WO2007051862A1 - Combination of organic compounds - Google Patents

Combination of organic compounds Download PDF

Info

Publication number
WO2007051862A1
WO2007051862A1 PCT/EP2006/068154 EP2006068154W WO2007051862A1 WO 2007051862 A1 WO2007051862 A1 WO 2007051862A1 EP 2006068154 W EP2006068154 W EP 2006068154W WO 2007051862 A1 WO2007051862 A1 WO 2007051862A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
cancer
pharmaceutical combination
imatinib
Prior art date
Application number
PCT/EP2006/068154
Other languages
French (fr)
Inventor
Paul W. Manley
Sandra Jacob
Original Assignee
Novartis Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novartis Ag filed Critical Novartis Ag
Publication of WO2007051862A1 publication Critical patent/WO2007051862A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41781,3-Diazoles not condensed 1,3-diazoles and containing further heterocyclic rings, e.g. pilocarpine, nitrofurantoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/427Thiazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a pharmaceutical combination comprising:
  • proliferative diseases can be successfully treated with pyrimidylaminobenzamide derivatives or pharmaceutically acceptable salts thereof, or Imatinib, and compound (IV).
  • the present invention relates to the use of pyrimidylaminobenzamide compounds of formula (I):
  • R 1 represents hydrogen, lower alkyl, lower alkoxy-lower alkyl, acyloxy-lower alkyl, carboxy-lower alkyl, lower alkoxycarbonyl-lower alkyl, or phenyl-lower alkyl;
  • R 2 represents hydrogen, lower alkyl, optionally substituted by one or more identical or different radicals R 3 , cycloalkyl, benzcycloalkyl, heterocyclyl, an aryl group, or a mono- or bicyclic heteroaryl group comprising zero, one, two or three ring nitrogen atoms and zero or one oxygen atom and zero or one sulfur atom, which groups in each case are unsubstituted or mono- or polysubstituted; and
  • R 3 represents hydroxy, lower alkoxy, acyloxy, carboxy, lower alkoxycarbonyl, carbamoyl, ⁇ /-mono- or ⁇ /, ⁇ /-disubstituted carbamoyl, amino, mono- or disubstituted amino, cycloalkyl, heterocyclyl, an aryl group, or a mono- or bicyclic heteroaryl group comprising zero, one, two or three ring nitrogen atoms and zero or one oxygen atom and zero or one sulfur atom, which groups in each case are unsubstituted or mono- or polysubstituted, or
  • R 1 and R 2 together represent alkylene with four, five or six carbon atoms optionally mono- or disubstituted by lower alkyl, cycloalkyl, heterocyclyl, phenyl, hydroxy, lower alkoxy, amino, mono- or disubstituted amino, oxo, pyridyl, pyrazinyl or pyrimidinyl; benzalkylene with four or five carbon atoms; oxaalkylene with one oxygen and three or four carbon atoms; or azaalkylene with one nitrogen and three or four carbon atoms wherein nitrogen is unsubstituted or substituted by lower alkyl, phenyl-lower alkyl, lower alkoxycarbonyl-lower alkyl, carboxy-lower alkyl, carbamoyl-lower alkyl, ⁇ /-mono- or ⁇ /, ⁇ /-disubstituted carbamoyl-lower alkyl, cycloal
  • the prefix “lower” denotes a radical having up to and including a maximum of 7, especially up to and including a maximum of 4 carbon atoms, the radicals in question being either linear or branched with single or multiple branching.
  • Any asymmetric carbon atoms may be present in the (R)-, (S)- or (R,S)-configuration, preferably in the (R)- or (S)-configuration.
  • the compounds may thus be present as mixtures of isomers or as pure isomers, preferably as enantiomer-pure diastereomers.
  • the invention relates also to possible tautomers of the compounds of formula (I).
  • Lower alkyl is preferably alkyl with from and including 1 up to and including 7, preferably from and including 1 to and including 4, and is linear or branched; preferably, lower alkyl is butyl, such as n-butyl, sec-butyl, isobutyl, ferf-butyl, propyl, such as n-propyl or isopropyl, ethyl or methyl.
  • Preferably lower alkyl is methyl, propyl or ferf-butyl.
  • Lower acyl is preferably formyl or lower alkylcarbonyl, in particular, acetyl.
  • aryl group is an aromatic radical which is bound to the molecule via a bond located at an aromatic ring carbon atom of the radical.
  • aryl is an aromatic radical having 6-14 carbon atoms, especially phenyl, naphthyl, tetrahydronaphthyl, fluorenyl or phenanthrenyl, and is unsubstituted or substituted by one or more, preferably up to three, especially one or two substituents, especially selected from amino, mono- or disubstituted amino, halogen, lower alkyl, substituted lower alkyl, lower alkenyl, lower alkynyl, phenyl, hydroxy, etherified or esterified hydroxy, nitro, cyano, carboxy, esterified carboxy, alkanoyl, benzoyl, carbamoyl, ⁇ /-mono- or ⁇ /, ⁇ /-disubstituted carbamoyl, amidino, guanidino
  • halogen-lower alkylsulfonyl such as especially trifluoromethanesulfonyl, dihydroxybora (-B(OH) 2 ), heterocyclyl, a mono- or bicyclic heteroaryl group and lower alkylene dioxy bound at adjacent C-atoms of the ring, such as methylene dioxy.
  • Aryl is more preferably phenyl, naphthyl or tetrahydronaphthyl, which in each case is either unsubstituted or independently substituted by one or two substituents selected from the group comprising halogen, especially fluorine, chlorine, or bromine; hydroxy; hydroxy etherified by lower alkyl, e.g., by methyl, by halogen-lower alkyl, e.g., trifluoromethyl, or by phenyl; lower alkylene dioxy bound to two adjacent C-atoms, e.g., methylenedioxy, lower alkyl, e.g., methyl or propyl; halogen-lower alkyl, e.g., trifluoromethyl; hydroxy-lower alkyl, e.g., hydroxymethyl or 2-hydroxy-2-propyl; lower alkoxy-lower alkyl; e.g., methoxymethyl or 2-methoxyethyl; lower
  • a cycloalkyl group is preferably cyclopropyl, cyclopentyl, cyclohexyl or cycloheptyl, and may be unsubstituted or substituted by one or more, especially one or two, substitutents selected from the group defined above as substitutents for aryl, most preferably by lower alkyl, such as methyl, lower alkoxy, such as methoxy or ethoxy, or hydroxy, and further by oxo or fused to a benzo ring, such as in benzcyclopentyl or benzcyclohexyl.
  • Substituted alkyl is alkyl as last defined, especially lower alkyl, preferably methyl; where one or more, especially up to three, substituents may be present, primarily from the group selected from halogen, especially fluorine, amino, /V-lower alkylamino, ⁇ /, ⁇ /-di-lower alkylamino, ⁇ /-lower alkanoylamino, hydroxy, cyano, carboxy, lower alkoxycarbonyl, and phenyl-lower alkoxycarbonyl. Trifluoromethyl is especially preferred.
  • Mono- or disubstituted amino is especially amino substituted by one or two radicals selected independently of one another from lower alkyl, such as methyl; hydroxy-lower alkyl, such as 2-hydroxyethyl; lower alkoxy lower alkyl, such as methoxy ethyl; phenyl-lower alkyl, such as benzyl or 2-phenylethyl; lower alkanoyl, such as acetyl; benzoyl; substituted benzoyl, wherein the phenyl radical is especially substituted by one or more, preferably one or two, substituents selected from nitro, amino, halogen, ⁇ /-lower alkylamino, ⁇ /, ⁇ /-di-lower alkylamino, hydroxy, cyano, carboxy, lower alkoxycarbonyl, lower alkanoyl, and carbamoyl; and phenyl-lower alkoxycarbonyl, wherein the phenyl radical is unsubsti
  • Disubstituted amino is also lower alkylene-amino, e.g., pyrrolidino, 2-oxopyrrolidino or piperidino; lower oxaalkylene-amino, e.g., morpholino, or lower azaalkylene-amino, e.g., piperazino or ⁇ /-substituted piperazino, such as ⁇ /-methylpiperazino or ⁇ /-methoxycarbonylpiperazino.
  • lower alkylene-amino e.g., pyrrolidino, 2-oxopyrrolidino or piperidino
  • lower oxaalkylene-amino e.g., morpholino
  • lower azaalkylene-amino e.g., piperazino or ⁇ /-substituted piperazino, such as ⁇ /-methylpiperazino or ⁇ /-methoxycarbonyl
  • Halogen is especially fluorine, chlorine, bromine, or iodine, especially fluorine, chlorine, or bromine.
