WO2007054282A1 - Antikavitations-fluidspeicher - Google Patents

Antikavitations-fluidspeicher Download PDF

Info

Publication number
WO2007054282A1
WO2007054282A1 PCT/EP2006/010697 EP2006010697W WO2007054282A1 WO 2007054282 A1 WO2007054282 A1 WO 2007054282A1 EP 2006010697 W EP2006010697 W EP 2006010697W WO 2007054282 A1 WO2007054282 A1 WO 2007054282A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavitation
fluid
fluid reservoir
shut
housing
Prior art date
Application number
PCT/EP2006/010697
Other languages
English (en)
French (fr)
Inventor
Stephan Walentowski
Sandra Nitsche
Original Assignee
Trw Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trw Automotive Gmbh filed Critical Trw Automotive Gmbh
Publication of WO2007054282A1 publication Critical patent/WO2007054282A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/04Accumulators
    • F15B1/08Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor
    • F15B1/24Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor with rigid separating means, e.g. pistons

Definitions

  • the invention relates to an anti-cavitation fluid reservoir for hydraulic circuits.
  • Fluid accumulators are known from the prior art and are used in particular in hydraulic circuits for the rapid provision of missing hydraulic fluid or for rapid absorption of excess hydraulic fluid.
  • external activation of an actuator poses a risk of cavitation in a pressure chamber of the actuator.
  • External control in this context means that the actuator does not perform a movement due to an increase or decrease of hydraulic fluid (pressure control), but that hydraulic fluid must be added or removed by an imposed movement.
  • Forced movements for a hydraulic actuator arise when used in a chassis stabilization system, e.g. by road bumps such as potholes, etc., which are followed by the wheel associated with the actuator.
  • the object of the invention is to solve the Kavitationsproblem with the least possible technical effort.
  • an anti-cavitation fluid reservoir for hydraulic circuits comprising a housing which encloses a storage space and a movable shut-off element which is arranged in the storage space and fluid-tightly delimits a fluid chamber with variable volume.
  • a first side of the shut-off element is acted upon with atmospheric pressure and a second side of the shut-off element with the operating pressure of the hydraulic circuit.
  • the fluid reservoir is preferably connected near the cavitation endangered point with the hydraulic circuit. Due to the proximity to the cavitation endangered point, the influences of internal friction and mass inertia of the hydraulic fluid are low, which facilitates prevention of cavitation phenomena.
  • fluid reservoir and actuator form a preassembled unit, and there are no additional connections for separate fluid reservoir in the hydraulic circuit needed.
  • the fluid-tight chamber of the anti-cavitation fluid reservoir is preferably filled with hydraulic fluid, whereby no separate fluid circuits are necessary, but a direct connection of the fluid-tight chamber to the hydraulic circuit is easily possible.
  • the shut-off element may be within the housing adjacent to the fluid-tight
  • Chamber also define an air space that communicates with the environment and just like the fluid-tight chamber has a variable volume.
  • This air space is preferably connected to the environment via a filter.
  • a spring element extends through the fluid-tight chamber or the air space and exerts a force on a pressurized side of the shut-off element.
  • the housing has a cylinder
  • the movable shut-off element is a piston which is movable between two attachment points of the cylinder.
  • Cylinder / piston units have proven to limit fluid-tight chambers with variable volume and allow attachment points of the cylinder a simple determination of the storage space size.
  • shut-off element is an elastic
  • FIG. 1 shows a section through an anti-cavitation fluid storage according to the invention, which is connected via a likewise cut pressure port with a cylinder / piston unit shown schematically;
  • FIG. 2 shows a longitudinal section through a cylinder of an actuator with an integrated anti-cavitation fluid reservoir according to the invention.
  • FIG. 1 shows schematically a cylinder / piston unit 8 with a
  • the fluid reservoir 14 has a housing 16 which encloses a storage space.
  • the housing 16 is cylindrical in the present case and is limited in the axial direction on one side by a housing bottom and on the other side by a connecting plug 18. Between this housing bottom and the connecting plug 18, a shut-off element, e.g. a piston 20, move in the axial direction.
