WO2007052444A1 - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
WO2007052444A1
WO2007052444A1 PCT/JP2006/320177 JP2006320177W WO2007052444A1 WO 2007052444 A1 WO2007052444 A1 WO 2007052444A1 JP 2006320177 W JP2006320177 W JP 2006320177W WO 2007052444 A1 WO2007052444 A1 WO 2007052444A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
layer
transport layer
organic
emitting layer
Prior art date
Application number
PCT/JP2006/320177
Other languages
English (en)
French (fr)
Inventor
Hiroshi Miyazaki
Natsumi Henzan
Original Assignee
Nippon Steel Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co., Ltd. filed Critical Nippon Steel Chemical Co., Ltd.
Priority to EP06811490A priority Critical patent/EP1953844B1/en
Priority to US12/083,976 priority patent/US8119257B2/en
Priority to JP2007542298A priority patent/JP5031575B2/ja
Priority to DE602006020911T priority patent/DE602006020911D1/de
Publication of WO2007052444A1 publication Critical patent/WO2007052444A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/186Metal complexes of the light metals other than alkali metals and alkaline earth metals, i.e. Be, Al or Mg
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Definitions

  • the present invention relates to an organic electroluminescent device (hereinafter referred to as an organic EL device), and more particularly, to a thin-film device that emits light by applying an electric field to a light emitting layer that also has organic compound power. is there.
  • anode Z hole transport layer Z light emitting layer / cathode is basically used, and this includes a hole injection layer, an electron injection layer, and an electron transport.
  • Appropriately provided layers such as anode Z hole injection layer Z hole transport layer Z light emitting layer Z cathode, anode Z hole injection layer Z light emission layer Z electron transport layer Z cathode, anode Z hole injection layer Z light emitting layer Z electron transport layer Z electron injection layer Z cathode and anode Z hole injection layer Z hole transport layer Z light emitting layer Z hole blocking layer Z electron transport layer Z cathode etc.
  • the This hole transport layer has a function of transmitting holes injected from the hole injection layer to the light emitting layer, and the electron transport layer has a function of transmitting electrons injected from the cathode to the light emitting layer. ing.
  • the hole injection layer is sometimes referred to as an anode buffer layer, and the electron injection layer is sometimes referred to as a cathode buffer layer.
  • the iridium complex can emit light in a wide wavelength range from blue to red by changing the chemical structure of the ligand.
  • the most stable and useful tris complex as a complex can be prepared only with a limited number of ligands.
  • iridium chloride is used as a starting material. Heterocomplexes via cross-linked intermediates have been proposed (Proceeding of SPI E, vol.4105, ⁇ .119).
  • Patent Document 1 JP 2002-299061 A
  • Patent Document 2 JP 2001-313178 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-352957
  • Patent Document 4 Japanese Patent Publication No. 2003-515897
  • Non-patent literature l Appl. Phys. Lett., Vol.77, p.904
  • CBP 4,4′-bis (9-carbazolyl) biphenyl
  • Ir (ppy) 3 2,4′-bis (9-carbazolyl) biphenyl
  • CBP is easy to flow holes and difficult to flow electrons.
  • the excess holes flow out to the electron transport side, and as a result, the light emission efficiency from Ir (ppy) 3 decreases.
  • Patent Document 3 proposes 3,5-diphenyl-4- (1-naphthyl) -1,2,4-triazole (hereinafter TAZ and V, U) as a host material for phosphorescent EL devices.
  • TAZ and V, U 3,5-diphenyl-4- (1-naphthyl) -1,2,4-triazole
  • the light emitting region is biased toward the hole transport layer due to the characteristics that electrons easily flow and holes do not flow easily. Therefore, depending on the compatibility with Ir (ppy) 3 depending on the material of the hole transport layer, the light emission efficiency from Ir (ppy) 3 is lowered.
  • a-NPD 4,4'-bis (N- (l-naphthyl) -N-phenylamino) biphenyl (N- (l-naphthyl) -N-phenylamino) biphenyl (N- (l-naphthyl)), which is most commonly used as a hole transport layer in terms of high performance, high reliability and long life (Hereinafter referred to as a-NPD) is not compatible with Ir (ppy) 3. Energy transition occurs from TAZ to a-NPD, and the efficiency of energy transition from Ir (ppy) 3 to Ir (ppy) 3 As a result, there is a problem that the luminous efficiency is lowered.
  • HMTPD 4,4'-bis ( ⁇ , ⁇ '-(3-tolyl) amino) -3, 3'-dimethylbiphenyl
  • HMTPD 4,4'-bis ( ⁇ , ⁇ '-(3-tolyl) amino) -3, 3'-dimethylbiphenyl
  • a photoluminescent device can obtain high-efficiency light emission with a three-layer structure, and is particularly excellent in a system using TAZ.
  • HMTPD glass transition temperature
  • Tg glass transition temperature
  • Patent Document 1 discloses an organic EL device including a light emitting layer having a host agent and a phosphorescent dopant.
  • a dopant Ir (ppy) 3 or a phenyl-substituted benzothiazole structure is provided.
  • a tris complex with Ir coordinated to the ligand has been reported.
  • An object of the present invention is to provide a practically useful organic EL device that enables a highly efficient, long-life and simplified device configuration.
  • an anode, a hole transport layer, an organic layer including a light emitting layer and an electron transport layer, and a cathode are laminated on a substrate, and the hole transport layer is provided between the light emitting layer and the anode.
  • An organic electroluminescent device having an electron transport layer between a light emitting layer and a negative electrode, wherein the light emitting layer contains an organometallic complex represented by the following general formula (I) as a host material, and It is an organic electroluminescent element characterized by containing an organometallic complex represented by
  • R to R are each independently a hydrogen atom, an alkyl group, an aralkyl group, an alkaryl group.
  • L represents a monovalent group represented by the following general formula (1), (2) (3) or (4);
  • Ar to Ar are each independently an aromatic hydrocarbon ring group which may have a substituent or a substituent.
  • the group may be an aromatic heterocyclic group, Z represents silicon or germanium, and R to R have the same meaning as in the general formula (I);
  • R to R each independently represent a hydrogen atom, an alkyl group, an aralkyl group, an alkaryl group.
  • a cyano group an alkoxy group, an optionally substituted aromatic hydrocarbon group or a substituent, and / or an aromatic heterocyclic group.
  • the organic EL device of the present invention comprises, in a light emitting layer, an organic metal complex represented by the general formula (I) (also referred to as A1 complex) and an organic metal represented by the general formula ( ⁇ ).
  • the present invention relates to an organic EL device using so-called phosphorescence, including a complex (also called an Ir complex).
  • the A1 complex represented by the general formula (I) is used as the host material, and the Ir complex represented by the general formula ( ⁇ ) is used as the phosphorescent guest material.
  • the host material means a material that occupies 50% by weight or more of the material forming the layer
  • the guest material means a material that occupies less than 50% by weight of the material forming the layer. means.
  • the A1 complex contained in the light emitting layer basically has an excited triplet level in an energy state higher than the excited triplet level of the phosphorescent Ir complex contained in the layer. Is necessary.
  • the emission of the phosphorescent organic complex is influenced by the excitation triplet level of the hole transport layer, the emission region is at a reasonable distance from the interface of the hole transport layer. It is also important to have the ability to inject holes.
  • the A1 complex represented by the general formula (I) is used as a host material as a material for forming a light emitting layer that satisfies these conditions.
  • R to R are each independently
  • the 16 may have a hydrogen atom, an alkyl group, an aralkyl group, an alkenyl group, a cyano group, an alkoxy group, a substituent, or an aromatic hydrocarbon group or a substituent. It represents an aromatic heterocyclic group.
  • an alkyl group an alkyl group having 1 to 6 carbon atoms (hereinafter referred to as a lower alkyl group) is preferably exemplified.
  • aralkyl group a benzyl group and a phenethyl group are preferably exemplified, and as the alkenyl group, a carbon atom is exemplified.
  • a lower alkenyl group of 1 to 6 is preferably exemplified, and the alkyl part of the alkoxy group is preferably exemplified by lower alkyl.
  • the aromatic hydrocarbon group is preferably an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, an acenaphthyl group or an anthryl group
