WO2007053973A1 - Verfahren und vorrichtung zur bewertung von fügestellen von werkstücken - Google Patents

Verfahren und vorrichtung zur bewertung von fügestellen von werkstücken Download PDF

Info

Publication number
WO2007053973A1
WO2007053973A1 PCT/CH2006/000634 CH2006000634W WO2007053973A1 WO 2007053973 A1 WO2007053973 A1 WO 2007053973A1 CH 2006000634 W CH2006000634 W CH 2006000634W WO 2007053973 A1 WO2007053973 A1 WO 2007053973A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
image
light
gray value
joint
Prior art date
Application number
PCT/CH2006/000634
Other languages
English (en)
French (fr)
Inventor
Joachim Schwarz
Original Assignee
Precitec Vision Gmbh & Co. Kg, Eschborn (De), Zweigniederlassung Neftenbach
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Precitec Vision Gmbh & Co. Kg, Eschborn (De), Zweigniederlassung Neftenbach filed Critical Precitec Vision Gmbh & Co. Kg, Eschborn (De), Zweigniederlassung Neftenbach
Priority to CN2006800420340A priority Critical patent/CN101479566B/zh
Priority to JP2008540423A priority patent/JP5312033B2/ja
Priority to EP06804866A priority patent/EP1949026B1/de
Priority to KR1020087010720A priority patent/KR101362006B1/ko
Priority to CA2628129A priority patent/CA2628129C/en
Priority to AT06804866T priority patent/ATE454604T1/de
Priority to DE502006005886T priority patent/DE502006005886D1/de
Priority to US12/092,979 priority patent/US7983470B2/en
Publication of WO2007053973A1 publication Critical patent/WO2007053973A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/044Seam tracking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting
    • B23K9/1272Geometry oriented, e.g. beam optical trading
    • B23K9/1274Using non-contact, optical means, e.g. laser means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges

Definitions

  • the invention relates to a method for detecting a joint of workpieces, in which the light section method light lines for detecting the three-dimensional course of the joint and further a gray value image of the joint are recorded and wherein the gray value image is evaluated to assess the quality of the joint, wherein the light lines of the Light section method and the gray scale image together on a sensor, in particular a CMOS sensor recorded. Furthermore, the invention relates to applications of the method and to a device according to the preamble of claim 11.
  • the invention is based on the object to improve such a method.
  • this is achieved by recording the respective light line in each case in a first region of the sensor and the gray value image is recorded in a second region of the sensor which differs from the first region, which regions are exposed differently in time and which regions of the sensor are read out differently in time.
  • an independent, asynchronous readout of the regions of the sensor takes place.
  • a synchronous read-out into a memory is particularly preferred, from which data blocks containing at least one line of light image, in particular a complete line of light image, and a part of the gray-scale image are then read out for evaluation.
  • the invention is also based on the object to provide an improved device. This is done in the aforementioned device with the characterizing features of claim 11.
  • FIG. 1 is a schematic view of a laser welding process during blank welding
  • Figure 2 schematically shows a sensor with the two areas;
  • Figure 3 shows schematically the reading of the sensor;
  • Figure 4 schematically shows the reading of the sensor in a memory.
  • Figure 1 shows schematically the welding of a board (or a so-called tailored blanks), which is formed from the sheets 1 and 2, which butt along a joint line 3 blunt.
  • a board or a so-called tailored blanks
  • flat sheet metal parts of different thickness and / or different sheet metal properties are connected to form an element, the blanked blank.
  • This element is usually later formed into a component, e.g. to a component for an automobile.
  • a laser beam 6 from a laser beam source 5 is guided along the joint line 3 and welded together the sheets 1 and 2 and forms behind the weld 4. It is irrelevant whether the laser beam source 5 on fixed workpieces or whether the workpieces on a fixed Lasers are moved past. It is known to determine the position of the joint line 3 with a seam detection unit 7 in order to allow the laser beam source 5 or the beam 6 to follow exactly the joint line progression. In a known manner, the run of the joint line 3 is determined with the light section method, as explained above. Accordingly, both in the state of the art and in accordance with the invention, the unit 7 comprises means for generating at least one light line, in particular a laser light line, essentially transversely to the course of the joint line 3.
  • the course of the light line is detected by a camera. to recognize the joint line. This is basically known and need not be further explained here.
  • the detected area is indicated in the figure with 8, which is not true to scale; the detected area can be eg 8x8 mm or 10x10 mm.
  • the image of the unit 7 is delivered via a line 12 to the evaluation unit and control unit 11, which may also be separate units for evaluation and control, and accordingly, the position of the laser beam for accurate tracking of the joint 3 is controlled.
  • a seam inspection unit 9 is provided.
  • the area covered by this is, again not to scale and including, for example, also 8x8 mm or 10x10 mm, indicated as area 10 in the figure.
  • a gray scale image is additionally recorded for testing the weld seam 4, wherein the gray value image is evaluated to identify the quality of the weld seam. This evaluation of the gray-scale image should in particular determine local imperfections such as porosity, small holes and missing welds.
  • the unit 9 is designed for this purpose on the one hand to generate at least one light line transversely to the weld 4.
  • the light line is preferably generated by a light-section laser with high optical power (eg from 50 mW to 100 mW laser diodes on a narrow line) in order to always bring enough light onto the sensor in the unit 9 given the different reflection properties of the surfaces. which picks up the light line.
  • the sensor in the unit 9 for the light line is preferably a CMOS sensor or a CMOS camera.
  • the exposure time of the camera sensor is preferably selected so long that the reflected light of the laser line is averaged over a region of the surface. The 3D measurement thus comes about over an area that is larger than the line width of the laser.
  • the flash exposure is as short as possible, the illumination time of the illumination in particular being to be so short that the motion blur which moves relative to the unit 9 in this example
  • Weld seam is kept smaller than a pixel.
  • the lighting is preferably done with darkfield lighting, if necessary instead in the bright field.
  • the sensor for recording the gray value image is the same sensor which also receives the laser line.
  • both a gray value image of the weld seam and an image of the laser line are recorded by means of only one sensor, in particular a CMOS sensor or a CMOS camera.
  • the distance of the image recordings is chosen so that an overlap of the object area, i. a complete recording of the seam, is guaranteed.
  • the present method can be applied to cameras with the possibility to read the sensor outputs asynchronously and to cameras with internal memory and programmable gate arrays (FPGAs)
  • the senor is now subdivided into two regions, wherein in the one region the respective light section line, which is also referred to as a triangulation line, is recorded in rapid succession.
  • the second area of the sensor is used for gray image recording.