  • Both the connecting plug 18 and the housing bottom each have an axial bore 21, 22, so that the storage space is connected via the connecting plug 18 with the hydraulic circuit and the housing bottom with the environment.
  • the piston 20 divides the storage space into a fluid chamber 23 and an air space 24 (cf., FIG. 2), wherein the piston 20 fluid-tightly delimits the fluid chamber 23 via an annular seal 26.
  • FIG. 1 shows by way of example a cavitation-endangered cylinder / piston
  • the Antikavitations-fluid reservoir 14 is arranged so that the fluid chamber with the hydraulic circuit near the Kavitationsgefährdeten Job is connected.
  • the fluid chamber is connected directly to the hydraulic circuit and filled with hydraulic fluid.
  • the operating pressure of the hydraulic circuit is always applied to a piston surface which faces the connection plug 18.
  • atmospheric pressure is present since there is a connection to the environment via the axial bore 22 in the housing bottom.
  • the operating pressure of the hydraulic circuit is significantly higher than the atmospheric pressure, so that in Figure 1, the piston 20 is drawn in a position which it occupies normally.
  • the piston 20 is located at the attachment point in the vicinity of the housing bottom, and the fluid chamber 23 has its largest possible volume.
  • the air space 24 reaches its minimum volume, which is close to zero.
  • the operating pressure of the hydraulic circuit must drop well below the atmospheric pressure.
  • the piston 20 moves in the direction of the connecting plug 18 until it reaches the maximum stop point in the vicinity of the connecting plug 18 in the extreme case.
  • the fluid chamber 23 in this case has its minimum volume; the hydraulic fluid previously present in it was released into the hydraulic circuit for cavitation prevention.
  • the air space 24 reaches its maximum volume and absorbs ambient air. To make the start of the movement of the piston independent of the ambient pressure, the installation of a spring element 28 is possible.
  • the spring element 28 extends from the connecting plug 18 through the fluid chamber 23 to the piston 20 and exerts there a force on the acted upon by the operating pressure of the hydraulic circuit piston surface.
  • compression springs are used as spring element 28, which in the present case means that the operating pressure of the hydraulic system must fall more clearly below the atmospheric pressure than without the installation of the spring to cause movement of the piston.
  • the spring element 28 can of course also be arranged between the housing bottom and the piston 20. When using a compression spring, this would mean that the
  • Piston 20 already at a drop in operating pressure to a value above the atmospheric pressure moves.
  • the use of a tension spring as a spring element 28 is of course also conceivable.
  • FIG. 2 shows a cylinder tube 30 of a cylinder / piston unit with an integrated anti-cavitation fluid reservoir 14.
  • the piston 20 is guided in the housing 16 analogously to FIG.
  • the housing 16 is designed in Figure 2 so that it closes the cylinder tube 30 at one end face.
  • the storage space communicates via radial bores 32 in the housing 16 with the interior of the cylinder and via an axial bore 22 with the environment. More specifically, this axial bore 22 is located in a cover plate 34 of the housing 16, which otherwise closes the cylindrical interior of the housing 16.
  • a filter 36 may be included, which cleans the gas mixture from the environment, usually air, before entering the storage space. This contributes to a smooth sliding of the piston 20 on an inner side of the housing 16 and to a longer life and better sealing effect of the annular seal 26 at.
  • the shut-off element is an elastic membrane which replaces the piston 20 together with any spring element 28 that may be present.
  • the membrane is peripherally attached to the peripheral wall of the housing 16 and may otherwise move within the storage space.
  • the housing 16 prevents in this case an undesirably large spread or even bursting of the membrane.
  • the operating principle of the fluid reservoir 14 is substantially similar to that of the embodiment described above with piston and spring element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)

Abstract

Ein Antikavitations-Fluidspeicher (14) für Hydraulikkreisläufe weist ein Gehäuse (16) auf, das einen Speicherraum umschließt, sowie ein bewegbares Absperrelement, das im Speicherraum angeordnet ist und eine Fluidkammer (22) mit variablem Volumen fluiddicht begrenzt, wobei eine erste Seite des Absperrelements mit Atmosphärendruck und eine zweite Seite des Absperrelements mit dem Betriebsdruck des Hydraulikkreislaufs beaufschlagt ist.

