒の凝縮器での総排熱量 ÷圧縮器動力量
[0024] また、本発明においては、好ましくは、冷媒の熱力学物性値推定式として、溶解に 関しては正則溶解モデル、状態方程式に関しては SRK (Soave_Redlich_Kwon g)の式をそれぞれ適用してより高精度の評価をすることができる。
[0025] 更に、冷媒の凝縮に係る物理的因子としては、吐出圧 (圧縮器圧力)、凝縮器出口 温度、二酸化炭素とジメチルエーテルの混合比率、周囲外気温度、冷媒が保持して レ、る臨界温度がある。これらの物理的因子を前記 SRK状態方程式に代入して数値 シミュレーションすることにより凝縮率 (凝縮の有無)も求めることができる。
[0026] ここで、凝縮サイクルが構築できる条件としては、閾値以上の吐出圧を有することと 、周囲外気温度が冷媒の臨界温度、凝縮器出口温度よりも低レ、ことが要求される。た だし、吐出圧は二酸化炭素とジメチルエーテルの混合比率によって変化する。
[0027] 本発明の冷媒組成物を好適に使用できる冷凍機としては、カーエアコン、 自動販 売機用ヒートポンプ、業務用'家庭用エアコン及びガスヒートポンプ (GHP) 'エレクトリ カルヒートポンプ (EHP)等がある力 これらに限定されなレ、。また、本発明の冷媒組 成物は、 R22等の既存の冷媒が使用されているカーエアコン、 自動販売機用ヒート ポンプ、業務用 ·家庭用ェアコン及び GHP · EHP等に原則的にそのまま使用するこ とができる。しかしながら、本発明の冷媒組成物の物性を考慮して、凝縮器やピストン 等の機構面を本発明の冷媒組成物に適合させるように改良 ·設計することが更に望 ましい。
[0028] [実施例]
以下、実施例により本発明の内容を更に具体的に説明するが、本発明はこれらの 実施例に何等限定されるものではない。
[0029] ジメチルエーテル Z二酸化炭素の溶解性試験
ジメチルエーテル (DME)と二酸化炭素(CO )混合系の溶解の程度を調べるため
2
、及び後述する冷媒サイクルシステムにおける混合冷媒の成績係数を求めるために 、 DME/COの溶解性試験を行った。試験方法は以下の通りである。
2
(1)圧力容器(500mL)に 300gのジメチルエーテルを封入し、封入後の重量を電子 天秤で測定する。
(2)恒温槽に圧力容器を入れ、一定温度にする。
(3)ブースターポンプで一定圧力まで、二酸化炭素を注入する。
(4)充填した二酸化炭素は充填前後の重量から算出する(d = 0. lg)。
[0030] 尚、充填時には、 DME/COが十分に混合するように圧力容器を上下に振とうさ
2
せ、縦置きに静置して試験を行った。
[0031] 得られた結果を表 1に示す。表 1に示したとおり、 CO及び DMEの K_volumeの
2
値は、測定条件においてそれぞれ 0. 66く KDMEく 0. 80及び 2. 59 <KCO < 3
2
. 42の範囲であり、 DMEに二酸化炭素が良く溶解することが分かる。
[0032] [表 1] DME/C02 ½UESte¾
ケース A B C D 系の圧力 1 0. 0 1 0. 0 1 0. 0 1 . 0 系の温度 (°C) 1 0 20 30 40
Z C02(g-mol) 1 . 682 1 . 500 0. 977 1 . 045
Z D M E (g-mol) 6. 522 6. 522 6. 522 6. 522
V(g-mol) 1 . 1 77 1 . 378 2. 090 0. 661
L(g-mol ) 7. 027 6. 634 5. 409 6. 906
YC02(mo1%) 43. 2 42. 9 26. 3 39. 0
XC02(mol¾) 1 6. 7 1 3. 7 7. 9 1 1 . 4
KC02 (-) 2. 59 3. 1 3 3. 33 3. 42
YD E(mol%) 56. 8 57. 1 73. 7 6 1 . 0
X DME(moU) 83. 7 86. 3 92. 1 88. 6
KD E 0. 68 0. 66 0. 80 0. 69
C02 = V*YC02+L*XC02
C02 + Z DME = V + L
■ KC02 = YC02/XC02
■ KD E=YD E/XDME
[0033] (第 1実施例)
図 1に示す冷媒サイクルシステムにおけるジメチルエーテルと二酸化炭素との混合 冷媒の成績係数(COP)を求める。数値ケミカルプロセスシミュレーターを用いてシミ ユレーシヨンを以下の手順で行った。
[0034] シミュレーション手順
図 1の冷媒サイクルシステムにおけるストリーム(1)〜(4)の状態量(体積、ェンタル ピー、エントロピ一等)をシミュレーションにより決定し、次式の成績係数 C〇Pを求め
[0035] COP = Hl/H2
HI:冷媒の凝縮器での総排熱量
H2: (4)から(1)に至る圧縮器の動力量
このとき、以下の条件設定をした。
[0036] ( 1 ) CO /DME混合冷媒
2
CO /DME混合冷媒の給湯能力を評価するために、圧縮器の吐出圧、蒸発器圧
2
力、 CO ZDME混合比を変動パラメータ一として計算を行う。
2