  • Etherified hydroxy is especially C 8 -C 2 oalkyloxy, such as n-decyloxy, lower alkoxy (preferred), such as methoxy, ethoxy, isopropyloxy, or tert-butyloxy, phenyl-lower alkoxy, such as benzyloxy, phenyloxy, halogen-lower alkoxy, such as trifluoromethoxy, 2,2,2-trifluoroethoxy or 1 ,1 ,2,2-tetrafluoroethoxy, or lower alkoxy which is substituted by mono- or bicyclic heteroaryl comprising one or two nitrogen atoms, preferably lower alkoxy which is substituted by imidazolyl, such as 1 /-/-imidazol-1-yl, pyrrolyl, benzimidazolyl, such as 1-benzimidazolyl, pyridyl, especially 2-, 3- or 4-pyridyl, pyrimidinyl, especially
  • Esterified hydroxy is especially lower alkanoyloxy, benzoyloxy, lower alkoxycarbonyloxy, such as tert-butoxycarbonyloxy, or phenyl-lower alkoxycarbonyloxy, such as benzyloxycarbonyloxy.
  • Esterified carboxy is especially lower alkoxycarbonyl, such as ferf-butoxycarbonyl, iso- propoxycarbonyl, methoxycarbonyl or ethoxycarbonyl, phenyl-lower alkoxycarbonyl, or phenyloxycarbonyl.
  • Alkanoyl is primarily alkylcarbonyl, especially lower alkanoyl, e.g., acetyl.
  • ⁇ /-Mono- or ⁇ /, ⁇ /-disubstituted carbamoyl is especially substituted by one or two substituents independently selected from lower alkyl, phenyl-lower alkyl and hydroxy-lower alkyl, or lower alkylene, oxa-lower alkylene or aza-lower alkylene optionally substituted at the terminal nitrogen atom.
  • a mono- or bicyclic heteroaryl group comprising zero, one, two or three ring nitrogen atoms and zero or one oxygen atom and zero or one sulfur atom, which groups in each case are unsubstituted or mono- or polysubstituted, refers to a heterocyclic moiety that is unsaturated in the ring binding the heteroaryl radical to the rest of the molecule in formula (I) and is preferably a ring, where in the binding ring, but optionally also in any annealed ring, at least one carbon atom is replaced by a heteroatom selected from the group consisting of nitrogen, oxygen and sulfur; where the binding ring preferably has 5 to 12, more preferably 5 or 6 ring atoms; and which may be unsubstituted or substituted by one or more, especially one or two, substituents selected from the group defined above as substituents for aryl, most preferably by lower alkyl, such as methyl, lower alkoxy, such as methoxy or ethoxy, or hydroxy.
  • the mono- or bicyclic heteroaryl group is selected from 2/-/-pyrrolyl, pyrrolyl, imidazolyl, benzimidazolyl, pyrazolyl, indazolyl, purinyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 4/-/-quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalyl, quinazolinyl, quinnolinyl, pteridinyl, indolizinyl, 3A7-indolyl, indolyl, isoindolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, tetrazolyl, furazanyl, benzo[d]pyrazolyl, thienyl and fur
  • the mono- or bicyclic heteroaryl group is selected from the group consisting of pyrrolyl, imidazolyl, such as 1 /-/-imidazol-1-yl, benzimidazolyl, such as 1-benzimidazolyl, indazolyl, especially 5-indazolyl, pyridyl, especially 2-, 3- or 4-pyridyl, pyrimidinyl, especially 2-pyrimidinyl, pyrazinyl, isoquinolinyl, especially 3-isoquinolinyl, quinolinyl, especially 4- or 8-quinolinyl, indolyl, especially 3-indolyl, thiazolyl, benzo[d]pyrazolyl, thienyl, and furanyl.
  • imidazolyl such as 1 /-/-imidazol-1-yl
  • benzimidazolyl such as 1-benzimidazolyl
  • indazolyl especially 5-indazolyl,
  • the pyridyl radical is substituted by hydroxy in ortho position to the nitrogen atom and hence exists at least partially in the form of the corresponding tautomer which is pyridin-(1 /-/)2-one.
  • the pyrimidinyl radical is substituted by hydroxy both in position 2 and 4 and hence exists in several tautomeric forms, e.g., as pyrimidine- (1 H,3H)2,4-dione.
  • Heterocyclyl is especially a 5-, 6- or 7-membered heterocyclic system with one or two heteroatoms selected from the group comprising nitrogen, oxygen, and sulfur, which may be unsaturated or wholly or partly saturated, and is unsubstituted or substituted especially by lower alkyl, such as methyl, phenyl-lower alkyl, such as benzyl, oxo, or heteroaryl, such as 2-piperazinyl; heterocyclyl is especially 2- or 3-pyrrolidinyl, 2-oxo-5-pyrrolidinyl, piperidinyl, ⁇ /-benzyl-4-piperidinyl, ⁇ /-lower alkyl-4-piperidinyl, ⁇ /-lower alkyl-piperazinyl, morpholinyl, e.g., 2- or 3-morpholinyl, 2-oxo-1 /-/-azepin-3-yl, 2-tetrahydrofuranyl, or 2-methyl-1 ,3
  • Salts are especially the pharmaceutically acceptable salts of compounds of formula (I).
  • Such salts are formed, for example, as acid addition salts, preferably with organic or inorganic acids, from compounds of formula (I) with a basic nitrogen atom, especially the pharmaceutically acceptable salts.
  • Suitable inorganic acids are, for example, halogen acids, such as hydrochloric acid, sulfuric acid, or phosphoric acid.
  • Suitable organic acids are, for example, carboxylic, phosphonic, sulfonic or sulfamic acids, for example, acetic acid, propionic acid, octanoic acid, decanoic acid, dodecanoic acid, glycolic acid, lactic acid, fumaric acid, succinic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, malic acid, tartaric acid, citric acid, amino acids, such as glutamic acid or aspartic acid, maleic acid, hydroxymaleic acid, methylmaleic acid, cyclohexanecarboxylic acid, adamantanecarboxylic acid, benzoic acid, salicylic acid, 4-aminosalicylic acid, phthalic acid, phenylacetic acid, mandelic acid, cinnamic acid, methane- or ethane-sulfonic acid, 2-hydroxyethanesulfonic acid, ethane-1 ,2-
  • salts may also be formed with bases, e.g., metal or ammonium salts, such as alkali metal or alkaline earth metal salts, for example, sodium, potassium, magnesium or calcium salts, or ammonium salts with ammonia or suitable organic amines, such as tertiary monoamines, for example, triethylamine or tri(2-hydroxyethyl)amine, or heterocyclic bases, for example, ⁇ /-ethyl- piperidine or /V,/V-dimethylpiperazine.
  • bases e.g., metal or ammonium salts, such as alkali metal or alkaline earth metal salts, for example, sodium, potassium, magnesium or calcium salts, or ammonium salts with ammonia or suitable organic amines, such as tertiary monoamines, for example, triethylamine or tri(2-hydroxyethyl)amine, or heterocyclic bases, for example, ⁇ /-ethyl- piperidine or /
  • a compound of formula (I) may also form internal salts.
  • salts for isolation or purification purposes it is also possible to use pharmaceutically unacceptable salts, for example picrates or perchlorates.
  • pharmaceutically acceptable salts or free compounds are employed (where applicable in the form of pharmaceutical preparations), and these are therefore preferred.
  • any reference to the free compounds hereinbefore and hereinafter is to be understood as referring also to the corresponding salts, as appropriate and expedient.
  • a preferred compound is 4-methyl-3-[[4-(3-pyridinyl)-2- pyrimidinyl]amino]- ⁇ /-[5-(4-methyl-1 /-/-imidazol-1-yl)-3-(trifluoromethyl)phenyl]benzamide, also known as nilotinib, and pharmaceutically acceptable salts thereof, of the formula (II):
  • Combinations of the present invention include the compound 4-(4-methylpiperazin-1- ylmethyl)- ⁇ /-[4-methyl-3-(4-pyridin-3-yl)pyrimidin-2-ylamino)phenyl]-benzamide (Imatinib which is sold under the name Gleevec ® ) is of the formula (III):
  • Combinations of the present invention include the compound of formula (IV):
  • Combinations of a compound of formula (II) and a compound of formula (IV) impedes the evolution of F317 mutants, whereas the compound of formula (IV) alone would not. Similarly a combination of compound of formula (II) and a compound of formula (IV) would have a greater effect on E255 mutants than a compound of formula (II) would have alone.