Description

Antikavitations-Fluidspeicher
Die Erfindung betrifft einen Antikavitations-Fluidspeicher für Hydraulikkreisläufe.
Fluidspeicher sind aus dem Stand der Technik bekannt und werden insbesondere in Hydraulikkreisläufen zur raschen Bereitstellung von fehlendem Hydraulikfluid oder zur raschen Aufnahme von überschüssigem Hydraulikfluid eingesetzt. In Systemen zur Fahrwerkstabilisierung ist durch sogenannte Fremdansteuerung eines Aktuators eine Kavitationsgefahr in einer Druckkammer des Aktuators gegeben. Fremdansteuerung bedeutet in diesem Zusammenhang, daß der Aktuator nicht infolge einer Zu- oder Abfuhr von Hydraulikfluid eine Bewegung durchführt (Druckansteuerung), sondern, daß durch eine aufgezwungene Bewegung Hydraulikfluid zu- oder abgeführt werden muß. Aufgezwungene Bewegungen für einen hydraulischen Aktuator entstehen bei einem Einsatz in einem Fahrwerkstabilisierungssystem z.B. durch Straßenunebenheiten wie Schlaglöcher etc., denen das dem Aktuator zugeordnete Rad folgt. Im Zusammenhang mit einer möglichen Fremdansteuerung eines hydraulischen Aktuators ist es zur Vermeidung von Kavitation besonders wichtig, für eine schnelle Hydraulikzufuhr zu sorgen. Infolge der inneren Reibung und Massenträgheit des Hydraulikfluids müssen hierfür besondere Vorkehrungen getroffen werden.
Aufgabe der Erfindung ist es, das Kavitationsproblem mit möglichst geringem technischen Aufwand zu lösen.
Zu diesem Zweck ist ein Antikavitations-Fluidspeicher für Hydraulikkreisläufe vorgesehen, mit einem Gehäuse, das einen Speicherraum umschließt, sowie einem bewegbaren Absperrelement, das im Speicherraum angeordnet ist und fluiddicht eine Fluidkammer mit variablem Volumen begrenzt. Dabei ist eine erste Seite des Absperrelements mit Atmosphärendruck und eine zweite Seite des Absperrelements mit dem Betriebsdruck des Hydraulikkreislaufs beaufschlagt. Dies bietet den Vorteil, daß der Antikavitations-Fluidspeicher mittels seiner Fluidkammer ein Fluidvolumen zur Verhinderung der Kavitation zur Verfügung stellen kann. Des weiteren ist der Antikavitations-Fluidspeicher ein einfaches, passives Bauelement und ohne Probleme in einen Hydraulikkreislauf integrierbar.
Der Fluidspeicher ist bevorzugt nahe der kavitationsgefährdeten Stelle mit dem Hydraulikkreislauf verbunden. Durch die Nähe zur kavitationsgefährdeten Stelle sind die Einflüsse aus innerer Reibung und Massenträgheit des Hydraulik- fluids gering, was eine Verhinderung von Kavitationserscheinungen erleichtert.
Darüber hinaus ist eine Integration des Fluidspeichers in einen kavitationsgefährdeten Aktuator möglich. Damit bilden Fluidspeicher und Aktuator eine vormontierbare Baueinheit, und es sind keine zusätzlichen Anschlüsse für separate Fluidspeicher im Hydraulikkreislauf nötig.
Die fluiddichte Kammer des Antikavitations-Fluidspeichers ist vorzugsweise mit Hydraulikfluid gefüllt, wodurch keine getrennten Fluidkreisläufe notwendig sind, sondern ein direkter Anschluß der fluiddichten Kammer an den Hydraulikkreislauf problemlos möglich ist. Das Absperrelement kann innerhalb des Gehäuses neben der fluiddichten
Kammer auch einen Luftraum festlegen, der mit der Umgebung in Verbindung steht und genau wie die fluiddichte Kammer ein variables Volumen aufweist. Vorzugsweise steht dieser Luftraum über einen Filter mit der Umgebung in Verbindung. Durch diese Maßnahme wird eine Verunreinigung des Speicher- raums verhindert und eine dauerhafte fluiddichte Begrenzung der Kammer durch das bewegbare Absperrelement ermöglicht.