Pl = 3.7〜6.8MPa P3 = l . 05〜2. 6MPa
冷媒蒸発温度: 8°C前後
DME/CO混合];匕(10/90、 12/88、 15/85、 20/80、 30/70:モノレ];匕)
2
[0037] (2) CO単独冷媒
2
二酸化炭素単独については、本冷房サイクルでは凝縮器出口温度 T2を 31°C以下 に下げる必要があるが、カーエアコン凝縮器熱源は外気であり 31°C以上の外気の場 合は上記凝縮サイクルは成り立たないことから、本シミュレーションは行わなかった。
[0038] DME + CO混合系の気液平衡物件値の推算
2
シミュレーション 'スタディーにおいては、採用する物性推算モデルの精度が重要な ファクターであり、その検討を以下のとおり行った。
[0039] 一般に、気液平衡関係は次式で表される。
[0040] [数 1コ
Figure imgf000009_0001
exp I V i I RTdp ί 気相 Fugacity Coeff.
Ρ System Pressure
yi "気'相モル分'率'
/。) 液相酵 Fugacity
rf] 液相活 S係数
ズ ,· 液相モル分率
exp [ Vi I KTdp Povnting Facter
[0041] ここで、検討すべきは次の 3点である。
(1) DMEに対する γ (°)モデノレ
i
(2) DMEと COの相対的揮発性の程度
2
(3)ェンタルピー及びエントロピーモデノレ
[0042] DMEは含酸素低分子化合物である力 その代表例であるエタノールの沸点は 78 °Cに対して、 DMEの沸点は 25°Cであることから、アルコール、アルデヒド、ケトン 基等のように強い極性を持たないことが分かる。従って、 DMEの γ (Q)に対しては正 則溶解モデルが適用できる。 [0043] 前記で得た DMEZCOの溶解性試験データ(表 1)から、 CO及び DMEの K_v
2 2
olumeの値は、測定条件においてそれぞれ 0. 66く KDMEく 0. 80及び 2. 59 < K CO < 3. 42の範囲にあり、 DMEと C〇の揮発性にはそれほど大きな差がないこと
2 2
が分かる。これにより、 f (Q)に対しては、蒸気圧モデルが適用できる。
i
[0044] また、ェンタルピー及びエントロピーに対しては、 DME + CO系の想定される最高
2
使用圧力は lOMPa程度であることから SRK (Soave— Redlich— Kwong)の状態 方程式を採用することが適切である。
[0045] [数 2]
1+ f 0.48 + 1.574W - 0.176w2 )(1一 Trf2 v - b
Regular Solution Model
Vaper Pressure Model
Ci i, H, S SBK equation of State
Poynting Facter : 考 する
[0046] 尚、系の圧力がある程度高圧(数 MPa)になると Poynting Factorも無視できなく なるので、この点も考慮することとした。
[0047]
次の A、 B2種類のプログラムを使用した。
(1) DME CO A
2
与えられた組成、 T (温度)、 P (圧力)のもとでのフラッシュ計算。
[0048] 与えられた組成及び P1 (圧縮器圧力)のもとでバブルポイント(Bubble Point)を 計算した。
[0049] これらにより、気液平衡物性値推算モデルの精度の確認及び凝縮器における全凝 縮が可能か否かの目処をつけることができる。
(2) DME CO B
2
以上説明したシミュレーターを用いて、ジメチルエーテルと二酸ィ匕炭素を含む混合 冷媒組成物ついて COPを以下のように得た。
実施例 1 [0050] ジメチルエーテル/二酸化炭素混合冷媒の冷房能力を評価するために、圧縮器 圧力(P1)、凝縮器出口温度 (T2)、蒸発器圧力(P3)及び DME/COの混合比を
2 変動パラメータ一としてシミュレーションを行った。この際、凝縮器出口温度 T2を 35 °C及び蒸発器温度を平均 4〜5°Cに設定した。表 2にシミュレーションを行った DME /CO重量混合比を、表 3にその混合比の冷媒組成物の冷房特性についてのシミュ
2
レーシヨン結果を示す。
[0051] [表 2]
Figure imgf000011_0001
Figure imgf000011_0002
[0052] [表 3]
Figure imgf000012_0001
表 3から明らかな通り、 DME/CO混合冷媒では CO の臨界圧力以下で冷房サイ クルが構築できる。更に、 DME/CO混合比が不燃性領域(DMEのモル比が 10 〜12%)においては、凝縮器出口温度が 35°Cでも圧縮器圧力が 6. 8MPa程度で 作動でき、 C〇Pは 2. 0である。また、 DMEZCO混合比で DMEの濃度が大きくな
2
るに従い圧縮器作動圧は急激に減少するため、難燃性の条件を緩和すれば優れた 溶媒となる可能性がある。
図面の簡単な説明
[図 1]カーエアコン用冷媒サイクルシステム。
[図 2]DME CO B プログラムフロー。

