WO2007055400A1 - Steel sheet for continuous cast enameling with highly excellent unsusceptibility to fishscaling and process for producing the same - Google Patents

Steel sheet for continuous cast enameling with highly excellent unsusceptibility to fishscaling and process for producing the same Download PDF

Info

Publication number
WO2007055400A1
WO2007055400A1 PCT/JP2006/322786 JP2006322786W WO2007055400A1 WO 2007055400 A1 WO2007055400 A1 WO 2007055400A1 JP 2006322786 W JP2006322786 W JP 2006322786W WO 2007055400 A1 WO2007055400 A1 WO 2007055400A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
oxides
steel
oxide
Prior art date
Application number
PCT/JP2006/322786
Other languages
French (fr)
Japanese (ja)
Inventor
Hidekuni Murakami
Satoshi Nishimura
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to CN2006800507081A priority Critical patent/CN101356295B/en
Priority to EP06823434.3A priority patent/EP1950317B1/en
Priority to JP2007544239A priority patent/JP4954889B2/en
Priority to US12/084,609 priority patent/US20090047168A1/en
Priority to ES06823434.3T priority patent/ES2568678T3/en
Publication of WO2007055400A1 publication Critical patent/WO2007055400A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D5/00Coating with enamels or vitreous layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Definitions

  • the present invention relates to an enameled steel sheet having excellent enamel characteristics (foam resistance / spot resistance, adhesion, resistance to picking) and processing characteristics, and a method for producing the same, and is characterized by being obtained by continuous forging.
  • Patent No. 3 2 0 60 4 4 6, Patent No. 3 3, for example, can produce a steel sheet for enamel with good heat resistance by B.
  • Patent Document 1 discloses that since the deoxidizing ability of B is small, the amount of oxygen in the steel can be kept high.
  • Patent No. 3 6 1 3 8 1 0 is unknown in detail, but B is effective in preventing claw jumping and foaming. Abnormal etching of grain boundaries on the steel sheet surface by sulfuric acid pickling before enamelling Further, the present inventors have tried to improve a steel sheet for brazing containing B and having excellent tensile properties and deep drawability. -8 0 9 3 4 and Japanese Patent Application Laid-Open No.
  • the present invention develops the technology of the above-mentioned steel sheet for brazing steel, and it is possible to further improve the toughness by controlling not only the nitride but also the oxide form.
  • the purpose is to provide a steel sheet for continuous forging enamel that has excellent resistance to tearing and that can be spun into a brazing wax, and its manufacturing method.
  • Akira is a conventional steel sheet, obtained through examination of the seeds to optimize the steel sheet manufacturing method to the utmost limit, and with regard to the loose characteristics of the enameled steel sheet, especially for B-containing steels. As a result of investigating the influence of manufacturing conditions, especially melting conditions, the following items 1) to 5) were newly discovered.
  • the magnitude of the variation of the element concentration in the oxide can be controlled by the addition of elements during melting, especially the timing of addition of oxide-forming elements.
  • the present invention has been completed based on the above findings.
  • oxides having different compositions or integrated oxides in a final product that has undergone a process in which rolling is performed either hot or cold. Even a product is characterized by having a large compositional variation in the interior and also presenting it in a specific preferred form.
  • the gist of the present invention is as follows.
  • a 1 0.0 3 0% or less
  • N b Less than 0.04% (including zero),
  • the steel sheet for continuous forging enamel having excellent toughness resistance according to any one of the above (1) to (3).
  • the steel sheet for continuous forging brazing excellent in toughness resistance according to any one of the above (1) to (4), characterized by comprising:
  • B There is a distribution of mass concentration, and the ratio of B mass concentration (B ma X%) in the high concentration part to B mass concentration (B min%) in the low concentration part is B ma X / B min ⁇ 1.2
  • B ma X the ratio of B mass concentration in the high concentration part to B mass concentration (B min%) in the low concentration part is B ma X / B min ⁇ 1.2
  • the composite oxide has a linear distance between the centers of both composite oxides of 0.1 m or more and within 20 Atm, and the straight line connecting the centers of both composite oxides is within ⁇ 10 ° from the rolling direction.
  • the steel sheet for continuous and forged enamel which is excellent in toughness resistance according to any one of the above (1) to (7), characterized in that it exists at an angle of
  • Mn mass concentration of complex oxides in which oxides such as Fe, Mn, Si, A1, Nb, B, V, Cr, etc. in the plate are combined and integrated (%) Of another composite oxide with an Mn mass concentration (%) of at least 1.2 times or less than 1 / 1.2 times the linear distance between the centers of both composite oxides of at least 0.1 m, Any one of the above (1) to (8), characterized in that a straight line connecting the centers of both composite oxides exists within an angle of ⁇ 10 ° from the rolling direction. Steel sheet for continuous forging enamel with excellent resistance to tears as described.
  • N b Less than 0.04% (including zero),
  • a method for producing a steel sheet for continuous forging enamel having excellent durability and resistance according to (10) or (11), characterized by comprising
  • the thickness of the strip is 1 to 4 layers, and the cooling rate during solidification is ⁇ 10 ° CZ seconds.
  • FIG. 1 is a diagram for explaining the state of oxides when rolling steel containing a coarse composite oxide having a large concentration difference between B and Mn.
  • Fig. 2 is a diagram for explaining the state of an oxide when rolling steel containing a conventional coarse oxide.
  • Fig. 3 is a diagram illustrating the state of oxides when rolling steel containing fine oxides.
  • FIG. 4 is a diagram for explaining that when a steel containing a coarse composite oxide having a large concentration difference between B and Mn is rolled, voids around the composite oxide become large.
  • Fig. 5 is a diagram for explaining that the voids around the composite oxide are small when rolling steel containing coarse composite oxide with no concentration difference.
  • the diameter of the oxide to be controlled in the present invention is set to 0.10 zm or more. Oxides smaller than this range are subject to special control because they greatly reduce the effect of improving the resistance to squeezing, that is, the hydrogen permeation-preventing ability, which is a major characteristic of the steel of the present invention. There is no need. Preferably, even for oxides of 0.50 ⁇ or more, more preferably 1.0; m or more, and even more preferably 2.0 m or more, Features are recognized.
  • the upper limit of the diameter is not particularly limited in consideration of the effect of the present invention. However, depending on the oxygen content, if the amount of coarse oxide increases, the number density of the oxide decreases and the effect of inhibiting hydrogen permeation decreases.
  • the average of oxide It is preferable that the diameter is 15 m or less, preferably 10 / zm or less, and more preferably 5 m or less.
  • One of the characteristics of the oxide defined in the present invention is the B concentration of the oxide.
  • it is necessary to specify a high density and a low density, and 1 0 0 111 1 0 0 111 which is a size of 0.0 or more in the field of view is measured. That is, there are non-integral oxides with different B concentrations in the concentrations measured for the oxide in the observation field of 100 ⁇ m X 100 m in the cross section of the plate, and a high concentration of B concentration (B max ) And low concentration B concentration (B min), B max / B min ⁇ l.
  • the B concentration ratio is 1.2 or more, as will be described later, the shape change of the oxide during rolling and the formation of voids associated therewith can be performed efficiently.
  • the property is remarkably improved.
  • it is 1.5 or more, more preferably 2.0 or more, still more preferably 4.0 or more, and still more preferably 6.0 or more.
  • the concentration of each element in the oxide for defining the present invention is not particularly limited, but the concentration of each oxide needs to be specified. is there.
  • an energy dispersive X-ray dispersive analyzer EDAX
  • the measurement method may be a normal method. However, since it is necessary to determine the concentration in a very small area, care must be taken such as making the beam diameter of the electron beam sufficiently small.
  • the ratio of the heights of the detection peaks may be used. It should be noted that the density ratio between the high density part and the low density part tends to increase as the size of the measurement area decreases. Ultimately, if the concentration of a region of one atom is measured, it can be assumed that the high concentration part is 100% and the low concentration part is 0%. In the present invention, an electron beam irradiation area of a general TEM or SEM that is usually used by the present inventor is considered, and an average value in an area of about 0.01 to 0.1 m is used. Shall.
  • the information obtained is from a wide area of the set electron beam diameter.
  • the reason for improving the resistance to slipping that is, the hydrogen permeation blocking ability is not clear, but it is considered as follows.
  • the oxide dispersed in the steel of the present invention was originally an integral oxide as described later.
  • the oxide was mainly stretched in the hot rolling process, and is mainly crushed in the cold rolling process.
  • the degree of stretching differs depending on the oxide part, and the shape of the oxide becomes complicated.
  • the thinned (thinned) part is preferentially crushed, and the part with a large variation in shape is subject to deformation stress. It is expected that crushing will be given priority due to concentration. As a result, the parts having different compositions are efficiently crushed and dispersed. During such efficient crushing, a large number of voids are formed, which become hydrogen trap sizes in the steel, remarkably exhibiting the hydrogen permeation-preventing ability required for steel plates, that is, the anti-slip property. It is thought that it is the power of improvement. The above will be explained in detail using figures. When there is a large concentration difference of BM n in the oxide, the coarse composite oxide 1 is crushed by hot rolling 2, stretching 3, and cold rolling 4 as shown in Fig.
  • the effect of the present invention can be sufficiently obtained when the gaps between the complex oxides formed in this way are crushed and lost by rolling in the same hot rolling process.
  • This is shown schematically in Figure 45.
  • the composite oxide itself has the same size and arrangement, in the invention steel as shown in Fig. 4 where there is a large concentration difference of BM n in the composite oxide and the composite oxide containing a large void forming ability,
  • the void around the complex oxide is larger than 1 1, which is preferable for improving the anti-slip property.
  • the oxide with the same concentration shown in Fig. 5 has a small void.
  • composite oxides with different compositions However, it also has a specific relative positional relationship in the steel sheet.
  • a complex oxide exhibiting a high B concentration and a complex oxide exhibiting a low B concentration have a concentration ratio of 1.2 times or more, and the straight line connecting the centers of the complex oxides is an angle of ⁇ 10 ° from the rolling direction.
  • the composite is characterized in that it exists within 0.1 O m or more and 2 O wm or less in the linear distance between the oxide centers.
  • the angle is preferably within an angle of 7 ° on the soil, more preferably within an angle of ⁇ 5 °, and more preferably within an angle of ⁇ 3 °, and is characterized by being arranged linearly in the rolling direction.
  • the reason for this is not clear, but it is important that the hydrogen permeation blocking capability required for this steel sheet efficiently prevent hydrogen permeation from the center of the steel sheet thickness to the surface.
  • the composite oxide featured in the present invention can be further improved in characteristics by being arranged in parallel to the steel plate surface. Needless to say, as long as it is parallel to the surface of the steel sheet, it is not limited to a specific angle from the rolling direction as described above. Since it is difficult to arrange the composite oxides, it is assumed that the composite oxide is dispersed by rolling, and in the present invention, the arrangement is defined by the angle from the rolling direction.
  • the distance between the target complex oxides is characterized by a linear distance of 0 to 10 nm or more and 20 m or less. Outside this range, the resistance to picking will deteriorate. Preferably it is 0.20 m or more, more preferably 0.30 mm or more, more preferably 0 to 40 m or more, and further preferably 0.5 0 / m or more. Is preferred. The reason why the effect of the invention is affected by the lower limit of the distance is not clear, but there are finer complex oxides and concentrations between the target complex oxides. There are also complex oxides with a small difference, and it is considered that the hydrogen permeation blocking ability is also influenced by these complex oxides.
  • the upper limit is preferably 20 m or less, more preferably 10 m or less, further preferably 5 ⁇ m or less, and further preferably 1 m or less. The reason for specifying the upper limit is that if the target complex oxide is too far away, it is in line with the idea of stretching and crushing the coarse complex oxide that was originally integrated, as assumed in the present invention. This is because it disappears. According to the normal manufacturing method, it is often placed within 0.5; m.
  • the effects of the present invention are exhibited even when complex oxides having different compositions are not completely separated. That is, there is a variation in B concentration within one complex oxide present in the steel sheet, and the ratio between the B concentration (B max) in the high concentration part and the B concentration (B min) in the low concentration part is B max. / B min ⁇ 1.2 is sufficient. Preferably, it is 1.5 or more, more preferably 2.0 or more, more preferably 2.5 or more, and still more preferably 3.0 or more. Similarly, there is a variation in Mn concentration within one complex oxide present in the steel sheet, with the Mn concentration (Mnmax) in the high concentration part and the Mn concentration (Mnmin) in the low concentration part. The specific power of ⁇ M nmax / nmin ⁇ 1.2 is sufficient. Preferably, it is 1.5 or more, more preferably 2.0 or more, more preferably 4.0 or more, and still more preferably 6.0 or more.
  • the reason for this is that, as described above, the coarse composite oxide, which was originally integral, is stretched and crushed. This is because, in usual observations, it is possible to think that the bonds are partially connected. Even in such a case, the shape of the complex oxide becomes very complex, and voids are effectively formed around it, acting as a hydrogen wrapping layer, and the concentration of the complex oxide is mainly changed. Defects formed along with the change in deformability caused by the hydrogen wraps hydrogen so that the effect of the present invention can be detected.
  • a particularly desirable composite oxide exists as a B 1 M n 1 Fe composite oxide. It is a feature of the present invention that the composition and form (arrangement) of this composite oxide are optimally controlled.
  • different composite oxide compositions mean that the composite oxide has different properties, such as hardness and ductility, and has a significant effect on the state of stretching and crushing of the composite oxide during hot rolling and cold rolling.
  • the situation is Controlling the content of each element in the complex oxide is extremely important for improving the properties of the steel sheet.
  • ⁇ S is compositely precipitated in the composite oxide, and the effect of the present invention is made more remarkable due to a large difference in stretchability and friability between the sulfide and the oxide.
  • the interaction effect of MnS and oxides on the anti-slip property is more effective in steels containing ⁇ than in conventional steels, and therefore, composite oxidation containing ⁇ and ⁇ . This is thought to be a feature of MnS, in which precipitation is promoted with the material as the nucleus.
  • the lower the C the better the workability.
  • it is set to not more than 0.010%.
  • it is desirable to make it not more than 0.025%. Even better The preferred range is below 0. 0 0 1 5%.
  • the lower limit is not particularly limited, but lowering the C content increases the steelmaking cost, so 0.000% or more is desirable.
  • S i can also be included in a small amount to control the composition of the oxide.
  • the content should be 0.0 0 1% or more.
  • the excessive content not only tends to inhibit the enamel characteristics, but also forms a large amount of Si oxide that is poor in ductility in hot rolling, which may reduce the resistance to tensile strength.
  • it is 0.030% or less, and more preferably 0.015% or less. From the standpoint of improving foam resistance, sunspot resistance, etc. and obtaining better enamel surface properties, the preferred range is 0.08% or less.
  • M n is an important component that affects the oxide composition variation in relation to the amounts of oxygen and Nb added. At the same time, it is an element that prevents hot brittleness caused by S during hot rolling. In the present invention containing oxygen, the content is 0.03% or more. Desirably, it is 0.05% or more. In general, when the amount of M n is high, the enamel adhesion becomes poor and bubbles and black spots are likely to occur. However, in the steel of the present invention that makes maximum use of M n as an oxide, the addition of M n Therefore, the deterioration of these characteristics is small. Rather, it is added actively because the oxide composition can be easily controlled by increasing Mn. That is, the upper limit of the Mn amount is specified as 1.30%. The upper limit is desirably 0.80%, and more preferably, the upper limit of M n is 0.60%.
  • O is an essential element in the present invention because it directly affects the toughness and workability, and at the same time affects the toughness resistance in relation to the amounts of M n and N b.
  • 0.005% or more is necessary.
  • it is 0.0 10% or more, more preferably 0.015% or more, and still more preferably 0.020% or more.
  • the upper limit is preferably 0.085%.
  • it is 0.065% or less, more preferably 0.055% or less.
  • a 1 is an oxide-forming element, and it is desirable that an appropriate amount of oxygen in the steel be present in the steel as an oxide in order to improve the enamelability as an enamel characteristic. In order to acquire this effect, it is contained 0.02% or more.
  • a 1 is a strong deoxidizing element. If it is contained in a large amount, it becomes difficult not only to keep the oxygen amount required by the present invention in the steel, but also to the ductility in hot rolling. It may form a large amount of poor A 1 oxide and reduce the resistance to sticking. Therefore, A 1 is set to 0.0 3 0% or less. Preferably it is not more than 0.015%, more preferably not more than 0.010%, more preferably not more than 0.05%.
  • N is an interstitial solid solution element like C. If it is contained in a large amount, Nb, and even if nitride-forming elements such as V and B are added, workability tends to deteriorate. It is difficult to manufacture non-aging steel sheets. For this reason, the upper limit of N is set to 0.0 0 5 5%. Desirably, it is 0.00 4 5% or less.
  • the lower limit is not particularly limited, but it is costly to melt to less than 0.0 0 10% in the current steelmaking technology, so it is desirable that the lower limit is 0.0 0 10% or more.
  • the P content is not more than 0.035%.
  • the P content is not more than 0.025%, more preferably not more than 0.015%, more preferably not more than 0.010%.
  • S forms an Mn sulfide and, in particular, precipitates this sulfide in an oxide complex, thereby effectively forming voids during rolling and improving the resistance to squeezing. It may be 0% which is not contained at all, but in order to obtain this effect, 0.02% or more is necessary.
  • it is 0.05% or more, more preferably 0.010% or more, and even more preferably 0.015% or more.
  • the upper limit is made 0.080%.
  • it is 0.060% or less, more preferably 0.040% or less.
  • B is an essential element in the present invention.
  • B fixes N, improves deep drawability, is non-aging, and is necessary for imparting high workability, and also has an effect of improving adhesion.
  • the added B combines with the oxygen in the steel to form an oxide, which works effectively in preventing stiction.
  • 0.0 3 or more is required. More preferably 0.0 0 0 8% or more, still more preferably 0.0 0 1 2% or more, still more preferably 0.0 0 1 5% or more, and still more preferably 0. 0 0 2 0% or more.
  • the upper limit is 0.0. 5 0%.
  • it is not more than 0.0 1 5 0%, more preferably not more than 0.0 0 80%.
  • Elements that have the same effect as B include Nb and V.
  • Nb When Nb is added alone, the effect of improving the r-value is remarkable, but there is also the aspect that the deterioration of elongation is large and hinders the improvement of the additive property, but in the steel according to the present invention containing B essentially, the recrystallization temperature is Remarkably increased, and annealing at very high temperatures is required to obtain good workability after cold rolling and annealing, reducing the productivity of annealing Let For this reason, it is preferable to keep it low, and it should not exceed 0.0 400%. Further, it is preferably 0.025% or less, more preferably 0.0015% or less. If it is 0, it is not necessary to consider the adverse effect of Nb.
  • V is related to the effect on workability.
  • the upper limit is wide because of the balance with the amount of oxygen remaining in the steel, which is equivalent to Nb.
  • the effect of increasing the crystal temperature is smaller than that of N b, and also has the effect of remarkably improving the anti-tack property by forming a composite oxide by adding it together with B.
  • 0.0 3% or more is necessary.
  • it is 0.06% or more, more preferably 0.010% or more, and still more preferably 0.015% or more.
  • Addition cost and foam resistance From the viewpoint of sunspot resistance, the upper limit is 0.15%.
  • the content of B is 0.001 to 5% or more and the effect of the invention is obtained with B alone, 0.0 60% or less, and further 0.04 0% or less This is sufficient.
  • Cu is added to control the reaction between glass and steel during enamel firing.
  • Cu segregated on the surface during pretreatment has the effect of promoting microscopic fluctuations in the reaction and improving adhesion.
  • the effect due to surface prayer is small, but it affects the microscopic reaction between laxatives and steel.
  • 0.0 1% or more is added as necessary. Inadvertently excessive addition not only hinders the reaction between glass and steel, but may also degrade workability. To avoid such adverse effects, the content should be 0.5 0 0% or less. Is preferred.
  • a preferable range ffl is 0.01 5 to 0.200%.
  • the total of one or more species is 1.0% or less, preferably 0.5.
  • % Or less more preferably 0.1% or less. If it is contained in a large amount, the reaction with the oxide-forming element cannot be ignored, and the composition and form of the oxide become unfavorable. However, the effects of the present invention can be achieved even when more amounts are added. Is not lost, and expects merit in terms of manufacturing or quality other than the one assumed by the present invention.
  • the addition procedure of Mn and B to molten steel is 80% or more of the total amount of Mn. It is advantageous from the viewpoint of productivity to allow 1 minute or more to elapse after addition of 80%, and to add 80% or more of the total addition amount of B, and forging within 60 minutes.
  • V and N b which have the same effect as B, it is basically preferable to add from elements with weak deoxidizing ability, and in the order of M n, V, N b and B
  • the effect of the present invention can be obtained more remarkably.
  • 80% or more of the total added amount of each element is added, and then the next element is added.
  • the amount added at less than 10% of the total amount added to adjust the final components after the addition of each element shall be excluded from consideration of the amount added here. It is preferable to allow each element to be added for a period of 1 minute or longer. More preferably, 2 minutes or more, more preferably 3 minutes or more. Also, forging within 60 minutes after adding all elements It is preferably within 40 minutes, more preferably within 20 minutes.In the forging process, the cooling rate during solidification with a thickness of the strip thickness of 1 4 ® is less than 10 seconds. As a result, the effect of the invention becomes more prominent. Preferably less than 5 ° CZ seconds, more preferably less than 2 at / second
  • it is 1 ° C / second or less, more preferably 0.5 ° C / second or less, further preferably 0.1 to Z seconds or less.
  • M n VN b B can be combined at one time.
  • the effect of the present invention can be obtained even if any two or more elements are added at once or separately.Mn VN b B can be added all at once. If two or more elements are added at once or separately, it is necessary to adjust the oxygen concentration in the molten steel to the range of 0 0 1 0 0 .0 70 0%. May fall.
  • B nitride is one of the purposes. With It binds with high affinity N to form B nitride, and does not effectively form B oxide sufficient to function as a hydrogen trap size.
  • Mn oxide is formed by adding Mn first as in the above-described manufacturing method. After that, B is compounded with oxides such as Mn by adding B or adjusting and adding the oxide itself having an effective concentration distribution. An oxide having a large variation is formed.
  • the formation of the optimum complex oxide as described above does not occur only due to the change of the component due to the addition of elements or the elapsed time, but is also strongly related to temperature.
  • the solubility of various elements in the steel also changes greatly, and this has a considerable effect on composition fluctuations.
  • the cooling rate at the time of solidification is important in order to obtain the effect of the invention sufficiently.
  • the cooling rate of the slab during forging differs depending on the position in the thickness direction.
  • the thickness is defined by the cooling rate with a thickness of 14 layers. 1 Z 4 layer cooling rate is
  • the composite oxide targeted in the present invention can obtain the effect of the invention remarkably at the stage where the average diameter is 1.O ⁇ m or more at the time of the piece having been solidified.
  • the average diameter is 1.O ⁇ m or more at the time of the piece having been solidified.
  • it is 4 O / ⁇ m or more, more preferably ⁇ ⁇ ⁇ or more, more preferably ⁇ is 15 m or more, and more preferably 20 m or more.
  • the oxide is coarse at the end of forging because if it is fine, the extensibility of the oxide at the time of slab processing becomes poor, and crushing is less likely to occur. It is. What is specified here is the average diameter, which is usually measured for complex oxides of a size that can be observed with an optical microscope or a low-power scanning electron microscope.
  • the composite oxide of is stretched and crushed by rolling, and changed into a form more suitable for the intended characteristics.
  • a certain amount of processing is necessary, and it is preferable that the thickness of the steel slab after completion of forging is 5 Om m or more.
  • the steel sheet is rolled to about 18 mm by hot rolling, and further to about 20.2 mm by cold rolling, so that the total strain is 3 to 5 or more in logarithmic strain.
  • the composite oxide in the hot rolling process, the composite oxide is softened due to the high temperature, and the hardness difference from the base metal, which is the parent phase, is small. Fracture hardly occurs and the composite oxide is stretched. In addition, when the temperature is lower than 100 ° C. and about 90 ° C. or less, the composite oxide becomes difficult to stretch, but does not cause significant crushing as in the case of cold rolling, and generates minute cracks. Some cracks occur. In order to obtain a composite oxide that has been stretched moderately and has microcracks at the same time before cold rolling, temperature control during hot rolling, strain in each temperature range, and hot working are required. Therefore, control of strain rate is important because of the remarkable recovery of deformed steel and composite oxides.
  • Hot rolling heating temperature, coiling temperature, etc. can be set as usual within the normal operating range.
  • the hot rolling heating temperature may be 100000 or less, but in order to sufficiently obtain the effect of stretching the complex oxide in the hot rolling described above, 1 If the above rolling is performed at 0 00, the temperature is 1 0 5 0 1 3 0 0 ° C and the cutting temperature is about 4 0 0 8 0 0.
  • the cold rolling rate it is preferable to set the cold rolling rate to 60% or more in order to sufficiently crush the complex oxide and to obtain a steel sheet with good deep drawability. Especially when deep drawability is required, the cold rolling rate is preferably 75% or more.
  • the characteristics of the present invention are not changed.
  • the characteristics of the present invention are exhibited as long as the temperature is equal to or higher than the recrystallization temperature.
  • continuous annealing is preferable in order to manifest the characteristics of the present invention, such as excellent deep drawability and good enamel characteristics. It can be performed mainly at 6 5 0 7 5 0 X for box annealing and 7 0 0 8 9 0 V for continuous annealing.
  • the steel sheet in which the composition fluctuation of the composite oxide is controlled as in the present invention has a very good anti-slip property even if it is applied once or twice.
  • the steel plate for enamel has excellent enamel adhesion without generating bubbles and sunspot defects.
  • the method of glazing can be applied not only to wet glazes, but also to dry and powder enamelling without problems.
  • the application is not limited in any way, and it exhibits its characteristics in the field of steel plate enamel as a technical classification, such as bath tubs, tableware, kitchenware, building materials, home appliance panels.
  • A is the sum of true strains applied at 1 00 0 or more and strain rate of 1 nose or more
  • B is 1 00 0 t or less and strain rate of 10 seconds or more Means the sum of true strains given in.
  • the relative position of the oxide that showed high concentration and low concentration ratio is A: Angle ⁇ 5. Within a distance of 0.5 ⁇ m, B: A condition is not satisfied, angle soil is within 10 °, and distance is within 20 m, and C: B condition is not satisfied.
  • the oxide is a composite oxide in which oxides such as Fe, Si, Mn, Al, Nb, V, and B are combined and integrated. In contact with another oxide. Any two complex oxides that are not, and any one complex oxide that is not separated from the same oxide.
  • the enamel was dry-processed by powder electrostatic coating, applied with 100 m of lower glaze and 10 ⁇ ⁇ of upper glaze, and baked in air at 85 CTC for 3 minutes at a dew point of 60.
  • a squeezing acceleration test is performed by placing the fired plate in a thermostatic bath at 160 ° for 10 hours, and the state of occurrence of the pinching is visually observed.
  • the enamel adhesion is usually performed by the P.E.I. adhesion test method (ASTC 3 1 3-5 9), so there is no difference in adhesion, so a 2 kg ball head weight is dropped from the lm height. Let the deformed part peel off Was measured with 16 9 palpation needles and evaluated by the area ratio of the unpeeled portion. As is apparent from the results in Table 3, the steel sheet of the present invention has enamel characteristics.
  • it is a steel plate for enamel that has outstanding resistance to tearing.
  • the effect of improving the durability by controlling the concentration difference of the composite oxide by controlling the production method is clear.
  • the steel sheet satisfying the steel components specified in the present invention has a B ma x / min ratio of another oxide (as defined in claim 1), a M n ma x / of another oxide. min ratio (as defined in claim 2), separate oxide distribution (in claim 8 B insect)
  • M claim 9 defines M n), and 'm a X m i n ratio in the same oxide (B in permanent term 6 and M n in claim 7)
  • steel sheet has 75 to 85% adhesion, foam • excellent enamel characteristics for sunspot, adhesion and anti-slip properties (B ) Or slightly better (C), but the overall evaluation was excellent overall and the intended effect of the present invention was obtained.
  • the comparative example (11 to n2) does not satisfy the requirement for the ma XZ min ratio of B of another oxide (as defined in claim 1),
  • the enamel characteristics (bubbles / spots, adhesion, and resistance to tearing) were inferior, and the effects of the present invention could not be obtained.
  • A is the sum of true strains applied at 100 0 or more and strain rate of 1 / second or more
  • B is applied at 1 00 or less and strain rate of 10 Z seconds or more Means the sum of true distortions.
  • the relative position of oxides with high and low concentration ratios is: A: within an angle ⁇ 5 ° and within a distance of 0.5 m, B: satisfies the A condition This means that the angle is within ⁇ 10 ° and the distance is within 20 m, and C: B condition is not satisfied.
  • the oxide refers to a composite oxide in which oxides such as Fe, Si, Mn, A, Nb, V, B, etc. are combined and integrated. Contact with another oxide. It means any two complex oxides that are not, and any one complex oxide that is not separated from the same oxide.
  • the above oxide is added to the steel number ol only by continuous forging molding.
  • the enameled steel sheet of the present invention satisfies all of the required resistance to enameling, such as anti-foaming / spot resistance, enamel adhesion, and surface characteristics.
  • the anti-tack property is significantly improved, and the defective product rate in the enamel product manufacturing process is greatly reduced, which has great industrial significance.