In einer Ausführungsform erstreckt sich ein Federelement durch die fluiddichte Kammer oder den Luftraum und übt eine Kraft auf eine druckbeaufschlagte Seite des Absperrelements aus. Durch ein solches Federelement kann eine Druckdifferenz, ab der sich das Absperrelement in Bewegung setzt, bedarfsgerecht gesteuert werden.
In einer bevorzugten Ausführungsform weist das Gehäuse einen Zylinder auf, und das bewegbare Absperrelement ist ein Kolben, der zwischen zwei Anschlagpunkten des Zylinders bewegbar ist. Zylinder/Kolben-Einheiten haben sich zur Begrenzung fluiddichter Kammern mit variablem Volumen bewährt und erlauben über Anschlagpunkte des Zylinders eine einfache Festlegung der Speicherraumgröße. - ~
In einer weiteren Ausführungsform ist das Absperrelement eine elastische
Membran. Da die elastische Membran unter zunehmender Belastung eine wachsende Kraft entgegen ihrer Ausdehnungsrichtung ausbildet, ersetzt eine entsprechend beschaffene Membran ein alternatives Absperrelement und eine möglicherweise eingebaute Feder.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsformen und aus den beigefügten Zeichnungen, auf die Bezug genommen wird. In den Zeichnungen zeigen:
- Figur 1 einen Schnitt durch einen erfindungsgemäßen Antikavitations-Fluid- speicher, der über einen ebenfalls geschnittenen Druckanschluß mit einer schematisch dargestellten Zylinder/Kolben-Einheit verbunden ist; und
- Figur 2 einen Längsschnitt durch einen Zylinder eines Aktuators mit einem integrierten, erfindungsgemäßen Antikavitations-Fluidspeicher.
Die Figur 1 zeigt schematisch eine Zylinder/Kolben-Einheit 8 mit einem
Druckanschluß 10, wobei an eine zugehörige Druckleitung 12, nahe des Druckanschlusses 10, ein Antikavitations-Fluidspeicher 14 angeschlossen ist. Der Fluidspeicher 14 weist ein Gehäuse 16 auf, das einen Speicherraum umschließt. Das Gehäuse 16 ist im vorliegenden Fall zylinderförmig und wird in axialer Richtung auf der einen Seite von einem Gehäuseboden begrenzt und auf der anderen Seite von einem Verbindungsstopfen 18. Zwischen diesem Gehäuseboden und dem Verbindungsstopfen 18 kann sich innerhalb des Zylinders ein Absperrelement, z.B. ein Kolben 20, in axialer Richtung bewegen. Sowohl der Verbindungsstopfen 18 wie auch der Gehäuseboden weisen jeweils eine axiale Bohrung 21 , 22 auf, so daß der Speicherraum über den Verbindungsstopfen 18 mit dem Hydraulikkreislauf und über den Gehäuseboden mit der Umgebung verbunden ist. Der Kolben 20 unterteilt den Speicherraum in eine Fluidkammer 23 und einen Luftraum 24 (vgl. Figur 2), wobei der Kolben 20 die Fluidkammer 23 über eine Ringdichtung 26 fluiddicht begrenzt.
In der Figur 1 ist beispielhaft eine kavitationsgefährdete Zylinder/Kolben-
Einheit dargestellt, wobei der Antikavitations-Fluidspeicher 14 so angeordnet ist, daß die Fluidkammer mit dem Hydraulikkreislauf nahe der kavitationsgefährdeten Stelle verbunden ist. Über den Verbindungsstopfen 18 ist die Fluidkammer direkt mit dem Hydraulikkreislauf verbunden und mit Hydraulikfluid gefüllt. Somit liegt an einer Kolbenfläche, die dem Verbindungsstopfen 18 zugewandt ist, stets der Betriebsdruck des Hydraulikkreislaufs an. An der entgegengesetzten Seite des Kolbens 20, also an der Seite, die dem Gehäuseboden zugewandt ist, liegt Atmosphärendruck an, da über die axiale Bohrung 22 im Gehäuseboden eine Verbindung zur Umgebung besteht.