  • the aromatic heterocyclic group is a pyridyl group or a quinolyl group.
  • Preferred examples include aromatic heterocyclic groups such as a group, chael group, carbazole group, indolyl group and furyl group.
  • substituents include a lower alkyl group, a lower alkoxy group, a phenoxy group, a benzyloxy group, a phenyl group, a naphthyl group, and the like. It is done.
  • the compound represented by the general formula (I) is more preferably a compound in which R to R are a hydrogen atom and a lower alkyl.
  • a compound which is a ru group or a lower alkoxy group is selected.
  • L represents a group represented by the above general formula (1), (2), (3) or (4), and Ar to Ar each independently have a substituent.
  • Aromatic hydrocarbon groups or substitutions that may be
  • Ar to Ar may have a group and represents an aromatic heterocyclic group, and z represents silicon or germanium.
  • Preferred examples of Ar to Ar include a phenyl group, a naphthyl group, and an alkyl group or
  • the alkyl group is preferably a lower alkyl group such as a methyl group
  • the aryl group is preferably a phenyl group, a naphthyl group, or a group substituted with a lower alkyl group.
  • Preferred Ar to Ar include
  • the A1 complex represented by the general formula (I) is, for example, a compound represented by the corresponding metal salt and the formula (III). And a compound represented by the formula (1 ′), (2 ′) or (3 ′) by a complex formation reaction at a molar ratio of 2: 1.
  • R to R correspond to R to R in the general formula (I)
  • an Ir complex represented by the general formula (II) is used as a guest material in the light emitting layer.
  • R to R each independently represent a hydrogen atom, an alkyl group, or an aralkyl group.
  • R, R R, R R, R R, R R and R may form a ring.
  • an alkyl group having 1 to 6 carbon atoms (hereinafter referred to as a lower alkyl group) is preferably exemplified.
  • aralkyl group a benzyl group and a phenethyl group are preferably exemplified, and as the alkenyl group, And a lower alkenyl group having 1 to 6 carbon atoms is preferred, and the alkyl portion of the alkoxy group is preferably exemplified by lower alkyl.
  • aromatic hydrocarbon group examples include a phenyl group, a naphthyl group, an acenaphthyl group, an anthryl group, and the like
  • aromatic heterocyclic group examples include a pyridyl group, a quinolyl group, a phenyl group, and a carbazole.
  • Preferred examples include a group, an indolyl group, and a furyl group.
  • examples of the substituent include a lower alkyl group, a lower alkoxy group, a phenoxy group, a benzyloxy group, a phenyl group, a naphthyl group, and the like. It is done.
  • Ir complexes include Irbt3 and the like. Specific examples of the organometallic complex represented by the general formula (II) are shown below, but are not limited to the following compounds. Compound 31 is abbreviated as Irbt3.
  • the host material used for the light emitting layer in the present invention can flow electrons and holes almost evenly, light can be emitted at the center of the light emitting layer. Therefore, unlike TAZ, it emits light on the hole transport side, and energy transition does not occur in the hole transport layer, resulting in a decrease in efficiency. In this way, it is possible to use a highly reliable material such as a-NPD as the hole transport layer and Alq3 as the electron transport layer, which emit light at the electron transport layer side and do not transfer the energy to the electron transport layer to reduce the efficiency.
  • a-NPD as the hole transport layer
  • Alq3 the electron transport layer
  • FIG. 1 is a schematic cross-sectional view showing an example of an organic electroluminescent device.
  • FIG. 1 is a cross-sectional view schematically showing a structural example of a general organic EL element used in the present invention.
  • a force having the substrate anode 2, the hole transport layer 4, the light emitting layer 5, the electron transport layer 6 and the cathode 7 as essential layers is a layer other than the essential layers, for example, a hole injection layer. 3 can be omitted, and other layers may be provided if necessary.
  • the organic EL device of the present invention does not necessarily require a hole blocking layer. The absence of a hole blocking layer simplifies the layer structure and provides manufacturing and performance advantages.
  • the substrate 1 serves as a support for the organic electroluminescent element, and a quartz or glass plate, a metal plate or a metal foil, a plastic film, a sheet, or the like is used.
  • a glass plate and a transparent synthetic resin plate such as polyester, polymetatalylate, polycarbonate, and polysulfone are preferable.
  • a synthetic resin substrate it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic electroluminescent element may be deteriorated by the outside air that has passed through the substrate, which is not preferable. For this reason, a method of ensuring gas-noriality by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
  • An anode 2 is provided on the substrate 1, and the anode plays a role of injecting holes into the hole transport layer.
  • This anode is usually made of metal such as aluminum, gold, silver, nickel, palladium, white gold, metal oxide such as indium and Z or tin, metal halide such as copper iodide, carbon Black or poly (3-methylthiophene), polypyro And conductive polymers such as polyol and polyarlin.
  • the anode is usually formed by a sputtering method, a vacuum deposition method, or the like.
  • anode 2 can also be formed by coating on 1.
  • a thin film can be directly formed on the substrate by electrolytic polymerization, or the anode can be formed by applying a conductive polymer on the substrate.
  • the anode can be formed by stacking different materials. The thickness of the anode depends on the required transparency. When transparency is required, it is desirable to have a visible light transmittance of 60% or more, preferably 80% or more.
  • the thickness is usually 5 to 1000 nm, preferably It is about 10 to 500 nm.
  • the anode 2 can be the same as the substrate 1 if it can be opaque. Furthermore, it is possible to laminate different conductive materials on the anode.
  • a hole transport layer 4 is provided on the anode 2.
  • a hole injection layer 3 can be provided between them.
  • the conditions required for the material of the hole transport layer are that the hole injection efficiency from the anode is high and the material can efficiently transport the injected holes. To that end, it is highly transparent to visible light with a small ionic potential, and has a large hole mobility and excellent stability. Impurities that become traps are less likely to occur during manufacturing and use. Is required. Further, it is required that the light emitted from the light-emitting layer force is not quenched in order to contact the light-emitting layer 5, or an exciplex is formed between the light-emitting layer and the efficiency is not lowered. In addition to the above general requirements, when considering applications for in-vehicle display, the device is required to have further heat resistance. Therefore, a material having a Tg value of 85 ° C or higher is desirable.
  • a known triarylamine dimer such as ⁇ -NPD can be used as a hole transport material.
  • aromatic diamines containing two or more tertiary amines and two or more condensed aromatic rings substituted with nitrogen atoms 4,4 ', 4 "-tris (1-naphthylphenylamino) triphenylamine, etc.
  • Aromatic amine compounds with a starburst structure Aromatic amine compounds that have tetramer power of eramine, spiro compounds such as 2,2 ', 7,7'-tetrakis- (diphenylamino) -9,9'-spirobifluorene It is done. These compounds may be used alone or in combination as necessary.
  • examples of the material for the hole transport layer include polymer materials such as polyarylene ether sulfone containing polyvinyl carbazole, polybutyltriamine, and tetraphenylpentidine.
  • the hole transport layer is formed by a coating method
  • at least one hole transport material and, if necessary, an additive such as a binder resin coatability improver that does not trap holes are added.
  • the solution is dissolved to prepare a coating solution, which is coated on the anode 2 by a method such as spin coating, and dried to form the hole transport layer 4.
  • Noinda rosin include polycarbonate, polyarylate, and polyester. If the amount of the binder resin added is large, the hole mobility is lowered. Therefore, it is usually desirable that the amount is less than 50% by weight.
  • a vacuum deposition method When forming a vacuum deposition method, put a hole-transporting material to the installation crucible in a vacuum vessel, after evacuating to a 10-about 4 Pa vacuum vessel with an appropriate vacuum pump, the crucible By heating, the hole transporting material is evaporated, and the hole transporting layer 4 is formed on the substrate on which the anode placed facing the crucible is formed.