Abstract

A steel sheet for continuous cast enameling which has highly excellent unsusceptibility to fishscaling and an enhanced hydrogen-trapping ability obtained by improving the ability to form voids in the steel sheet. The steel sheet contains, in terms of mass%, up to 0.010% C, 0.03-1.30% Mn, up to 0.100% Si, up to 0.030% Al, up to 0.0055% N, up to 0.035% P, up to 0.08% S, 0.005-0.085% O, and 0.0003-0.0250% B as steel components. Oxides which differ in boron or manganese concentration by mass are contained in the steel sheet, the oxides having not been united or having been united. The ratio of the maximum concentration to the minimum concentration thereof is regulated to 1.2 or higher. When the oxides have not been united, they are caused to be present so that the distance between the centers of the oxides differing in concentration is from 0.10 µm to 20 µm and the straight line connecting the centers of the two oxides has an angle which is within ±10° based on the rolling direction.

Description

明 細 書 耐つまとび性に著しく優れた連続銬造ほう ろう用鋼板およびその製 造方法 技術分野  Description Continuous forging process with outstandingly high resistance to brazing Steel sheet for brazing and its manufacturing method Technical Field
本発明はほうろう特性 (耐泡 · 黒点性、 密着性、 耐つまとび性) および加工特性の優れたほうろう用鋼板およびその製造方法に関し 特に連続铸造によつて得ることを特徴とするものである。 背景技術  The present invention relates to an enameled steel sheet having excellent enamel characteristics (foam resistance / spot resistance, adhesion, resistance to picking) and processing characteristics, and a method for producing the same, and is characterized by being obtained by continuous forging. Background art
今日のほう ろう用鋼板は 、 製造コス トの低減をはかるべく 、 連続 铸造法によ て製造されるのが通常である。 そして、 加工性とほう ろう性 両 させるため、 様々な添加元素を含めた成分調整が行わ れている。 その 1例と して 、 例えば Bにより加ェ性が良好なほうろ う用鋼板が製造できることは特許第 3 2 6 0 4 4 6号、 特許第 3 3 Today's enamel steel sheets are usually produced by a continuous forging method in order to reduce production costs. In order to achieve both workability and enamelability, component adjustments including various additive elements have been made. As one example, Patent No. 3 2 0 60 4 4 6, Patent No. 3 3, for example, can produce a steel sheet for enamel with good heat resistance by B.
5 8 4 1 0 に開示されている 。 この技術は鋼中の Nを窒化物と し て固定し良好な加工性を付与することが可能な元素として Bを添加 したものである。 更に、 特許文献 1 は、 Bの脱酸能が小さいため鋼 中の酸素量を高く保持することが可能であることを開示している。 特許第 3 6 1 3 8 1 0号は、 詳細は不明だが Bが爪飛びや泡の発生 を防止するうえで有効であること、 ほうろう前の硫酸酸洗で鋼板表 面の粒界の異常エッチング防止に有効であることが開示されている さ らに本発明者らは、 Bを含有するつまとび性、 深絞り性に優れ たほう ろう用鋼板についての改良を試み、 特開 2 0 0 2 - 8 0 9 3 4号、 特開 2 0 0 4— 1 8 8 6 0号で出願した。 これらの技術の要 点は従来のほうろう用鋼板の主たる窒化物制御元素であった Bに加 え、 A 1や熱延条件も考慮し、 窒化物の形態を制御し、 最適な特性 を造り込んでいること力^ それまでにない特徴となっている。 これ らの技術による鋼板は、 良好な耐つまとび性が得られるだけでなく Bという比較的安価な元素を使用 し、 製造コス トの上昇を抑えて いると同時に、 特に高い伸びに起因する良好な加工性を有するため 、 主と して高級材巿場での使用量が伸びつつある。 しかし、 近年の 鋼板使用の二極化、 すなわち、 汎用品にはできるだけ低コス トな材 料を使用し、 一方、 高級品には従来以上の特性レベルが求められる ような状況では これらの材料に、 さらなる加工性、 ほうろう性と もが求められるよ になつてきた。 特に 、 ほうろう用鋼板の最大の 特徴とも言える 耐つまとび性に対しては、 さ らなる向上の要望が 非常に強くなつている ほうろう用鋼板のつまとびを抑制するため には鋼板中に空隙を形成しここにほうろう焼成中に鋼板に侵入する 水素を トラップすることが有効である とが知られているが 、 単に 空隙を形成しただけでは水 卜ラップ能が向上するとは限らず、 例 えば、 特許文献 3や 4のよラに 窒化物の形態を好まし <制钾する 効果も明確であつた。 しかし れらの従来鋼では 酸化物の形態 にまで踏み込んで 、 空隙の量 形態および性質といつた観点からの 最適な制御がなされているとは いがたい。 発明の開示 5 8 4 1 0. This technology is based on the addition of B as an element capable of fixing N in the steel as a nitride and imparting good workability. Furthermore, Patent Document 1 discloses that since the deoxidizing ability of B is small, the amount of oxygen in the steel can be kept high. Patent No. 3 6 1 3 8 1 0 is unknown in detail, but B is effective in preventing claw jumping and foaming. Abnormal etching of grain boundaries on the steel sheet surface by sulfuric acid pickling before enamelling Further, the present inventors have tried to improve a steel sheet for brazing containing B and having excellent tensile properties and deep drawability. -8 0 9 3 4 and Japanese Patent Application Laid-Open No. 2 0 0 4-1 8 8 60 The key to these technologies The point is that in addition to B, which is the main nitride control element of conventional steel plates for enamel, A1 and hot rolling conditions are taken into account to control the form of the nitride and build the optimum characteristics ^ It has become an unprecedented feature. Steel sheets made with these technologies not only provide good resistance to tearing, but also use a relatively inexpensive element called B, which suppresses the increase in production costs and at the same time is particularly favorable due to high elongation. Because of its excellent processability, the amount of use in high-grade wood factories is growing. However, in recent years, the use of steel sheets has been polarized, that is, materials that are as low-cost as possible are used for general-purpose products. More workability and enamelability have been demanded. In particular, the demand for further improvement is very strong with respect to the anti-slip property, which can be said to be the biggest feature of enameled steel plates. It is known that it is effective to trap hydrogen that penetrates into the steel sheet during formation and enamel firing here, but simply forming voids does not necessarily improve the water wrapping ability. According to Patent Documents 3 and 4, the form of nitride was preferred and the effect of controlling was clear. However, in these conventional steels, it is difficult to go into the form of oxides and to achieve optimal control from the viewpoint of the amount form and nature of the voids. Disclosure of the invention
本発明は、 前述したほフろう用鋼板の技術を発展させ、 窒化物の みならず酸化物の形態にまで踏み込んで制御することにより、 つま とび性の更なる向上を図ることができる時効性が小さい―回かけほ うろうが可能な耐つまとび性が優れた連続鍩造ほうろう用鋼板及び その製造法を提供する とを目的とするものである 明は、 従来の鋼板.、 鋼板製造法を極限まで最適化するため種 の検討を Sねて得られたもので 、 ほうろう用鋼板のほつろつ特性 について、 特に B含有鋼を対象と して、 製造条件、 特に溶製条件の 影響を検討した結果、 1 ) 〜 5 ) の項目を新たに知見した。 The present invention develops the technology of the above-mentioned steel sheet for brazing steel, and it is possible to further improve the toughness by controlling not only the nitride but also the oxide form. The purpose is to provide a steel sheet for continuous forging enamel that has excellent resistance to tearing and that can be spun into a brazing wax, and its manufacturing method. Akira is a conventional steel sheet, obtained through examination of the seeds to optimize the steel sheet manufacturing method to the utmost limit, and with regard to the loose characteristics of the enameled steel sheet, especially for B-containing steels. As a result of investigating the influence of manufacturing conditions, especially melting conditions, the following items 1) to 5) were newly discovered.
即ち、 ほうろう性について、 パヴダー塗布 ( ドライ ) にて、 下釉 薬 、 上釉薬の各膜厚 1 0 0 mの一回かけほうろう処理を行い 、 つ まとび性、 泡 • 黒点性表面欠陥 密着性を調査した。 その結果以下 の知見をした。  In other words, with regard to enamel, by pudder coating (dry), the film thickness of each of the lower glaze and upper glaze was applied once to 100 m, and the sprinkling, foam, and black spot surface defects adhesion investigated. As a result, the following knowledge was obtained.
1 ) 耐つまとび性は、 酸化物内の元素の偏析が大きいほど良好と なる傾向がある  1) Tension resistance tends to improve as the segregation of elements in the oxide increases.
2 ) B添加量が同等でも 、 酸化物内の Bの偏析が大さい場合、 加 ェ性、 特に r値が向上する傾向がある。  2) Even if the amount of B added is the same, if the segregation of B in the oxide is large, the additivity, especially the r value, tends to improve.
3 ) この時、 高価な添加元素である Bの添加歩留ま Ό も向上する  3) At this time, the addition yield of B, which is an expensive additive element, is also improved.
4 ) 酸化物内の元素濃度の変動は、 圧延により延伸 • 破砕され 、 離散している酸化物についても考慮する必要がある。 4) Variations in the element concentration in the oxide must be taken into account for oxides that are stretched, crushed and dispersed by rolling.
5 ) 酸化物内の元素濃度の変動の大きさは、 溶製時の元素添加 特に酸化物形成元素の添加時期により制御が可能である。  5) The magnitude of the variation of the element concentration in the oxide can be controlled by the addition of elements during melting, especially the timing of addition of oxide-forming elements.
本発明は以上の知見に基づき完成したもので、 本発明においては 、 圧延を熱間または冷間の一方または両方で行う工程を経た最終製 品において、 組成が異なる酸化物または一体となった酸化物であつ ても、 その内部に大きな組成変動を有するようにし、 さ らにこれら を特定の好ましい形態で存在させることを特徴とする。 本発明の要 旨は以下の通りである。  The present invention has been completed based on the above findings. In the present invention, in a final product that has undergone a process in which rolling is performed either hot or cold, oxides having different compositions or integrated oxides. Even a product is characterized by having a large compositional variation in the interior and also presenting it in a specific preferred form. The gist of the present invention is as follows.
( 1 ) 質量 で、  (1) Mass
C : 0 . 0 1 0 %以下、 C: 0.010% or less,
M n : 0 . 0 3〜 : L . 3 0 %、 S i : 0. 1 0 0 %以下、 Mn: 0.03 ~: L.30% S i: 0.1 0 0% or less,
A 1 : 0. 0 3 0 %以下、  A 1: 0.0 3 0% or less,
N : 0. 0 0 5 5 %以下、  N: 0. 0 0 5 5% or less,
P : 0. 0 3 5 %以下、  P: 0.0 3 5% or less,
S : 0. 0 8 %以下、  S: 0.08% or less,
0 : 0. 0 0 5〜 0. 0 8 5 %、  0: 0. 0 0 5 to 0.0. 0 8 5%,
B : 0. 0 0 0 3〜 0. 0 2 5 0 %  B: 0. 0 0 0 3 to 0.0. 2 5 0%
を含有し残部が F e と不可避的不純物から成り、 板断面における 1 0 0 mX 1 0 0 mの観察単位視野内の直径 0. 1 0 m以上の F e、 M n、 S i 、 A 1 、 Bなどの酸化物が複合して一体となった 複合酸化物について、 B質量濃度が異なる接触していない任意の 2 個の複合酸化物が存在し、 最高濃度の B質量濃度 (B m a X % ) と最低濃度の B質量濃度 ( B m i n %) の比が、 B m a x / B m i n≥ 1. 2であることを特徴とする耐っまとび性に優れた連 続铸造ほうろう用鋼板。 Fe, M n, S i, A 1 with a diameter of 0.1 m or more in the observation unit field of 100 m x 100 m in the cross section of the plate. In the case of complex oxides in which oxides such as B are combined, there are any two complex oxides with different B mass concentrations that are not in contact, and the highest B mass concentration (B ma X %) And the lowest concentration of B mass concentration (B min%) is B max / B min ≥ 1.2.
( 2 ) 板断面における 1 0 O mX l 0 O mの観察単位視野 内の直径 0. l O ^ m以上の F e、 M n , S i 、 A l 、 Bなどの酸 化物が複合して一体となった複合酸化物について、 M n質量濃度が 異なる接触していない任意の 2個の複合酸化物が存在し、 最高濃度 の M n質量濃度 (M n m a x % ) と最低濃度の M n質量濃度 (M n m i n % ) の比力 M n m a x M n m i n≥ 1. 2であ ることを特徴とする上記 ( 1 ) に記載の耐つまとび性に優れた連続 銬造ほうろう用鋼板。  (2) Oxide such as Fe, M n, S i, A l, B, etc. with a diameter of 0. l O ^ m or more in the observation unit field of 10 O mX l 0 O m in the plate cross section For the combined composite oxide, there are any two non-contact composite oxides with different M n mass concentrations, the highest concentration M n mass concentration (M nmax%) and the lowest concentration M n mass The steel sheet for continuous forging enamel having excellent tensile resistance as described in (1) above, wherein the specific force of concentration (M nmin%) is M nmax M nmin≥1.2.
( 3 ) さ らに質量%で、  (3) Furthermore, in mass%,
N b : 0. 0 0 4 %未満 (ゼロを含む) 、  N b: Less than 0.04% (including zero),
V : 0. 0 0 3〜 0. 1 5 % V: 0.0 3 to 0.1 5%
の内、 一種または二種を含有することを特徴とする上記 ( 1 ) また は ( 2 ) に記載の耐つまとび性に優れた連続銬造ほうろう用鋼板。Of the above, characterized by containing one or two of (1) and (2) A steel sheet for continuous forging enamel that has excellent toughness resistance.
( 4 ) さ らに質量%で、 (4) Furthermore, in mass%,
C u : 0. 0 1〜 0. 5 0 0 %、 C u: 0.0 1 to 0.5 0 0%,
を含有することを特徴とする上記 ( 1 ) 〜 ( 3 ) のいずれか記載の 耐つまとび性に優れた連続銬造ほうろう用鋼板。 The steel sheet for continuous forging enamel having excellent toughness resistance according to any one of the above (1) to (3).
( 5 ) さ らに、 質量%で、  (5) Furthermore, in mass%,
C r、 N i 、 A s 、 T し S e、 T a、 W、 M o、 S n、 S b、 L a、 C e、 C a、 M gの 1種以上を合計で 1. 0 %以下含有するこ とを特徴とする上記 ( 1 ) 〜 ( 4 ) のいずれか記載の耐つまとび性 に優れた連続銬造ほう ろう用鋼板。 1.0% of one or more of Cr, Ni, As, T, Se, Ta, W, Mo, Sn, Sb, La, Ce, Ca, Mg The steel sheet for continuous forging brazing excellent in toughness resistance according to any one of the above (1) to (4), characterized by comprising:
( 6 ) 鋼板中に存在する一つの F e、 M n、 S i 、 A l 、 N b 、 B、 V、 C rなどの酸化物が複合して一体となった複合酸化物内 において、 B質量濃度の分布が存在し、 高濃度部の B質量濃度 (B m a X % ) と低濃度部の B質量濃度 (B m i n % ) の比が、 B m a X / B m i n≥ 1 . 2であることを特徴とする上記 ( 1 ) 〜 ( 5 ) のいずれか記載の耐つまとび性に優れた連続铸造ほう ろう 用鋼板。 .  (6) In a composite oxide in which oxides such as Fe, Mn, Si, A1, Nb, B, V, Cr, etc. existing in the steel plate are combined and integrated, B There is a distribution of mass concentration, and the ratio of B mass concentration (B ma X%) in the high concentration part to B mass concentration (B min%) in the low concentration part is B ma X / B min≥ 1.2 The steel sheet for continuous forging brazing having excellent toughness resistance as described in any one of (1) to (5) above. .
( 7 ) 鋼板中に存在する一つの F e、 M n、 S i 、 A l 、 N b 、 B、 V、 C rなどの酸化物が複合して一体となった複合酸化物内 において、 M n濃度の変動が存在し、 高濃度部の M n質量濃度 (M n m a x %) と低濃度部の M n質量濃度 (M n m i n %) の比 が、 M n m x /M n m i n≥ 1. 2であることを特徴とする 上記 ( 1 ) 〜 ( 6 ) のいずれか記載の耐つまとび性に優れた連続铸 造ほうろう用鋼板。  (7) In a complex oxide in which oxides such as Fe, Mn, Si, A1, Nb, B, V, Cr, etc. existing in the steel plate are combined and integrated, n concentration fluctuations exist, and the ratio of M n mass concentration (M nmax%) in the high concentration part to M n mass concentration (M nmin%) in the low concentration part is M nmx / M nmin ≥ 1.2 A steel sheet for continuous forging enamel having excellent toughness resistance as described in any one of (1) to (6) above.
( 8 ) 板内部のある F e、 M n、 S i 、 A l 、 N b、 B、 V、 C rなどの酸化物が複合して一体となった複合酸化物の B質量濃度 (%) の 1 . 2倍以上または 1 1. 2倍以下の B質量濃度の別の 複合酸化物が両方の複合酸化物の中心間の直線距離で 0 . 1 0 m 以上、 2 0 At m以内、 かつ、 両方の複合酸化物の中心を結ぶ直線が 圧延方向から ± 1 0 ° 以内の角度で、 存在することを特徴とする上 記 ( 1 ) 〜 ( 7 ) のいずれか記載の耐つまとび性に優れた連続.铸造 ほうろう用鋼板。 (8) B mass concentration (%) of complex oxide in which oxides such as Fe, Mn, Si, A1, Nb, B, V, Cr, etc. inside the plate are combined More than 1.2 times or 1.1 times less than another B mass concentration The composite oxide has a linear distance between the centers of both composite oxides of 0.1 m or more and within 20 Atm, and the straight line connecting the centers of both composite oxides is within ± 10 ° from the rolling direction. The steel sheet for continuous and forged enamel, which is excellent in toughness resistance according to any one of the above (1) to (7), characterized in that it exists at an angle of
( 9 ) 板内部のある F e 、 M n 、 S i 、 A l 、 N b、 B、 V、 C r などの酸化物が複合して一体となった複合酸化物の M n質量濃 度 (%) の 1 . 2倍以上または 1 / 1 . 2倍以下の M n質量濃度 ( %) の別の複合酸化物が両方の複合酸化物の中心間の直線距離で 0 . 1 0 m以上、 2 0 _i m以内、 かつ、 両方の複合酸化物の中心を 結ぶ直線が圧延方向から ± 1 0 ° 以内の角度で、 存在することを特 徴とする上記 ( 1 ) 〜 ( 8 ) のいずれか記載の耐つまとび性に優れ た連続銬造ほうろう用鋼板。  (9) Mn mass concentration of complex oxides in which oxides such as Fe, Mn, Si, A1, Nb, B, V, Cr, etc. in the plate are combined and integrated ( %) Of another composite oxide with an Mn mass concentration (%) of at least 1.2 times or less than 1 / 1.2 times the linear distance between the centers of both composite oxides of at least 0.1 m, Any one of the above (1) to (8), characterized in that a straight line connecting the centers of both composite oxides exists within an angle of ± 10 ° from the rolling direction. Steel sheet for continuous forging enamel with excellent resistance to tears as described.
( 1 0 ) 量%で  (1 0) in%
C : 0 0 1 0 %以下、  C: 0 0 10 0% or less,
M n 0 0 3 〜 : L . 3  M n 0 0 3 〜: L. 3
S 1 0 1 0 0 %以下  S 1 0 1 0 0% or less
A 1 0 0 3 0 %以下  A 1 0 0 3 0% or less
N : 0 0 0 5 5 %以下  N: 0 0 0 5 5% or less
P : 0 0 3 5 %以下、  P: 0 0 3 5% or less,
S : 0 0 8 %以下、  S: 0 0 8% or less,
o : 0 0 0 5 〜 0. 0 o: 0 0 0 5 to 0.0
B : 0 0 0 0 3 〜 0 .  B: 0 0 0 0 3 to 0.
を含有させ残部を F e と不可避的不純物とし、 鋼の溶製、 铸造工程 において、 M n 、 Bの溶鋼への添加手順に関し、 M nの総添加量の 8 0 %以上を添加した後、 1 分以上経過させ、 Bの総添加量の 8 0 %以上を添加し、 6 0分以内に铸造を行う ことを特徴とする耐つま とび性に優れた連続铸造ほうろう用鋼板の製造方法。 In the steel melting and forging process, with respect to the addition procedure of Mn and B to the molten steel, after adding 80% or more of the total amount of Mn, After 1 minute or more has elapsed, 80% or more of the total amount of B is added, and forging is performed within 60 minutes. A method for producing a steel sheet for continuous forging enamel with excellent extensibility.