In der Regel liegt der Betriebsdruck des Hydraulikkreislaufs deutlich höher als der Atmosphärendruck, so daß in Figur 1 der Kolben 20 in einer Stellung gezeichnet ist, die er im Normalfall einnimmt. Der Kolben 20 befindet sich am Anschlagpunkt in der Nähe des Gehäusebodens, und die Fluidkammer 23 hat ihr größtmögliches Volumen. Der Luftraum 24 erreicht sein minimales Volumen, das nahe Null liegt.
Vor dem Auftreten von Kavitationserscheinungen muß der Betriebsdruck des Hydraulikkreislaufs deutlich unter den Atmosphärendruck abfallen. In diesem Fall bewegt sich der Kolben 20 in Richtung zum Verbindungsstopfen 18, bis er im Extremfall maximal den Anschlagpunkt in der Nähe des Verbindungsstopfens 18 erreicht hat. Die Fluidkammer 23 hat in diesem Fall ihr minimales Volumen; das vorher in ihr vorhandene Hydraulikfluid wurde zur Kavitationsverhinderung in den Hydraulikkreislauf abgegeben. Der Luftraum 24 erreicht sein maximales Volumen und nimmt Umgebungsluft auf. Um den Bewegungsbeginn des Kolbens unabhängiger vom Umgebungsdruck zu machen, ist der Einbau eines Federelements 28 möglich.
In der Figur 1 erstreckt sich das Federelement 28 vom Verbindungsstopfen 18 durch die Fluidkammer 23 bis zum Kolben 20 und übt dort eine Kraft auf die mit dem Betriebsdruck des Hydraulikkreislaufs beaufschlagte Kolbenfläche aus.
Gewöhnlich werden Druckfedern als Federelement 28 verwendet, was im vorliegenden Fall bedeutet, daß der Betriebsdruck des Hydrauliksystems deutlicher unter den Atmosphärendruck fallen muß als ohne den Einbau der Feder, um eine Bewegung des Kolbens hervorzurufen. Das Federelement 28 kann selbstverständlich auch zwischen dem Gehäuseboden und dem Kolben 20 angeordnet sein. Bei Einsatz einer Druckfeder würde dies bedeuten, daß sich der
Kolben 20 bereits bei einem Abfall des Betriebsdrucks auf einen Wert, der über dem Atmosphärendruck liegt, bewegt. Der Einsatz einer Zugfeder als Federelement 28 ist natürlich ebenso denkbar.
Die Figur 2 zeigt ein Zylinderrohr 30 einer Zylinder/Kolben-Einheit mit einem integrierten Antikavitations-Fluidspeicher 14. Auch in dieser integrierten Bau- weise ist der Kolben 20 analog zu Figur 1 in dem Gehäuse 16 geführt. Das Gehäuse 16 ist in Figur 2 allerdings so ausgeführt, daß es das Zylinderrohr 30 an einer Stirnseite verschließt. Der Speicherraum steht über radiale Bohrungen 32 im Gehäuse 16 mit dem Inneren des Zylinders in Verbindung und über eine axiale Bohrung 22 mit der Umgebung. Genauer gesagt befindet sich diese axiale Bohrung 22 in einer Abdeckplatte 34 des Gehäuses 16, die den zylinderförmigen Innenraum des Gehäuses 16 ansonsten verschließt. In dieser Bohrung 22 kann ein Filter 36 aufgenommen sein, der das Gasgemisch aus der Umgebung, in der Regel also Luft, vor dem Eintritt in den Speicherraum reinigt. Dies trägt zu einem problemlosen Gleiten des Kolbens 20 an einer Innenseite des Gehäuses 16 und zu einer längeren Lebensdauer sowie besseren Dichtwirkung der Ringdichtung 26 bei.
Alternativ zu den Ausführungsformen nach Figur 1 und Figur 2 ist das Absperrelement in weiteren Ausführungsformen eine elastische Membran, das den Kolben 20 mitsamt dem eventuell vorhandenen Federelement 28 ersetzt. Die Membran ist randseitig an der Umfangswand des Gehäuses 16 befestigt und kann sich ansonsten innerhalb des Vorratsraums bewegen. Das Gehäuse 16 verhindert in diesem Fall eine unerwünscht große Ausbreitung oder gar ein Platzen der Membran. Im Übrigen gleicht das Funktionsprinzip des Fluidspeichers 14 weitgehend dem der oben beschriebenen Ausführungsform mit Kolben und Federelement.