  • the thickness of the hole transport layer is usually 5 to 300 nm, preferably 10 to 100 nm. In order to form such a thin film uniformly, a vacuum deposition method is generally used.
  • a light emitting layer 5 is provided on the hole transport layer 4.
  • the light-emitting layer contains an A1 complex complex represented by the general formula (I) and an Ir complex represented by the general formula ( ⁇ ), and is injected between the electrodes to which an electric field is applied and is injected from the anode cover. Excited by recombination of holes that move through the hole transport layer and electrons that are injected from the cathode and move through the electron transport layer 6, it emits strong light.
  • the light emitting layer 5 may contain other components such as other host materials (which function in the same manner as the complex of the general formula (I)) and fluorescent dyes as long as the performance of the present invention is not impaired. .
  • the amount of the Ir complex represented by the general formula (II) contained in the light emitting layer is preferably in the range of 0.1 to 30% by weight. If it is less than 0.1% by weight, it cannot contribute to improving the light emission efficiency of the device, and if it exceeds 30% by weight, concentration quenching occurs such that Ir complexes form a dimer, leading to a decrease in light emission efficiency. Fluorescence contained in the light-emitting layer in a device using conventional fluorescence (singlet) There is a tendency that a slightly larger amount than the amount of the pigment (dopant) is preferable. Ir complexes may be partially contained in the light emitting layer in the film thickness direction or distributed unevenly.
  • the thickness of the light emitting layer 5 is usually 10 to 200 nm, preferably 20 to 100 nm. A thin film is formed by the same method as the hole transport layer.
  • an electron transport layer 6 is provided between the light-emitting layer 5 and the cathode 7.
  • the electron transport layer is formed of a compound that can efficiently transport electrons injected from the cathode between electrodes to which an electric field is applied in the direction of the light emitting layer.
  • the electron transport compound used for the electron transport layer 6 is a compound that has high electron injection efficiency from the cathode 7 and has high electron mobility and can efficiently transport injected electrons. is required.
  • metal complexes such as Alq3, metal complexes of 10-hydroxybenzo [h] quinoline, oxadiazole derivatives, distyryl biphenyl derivatives, silole derivatives, 3- or 5- Hydroxyflavone metal complex, benzoxazole metal complex, benzothiazole metal complex, tris-benzimidazolylbenzene, quinoxaline compound, phenanthorin derivative, 2-t-butyl-9,10- ⁇ , ⁇ '-disiano Anthraquinone dimine, ⁇ -type hydrogenated amorphous silicon carbide, ⁇ -type zinc sulfide, and ⁇ -type selenium-zinc.
  • metal complexes such as Alq3, metal complexes of 10-hydroxybenzo [h] quinoline, oxadiazole derivatives, distyryl biphenyl derivatives, silole derivatives, 3- or 5- Hydroxyflavone metal complex, benzoxazole metal complex, benzothiazole metal complex
  • the film thickness of the electron transport layer 6 is usually 5 to 200 nm, preferably 10 to 100 nm.
  • the electron transport layer is formed by laminating on the light emitting layer by a coating method or a vacuum deposition method in the same manner as the hole transport layer. Usually, a vacuum deposition method is used.
  • the hole injection layer 3 is inserted between the hole transport layer 4 and the anode 2 for the purpose of further improving the efficiency of hole injection and improving the adhesion of the whole organic layer to the anode. It has also been done.
  • the driving voltage of the initial device is lowered, and at the same time, an increase in voltage when the device is continuously driven at a constant current is suppressed.
  • the conditions required for the material used for the hole injection layer include that a uniform thin film with good adhesion to the anode can be formed and is thermally stable, that is, a melting point having a high melting point and glass transition temperature. ° C or higher, and Tg of 100 ° C or higher is required.
  • the ionization potential is low, hole injection from the anode is easy, and hole mobility is high.
  • phthalocyanine compounds such as copper phthalocyanine
  • Organic compounds such as diphosphorus and polythiophene
  • sputtered carbon films vanadium oxides, ruthenium oxides, molybdates, and other metal oxides
  • a thin film can be formed in the same manner as the hole transport layer, but in the case of an inorganic material, sputtering, electron beam evaporation, or plasma CVD is further used.
  • the film thickness of the anode buffer layer 3 formed as described above is usually 3 to 100 nm, preferably 5 to 50 nm.
  • the force for laminating the electron transport layer 6 on the light emitting layer 5 is preferably such that no hole blocking layer exists between them.
  • the cathode 7 serves to inject electrons into the light emitting layer 5.
  • the material used for the anode can be the material used for the anode 2.
  • tin, magnesium, indium, calcium, and aluminum are preferred because metals with low work functions are preferred.
  • a suitable metal such as yum or silver or an alloy thereof is used.
  • Specific examples include low work function alloy electrodes such as a magnesium-silver alloy, a magnesium-indium alloy, and an aluminum-lithium alloy.
  • the thickness of the cathode is usually the same as that of the anode.
  • metals such as aluminum, silver, copper, nickel, chromium, gold and platinum are used.
  • an ultrathin insulating film such as LiF, MgF, LiO is provided.
  • Inserting it as an electron injection layer is also an effective method for improving the efficiency of the device.
  • the structure opposite to that shown in Fig. 1, that is, the cathode 7, the electron transport layer 6, the light emitting layer 5, the hole transport layer 4, and the anode 2 can be laminated on the substrate 1 in this order.
  • the organic EL device of the present invention can be provided between two substrates, at least one of which is highly transparent. In this case, layers can be added or omitted as necessary.
  • the organic EL element of the present invention can be applied to any of a single element, an element having a structure arranged in an array, and a structure in which an anode and a cathode power are arranged in a Y matrix.
  • the organic EL device of the present invention by including a compound having a specific skeleton in the light emitting layer and a phosphorescent metal complex, the light emitting efficiency is higher than that of a conventional device using light emission from a singlet state. In addition, a device with greatly improved driving stability was obtained. It can be used for full-color or multi-color panels!
  • Copper phthalocyanine (CuPC) was used for the hole injection layer, a-NPD for the hole transport layer, and Alq3 for the electron transport layer.
  • the thickness l LOnm of ⁇ Kakara comprising a glass substrate with the anode formed was each thin film by vacuum vapor deposition, it is stacked in a vacuum 5.0 X 10- 4 Pa.
  • CuPC was deposited on ITO as a hole injection layer at a thickness of 25 mm in 3.0 AZ seconds.
  • a-NPD was formed as a hole transport layer on the hole injection layer to a thickness of 55 nm at a deposition rate of 3.0 A / second.
  • BmqAl (I compound 1) and Irbt (I compound 31) are different on the hole transport layer as the light emitting layer.
  • Alq3 was formed to a thickness of 30 nm as an electron transport layer at a deposition rate of 3.0 A / sec.
  • lithium oxide (Li 0) As an electron injection layer on the electron transport layer, lithium oxide (Li 0)
  • An organic EL device was produced in the same manner as in Example 1 except that the thickness was 47.5 mm.
  • the Irbt concentration was 7.0%.
  • Bt Ir (acac) is one Irbt bt to acac
  • An organic EL device was prepared in the same manner as in Example 1 except that BCP was used as the host material for the light emitting layer.
  • An organic EL device was produced in the same manner as in Example 1 except that BCP was used as the host material of the light emitting layer and bt Ir (acac) was used as the guest material.
  • Table 1 shows the luminance half-life (initial luminance 500 cd / m 2 ).
  • the organic EL device of the present invention is a light source (for example, a copying machine) that has features as a flat panel display (for example, for office automation computers and wall-mounted televisions), an in-vehicle display device, a mobile phone display and a surface light emitter. It can be applied to light sources, backlight sources for liquid crystal displays and instruments), display panels, and beacon lights, and its technical value is great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Description