( 1 1 ) さ らに質量%で、  (1 1) Furthermore, in mass%,
N b : 0. 0 0 4 %未満 (ゼロを含む) 、  N b: Less than 0.04% (including zero),
V : 0 . 0 0 3〜 0. 1 5 %  V: 0.03 to 0.15%
の内、 一種または二種を含有させることを特徴とする上記 ( 1 0 ) に記載の耐つまとび性に優れた連続铸造ほうろう用鋼板の製造方法 Of the above, the method for producing a steel sheet for continuous forging enamel having excellent toughness resistance according to the above (1 0) characterized by containing one or two of them
( 1 2 ) さ らに質量%で、 (1 2) In addition, in mass%,
C u : 0. 0 1 - 0. 5 0 0 %,  C u: 0. 0 1-0. 5 0 0%,
を含有させることを特徴とする上記 ( 1 0 ) または ( 1 1 ) に記載 の耐っまとび性に優れた連続铸造ほうろう用鋼板の製造方法 A method for producing a steel sheet for continuous forging enamel having excellent durability and resistance according to (10) or (11), characterized by comprising
( 1 3 ) さ らに、 質量%で、  (1 3) Furthermore, in mass%,
C r 、 N i 、 A s、 T i 、 S e、 T a、 W、 M o , S n、 S b、 L a、 C e、 C a , M gの 1種以上を合計で 1. 0 %以下含有させる ことを特徴とする上記 ( 1 0 ) 〜 ( 1 2 ) いずれか記載の耐つまと び性に優れた連続铸造ほうろう用鋼板の製造方法。  C r, Ni, As, Ti, Se, Ta, W, Mo, Sn, Sb, La, Ce, Ca, Mg in total 1.0 % Or less, the method for producing a steel sheet for continuous forging enamel having excellent toughness resistance according to any one of the above (10) to (12).
( 1 4 ) 铸造工程において、 铸片の板厚 1ノ 4層で、 凝,時の 冷却速度≤ 1 0 °CZ秒と して行う ことを特徴とする上記 ( 1 0 ) 〜 (14) In the forging process, the thickness of the strip is 1 to 4 layers, and the cooling rate during solidification is ≤ 10 ° CZ seconds.
( 1 3 ) のいずれか記載の耐つまとび性に優れた連続铸造ほうろう 用鋼板の製造方法。 (1 3) The method for producing a steel sheet for continuous forging enamel having excellent toughness resistance according to any one of the above.
( 1 5 ) 酸化物の平均直径が 1 . O ^ m以上、 かつ厚さ 5 0 m m以上の鋼片を 6 0 0 °C以上の熱間で圧延加工するに際し、 1 0 0 0 °C以上、 かつ歪速度 1 Z秒以上の条件で真歪の総和で 0. 4以上 の圧延を行なった後、 1 0 0 0で以下、 かつ歪速度 1 0ノ秒以上の 条件で真歪の総和で 0. 7以上の圧延を行なう ことを特徴とする上 記 ( 1 0 ) 〜 ( 1 4 ) のいずれか記載の耐つまとび性に優れた連続 錶造ほうろう用鋼板の製造方法。 図面の簡単な説明 (15) When rolling a steel slab having an average oxide diameter of 1. O ^ m or more and a thickness of 50 mm or more at a temperature of 60 ° C or more, 100 ° C or more , And after rolling at a total strain of 0.4 or more under the condition of a strain rate of 1 Z seconds or more, the sum of the true strains is set at a speed of 1 00 0 00 or less and a strain rate of 10 seconds or more. The method for producing a steel sheet for continuous forging enamel having excellent toughness resistance according to any one of the above (10) to (14), wherein the rolling is performed at a rate of 0.7 or more. Brief Description of Drawings
図 1 は、 B 、 M nの大きな濃度差が存在する粗大複合酸化物を含 む鋼を圧延する際の酸化物の状態を説明する図である。  FIG. 1 is a diagram for explaining the state of oxides when rolling steel containing a coarse composite oxide having a large concentration difference between B and Mn.
図 2 は、 従来の粗大酸化物を含む鋼を圧延する際の酸化物の.状態 を説明する図である。  Fig. 2 is a diagram for explaining the state of an oxide when rolling steel containing a conventional coarse oxide.
図 3 は、 微細酸化物を含む鋼を圧延する際の酸化物の状態を説明 する図である。  Fig. 3 is a diagram illustrating the state of oxides when rolling steel containing fine oxides.
図 4は、 B 、 M nの大きな濃度差が存在する粗大複合酸化物を含 む鋼を圧延した際に、 複合酸化物の周囲の空隙が大きくなることを 説明する図である。  FIG. 4 is a diagram for explaining that when a steel containing a coarse composite oxide having a large concentration difference between B and Mn is rolled, voids around the composite oxide become large.
図 5 は、 濃度差が存在しない粗大複合酸化物を含む鋼を圧延した 際に、 複合酸化物の周囲の空隙が小さいことを説明する図である。 発明を実施するための最良の形態  Fig. 5 is a diagram for explaining that the voids around the composite oxide are small when rolling steel containing coarse composite oxide with no concentration difference. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明について詳述する。  The present invention is described in detail below.
まず、 本発明で制御の対象とする酸化物の直径は 0 . 1 0 z m以 上とする。 この範囲より小さな酸化物は、 本発明鋼の特性上の大き な特徴である、 耐つまとび性、 すなわち水素透過阻止能を向上させ る効果が非常に小さ くなるので、 特段制御の対象とする必要が無い 。 好ましく は、 0 . 5 0 ΓΠ以上、 さ らに好ましく は 1 . 0 ; m以 上、 さ らに好ましく は 2 . 0 m以上の酸化物を対象にしても、 以 下に説明する酸化物の特徴が認識されるものである。 直径の上限は 、 本発明の効果を考える上では特に限定する必要はない。 ただし含 有酸素量にもよるが、 粗大な酸化物が多くなると酸化物の数密度が 減少し、 水素透過阻害効果が小さくなる。 また、 あまりに粗大な酸 化物は一般的に知られているように製品板の加工の際に鋼板の割れ 起点となり加工性を阻害する。 これらを考えると、 酸化物の平均直 径は 1 5 m以下、 好ましく は 1 0 /z m以下、 さ らに好ましく は 5 m以下にとどめることが好ま しい。 First, the diameter of the oxide to be controlled in the present invention is set to 0.10 zm or more. Oxides smaller than this range are subject to special control because they greatly reduce the effect of improving the resistance to squeezing, that is, the hydrogen permeation-preventing ability, which is a major characteristic of the steel of the present invention. There is no need. Preferably, even for oxides of 0.50 ΓΠ or more, more preferably 1.0; m or more, and even more preferably 2.0 m or more, Features are recognized. The upper limit of the diameter is not particularly limited in consideration of the effect of the present invention. However, depending on the oxygen content, if the amount of coarse oxide increases, the number density of the oxide decreases and the effect of inhibiting hydrogen permeation decreases. In addition, too coarse oxides, as is generally known, become the starting point of cracking of steel sheets during the processing of product plates, impairing workability. Considering these, the average of oxide It is preferable that the diameter is 15 m or less, preferably 10 / zm or less, and more preferably 5 m or less.
本発明で規定する酸化物の特徴の一つは、 酸化物の B濃度である. 。 本発明では、 濃度が高いものと低いものを特定する必要があり、 1 0 0 111 1 0 0 111視野のぅち大きさ 0. 以上の 1 0 0 個を測定するものとする。 すなわち、 板断面における 1 0 0 ^ m X 1 0 0 mの観察視野内の酸化物について測定された濃度において 、 B濃度が異なる一体でない酸化物が存在し、 高濃度の B濃度 ( B m a X ) と低濃度の B濃度 ( B m i n ) の比力 、 B m a x / B m i n ≥ l . 2であることを特徴とする。 この B濃度比が 1 . 2以上になると、 後述するように、 圧延時の酸化物の形態変化およ びそれに伴う空隙の形成が効率的に行われるようになり、 結果と し て耐つまとび性が顕著に向上する。 好ましく は、 1 . 5以上、 さ ら に好ましく は、 2. 0以上、 さ らに好ましく は、 4. 0以上、 さ ら に好ましく は、 6. 0以上である。  One of the characteristics of the oxide defined in the present invention is the B concentration of the oxide. In the present invention, it is necessary to specify a high density and a low density, and 1 0 0 111 1 0 0 111 which is a size of 0.0 or more in the field of view is measured. That is, there are non-integral oxides with different B concentrations in the concentrations measured for the oxide in the observation field of 100 ^ m X 100 m in the cross section of the plate, and a high concentration of B concentration (B max ) And low concentration B concentration (B min), B max / B min ≥ l. When the B concentration ratio is 1.2 or more, as will be described later, the shape change of the oxide during rolling and the formation of voids associated therewith can be performed efficiently. The property is remarkably improved. Preferably, it is 1.5 or more, more preferably 2.0 or more, still more preferably 4.0 or more, and still more preferably 6.0 or more.
また、 M n量についても同様の組成差が存在することを特徴とす る。 すなわち、 板断面における 1 0 O ^ m X l 0 O mの観寒視野 内の鋼板中に、 M n濃度が異なる一体でない酸化物が存在し、 高濃 度の M n濃度 (M n m a x ) と低濃度の M n濃度 (M n m ί η ) の比が、 M n m a x /M n m i n≥ 1 . 2であることを特徴 とする。 この M n濃度比が 1 . 2以上になると、 Bと同様に、 圧延 時の酸化物の形態変化およびそれに伴う空隙の形成が効率的に行わ れるようになり、 結果と して耐っまとび性が顕著に向上する。 好ま しく は、 1 . 5以上、 さ らに好ましく は、 2 . 0以上、 さ らに好ま しく は、 4. 0以上、 さ らに好ましく は、 6. 0以上である。 本発 明を規定するための、 酸化物中の各元素の濃度を測定する方法は特 に限定されるものではないが、 各酸化物の濃度が特定される必要が ある。 また、 後述するように、 一つの酸化物内の濃度変化も規定す る必要があることから、 例えばエネルギー分散型 X線分散型分析装 置 (E D A X) を用いると都合がよい。 測定方法は通常の方法で構 わないが、 特に微小領域の濃度を決定する必要があるため、 電子線 のビーム径は十分に小さくする等の注意が必要である。 また、 N b 濃度は絶対値を決定する必要はなく 、 相対的な値がわかれば十分で ある。 E D A Xを用いる場合には、 検出ピークの高さの比を用いれ ば良い。 注意を要するのは、 測定領域の大きさが小さくなるほど、 高濃度部と低濃度部の濃度比は大きくなる傾向がある。 極限的には 、 原子 1個ずつの大きさの領域の濃度を測定すれば、 高濃度部は 1 0 0 %で低濃度部は 0 %という状況も想定される。 本発明において は、 本発明者が通常使用 している一般的な T E Mや S E Mの電子線の 照射エリ アを考 、 0 . 0 1 〜 0 . 1 m程度の領域での平均的な 値を用いるものとする。 正確には被照射物内での電子線の拡 りが あり、 得られる情報は設定した電子線径ょり広い領域からのものと なる。 本発明では 、 電子線径を想定する領域と同程度の径に設定し 得られる値を用いることも可能である し、 ある程度の微小領罅で電 子線を走査し、 その平均値を用いることも可能でめる。 In addition, there is a similar compositional difference in the amount of Mn. That is, non-integral oxides with different Mn concentrations exist in the steel plate in the cold field of view of 10 O ^ m X lO Om in the cross section of the plate, and the high concentration Mn concentration (Mnmax) The ratio of the low concentration M n concentration (M nm ί η) is M nmax / M nmin≥1.2. When this Mn concentration ratio is 1.2 or more, the shape change of the oxide during rolling and the formation of voids associated with rolling can be performed efficiently, as in B, and as a result, it is resistant to damage. The property is remarkably improved. Preferably, it is 1.5 or more, more preferably 2.0 or more, even more preferably 4.0 or more, and still more preferably 6.0 or more. The method for measuring the concentration of each element in the oxide for defining the present invention is not particularly limited, but the concentration of each oxide needs to be specified. is there. In addition, as described later, since it is necessary to define the concentration change in one oxide, it is convenient to use, for example, an energy dispersive X-ray dispersive analyzer (EDAX). The measurement method may be a normal method. However, since it is necessary to determine the concentration in a very small area, care must be taken such as making the beam diameter of the electron beam sufficiently small. In addition, it is not necessary to determine the absolute value of the Nb concentration, and it is sufficient if the relative value is known. When using EDAX, the ratio of the heights of the detection peaks may be used. It should be noted that the density ratio between the high density part and the low density part tends to increase as the size of the measurement area decreases. Ultimately, if the concentration of a region of one atom is measured, it can be assumed that the high concentration part is 100% and the low concentration part is 0%. In the present invention, an electron beam irradiation area of a general TEM or SEM that is usually used by the present inventor is considered, and an average value in an area of about 0.01 to 0.1 m is used. Shall. To be precise, there is an expansion of the electron beam in the irradiated object, and the information obtained is from a wide area of the set electron beam diameter. In the present invention, it is possible to use a value that can be set to a diameter comparable to the region in which the electron beam diameter is assumed, or to scan the electron beam in a certain minute area and use the average value thereof. Is also possible.
このように、 酸化物組成に濃度差が存在すると 、 特に耐つまとび 性、 すなわち水素透過阻止能が向上する理由は明確ではないが、 以 下のように考えられる。 本発明鋼で、 分散させている酸化物は、 後 述のように、 元は一体の酸化物であったものと考えられる。 すなわ ち、 成分調整が終了した溶鋼を铸造した時点では、 大きな一つの酸 化物であったものが、 延伸、 破砕され、 微細に分散したものと考え られる。 このような延伸 · 破砕は、 主として、 圧延工程で起き, 特 に熱延工程では酸化物は主として延伸し、 冷延工程では主と して破 砕される。 このような工程において酸化物内に組成差が存在すると 、 酸化物の部位により延伸の程度が異なり、 酸化物の形状は複雑な ものとなり、 また、 細く (薄く) なった部位は優先的に破砕し、 ま た形状の変動が大きい部位は変形応力の集中により優先して破砕す ることが予想される。 結果と して、 組成が異なる部位は効率的に破 砕され 、 分散する とになる。 このような効率的な破砕の際に、 多 くの空隙が形成され 、 これが鋼中で水素 トラップサイ 卜となり、 琺 瑯用鋼板に必要とされる水素透過阻止能、 すなわち耐つまとび性を 顕著に向上させるちのと考えられる。 以上を図を使って具体的に説 明する 。 酸化物に B M nの大きな濃度差が存在すると、 図 1 のよ うに粗大複合酸化物 1 は、 熱延 2 、 延伸 3、 冷延 4によって破砕さ れ効率的に鋼板中に破砕空隙 5が形成され、 耐つまとび性が向上す る。 これに対し、 従来のように単に複合酸化物を含有するだけのも のでは、 図 2のごとく粗大酸化物 6 は、 熱延 2 、 冷延 4によって延 伸 3、 破砕されにく いので破砕空隙 7が形成されても本発明鋼のよ うに好ましい破砕空隙を得ることができない。 図 3 のようにスラブ 段階で微細な複合酸化物 8 では、 熱延 2、 冷延 4 によって延伸せず 9、 あまり破砕されないため、 更に空隙 1 0が生じにく い。 孝た、 図 1 2では、 破砕された複合酸化物間の距離が比較的短く、 複合 酸化物間に有効に空隙が残存する場合を示しているが、 熱延ゃ冷延 で延伸、 破砕して形成された複合酸化物間の空隙が同じ熱延ゃ冷延 工程で圧延により潰れて消失するような場合にち 本発明の効果は 充分に得ることができる。 この様子を模式的に図 4 5 に示す。 複 合酸化物そのもののサイズや配置は同じでも、 複 □酸化物に B M nの大きな濃度差が存在し空隙形成能が大きな複口酸化物を含有す る図 4 に示すような発明鋼では、 複合酸化物の周囲の空隙 1 1 もよ り大きく、 耐つまとび性向上に好ましいものとなる 図 5 に示す濃 度が同じ酸化物では空隙が小さい。 また、 組成が異なる複合酸化物 が、 鋼板中で特定の相対的な位置関係を有していることも特徴であ る。 すなわち、 高い B濃度を示す複合酸化物と低い B濃度を示す複 合酸化物が、 濃度比で 1 . 2倍以上で当該複合酸化物の中心を結ぶ 直線が圧延方向から ± 1 0 ° の角度内、 かつ当複合該酸化物中心間 の直線距離で 0 . 1 0 m以上、 2 O w m以内に存在することを特 徴とする。 角度については、 好ましく は土 7 ° の角度内、 さ らに好 ましくは ± 5 ° の角度内、 さらに好ましく は ± 3 ° の角度内であり 、 圧延方向に線状に配置することを特徴とする。 Thus, when there is a difference in concentration in the oxide composition, the reason for improving the resistance to slipping, that is, the hydrogen permeation blocking ability is not clear, but it is considered as follows. It is considered that the oxide dispersed in the steel of the present invention was originally an integral oxide as described later. In other words, at the time when the molten steel whose component adjustment was completed was forged, it was thought that one large oxide was stretched, crushed and finely dispersed. Such stretching and crushing mainly occurs in the rolling process, and in particular, the oxide is mainly stretched in the hot rolling process, and is mainly crushed in the cold rolling process. In such a process, if there is a composition difference in the oxide The degree of stretching differs depending on the oxide part, and the shape of the oxide becomes complicated. In addition, the thinned (thinned) part is preferentially crushed, and the part with a large variation in shape is subject to deformation stress. It is expected that crushing will be given priority due to concentration. As a result, the parts having different compositions are efficiently crushed and dispersed. During such efficient crushing, a large number of voids are formed, which become hydrogen trap sizes in the steel, remarkably exhibiting the hydrogen permeation-preventing ability required for steel plates, that is, the anti-slip property. It is thought that it is the power of improvement. The above will be explained in detail using figures. When there is a large concentration difference of BM n in the oxide, the coarse composite oxide 1 is crushed by hot rolling 2, stretching 3, and cold rolling 4 as shown in Fig. 1 to efficiently form crushed voids 5 in the steel sheet. As a result, the resistance to picking up is improved. On the other hand, in the case of simply containing complex oxide as in the past, as shown in Fig. 2, coarse oxide 6 is stretched 3 by hot rolling 2 and cold rolling 4 and is not easily crushed. Even if the void 7 is formed, a preferable fracture void as in the steel of the present invention cannot be obtained. As shown in Fig. 3, in the complex oxide 8 that is fine at the slab stage, it is not stretched by hot rolling 2 and cold rolling 4 9 and it is not crushed so much, so that it is difficult for voids 10 to be generated. Fig. 12 shows that the distance between the crushed complex oxides is relatively short, and voids remain effectively between the complex oxides. The effect of the present invention can be sufficiently obtained when the gaps between the complex oxides formed in this way are crushed and lost by rolling in the same hot rolling process. This is shown schematically in Figure 45. Even though the composite oxide itself has the same size and arrangement, in the invention steel as shown in Fig. 4 where there is a large concentration difference of BM n in the composite oxide and the composite oxide containing a large void forming ability, The void around the complex oxide is larger than 1 1, which is preferable for improving the anti-slip property. The oxide with the same concentration shown in Fig. 5 has a small void. Also, composite oxides with different compositions However, it also has a specific relative positional relationship in the steel sheet. That is, a complex oxide exhibiting a high B concentration and a complex oxide exhibiting a low B concentration have a concentration ratio of 1.2 times or more, and the straight line connecting the centers of the complex oxides is an angle of ± 10 ° from the rolling direction. And the composite is characterized in that it exists within 0.1 O m or more and 2 O wm or less in the linear distance between the oxide centers. The angle is preferably within an angle of 7 ° on the soil, more preferably within an angle of ± 5 °, and more preferably within an angle of ± 3 °, and is characterized by being arranged linearly in the rolling direction. And