  • proliferative disease includes but is not restricted to tumors, psoriasis, restenosis, sclerodermitis and fibrosis.
  • haematological malignancy refers in particular to leukemias, especially those expressing Bcr-Abl, c-Kit or Flt-3, and includes, but is not limited to, chronic myelogenous leukemia (CML) and acute lymphocyte leukemia (ALL), especially the Philadelphia chromosome positive acute lymphocyte leukemia (Ph+ALL), as well as STI57l-resistant leukemias and cells expressing imatinib resistant Bcr-Abl mutations, such as Bcr-Abl T3151 .
  • CML chronic myelogenous leukemia
  • ALL acute lymphocyte leukemia
  • Ph+ALL Philadelphia chromosome positive acute lymphocyte leukemia
  • STI57l-resistant leukemias and cells expressing imatinib resistant Bcr-Abl mutations such as Bcr-Abl T3151 .
  • a solid tumor disease especially means ovarian cancer, breast cancer, cancer of the colon and generally the gastrointestinal tract, such as gastrointestinal stromal tumors (GISTs), cervical cancer, lung cancer, e.g. small-cell lung cancer and non-small-cell lung cancer, head and neck cancer, bladder cancer, cancer of the prostate or Kaposi's sarcoma.
  • GISTs gastrointestinal stromal tumors
  • lung cancer e.g. small-cell lung cancer and non-small-cell lung cancer, head and neck cancer, bladder cancer, cancer of the prostate or Kaposi's sarcoma.
  • Protein kinase dependent diseases are especially proliferative diseases, preferably benign or especially malignant tumors (for example, carcinoma of the kidneys, brain, liver, adrenal glands, bladder, breast, stomach (especially gastric tumors), ovaries, colon, rectum, prostate, pancreas, lungs (especially SCLC), vagina or thyroid, sarcoma, multiple myeloma, glioblastomas and numerous tumors of the neck and head, as well as leukemias); especially colon carcinoma or colorectal adenoma, or a tumor of the neck and head, an epidermal hyperproliferation, especially psoriasis, prostate hyperplasia, a neoplasia, especially of epithelial character, preferably mammary carcinoma, or a leukemia.
  • proliferative diseases preferably benign or especially malignant tumors (for example, carcinoma of the kidneys, brain, liver, adrenal glands, bladder, breast, stomach (especially gastric tumors), ovaries, colon,
  • They are able to bring about the regression of tumors and to prevent the formation of tumor metastases and the growth of (also micro)metastases.
  • they can be used in epidermal hyperproliferation (e.g., psoriasis), in prostate hyperplasia, and in the treatment of neoplasias, especially of epithelial character, for example, mammary carcinoma.
  • the combinations of the present invention in the treatment of diseases of the immune system insofar as several or, especially, individual tyrosine protein kinases are involved; furthermore, the combinations of the present invention can be used also in the treatment of diseases of the central or peripheral nervous system where signal transmission by at least one tyrosine protein kinase, especially selected from those mentioned specifically, is involved.
  • hematopoietic stem cells produces the Bcr-Abl hybrid gene.
  • the latter encodes the oncogenic Bcr-Abl fusion protein.
  • AbI encodes a tightly regulated protein tyrosine kinase, which plays a fundamental role in regulating cell proliferation, adherence and apoptosis
  • the Bcr-Abl fusion gene encodes as constitutively activated kinase, which transforms HSCs to produce a phenotype exhibiting deregulated clonal proliferation, reduced capacity to adhere to the bone marrow stroma and a reduces apoptotic response to mutagenic stimuli, which enable it to accumulate progressively more malignant transformations.
  • the resulting granulocytes fail to develop into mature lymphocytes and are released into the circulation, leading to a deficiency in the mature cells and increased susceptibility to infection.
  • ATP-competitive inhibitors of Bcr-Abl have been described which prevent the kinase from activating mitogenic and anti- apoptotic pathways (e.g., P-3 kinase and STAT5), leading to the death of the Bcr-Abl phenotype cells and thereby providing an effective therapy against CML.
  • the combinations of the present invention are thus especially appropriate for the therapy of diseases related to its overexpression, especially leukemias, such as leukemias, e.g., CML or ALL.
  • a proliferative disease includes hyperproliferative conditions, such as leukemias, hyperplasias, fibrosis (especially pulmonary, but also other types of fibrosis, such as renal fibrosis), angiogenesis, psoriasis, atherosclerosis and smooth muscle proliferation in the blood vessels, such as stenosis or restenosis following angioplasty.
  • hyperproliferative conditions such as leukemias, hyperplasias, fibrosis (especially pulmonary, but also other types of fibrosis, such as renal fibrosis), angiogenesis, psoriasis, atherosclerosis and smooth muscle proliferation in the blood vessels, such as stenosis or restenosis following angioplasty.
  • the combinations of the present invention could be used to treat arthritis.
  • Combinations of the present invention can also be used to treat or prevent fibrogenic disorders, such as scleroderma (systemic sclerosis); diseases associated with protein aggregation and amyloid formation, such as Huntington's disease; inhibition of the replication of hepatitis C virus and treating hepatitis C virus; treating tumors associated with viral infection, such as human papilloma virus; and inhibiting viruses dependent of heat-shock proteins.
  • fibrogenic disorders such as scleroderma (systemic sclerosis); diseases associated with protein aggregation and amyloid formation, such as Huntington's disease
  • inhibition of the replication of hepatitis C virus and treating hepatitis C virus treating tumors associated with viral infection, such as human papilloma virus; and inhibiting viruses dependent of heat-shock proteins.
  • the combinations of the present invention primarily inhibit the growth of blood vessels and are thus, for example, effective against a number of diseases associated with deregulated angiogenesis, especially diseases caused by ocular neovascularisation, especially retinopathies, such as diabetic retinopathy or age-related macula degeneration, psoriasis, haemangioblastoma, such as haemangioma, mesangial cell proliferative disorders, such as chronic or acute renal diseases, e.g., diabetic nephropathy, malignant nephrosclerosis, thrombotic microangiopathy syndromes or transplant rejection, or especially inflammatory renal disease, such as glomerulonephritis, especially mesangioproliferative glomerulonephritis, haemolytic-uraemic syndrome, diabetic nephropathy, hypertensive nephrosclerosis, atheroma, arterial restenosis, autoimmune diseases, diabetes, endometriosis, chronic asthma, and especially n
  • a pharmaceutical combination comprising: a) a pyrimidylaminobenzamide compound of formula (I); and b) a compound of formula (IV).
  • a pharmaceutical combination comprising: a) imatinib of formula (III); and b) a compound of formula (IV).
  • a method for treating or preventing proliferative disease in a subject in need thereof comprising co-administration to said subject, e.g., concomitantly or in sequence, of a therapeutically effective amount of a pyrimidylaminobenzamide compound of formula (I) or formula (II), e.g., as disclosed above and a compound of formula (IV).
  • a method for treating or preventing proliferative disease in a subject in need thereof comprising co-administration to said subject, e.g., concomitantly or in sequence, of a therapeutically effective amount of imatinib of formula (III), e.g., as disclosed above and a compound of formula (IV).
  • proliferative diseases include, ,e.g., tumors, most especially preferred is leukemias, CML and ALL, especially the Ph+ALL, as well as STI57l-resistant leukemias and cells expressing imatinib resistant Bcr-Abl mutations, such as Bcr-Abl T3151 , acute myeloid leukemias, hypereosinophilic syndrome (HES) or chronic eosinophilic leukemia (CEL), and systemic mastocytosis (SM).
  • tumors most especially preferred is leukemias, CML and ALL, especially the Ph+ALL, as well as STI57l-resistant leukemias and cells expressing imatinib resistant Bcr-Abl mutations, such as Bcr-Abl T3151 , acute myeloid leukemias, hypereosinophilic syndrome (HES) or chronic eosinophilic leukemia (CEL), and systemic mastocytosis (SM).
  • HES hypereo
  • a pharmaceutical combination comprising: a) preferably, a compound of formula (II); and b) a compound of formula (IV).
  • a method for treating or preventing proliferative disease in a subject in need thereof comprising co-administration to said subject, e.g., concomitantly or in sequence, of a therapeutically effective amount of a compound of formula (II), e.g., as disclosed above, and a compound of formula (IV).