有機電界発光素子
技術分野
[0001] 本発明は有機電界発光素子 (以下、有機 EL素子という)に関するものであり、詳しく は、有機化合物力もなる発光層に電界を力けて光を放出する薄膜型デバイスに関す るものである。
背景技術
[0002] 有機材料を用いた電界発光素子の開発は、電極からの電荷注入効率向上を目的 として電極の種類の最適化し、芳香族ジァミンカゝらなる正孔輸送層と 8-ヒドロキシキノ リンアルミニウム錯体 (以下、 Alq3という)からなる発光層とを電極間に薄膜として設け た素子の開発により、従来のアントラセン等の単結晶を用いた素子と比較して大幅な 発光効率の改善がなされたことから、自発光 ·高速応答性と ヽつた特徴を持つ高性 能フラットパネルへの実用を目指して進められてきた。
[0003] このような有機 EL素子の効率を更に改善するため、上記の陽極 Z正孔輸送層 Z発 光層/陰極の構成を基本とし、これに正孔注入層、電子注入層や電子輸送層を適 宜設けたもの、例えば陽極 Z正孔注入層 Z正孔輸送層 Z発光層 Z陰極や、陽極 Z 正孔注入層 Z発光層 Z電子輸送層 Z陰極や、陽極 Z正孔注入層 Z発光層 Z電子 輸送層 Z電子注入層 Z陰極や、陽極 Z正孔注入層 Z正孔輸送層 Z発光層 Z正孔 阻止層 Z電子輸送層 Z陰極などの構成のものが知られて 、る。この正孔輸送層は、 正孔注入層から注入された正孔を発光層に伝達する機能を有し、また電子輸送層は 、陰極より注入された電子を発光層に伝達する機能を有している。なお、正孔注入層 を陽極バッファ層、電子注入層を陰極バッファ層と称するときもある。
[0004] そして、この正孔輸送層を発光層と正孔注入層間に介在させることによって、より低 、電界で多くの正孔が発光層に注入され、更に発光層に陰極又は電子輸送層より 注入された電子は、正孔輸送層が電子を極めて流しにくいので、発光層中に蓄積さ れ、発光効率が上昇することが知られている。
[0005] 同様に、電子輸送層を発光層と電子注入層間に介在させることによって、より低い 電界で多くの電子が発光層に注入され、更に発光層に陽極又は正孔輸送層より注 入された正孔は、電子輸送層が正孔を流しにくいので、発光層に蓄積され、発光効 率が上昇することが知られている。こうした構成層の機能にあわせて、これまでに多く の有機材料の開発が進められてきた。
[0006] 一方、芳香族ジァミン力 なる正孔輸送層と Alq3力 なる発光層とを設けた素子を はじめとした多くの素子が蛍光発光を利用したものであった力 燐光発光を用いる三 重項励起状態からの発光を利用すれば、従来の蛍光 (一重項)を用いた素子と比べ て、 3倍程度の効率向上が期待される。この目的のためにクマリン誘導体やべンゾフ ェノン誘導体を発光層とすることが検討されてきたが、極めて低い輝度し力得られな かった。その後、三重項状態を利用する試みとして、ユーロピウム錯体を用いることが 検討されてきたが、これも高効率の発光には至らな力つた。
[0007] 近年、白金錯体 (PtOEP)を用いることで、高効率の赤色燐光発光が可能なことが 報告され、その後、イリジウム錯体 (Ir(ppy)3)を発光層にドープすることで、同様な燐 光発光による高効率緑色発光素子されている。
[0008] このイリジウム錯体については、その配位子の化学構造を変化させることで青色か ら赤色までの広い波長域での発光が可能であることが見出されている。ところが、錯 体として最も安定で有用と考えられるトリス錯体については、限られた配位子でしか 調製ができないことが明らかになっており、この回避法としては、塩化イリジウムを出 発物質とし、架橋構造中間体を経たヘテロ錯体が提案されている(Proceeding of SPI E、 vol.4105, ρ.119)。
[0009] 本発明に関連する先行文献
特許文献 1:特開 2002-299061号公報
特許文献 2:特開 2001-313178号公報
特許文献 3:特開 2002-352957号公報
特許文献 4:特表 2003-515897号公報
非特許文献 l :Appl. Phys. Lett., vol.77, p.904
[0010] 燐光有機 EL素子開発において、ホスト材料としては、特許文献 2で紹介されている 4,4'-ビス (9-カルバゾリル)ビフエ-ル(以下、 CBPという)がある。緑色燐光発光材料 のトリス (2-フエ-ルビリジン)イリジウム錯体(以下、 Ir(ppy)3と 、う)のホスト材料として C BPを用いると、 CBPは正孔を流し易く電子を流しにくい特性上、電荷注入バランスが 崩れ、過剰の正孔は電子輸送側に流出し、結果として Ir(ppy)3からの発光効率が低 下する。
[0011] 上記の解決手段として、発光層と電子輸送層の間に正孔阻止層を設ける手段があ る。この正孔阻止層により正孔を発光層中に効率よく蓄積することによって、発光層 中での電子との再結合確率を向上させ、発光の高効率ィ匕を達成することができる。 現状一般的に用いられている正孔阻止材料として、 2,9-ジメチル- 4,7-ジフエ-ル- 1, 10-フエナント口リン(以下、 BCPと!、う)及び p-フエ-ルフエノラート-ビス (2-メチル -8- キノリノラート- N1, 08)アルミニウム(以下、 BAlqという)が挙げられる。これにより、電子 輸送層で電子とホールの再結合が起こることを防止できるが、 BCPは室温でも結晶化 し易く材料としての信頼性に欠けるため、素子寿命が極端に短い。また、 BAlqは比較 的良好な素子寿命結果が報告されているが、正孔阻止能力が十分でなぐ Ir(ppy)3 力もの発光効率は低下する。カロえて、層構成が 1層増すことから素子構造が複雑に なり、コストが増加するという問題がある。
[0012] 特許文献 3では、 3, 5-ジフエ-ル -4-(1-ナフチル) -1,2,4-トリァゾール(以下、 TAZと V、う)を燐光有 EL素子のホスト材料として提案して 、るが、電子を流しやすく正孔を流 しにくい特性上、発光領域が正孔輸送層側に偏る。従って、正孔輸送層の材料によ つては Ir(ppy)3との相性問題により、 Ir(ppy)3からの発光効率が低下する。例えば、正 孔輸送層として高性能、高信頼性、高寿命の点から最も良く使用されている 4,4'-ビス (N-(l-ナフチル) -N-フエ-ルァミノ)ビフエ-ル(以下、 a - NPDという)は、 Ir(ppy)3との 相性が悪ぐ TAZから a - NPDにエネルギー遷移が起き、 Ir(ppy)3から Ir(ppy)3へのェ ネルギー遷移の効率が低下し、結果的に発光効率が低下するという問題がある。
[0013] 上記の解決手段として、 4,4'-ビス (Ν,Ν'- (3-トルィル)ァミノ)- 3、 3'-ジメチルビフエ- ル(以下、 HMTPDと!、う)のような Ir(ppy)3からエネルギー遷移が起こらな!/、材料を正 孔輸送層として用いる手段がある。非特許文献 1では、発光層のホスト材料に TAZ、 1 ,3-ビス (Ν,Ν-t-ブチル -フエ-ル) -1,3,4-ォキサゾール又は BCPを使用し、ゲスト材料 に Ir(ppy)3を使用し、電子輸送層に Alq3、正孔輸送層に HMTPDを使用することで燐 光発光素子において 3層構造で高効率発光を得ることが可能であり、特に TAZを用 いた系で優れていると報告している。し力し、 HMTPDはガラス転移温度(Tg)が約 50 °Cであるため、結晶化し易く材料としての信頼性に欠ける。したがって、素子寿命が 極端に短ぐ商業的応用は難しい上、駆動電圧が高いという問題点もある。
[0014] 特許文献 1は、ホスト剤と燐光を発するドープ剤を有する発光層を含む有機 EL素子 が開示し、そのドープ剤の一例として Ir(ppy)3やフエ-ル置換べンゾチアゾール構造 の配位子に Irが配位したトリス錯体を報告している。
発明の開示
発明が解決しょうとする課題
[0015] 有機 EL素子をフラットパネルディスプレイ等の表示素子に応用するためには、素子 の発光効率を改善すると同時に駆動時の安定性を十分に確保する必要がある。本 発明は、高効率、長寿命で、かつ簡略化された素子構成を可能ならしめる実用上有 用な有機 EL素子を提供することを目的とする。
課題を解決するための手段