この理由は明確ではないが、 本鋼板に必要とされる水素透過阻止 能は、 鋼板の板厚中心から表面に向かう水素透過を効率的に阻止す ることが重要で、 このため、 例えば複合酸化物が板厚方向に配列し てしまう と複合酸化物を伝わって板厚方向への水素の流れが形成さ れることになり、 本発明の目的にとって不都合なものとなる。 この ため、 本発明で特徴となる複合酸化物は、 鋼板表面に平行に配置す ることで、 さ らなる特性の向上を可能にしていると推測される。 な お、 鋼板表面に平行であれば、 上記のように圧延方向からの特定角 度に限定されるものでないことは言うまでもないが、 通常の 法に おいては、 例えば板幅方向に複合酸化物を配列させることは困難で あり、 圧延により複合酸化物を分散させることを想定し、 本発明で は圧延方向からの角度で配置を規定するものである。  The reason for this is not clear, but it is important that the hydrogen permeation blocking capability required for this steel sheet efficiently prevent hydrogen permeation from the center of the steel sheet thickness to the surface. If the objects are arranged in the plate thickness direction, a flow of hydrogen in the plate thickness direction is formed through the composite oxide, which is inconvenient for the purpose of the present invention. For this reason, it is presumed that the composite oxide featured in the present invention can be further improved in characteristics by being arranged in parallel to the steel plate surface. Needless to say, as long as it is parallel to the surface of the steel sheet, it is not limited to a specific angle from the rolling direction as described above. Since it is difficult to arrange the composite oxides, it is assumed that the composite oxide is dispersed by rolling, and in the present invention, the arrangement is defined by the angle from the rolling direction.
また、 対象となる複合酸化物間の距離は、 線距離で 0 1 0 n m以上、 2 0 m以内に存在することを特徴とする 。 この範囲を外 れると、 耐つまとび性が劣化する。 好ましく は 0 . 2 0 m以上、 さ らに好ましく は 0 . 3 0 ΠΊ以上、 さ らに好ま しく は 0 - 4 0 m以上、 さ らに好ましく は 0 . 5 0 / m以上離れていることが好ま しい。 距離の下限により発明の効果が影響する理由は明確ではない が、 対象となる複合酸化物の間には、 より微細な複合酸化物や濃度 の差が小さい複合酸化物も存在し、 水素透過阻止能はこれらの複合 酸化物によっても影響されていることが考えられる。 すなわち、 対 象となる複合酸化物間があまり に近い場合、 水素 トラップ能を有す る列状の複合酸化物全体の長さが短くなるため、 表面に向かう.水素 の流れを止めるための隙間が多く生じるようになり、 水素透過阻止 能が低下するものと思われる。 また、 上限は、 好ましく は 2 0 m 以下、 さ らに好ましく は 1 0 m以下、 さ らに好ましく は 5 ^ m以 下、 さ らに好ましく は 1 m以下である。 上限を規定した理由は、 対象とする複合酸化物が余り に遠く に離れた場合、 本発明で想定し ているような、 本来一体であった粗大複合酸化物の延伸 · 破砕とい う考えにそぐわなくなるためである。 通常の製法によれば、 0. 5 ; m以内に配置している場合が多い。 In addition, the distance between the target complex oxides is characterized by a linear distance of 0 to 10 nm or more and 20 m or less. Outside this range, the resistance to picking will deteriorate. Preferably it is 0.20 m or more, more preferably 0.30 mm or more, more preferably 0 to 40 m or more, and further preferably 0.5 0 / m or more. Is preferred. The reason why the effect of the invention is affected by the lower limit of the distance is not clear, but there are finer complex oxides and concentrations between the target complex oxides. There are also complex oxides with a small difference, and it is considered that the hydrogen permeation blocking ability is also influenced by these complex oxides. In other words, when the target complex oxides are too close together, the length of the entire row of complex oxides with hydrogen trapping capability is shortened, leading to the surface. It seems that a lot of hydrogen occurs, and the hydrogen permeation blocking ability decreases. Further, the upper limit is preferably 20 m or less, more preferably 10 m or less, further preferably 5 ^ m or less, and further preferably 1 m or less. The reason for specifying the upper limit is that if the target complex oxide is too far away, it is in line with the idea of stretching and crushing the coarse complex oxide that was originally integrated, as assumed in the present invention. This is because it disappears. According to the normal manufacturing method, it is often placed within 0.5; m.
また、 本発明の効果は組成の異なる複合酸化物が完全に分離してい なくても発揮される。 すなわち、 鋼板中に存在する一つの複合酸化 物内において、 B濃度の変動が存在し、 高濃度部の B濃度 ( B m a x ) と低濃度部の B濃度 ( B m i n ) の比が、 B m a x / B m i n≥ 1 . 2であれば十分である。 好ま しく は、 1 . 5以上、 さ らに好ましく は、 2. 0以上、 さ らに好ましく は、 2. 5以上、 さ らに好ましくは、 3. 0以上である。 また同様に、 鋼板中に存在 する一つの複合酸化物内において、 M n濃度の変動が存在し、 高濃 度部の M n濃度 (M n m a x ) と低濃度部の M n濃度 (M n m i n ) の比力^ M n m a x / n m i n≥ 1 . 2であれば十分 である。 好ましくは、 1 . 5以上、 さ らに好ましく は、 2. 0以上 、 さ らに好ましく は、 4. 0以上、 さ らに好ましく は、 6. 0以上 である。 In addition, the effects of the present invention are exhibited even when complex oxides having different compositions are not completely separated. That is, there is a variation in B concentration within one complex oxide present in the steel sheet, and the ratio between the B concentration (B max) in the high concentration part and the B concentration (B min) in the low concentration part is B max. / B min ≥ 1.2 is sufficient. Preferably, it is 1.5 or more, more preferably 2.0 or more, more preferably 2.5 or more, and still more preferably 3.0 or more. Similarly, there is a variation in Mn concentration within one complex oxide present in the steel sheet, with the Mn concentration (Mnmax) in the high concentration part and the Mn concentration (Mnmin) in the low concentration part. The specific power of ^ M nmax / nmin ≥ 1.2 is sufficient. Preferably, it is 1.5 or more, more preferably 2.0 or more, more preferably 4.0 or more, and still more preferably 6.0 or more.
この理由は、 上述したように本来、 一体であった粗大な複合酸化 物が延伸 , 破砕する過程で、 完全に分離しなく とも、 少なく とも通 常の観察においては部分的にでも結合している状態が考えられるか らである。 このような場合にも、 複合酸化物の形状は非常に複雑と なり、 その周囲に効果的に空隙が形成され、 水素 ラップサイ 卜と して作用するとともに、 複合酸化物の主と して濃度変化に起因した 変形能の変化に沿つて形成された欠陥が水素を 卜ラップし 、 本発明 の効果が検知可能 め 。 The reason for this is that, as described above, the coarse composite oxide, which was originally integral, is stretched and crushed. This is because, in usual observations, it is possible to think that the bonds are partially connected. Even in such a case, the shape of the complex oxide becomes very complex, and voids are effectively formed around it, acting as a hydrogen wrapping layer, and the concentration of the complex oxide is mainly changed. Defects formed along with the change in deformability caused by the hydrogen wraps hydrogen so that the effect of the present invention can be detected.
本発明においては特に望ましい複合酸化物を 、 B 一 M n 一 F e複 合酸化物と して存在させることを想定している。 この複合酸化物の 組成、 形態 (配置) を最適に制御することが本発明の特徴である。 すなわち、 複合酸化物の組成が異なることは複合酸化物の特性、 例 えば硬度や延性が異なることを意味し、 熱間圧延および冷間圧延で の複合酸化物の延伸および破砕の状態に大きな影響を及ぼすことで In the present invention, it is assumed that a particularly desirable composite oxide exists as a B 1 M n 1 Fe composite oxide. It is a feature of the present invention that the composition and form (arrangement) of this composite oxide are optimally controlled. In other words, different composite oxide compositions mean that the composite oxide has different properties, such as hardness and ductility, and has a significant effect on the state of stretching and crushing of the composite oxide during hot rolling and cold rolling. By exerting
、 好ましい形態に制御するものであ ό。 It is something that is controlled in a preferable form.
鋼の組成や製造条件、 特に、 製 条件と熱延加熱条件により、 複 合酸化物中に S i、 A 1、 V 、 N b等の多くの種類の元素が含有され る場合には状況はより複雑なものとなっており、 各元素の複合酸化 物中の含有量を、 制御することは鋼板の特性を向上させる上で非常 に重要なものとなる。 また 、 S量を増加すると Μ η Sが複合酸化物 に複合析出し、 硫化物と酸化物との延伸性、 破砕性の大さな差によ り、 本発明の効果をより顕著にすることも可能である 特に耐つま とび性への M n S と酸化物との相互作用的な効果は従来鋼以上に、 Βを含む鋼で効果が現れることから、 Μ η 、 Βを含有する複合酸化 物を核と して析出が促進された M n S の特徴と考えられる。  Depending on the composition and manufacturing conditions of the steel, especially when the complex oxide contains many types of elements such as Si, A1, V and Nb, depending on the manufacturing conditions and hot rolling heating conditions, the situation is Controlling the content of each element in the complex oxide is extremely important for improving the properties of the steel sheet. In addition, when the amount of S is increased, ηηS is compositely precipitated in the composite oxide, and the effect of the present invention is made more remarkable due to a large difference in stretchability and friability between the sulfide and the oxide. In particular, the interaction effect of MnS and oxides on the anti-slip property is more effective in steels containing Β than in conventional steels, and therefore, composite oxidation containing ηη and Β. This is thought to be a feature of MnS, in which precipitation is promoted with the material as the nucleus.
次に、 鋼組成について詳述する。  Next, the steel composition will be described in detail.
Cは従来から低いほど加工性が良好となることが知られており、 本発明においては、 0 . 0 1 0 %以下とする。 高い伸びおよび r値 を得るためには、 0 . 0 0 2 5 %以下にするのが望ましい。 更に好 ましい範囲は 0. 0 0 1 5 %以下である。 下限は特に限定する必要 がないが、 C量を低めると製鋼コス トを高めるので 0. 0 0 0 3 % 以上が望ましい。 Conventionally, it is known that the lower the C, the better the workability. In the present invention, it is set to not more than 0.010%. In order to obtain a high elongation and r value, it is desirable to make it not more than 0.025%. Even better The preferred range is below 0. 0 0 1 5%. The lower limit is not particularly limited, but lowering the C content increases the steelmaking cost, so 0.000% or more is desirable.
S i は、 酸化物の組成を制御するためにわずかに含有させること もできる。 この効果を得るには 0. 0 0 1 %以上とする。 一方で過 剰な含有は、 ほうろう特性を阻害する傾向であるばかりでなく 、 熱 間圧延での延性に乏しい S i 酸化物を多量に形成し、 耐つまとび性 を低下させる場合があるため、 0. 1 0 0 %以下とする。 好ま しく は 0. 0 3 0 %以下、 さ らに好ましく は 0. 0 1 5 %以下である。 耐泡、 耐黒点性などを向上させ、 更なる良好なほうろう表面性状を 得る点からは、 好ましい範囲は 0. 0 0 8 %以下である。  S i can also be included in a small amount to control the composition of the oxide. To obtain this effect, the content should be 0.0 0 1% or more. On the other hand, the excessive content not only tends to inhibit the enamel characteristics, but also forms a large amount of Si oxide that is poor in ductility in hot rolling, which may reduce the resistance to tensile strength. 0. 1 0 0% or less. Preferably, it is 0.030% or less, and more preferably 0.015% or less. From the standpoint of improving foam resistance, sunspot resistance, etc. and obtaining better enamel surface properties, the preferred range is 0.08% or less.
M nは酸素、 N b添加量と関連して酸化物組成変動に影響する重 要な成分である。 同時に熱間圧延時に Sに起因する熱間脆性を防止 する元素で、 酸素を含む本発明では 0. 0 3 %以上とする。 望まし く は 0. 0 5 %以上である。 一般的には、 M n量が高くなるとほう ろう密着性が悪くなり、 泡や黒点が発生しやすくなるが、 酸化物と して M nを最大限に活用する本発明鋼では、 M n添加により これら の特性の劣化は小さい。 むしろ、 M n増加により酸化物組成の制御 が容易になるので積極的に添加する。 即ち、 M n量の上限を 1. 3 0 %に特定する。 上限は望ましくは 0. 8 0 %で、 更に好ましくは M nの上限は、 0. 6 0 %である。  M n is an important component that affects the oxide composition variation in relation to the amounts of oxygen and Nb added. At the same time, it is an element that prevents hot brittleness caused by S during hot rolling. In the present invention containing oxygen, the content is 0.03% or more. Desirably, it is 0.05% or more. In general, when the amount of M n is high, the enamel adhesion becomes poor and bubbles and black spots are likely to occur. However, in the steel of the present invention that makes maximum use of M n as an oxide, the addition of M n Therefore, the deterioration of these characteristics is small. Rather, it is added actively because the oxide composition can be easily controlled by increasing Mn. That is, the upper limit of the Mn amount is specified as 1.30%. The upper limit is desirably 0.80%, and more preferably, the upper limit of M n is 0.60%.
Oはつまとび性、 加工性に直接に影響すると同時に、 M n、 N b 量と関連して耐つまとび性に影響するので本発明では必須の元素で ある。 これらの効果を発揮するには 0. 0 0 5 %以上が必要である 。 好ましく は、 0. 0 1 0 %以上、 さ らに好ま しく は、 0. 0 1 5 %以上、 さ らに好ましく は、 0. 0 2 0 %以上である。 一方、 酸素 量が高くなると酸素が高いことにより直接に加工性を劣化させると 共に、 本発明に必要な N b添加量も増加し、 間接的な添加コス トが 上昇するので、 上限 0. 0 8 5 %とするのが望ましい。 好ましく は 、 0. 0 6 5 %以下、 さ らに好ましく は、 0. 0 5 5 %以下である. O is an essential element in the present invention because it directly affects the toughness and workability, and at the same time affects the toughness resistance in relation to the amounts of M n and N b. In order to exert these effects, 0.005% or more is necessary. Preferably, it is 0.0 10% or more, more preferably 0.015% or more, and still more preferably 0.020% or more. On the other hand, if the amount of oxygen increases, the high oxygen content directly degrades workability. In both cases, the amount of Nb added necessary for the present invention increases and the indirect addition cost increases, so the upper limit is preferably 0.085%. Preferably, it is 0.065% or less, more preferably 0.055% or less.
A 1 は、 酸化物形成元素であり、 ほうろう特性としてのつまとび 性を良好にするためには、 鋼中の.酸素を適正量鋼材中に酸化物と し て存在させることが望ましい。 この効果を得るには 0. 0 0 0 2 % 以上含有させる。 一方で、 A 1 は強脱酸元素であり、 多量に含有さ せると、 本発明が必要とする酸素量を鋼中に留めることが困難とな るばかりでなく、 熱間圧延での延性に乏しい A 1 酸化物を多量に形 成し、 耐つまとび性を低下させる場合がある。 そのため A 1 は 0. 0 3 0 %以下とする。 好ましく は 0. 0 1 5 %以下、 さ らに好まし く は 0. 0 1 0 %以下、 さ らに好ましく は 0. 0 0 5 %以下である A 1 is an oxide-forming element, and it is desirable that an appropriate amount of oxygen in the steel be present in the steel as an oxide in order to improve the enamelability as an enamel characteristic. In order to acquire this effect, it is contained 0.02% or more. On the other hand, A 1 is a strong deoxidizing element. If it is contained in a large amount, it becomes difficult not only to keep the oxygen amount required by the present invention in the steel, but also to the ductility in hot rolling. It may form a large amount of poor A 1 oxide and reduce the resistance to sticking. Therefore, A 1 is set to 0.0 3 0% or less. Preferably it is not more than 0.015%, more preferably not more than 0.010%, more preferably not more than 0.05%.
Nは Cと同様に侵入型固溶元素であり、 多量に含有すると、 N b 、 さ らには Vや B等の窒化物形成元素を添加しても加工性が劣化す る傾向であると共に非時効性鋼板の製造が出来にく い。 この理由か ら、 Nの上限を 0. 0 0 5 5 %とする。 望ましく は 0. 0 0 4 5 % 以下である。 下限は特に限定する必要がないが、 現在の製鋼技術で は 0. 0 0 1 0 %未満に溶製するのはコス トがかかるため、 0. 0 0 1 0 %以上が望ま しい。 N is an interstitial solid solution element like C. If it is contained in a large amount, Nb, and even if nitride-forming elements such as V and B are added, workability tends to deteriorate. It is difficult to manufacture non-aging steel sheets. For this reason, the upper limit of N is set to 0.0 0 5 5%. Desirably, it is 0.00 4 5% or less. The lower limit is not particularly limited, but it is costly to melt to less than 0.0 0 10% in the current steelmaking technology, so it is desirable that the lower limit is 0.0 0 10% or more.
Pは含有量が多くなるとほうろう焼成時の、 ガラスと鋼との反応 に影響し、 特に鋼板の粒界に高濃度に偏祈した Pが泡 · 黒点等で、 ほうろう外観を劣化させる場合がある。 本発明では P含有量を 0. 0 3 5 %以下とする。 好ましく は 0. 0 2 5 %以下、 さ らに好まし く は 0. 0 1 5 %以下、 さ らに好ましく は 0. 0 1 0 %以下である Sは、 M n硫化物を形成し、 特にこの硫化物を酸化物に複合析出さ せることで、 圧延時の空隙形成を効率的にし、 耐つまとび性を向上 させる効果を有する。 全く含有しない 0 %でも構わないが、 この効. 果を得るためには、 0. 0 0 2 %以上必要である。 好ま しく は 0. 0 0 5 %以上、 さ らに好ましく は 0. 0 1 0 %以上、 さ らに好まし く は 0. 0 1 5 %以上、 さ らにである。 しかし含有量があま り に高 いと本発明で主要となる酸化物の組成制御に必要な M nの効果を低 下させる場合があるので上限を 0. 0 8 0 %とする。 好ましく は 0 . 0 6 0 %以下、 さ らに好ましく は 0. 0 4 0 %以下である。 When P content increases, it affects the reaction between glass and steel during firing of the enamel, and in particular, P which is heavily prayed to the grain boundaries of the steel sheet may deteriorate the appearance of the enamel due to bubbles, black spots, etc. . In the present invention, the P content is not more than 0.035%. Preferably not more than 0.025%, more preferably not more than 0.015%, more preferably not more than 0.010% S forms an Mn sulfide and, in particular, precipitates this sulfide in an oxide complex, thereby effectively forming voids during rolling and improving the resistance to squeezing. It may be 0% which is not contained at all, but in order to obtain this effect, 0.02% or more is necessary. Preferably, it is 0.05% or more, more preferably 0.010% or more, and even more preferably 0.015% or more. However, if the content is too high, the effect of Mn necessary for controlling the composition of the main oxide in the present invention may be lowered, so the upper limit is made 0.080%. Preferably it is 0.060% or less, more preferably 0.040% or less.