  • Suitable clinical studies are, for example, open label, dose escalation studies in patients with proliferative diseases. Such studies prove in particular the synergism of the active ingredients of the combination of the invention. The beneficial effects can be determined directly through the results of these studies which are known as such to a person skilled in the art. Such studies are, in particular, suitable to compare the effects of a monotherapy using the active ingredients and a combination of the invention.
  • the dose of agent (a) e.g., compound (I), preferably compound (II), or compound (III)
  • agent (b) is administered with a fixed dose.
  • the agent (a) is administered in a fixed dose and the dose of agent (b) is escalated.
  • Each patient receives doses of the agent (a) either daily or intermittent.
  • the efficacy of the treatment can be determined in such studies, e.g., after 12, 18 or 24 weeks by evaluation of symptom scores every 6 weeks.
  • a pharmaceutical combination of the invention results not only in a beneficial effect, e.g. a synergistic therapeutic effect, e.g., with regard to alleviating, delaying progression of or inhibiting the symptoms, but also in further surprising beneficial effects, e.g., fewer side effects, an improved quality of life or a decreased morbidity, compared with a monotherapy applying only one of the pharmaceutically active ingredients used in the combination of the invention.
  • a further benefit is that lower doses of the active ingredients of the combination of the invention can be used, for example, that the dosages need not only often be smaller but are also applied less frequently, which may diminish the incidence or severity of side effects. This is in accordance with the desires and requirements of the patients to be treated.
  • co-administration or “combined administration” or the like, as utilized herein, are meant to encompass administration of the selected therapeutic agents to a single patient, and are intended to include treatment regimens in which the agents are not necessarily administered by the same route of administration or at the same time.
  • agent (a) and agent (b) may be administered together, one after the other or separately in one combined unit dosage form or in two separate unit dosage forms.
  • the unit dosage form may also be a fixed combination.
  • Th e pharmaceutical compositions for separate administration of agent (a) and agent (b) or for the administration in a fixed combination, i.e., a single galenical composition comprising at least two combination partners (a) and (b), according to the invention may be prepared in a manner known per se and are those suitable for enteral, such as oral or rectal, and parenteral administration to mammals (warm-blooded animals), including humans, comprising a therapeutically effective amount of at least one pharmacologically active combination partner alone, e.g., as indicated above, or in combination with one or more pharmaceutically acceptable carriers or diluents, especially suitable for enteral or parenteral application.
  • Suitable pharmaceutical compositions contain, for example, from about 0.1 % to about 99.9%, preferably from about 1 % to about 60%, of the active ingredient(s).
  • Pharmaceutical preparations for the combination therapy for enteral or parenteral administration are, for example, those in unit dosage forms, such as sugar-coated tablets, tablets, capsules or suppositories, or ampoules. If not indicated otherwise, these are prepared in a manner known per se, for example, by means of conventional mixing, granulating, sugar-coating, dissolving or lyophilizing processes. It will be appreciated that the unit content of a combination partner contained in an individual dose of each dosage form need not in itself constitute an effective amount since the necessary effective amount can be reached by administration of a plurality of dosage units.
  • a therapeutically effective amount of each of the combination partner of the combination of the invention may be administered simultaneously or sequentially and in any order, and the components may be administered separately or as a fixed combination.
  • the method of preventing or treating proliferative diseases according to the invention may comprise: (i) administration of the first agent (a) in free or pharmaceutically acceptable salt form; and (ii) administration of an agent (b) in free or pharmaceutically acceptable salt form, simultaneously or sequentially in any order, in jointly therapeutically effective amounts, preferably in synergistically effective amounts, e.g., in daily or intermittently dosages corresponding to the amounts described herein.
  • the individual combination partners of the combination of the invention may be administered separately at different times during the course of therapy or concurrently in divided or single combination forms.
  • administering also encompasses the use of a pro-drug of a combination partner that convert in vivo to the combination partner as such.
  • the instant invention is therefore to be understood as embracing all such regimens of simultaneous or alternating treatment and the term "administering" is to be interpreted accordingly.
  • Th e effective dosage of each of the combination partners employed in the combination of the invention may vary depending on the particular compound or pharmaceutical composition employed, the mode of administration, the condition being treated, the severity of the condition being treated.
  • the dosage regimen of the combination of the invention is selected in accordance with a variety of factors including the route of administration and the renal and hepatic function of the patient.
  • a clinician or physician of ordinary skill can readily determine and prescribe the effective amount of the single active ingredients required to alleviate, counter or arrest the progress of the condition.
  • Optimal precision in achieving concentration of the active ingredients within the range that yields efficacy without toxicity requires a regimen based on the kinetics of the active ingredients' availability to target sites.
  • agent (a) is administered orally, preferably at a daily dosage of 1-300 mg/kg body weight or, for most larger primates, a daily dosage of 50-5,000, preferably 500-3,000 mg.
  • a preferred oral daily dosage is 1-75 mg/kg body weight or, for most larger primates, a daily dosage of 10-2,000 mg, administered as a single dose or divided into multiple doses, such as twice daily dosing.
  • Compound (III), imatinib may be administered to a human in a daily dosage range of 0.5-1 ,000 mg.
  • Suitable unit dosage forms for oral administration comprise from ca. 0.1-500 mg active ingredient, together with one or more pharmaceutically acceptable diluents or carriers therefore.
  • Imatinib at daily dosage rates of the order of ca. 0.03-5 mg/kg per day, particularly 0.1-5 mg/kg per day, e.g., 0.1-2.5 mg/kg per day, as a single dose or in divided doses.
  • the effective amount of compound (IV) may be determined by one of ordinary skill in the art, and includes exemplary dosage amounts for an adult human of from about 0.1 -100 mg/kg of body weight of active compound per day, which may be administered in a single dose or in the form of individual divided doses, such as from 1-4 times per day. It will be understood that the specific dose level and frequency of dosage for any particular subject may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the species, age, body weight, general health, sex and diet of the subject, the mode and time of administration, rate of excretion, drug combination, and severity of the particular condition.
  • Agent (a) and agent (b) may be administered by any conventional route, in particular, enterally, e.g., orally, e.g., in the form of tablets, capsules, drink solutions or parenterally, e.g., in the form of injectable solutions or suspensions, together with one or more pharmaceutically acceptable diluents or carriers therefore.
  • a pharmaceutical combination of the invention results not only in a beneficial effect, e.g., a synergistic therapeutic effect, e.g., with regard to inhibiting the unregulated proliferation of, or slowing down the progression of the growth of tumors, but also in further surprising beneficial effects, e.g., less side effects, an improved quality of life or a decreased morbidity, compared to a monotherapy applying only one of the pharmaceutically active ingredients used in the combination of the invention.
  • a further benefit is that lower doses of the active ingredients of the combination of the invention can be used, for example, that the dosages need not only often be smaller but are also applied less frequently, or can be used in order to diminish the incidence of side effects. This is in accordance with the desires and requirements of the patients to be treated.

Abstract

The present invention relates to a pharmaceutical combination comprising: (a) a pyrimidylaminobenzamide derivative compound or 4-(4-methylpiperazin-1-ylmethyl)-N-[4-methyl-3-(4-pyridin-3-yl)pyrimidin-2-ylamino)phenyl]-benzamide (Imatinib which is sold under the name Gleevec®); and (b) the compound of the formula (IV) and the uses of such a combination for the treatment of proliferative diseases.

Description

COMBINATION OF ORGANIC COMPOUNDS
The present invention relates to a pharmaceutical combination comprising:
(a) a pyrimidylaminobenzamide derivative compound or 4-(4-methylpiperazin-1- ylmethyl)-Λ/-[4-methyl-3-(4-pyridin-3-yl)pyrimidin-2-ylamino)phenyl]-benzamide (Imatinib which is sold under the name Gleevec®); and
(b) the compound of the formula (IV):
Figure imgf000002_0001
and the uses of such a combination for the treatment of proliferative diseases.
In spite of numerous treatment options for proliferative disease patients, there remains a need for effective and safe antiproliferative agents and a need for their preferential use in combination therapy.
It has now surprisingly been demonstrated that proliferative diseases can be successfully treated with pyrimidylaminobenzamide derivatives or pharmaceutically acceptable salts thereof, or Imatinib, and compound (IV).