Claims

請求の範囲
ジメチルエーテルと二酸化炭素の総モル数を基準として、ジメチルエーテルを 10〜 40モル%、二酸化炭素を 90〜60モル%とを含有する冷凍機用冷媒組成物。
冷凍機がカーエアコン、 自動販売機用ヒートポンプ、業務用'家庭用エアコンである 請求項 1に記載の冷媒組成物。
請求項 1に記載の冷媒組成物を請求項 2に記載の冷凍機に使用する方法。
PCT/JP2006/316087 2005-11-25 2006-08-16 冷媒組成物 WO2007060771A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06796447A EP1956067A1 (en) 2005-11-25 2006-08-16 Refrigerant composition
US12/094,400 US20090267018A1 (en) 2005-11-25 2006-08-16 Refrigerant Composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-339840 2005-11-25
JP2005339840A JP2007145922A (ja) 2005-11-25 2005-11-25 冷媒組成物

Publications (1)

Publication Number Publication Date
WO2007060771A1 true WO2007060771A1 (ja) 2007-05-31

Family

ID=38067008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316087 WO2007060771A1 (ja) 2005-11-25 2006-08-16 冷媒組成物

Country Status (6)

Country Link
US (1) US20090267018A1 (ja)
EP (1) EP1956067A1 (ja)
JP (1) JP2007145922A (ja)
KR (1) KR20080080576A (ja)
CN (1) CN101316911A (ja)
WO (1) WO2007060771A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300021A (ja) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp 冷凍サイクル装置
FR2976289B1 (fr) * 2011-06-07 2013-05-24 Arkema France Compositions binaires de 1,3,3,3-tetrafluoropropene et d'ammoniac
JP5690905B1 (ja) * 2013-11-06 2015-03-25 株式会社サーモマジック 冷凍機用冷媒組成物及び冷凍庫
CN117970970B (zh) * 2024-03-15 2024-06-18 中山清匠电器科技有限公司 一种基于vpsa方式的制氧无油压缩机及其控制***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096071A (ja) * 1998-09-21 2000-04-04 Nippon Mitsubishi Oil Corp ジメチルエーテルを冷媒とする冷凍機用潤滑油
JP2000104085A (ja) * 1998-09-29 2000-04-11 Nippon Mitsubishi Oil Corp ジメチルエーテルを冷媒とする冷凍機用潤滑油
JP2001019944A (ja) * 1999-07-09 2001-01-23 Matsushita Electric Ind Co Ltd 低温作動流体とそれを用いた冷凍サイクル装置
JP2002235072A (ja) * 2001-02-09 2002-08-23 Matsushita Electric Ind Co Ltd 混合作動流体とそれを用いた冷凍サイクル装置
JP2005344057A (ja) * 2004-06-04 2005-12-15 Japan Petroleum Exploration Co Ltd ジメチルエーテルと二酸化炭素の混合物冷媒
JP2006241221A (ja) * 2005-03-01 2006-09-14 Japan Petroleum Exploration Co Ltd カーエアコン用冷媒組成物