  • FIG. 2 schematically shows the sensor
  • the first area 21 and the second area 22 show the receptacle 23 in the first area and the gray image receptacle 24 of the joint line or weld 4 in the second area
  • the recording in the two areas is controlled synchronized with the generation of the laser light lines or the exposure for the gray value image, so that each sensor area 21, 22 contains the corresponding recording.
  • the first area 21 of the sensor 20 is continuously read out at a very high speed in order to read out the images 23, which are recorded rapidly in succession.
  • the readout frequency of the gray image region 24 is adapted to the object field and the movement speed of the camera or the unit 9 relative to the joint line 4 and is slower.
  • the sensor area 21, with e.g. 150 x 800 pixels with about 660Hz are read.
  • a corresponding increase of the data rate to 160MByte / sec. can be achieved about 1.2 kHz.
  • the sensor area 22 with, for example, 800 by 800 pixels, is read out in accordance with the object field and the travel speed in order to obtain the images overlapping the welding or adhesive bead 4.
  • Figure 3 shows schematically the readout of the two areas.
  • the time texpl is the exposure time for the sensor area 21, the time texp2 is the exposure time for the sensor area 22.
  • the time t1 is the exposure time 4 readout time for the sensor area 21, the time t2 is the exposure time + readout time for the sensor area 22.
  • a sensor for the present method is available from Photonfocus AG, 8853 Lachen, Switzerland, on the market under the type designation MV-D 1024 CL.
  • the reading can be done synchronously with this sensor. In an embodiment of the invention, this is preferably done in such a way that the data from the sensor are written to a memory 25 having memory areas 25 and 28, the image data coming from the sensor area 21 into the memory area 25 and the image data from the sensor area 22 in the memory area 28, as indicated in Figure 3 with broken lines.
  • the sensor area 21 is continuously read out and, after the detection of the object area for the sensor area 22, the sensor area 22 is read out.
  • the data blocks 30, 31 ... etc. are thus each formed from the complete image 21 'of the triangulation line and a part 22' of the image (subset of the sensor region 22) of the joint line 4 and forwarded to the evaluation (shown as the unit 11) where the individual rapidly successive triangulation line images are evaluated and the gray image is evaluated according to its composition from the pieces 22 'or the individual pieces 22' or several pieces 22 'are evaluated together.
  • the subset of the data must be chosen so that all data of the sensor report 22 are transmitted within the time t2.
  • the memory 26 can be arranged at the sensor in the unit 9 or in the camera or at most in the unit 11.
  • the images taken by the sensor are applied to an image evaluation unit 11.
  • Image for the evaluation unit 11 not in visible representation, but only as a sequence of numbers before. In this case, it is possible to operate in the unit 11 with 8-bit words.
  • the separation of the gray values of the image can, for example, still take place in a 10-bit image of the sensor 20, and the data can subsequently be transmitted via appropriate tables (look-up tables), for example into the 8-bit areas 0-200 (FIG. for the gray value image) and 200-255 (for the laser line).
  • the evaluation of each image is carried out for the laser line in a conventional manner, wherein by means of the laser line, the cross profile of the seam can be determined.
  • the geometric data of the seam such as convexity, concavity and edge offset can be determined in a known manner. These values are subject to ISO limits, compliance with which is thus recorded.
  • the high-quality gray-scale image which is supplied by the unit 9, also allows the assessment of the welding quality based on the evaluation of this image.
  • the image area which represents the seam 4
  • the contours of the seam structure are highlighted. This is known from WO 03/041902, the contents of which are hereby incorporated by reference. Accordingly, a dynamic binarization can highlight the seam structure.
  • the dynamically binarized seam area is skeletonized. Remain the contour lines of the seam structure.
  • Welding seams are compared. It is also possible, additionally or instead, to check by the unit 11 the presence of the contour lines, their orientation or angular deviation from the seam longitudinal direction and / or their length. In this way it is now possible to check the seam quality on the basis of a gray value image.
  • the invention has been explained above with reference to a welding seam in board welding, but is not limited to this application.
  • the quality of joints can be tested in this way, e.g. a spot weld or a bead of an adhesive.
  • the invention can be used. All embodiments explained with reference to the unit 9 are hereby also indicated or adopted for the unit 7.
  • the illumination and the image recording preferably likewise take place as explained with reference to the unit 9.
  • the light line evaluation allows edge detection and thickness jump monitoring.
  • the detection of the edge at zero gap / zero thickness jump and the measurement of the gap width is preferably done via the gray image evaluation.
  • the preferred sensor configuration and the preferred illumination mode make available a qualitatively very good gray scale image with high resolution, large object field, large dynamic range despite high object speed.
  • the unit 7 is also connected via a line 12 to the image evaluation 11, as is the case with the line 14 for the unit 9.
  • the laser source 5 is controlled by the unit 11 via the line 13 or tracked that the welding takes place by means of the laser beam exactly at the location of the joint line 3.
  • the unit 7 can carry out the detection of edge damage in addition to the position detection, ie carry out the assessment of the quality of the joint before the joining step, as has been explained with reference to the unit 9. If the joint is an adhesive bead, the position and quality detection is likewise carried out by a unit corresponding to the unit 7 (or separated by two units) before the joining step.
  • Such a system is expected to detect the smallest local defects in conjunction with a 3-dimensional survey and include: 1. local defect detection, seam length and position measurement; 2. Measurement of geometric data such as convexity, concavity and, if necessary, edge offset to ensure compliance with ISO limits. Measurement of the seam volume, since a single reading, e.g. the concavity says nothing about the seam cross section.
  • the detection of local defects, which can not be detected with the triangulation, is done here with the gray image analysis.
  • the space requirement and the resulting costs are much lower than when mounting 2 sensors.
  • the field of application is the detection of welding edges for the guidance of welding lasers, the quality control of welds of all kinds, the quality control of adhesive beads as well as the geometry monitoring of surfaces with simultaneous inspection of the surface condition.
  • the user can perform the 3D measurement according to the generally accepted high-frequency light-section method.
  • the inspection of local defects is carried out with the same system.
  • the user does not need to install any further sensor systems.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Signal Processing (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Geometry (AREA)
  • Quality & Reliability (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