Summary of the Invention
It has now been found that a combination comprising:
(a) at least one pyrimidylaminobenzamide compound or imatinib, e.g., as defined below; and
(b) compound (IV) has a beneficial effect on proliferative diseases. Detailed Description of the Invention
The present invention relates to the use of pyrimidylaminobenzamide compounds of formula (I):
Figure imgf000003_0001
wherein
R1 represents hydrogen, lower alkyl, lower alkoxy-lower alkyl, acyloxy-lower alkyl, carboxy-lower alkyl, lower alkoxycarbonyl-lower alkyl, or phenyl-lower alkyl;
R2 represents hydrogen, lower alkyl, optionally substituted by one or more identical or different radicals R3, cycloalkyl, benzcycloalkyl, heterocyclyl, an aryl group, or a mono- or bicyclic heteroaryl group comprising zero, one, two or three ring nitrogen atoms and zero or one oxygen atom and zero or one sulfur atom, which groups in each case are unsubstituted or mono- or polysubstituted; and
R3 represents hydroxy, lower alkoxy, acyloxy, carboxy, lower alkoxycarbonyl, carbamoyl, Λ/-mono- or Λ/,Λ/-disubstituted carbamoyl, amino, mono- or disubstituted amino, cycloalkyl, heterocyclyl, an aryl group, or a mono- or bicyclic heteroaryl group comprising zero, one, two or three ring nitrogen atoms and zero or one oxygen atom and zero or one sulfur atom, which groups in each case are unsubstituted or mono- or polysubstituted, or
R1 and R2 together represent alkylene with four, five or six carbon atoms optionally mono- or disubstituted by lower alkyl, cycloalkyl, heterocyclyl, phenyl, hydroxy, lower alkoxy, amino, mono- or disubstituted amino, oxo, pyridyl, pyrazinyl or pyrimidinyl; benzalkylene with four or five carbon atoms; oxaalkylene with one oxygen and three or four carbon atoms; or azaalkylene with one nitrogen and three or four carbon atoms wherein nitrogen is unsubstituted or substituted by lower alkyl, phenyl-lower alkyl, lower alkoxycarbonyl-lower alkyl, carboxy-lower alkyl, carbamoyl-lower alkyl, Λ/-mono- or Λ/,Λ/-disubstituted carbamoyl-lower alkyl, cycloalkyl, lower alkoxycarbonyl, carboxy, phenyl, substituted phenyl, pyridinyl, pyrimidinyl, or pyrazinyl; R4 represents hydrogen, lower alkyl, or halogen; and a Λ/-oxide or a pharmaceutically acceptable salt of such a compound for the preparation of a pharmaceutical composition for the treatment of kinase dependent diseases.
The general terms used hereinbefore and hereinafter preferably have within the context of this disclosure the following meanings, unless otherwise indicated:
The prefix "lower" denotes a radical having up to and including a maximum of 7, especially up to and including a maximum of 4 carbon atoms, the radicals in question being either linear or branched with single or multiple branching.
Where the plural form is used for compounds, salts and the like, this is taken to mean also a single compound, salt or the like.
Any asymmetric carbon atoms may be present in the (R)-, (S)- or (R,S)-configuration, preferably in the (R)- or (S)-configuration. The compounds may thus be present as mixtures of isomers or as pure isomers, preferably as enantiomer-pure diastereomers.
The invention relates also to possible tautomers of the compounds of formula (I).
Lower alkyl is preferably alkyl with from and including 1 up to and including 7, preferably from and including 1 to and including 4, and is linear or branched; preferably, lower alkyl is butyl, such as n-butyl, sec-butyl, isobutyl, ferf-butyl, propyl, such as n-propyl or isopropyl, ethyl or methyl. Preferably lower alkyl is methyl, propyl or ferf-butyl.
Lower acyl is preferably formyl or lower alkylcarbonyl, in particular, acetyl.
An aryl group is an aromatic radical which is bound to the molecule via a bond located at an aromatic ring carbon atom of the radical. In a preferred embodiment, aryl is an aromatic radical having 6-14 carbon atoms, especially phenyl, naphthyl, tetrahydronaphthyl, fluorenyl or phenanthrenyl, and is unsubstituted or substituted by one or more, preferably up to three, especially one or two substituents, especially selected from amino, mono- or disubstituted amino, halogen, lower alkyl, substituted lower alkyl, lower alkenyl, lower alkynyl, phenyl, hydroxy, etherified or esterified hydroxy, nitro, cyano, carboxy, esterified carboxy, alkanoyl, benzoyl, carbamoyl, Λ/-mono- or Λ/,Λ/-disubstituted carbamoyl, amidino, guanidino, ureido, mercapto, sulfo, lower alkylthio, phenylthio, phenyl-lower alkylthio, lower alkylphenylthio, lower alkylsulfinyl, phenylsulfinyl, phenyl-lower alkylsulfinyl, lower alkylphenylsulfinyl, lower alkylsulfonyl, phenylsulfonyl, phenyl-lower alkylsulfonyl, lower alkylphenylsulfonyl, halogen- - A -
lower alkylmercapto, halogen-lower alkylsulfonyl, such as especially trifluoromethanesulfonyl, dihydroxybora (-B(OH)2), heterocyclyl, a mono- or bicyclic heteroaryl group and lower alkylene dioxy bound at adjacent C-atoms of the ring, such as methylene dioxy. Aryl is more preferably phenyl, naphthyl or tetrahydronaphthyl, which in each case is either unsubstituted or independently substituted by one or two substituents selected from the group comprising halogen, especially fluorine, chlorine, or bromine; hydroxy; hydroxy etherified by lower alkyl, e.g., by methyl, by halogen-lower alkyl, e.g., trifluoromethyl, or by phenyl; lower alkylene dioxy bound to two adjacent C-atoms, e.g., methylenedioxy, lower alkyl, e.g., methyl or propyl; halogen-lower alkyl, e.g., trifluoromethyl; hydroxy-lower alkyl, e.g., hydroxymethyl or 2-hydroxy-2-propyl; lower alkoxy-lower alkyl; e.g., methoxymethyl or 2-methoxyethyl; lower alkoxycarbonyl-lower alkyl, e.g., methoxycarbonylmethyl; lower alkynyl, such as 1-propynyl; esterified carboxy, especially lower alkoxycarbonyl, e.g., methoxycarbonyl, n-propoxy carbonyl or iso-propoxy carbonyl; Λ/-mono-substituted carbamoyl, in particular carbamoyl monosubstituted by lower alkyl, e.g., methyl, n-propyl or iso-propyl; amino; lower alkylamino, e.g., methylamino; di-lower alkylamino, e.g., dimethylamino or diethylamino; lower alkylene- amino, e.g., pyrrolidino or piperidino; lower oxaalkylene-amino, e.g., morpholino, lower azaalkylene-amino, e.g., piperazino, acylamino, e.g., acetylamino or benzoylamino; lower alkylsulfonyl, e.g., methylsulfonyl; sulfamoyl; or phenylsulfonyl.
A cycloalkyl group is preferably cyclopropyl, cyclopentyl, cyclohexyl or cycloheptyl, and may be unsubstituted or substituted by one or more, especially one or two, substitutents selected from the group defined above as substitutents for aryl, most preferably by lower alkyl, such as methyl, lower alkoxy, such as methoxy or ethoxy, or hydroxy, and further by oxo or fused to a benzo ring, such as in benzcyclopentyl or benzcyclohexyl.