[0016] 本発明は、基板上に、陽極、正孔輸送層、発光層及び電子輸送層を含む有機層 並びに陰極が積層されてなり、発光層と陽極の間に正孔輸送層を有し、発光層と陰 極の間に電子輸送層を有する有機電界発光素子であって、発光層中に下記一般式 (I)で表わされる有機金属錯体をホスト材料として含有し、かつ一般式 (Π)で表される 有機金属錯体をゲスト材料として含有することを特徴とする有機電界発光素子である
Figure imgf000006_0001
式中、 R〜Rは各々独立に、水素原子、アルキル基、ァラルキル基、ァルケ-ル基 、シァノ基、アルコキシ基、置換基を有していてもよい芳香族炭化水素基又は置換基 を有していてもよい芳香族複素環基を示す。 Lは下記一般式(1)、 (2) (3)又は (4) で表される 1価の基を示す;
Figure imgf000007_0001
Figure imgf000007_0002
Figure imgf000007_0003
Ar〜Arは各々独立に、置換基を有していてもよい芳香族炭化水素環基又は置換
1 5
基を有して 、てもよ 、芳香族複素環基を示し、 Zはシリコン又はゲルマニウムを示し、 R〜Rは一般式 (I)と同じ意味を有する;
Figure imgf000008_0001
式中、 R〜R は各々独立に、水素原子、アルキル基、ァラルキル基、ァルケ-ル基
7 14
、シァノ基、アルコキシ基、置換基を有していてもよい芳香族炭化水素基又は置換基 を有して!/ヽてもよ!/ヽ芳香族複素環基を示す。
[0018] 本発明の有機 EL素子は、発光層に、前記一般式 (I)で表される有機金属錯体 (A1 錯体とも ヽぅ)化合物と、前記一般式 (Π)で表される有機金属錯体 (Ir錯体とも ヽぅ)と を含む、いわゆる燐光を利用した有機 EL素子に関する。ホスト材料として一般式 (I) で表される A1錯体を、また燐光性ゲスト材料として一般式 (Π)で表される Ir錯体を使用 する。
[0019] ここで、ホスト材料とは該層を形成する材料のうち 50重量%以上を占めるものを意 味し、ゲスト材料とは該層を形成する材料のうち 50重量%未満を占めるものを意味 する。本発明の有機 EL素子において、発光層に含まれる A1錯体は、該層に含まれる 燐光性 Ir錯体体の励起三重項準位より高いエネルギー状態の励起三重項準位を有 することが基本的に必要である。
[0020] また、安定な薄膜形状を与え、高!、Tgを有し、正孔及び Z又は電子を効率よく輸 送することができる化合物であることが望まれる。更に、電気化学的かつ化学的に安 定であり、トラップとなったり発光を消光したりする不純物が製造時や使用時に発生し にくい化合物であることが要求される。燐光性有機錯体の発光が正孔輸送層の励起 3重項準位に影響されに《するため、発光領域が正孔輸送層界面よりも適度に距離 を保てる正孔注入能力を有することも重要である。
[0021] これらの条件を満たす発光層を形成する材料として、本発明では前記一般式 (I)で 表わされる A1錯体をホスト材料として用いる。一般式 (I)において、 R〜Rは各々独立
1 6 に、水素原子、アルキル基、ァラルキル基、ァルケ-ル基、シァノ基、アルコキシ基、 置換基を有して ヽてもよ ヽ芳香族炭化水素基又は置換基を有して ヽてもよ 、芳香族 複素環基を示す。アルキル基としては、炭素数 1〜6のアルキル基 (以下、低級アル キル基という)が好ましく例示され、ァラルキル基としては、ベンジル基、フエネチル基 が好ましく例示され、ァルケ-ル基としては、炭素数 1〜6の低級アルケニル基が好ま しく例示され、アルコキシ基のアルキル部としては、低級アルキルが好ましく例示され る。
[0022] また、芳香族炭化水素基としては、フエニル基、ナフチル基、ァセナフチル基、アン トリル基等の芳香族炭化水素基が好ましく例示され、芳香族複素環基としては、ピリ ジル基、キノリル基、チェ-ル基、カルバゾル基、インドリル基、フリル基等の芳香族 複素環基が好ましく例示される。これらが置換基を有する芳香族炭化水素基又は芳 香族複素環基である場合は、置換基としては、低級アルキル基、低級アルコキシ基、 フエノキシ基、ベンジルォキシ基、フエニル基、ナフチル基等が挙げられる。
[0023] 一般式 (I)で表わされる化合物は、より好ましくは R〜Rが水素原子、低級アルキ
1 6
ル基又は低級アルコキシ基である化合物が選ばれる。
[0024] 一般式 (I)において、 Lは上記一般式(1)、 (2)、 (3)又は (4)で表わされる基を示 し、 Ar〜Arは各々独立に、置換基を有していてもよい芳香族炭化水素基又は置換
1 5
基を有して 、てもよ 、芳香族複素環基を表し、 zはシリコン又はゲルマニウムを示す。 好ましい Ar〜Arとしては、フエ-ル基、ナフチル基又はこれらにアルキル基若しくは
1 2
ァリール基が置換した芳香族炭化水素基挙げられる。このアルキル基としてはメチル 基等の低級アルキル基が好ましぐァリール基としてはフエニル基、ナフチル基又は これらに低級アルキル基が置換した基が好ましい。好ましい Ar〜Arとしては、フエ二
3 5
ル基又は低級アルキル基が置換したフエニル基が挙げられる。一般式 (4)の R〜R
1 6 は、上記一般式 (I)で説明した R〜Rと同じ意味を有する。
1 6
[0025] 一般式 (I)で表される A1錯体は、例えば、対応する金属塩と式 (III)で表される化合 物と式(1')、 (2')又は(3' )で表される化合物を 2対 1のモル比で錯体形成反応するこ とにより合成される。なお、式 (III)において、 R〜Rは一般式 (I)の R〜Rと対応し、
1 6 1 6 式(1';)〜(3,)において、 Ar〜Ar及び Zは一般式(I)中の Lの Ar〜Ar及び Zに対応
1 5 1 5
する。
[0026]
Figure imgf000010_0001
HO—— Ar 1
( r)
Figure imgf000010_0002
( 2')
Figure imgf000010_0003
( 30
[0027] Lが一般式 (4)で表わされる基である一般式 (I)で表される A1錯体は、対応する金 属塩と式 (III)で表される化合物との間の錯体形成反応により合成される。合成反応 は、例えば、 Y. Kushiらにより示される方法( J.Amer.Chem.So 、 92卷、 91頁、 1970年 )で行われる。
[0028] 以下に一般式 (I)で表わされる A1錯体を例示する力 下記の化合物に限定されるも のではない。なお、化合物 1を BmqAlと、化合物 11を BAlqと略称する。 
Figure imgf000011_0001
合物 1 1 )
(化合物 1 2 )
Figure imgf000012_0001
(化合物 1 3 ) 1 4 ) 合物 1 5 )
Figure imgf000012_0002
(化合物 1 6 )
Figure imgf000013_0001
[0032] 発光層におけるゲスト材料としては、前記一般式 (II)で表される Ir錯体が用いられる
[0033] 一般式 (II)にお 、て、 R〜R は各々独立に、水素原子、アルキル基、ァラルキル基 、ァルケ-ル基、シァノ基、アルコキシ基、置換基を有していてもよい芳香族炭化水 素基又は置換基を有していてもよい芳香族複素環基を示す。また、隣接する Rと R
7 8.
Rと R Rと R R と R R と R R と R が環を形成してもよぐそれらの環が芳香族環
8 9、 9 10、 11 12、 12 13、 13 14
であっても良い。
[0034] アルキル基としては、炭素数 1〜6のアルキル基(以下、低級アルキル基という)が 好ましく例示され、ァラルキル基としては、ベンジル基、フエネチル基が好ましく例示 され、ァルケ-ル基としては、炭素数 1〜6の低級アルケニル基が好ましく例示され、 アルコキシ基のアルキル部としては、低級アルキルが好ましく例示される。
[0035] また、芳香族炭化水素基としては、フエニル基、ナフチル基、ァセナフチル基、アン トリル基等が好ましく例示され、芳香族複素環基としては、ピリジル基、キノリル基、チ ェニル基、カルバゾル基、インドリル基、フリル基等が好ましく例示される。これらが置 換基を有する芳香族炭化水素基又は芳香族複素環基である場合は、置換基として は、低級アルキル基、低級アルコキシ基、フエノキシ基、ベンジルォキシ基、フエニル 基、ナフチル基等が挙げられる。