Zur Bewertung der Lage und Qualität von Fügestellen wird ein kombiniertes Bild der Fügestelle mit Lichtschnittmuster und Grauwertbild im selben Sensor, aber in zwei verschiedenen Bereichen 21, 22 desselben aufgenommen. Das Grauwertbild wird ausgewertet, um die Qualität der Fügestelle zu erkennen. Dies erlaubt auf einfache Weise sowohl die Erkennung der Lage als auch der Qualität der Fügestelle.

Description

Verfahren und Vorrichtung zur Bewertung von Fügestellen von Werkstücken
Verweis auf verwandte Anmeldungen Diese Anmeldung beansprucht die Priorität der schweizerischen Patentanmeldung Nr. 1823/05, die am 14. November 2005 eingereicht wurde und deren ganze Offenbarung hiermit durch Bezug aufgenommen wird.
Hintergrund
Die Erfindung betrifft ein Verfahren zur Erfassung einer Fügestelle von Werkstücken, bei welchem mit dem Lichtschnittverfahren Lichtlinien zur Erfassung des dreidimensionalen Verlaufs der Fügestelle und weiter ein Grauwertbild der Fügestelle aufgenommen werden und wobei das Grauwertbild zur Beurteilung der Qualität der Fügestelle ausgewertet wird, wobei die Lichtlinien des Lichtschnittverfahrens und das Grauwertbild zusammen auf einen Sensor, insbesondere einen CMOS-Sensor, aufgenommen wer- den. Weiter betrifft die Erfindung Anwendungen des Verfahrens sowie eine Vorrichtung gemäss Oberbegriff des Anspruchs 11.
Stand der Technik Aus WO 03/041902 ist es bekannt, zur Bewertung der Lage und Qualität von Fügestellen ein Bild der Fügestelle und eines Lichtschnittmusters aufzunehmen. Das dabei aufgenommene Grauwertbild wird ausgewertet, um die Qualität der Fügestelle zu erkennen. Dieses Verfahren er- gibt gute Ergebnisse.
Darstellung der Erfindung
Der Erfindung liegt die Aufgabe zu Grunde, ein solches Verfahren zu verbessern. Dies wird bei dem eingangs erwähnten Verfahren dadurch erreicht, dass die Aufnahme der jeweiliegen Lichtlinie jeweils in einem ersten Bereich des Sensors und die Aufnahme des Grauwertbildes in einem, vom ersten Bereich verschiedenen zweiten Bereich des Sensors erfolgt, welche Bereiche zeitlich unterschiedlich belichtet werden und welche Bereiche des Sensors zeitlich unter- schiedlich ausgelesen werden.
Das Aufteilen eines Sensors und das zeitlich unterschiedliche Belichten und Auslesen des Sensors ermöglicht eine sehr schnelle Triangulationsauswertung im ersten Sensorbereich und damit die nahezu lückenlose 3D- Darstellung und Auswertung von Fügestellen, wie z.B.
Schweiss- und Kleberaupen. Die Kombination Graubildauswertung / schnelle Triangulation durch Aufteilung eines Sensors in zwei Sensorbereiche mit unterschiedlichen Auslesefrequenzen schafft damit die Möglichkeit, mit dem Lichtschnittverfahren so rasch zu arbeiten, dass eine schnelle 3D-Vermessung der Fügestelle erfolgen kann und zusätzlich die Erfassung bzw. Bewertung lokaler Fehlstellen durch die Graubildanalyse möglich ist.
In einer ersten bevorzugten Ausgestaltung er- folgt ein unabhängiges, asynchrones Auslesen der Bereiche des Sensors.
Besonders bevorzugt ist indes in einer anderen Ausgestaltung ein synchrones Auslesen in einen Speicher, aus dem dann zur Auswertung Datenblöcke enthaltend mindestens ein Lichtlinienbild, insbesondere ein vollständiges Lichtlinienbild, und einen Teil des Grauwertbildes ausgelesen werden.
Der Erfindung liegt ferner die Aufgabe zu Grunde, eine verbesserte Vorrichtung zu schaffen. Dies erfolgt bei der eingangs genannten Vorrichtung mit den kennzeichnenden Merkmalen des Anspruchs 11.
Kurze Beschreibung der Zeichnungen Im Folgenden werden Ausführungsbeispiele und besondere Vorteile der Erfindung anhand der Figuren näher erläutert. Dabei zeigt Figur 1 schematisch eine Ansicht eines Laser- schweissvorganges beim Platinenschweissen;
Figur 2 schematisch einen Sensor mit den beiden Bereichen; Figur 3 schematisch das Auslesen des Sensors; und
Figur 4 schematisch das Auslesen des Sensors in einen Speicher.
Wege zur Ausführung der Erfindung
Figur 1 zeigt schematisch das Schweissen einer Platine (bzw. eines sogenannten Tailored Blanks) , welche aus den Blechen 1 und 2 gebildet wird, welche entlang einer Fügelinie 3 stumpf aneinanderstossen. Es wer- den dabei in der Regel ebene Blechteile von unterschiedlicher Dicke und/oder unterschiedlichen Blecheigenschaften zu einem Element, der Platine (Tailored Blank) verbunden. Dieses Element wird in der Regel später zu einem Bauteil umgeformt, z.B. zu einem Bauteil für ein Automo- bil.
Ein Laserstrahl 6 aus einer Laserstrahlquelle 5 wird entlang der Fügelinie 3 geführt und verschweisst die Bleche 1 und 2 miteinander und bildet hinter sich die Schweissnaht 4. Unerheblich ist es dabei, ob die Laser- strahlquelle 5 über feststehende Werkstücke oder ob die Werkstücke an einem feststehenden Laser vorbeibewegt werden. Es ist bekannt, die Lage der Fügelinie 3 mit einer Nahterkennungseinheit 7 festzustellen, um die Laserstrahlquelle 5 bzw. den Strahl 6 exakt dem Fügelinienver- lauf folgen zu lassen. In bekannter Weise wird dazu der Lauf der Fügelinie 3 mit dem Lichtschnittverfahren ermittelt, wie dies eingangs erläutert ist. Demgemäss enthält die Einheit 7 sowohl nach Stand der Technik als auch ge~ mäss der Erfindung eine Einrichtung zur Erzeugung minde- stens einer Lichtlinie, insbesondere einer Laserlichtlinie, im wesentlichen quer zum Verlauf der Fügelinie 3. Der Verlauf der Lichtlinie wird von einer Kamera erfasst, um die Fügelinie zu erkennen. Dies ist grundsätzlich bekannt und braucht hier nicht weiter erläutert zu werden. Der erfasste Bereich ist dabei in der Figur mit 8 angedeutet, wobei dies nicht massstäblich ist; der erfasste Bereich kann z.B. 8x8 mm oder 10x10 mm betragen. Weiter ist es an sich bekannt, zusätzlich ein Grauwertbild im Bereich der Lichtlinie aufzunehmen, um ebenfalls den Verlauf der Fügelinie 3 zu erkennen. Das Bild der Einheit 7 wird über eine Leitung 12 an die Auswerteinheit und Steu- ereinheit 11 abgegeben, die auch getrennte Einheiten für Auswertung und Steuerung sein können, und entsprechend wird die Lage des Laserstrahls zur genauen Verfolgung der Fügestelle 3 gesteuert.
Zur Erfassung der Nahtqualität der Schweiss- naht 4 nach der Schweissung wird vorliegend gemäss WO