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9609579A (pt) * 1995-07-10 1999-02-23 Idemitsu Kosan Co Oleo refrigerante e processo para lubrificação usando o óleo refrigerante
JP2000273479A (ja) * 1999-03-26 2000-10-03 Nippon Mitsubishi Oil Corp 冷凍機油組成物
JP3528745B2 (ja) * 2000-03-06 2004-05-24 日本電気株式会社 携帯無線機
JP2002038174A (ja) * 2000-07-24 2002-02-06 Nippon Mitsubishi Oil Corp 冷凍機油組成物
JP4643836B2 (ja) * 2001-01-26 2011-03-02 Jx日鉱日石エネルギー株式会社 二酸化炭素冷媒用冷凍機油及び冷凍機用流体組成物
JP2004149635A (ja) * 2002-10-29 2004-05-27 Daimaru Sangyo Kk ポリオレフィン樹脂組成物およびその製造方法
US20050211949A1 (en) * 2003-11-13 2005-09-29 Bivens Donald B Detectable refrigerant compositions and uses thereof
US20050145822A1 (en) * 2003-11-13 2005-07-07 Drigotas Martin D. Refrigerant compositions comprising UV fluorescent dye and solubilizing agent
JP2006022305A (ja) * 2004-06-04 2006-01-26 Japan Petroleum Exploration Co Ltd ジメチルエーテルと二酸化炭素の混合物冷媒
JP4693440B2 (ja) * 2005-03-01 2011-06-01 株式会社近代化成 道路舗装用エポキシ樹脂プライマー組成物とそれを用いた道路舗装方法
JP4680644B2 (ja) * 2005-03-22 2011-05-11 国立大学法人佐賀大学 ジメチルエーテルと二酸化炭素との混合物冷媒を利用した寒冷地対応ヒートポンプに多段エジェクタを組み込んだサイクルシステム
JP2007002119A (ja) * 2005-06-24 2007-01-11 Nkk Kk 二酸化炭素−dme混合ガスの製造方法
JP5407052B2 (ja) * 2005-08-17 2014-02-05 昭和電工ガスプロダクツ株式会社 冷媒組成物
JP5407053B2 (ja) * 2005-09-27 2014-02-05 昭和電工ガスプロダクツ株式会社 冷媒組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096071A (ja) * 1998-09-21 2000-04-04 Nippon Mitsubishi Oil Corp ジメチルエーテルを冷媒とする冷凍機用潤滑油
JP2000104085A (ja) * 1998-09-29 2000-04-11 Nippon Mitsubishi Oil Corp ジメチルエーテルを冷媒とする冷凍機用潤滑油
JP2001019944A (ja) * 1999-07-09 2001-01-23 Matsushita Electric Ind Co Ltd 低温作動流体とそれを用いた冷凍サイクル装置
JP2002235072A (ja) * 2001-02-09 2002-08-23 Matsushita Electric Ind Co Ltd 混合作動流体とそれを用いた冷凍サイクル装置
JP2005344057A (ja) * 2004-06-04 2005-12-15 Japan Petroleum Exploration Co Ltd ジメチルエーテルと二酸化炭素の混合物冷媒
JP2006241221A (ja) * 2005-03-01 2006-09-14 Japan Petroleum Exploration Co Ltd カーエアコン用冷媒組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 138, no. 26, 2003, Columbus, Ohio, US; abstract no. 138:403608G, LIU H. ET AL.: "Preparation of refrigerants" XP003012364 *

Also Published As

Publication number Publication date
JP2007145922A (ja) 2007-06-14
EP1956067A1 (en) 2008-08-13
CN101316911A (zh) 2008-12-03
KR20080080576A (ko) 2008-09-04
US20090267018A1 (en) 2009-10-29

Similar Documents

Publication Publication Date Title
Bolaji Experimental study of R152a and R32 to replace R134a in a domestic refrigerator
CN103228758B (zh) 包含(e)-1,1,1,4,4,4-六氟丁-2-烯的制冷剂
CN102264860B (zh) 用于冷却器应用的反式-氯-3,3,3-三氟丙烯
JP5407052B2 (ja) 冷媒組成物
CN102634321A (zh) 2,3,3,3-四氟丙烯和氨的二元组合物
CN101400756A (zh) 热循环用工作介质、朗肯循环***、热泵循环***及制冷循环***
JP7060017B2 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JP2006241221A (ja) カーエアコン用冷媒組成物
Karagoz et al. R134a and various mixtures of R22/R134a as an alternative to R22 in vapour compression heat pumps
WO2007060771A1 (ja) 冷媒組成物
JP7081600B2 (ja) 共沸または共沸様組成物、熱サイクル用作動媒体および熱サイクルシステム
WO2005118738A1 (ja) ジメチルエーテルと二酸化炭素の混合物冷媒
RU2405018C2 (ru) Композиция хладагента
JP2006022305A (ja) ジメチルエーテルと二酸化炭素の混合物冷媒
JPH07502774A (ja) 冷媒として有用な組成物
TWI535684B (zh) 冷媒組合物
JP2006124462A (ja) 冷媒組成物
Hwang et al. Opportunities with alternative refrigerants
Austin et al. Environment friendly mixed refrigerant to replace R-134a in a VCR system with exergy analysis
JP2006143898A (ja) 冷媒組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680044191.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12094400

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006796447

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: KR