[0036] より好ましい Ir錯体としては、 Irbt3などが挙げられる。以下に、一般式 (II)で表される 有機金属錯体の具体例を以下に示すが、下記の化合物に限定されるものではない。 なお、化合物 31を Irbt3と略称する。
[0037]
Figure imgf000015_0001
[0038] 本発明で発光層に使用するホスト材料は、電子と正孔をほぼ均等に流すことができ るので、発光層の中央で発光させることができる。従って、 TAZの様に正孔輸送側で 発光し、正孔輸送層にエネルギー遷移が発生し効率低下を招くことはないし、 CPBの 様に電子輸送層側で発光し、電子輸送層にエネルギー遷移して効率を落とすことも なぐ正孔輸送層として a -NPD、電子輸送層として Alq3の様な信頼性が高い材料を 使用できる。
図面の簡単な説明
[0039] [図 1]有機電界発光素子の一例を示した模式断面図
符号の説明
[0040] 1 基板、 2 陽極、 3 正孔注入層、 4 正孔輸送層、 5 発光層、 6 電子輸送層、 7 陰極
発明を実施するための最良の形態
[0041] 以下、本発明の有機 EL素子について、図面を参照しながら説明する。図 1は本発 明に用いられる一般的な有機 EL素子の構造例を模式的に示す断面図である。本発 明の有機 EL素子では、基板 陽極 2、正孔輸送層 4、発光層 5、電子輸送層 6及び 陰極 7を必須の層として有する力 必須の層以外の層、例えば、正孔注入層 3は省略 可能であり、また必要により他の層を設けてもよい。しかし、本発明の有機 EL素子は、 正孔阻止層は必ずしも必要としない。正孔阻止層を設けないことにより、層構造が簡 素化され、製造上、性能上の利点をもたらす。
[0042] 基板 1は有機電界発光素子の支持体となるものであり、石英やガラスの板、金属板 や金属箔、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエス テル、ポリメタタリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂の板 が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある 。基板のガスバリア性が小さすぎると、基板を通過した外気により有機電界発光素子 が劣化することがあるので好ましくない。このため、合成樹脂基板の少なくとも片面に 緻密なシリコン酸ィ匕膜等を設けてガスノ リア性を確保する方法も好ましい方法の一つ である。
[0043] 基板 1上には陽極 2が設けられるが、陽極は正孔輸送層への正孔注入の役割を果 たすものである。この陽極は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白 金等の金属、インジウム及び Z又はスズの酸ィ匕物などの金属酸ィ匕物、ヨウ化銅など のハロゲン化金属、カーボンブラック、あるいは、ポリ(3-メチルチオフェン)、ポリピロ ール、ポリア-リン等の導電性高分子などにより構成される。陽極の形成は通常、ス ノ^タリング法、真空蒸着法などにより行われることが多い。また、銀などの金属微粒 子、ヨウ化銅などの微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性 高分子微粉末などの場合には、適当なバインダー榭脂溶液に分散し、基板 1上に塗 布することにより陽極 2を形成することもできる。更に、導電性高分子の場合は電解重 合により直接基板上に薄膜を形成したり、基板上に導電性高分子を塗布して陽極を 形成することもできる。陽極は異なる物質で積層して形成することも可能である。陽極 の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の 透過率を、通常、 60%以上、好ましくは 80%以上とすることが望ましぐこの場合、厚 みは、通常、 5〜1000nm、好ましくは 10〜500nm程度である。不透明でよい場合、陽 極 2は基板 1と同一でもよい。また、更には上記の陽極の上に異なる導電材料を積層 することも可會である。
[0044] 陽極 2の上には正孔輸送層 4が設けられる。両者の間には、正孔注入層 3を設けるこ ともできる。正孔輸送層の材料に要求される条件としては、陽極からの正孔注入効率 が高ぐかつ、注入された正孔を効率よく輸送することができる材料であることが必要 である。そのためには、イオンィ匕ポテンシャルが小さぐ可視光の光に対して透明性 が高ぐし力も正孔移動度が大きぐ更に安定性に優れ、トラップとなる不純物が製造 時や使用時に発生しにくいことが要求される。また、発光層 5に接するために発光層 力 の発光を消光したり、発光層との間でェキサイプレックスを形成して効率を低下さ せないことが求められる。上記の一般的要求以外に、車載表示用の応用を考えた場 合、素子には更に耐熱性が要求される。従って、 Tgとして 85°C以上の値を有する材 料が望ましい。
[0045] 本発明の有機 EL素子では、正孔輸送材料として、 α -NPDのような公知のトリアリー ルァミンダイマーを使用することができる。
[0046] なお、必要によりその他の正孔輸送材料として公知の化合物をトリアリールアミンダ イマ一と併用することもできる。例えば、 2個以上の 3級ァミンを含み 2個以上の縮合 芳香族環が窒素原子に置換した芳香族ジァミン、 4,4',4"-トリス (1-ナフチルフエ-ル ァミノ)トリフエ-ルァミン等のスターバースト構造を有する芳香族アミンィ匕合物、トリフ ェ-ルァミンの四量体力もなる芳香族アミンィ匕合物、 2,2',7,7'-テトラキス- (ジフエ-ル ァミノ) -9,9'-スピロビフルオレン等のスピロ化合物等が挙げられる。これらの化合物は 、単独で用いてもよいし、必要に応じて、混合して用いてもよい。
また、上記の化合物以外に、正孔輸送層の材料として、ポリビニルカルバゾール、 ポリビュルトリフエ-ルァミン、テトラフエ-ルペンジジンを含有するポリアリーレンエー テルサルホン等の高分子材料が挙げられる。
[0047] 正孔輸送層を塗布法で形成する場合は、正孔輸送材料を 1種以上と、必要により 正孔のトラップにならないバインダー榭脂ゃ塗布性改良剤などの添加剤とを添加し、 溶解して塗布溶液を調製し、スピンコート法などの方法により陽極 2上に塗布し、乾 燥して正孔輸送層 4を形成する。ノインダー榭脂としては、ポリカーボネート、ポリアリ レート、ポリエステル等が挙げられる。バインダー榭脂は添加量が多いと正孔移動度 を低下させるので、少ない方が望ましぐ通常、 50重量%以下が好ましい。
[0048] 真空蒸着法で形成する場合は、正孔輸送材料を真空容器内に設置されたルツボ に入れ、真空容器内を適当な真空ポンプで 10— 4Pa程度にまで排気した後、ルツボを 加熱して、正孔輸送材料を蒸発させ、ルツボと向き合って置かれた陽極が形成され た基板上に正孔輸送層 4を形成させる。正孔輸送層の膜厚は、通常、 5〜300nm、好 ましくは 10〜100nmである。この様に薄い膜を一様に形成するためには、一般に真空 蒸着法がよく用いられる。
[0049] 正孔輸送層 4の上には発光層 5が設けられる。発光層は、一般式 (I)で表される A1 錯体錯体と、一般式 (Π)で表される Ir錯体を含有し、電界を与えられた電極間におい て、陽極カゝら注入されて正孔輸送層を移動する正孔と、陰極カゝら注入されて電子輸 送層 6を移動する電子との再結合により励起されて、強い発光を示す。なお発光層 5 は、本発明の性能を損なわない範囲で、他のホスト材料 (一般式 (I)の錯体と同様の 働きを行う)や蛍光色素などの他成分を含んで 、てもよ 、。
[0050] 一般式 (II)で表される Ir錯体が発光層中に含有される量は、 0.1〜30重量%の範囲 にあることが好ましい。 0.1重量%以下では素子の発光効率向上に寄与できず、 30重 量%を越えると Ir錯体同士が 2量体を形成する等の濃度消光が起き、発光効率の低 下に至る。従来の蛍光(1重項)を用いた素子において、発光層に含有される蛍光性 色素(ドーパント)の量より、若干多い方が好ましい傾向がある。 Ir錯体が発光層中に 膜厚方向に対して部分的に含まれたり、不均一に分布してもよい。発光層 5の膜厚は 、通常 10〜200nm、好ましくは 20〜100nmである。正孔輸送層と同様の方法にて薄膜 形成される。