03/041902 einerseits nach dem Lichtschnittverfahren gearbeitet, um die geometrischen Daten, wie z.B. Konvexität, Konkavität und Kantenversatz zu messen. Dazu ist eine Nahtprüfungseinheit 9 vorgesehen. Der von dieser erfasste Bereich ist, wiederum nicht massstäblich und z.B. ebenfalls 8x8 mm oder 10x10 mm umfassend, als Bereich 10 in der Figur angedeutet. Andererseits wird vorliegend gemäss WO 03/041902 zur Prüfung der Schweissnaht 4 zusätzlich ein Grauwertbild aufgenommen, wobei das Grauwertbild zur Erkennung der Qualität der Schweissnaht ausgewertet wird. Diese Auswertung des Grauwertbildes soll insbesondere lokale Fehlstellen wie Porosität, kleine Löcher und fehlende Durchschweissungen ermitteln. Die Einheit 9 ist dazu einerseits zur Erzeugung mindestens einer Lichtlinie quer zur Schweissnaht 4 ausgestaltet. Die Lichtlinie wird vorzugsweise von einem Lichtschnittlaser mit hoher optischer Leistung (z.B. von 50 mW bis 100 mW Laserdioden auf eine schmale Linie) erzeugt, um bei den vorliegenden unterschiedlichen Reflektionseigenschaften der Oberflächen im- mer genügend Licht auf den Sensor in der Einheit 9 zu bringen, der die Lichtlinie aufnimmt. Der Sensor in der Einheit 9 für die Lichtlinie ist dabei vorzugsweise ein CMOS-Sensor bzw. eine CMOS-Kamera. Bei Relativbewegung zwischen der zu erfassenden Fügestelle und der Einheit 9, wie das im gezeigten Beispiel von Figur 1 der Fall ist, wird die Belichtungszeit des Kamerasensors vorzugsweise so lange gewählt, dass das reflektierte Licht der Laserlinie über einen Bereich der Oberfläche gemittelt wird. Die 3D-Messung kommt so über einen Bereich zustande, der grösser ist als die Linienbreite des Lasers.
Für die Aufnahme des Grauwertbildes, die im Wesentlichen an der selben Stelle der Naht erfolgt, an der auch die Laserlinie über die Schweissnaht gelegt wird, erfolgt eine möglichst kurze Blitzlicht-Belichtung, wobei die Belichtungszeit der Beleuchtung insbesondere so kurz sein soll, dass die Bewegungsunschärfe der sich in diesem Beispiel relativ zur Einheit 9 bewegenden
Schweissnaht kleiner als ein Pixel gehalten wird. Die Beleuchtung erfolgt dabei bevorzugt mit Dunkelfeldbeleuchtung, allenfalls stattdessen im Hellfeld. Der Sensor zur Aufnahme des Grauwertbildes ist vorliegend derselbe Sen- sor, der auch die Laserlinie aufnimmt. Es wird also mittels nur eines Sensors, insbesondere eines CMOS-Sensors bzw. einer CMOS-Kamera sowohl ein Grauwertbild der Schweissnaht wie auch ein Bild der Laserlinie aufgenommen. Der Abstand der Bildaufnahmen ist so gewählt, dass eine Überdeckung des Objektbereichs, d.h. eine lückenlose Aufnahme der Naht, gewährleistet ist. Generell kann dabei das vorliegende Verfahren auf Kameras mit der Möglichkeit asynchron die Sensorausgänge auszulesen und auf Kameras mit internem Speicher und programmierbaren Gate Arrays (FPGAs) angewandt werden
Gemäss der vorliegenden Erfindung ist nun der Sensor in zwei Bereiche unterteilt, wobei in dem einen Bereich die jeweilige LichtSchnittlinie, die auch als Triangulationslinie bezeichnet wird, in rascher Abfolge aufgenommen wird. Der zweite Bereich des Sensors dient der Graubildaufnahme. Figur 2 zeigt schematisch den Sen- sor 20, der wie erwähnt in der Einheit 9 vorgesehen sein kann, mit dem ersten Bereich 21 und dem zweiten Bereich 22. Im ersten Bereich ist die Aufnahme 23 einer Triangulationslinie dargestellt und im zweiten Bereich die Grau- bildaufnahme 24 der Fügelinie bzw. Schweissnaht 4. Die Aufnahme in die beiden Bereiche erfolgt gesteuert synchronisiert mit der Erzeugung der Laserlichtlinien bzw. der Belichtung für das Grauwertbild, so dass jeder Sensorbereich 21, 22 die entsprechende Aufnahme enthält. Der erste Bereich 21 des Sensors 20 wird kontinuierlich mit sehr hoher Geschwindigkeit ausgelesen, um die rasch zeitlich nacheinander aufgenommenen Bilder 23 auszulesen. Die Auslesefrequenz des Graubildbereichs 24 ist dem Objektfeld und der Bewegungsgeschwindigkeit der Kamera bzw. der Einheit 9 relativ zu der Fügelinie 4 an- gepasst und langsamer.
Bei einer Datenrate des Sensors von 80
MByte/Sek. bei IKxIK Pixelgrösse kann der Sensorbereich 21, mit z.B. 150 x 800 Pixeln mit ca. 660Hz ausgelesen werden. Bei entsprechender Erhöhung der Datenrate auf 160MByte/Sek. können ca. 1.2 KHz erreicht werden.
Der Sensorbereich 22, mit zum Beispiel 800 mal 800 Pixeln, wird entsprechend dem Objektfeld und der Verfahrgeschwindigkeit ausgelesen um die Bilder überlap- pend von der Schweiss- oder Kleberaupe 4 zu erhalten.
Figur 3 zeigt schematisch das Auslesen der beiden Bereiche. Die Zeit texpl ist die Belichtungszeit für den Sensorbereich 21, die Zeit texp2 ist die Belichtungszeit für den Sensorbereich 22. Die Zeit tl ist die Belichtungszeit 4- Auslesezeit für den Sensorbereich 21, die Zeit t2 ist die Belichtungszeit + Auslesezeit für den Sensorbereich 22.
Ein Sensor für das vorliegende Verfahren ist von der Firma Photonfocus AG, 8853 Lachen, Schweiz, auf dem Markt unter der Typenbezeichnung MV-D 1024 CL erhältlich. Das Auslesen kann bei diesem Sensor synchron erfolgen. Vorzugsweise erfolgt dies bei einer Ausführung der Erfindung derart, dass die Daten aus dem Sensor in einen Speicher 25 geschrieben werden, der Speicherberei- che 25 und 28 aufweist, wobei die Bilddaten aus dem Sensorbereich 21 in den Speicherbereich 25 gelangen und die Bilddaten aus dem Sensorbereich 22 in den Speicherbereich 28 , wie in Figur 3 mit unterbrochenen Linien angedeutet. Bei synchroner Betriebsart wird also kontinu- ierlich der Sensorbereich 21 ausgelesen und nach der Erfassung des Objektbereichs für den Sensorbereich 22 der Sensorbereich 22 ausgelesen.
Da die Übertragungszeit des Sensorbereichs 22 wesentlich länger als diejenige des Sensorbereichs 21 ist, werden die Daten zwischengespeichert und dann mit den Daten des Sensorbereichs 21 stückweise mitübertragen, wie dies in Figur 4 dargestellt ist. Die Datenblöcke 30, 31... usw. werden somit jeweils aus dem vollständigen Bild 21' der Triangulationslinie und einem Teil 22' des Bildes (Teilmenge des Sensorbereichs 22) der Fügelinie 4 gebildet und an die Auswertung (dargestellt als die Einheit 11) weitergegeben, wo die einzelnen rasch aufeinanderfolgenden Triangulationslinienbilder ausgewertet werden und das Graubild nach dessen Zusammensetzung aus den Stücken 22 ' ausgewertet wird oder die einzelnen Stücke 22' oder mehrere Stücke 22' zusammen ausgewertet werden. Die Teilmenge der Daten muss so gewählt werden, dass alle Daten des Sensorbereichts 22 innerhalb der Zeit t2 übertragen sind. Der Speicher 26 kann beim Sensor in der Ein- heit 9 bzw. in der Kamera angeordnet sein oder allenfalls in der Einheit 11.
Alternativ zu der erläuterten synchronen Auslesung der Bereiche 21, 22 können diese asynchron über getrennte Kanäle ausgelesen werden, falls der Sensor 20 dies erlaubt.