Claims

Patentansprüche
1. Antikavitations-Fluidspeicher (14) für Hydraulikkreisläufe mit einem Gehäuse (16), das einen Speicherraum umschließt, sowie einem bewegbaren Absperrelement, das im Speicherraum angeordnet ist und eine Ruidkammer (22) mit variablem Volumen fluiddicht begrenzt, wobei eine erste Seite des Absperrelements mit Atmosphärendruck und eine zweite Seite des Absperrelements mit dem Betriebsdruck des Hydraulikkreislaufs beaufschlagt ist.
2. Antikavitations-Fluidspeicher (14) nach Anspruch 1 , dadurch gekennzeichnet, daß die Fluidkammer (22) mit dem Hydraulikkreislauf nahe der kavitationsgefährdeten Stelle verbunden ist.
3. Antikavitations-Fluidspeicher (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Fluidspeicher (14) in einen kavitationsgefährdeten Aktuator integriert ist.
4. Antikavitations-Fluidspeicher (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Fluidkammer (22) mit Hydraulik- fluid gefüllt ist.
5. Antikavitations-Fluidspeicher (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Absperrelement die Fluidkammer (22) und einen Luftraum (24) innerhalb des Gehäuses festlegt, der mit der Umgebung in Verbindung steht und genau wie die Fluidkammer (22) ein variables Volumen aufweist.
6. Antikavitations-Fluidspeicher (14) nach Anspruch 5, dadurch gekennzeichnet, daß der Luftraum (24) über einen Filter mit der Umgebung in Verbindung steht.
7. Antikavitations-Fluidspeicher (14) nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß sich ein Federelement (28) durch die Fluidkammer (22) oder den Luftraum (24) erstreckt und auf eine druckbeaufschlagte Seite des Absperrelements eine Kraft ausübt.
8. Antikavitations-Fluidspeicher (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Gehäuse (16) einen Zylinder aufweist und das Absperrelement ein Kolben ist, der zwischen zwei Anschlagpunkten innerhalb des Zylinders bewegbar ist.
9. Antikavitations-Fluidspeicher (14) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Absperrelement eine elastische Membran ist.
PCT/EP2006/010697 2005-11-08 2006-11-08 Antikavitations-fluidspeicher WO2007054282A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200520017434 DE202005017434U1 (de) 2005-11-08 2005-11-08 Antikavitations-Fluidspeicher
DE202005017434.3 2005-11-08

Publications (1)

Publication Number Publication Date
WO2007054282A1 true WO2007054282A1 (de) 2007-05-18

Family

ID=35613412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/010697 WO2007054282A1 (de) 2005-11-08 2006-11-08 Antikavitations-fluidspeicher

Country Status (2)

Country Link
DE (1) DE202005017434U1 (de)
WO (1) WO2007054282A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006037819A1 (de) * 2006-08-12 2008-02-14 Bayerische Motoren Werke Ag Druckspeicher für ein Hydrauliksystem
DE102007000620A1 (de) * 2007-11-05 2009-05-07 Zf Friedrichshafen Ag Vorrichtung zum Speichern von Hydraulikfluid und Verfahren zum Betreiben einer Vorrichtung zum Speichern von Hydraulikfluid
DE202014006620U1 (de) 2014-08-19 2015-11-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Aktuatoreinheit
DE102015111428A1 (de) * 2015-07-15 2017-01-19 Robert Bosch Automotive Steering Gmbh Fluidbehälter für ein hydraulisches System, hydraulisches System und Verfahren zum Betreiben eines hydraulischen Systems
DE102018112523A1 (de) * 2018-05-24 2019-11-28 Airbus Operations Gmbh Reservoir für ein Hydrauliksystem