[0051] 素子の発光効率を更に向上させることを目的として、発光層 5と陰極 7の間に電子輸 送層 6が設けられる。電子輸送層は、電界を与えられた電極間において陰極から注 入された電子を効率よく発光層の方向に輸送することができる化合物より形成される 。電子輸送層 6に用いられる電子輸送性化合物としては、陰極 7からの電子注入効率 が高ぐかつ、高い電子移動度を有し注入された電子を効率よく輸送することができ る化合物であることが必要である。
[0052] このような条件を満たす電子輸送材料としては、 Alq3などの金属錯体、 10-ヒドロキ シベンゾ [h]キノリンの金属錯体、ォキサジァゾール誘導体、ジスチリルビフエ-ル誘 導体、シロール誘導体、 3-又は 5-ヒドロキシフラボン金属錯体、ベンズォキサゾール 金属錯体、ベンゾチアゾール金属錯体、トリスべンズイミダゾリルベンゼン、キノキサリ ン化合物、フエナント口リン誘導体、 2-t-ブチル -9,10-Ν,Ν'-ジシァノアントラキノンジ ィミン、 η型水素化非晶質炭化シリコン、 η型硫化亜鉛、 η型セレンィ匕亜鉛などが挙げ られる。電子輸送層 6の膜厚は、通常、 5〜200nm、好ましくは 10〜100 nmである。電 子輸送層は、正孔輸送層と同様にして塗布法あるいは真空蒸着法により発光層上に 積層することにより形成される。通常は、真空蒸着法が用いられる。
[0053] 正孔注入の効率を更に向上させ、かつ、有機層全体の陽極への付着力を改善させ る目的で、正孔輸送層 4と陽極 2との間に正孔注入層 3を挿入することも行われている 。正孔注入層 3を挿入することで、初期の素子の駆動電圧が下がると同時に、素子を 定電流で連続駆動した時の電圧上昇も抑制される効果がある。正孔注入層に用いら れる材料に要求される条件としては、陽極との密着性がよく均一な薄膜が形成でき、 熱的に安定、すなわち、融点及びガラス転移温度が高ぐ融点としては 300°C以上、 T gとしては 100°C以上が要求される。更に、イオン化ポテンシャルが低く陽極からの正 孔注入が容易なこと、正孔移動度が大き 、ことが挙げられる。
[0054] この目的のために、これまでに銅フタロシアニン等のフタロシアニン化合物、ポリア 二リン、ポリチォフェン等の有機化合物や、スパッタカーボン膜や、バナジウム酸化物 、ルテニウム酸ィ匕物、モリブデン酸ィ匕物等の金属酸ィ匕物が報告されている。正孔注 入層の場合も、正孔輸送層と同様にして薄膜形成可能であるが、無機物の場合には 、更に、スパッタ法ゃ電子ビーム蒸着法、プラズマ CVD法が用いられる。以上の様に して形成される陽極バッファ層 3の膜厚は、通常、 3〜100nm、好ましくは 5〜50nmであ る。
[0055] 電子輸送層 6は、発光層 5の上に積層される力 この間には正孔阻止層は存在させ ないことがよい。
[0056] 陰極 7は、発光層 5に電子を注入する役割を果たす。陰極として用いられる材料は、 陽極 2に使用される材料を用いることが可能であるが、効率よく電子注入を行うには、 仕事関数の低い金属が好ましぐスズ、マグネシウム、インジウム、カルシウム、アルミ ユウム、銀等の適当な金属又はそれらの合金が用いられる。具体例としては、マグネ シゥム一銀合金、マグネシウム一インジウム合金、アルミニウム一リチウム合金等の低 仕事関数合金電極が挙げられる。陰極の膜厚は通常、陽極と同様である。低仕事関 数金属からなる陰極を保護する目的で、この上に更に、仕事関数が高く大気に対し て安定な金属層を積層することは素子の安定性を増す。この目的のために、アルミ- ゥム、銀、銅、ニッケル、クロム、金、白金等の金属が使われる。
[0057] 更に、陰極 7と電子輸送層 6の間に LiF、 MgF、 Li O等の極薄絶縁膜 (0.1〜5nm)を
2 2
、電子注入層として挿入することも素子の効率を向上させる有効な方法である。
[0058] なお、図 1とは逆の構造、すなわち、基板 1上に陰極 7、電子輸送層 6、発光層 5、正 孔輸送層 4、陽極 2の順に積層することも可能であり、既述したように少なくとも一方が 透明性の高い 2枚の基板の間に本発明の有機 EL素子を設けることも可能である。こ の場合も、必要により層を追加したり、省略したりすることが可能である。
[0059] 本発明の有機 EL素子は、単一の素子、アレイ状に配置された構造からなる素子、 陽極と陰極力 ¾—Yマトリックス状に配置された構造のいずれにおいても適用すること ができる。本発明の有機 EL素子によれば、発光層に特定の骨格を有する化合物と、 燐光性の金属錯体を含有させることにより、従来の一重項状態からの発光を用いた 素子よりも発光効率が高くかつ駆動安定性においても大きく改善された素子が得ら れ、フルカラーあるいはマルチカラーのパネルへの応用にお!/、て優れた性能を発揮 できる。
実施例
[0060] 次に、本発明を、合成例及び実施例によって更に詳しく説明するが、本発明はその 要旨を超えない限り、以下の実施例の記載に限定されるものではない。
[0061] 実施例 1
正孔注入層に銅フタロシアニン (CuPC)を用い、正孔輸送層に a -NPD及び電子輸 送層に Alq3を用いた。膜厚 l lOnmの ΙΤΟカゝらなる陽極が形成されたガラス基板上に、 各薄膜を真空蒸着法にて、真空度 5.0 X 10— 4 Paで積層させた。まず、 ITO上に正孔注 入層として CuPCを 3.0 AZ秒で 25應の膜厚で成膜した。次いで、正孔注入層上に、 正孔輸送層として a -NPDを蒸着速度 3.0 A/秒にて 55nmの厚さに形成した。
次に、正孔輸送層上に、発光層として BmqAl (ィ匕合物 1)と Irbt (ィ匕合物 31)とを異な
3
る蒸着源から共蒸着し、 47.5應の厚さに形成した。この時、 Irbtの濃度は 7.0%であ
3
つた o
次に、電子輸送層として Alq3を蒸着速度 3.0 A/秒にて 30nmの厚さに形成した。更 に、電子輸送層上に、電子注入層とし酸化リチウム (Li 0)
2 を蒸着速度 0.1 AZ秒にて
1應の厚さに形成した。最後に、電子注入層上に、電極としてアルミニウム (A1)を蒸 着速度 10 AZ秒にて 100應の厚さに形成し、有機 EL素子を作成した。
[0062] 実施例 2
発光層として BAlq (化合物 11)と Irbt (化合物 31)とを異なる蒸着源から共蒸着し、
3
47.5應の厚さに形成した他は、実施例 1と同様にして有機 EL素子を作成した。なお、 Irbtの濃度は 7.0%であった。
3
[0063] 比較例 1
発光層のゲスト材料として bt Ir(acac)を用いた以外は実施例 1と同様にして有機 EL
2
素子を作成した。なお、 bt Ir(acac)は Irbtの 1つの btを acac (ァセチルァセトナート)に
2 3
置き換えた構造を有する。
[0064] 比較例 2
発光層のゲスト材料として bt Ir(acac)を用いた以外は実施例 2と同様にして有機 EL 素子を作成した。
[0065] 比較例 3
発光層のホスト材料として BCPを用いた以外は実施例 1と同様にして有機 EL素子 を作成した。
[0066] 比較例 4
発光層のホスト材料として BCPを、ゲスト材料として bt Ir(acac)を用いた以外は実施 例 1と同様にして有機 EL素子を作成した。
[0067] 実施例及び比較例で得られた有機 EL素子各々の発光ピーク波長、最高発光効率
、輝度半減寿命 (初期輝度 500cd/m2)を表 1に示す。
[0068] [表 1]
Figure imgf000022_0001
産業上の利用の可能性
本発明によれば、良好な発光特性を維持したまま長駆動寿命な有機 EL素子を得 することができる。従って、本発明の有機 EL素子はフラットパネルディスプレイ(例え ば、 OAコンピュータ用や壁掛けテレビ)、車載表示素子、携帯電話表示や面発光体 としての特徴を生カゝした光源 (例えば、複写機の光源、液晶ディスプレイや計器類の バックライト光源)、表示板、標識灯への応用が考えられ、その技術的価値は大きい ものである。