Die vom Sensor aufgenommenen Bilder werden auf eine Bildauswerteeinheit 11 gegeben. Dort liegt das Bild für die Auswerteeinheit 11 nicht in sichtbarer Darstellung, sondern nur als Abfolge von Zahlen vor. Es kann dabei so vorgegangen werden, dass in der Einheit 11 mit 8-Bit-Worten gßarbeitet wird. Die Separation der Grauwer- te des Bildes kann dabei z.B. noch in einem 10-Bit-Bild des Sensors 20 erfolgen, und die Daten können nachfolgend über entsprechende Tabellen (look-up tables) z.B. in die 8-Bit-Bereiche 0-200 (für das Grauwertbild) und 200-255 (für die Laserlinie) übertragen werden. Die Auswertung jedes Bildes erfolgt dabei für die Laserlinie auf herkömmliche Weise, wobei mittels der Laserlinie das Querprofil der Naht ermittelbar ist. Aus diesem Querprofil sind auf bekannte Weise die geometrischen Daten der Naht, wie z.B. Konvexität, Konkavität und Kantenversatz ermittelbar. Für diese Werte bestehen ISO- Grenzwerte, deren Einhaltung so erfasst wird. Das hochwertige Grauwertbild, welches von der Einheit 9 geliefert wird, ermöglicht auch die Beurteilung der Schweissquali- tät auf Grund der Auswertung dieses Bildes. Dazu werden im Bildbereich, der die Naht 4 darstellt, die Konturen der Nahtstruktur hervorgehoben. Dies ist aus WO 03/041902 bekannt, deren Inhalt hiermit durch Referenzierung übernommen wird. Entsprechend kann eine dynamische Binarisie- rung die Nahtstruktur hervorheben. In einem weiteren Ver- arbeitungsschritt wird der dynamisch binarisierte Nahtbereich skeletiert. Übrig bleiben die Konturlinien der Nahtstruktur.
Für diese Verarbeitungsschritte sind entsprechende Bildbearbeitungsprogramme bekannt. Es kann die Software SOÜVIS5000 der Firma Soudronic Automotive AG, Schweiz, verwendet werden, die diese Funktionalität bietet. Als handelsübliches weiteres Programm kann z.B. ein bekanntes Programm der ehemaligen Firma Logical Vision, heute Coreco Imaging, St. Laurent,- Quebec, Kanada, mit der Bezeichnung WiT verwendet werden, z.B. in der Version 5.3. Die entsprechende Bildbearbeitung erlaubt die Erkennung von lokalen Fehlstellen, z.B. Porosität und kleine Löcher und fehlende Durchschweissungen. Dies kann einerseits dadurch erfolgen, dass die so ermittelten Strukturen mit bekannten Mustern von' qualitativ guten
Schweissnähten verglichen werden. Es kann auch zusätzlich oder stattdessen durch die Einheit 11 das Vorhandensein der Konturlinien, deren Orientierung bzw. Winkelabweichung von der Nahtlängsrichtung und/oder deren Länge ge- prüft werden. Auf diese Weise ist es nun möglich, die Nahtqualität auf Grund eines Grauwertbildes zu prüfen.
Die Erfindung ist vorstehend anhand einer Schweissnaht beim Platinenschweissen erläutert worden, ist aber nicht auf diese Anwendung beschränkt. Es kann generell die Qualität von Fügestellen auf diese Weise geprüft werden, z.B. eine Punktschweissung oder auch eine Raupe eines Klebstoffes.
Auch bei der Kantenverfolgungseinheit 7 kann die Erfindung verwendet werden. Alle anhand der Einheit 9 erläuterten Ausgestaltungen sind dabei hiermit auch für die Einheit 7 angegeben bzw. übernommen. Dabei erfolgt besonders die Beleuchtung und die Bildaufnahme bevorzugterweise ebenfalls so wie anhand der Einheit 9 erläutert. Die Lichtlinie'nauswertung erlaubt dabei die Kantenerken- nung und die Dickensprung-Öberwachung. Die Erkennung der Kante bei Null-Spalt/Null-Dickensprung und die Vermessung der Spaltbreite geschieht bevorzugterweise über die Graubildauswertung. Auch in diesem Fall steht durch die bevorzugte Sensorausgestaltung und die bevorzugte Beleuch- tungsart ein qualitativ sehr gutes Grauwertbild mit hoher Auflösung, grossem Objektfeld, grossem Dynamikumfang trotz hoher Objektgeschwindigkeit zur Verfügung. Die Einheit 7 ist dabei ebenfalls über eine Leitung 12 mit der Bildauswertung 11 verbunden, wie dies mit der Leitung 14 für die Einheit 9 der Fall ist. In diesem Fall wird entsprechend dem Zweck der Einheit 7 die Laserquelle 5 durch die Einheit 11 über die Leitung 13 so gesteuert bzw. nachgeführt, dass die Schweissung mittels des Laserstrahls exakt an der Stelle der Fügelinie 3 erfolgt.
Der Einheit 7 kann dabei aber zusätzlich zu der Lageerkennung die Erfassung von Kantenschäden ausfüh- ren, also die Beurteilung der Qualität der Fügestelle vor dem Fügeschritt ausführen, wie dies anhand der Einheit 9 erläutert worden ist. Handelt es sich bei der Fügestelle um eine Klebstoffraupe, so erfolgt ebenfalls die Lage- und Qualitätserfassung durch eine Einheit entsprechend der Einheit 7 (oder getrennt durch zwei Einheiten) vor dem Fügeschritt.
Zweck und Anwendungsbereich der Erfindung: Schweissverbindungen, sowohl Laser als auch MIG und MAG Verbindungen müssen einer 100 % Kontrolle unterzogen werden. Des Weiteren werden Kleberaupen vor dem Verkleben einer Kontrolle unterzogen. Auftragsschweissungen müssen vor dem Weiterverarbeiten inspiziert werden.
Die hohen Produktionsgeschwindigkeiten ver- bunden mit den kleinen Fehlergrenzen führen zum Einsatz von optischen Mess- und PrüfSystemen, welche berührungslos mit hoher Geschwindigkeit die Verbindungen prüfen können .
Von einem solchen System wird die Fehlerer- kennung kleinster lokaler Fehlstellen erwartet in Verbindung mit einer 3 dimensionalen Vermessung und umfassend: 1. Erfassung lokaler Fehlstellen, Vermessen von Nahtlänge und Position; 2. Vermessung der geometrischen Daten wie Konvexität, Konkavität und ggfs. Kantenversatz, um die Einhaltung der ISO Grenzwerte zu gewährleisten. Vermessung des Nahtvolumens, da ein einzelner Messwert wie z.B. die Konkavität nichts über den Nahtquerschnitt aussagt.
Die Messung der geometrischen Daten erfordert eine 'schnelle 3D Vermessung der Naht, das Erkennen loka- ler Fehlstellen erfordert eine Graublidauswertung bei sehr hoher Auflösung und bei gleichzeitiger schneller Objektbewegung. Daraus resultieren die Anforderungen für die Bildverarbeitung: Hohe Auflösung, grosses Objektfeld, grosser Dynamikumfang und hohe Objektgeschwindigkeit.
Die Erkennung lokaler Fehlstellen, welche mit der Triangulation nicht erfasst werden können, geschieht vorliegend mit der Graubildanalyse.
Die Schwächen der Triangulatuion, das Erkennen von kleinen lokalen Fehlstellen wird durch die zusätzliche Graubildauswertung im Sensorbereich 22 ermög- licht. Beide Auswertungen benötigen nur einen Sensor, was den apparativen Auswand, den Aufwand für den Bediener und den Aufwand der Wartung erheblich senkt, gegenüber einem System bestehend aus 2 Sensoren.
Der Platzbedarf und die enstehenden Kosten sind wesentlich geringer als bei der Montage von 2 Sensoren. Als Anwendungsgebiet ergibt sich die Erkennung von Schweisskanten zur Führung von Schweisslasern, die Qualitätsüberwachung von Schweissnähten aller Art, die Qualitätsüberwachung von Kleberaupen sowie die Geometrieüber- wachung von Oberflächen bei gleichzeitiger Inspektion der Oberflächenbeschaffenheit .
Der Anwender kann mit dem neuen Sensorsystem die 3D Messung nach dem allgemein akzeptierten Lichtschnittverfahren mit hoher Frequenz durchführen. Die Überprüfung lokaler Fehlstellen wird mit dem gleichen System durchgeführt. Der Anwender muss keine weiteren Sensorsysteme installieren.
Während in der vorliegenden Anmeldung bevorzugte Ausführungen der Erfindung beschrieben sind, ist klar darauf hinzuweisen, dass die Erfindung nicht auf diese beschränkt ist und in auch anderer Weise innerhalb des Umfangs der folgenden Ansprüche ausgeführt werden kann.