Substituted alkyl is alkyl as last defined, especially lower alkyl, preferably methyl; where one or more, especially up to three, substituents may be present, primarily from the group selected from halogen, especially fluorine, amino, /V-lower alkylamino, Λ/,Λ/-di-lower alkylamino, Λ/-lower alkanoylamino, hydroxy, cyano, carboxy, lower alkoxycarbonyl, and phenyl-lower alkoxycarbonyl. Trifluoromethyl is especially preferred. Mono- or disubstituted amino is especially amino substituted by one or two radicals selected independently of one another from lower alkyl, such as methyl; hydroxy-lower alkyl, such as 2-hydroxyethyl; lower alkoxy lower alkyl, such as methoxy ethyl; phenyl-lower alkyl, such as benzyl or 2-phenylethyl; lower alkanoyl, such as acetyl; benzoyl; substituted benzoyl, wherein the phenyl radical is especially substituted by one or more, preferably one or two, substituents selected from nitro, amino, halogen, Λ/-lower alkylamino, Λ/,Λ/-di-lower alkylamino, hydroxy, cyano, carboxy, lower alkoxycarbonyl, lower alkanoyl, and carbamoyl; and phenyl-lower alkoxycarbonyl, wherein the phenyl radical is unsubstituted or especially substituted by one or more, preferably one or two, substituents selected from nitro, amino, halogen, Λ/-lower alkylamino, Λ/,Λ/-di- lower alkylamino, hydroxy, cyano, carboxy, lower alkoxycarbonyl, lower alkanoyl, and carbamoyl; and is preferably Λ/-lower alkylamino, such as Λ/-methylamino, hydroxy-lower alkylamino, such as 2-hydroxyethylamino or 2-hydroxypropyl, lower alkoxy lower alkyl, such as methoxy ethyl, phenyl-lower alkylamino, such as benzylamino, Λ/,Λ/-di- lower alkylamino, Λ/-phenyl-lower alkyl-Λ/-lower alkylamino, Λ/,Λ/-di- lower alkylphenylamino, lower alkanoylamino, such as acetylamino, or a substituent selected from the group comprising benzoylamino and phenyl-lower alkoxycarbonylamino, wherein the phenyl radical in each case is unsubstituted or especially substituted by nitro or amino, or also by halogen, amino, Λ/-lower alkylamino, Λ/,Λ/-di-lower alkylamino, hydroxy, cyano, carboxy, lower alkoxycarbonyl, lower alkanoyl, carbamoyl or aminocarbonylamino. Disubstituted amino is also lower alkylene-amino, e.g., pyrrolidino, 2-oxopyrrolidino or piperidino; lower oxaalkylene-amino, e.g., morpholino, or lower azaalkylene-amino, e.g., piperazino or Λ/-substituted piperazino, such as Λ/-methylpiperazino or Λ/-methoxycarbonylpiperazino.
Halogen is especially fluorine, chlorine, bromine, or iodine, especially fluorine, chlorine, or bromine.
Etherified hydroxy is especially C8-C2oalkyloxy, such as n-decyloxy, lower alkoxy (preferred), such as methoxy, ethoxy, isopropyloxy, or tert-butyloxy, phenyl-lower alkoxy, such as benzyloxy, phenyloxy, halogen-lower alkoxy, such as trifluoromethoxy, 2,2,2-trifluoroethoxy or 1 ,1 ,2,2-tetrafluoroethoxy, or lower alkoxy which is substituted by mono- or bicyclic heteroaryl comprising one or two nitrogen atoms, preferably lower alkoxy which is substituted by imidazolyl, such as 1 /-/-imidazol-1-yl, pyrrolyl, benzimidazolyl, such as 1-benzimidazolyl, pyridyl, especially 2-, 3- or 4-pyridyl, pyrimidinyl, especially 2-pyrimidinyl, pyrazinyl, isoquinolinyl, especially 3-isoquinolinyl, quinolinyl, indolyl or thiazolyl. Esterified hydroxy is especially lower alkanoyloxy, benzoyloxy, lower alkoxycarbonyloxy, such as tert-butoxycarbonyloxy, or phenyl-lower alkoxycarbonyloxy, such as benzyloxycarbonyloxy.
Esterified carboxy is especially lower alkoxycarbonyl, such as ferf-butoxycarbonyl, iso- propoxycarbonyl, methoxycarbonyl or ethoxycarbonyl, phenyl-lower alkoxycarbonyl, or phenyloxycarbonyl.
Alkanoyl is primarily alkylcarbonyl, especially lower alkanoyl, e.g., acetyl.
Λ/-Mono- or Λ/,Λ/-disubstituted carbamoyl is especially substituted by one or two substituents independently selected from lower alkyl, phenyl-lower alkyl and hydroxy-lower alkyl, or lower alkylene, oxa-lower alkylene or aza-lower alkylene optionally substituted at the terminal nitrogen atom.
A mono- or bicyclic heteroaryl group comprising zero, one, two or three ring nitrogen atoms and zero or one oxygen atom and zero or one sulfur atom, which groups in each case are unsubstituted or mono- or polysubstituted, refers to a heterocyclic moiety that is unsaturated in the ring binding the heteroaryl radical to the rest of the molecule in formula (I) and is preferably a ring, where in the binding ring, but optionally also in any annealed ring, at least one carbon atom is replaced by a heteroatom selected from the group consisting of nitrogen, oxygen and sulfur; where the binding ring preferably has 5 to 12, more preferably 5 or 6 ring atoms; and which may be unsubstituted or substituted by one or more, especially one or two, substituents selected from the group defined above as substituents for aryl, most preferably by lower alkyl, such as methyl, lower alkoxy, such as methoxy or ethoxy, or hydroxy. Preferably the mono- or bicyclic heteroaryl group is selected from 2/-/-pyrrolyl, pyrrolyl, imidazolyl, benzimidazolyl, pyrazolyl, indazolyl, purinyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 4/-/-quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalyl, quinazolinyl, quinnolinyl, pteridinyl, indolizinyl, 3A7-indolyl, indolyl, isoindolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, tetrazolyl, furazanyl, benzo[d]pyrazolyl, thienyl and furanyl. More preferably, the mono- or bicyclic heteroaryl group is selected from the group consisting of pyrrolyl, imidazolyl, such as 1 /-/-imidazol-1-yl, benzimidazolyl, such as 1-benzimidazolyl, indazolyl, especially 5-indazolyl, pyridyl, especially 2-, 3- or 4-pyridyl, pyrimidinyl, especially 2-pyrimidinyl, pyrazinyl, isoquinolinyl, especially 3-isoquinolinyl, quinolinyl, especially 4- or 8-quinolinyl, indolyl, especially 3-indolyl, thiazolyl, benzo[d]pyrazolyl, thienyl, and furanyl. In one preferred embodiment of the invention the pyridyl radical is substituted by hydroxy in ortho position to the nitrogen atom and hence exists at least partially in the form of the corresponding tautomer which is pyridin-(1 /-/)2-one. In another preferred embodiment, the pyrimidinyl radical is substituted by hydroxy both in position 2 and 4 and hence exists in several tautomeric forms, e.g., as pyrimidine- (1 H,3H)2,4-dione.
Heterocyclyl is especially a 5-, 6- or 7-membered heterocyclic system with one or two heteroatoms selected from the group comprising nitrogen, oxygen, and sulfur, which may be unsaturated or wholly or partly saturated, and is unsubstituted or substituted especially by lower alkyl, such as methyl, phenyl-lower alkyl, such as benzyl, oxo, or heteroaryl, such as 2-piperazinyl; heterocyclyl is especially 2- or 3-pyrrolidinyl, 2-oxo-5-pyrrolidinyl, piperidinyl, Λ/-benzyl-4-piperidinyl, Λ/-lower alkyl-4-piperidinyl, Λ/-lower alkyl-piperazinyl, morpholinyl, e.g., 2- or 3-morpholinyl, 2-oxo-1 /-/-azepin-3-yl, 2-tetrahydrofuranyl, or 2-methyl-1 ,3-dioxolan- 2-yl.
Salts are especially the pharmaceutically acceptable salts of compounds of formula (I).
Such salts are formed, for example, as acid addition salts, preferably with organic or inorganic acids, from compounds of formula (I) with a basic nitrogen atom, especially the pharmaceutically acceptable salts. Suitable inorganic acids are, for example, halogen acids, such as hydrochloric acid, sulfuric acid, or phosphoric acid. Suitable organic acids are, for example, carboxylic, phosphonic, sulfonic or sulfamic acids, for example, acetic acid, propionic acid, octanoic acid, decanoic acid, dodecanoic acid, glycolic acid, lactic acid, fumaric acid, succinic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, malic acid, tartaric acid, citric acid, amino acids, such as glutamic acid or aspartic acid, maleic acid, hydroxymaleic acid, methylmaleic acid, cyclohexanecarboxylic acid, adamantanecarboxylic acid, benzoic acid, salicylic acid, 4-aminosalicylic acid, phthalic acid, phenylacetic acid, mandelic acid, cinnamic acid, methane- or ethane-sulfonic acid, 2-hydroxyethanesulfonic acid, ethane-1 ,2-disulfonic acid, benzenesulfonic acid, 2-naphthalenesulfonic acid, 1 ,5-naphthalene-disulfonic acid, 2-, 3- or 4-methylbenzenesulfonic acid, methylsulfuric acid, ethylsulfuric acid, dodecylsulfuric acid, N-cyclohexylsulfamic acid, Λ/-methyl-, Λ/-ethyl- or Λ/-propyl-sulfamic acid, or other organic protonic acids, such as ascorbic acid.