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2169986A (en) * 1985-01-19 1986-07-23 Boge Gmbh Hydraulically damped rubber mounting
EP0270327A1 (de) * 1986-12-01 1988-06-08 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Stabilisator mit veränderlicher Federcharacteristik
JPH07113467A (ja) * 1993-10-15 1995-05-02 Jatco Corp 油圧制御回路用アキュムレータ
DE19709779A1 (de) * 1997-03-10 1998-09-17 Itt Mfg Enterprises Inc Druckmittelspeicher
EP1203712A2 (de) * 2000-11-03 2002-05-08 Kirk Hibbert Zusammengesetztes Verbindungssystem für eine Fahrzeugaufhängung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2169986A (en) * 1985-01-19 1986-07-23 Boge Gmbh Hydraulically damped rubber mounting
EP0270327A1 (de) * 1986-12-01 1988-06-08 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Stabilisator mit veränderlicher Federcharacteristik
JPH07113467A (ja) * 1993-10-15 1995-05-02 Jatco Corp 油圧制御回路用アキュムレータ
DE19709779A1 (de) * 1997-03-10 1998-09-17 Itt Mfg Enterprises Inc Druckmittelspeicher
EP1203712A2 (de) * 2000-11-03 2002-05-08 Kirk Hibbert Zusammengesetztes Verbindungssystem für eine Fahrzeugaufhängung

Also Published As

Publication number Publication date
DE202005017434U1 (de) 2006-01-05

Similar Documents

Publication Publication Date Title
EP1709334B1 (de) Druckspeicher, insbesondere pulsationsdämpfer
DE102007036102A1 (de) Selbstpumpende hydropneumatische Feder-Dämpfer-Einheit
DE19833410B4 (de) Hydraulische Ansteuereinheit für eine Kraftfahrzeugbremsanlage
DE10343212B4 (de) Balghydraulikdruckspeicher
DE3638574A1 (de) Anordnung zur drucksteuerung eines daempfungszylinders fuer die abfederung von fahrzeugen
DE4116399C2 (de) Kolbenzylindereinheit insbesondere zur Verwendung als Federbein in Fahrzeug-Federungssystemen
WO2014127955A1 (de) Hydraulikeinheit
DE102013102069A1 (de) Proportional-Wegeventil sowie hydraulische Schaltung und hydropneumatisches Federungssystem mit einem derartigen Ventil
WO2007054282A1 (de) Antikavitations-fluidspeicher
DE4226754A1 (de) Aufhaengungssystem fuer fahrzeuge
DE102006013072B3 (de) Selbstpumpende hydropneumatische Feder-Dämpfer-Einheit
WO2020187539A1 (de) Feder-dämpfer-system
DE102011075792B3 (de) Verstellbares Dämpfventil
WO2017137180A1 (de) Schwingungsdämpfer mit einem ausgleichsraum
DE102016224353A1 (de) Hydraulischer Endanschlag für einen Schwingungsdämpfer
EP1953393B1 (de) Schwenkmotor
DE102011101746A1 (de) Federdämpfervorrichtung mit einer mitbeweglichen Ventilanordnung
EP1584502B1 (de) Federungs- und Dämpfungseinrichtung für Kraftfahrzeuge
DE202005012885U1 (de) Hydraulischer Aktuator, insbesondere für ein Fahrwerkstabilisierungssystem
EP3126200A1 (de) Dämpfungseinrichtung und schlupfregelbare fahrzeugbremsanlage
DE4221088C2 (de) Aufhängungssystem für Fahrzeuge
WO2007101696A1 (de) Fluidspeicher
DE102006027388B4 (de) Federsystem
DE102008042637B4 (de) Ventileinrichtung mit amplitudenabhängiger Dämpfkraft
EP1961975B1 (de) Aggregat, insbesondere Schwenkmotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06818414

Country of ref document: EP

Kind code of ref document: A1