Claims

Patentansprüche
1. Verfahren zur Erfassung einer Fügestelle (3; 4) von Werkstücken (1, 2), bei welchem mit dem Licht- schnittverfahren Lichtlinien zur Erfassung des dreidimensionalen Verlaufs der Fügestelle und ein Grauwertbild der Fügestelle aufgenommen werden und wobei das Grauwertbild zur Beurteilung der Qualität der Fügestelle ausgewertet wird, wobei die Lichtlinien des Lichtschnittverfahrens und das Grauwertbild zusammen auf einem Sensor (20) , insbesondere einem CMOS-Sensor, aufgenommen werden, dadurch gekennzeichnet, dass die Aufnahme der jeweiligen Lichtlinie jeweils in einem ersten Bereich (21) des Sensors (20) und die Aufnahme des Grauwertbildes in einem, vom ersten Bereich verschiedenen zweiten Bereich (22) des Sensors erfolgt, welche Bereiche zeitlich unterschiedlich belichtet werden und welche Bereiche des Sensors zeitlich unterschiedlich ausgelesen werden.
2. Verfahren nach Anspruch 1, dadurch gekenn- zeichnet, dass die beiden Bereiche des Sensors unabhängig und asynchron aneinander ausgelesen werden.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die beiden Bereiche (21, 22) des Sensors synchron ausgelesen und in einem Speicher (25) zwischen- gespeichert werden, aus welchem jeweils Datenblöcke (30, 31), enthaltend ein vollständiges Lichtlinienbild (21') und einen Teil ( 22') des Grauwertbildes, ausgelesen werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass bei Relativbewegung zwischen Werkstück und Aufnahmevorrichtung die Belichtungszeit für die mindestens eine Lichtlinie so lang gewählt wird, dass das Streulicht der Lichtlinie von einem Bereich der Naht reflektiert wird, welcher breiter als die Lichtlinie ist.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass bei Relativbewegung zwi- sehen Werkstück und Aufnahmeeinerichtung die Belichtungszeit für das Grauwertbild mittels einer Blitzbeleuchtungseinerichtung so kurz gewählt wird, dass die Bewegungsschärfe kleiner als ein Pixel gehalten wird.
6. Verfahren nach einem der Ansprüche 1 bis
5, dadurch gekennzeichnet, dass anstelle eines Grauwertbildes oder zusätzlich zum Grauwertbild ein Farbbild aufgenommen wird.
7. Anwendung des Verfahrens nach einem der Ansprüche 1 bis 6, zur Beurteilung von Kantenfehlern beim Platinenschweissen.
8. Anwendung des Verfahrens nach einem der Ansprüche 1 bis 6 zur Beurteilung der Schweissnahtquali- tät beim Platinenschweissen.
9. Anwendung nach Anspruch 8, dadurch gekennzeichnet, dass die Konturen der Strukturen der Schweiss- naht hervorgehoben und untersucht werden.
10. Anwendung des Verfahrens nach einem der Ansprüche 1 bis 6, zur Beurteilung von Punktschweissungen oder Klebstoffraupen.
11. Vorrichtung zur Erfassung einer Fügestelle (3; 4) von Werkstücken (1, 2), mit einer Lichtlinien- projektionseinheit und einer Aufnahmeeinheit (9) zur Aufnahme der Lichtlinie und eines Grauwertbildes, sowie mit einer Bildauswerteeinheit (11) , für die Lichtlinie und das Grauwertbild, die zur Erkennung von Qualitätsmerkmalen der Fügestelle anhand eines Grauwertbildes ausgestaltet ist, wobei die Aufnahmeeinheit zur Aufnahme eines Bildes ausgestaltet ist, auf dem Lichtlinie und Grauwert- bild zusammen erfasst sind und die Aufnahmeeinheit einen Sensor, insbesondere nur einen Sensor, und insbesondere einen CMOS-Sensor aufweist, dadurch gekennzeichnet, dass die Aufnahme der mindestens einen Lichtlinie jeweils in einem ersten Bereich (21) des Sensors (20) und die Auf- nähme des Grauwertbildes in einem, vom ersten Bereich verschiedenen zweiten Bereich (22) des Sensors erfolgt, welche Bereiche zeitlich unterschiedlich belichtbar sind und welche Bereiche des Sensors zeitlich unterschiedlich auslesbar sind.
12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die beiden Bereiche des Sensors unab- hängig uns asynchron aneinander auslesbar sind.
13. Vorrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass die beiden Bereiche des Sensors synchron lesbar und in einem Speicher (25) zwischenspeicherbar sind, aus welchem jeweils Datenblöcke enthal- tend ein vollständiges Lichtlinienbild und einen Teil des Grauwertbildes auslesbar sind.
14. Vorrichtung nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass eine Blitzbeleuchtungseinheit zur Aufnahme des Grauwertbildes vorgesehen ist.
15. Vorrichtung nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass die Bildauswerteeinheit (11) zur Hervorhebung und Beurteilung der Konturen des Fügestellenbereichs im Grauwertbild ausgestaltet' ist .
16. Vorrichtung nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, dass die Aufnahmeeinheit zur Aufnahme eines Farbbildes zusätzlich zum oder anstelle des Grauwertbildes ausgestaltet ist.
PCT/CH2006/000634 2005-11-14 2006-11-10 Verfahren und vorrichtung zur bewertung von fügestellen von werkstücken WO2007053973A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN2006800420340A CN101479566B (zh) 2005-11-14 2006-11-10 评价工件结合位置的方法和设备
JP2008540423A JP5312033B2 (ja) 2005-11-14 2006-11-10 ワークピースの継ぎ目箇所を評価するための方法および装置
EP06804866A EP1949026B1 (de) 2005-11-14 2006-11-10 Verfahren und vorrichtung zur bewertung von fügestellen von werkstücken
KR1020087010720A KR101362006B1 (ko) 2005-11-14 2006-11-10 피가공물의 접합부 평가를 위한 방법 및 장치
CA2628129A CA2628129C (en) 2005-11-14 2006-11-10 Method and device for assessing joins of workpieces
AT06804866T ATE454604T1 (de) 2005-11-14 2006-11-10 Verfahren und vorrichtung zur bewertung von fügestellen von werkstücken
DE502006005886T DE502006005886D1 (de) 2005-11-14 2006-11-10 Verfahren und vorrichtung zur bewertung von fügestellen von werkstücken
US12/092,979 US7983470B2 (en) 2005-11-14 2006-11-10 Method and device for assessing joins of workpieces