Claims

請求の範囲
基板上に、陽極、正孔輸送層、発光層及び電子輸送層を含む有機層並びに陰極 が積層されてなり、発光層と陽極の間に正孔輸送層を有し、発光層と陰極の間に電 子輸送層を有する有機電界発光素子であって、発光層中に下記一般式 (I)で表わさ れる有機金属錯体をホスト材料として含有し、かつ一般式 (Π)で表される有機金属錯 体をゲスト材料として含有することを特徴とする有機電界発光素子。
Figure imgf000023_0001
式中、 R〜Rは各々独立に、水素原子、アルキル基、ァラルキル基、ァルケ-ル基
1 6
、シァノ基、アルコキシ基、置換基を有していてもよい芳香族炭化水素基又は置換基 を有していてもよい芳香族複素環基を示す。 Lは下記一般式(1)、 (2) (3)又は (4) で表される 1価の基を示す;
CCHH
2
Figure imgf000024_0001
Ar〜Arは各々独立に、置換基を有していてもよい芳香族炭化水素基又は置換基
1 5
を有していてもよい芳香族複素環基を示し、 Zはシリコン又はゲルマニウムを示し、 R
1
〜Rは上記と同じ意味を有する;
Figure imgf000025_0001
式中、 R〜R は各々独立に、水素原子、アルキル基、ァラルキル基、ァルケ-ル基
7 14
、シァノ基、アルコキシ基、置換基を有していてもよい芳香族炭化水素基又は置換基 を有して!/ヽてもよ!/ヽ芳香族複素環基を示す。
[2] 陽極及び正孔輸送層間に正孔注入層が配されて ヽる請求項 1に記載の有機電界 発光素子。
[3] 陰極及び電子輸送層間に電子注入層が配されて ヽる請求項 1に記載の有機電界 発光素子。
[4] 陰極及び電子輸送層間に電子注入層が配されている請求項 2に記載の有機電界
PCT/JP2006/320177 2005-10-31 2006-10-10 有機電界発光素子 WO2007052444A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06811490A EP1953844B1 (en) 2005-10-31 2006-10-10 Organic electroluminescent device
US12/083,976 US8119257B2 (en) 2005-10-31 2006-10-10 Organic electroluminescent device
JP2007542298A JP5031575B2 (ja) 2005-10-31 2006-10-10 有機電界発光素子
DE602006020911T DE602006020911D1 (de) 2005-10-31 2006-10-10 Organisches elektrolumineszenzbauelement

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005316223 2005-10-31
JP2005-316223 2005-10-31
JP2005-316224 2005-10-31
JP2005316224 2005-10-31

Publications (1)

Publication Number Publication Date
WO2007052444A1 true WO2007052444A1 (ja) 2007-05-10

Family

ID=38005597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320177 WO2007052444A1 (ja) 2005-10-31 2006-10-10 有機電界発光素子

Country Status (7)

Country Link
US (1) US8119257B2 (ja)
EP (1) EP1953844B1 (ja)
JP (1) JP5031575B2 (ja)
KR (1) KR20080069216A (ja)
DE (1) DE602006020911D1 (ja)
TW (1) TWI400988B (ja)
WO (1) WO2007052444A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289806A (ja) * 2008-05-27 2009-12-10 Kyocera Corp 有機el素子

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5110851B2 (ja) * 2006-11-01 2012-12-26 キヤノン株式会社 有機発光素子
CN102770981B (zh) * 2010-02-26 2015-05-13 新日铁住金化学株式会社 有机场致发光元件
DE112012004706T5 (de) 2011-11-10 2014-08-21 Midtronics, Inc. Batteriepack-Testvorrichtung
KR102420475B1 (ko) * 2015-09-18 2022-07-13 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN112002890B (zh) * 2020-09-15 2021-11-12 安徽工业大学 一种锂硫电池正极材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313178A (ja) 2000-04-28 2001-11-09 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
JP2002299061A (ja) 2001-04-02 2002-10-11 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP2002352957A (ja) 2001-05-23 2002-12-06 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP2003007467A (ja) * 2001-06-19 2003-01-10 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP2003515897A (ja) 1999-12-01 2003-05-07 ザ、トラスティーズ オブ プリンストン ユニバーシティ 有機led用燐光性ドーパントとしての式l2mxの錯体
JP2005276799A (ja) * 2004-02-27 2005-10-06 Fuji Photo Film Co Ltd 発光素子
US20060063030A1 (en) * 2004-09-20 2006-03-23 Deaton Joseph C Organic electroluminescent devices and composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141671A (en) * 1991-08-01 1992-08-25 Eastman Kodak Company Mixed ligand 8-quinolinolato aluminum chelate luminophors
JP3092584B2 (ja) * 1998-03-23 2000-09-25 日本電気株式会社 有機エレクトロルミネッセンス素子
JP4011325B2 (ja) * 2001-10-31 2007-11-21 パイオニア株式会社 有機エレクトロルミネッセンス素子
TW200300154A (en) * 2001-11-09 2003-05-16 Jsr Corp Light emitting polymer composition, and organic electroluminescene device and production process thereof
JP4734849B2 (ja) * 2003-05-14 2011-07-27 三菱化学株式会社 アルミニウム混合配位子錯体化合物、電荷輸送材料、有機電界発光素子材料および有機電界発光素子
JP2005011733A (ja) * 2003-06-20 2005-01-13 Toray Ind Inc 有機エレクトロルミネッセンス用材料、および有機エレクトロルミネッセンス用材料の製造方法、ならびに有機エレクトロルミネッセンス素子
US20050123794A1 (en) * 2003-12-05 2005-06-09 Deaton Joseph C. Organic electroluminescent devices
CN1259312C (zh) * 2004-02-26 2006-06-14 华东理工大学 电致磷光取代苯并杂环类化合物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515897A (ja) 1999-12-01 2003-05-07 ザ、トラスティーズ オブ プリンストン ユニバーシティ 有機led用燐光性ドーパントとしての式l2mxの錯体
JP2001313178A (ja) 2000-04-28 2001-11-09 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
JP2002299061A (ja) 2001-04-02 2002-10-11 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP2002352957A (ja) 2001-05-23 2002-12-06 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP2003007467A (ja) * 2001-06-19 2003-01-10 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP2005276799A (ja) * 2004-02-27 2005-10-06 Fuji Photo Film Co Ltd 発光素子
US20060063030A1 (en) * 2004-09-20 2006-03-23 Deaton Joseph C Organic electroluminescent devices and composition

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APPL. PHYS. LETT., vol. 77, pages 904
J. AMER. CHEM. SOC., vol. 92, 1970, pages 91
PROCEEDING OF SPIE, vol. 4105, pages 119
See also references of EP1953844A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289806A (ja) * 2008-05-27 2009-12-10 Kyocera Corp 有機el素子

Also Published As

Publication number Publication date
EP1953844A4 (en) 2009-11-25
JP5031575B2 (ja) 2012-09-19
US8119257B2 (en) 2012-02-21
JPWO2007052444A1 (ja) 2009-04-30
DE602006020911D1 (de) 2011-05-05
EP1953844B1 (en) 2011-03-23
KR20080069216A (ko) 2008-07-25
EP1953844A1 (en) 2008-08-06
TWI400988B (zh) 2013-07-01
TW200733803A (en) 2007-09-01
US20090128011A1 (en) 2009-05-21

Similar Documents

Publication Publication Date Title
JP4545741B2 (ja) 有機電界発光素子
JP4593470B2 (ja) 有機電界発光素子
JP6025959B2 (ja) 有機発光ダイオードのための2−アザトリフェニレン物質
JP6251299B2 (ja) リン光物質
JP4673744B2 (ja) 有機電界発光素子
JP4313308B2 (ja) 有機金属錯体、有機el素子及び有機elディスプレイ
JP4325197B2 (ja) 有機電界発光素子
JP2005011610A (ja) 有機電界発光素子
JP5009922B2 (ja) 有機電界発光素子材料及び有機電界発光素子
JP5243684B2 (ja) 有機金属錯体、発光性固体、有機el素子及び有機elディスプレイ
JP4082297B2 (ja) 有機化合物、電荷輸送材料、有機電界発光素子材料および有機電界発光素子
JP5031575B2 (ja) 有機電界発光素子
JPWO2005105746A1 (ja) 有機金属錯体、発光性固体、有機el素子及び有機elディスプレイ
JP4864708B2 (ja) 有機電界発光素子
JP2005011804A (ja) 有機電界発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680040757.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007542298

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12083976

Country of ref document: US

Ref document number: 2006811490

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087012957

Country of ref document: KR