In the presence of negatively charged radicals, such as carboxy or sulfo, salts may also be formed with bases, e.g., metal or ammonium salts, such as alkali metal or alkaline earth metal salts, for example, sodium, potassium, magnesium or calcium salts, or ammonium salts with ammonia or suitable organic amines, such as tertiary monoamines, for example, triethylamine or tri(2-hydroxyethyl)amine, or heterocyclic bases, for example, Λ/-ethyl- piperidine or /V,/V-dimethylpiperazine.
When a basic group and an acid group are present in the same molecule, a compound of formula (I) may also form internal salts.
For isolation or purification purposes it is also possible to use pharmaceutically unacceptable salts, for example picrates or perchlorates. For therapeutic use, only pharmaceutically acceptable salts or free compounds are employed (where applicable in the form of pharmaceutical preparations), and these are therefore preferred.
In view of the close relationship between the novel compounds in free form and those in the form of their salts, including those salts that can be used as intermediates, for example, in the purification or identification of the novel compounds, any reference to the free compounds hereinbefore and hereinafter is to be understood as referring also to the corresponding salts, as appropriate and expedient.
Compounds within the scope of formula (I) and the process for their manufacture are disclosed in WO 04/005281 published on January 15, 2004 which is hereby incorporated into the present application by reference. A preferred compound is 4-methyl-3-[[4-(3-pyridinyl)-2- pyrimidinyl]amino]-Λ/-[5-(4-methyl-1 /-/-imidazol-1-yl)-3-(trifluoromethyl)phenyl]benzamide, also known as nilotinib, and pharmaceutically acceptable salts thereof, of the formula (II):
("I)
Figure imgf000009_0001
Combinations of the present invention include the compound 4-(4-methylpiperazin-1- ylmethyl)-Λ/-[4-methyl-3-(4-pyridin-3-yl)pyrimidin-2-ylamino)phenyl]-benzamide (Imatinib which is sold under the name Gleevec®) is of the formula (III):
Figure imgf000010_0001
The preparation of Compound (III) and the use thereof, especially as an anti-tumor agent, are described in Example 21 of European patent application EP-A-O 564 409, which was published on October 6, 1993, and in equivalent applications and patents in numerous other countries, e.g. in U.S. Patent No. 5,521 ,184 and in Japanese Patent No. 2706682.
The monomethanesulfonic acid addition salt of Compound (III) and a preferred crystal form thereof are described in PCT patent application WO 99/03854 published on January 28, 1999.
Combinations of the present invention include the compound of formula (IV):
Figure imgf000010_0002
The preparation of Compound (IV) and the use thereof, especially as an anti-tumor agent, are described in Example 455 of WO 00/62778, which was published on October 26, 2000, and in equivalent applications and patents in numerous other countries, e.g. in U.S. Patent No. 6,596,746. Comprised are likewise the pharmaceutically acceptable salts thereof, the corresponding racemates, diastereoisomers, enantiomers, tautomers, as well as the corresponding crystal modifications of above disclosed compounds where present, e.g., solvates, hydrates and polymorphs, which are disclosed therein. The compounds used as active ingredients in the combinations of the invention can be prepared and administered as described in the cited documents, respectively. Also within the scope of this invention is the combination of more than two separate active ingredients as set forth above, i.e., a pharmaceutical combination within the scope of this invention could include three active ingredients or more.
Combinations of a compound of formula (II) and a compound of formula (IV) impedes the evolution of F317 mutants, whereas the compound of formula (IV) alone would not. Similarly a combination of compound of formula (II) and a compound of formula (IV) would have a greater effect on E255 mutants than a compound of formula (II) would have alone.
The term "proliferative disease" includes but is not restricted to tumors, psoriasis, restenosis, sclerodermitis and fibrosis.
The term "haematological malignancy", refers in particular to leukemias, especially those expressing Bcr-Abl, c-Kit or Flt-3, and includes, but is not limited to, chronic myelogenous leukemia (CML) and acute lymphocyte leukemia (ALL), especially the Philadelphia chromosome positive acute lymphocyte leukemia (Ph+ALL), as well as STI57l-resistant leukemias and cells expressing imatinib resistant Bcr-Abl mutations, such as Bcr-AblT3151.
The term "a solid tumor disease" especially means ovarian cancer, breast cancer, cancer of the colon and generally the gastrointestinal tract, such as gastrointestinal stromal tumors (GISTs), cervical cancer, lung cancer, e.g. small-cell lung cancer and non-small-cell lung cancer, head and neck cancer, bladder cancer, cancer of the prostate or Kaposi's sarcoma.
The combinations according to the invention, that inhibit the protein kinase activities mentioned, especially tyrosine protein kinases mentioned above and below, can therefore be used in the treatment of protein kinase dependent diseases. Protein kinase dependent diseases are especially proliferative diseases, preferably benign or especially malignant tumors (for example, carcinoma of the kidneys, brain, liver, adrenal glands, bladder, breast, stomach (especially gastric tumors), ovaries, colon, rectum, prostate, pancreas, lungs (especially SCLC), vagina or thyroid, sarcoma, multiple myeloma, glioblastomas and numerous tumors of the neck and head, as well as leukemias); especially colon carcinoma or colorectal adenoma, or a tumor of the neck and head, an epidermal hyperproliferation, especially psoriasis, prostate hyperplasia, a neoplasia, especially of epithelial character, preferably mammary carcinoma, or a leukemia. They are able to bring about the regression of tumors and to prevent the formation of tumor metastases and the growth of (also micro)metastases. In addition they can be used in epidermal hyperproliferation (e.g., psoriasis), in prostate hyperplasia, and in the treatment of neoplasias, especially of epithelial character, for example, mammary carcinoma. It is also possible to use the combinations of the present invention in the treatment of diseases of the immune system insofar as several or, especially, individual tyrosine protein kinases are involved; furthermore, the combinations of the present invention can be used also in the treatment of diseases of the central or peripheral nervous system where signal transmission by at least one tyrosine protein kinase, especially selected from those mentioned specifically, is involved.
In CML, a reciprocally balanced chromosomal translocation in hematopoietic stem cells (HSCs) produces the Bcr-Abl hybrid gene. The latter encodes the oncogenic Bcr-Abl fusion protein. Whereas AbI encodes a tightly regulated protein tyrosine kinase, which plays a fundamental role in regulating cell proliferation, adherence and apoptosis, the Bcr-Abl fusion gene encodes as constitutively activated kinase, which transforms HSCs to produce a phenotype exhibiting deregulated clonal proliferation, reduced capacity to adhere to the bone marrow stroma and a reduces apoptotic response to mutagenic stimuli, which enable it to accumulate progressively more malignant transformations. The resulting granulocytes fail to develop into mature lymphocytes and are released into the circulation, leading to a deficiency in the mature cells and increased susceptibility to infection. ATP-competitive inhibitors of Bcr-Abl have been described which prevent the kinase from activating mitogenic and anti- apoptotic pathways (e.g., P-3 kinase and STAT5), leading to the death of the Bcr-Abl phenotype cells and thereby providing an effective therapy against CML. The combinations of the present invention are thus especially appropriate for the therapy of diseases related to its overexpression, especially leukemias, such as leukemias, e.g., CML or ALL.
In a broader sense of the invention, a proliferative disease includes hyperproliferative conditions, such as leukemias, hyperplasias, fibrosis (especially pulmonary, but also other types of fibrosis, such as renal fibrosis), angiogenesis, psoriasis, atherosclerosis and smooth muscle proliferation in the blood vessels, such as stenosis or restenosis following angioplasty. In another aspect, the combinations of the present invention could be used to treat arthritis. Combinations of the present invention can also be used to treat or prevent fibrogenic disorders, such as scleroderma (systemic sclerosis); diseases associated with protein aggregation and amyloid formation, such as Huntington's disease; inhibition of the replication of hepatitis C virus and treating hepatitis C virus; treating tumors associated with viral infection, such as human papilloma virus; and inhibiting viruses dependent of heat-shock proteins.