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH18232005 2005-11-14
CH1823/05 2005-11-14

Publications (1)

Publication Number Publication Date
WO2007053973A1 true WO2007053973A1 (de) 2007-05-18

Family

ID=37517028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2006/000634 WO2007053973A1 (de) 2005-11-14 2006-11-10 Verfahren und vorrichtung zur bewertung von fügestellen von werkstücken

Country Status (9)

Country Link
US (1) US7983470B2 (de)
EP (1) EP1949026B1 (de)
JP (1) JP5312033B2 (de)
KR (1) KR101362006B1 (de)
CN (1) CN101479566B (de)
AT (1) ATE454604T1 (de)
CA (1) CA2628129C (de)
DE (1) DE502006005886D1 (de)
WO (1) WO2007053973A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011035913A1 (de) * 2009-09-25 2011-03-31 Precitec Kg Schweisskopf und verfahren zum fügen eines werkstücks
EP2061621B1 (de) * 2006-09-06 2011-10-26 Precitec Vision GmbH & Co. KG Verfahren und vorrichtung zur optischen beurteilung der schweissqualität beim schweissen
WO2012037955A1 (de) * 2010-09-24 2012-03-29 Universität Stuttgart Nutzung der polarisation der wärmestrahlung zur detektion von 3d-strukturen
US20120318775A1 (en) * 2011-06-17 2012-12-20 Precitec Kg Optical measuring device for monitoring a joint seam, joining head and laser welding head with same
DE102013017795B3 (de) * 2013-10-25 2015-02-19 Lessmüller Lasertechnik GmbH Prozessüberwachungsverfahren und -vorrichtung
DE102016102492A1 (de) 2016-02-12 2017-08-17 Precitec Gmbh & Co. Kg Verfahren und Vorrichtung zur Überwachung einer Fügenaht, insbesondere beim Fügen mittels Laserstrahlung
WO2018146303A1 (de) 2017-02-13 2018-08-16 Precitec Gmbh & Co. Kg Verfahren zum erkennen von fügepositionen von werkstücken und laserbearbeitungskopf mit einer vorrichtung zur durchführung dieses verfahrens
DE102012108902B4 (de) 2012-09-21 2019-03-28 SmartRay GmbH Optischer Kopf sowie Düsenkopf mit einem optischen Kopf und Verfahren für deren Betrieb
DE102018217919A1 (de) * 2018-10-19 2020-04-23 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Ermitteln einer korrigierten Bearbeitungskopf-Position und Bearbeitungsmaschine

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5648600B2 (ja) * 2011-06-17 2015-01-07 株式会社デンソー 画像処理装置
CN103846539A (zh) * 2012-11-29 2014-06-11 上海航天设备制造总厂 图像识别方法
CN103846538A (zh) * 2012-11-29 2014-06-11 上海航天设备制造总厂 图像识别装置及利用所述装置的电池阵焊接***
DE102017126867A1 (de) * 2017-11-15 2019-05-16 Precitec Gmbh & Co. Kg Laserbearbeitungssystem und Verfahren zur Laserbearbeitung
US11150622B2 (en) * 2017-11-16 2021-10-19 Bentley Systems, Incorporated Quality control isometric for inspection of field welds and flange bolt-up connections
WO2019110114A1 (en) * 2017-12-07 2019-06-13 Bystronic Laser Ag Device for monitoring beam treatment of a workpiece and use thereof, device for beam treatment of a workpiece and use thereof, method for monitoring beam treatment of a workpiece, method for beam treatment of a workpiece
DE112018007431T5 (de) * 2018-04-04 2020-12-31 Sri International Verfahren zur verbesserten bildgebung auf basis von semantischer verarbeitung und dynamischer szenenmodellierung
WO2020042031A1 (zh) * 2018-08-29 2020-03-05 深圳配天智能技术研究院有限公司 视觉焊接***的缝隙检测方法以及***
WO2020246416A1 (ja) * 2019-06-06 2020-12-10 パナソニックIpマネジメント株式会社 溶接条件設定支援装置
EP3756702A1 (de) * 2019-06-27 2020-12-30 Schott AG Verpackung und verfahren zum sterilen verpacken von objekten für medizinische, pharmazeutische oder kosmetische anwendungen
JP7382762B2 (ja) * 2019-08-27 2023-11-17 株式会社ディスコ レーザー加工装置の加工結果の良否判定方法
DE102020122924A1 (de) 2020-09-02 2022-03-03 Precitec Gmbh & Co. Kg Verfahren zum Analysieren einer Werkstückoberfläche für einen Laserbearbeitungsprozess und eine Analysevorrichtung zum Analysieren einer Werkstückoberfläche
CN114850741B (zh) * 2022-06-10 2023-06-27 东南大学 一种适用于平板对接焊缝的焊缝识别装置及识别方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4312241A1 (de) * 1993-04-15 1994-10-20 Deutsche Aerospace Verfahren zur Nahtvermessung
JP2000271743A (ja) * 1999-03-26 2000-10-03 Hitachi Metals Ltd 溶接部検査方法並びに検査装置及び配管用溶接管
WO2003041902A1 (de) * 2001-11-15 2003-05-22 Elpatronic Ag Verfahren und vorrichtung zur bewertung von fügestellen von werkstücken

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154771A (ja) * 1984-12-27 1986-07-14 Hitachi Ltd 溶接位置検出装置
JPS6233064A (ja) * 1985-08-05 1987-02-13 Mitsubishi Heavy Ind Ltd 自動多層溶接装置
US6931149B2 (en) * 2002-04-19 2005-08-16 Norsk Elektro Optikk A/S Pipeline internal inspection device and method
US7257248B2 (en) * 2003-03-27 2007-08-14 General Electric Company Non-contact measurement system and method
JP4403881B2 (ja) * 2004-05-28 2010-01-27 株式会社Ihi 溶接部可視化装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4312241A1 (de) * 1993-04-15 1994-10-20 Deutsche Aerospace Verfahren zur Nahtvermessung
JP2000271743A (ja) * 1999-03-26 2000-10-03 Hitachi Metals Ltd 溶接部検査方法並びに検査装置及び配管用溶接管
WO2003041902A1 (de) * 2001-11-15 2003-05-22 Elpatronic Ag Verfahren und vorrichtung zur bewertung von fügestellen von werkstücken