Bは本発明においては必須の元素である。 Bは Nを固定し、 深絞 り性を向上せしめると共に、 非時効化し、 高加工性を付与するため に必要となり、 また密着性向上効果も有するが、 本発明ではこれと は全く異なった特殊な効果を付与するために含有させる。 つまり、 添加した Bは鋼中酸素と結合し酸化物を形成し、 つまとび防止に有 効な働きをする。 この効果を得るためには 0. 0 0 0 3 %以上必要 である。 さ らに好ましく は 0. 0 0 0 8 %以上、 さ らに好ましく は 0. 0 0 1 2 %以上、 さ らに好ましく は 0. 0 0 1 5 %以上、 .さ ら に好ましく は 0. 0 0 2 0 %以上である。 しかし、 添加量が高くな ると、 B添加時に脱酸してしまい鋼中に酸化物をとどめることが困 難になるばかりでなく、 耐泡 · 黒点性が劣化するので上限は 0. 0 2 5 0 %とする。 好ましく は 0. 0 1 5 0 %以下、 さ らに好ましく は 0. 0 0 8 0 %以下である。  B is an essential element in the present invention. B fixes N, improves deep drawability, is non-aging, and is necessary for imparting high workability, and also has an effect of improving adhesion. In order to give a special effect. In other words, the added B combines with the oxygen in the steel to form an oxide, which works effectively in preventing stiction. In order to obtain this effect, 0.0 3 or more is required. More preferably 0.0 0 0 8% or more, still more preferably 0.0 0 1 2% or more, still more preferably 0.0 0 1 5% or more, and still more preferably 0. 0 0 2 0% or more. However, if the amount added becomes high, deoxidation occurs when B is added, which not only makes it difficult to keep oxides in the steel, but also the bubble resistance and sunspot properties deteriorate, so the upper limit is 0.0. 5 0%. Preferably it is not more than 0.0 1 5 0%, more preferably not more than 0.0 0 80%.
Bと同様の効果を有する元素としては、 N b、 Vがある。 N bは 単独添加の場合、 r値向上効果は著しいが、 伸びの劣化が大きく加 ェ性の向上を阻害する面もあるが、 本質的に Bを含有する本発明鋼 では、 再結晶温度が顕著に上昇し、 冷延 , 焼鈍後の良好な加工性を 得るために非常に高温での焼鈍が必要になり、 焼鈍の生産性を低下 させる。 このため低く抑えることが好ましく、 0. 0 0 4 0 %を超 えないようにすべきである。 さ らに好ましぐは 0. 0 0 2 5 %以下 、 さ らに好ましく は 0. 0 0 1 5 %以下で、 0であれば N bの悪影 響は考慮する必要がない。 また、 Vは加工性への影響に関して.は N bと同等である力 鋼中に残存させる酸素量との兼ね合いで上限は 広く 、 本発明が対象とする B添加鋼に複合添加した場合も再結晶温 度上昇効果は N bよ り小さいうえに、 Bと複合添加し、 複合酸化物 を形成することで耐つまとび性を著しく向上させる効果も有する。 Vについての効果を得るには、 0. 0 0 3 %以上必耍である。 好ま しく は、 0. 0 0 6 %以上、 さ らに好ましく は、 0. 0 1 0 %以上 、 さ らに好ましく は、 0. 0 1 5 %以上である。 添加コス トおよび 耐泡 ' 黒点性の観点から、 上限は 0. 1 5 %とする。 B量と して 0 . 0 0 1 5 %以上含有し、 B単独で発明の効果が得られている場合 には、 0. 0 6 0 %以下、 さ らには 0. 0 4 0 %以下とすれば十分 である。 Elements that have the same effect as B include Nb and V. When Nb is added alone, the effect of improving the r-value is remarkable, but there is also the aspect that the deterioration of elongation is large and hinders the improvement of the additive property, but in the steel according to the present invention containing B essentially, the recrystallization temperature is Remarkably increased, and annealing at very high temperatures is required to obtain good workability after cold rolling and annealing, reducing the productivity of annealing Let For this reason, it is preferable to keep it low, and it should not exceed 0.0 400%. Further, it is preferably 0.025% or less, more preferably 0.0015% or less. If it is 0, it is not necessary to consider the adverse effect of Nb. In addition, V is related to the effect on workability. The upper limit is wide because of the balance with the amount of oxygen remaining in the steel, which is equivalent to Nb. The effect of increasing the crystal temperature is smaller than that of N b, and also has the effect of remarkably improving the anti-tack property by forming a composite oxide by adding it together with B. In order to obtain the effect of V, 0.0 3% or more is necessary. Preferably, it is 0.06% or more, more preferably 0.010% or more, and still more preferably 0.015% or more. Addition cost and foam resistance From the viewpoint of sunspot resistance, the upper limit is 0.15%. When the content of B is 0.001 to 5% or more and the effect of the invention is obtained with B alone, 0.0 60% or less, and further 0.04 0% or less This is sufficient.
C uはほうろう焼成時のガラスと鋼の反応を制御するために含有 させる。 一回がけホーローにおいては前処理時に表面に偏析レた C uが反応の微視的な変動を助長し密着性を向上させる効果を有する 。 二回掛けホーローにおいては、 表面偏祈に起因した作用は小さい が、 下釉薬と鋼の微視的な反応に影響を及ぼす。 このような効果を 得るため必要に応じて 0. 0 1 %以上添加する。 不用意に過剰な添 加はガラスと鋼の反応を阻害するばかりでなく、 加工性を劣化させ る場合もあるため、 このような悪影響を避けるには 0. 5 0 0 %以 下とすることが好ま しい。 好ましい範 fflは 0. 0 1 5〜 0. 2 0 0 %である。  Cu is added to control the reaction between glass and steel during enamel firing. In a single enamel, Cu segregated on the surface during pretreatment has the effect of promoting microscopic fluctuations in the reaction and improving adhesion. In the double enamel, the effect due to surface prayer is small, but it affects the microscopic reaction between laxatives and steel. In order to obtain such effects, 0.0 1% or more is added as necessary. Inadvertently excessive addition not only hinders the reaction between glass and steel, but may also degrade workability. To avoid such adverse effects, the content should be 0.5 0 0% or less. Is preferred. A preferable range ffl is 0.01 5 to 0.200%.
その他の不可避的不純物は、 材質特性、 ほうろう特性に悪影響を 及ぼす場合があるので低くすることが好ましい。 C r、 N i 、 A s 、 T i 、 S e 、 T a 、 W、 M o 、 S n 、 S b 、 L a 、 C e 、 C a ,Other inevitable impurities may adversely affect the material characteristics and enamel characteristics, so it is preferable to reduce them. C r, N i, A s , Ti, Se, Ta, W, Mo, Sn, Sb, La, Ce, Ca,
M gについては 1種以上の合計で 1 . 0 %以下、 好ましく は 0 . 5Regarding Mg, the total of one or more species is 1.0% or less, preferably 0.5.
%以下、 さ らに好ましく は 0 . 1 %以下とする。 多く含有すると、 . 酸化物形成元素との反応が無視できなくなり、 酸化物の組成、 .形態 が好ましからざるものになるただし、 これ以上の量の添加が行われ た場合にも 、 本発明の効果が失われるものではなく、 本発明が想定 しているメ ッ ト以外の製造上または品質上のメ リ ッ トを期待して% Or less, more preferably 0.1% or less. If it is contained in a large amount, the reaction with the oxide-forming element cannot be ignored, and the composition and form of the oxide become unfavorable. However, the effects of the present invention can be achieved even when more amounts are added. Is not lost, and expects merit in terms of manufacturing or quality other than the one assumed by the present invention.
、 これ以上の量を積極的に添加することも可能である。 It is also possible to actively add more than this amount.
次に、 本願に係る鋼板の製造方法の例について説明する。 本発明 においては酸化物への B含有が必要となるものであり、 本発明鋼の 技術的な要点は Bを Nではなく 0と結合させ、 鋼中の酸化物の形態を 制御することにあるが、 その制御を達成する方法は多様である。 こ のため、 本願は以下の製造方法に限定されるものではない。  Next, the example of the manufacturing method of the steel plate which concerns on this application is demonstrated. In the present invention, it is necessary to contain B in the oxide, and the technical point of the steel of the present invention is to combine B with 0 instead of N to control the form of the oxide in the steel. However, there are many ways to achieve that control. For this reason, this application is not limited to the following manufacturing methods.
本発明で特徴的な複合酸化物の組成変動を付与するために鋼の溶 製、 鍩造工程において、 M n 、 Bの溶鋼への添加手順に関し、 M n の総添加量の 8 0 %以上を添加した後、 1 分以上経過させ、 Bの総 添加量の 8 0 %以上を添加し、 6 0分以内に铸造を行う こと 、 生 産性の観点から有利である。 Bと同様の効果を有する V 、 N b を添 加する場合は、 基本的には、 脱酸能の弱い元素から添加することが 好ましく、 M n 、 V 、 N b 、 Bの順で添加することで本発明の効果 をより顕著に得ることが可能となる。 ここで添加は、 各元素の総添 加量の 8 0 %以上を添加した後、 次の元素を添加するものとする。 ただし、 各元素の添加後、 最終的に成分調整するために、 総添加量 の 1 0 %未満で添加する量は、 ここでの添加量の考慮からは除外す るものとする。 各元素の添加時期は 1 分以上の時間を経過させるこ とが好ましい。 さ らに好ましく は 2分以上、 さ らに好ましく は 3分 以上経過させる。 また、 全元素を添加後、 6 0分以内に铸造を行う ものとする 好ましく は 4 0分以内、 さ らに好ま しく は 2 0分以内 である た 、 铸造工程において、 铸片の板厚 1ん 4 ®での凝固時 の冷却速度 < 1 0でノ秒と して行う ことで、 発明の効果がより顕著 になる 。 好ましく は 5 °C Z秒以下、 さ らに好ましく は 2で/秒以下In the melting and forging process of steel in order to impart the composition fluctuation of the complex oxide characteristic of the present invention, the addition procedure of Mn and B to molten steel is 80% or more of the total amount of Mn. It is advantageous from the viewpoint of productivity to allow 1 minute or more to elapse after addition of 80%, and to add 80% or more of the total addition amount of B, and forging within 60 minutes. When adding V and N b which have the same effect as B, it is basically preferable to add from elements with weak deoxidizing ability, and in the order of M n, V, N b and B Thus, the effect of the present invention can be obtained more remarkably. Here, 80% or more of the total added amount of each element is added, and then the next element is added. However, the amount added at less than 10% of the total amount added to adjust the final components after the addition of each element shall be excluded from consideration of the amount added here. It is preferable to allow each element to be added for a period of 1 minute or longer. More preferably, 2 minutes or more, more preferably 3 minutes or more. Also, forging within 60 minutes after adding all elements It is preferably within 40 minutes, more preferably within 20 minutes.In the forging process, the cooling rate during solidification with a thickness of the strip thickness of 1 4 ® is less than 10 seconds. As a result, the effect of the invention becomes more prominent. Preferably less than 5 ° CZ seconds, more preferably less than 2 at / second
、 さ らに好ましく は 1 °C /秒以下、 さ らに好ましく は 0 . 5 °C /秒 以下、 さらに好ましくは 0 . 1で Z秒以下であ More preferably, it is 1 ° C / second or less, more preferably 0.5 ° C / second or less, further preferably 0.1 to Z seconds or less.
なお、 本発明の効果が最大限に享受できるように複合酸化物を形 成させるためには、 上述のように Bを M n V N b Bの順で添 加することが望ましいが、 本発明の本質は B酸化物を有効に形成し In order to form a composite oxide so that the effects of the present invention can be fully enjoyed, it is desirable to add B in the order of M n VN b B as described above. The essence effectively forms B oxide
、 他の酸化物と最適に 合させる とであり、 精鍊中の溶鋼中酸素 濃度や M n V N b と Bとの濃度比および温度をバランスよく保 つことができれば M n V N b Bを一度に総添加量添加させた り、 いずれか 2つ以上の 7 素を一度に、 または分けて添加しても本 発明の効果は得られる M n V N b Bを一度に総添加量添加 させたり、 いずれか 2 以上の元素を一度に、 または分けて添加す る場合は、 溶鋼中酸素濃度を 0 0 1 0 0 . 0 7 0 %の範囲に調 整する必要があり、 多少的中率 • 能率が落ちる場合がある。 If the oxygen concentration in the molten steel, the concentration ratio of M n VN b and B, and the temperature can be maintained in a well-balanced state, M n VN b B can be combined at one time. The effect of the present invention can be obtained even if any two or more elements are added at once or separately.Mn VN b B can be added all at once. If two or more elements are added at once or separately, it is necessary to adjust the oxygen concentration in the molten steel to the range of 0 0 1 0 0 .0 70 0%. May fall.
また、 予め濃度分布を持つ B系複合酸化物を調整の上で、 連踌夕 ンディ ッシュやモールドにワイヤー等に内封して添加することなど も、 本願で特徴的な濃度分布を持つ B系複合酸化物を製造する方法 の一つである。 先述した特許文献には、 このような添加元素の添加 タイミ ング、 凝固条件やその他本願にて規定する組成変動の大きい 複合酸化物の製造に係る事項の開示は一切ない。 単に Bを添加した だけでは十分な効果を得ることはできない。  In addition, it is also possible to add a B-type complex oxide having a concentration distribution in advance and add it to a continuous dish or mold by enclosing it in a wire or the like. This is one of the methods for producing a complex oxide. The patent documents mentioned above do not disclose the addition timing of such additional elements, the solidification conditions, and other matters relating to the production of complex oxides having a large compositional variation as defined in the present application. It is not possible to obtain a sufficient effect by simply adding B.
すなわち、 従来公知のほうろう鋼板製造技術においては、 単に B を添加しているのみであり、 また従来公知の技術においては B窒化 物の形成を目的のひとつとしていることから、 添加した Bは、 Bとの 親和性が高い Nと結合して B窒化物を形成してしまい、 水素 トラップ サイ 卜と して機能するのに十分な B酸化物が有効に形成しない。 That is, in the conventionally known enamel steel plate manufacturing technology, only B is added, and in the conventionally known technology, the formation of B nitride is one of the purposes. With It binds with high affinity N to form B nitride, and does not effectively form B oxide sufficient to function as a hydrogen trap size.
さ らにまた、 従来公知のほうろう鋼板製造技術においては、 有効 な濃度分布を持つ酸化物が重要であるという知見が無いため、 その 有効な濃度分布を持つ酸化物自体を調整の上で添加するという技術 も全く存在しない。  Furthermore, in the conventionally known enamel steel plate manufacturing technology, there is no knowledge that an oxide having an effective concentration distribution is important. Therefore, the oxide itself having an effective concentration distribution is added after adjustment. There is no such technology.
このため、 従来公知のほうろう鋼板製造技術をもっては、 本願に て規定するような Bを含有し、 かつ組成変動の大きい酸化物を形成 させ得ない。 なお、 窒化物は酸化物と比較すると、 本発明の目的で ある耐つまとび性の向上への効果は小さい。  For this reason, with the conventionally known enamel steel plate manufacturing technology, it is impossible to form an oxide containing B as defined in the present application and having a large composition variation. It should be noted that nitride is less effective in improving the tensile resistance, which is the object of the present invention, as compared with an oxide.
一方で、 本発明においては酸化物への B含有が必要となるもので あり、 このため本願では、 例えば、 前述の製造方法のように M n を 先に添加することにより M n酸化物を形成しその後 Bを添加するこ とや、 有効な濃度分布を持つ酸化物自体を調整の上で添加すること などにより、 Bが M nなどの酸化物と複合している、 本願にて規定 する組成変動の大きい酸化物を形成させるものである。  On the other hand, in the present invention, it is necessary to contain B in the oxide. Therefore, in the present application, for example, Mn oxide is formed by adding Mn first as in the above-described manufacturing method. After that, B is compounded with oxides such as Mn by adding B or adjusting and adding the oxide itself having an effective concentration distribution. An oxide having a large variation is formed.
上述のような最適な複合酸化物の形成は、 元素添加による成分変 化や経過時間のみにより起きるものではなく、 温度との関連も強い 。 特に、 元素や酸化物の添加終了後、 凝固初期までの高温での反応 の制御が重要となる。 特に、 鋼が液体から固体になる際には、 鋼中 への各種元素の溶解度も大きく変化し、 組成変動にも少なからざる 影響を及ぼす。 このため、 凝固時点での冷却速度は発明の効果を十 分に得るために重要となる。 あまりに早いと元の粗大な複合酸化物 とは別に微細な酸化物、 析出物を形成し、 発明の効果が阻害され、 一方であまり に緩冷却だと、 組成の均一化が起こ り発明の効果が小 さ くなるばかりでなく 、 生産性も低下する。 一般的には、 铸造時の 鋼片の冷却速度は板厚方向の位置で異なるため、 本発明では代表的 に板厚 1 4層での冷却速度で規定する。 1 Z 4層での冷却速度はThe formation of the optimum complex oxide as described above does not occur only due to the change of the component due to the addition of elements or the elapsed time, but is also strongly related to temperature. In particular, it is important to control the reaction at high temperatures after the addition of elements and oxides until the initial stage of solidification. In particular, when steel changes from a liquid to a solid, the solubility of various elements in the steel also changes greatly, and this has a considerable effect on composition fluctuations. For this reason, the cooling rate at the time of solidification is important in order to obtain the effect of the invention sufficiently. If it is too early, fine oxides and precipitates are formed in addition to the original coarse composite oxide, and the effect of the invention is inhibited.On the other hand, if it is too slow, the composition becomes uniform and the effect of the invention is reduced. Not only will it become smaller, but productivity will also decline. In general, the cooling rate of the slab during forging differs depending on the position in the thickness direction. The thickness is defined by the cooling rate with a thickness of 14 layers. 1 Z 4 layer cooling rate is
、 一般に認められ、 操業制御などでも用いられている伝熱計算によ つて求められる。 It is obtained by heat transfer calculation that is generally accepted and used in operation control.
本発明で対象とする複合酸化物は 凝固が完了した铸片の時点で は、 平均直径が 1 . O ^ m以上である場口に、 発明の効果を顕著に 得ることが可能となる。 好ましく は 4 O /^ m以上、 さ らに好ま しく は、 Ι Ο ΙΠ以上、 さ らに好まし < は 1 5 m以上、 さ らに 好ましくは、 2 0 m以上である。 錡造兀了時点での酸化物が粗大 であることが好ましいのは、 微細であると鋼片加工時の酸化物の延 伸性が乏しくなり、 破砕も起きにく <なるためであると思われる。 ここで規定しているのは平均直径であ 通常、 光学顕微鏡または 低倍率の走査型電子顕微鏡で観察でさる程度の大きさの複合酸化物 を対象として測定するものとする。  The composite oxide targeted in the present invention can obtain the effect of the invention remarkably at the stage where the average diameter is 1.O ^ m or more at the time of the piece having been solidified. Preferably it is 4 O / ^ m or more, more preferably Ι Ι Ο or more, more preferably <is 15 m or more, and more preferably 20 m or more. It is preferable that the oxide is coarse at the end of forging because if it is fine, the extensibility of the oxide at the time of slab processing becomes poor, and crushing is less likely to occur. It is. What is specified here is the average diameter, which is usually measured for complex oxides of a size that can be observed with an optical microscope or a low-power scanning electron microscope.
通常の鋼板製造工程においては、 の複合酸化物を圧延により延 伸 · 破砕し、 目的とする特性にとつてよ Ό好ましい形態へと変化さ せる。 このためにはある程度の加工量が必要であり、 铸造を完了し た鋼片の厚さを 5 O m m以上と してお < とが好ましい。 製造工程 では、 熱延により 1 8 m m程度、 さ らに冷延により、 2 0 . 2 m m程度まで圧延されるので、 総歪は対数歪で 3から 5以上にも及 ぶものである。 また、 より良好なつまとび性を得るためには 6 0 0 In a normal steel plate manufacturing process, the composite oxide of is stretched and crushed by rolling, and changed into a form more suitable for the intended characteristics. For this purpose, a certain amount of processing is necessary, and it is preferable that the thickness of the steel slab after completion of forging is 5 Om m or more. In the manufacturing process, the steel sheet is rolled to about 18 mm by hot rolling, and further to about 20.2 mm by cold rolling, so that the total strain is 3 to 5 or more in logarithmic strain. In addition, in order to obtain better toughness, 6 0 0
X:以上の熱間での圧延加工において 1 0 0 0で以上、 かつ歪速度 1X: In the above hot rolling process, 100 or more, and strain rate 1
Z秒以上の条件で真歪の総和で 0 . 4以上の圧延を行なった後、 1 0 0 0 以下、 かつ歪速度 10Z秒以上の条件で真歪の総和で 0 . 7 以上の圧延を行なう ことが効果的である。 これは上記の鋼中に存在 する組成の異なる複合酸化物およびそれに付随する空隙の形成過程 を制御し、 好ま しい複合酸化物 · 空隙の形態および性質が得られる ためと思われる。 このメカニズムは明確ではないが、 以下に本発明 が発現する機構を説明する。 水素 トラップサイ トとして機能する空 隙は主と して熱間圧延以降の冷延工程で複合酸化物が破砕されるこ とにより形成されるが、 これ以前の熱延工程において複合酸化物の 形状を制御しておく ことが重要である。 つまり、 熱延工程では温度 が高いため複合酸化物も軟化しており母相である地鉄との硬度差が 小さ くなつており約 1 0 0 0 以上の温度域では圧延による複合酸 化物の破碎はほとんど起きず複合酸化物は延伸する。 また 1 0 0 0 °Cより低温、 約 9 0 0 :以下になると複合酸化物は延伸しにく くな るが冷延の場合のような顕著な破砕は起きず微小なクラックを生成 する程度の割れが一部で起きる。 このように適度に延伸し、 同時に 微小なクラックを有する複合酸化物を冷延前に得るには熱延時の温 度制御および各温度域での歪量、 さ らに熱間での加工であるため変 形された地鉄および複合酸化物の回復が顕著に起きるため歪速度の 制御が重要となる。 After rolling at a total true strain of 0.4 or more under conditions of Z seconds or longer, perform rolling at a total of true strains of 0.7 or higher at a strain of 10 00 seconds or less and a strain rate of 10 Z seconds or longer. It is effective. This is probably because the formation of complex oxides with different compositions in the steel and the accompanying void formation process is controlled, and desirable complex oxide / void morphology and properties are obtained. Although this mechanism is not clear, the present invention is described below. The mechanism by which is expressed. The space that functions as a hydrogen trap site is mainly formed by crushing the complex oxide in the cold rolling process after hot rolling, but the shape of the complex oxide in the previous hot rolling process It is important to control this. In other words, in the hot rolling process, the composite oxide is softened due to the high temperature, and the hardness difference from the base metal, which is the parent phase, is small. Fracture hardly occurs and the composite oxide is stretched. In addition, when the temperature is lower than 100 ° C. and about 90 ° C. or less, the composite oxide becomes difficult to stretch, but does not cause significant crushing as in the case of cold rolling, and generates minute cracks. Some cracks occur. In order to obtain a composite oxide that has been stretched moderately and has microcracks at the same time before cold rolling, temperature control during hot rolling, strain in each temperature range, and hot working are required. Therefore, control of strain rate is important because of the remarkable recovery of deformed steel and composite oxides.
,熱間加ェの温度域が高すぎると回復が激し < クラックを形成する だけの歪を複合酸化物に付与することがでさない また低すぎると 口酸化物の形態が伸びたものでなく球形に近いちのとなるためク ラックが入り にく なる。 適度に伸びて厚さが薄 <なっていること がクラックの形成には必要である。 このためには埶間圧延において より高温域での適度な変形による複合酸化物の延伸とより低温域で のクラックの形成を制御して付与する必要がある。 そして、 このよ うなクラックを形成する複合酸化物の形態は、 前述のように複合酸 化物内に濃度差が存在し変形能に差異がある場合により複雑なもの となり、 効率的に有効な空隙を形成することが可能となる。  However, if the temperature range of hot heating is too high, recovery will be severe <strain that can only form cracks cannot be imparted to the composite oxide, and if it is too low, the morphology of the oxide will increase. Since it is almost spherical, the cracks are difficult to enter. It is necessary for the formation of cracks to be reasonably stretched and thin. For this purpose, it is necessary to control and impart the extension of the complex oxide by moderate deformation in the higher temperature range and the formation of cracks in the lower temperature range in the hot rolling. The form of the complex oxide that forms such cracks becomes more complicated when there is a difference in concentration in the complex oxide and there is a difference in deformability as described above. It becomes possible to form.
熱延加熱温度や巻取温度等は通常の操業範囲で通常どおり に設定 することが可能である。 熱延加熱温度は、 1 0 0 0 以下でも構わ ないが、 上記の熱延での複合酸化物延伸効果を十分に得るために 1 0 0 0で以上の圧延を行うのであれば、 1 0 5 0 1 3 0 0 °C、 卷 取温度は 4 0 0 8 0 0 程度である。 Hot rolling heating temperature, coiling temperature, etc. can be set as usual within the normal operating range. The hot rolling heating temperature may be 100000 or less, but in order to sufficiently obtain the effect of stretching the complex oxide in the hot rolling described above, 1 If the above rolling is performed at 0 00, the temperature is 1 0 5 0 1 3 0 0 ° C and the cutting temperature is about 4 0 0 8 0 0.
冷間圧延は、 複合酸化物の破砕を十分に行い、 かつ深絞り性の良 好な鋼板を得るために冷延率 6 0 %以上とすることが好ましい。 特 に深絞り性を必要とする場合は 、 冷延率 7 5 %以上とする とが好 ましい。  In the cold rolling, it is preferable to set the cold rolling rate to 60% or more in order to sufficiently crush the complex oxide and to obtain a steel sheet with good deep drawability. Especially when deep drawability is required, the cold rolling rate is preferably 75% or more.
焼鈍は箱焼鈍でも連続焼鈍でも本発明の特徴は変わらな < 再結 晶温度以上の温度であれば本発明の特徴を発揮する。 特に本発明の 特徴である深絞り性が優れ、 ほうろう特性が良好という特徴を顕現 させるには連続焼鈍が好ましい 。 箱焼鈍では 6 5 0 7 5 0 X で、 連続焼鈍では 7 0 0 8 9 0 Vで主に実施することがでさる  Whether the annealing is box annealing or continuous annealing, the characteristics of the present invention are not changed. The characteristics of the present invention are exhibited as long as the temperature is equal to or higher than the recrystallization temperature. In particular, continuous annealing is preferable in order to manifest the characteristics of the present invention, such as excellent deep drawability and good enamel characteristics. It can be performed mainly at 6 5 0 7 5 0 X for box annealing and 7 0 0 8 9 0 V for continuous annealing.
以上、 説明した様に本発明のように複合酸化物の組成変動を制御 した鋼板は、 直接 1 回掛けはもちろん、 二回掛けでも、 非常に良好 な耐つまとび性を有する。 また、 泡、 黒点欠陥等も発生せず、 優れ たほうろう密着性を有するほうろう用鋼板となる。 施釉の方法も、 湿潤釉薬のみならず、 ドライで粉体でのほうろう掛けにも問題なく 対応できる。 また、 用途等も、 何ら限定されるものではなく、. バス タブ、 食器、 台所用品、 建材、 家電パネル他、 技術的な分類と して の鋼板ホーローの分野で、 その特性を発揮する。 実施例  As described above, the steel sheet in which the composition fluctuation of the composite oxide is controlled as in the present invention has a very good anti-slip property even if it is applied once or twice. In addition, the steel plate for enamel has excellent enamel adhesion without generating bubbles and sunspot defects. The method of glazing can be applied not only to wet glazes, but also to dry and powder enamelling without problems. The application is not limited in any way, and it exhibits its characteristics in the field of steel plate enamel as a technical classification, such as bath tubs, tableware, kitchenware, building materials, home appliance panels. Example
種々の化学組成からなる連続铸造スラブを様々な製造条件で熱間 圧延、 冷間圧延、 焼鈍を行った。 引き続き 1 . 0 %の調質圧延を行 つた後、 ほうろう特性を調査した。 成分を表 1 に、 添加する酸化物 を表 1 一 2 に、 製造条件を表 2 に、 調査結果を表 3 に示した。 本実 施例では、 製鋼時の元素添加条件の影響を検討したため、 同じ成分 を狙った鋼でもわずかな成分の差が生じているが、 同等の成分と し て特性の比較を行った。 同等の成分と判断したものは、 鋼符号で同 じ英字を付与し、 同一の英字の中で通し番号を付けたもので製造条 件の影響を検討した。 なお、 表 2 中の圧延加工の欄において、 Aは 1 0 0 0 以上かつ歪速度 1ノ秒以上で付与された真歪の総和、 B は 1 0 0 0 t以下かつ歪速度 1 0 秒以上で付与された真歪の総和 を意味する。 また、 表 3 中の別酸化物分布の欄においては、 高濃度 低濃度比を示した酸化物についての相対的位置が、 A : 角度 ± 5 。 以内、 かつ距離 0 . 5 ^ m以内、 B : A条件を満たさず、 角度土 1 0 ° 以内、 かつ距離 2 0 m以内、 C : B条件を満たさないこと を意味する。 (ここで酸化物とは F e、 S i 、 M n、 A l 、 N b、 V、 B等の酸化物が複合して一体となった複合酸化物をいう。 別酸 化物とは接触していない任意の 2個の複合酸化物をいう。 同一酸化 物とは分離していない任意の 1 つの複合酸化物をいう。 ) Continuous forged slabs with various chemical compositions were hot-rolled, cold-rolled and annealed under various production conditions. After 1.0% temper rolling, the enamel characteristics were investigated. The components are shown in Table 1, the oxides to be added are shown in Tables 1 and 2, the production conditions are shown in Table 2, and the survey results are shown in Table 3. In this example, the influence of the element addition conditions during steelmaking was examined, so there was a slight difference in the components even when steel aimed at the same component, but the equivalent component was assumed. The characteristics were compared. For the components judged to be equivalent, the same alphabetical letter was assigned with the steel code, and the serial number was assigned within the same alphabetic letter, and the effect of manufacturing conditions was examined. In addition, in the column of rolling process in Table 2, A is the sum of true strains applied at 1 00 0 or more and strain rate of 1 nose or more, B is 1 00 0 t or less and strain rate of 10 seconds or more Means the sum of true strains given in. In addition, in the column of the separate oxide distribution in Table 3, the relative position of the oxide that showed high concentration and low concentration ratio is A: Angle ± 5. Within a distance of 0.5 ^ m, B: A condition is not satisfied, angle soil is within 10 °, and distance is within 20 m, and C: B condition is not satisfied. (Here, the oxide is a composite oxide in which oxides such as Fe, Si, Mn, Al, Nb, V, and B are combined and integrated. In contact with another oxide. Any two complex oxides that are not, and any one complex oxide that is not separated from the same oxide.
ほうろうは、 粉体静電塗装法により乾式で、 下釉薬を 1 0 0 m 、 上釉薬を 1 0 Ο ΓΠ塗布し、 露点 6 0での大気中 8 5 CTC 3分の 焼成を行った。  The enamel was dry-processed by powder electrostatic coating, applied with 100 m of lower glaze and 10 釉 Γ of upper glaze, and baked in air at 85 CTC for 3 minutes at a dew point of 60.
耐つまとび性は焼成した板を、 1 6 0での恒温槽中に 1 0時間入 れるつまとび促進試験を行い、 目視でつまとび発生状況を、 A : 非 常に優れる、 B : 優れる : C : わずかに優れる、 D : 通常、 E : 問 題あり とする A— Eの 5段階で判定し、 表 3 に耐つまとび性として 示した。  As for the anti-pickling property, a squeezing acceleration test is performed by placing the fired plate in a thermostatic bath at 160 ° for 10 hours, and the state of occurrence of the pinching is visually observed. A: Very good, B: Excellent: C : Slightly superior, D: Normal, E: There is a problem A—E was judged in 5 stages, and Table 3 shows the resistance to jerking.
泡 · 黒点の表面特性は目視判定し、 A : 非常に優れる、 B : 優れ る : C : わずかに優れる、 D : 通常、 E : 問題あり とする A— Eの 5段階で判定し、 表 3 に示した。  The surface characteristics of bubbles and sunspots are judged visually. A: Very good, B: Excellent: C: Slightly good, D: Normal, E: There is a problem. It was shown to.
ほうろう密着性は通常行われている P . E . I . 密着試験方法 ( A S T M C 3 1 3 - 5 9 ) では密着性に差が出ないため、 2 k g の球頭の重り を l m高さから落下させ、 変形部のほうろう剥離状態 を 1 6 9本の触診針で計測し、 未剥離部分の面積率で評価した。 表 3の結果から明らかなように、 本発明の鋼板は、 ほうろう特性The enamel adhesion is usually performed by the P.E.I. adhesion test method (ASTC 3 1 3-5 9), so there is no difference in adhesion, so a 2 kg ball head weight is dropped from the lm height. Let the deformed part peel off Was measured with 16 9 palpation needles and evaluated by the area ratio of the unpeeled portion. As is apparent from the results in Table 3, the steel sheet of the present invention has enamel characteristics.
、 特に耐つまとび性が格段に優れたほうろう用鋼板である。 特に、 製造法の制御により複合酸化物の濃度差を制御することによる耐っ まとび性の向上効果が明確である。 In particular, it is a steel plate for enamel that has outstanding resistance to tearing. In particular, the effect of improving the durability by controlling the concentration difference of the composite oxide by controlling the production method is clear.
即ち、 本発明で規定する鋼成分を満たす鋼板は、 表 3 に示すよう に、 別酸化物の Bの m a X / m i n比 (請求項 1 で規定) 、 別酸化 物の M nの m a X / m i n比 (請求項 2で規定) 、 別酸化物分布 ( 請求項 8で B 虫  That is, as shown in Table 3, the steel sheet satisfying the steel components specified in the present invention has a B ma x / min ratio of another oxide (as defined in claim 1), a M n ma x / of another oxide. min ratio (as defined in claim 2), separate oxide distribution (in claim 8 B insect)
、 m求項 9で M n を規定) 、 及び、 '同一酸化物内の m a X m i n比 ( 永項 6で B、 請求項 7で M n を規定) について , M claim 9 defines M n), and 'm a X m i n ratio in the same oxide (B in permanent term 6 and M n in claim 7)
、 本発明で規定する上記要件を全て満たす鋼番号の鋼板は、 密着性Steel plates with steel numbers that meet all the above requirements stipulated in the present invention
8 0 〜 1 0 0 % 、 泡 · 里点性、 · 密着性および耐っまとび性について のほうろフ特性は全体的に も優れた評価となつていた。 Sampling characteristics for foam, stigma, adhesion, and anti-sticking properties were generally evaluated as excellent overall.
また、 別酸化物の Bの m a X / m i η比 (請求項 1 で規定 ) の耍 件を満たしていて、 その他の上記要件のいずれかを満たしていない m番号 ( a 2 、 a 5 、 c 4 、 d 5 、 e 2 、 h 1 、 k. 1 ) の鋼板は、 密着性は 7 5 〜 8 5 %、 泡 • 黒点性、 密着性、 耐つまとび性につい てのほうろう特性は優れる ( B ) 或いはわずかに優れる ( C ) の評 価となっているものもあったが、 総合評価と しては全体的に優れて いて本発明の目的とする効果が得られていた。  In addition, the m number (a2, a5, c) that satisfies the condition of the ma X / mi η ratio of B of another oxide (as defined in claim 1) and does not meet any of the other requirements above 4, d 5, e 2, h 1, k. 1) steel sheet has 75 to 85% adhesion, foam • excellent enamel characteristics for sunspot, adhesion and anti-slip properties (B ) Or slightly better (C), but the overall evaluation was excellent overall and the intended effect of the present invention was obtained.
これに対して、 比較例 ( 1 1 〜 n 2 ) は、 別酸化物の Bの m a X Z m i n比 (請求項 1 で規定) の要件を満たしておらず、 他の要件 を満たしていても、 ほうろう特性 (泡 · 黒点性、 密着性、 耐つまと び性) が劣っていて、 本発明の目的とずる効果が得られなかった。  On the other hand, the comparative example (11 to n2) does not satisfy the requirement for the ma XZ min ratio of B of another oxide (as defined in claim 1), The enamel characteristics (bubbles / spots, adhesion, and resistance to tearing) were inferior, and the effects of the present invention could not be obtained.
「圧延加工」 の欄において、 Aは 1 0 0 0で以上かつ歪速度 1 / 秒以上で付与された真歪の総和、 Bは 1 0 0 0で以下かつ歪速度 1 0 Z秒以上で付与された真歪の総和を意味する。 「別酸化物分布」 の欄においては、 高濃度 低濃度比を示した酸 化物についての相対的位置が、 A : 角度 ± 5 ° 以内、 かつ距離 0 . 5 m以内、 B : A条件を満たさず、 角度 ± 1 0 ° 以内、 かつ距離 2 0 m以内、 C : B条件を満たさないことを意味する。 (こ こで 酸化物とは F e 、 S i 、 M n 、 A し N b 、 V 、 B等の酸化物が複 合して一体となった複合酸化物をいう。 別酸化物とは接触していな い任意の 2個の複合酸化物をいう。 同一酸化物とは分離していない 任意の 1 つの複合酸化物をいう。 ) In the “rolling” column, A is the sum of true strains applied at 100 0 or more and strain rate of 1 / second or more, B is applied at 1 00 or less and strain rate of 10 Z seconds or more Means the sum of true distortions. In the column of “Different Oxide Distribution”, the relative position of oxides with high and low concentration ratios is: A: within an angle ± 5 ° and within a distance of 0.5 m, B: satisfies the A condition This means that the angle is within ± 10 ° and the distance is within 20 m, and C: B condition is not satisfied. (Here, the oxide refers to a composite oxide in which oxides such as Fe, Si, Mn, A, Nb, V, B, etc. are combined and integrated. Contact with another oxide. It means any two complex oxides that are not, and any one complex oxide that is not separated from the same oxide.
耐つまとび性では、 A : 非常に優れる、 B : 優れる : C : わずか に優れる、 D : 通常、 E : 問題あり とする A— Eの 5段階で判定し た。  In terms of anti-slip properties, A: very excellent, B: excellent: C: slightly superior, D: normal, E: problematic: A—E.
泡 · 黒点の表面特性は目視判定し、 A : 非常に優れる、 B : 優れ る : C : わずかに優れる、 D : 通常、 E : 問題あり とする A— Eの 5段階で判定した。 The surface characteristics of bubbles and sunspots were judged visually, and A: very good, B: excellent: C: slightly better, D: normal, E: problematic, A—E.
Figure imgf000030_0001
Figure imgf000030_0001
Figure imgf000030_0002
Figure imgf000030_0002
表 1 — 2 Table 1-2
Figure imgf000031_0001
Figure imgf000031_0001
上記酸化物は、 鋼番号 olのみに、 連続铸造モール ドにて ワイヤー添加  The above oxide is added to the steel number ol only by continuous forging molding.
平均粒径 21 m Average particle size 21 m
表 2 Table 2
Figure imgf000032_0001
表 3
Figure imgf000032_0001
Table 3
Figure imgf000033_0001
産業上の利用可能性
Figure imgf000033_0001
Industrial applicability
本発明のほうろう用鋼板は、 ほうろう用鋼板と して必要な耐つま とび性、 耐泡 · 黒点性、 ほうろう密着性、 表面特性のすべてを満た している。 特に耐つまとび性が著しく 向上し、 ホーロー製品製造ェ 程での不良品率が大きく低下し、 工業的意義は大きい。  The enameled steel sheet of the present invention satisfies all of the required resistance to enameling, such as anti-foaming / spot resistance, enamel adhesion, and surface characteristics. In particular, the anti-tack property is significantly improved, and the defective product rate in the enamel product manufacturing process is greatly reduced, which has great industrial significance.