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2061621B1 (de) * 2006-09-06 2011-10-26 Precitec Vision GmbH & Co. KG Verfahren und vorrichtung zur optischen beurteilung der schweissqualität beim schweissen
US8208135B2 (en) 2006-09-06 2012-06-26 Precitec Vision Gmbh & Co. Kg Method and device for the optical assessment of welding quality during welding
US10092977B2 (en) 2009-09-25 2018-10-09 Precitec Gmbh & Co. Kg Welding head and method for joining a workpiece
WO2011035913A1 (de) * 2009-09-25 2011-03-31 Precitec Kg Schweisskopf und verfahren zum fügen eines werkstücks
WO2012037955A1 (de) * 2010-09-24 2012-03-29 Universität Stuttgart Nutzung der polarisation der wärmestrahlung zur detektion von 3d-strukturen
US10166630B2 (en) 2011-06-17 2019-01-01 Precitec Kg Optical measuring device for monitoring a joint seam, joining head and laser welding head with same
DE102011104550A1 (de) * 2011-06-17 2012-12-20 Precitec Kg Optische Messvorrichtung zur Überwachung einer Fügenaht, Fügekopf und Laserschweißkopf mit der selben
US20120318775A1 (en) * 2011-06-17 2012-12-20 Precitec Kg Optical measuring device for monitoring a joint seam, joining head and laser welding head with same
DE102011104550B4 (de) * 2011-06-17 2014-04-30 Precitec Kg Optische Messvorrichtung zur Überwachung einer Fügenaht, Fügekopf und Laserschweißkopf mit der selben
DE102012108902B4 (de) 2012-09-21 2019-03-28 SmartRay GmbH Optischer Kopf sowie Düsenkopf mit einem optischen Kopf und Verfahren für deren Betrieb
DE102013017795C5 (de) * 2013-10-25 2018-01-04 Lessmüller Lasertechnik GmbH Prozessüberwachungsverfahren und -vorrichtung
DE102013017795B3 (de) * 2013-10-25 2015-02-19 Lessmüller Lasertechnik GmbH Prozessüberwachungsverfahren und -vorrichtung
DE102016102492A1 (de) 2016-02-12 2017-08-17 Precitec Gmbh & Co. Kg Verfahren und Vorrichtung zur Überwachung einer Fügenaht, insbesondere beim Fügen mittels Laserstrahlung
DE102016102492B4 (de) 2016-02-12 2021-10-07 Precitec Gmbh & Co. Kg Verfahren und Vorrichtung zum Überwachen einer Fügenaht sowie Laserbearbeitungskopf
US11260471B2 (en) 2016-02-12 2022-03-01 Precitec Gmbh & Co. Kg Method and device for monitoring a joining seam during joining by means of a laser beam
WO2018146303A1 (de) 2017-02-13 2018-08-16 Precitec Gmbh & Co. Kg Verfahren zum erkennen von fügepositionen von werkstücken und laserbearbeitungskopf mit einer vorrichtung zur durchführung dieses verfahrens
US11534860B2 (en) 2017-02-13 2022-12-27 Precitec Gmbh & Co. Kg Method for identifying joining points of workpieces and laser machining head comprising a device for carrying out this method
DE102017102762B4 (de) 2017-02-13 2023-06-15 Precitec Gmbh & Co. Kg Verfahren zum Erkennen von Fügepositionen von Werkstücken und Laserbearbeitungskopf mit einer Vorrichtung zur Durchführung dieses Verfahrens
DE102018217919A1 (de) * 2018-10-19 2020-04-23 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Ermitteln einer korrigierten Bearbeitungskopf-Position und Bearbeitungsmaschine

Also Published As

Publication number Publication date
CN101479566B (zh) 2012-05-30
US20080232677A1 (en) 2008-09-25
US7983470B2 (en) 2011-07-19
JP2009515705A (ja) 2009-04-16
KR101362006B1 (ko) 2014-02-11
CA2628129C (en) 2012-05-01
DE502006005886D1 (de) 2010-02-25
CA2628129A1 (en) 2007-05-18
EP1949026B1 (de) 2010-01-06
ATE454604T1 (de) 2010-01-15
KR20080068840A (ko) 2008-07-24
CN101479566A (zh) 2009-07-08
EP1949026A1 (de) 2008-07-30
JP5312033B2 (ja) 2013-10-09

Similar Documents

Publication Publication Date Title
EP1949026B1 (de) Verfahren und vorrichtung zur bewertung von fügestellen von werkstücken
EP1448334B1 (de) Verfahren und Vorrichtung zur Erfassung der Nahtqualität einer Schweißnaht bei der Schweißung von Werkstücken
DE102011104550B4 (de) Optische Messvorrichtung zur Überwachung einer Fügenaht, Fügekopf und Laserschweißkopf mit der selben
EP3414042B1 (de) Verfahren und vorrichtung zur überwachung einer fügenaht beim fügen mittels laserstrahlung
EP2061621B1 (de) Verfahren und vorrichtung zur optischen beurteilung der schweissqualität beim schweissen
EP0995108B1 (de) Verfahren zur automatischen erkennung von oberflächenfehlern an rohkarosserien und vorrichtung zur durchführung des verfahrens
DE69519167T2 (de) Automatisiertes verfahren zur kontrolle beim stumpfnachweissen und zur fehlerdiagnose
DE102006018558B4 (de) Verfahren zum automatischen Aufbringen oder Erzeugen und Überwachen einer auf einem Substrat aufgebrachten Struktur mit Ermittlung von geometrischen Abmessungen
EP1245923A2 (de) Verfahren und Vorrichtung zur Kantenverfolgung und Kantenprüfung
DE102015108480A1 (de) System und Verfahren für einen dynamischen Gating-Prozess bei der zerstörungsfreien Schweißnahtprüfung
DE102020112116A1 (de) Verfahren zum Analysieren eines Laserbearbeitungsprozesses, System zum Analysieren eines Laserbearbeitungsprozesses und Laserbearbeitungssystem mit einem solchen System
DE102017125033A1 (de) Verfahren und Industrieroboter zur Prüfung von Schweißverbindungen, insbesondere von Schweißpunkten
WO2021069346A1 (de) Laserbearbeitungssystem zum durchführen eines bearbeitungsprozesses an einem werkstück mittels eines laserstrahls und verfahren zur überwachung eines bearbeitungsprozesses an einem werkstück mittels eines laserstrahls
DE102013008085A1 (de) Verfahren und Vorrichtung zum Fügen von Werkstücken mit einem Bearbeitungsstrahl
EP2669622B1 (de) Prüfverfahren und hierzu geeigneter Prüfkopf
DE102006036586B4 (de) Lötnahtprüfung
DE4408291C2 (de) Verfahren zur automatisierten optischen Prüfung einer Schweißnaht eines Bauteils unter Anwendung des Lichtschnittverfahrens
DE19822924A1 (de) Verfahren und Vorrichtung zur Messung der Verteilung der Energiefeldichte eines Laserstrahls
EP4010145B1 (de) Verfahren zum analysieren einer werkstückoberfläche für einen laserbearbeitungsprozess und eine analysevorrichtung zum analysieren einer werkstückoberfläche
DE19505832C2 (de) Optische Prüfeinrichtung zur Online-Bewertung von Schweiß- oder Lötnähten
DD286664A5 (de) Verfahren zur optischen profilabtastung von schweissnahtfugen
DE102010029627A1 (de) Vorrichtung und Verfahren zur Bestimmung der Struktur einer spiegelnden Oberfläche eines Objekts
DE102007017027A1 (de) Verfahren und Prüfsystem zur zerstörungsfreien Prüfung von Materialverbindungen, insbesondere von Widerstandsschweißverbindungen
WO2023138960A1 (de) Verfahren zum bestimmen einer geometrischen ergebnisgrösse und/oder eines qualitätsmerkmals einer schweissnaht auf einem werkstück, und entsprechende vorrichtung
EP3760357A1 (de) System und verfahren zur bestimmung einer schweiss- oder lötgeschwindigkeit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680042034.0

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2628129

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020087010720

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2008540423

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12092979

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006804866

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006804866

Country of ref document: EP