Claims

請 求 の 範 囲 The scope of the claims
1 貝恵 で 1 in shellfish
C : 0 . 0 1 0 %以下、  C: 0.010% or less,
M n o . 0 3 〜 1. 3 0 %  M n o. 0 3 to 1.3 0%
S i 0. 1 0 0 %以下 、  S i 0. 1 0 0% or less,
A 1 0. 0 3 0 %以下 、  A 1 0. 0 3 0% or less,
N : 0 . 0 0 5 5 %以下 、  N: 0.05 5% or less,
P : 0 . 0 3 5 %以下、  P: 0.03 5% or less,
s : 0 . 0 8 %以下、 s: 0.08% or less,
o : 0 . 0 0 5 〜 0. 0 8 5 o: 0.05 to 0.05
B : 0 . 0 0 0 3〜 0. 0 2  B: 0. 0 0 0 3 to 0.0 2
を含有し残部が F e と不可避的不純物から成り、 板断面における 1 0 0 fi m X 1 0 Ο ΠΊの観察単位視野内の直径 0. 1 Ο ΠΊ以上の F e、 M n、 S i 、 A 1 、 Bなどの酸化物が複合して一体となった 複合酸化物について、 B質量濃度が異なる接触していない任意の 2 個の複合酸化物が存在し、 最高濃度の B質量濃度 (B m a X % ) と最低濃度の B質量濃度 ( B m i n %) の比が、 B m a x / B m i n≥ 1. 2であることを特徴とする耐つまとび性に優れた連 続铸造ほうろう用鋼板。 Fe, M n, S i, with a balance of F e and inevitable impurities, and a diameter in the observation unit field of 1 0 0 fi m X 1 0 ΠΊ に お け るFor complex oxides in which oxides such as A 1 and B are combined and combined, there are any two non-contact complex oxides with different B mass concentrations, and the highest B mass concentration (B A continuous forged brazing steel plate with excellent toughness resistance, characterized in that the ratio of ma X%) to the lowest B mass concentration (B min%) is B max / B min≥1.2.
2. 板断面における 1 0 0 mX l 0 0 mの観察単位視野内の 直径 0. Ι Ο ΠΙ以上の F e、 M n、 S i 、 A l 、 Bなどの酸化物 が複合して一体となった複合酸化物について、 M n質量濃度が異な る接触していない任意の 2個の複合酸化物が存在し、 最高濃度の M n質量濃度 (M n m a X % ) と最低濃度の M n質量濃度 (M n m i n %) の比が、 M n m a x /M n m i n≥ 1. 2であるこ とを特徴とする請求項 1 に記載の耐つまとび性に優れた連続錶造ほ うろう用鋼板。 2. In the cross section of the plate, the diameter of the observation unit field of 100 mX l 0 0 m is 0. し て Ο Ο or more of oxides such as Fe, Mn, Si, Al, B, etc. There are any two non-contact composite oxides with different M n mass concentrations, the highest M n mass concentration (M nma X%) and the lowest M n mass. The ratio of concentration (M nmin%) is M nmax / M nmin ≥ 1.2. Steel plate for wax.
3. さらに質量%で、  3. Furthermore, by mass%
N b : 0. 0 0 4 %未満 (ゼロを含む。 ) N b: Less than 0.04% (including zero)
V : 0. 0 0 3〜 0. 1 5 % V: 0. 0 0 3 to 0.1 5%
の内、 一種または二種を含有することを特徴とする請求項 1 または 2 に記載の耐つまとび性に優れた連続銬造ほうろう用鋼板。 The steel sheet for continuous forging enamel having excellent toughness resistance according to claim 1 or 2, wherein one or two of them are contained.
4. さ らに質量%で、  4. Furthermore, in mass%,
C u : 0. 0 1〜 0. 5 0 0 %、  C u: 0.0 1 to 0.5 0 0%,
を含有することを特徴とする請求項 1〜 3のいずれかに記載の耐っ まとび性に優れた連続铸造ほうろう用鋼板。 The steel sheet for continuous forging enamel having excellent wear resistance according to any one of claims 1 to 3.
5. さらに、 質量%で、  5. Furthermore, in mass%,
C r、 N i 、 A s 、 T i 、 S e、 T a , W、 M o、 S n、 S b、 L a、 C e、 C a、 M gの 1種以上を合計で 1 . 0 %以下含有するこ とを特徴とする請求項 1〜 4のいずれかに記載の耐つまとび性に優 れた連続铸造ほうろう用鋼板。  C r, Ni, As, Ti, Se, Ta, W, Mo, Sn, Sb, La, Ce, Ca, Mg The steel sheet for continuous forging enamel having excellent toughness resistance according to any one of claims 1 to 4, wherein the steel sheet is contained in an amount of not more than%.
6. 鋼板中に存在する一つの F e、 M n、 S i 、 A l 、 N b、 B 、 V、 C rなどの酸化物が複合して一体となった複合酸化物内にお いて、 B質量濃度の分布が存在し、 高濃度部の B質量濃度 ( B m a X % ) と低濃度部の B質量濃度 ( B m i n % ) の比が、 B m a x B m i n≥ 1 . 2であることを特徴とする請求項 1〜 5の いずれかに記載の耐つまとび性に優れた連続铸造ほうろう用鋼板。  6. In a composite oxide in which oxides such as Fe, Mn, Si, A1, Nb, B, V, Cr, etc. existing in a steel plate are combined and integrated, There is a distribution of B mass concentration, and the ratio of B mass concentration (B ma X%) in the high concentration part and B mass concentration (B min%) in the low concentration part is B max B min≥ 1.2 A steel sheet for continuous forging enamel having excellent toughness resistance according to any one of claims 1 to 5.
7. 鋼板中に存在する一つの F e、 M n、 S i 、 A l 、 N b、 B 、 V、 C rなどの酸化物が複合して一体となった複合酸化物内にお いて、 M n濃度の変動が存在し、 高濃度部の M n質量濃度 (M n m a % ) と低濃度部の M n質量濃度 (M n m i n % ) の比が、 M n m a x /M n m i n≥ 1. 2であることを特徴とする請求 項 1〜 6のいずれかに記載の耐つまとび性に優れた連続铸造ほうろ う用鋼板。 7. In a complex oxide in which oxides such as Fe, Mn, Si, A1, Nb, B, V, Cr, etc. existing in a steel plate are combined and integrated, There is a fluctuation in M n concentration, and the ratio of M n mass concentration (M nma%) in the high concentration part to M n mass concentration (M nmin%) in the low concentration part is M nmax / M nmin ≥ 1.2 The continuous forging pot excellent in toughness resistance according to any one of claims 1 to 6, Steel sheet.
8. 板内部のある F e、 M n、 S i 、 A l 、 N b、 B、 V、 C r などの酸化物が複合して一体となった複合酸化物の B質量濃度 (% ) の 1 . 2倍以上または 1 / 1. 2倍以下の B質量濃度の別の複合 酸化物が両方の複合酸化物の中心間の直線距離で 0. 1 0 ^ m以上 、 2 0 m以内、 かつ、 両方の酸化物の中心を結ぶ直線が圧延方向 から ± 1 0 ° 以内の角度で、 存在することを特徴とする請求項 1〜 7のいずれかに記載の耐つまとび性に優れた連続铸造ほうろう用鋼 板。  8. The B mass concentration (%) of the composite oxide in which the oxides such as Fe, Mn, Si, A1, Nb, B, V, Cr, etc. inside the plate are combined 1. Another complex oxide with B mass concentration of more than 2 times or less than 1/2. The continuous forging with excellent toughness resistance according to any one of claims 1 to 7, wherein a straight line connecting the centers of both oxides exists at an angle within ± 10 ° from the rolling direction. Steel plate for enamel.
9. 板内部のある F e、 M n、 S i 、 A l 、 N b、 B、 V、 C r などの酸化物が複合して一体となった複合酸化物の M n質量濃度 ( % ) の 1. 2倍以上または 1 1. 2倍以下の M n質量濃度 (%) の別の複合酸化物が両方の複合酸化物の中心間の直線距離で 0. 1 0 m以上、 2 0 m以内、 かつ、 両方の複合酸化物の中心を結ぶ 直線が圧延方向から ± 1 0 ° 以内の角度で、 存在することを特徴と する請求項 1〜 8のいずれかに記載の耐つまとび性に優れた連続铸 造ほう ろう用鋼板。  9. Mn mass concentration (%) of complex oxide with complex oxides such as Fe, Mn, Si, A1, Nb, B, V, Cr, etc. Another composite oxide with M n mass concentration (%) of 1.2 times or more or 1 1.2 times or less of the linear distance between the centers of both composite oxides is 0.10 m or more, 20 m And a straight line connecting the centers of both composite oxides exists at an angle within ± 10 ° from the rolling direction. Excellent continuous forging steel sheet for brazing.
10. 質量%で  10. In mass%
C : 0 0 1 0 %以下、  C: 0 0 10 0% or less,
M n 0 0 3〜 : L . 3 %  M n 0 0 3 ~: L. 3%
S i 0 • 1 0 0 %以下、  S i 0 • 1 0 0% or less,
A 1 0 0 3 0 %以下、  A 1 0 0 3 0% or less,
N : 0 • 0 0 5 5 %以下、  N: 0 • 0 0 5 5% or less,
P : 0 • 0 3 5 %以下、  P: 0 • 0 3 5% or less,
s : 0 • 0 8 %以下、 s: 0 • 0 8% or less,
o : 0 0 0 5〜 0. 0 8 5 %、 o: 0 0 0 5 to 0.0 0.0 5%,
B : 0 0 0 0 3〜 0. 0 2 5 0 % を含有させ残部を F e と不可避的不純物と し、 鋼の溶製、 铸造工程 において、 M n、 Bの溶鋼への添加手順に関し、 M nの総添加量の 8 0 %以上を添加した後、 1分以上経過させ、 Bの総添加量の 8 0 %以上を添加し、 6 0分以内に铸造を行う ことを特徴とする耐つま とび性に優れた連続銬造ほうろう用鋼板の製造方法。 B: 0 0 0 0 3 to 0. 0 2 5 0% After adding 80% or more of the total amount of Mn in the steel melting and forging processes, Mn and B are added to the molten steel in the steel melting and forging process. A method for producing a steel sheet for continuous forging enamel that has excellent resistance to bending, characterized in that 80% or more of the total amount of B is added after 1 minute has elapsed and forging is performed within 60 minutes. .
11. さ らに質量%で、  11. Furthermore, in mass%,
N b : 0. 0 0 4 %未満 (ゼロを含む) 、  N b: Less than 0.04% (including zero),
V : 0. 0 0 3〜 0. 1 5 % V: 0.0 3 to 0.1 5%
の内、 一種または二種を含有させることを特徴とする請求項 1 0に 記載の耐つまとび性に優れた連続銬造ほうろう用鋼板の製造方法。 The method for producing a steel sheet for continuous forging enamel having excellent toughness resistance according to claim 10, wherein one or two of them are contained.
12. さらに質量%で、  12. In addition,
C u : 0. 0 1〜 0. 5 0 0 %、  C u: 0.0 1 to 0.5 0 0%,
を含有させることを特徴とする請求項 1 0 または 1 1 に記載の耐っ まとび性に優れた連続铸造ほうろう用鋼板の製造方法。 The method for producing a steel sheet for continuous forging enamel having excellent resistance to flaking according to claim 10 or 11, characterized in that said steel is contained.
13. さらに、 質量%で、 C r、 N i 、 A s 、 T i 、 S e、 T a、 W、 . M o、 S n、 S b、 L a、 C e、 C a、 M gの 1種以上を合計 で 1. 0 %以下含有させることを特徴とする請求項 1 0〜 1 ? のい ずれかに記載の耐つまとび性に優れた連続踌造ほうろう用鋼板の製 造方法。  13. Furthermore, in mass%, Cr, Ni, As, Ti, Se, Ta, W, .Mo, Sn, Sb, La, Ce, Ca, Mg The total content of one or more kinds is 1.0% or less. A method for producing a continuous forged enamel steel sheet having excellent toughness resistance as described in any of the above.
14. 铸造工程において、 錶片の板厚 1 Z 4層で、 凝固時の冷却速 度≤ 1 0で/秒と して行う ことを特徴とする請求項 1 0〜 1 3のい ずれかに記載の耐つまとび性に優れた連続铸造ほうろう用鋼板の製 造方法。  14. In the forging process, the thickness of the strip is 1 Z 4 layers, and the cooling rate during solidification is set to 10 / sec. The manufacturing method of the steel sheet for continuous forging enamel excellent in the tear resistance described.
15. 酸化物の平均直径が 1. O m以上、 かつ厚さ 5 O mm以上 の鋼片を 6 0 0 °C以上の熱間で圧延加工するに際し、 1 0 0 0 °C以 上、 かつ歪速度 1ノ秒以上の条件で真歪の総和で 0. 4以上の圧延 を行なった後、 1 0 0 0 °C以下、 かつ歪速度 1 0 Z秒以上の条件で 真歪の総和で 0 . 7以上の圧延を行なう ことを特徴とする請求項 1 0 〜 1 4のいずれかに記載の耐つまとび性に優れた連続铸造ほうろ う用鋼板の製造方法。 15. When rolling a steel slab having an average oxide diameter of 1. O m or more and a thickness of 5 O mm or more at a temperature of 600 ° C. or more, 100 ° C. or more and After rolling at a total true strain of 0.4 or more under the condition of strain rate of 1 nanosecond or more, under conditions of 100 ° C or less and strain rate of 10 Z seconds or more The method for producing a steel sheet for continuous forging steel having excellent toughness resistance according to any one of claims 10 to 14, wherein rolling is performed at a total sum of true strains of 0.7 or more.
PCT/JP2006/322786 2005-11-09 2006-11-09 Steel sheet for continuous cast enameling with highly excellent unsusceptibility to fishscaling and process for producing the same WO2007055400A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2006800507081A CN101356295B (en) 2005-11-09 2006-11-09 Steel sheet for continuous cast enameling with highly excellent unsusceptibility to fishscaling and process for producing the same
EP06823434.3A EP1950317B1 (en) 2005-11-09 2006-11-09 Steel sheet for continuous cast enameling with excellent resistance to fishscaling and process for producing the same
JP2007544239A JP4954889B2 (en) 2005-11-09 2006-11-09 Steel sheet for continuous casting enamel that is remarkably excellent in anti-tackiness and method for producing the same
US12/084,609 US20090047168A1 (en) 2005-11-09 2006-11-09 Continuously Cast Enameled Steel Sheet Remarkably Excellent in Fishscale Resistance and Method of Production of the Same
ES06823434.3T ES2568678T3 (en) 2005-11-09 2006-11-09 Steel sheet for enamelling by continuous casting with excellent peeling resistance and method of producing it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005325441 2005-11-09
JP2005-325441 2005-11-09

Publications (1)

Publication Number Publication Date
WO2007055400A1 true WO2007055400A1 (en) 2007-05-18

Family

ID=38023384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322786 WO2007055400A1 (en) 2005-11-09 2006-11-09 Steel sheet for continuous cast enameling with highly excellent unsusceptibility to fishscaling and process for producing the same

Country Status (9)

Country Link
US (1) US20090047168A1 (en)
EP (1) EP1950317B1 (en)
JP (1) JP4954889B2 (en)
KR (1) KR101019225B1 (en)
CN (1) CN101356295B (en)
ES (1) ES2568678T3 (en)
PT (1) PT1950317E (en)
TW (1) TWI346710B (en)
WO (1) WO2007055400A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043312A (en) * 2008-08-11 2010-02-25 Nippon Steel Corp Steel sheet for porcelain enameling having fishscale resistance
WO2011074787A2 (en) * 2009-12-18 2011-06-23 주식회사 포스코 Steel plate for surface defect-free enameling, and manufacturing method thereof
WO2012091340A2 (en) * 2010-12-27 2012-07-05 주식회사 포스코 Steel sheet free of surface defects for enameling, and method for manufacturing same
JPWO2021193953A1 (en) * 2020-03-27 2021-09-30

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2003221B1 (en) * 2006-04-04 2016-05-25 Nippon Steel & Sumitomo Metal Corporation Hard extra-thin steel sheet and method for manufacturing the same
CN102251192A (en) * 2010-05-19 2011-11-23 宝山钢铁股份有限公司 Enamel steel and production method thereof
CN102408196B (en) * 2010-09-21 2015-01-21 湖南立发釉彩科技有限公司 Fish-scaling-resistant enamel glaze for hot-rolled steel plates
CN102653847A (en) * 2011-03-04 2012-09-05 上海梅山钢铁股份有限公司 Hot rolled steel plate for double-faced enamel and production method thereof
MX360249B (en) 2011-03-09 2018-10-26 Nippon Steel & Sumitomo Metal Corp Steel sheets for hot stamping, method for manufacturing same, and method for manufacturing high-strength parts.
KR101645786B1 (en) * 2011-04-08 2016-08-04 아르셀러미탈 인베스티가시온 와이 데살롤로 에스엘 A steel sheet suitable for enamelling and method for producing such a sheet
KR101405489B1 (en) * 2011-12-23 2014-06-12 주식회사 포스코 Enameling steel sheet with surface defect free and manufacturing method thereof
KR101377786B1 (en) 2012-05-30 2014-03-25 현대제철 주식회사 Cold-rolled steel sheet for enamel and method of manufacturing the same
KR101377768B1 (en) 2012-05-30 2014-03-24 현대제철 주식회사 Hot-rolled steel sheet for enamel and method of manufacturing the same
CN104250705B (en) * 2014-09-19 2017-01-18 宝山钢铁股份有限公司 Enamel steel with high-temperature baking hardenability and manufacturing method thereof
KR101657787B1 (en) * 2014-12-04 2016-09-20 주식회사 포스코 The steel sheet having excellent corrosion resistance to hydrochloric acid and adhesion and method for manufacturing the same
KR101853767B1 (en) * 2016-12-05 2018-05-02 주식회사 포스코 Method for manufacturing of steel and steel produced by using the same
KR101969109B1 (en) * 2017-08-21 2019-04-15 주식회사 포스코 Porcelain enamel steel sheet and manufacturing method thereof
CN108048735B (en) * 2017-11-23 2020-03-27 首钢集团有限公司 Steel plate for cold rolling enamel and production method thereof
CN107916371A (en) * 2017-11-24 2018-04-17 攀钢集团攀枝花钢铁研究院有限公司 The production method of glassed steel
US11236427B2 (en) 2017-12-06 2022-02-01 Polyvision Corporation Systems and methods for in-line thermal flattening and enameling of steel sheets
KR102179214B1 (en) * 2018-11-30 2020-11-16 주식회사 포스코 Cold-rolled steel sheet for enamel and method of manufacturing the same
KR102169455B1 (en) * 2018-12-14 2020-10-23 주식회사 포스코 Porcelain enamel steel sheet excellent in fish scale resistance and enamel adhesion property and manufacturing method thereof
CN110695098B (en) * 2019-09-27 2021-01-26 东南大学 Method for refining steel grains for glazing
US20210130938A1 (en) * 2019-11-04 2021-05-06 Ak Steel Properties, Inc. Cold rolled enameling sheet steel with enhanced formability and process for manufacturing same
KR102305878B1 (en) * 2019-12-20 2021-09-27 주식회사 포스코 Steel sheet for enamel and method of manufacturing the same
CN115478209B (en) * 2021-05-31 2023-08-11 宝山钢铁股份有限公司 Hot-rolled pickled enamel steel with good drawing performance and production method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001748A (en) * 1998-06-18 2000-01-07 Kawasaki Steel Corp Steel sheet for deep drawing, excellent in surface characteristic and stretch-flange formability, and its manufacture
JP2001279331A (en) * 2000-03-30 2001-10-10 Kawasaki Steel Corp Method for producing cold rolled steel sheet for enameling excellent blistering defect resisting characteristic
JP2001316760A (en) * 2000-05-02 2001-11-16 Sumitomo Metal Ind Ltd Steel sheet for enameling excellent in fish-scale resistance, adhesion and workability and its producing method
JP2004018860A (en) * 2002-06-12 2004-01-22 Nippon Steel Corp Enameling steel sheet superior in workability, aging property and enamel property, and manufacturing method therefor
JP2005510624A (en) * 2001-10-29 2005-04-21 新日本製鐵株式会社 Steel plate for enamel excellent in workability and resistance to tearing and method for producing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747797B2 (en) * 1989-03-10 1995-05-24 川崎製鉄株式会社 Steel plate for enamel having excellent scabbing resistance, bubble resistance, black spot defect resistance and press formability, and method for producing the same
JPH03232947A (en) * 1990-02-09 1991-10-16 Kawasaki Steel Corp Steel sheet for porcelain enameling having few defects such as bubbles and black spots
JP3068677B2 (en) * 1991-08-08 2000-07-24 川崎製鉄株式会社 Enamelled steel sheet having good deep drawability and aging resistance and method for producing the same
JP3260446B2 (en) * 1992-10-09 2002-02-25 川崎製鉄株式会社 Enamelled steel sheet with good aging resistance and weldability
JP3067569B2 (en) * 1995-01-25 2000-07-17 日本鋼管株式会社 Enamelled steel with excellent nail skipping resistance, black spot resistance and aging resistance
TW415967B (en) * 1996-02-29 2000-12-21 Kawasaki Steel Co Steel, steel sheet having excellent workability and method of the same by electric furnace-vacuum degassing process
JP3572834B2 (en) * 1996-12-19 2004-10-06 住友金属工業株式会社 Cold rolled steel sheet for enamel and its manufacturing method
JP2001026843A (en) * 1999-07-13 2001-01-30 Nippon Steel Corp Continuously cast steel sheet for porcelain enameling, excellent in workability, resistance to blister and black speck, and adhesion of porcelain enamel, and its manufacture
EP1225241B1 (en) * 2000-06-23 2004-10-20 Nippon Steel Corporation Steel sheet for porcelain enamel excellent in forming property, aging property and enameling characteristics and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001748A (en) * 1998-06-18 2000-01-07 Kawasaki Steel Corp Steel sheet for deep drawing, excellent in surface characteristic and stretch-flange formability, and its manufacture
JP2001279331A (en) * 2000-03-30 2001-10-10 Kawasaki Steel Corp Method for producing cold rolled steel sheet for enameling excellent blistering defect resisting characteristic
JP2001316760A (en) * 2000-05-02 2001-11-16 Sumitomo Metal Ind Ltd Steel sheet for enameling excellent in fish-scale resistance, adhesion and workability and its producing method
JP2005510624A (en) * 2001-10-29 2005-04-21 新日本製鐵株式会社 Steel plate for enamel excellent in workability and resistance to tearing and method for producing the same
JP2004018860A (en) * 2002-06-12 2004-01-22 Nippon Steel Corp Enameling steel sheet superior in workability, aging property and enamel property, and manufacturing method therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043312A (en) * 2008-08-11 2010-02-25 Nippon Steel Corp Steel sheet for porcelain enameling having fishscale resistance
WO2011074787A2 (en) * 2009-12-18 2011-06-23 주식회사 포스코 Steel plate for surface defect-free enameling, and manufacturing method thereof
WO2011074787A3 (en) * 2009-12-18 2011-10-27 주식회사 포스코 Steel plate for surface defect-free enameling, and manufacturing method thereof
JP2013514460A (en) * 2009-12-18 2013-04-25 ポスコ Steel plate for enamel without surface defects and method for producing the same
WO2012091340A2 (en) * 2010-12-27 2012-07-05 주식회사 포스코 Steel sheet free of surface defects for enameling, and method for manufacturing same
WO2012091340A3 (en) * 2010-12-27 2012-09-07 주식회사 포스코 Steel sheet free of surface defects for enameling, and method for manufacturing same
JP2014500397A (en) * 2010-12-27 2014-01-09 ポスコ Steel plate for enamel without surface defects and method for producing the same
US9382597B2 (en) 2010-12-27 2016-07-05 Posco Steel sheet for enamel having no surface defects and method of manufacturing the same
JPWO2021193953A1 (en) * 2020-03-27 2021-09-30
JP7115653B2 (en) 2020-03-27 2022-08-09 日本製鉄株式会社 Steel plate and enamel products

Also Published As

Publication number Publication date
KR20080058477A (en) 2008-06-25
PT1950317E (en) 2016-06-03
TW200718789A (en) 2007-05-16
CN101356295B (en) 2012-07-04
JPWO2007055400A1 (en) 2009-04-30
ES2568678T3 (en) 2016-05-03
US20090047168A1 (en) 2009-02-19
EP1950317A1 (en) 2008-07-30
EP1950317B1 (en) 2016-03-30
TWI346710B (en) 2011-08-11
JP4954889B2 (en) 2012-06-20
EP1950317A4 (en) 2010-03-24
CN101356295A (en) 2009-01-28
KR101019225B1 (en) 2011-03-04

Similar Documents

Publication Publication Date Title
WO2007055400A1 (en) Steel sheet for continuous cast enameling with highly excellent unsusceptibility to fishscaling and process for producing the same
JP4959709B2 (en) Steel plate for enamel which is remarkably excellent in anti-tackiness and method for producing the same
KR100938790B1 (en) Method for producing austenitic iron-carbon-manganese metal sheets, and sheets produced thereby
EP2649214B1 (en) Process for manufacturing high manganese content steel with high mechanical resistance and formability, and steel so obtainable
US8491735B2 (en) Steel sheet for vitreous enameling and method for producing the same
RU2382111C2 (en) Soft black sheet iron with hardness hr 30t, which is 51±3, for blanching and method for its manufacturing
JP6115691B1 (en) Steel plate and enamel products
WO2006035735A1 (en) Method for producing martensitic stainless steel pipe
CN110541119B (en) Low-expansion iron-nickel alloy and manufacturing method thereof
CN110062814A (en) Low alloy steel plate with excellent intensity and ductility
JP3797063B2 (en) Steel plate for enamel with excellent nail skipping resistance, adhesion and workability, and its manufacturing method
JP2011528751A (en) Method for producing austenitic stainless steel sheet having high mechanical properties and steel sheet thus obtained
JP5251255B2 (en) Hard ultrathin steel sheet with small local deformability and method for producing the same
CN103643157A (en) Copper-contained ferritic stainless steel coil and manufacturing method thereof
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
CN113166887A (en) Cold-rolled steel sheet for enameling and method for producing same
JP5050565B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP2007239035A (en) Cold rolled steel sheet with excellent strain aging resistance, excellent surface roughing resistance and small in-plane anisotropy, and its manufacturing method
CN115478227B (en) Steel sheet for hot stamping, hot stamping member, and steel sheet manufacturing method
JP4675771B2 (en) Ferritic stainless steel wire for glass encapsulation
JP5644148B2 (en) Stainless cold-rolled steel sheet with excellent surface appearance after processing and method for producing the same
KR20230059478A (en) Ferritic stainless hot-rolled steel plate excellent in formability and method for production thereof
JP4498912B2 (en) Austenitic stainless steel sheet with excellent overhang formability and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007544239

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12084609

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/005838

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2006823434

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087011276

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200680050708.1

Country of ref document: CN