The combinations of the present invention primarily inhibit the growth of blood vessels and are thus, for example, effective against a number of diseases associated with deregulated angiogenesis, especially diseases caused by ocular neovascularisation, especially retinopathies, such as diabetic retinopathy or age-related macula degeneration, psoriasis, haemangioblastoma, such as haemangioma, mesangial cell proliferative disorders, such as chronic or acute renal diseases, e.g., diabetic nephropathy, malignant nephrosclerosis, thrombotic microangiopathy syndromes or transplant rejection, or especially inflammatory renal disease, such as glomerulonephritis, especially mesangioproliferative glomerulonephritis, haemolytic-uraemic syndrome, diabetic nephropathy, hypertensive nephrosclerosis, atheroma, arterial restenosis, autoimmune diseases, diabetes, endometriosis, chronic asthma, and especially neoplastic diseases (solid tumors, but also leukemias and other haematological malignancies), such as especially breast cancer, cancer of the colon, lung cancer (especially small-cell lung cancer), cancer of the prostate or Kaposi's sarcoma. Combinations of the present invention inhibit the growth of tumors and are especially suited to preventing the metastatic spread of tumors and the growth of micrometastases.
In accordance with the particular findings of the present invention, there is provided:
1. A pharmaceutical combination comprising: a) a pyrimidylaminobenzamide compound of formula (I); and b) a compound of formula (IV).
2. A pharmaceutical combination comprising: a) imatinib of formula (III); and b) a compound of formula (IV). 3. A method for treating or preventing proliferative disease in a subject in need thereof, comprising co-administration to said subject, e.g., concomitantly or in sequence, of a therapeutically effective amount of a pyrimidylaminobenzamide compound of formula (I) or formula (II), e.g., as disclosed above and a compound of formula (IV).
4. A method for treating or preventing proliferative disease in a subject in need thereof, comprising co-administration to said subject, e.g., concomitantly or in sequence, of a therapeutically effective amount of imatinib of formula (III), e.g., as disclosed above and a compound of formula (IV).
Examples of proliferative diseases include, ,e.g., tumors, most especially preferred is leukemias, CML and ALL, especially the Ph+ALL, as well as STI57l-resistant leukemias and cells expressing imatinib resistant Bcr-Abl mutations, such as Bcr-AblT3151, acute myeloid leukemias, hypereosinophilic syndrome (HES) or chronic eosinophilic leukemia (CEL), and systemic mastocytosis (SM).
5. A pharmaceutical combination as defined under 1 ) or 2) above, e.g. for use in a method as defined under 3) or 4) above.
6. A pharmaceutical combination as defined under 1 ) or 2) above for use in the preparation of a medicament for use in a method as defined under 3) or 4) above.
7. A pharmaceutical combination comprising: a) preferably, a compound of formula (II); and b) a compound of formula (IV).
8. A method for treating or preventing proliferative disease in a subject in need thereof, comprising co-administration to said subject, e.g., concomitantly or in sequence, of a therapeutically effective amount of a compound of formula (II), e.g., as disclosed above, and a compound of formula (IV).
9. A pharmaceutical combination as defined under 6) above, e.g., for use in a method as defined under 8) above.
Utility of the combination of the invention in a method as hereinabove specified, may be demonstrated in animal test methods as well as in clinic, for example, in accordance with the methods hereinafter described.
A. Combined Treatment Suitable clinical studies are, for example, open label, dose escalation studies in patients with proliferative diseases. Such studies prove in particular the synergism of the active ingredients of the combination of the invention. The beneficial effects can be determined directly through the results of these studies which are known as such to a person skilled in the art. Such studies are, in particular, suitable to compare the effects of a monotherapy using the active ingredients and a combination of the invention. Preferably, the dose of agent (a), e.g., compound (I), preferably compound (II), or compound (III), is escalated until the Maximum Tolerated Dosage is reached, and agent (b) is administered with a fixed dose. Alternatively, the agent (a) is administered in a fixed dose and the dose of agent (b) is escalated. Each patient receives doses of the agent (a) either daily or intermittent. The efficacy of the treatment can be determined in such studies, e.g., after 12, 18 or 24 weeks by evaluation of symptom scores every 6 weeks.
The administration of a pharmaceutical combination of the invention results not only in a beneficial effect, e.g. a synergistic therapeutic effect, e.g., with regard to alleviating, delaying progression of or inhibiting the symptoms, but also in further surprising beneficial effects, e.g., fewer side effects, an improved quality of life or a decreased morbidity, compared with a monotherapy applying only one of the pharmaceutically active ingredients used in the combination of the invention.
A further benefit is that lower doses of the active ingredients of the combination of the invention can be used, for example, that the dosages need not only often be smaller but are also applied less frequently, which may diminish the incidence or severity of side effects. This is in accordance with the desires and requirements of the patients to be treated.
The term "co-administration" or "combined administration" or the like, as utilized herein, are meant to encompass administration of the selected therapeutic agents to a single patient, and are intended to include treatment regimens in which the agents are not necessarily administered by the same route of administration or at the same time.
It is one objective of this invention to provide a pharmaceutical composition comprising a quantity of a combination of the invention, which is jointly therapeutically effective at targeting or preventing proliferative diseases. In this composition, agent (a) and agent (b) may be administered together, one after the other or separately in one combined unit dosage form or in two separate unit dosage forms. The unit dosage form may also be a fixed combination. Th e pharmaceutical compositions for separate administration of agent (a) and agent (b) or for the administration in a fixed combination, i.e., a single galenical composition comprising at least two combination partners (a) and (b), according to the invention may be prepared in a manner known per se and are those suitable for enteral, such as oral or rectal, and parenteral administration to mammals (warm-blooded animals), including humans, comprising a therapeutically effective amount of at least one pharmacologically active combination partner alone, e.g., as indicated above, or in combination with one or more pharmaceutically acceptable carriers or diluents, especially suitable for enteral or parenteral application.
Suitable pharmaceutical compositions contain, for example, from about 0.1 % to about 99.9%, preferably from about 1 % to about 60%, of the active ingredient(s). Pharmaceutical preparations for the combination therapy for enteral or parenteral administration are, for example, those in unit dosage forms, such as sugar-coated tablets, tablets, capsules or suppositories, or ampoules. If not indicated otherwise, these are prepared in a manner known per se, for example, by means of conventional mixing, granulating, sugar-coating, dissolving or lyophilizing processes. It will be appreciated that the unit content of a combination partner contained in an individual dose of each dosage form need not in itself constitute an effective amount since the necessary effective amount can be reached by administration of a plurality of dosage units.
In particular, a therapeutically effective amount of each of the combination partner of the combination of the invention may be administered simultaneously or sequentially and in any order, and the components may be administered separately or as a fixed combination. For example, the method of preventing or treating proliferative diseases according to the invention may comprise: (i) administration of the first agent (a) in free or pharmaceutically acceptable salt form; and (ii) administration of an agent (b) in free or pharmaceutically acceptable salt form, simultaneously or sequentially in any order, in jointly therapeutically effective amounts, preferably in synergistically effective amounts, e.g., in daily or intermittently dosages corresponding to the amounts described herein. The individual combination partners of the combination of the invention may be administered separately at different times during the course of therapy or concurrently in divided or single combination forms. Furthermore, the term administering also encompasses the use of a pro-drug of a combination partner that convert in vivo to the combination partner as such. The instant invention is therefore to be understood as embracing all such regimens of simultaneous or alternating treatment and the term "administering" is to be interpreted accordingly. Th e effective dosage of each of the combination partners employed in the combination of the invention may vary depending on the particular compound or pharmaceutical composition employed, the mode of administration, the condition being treated, the severity of the condition being treated. Thus, the dosage regimen of the combination of the invention is selected in accordance with a variety of factors including the route of administration and the renal and hepatic function of the patient. A clinician or physician of ordinary skill can readily determine and prescribe the effective amount of the single active ingredients required to alleviate, counter or arrest the progress of the condition. Optimal precision in achieving concentration of the active ingredients within the range that yields efficacy without toxicity requires a regimen based on the kinetics of the active ingredients' availability to target sites.
Daily dosages for agent (a) or (b) or will, of course, vary depending on a variety of factors, for example, the compound chosen, the particular condition to be treated and the desired effect.
Preferably the compound of formula (I), agent (a) is administered orally, preferably at a daily dosage of 1-300 mg/kg body weight or, for most larger primates, a daily dosage of 50-5,000, preferably 500-3,000 mg. A preferred oral daily dosage is 1-75 mg/kg body weight or, for most larger primates, a daily dosage of 10-2,000 mg, administered as a single dose or divided into multiple doses, such as twice daily dosing.
Compound (III), imatinib, may be administered to a human in a daily dosage range of 0.5-1 ,000 mg. Suitable unit dosage forms for oral administration comprise from ca. 0.1-500 mg active ingredient, together with one or more pharmaceutically acceptable diluents or carriers therefore.
In general, however, satisfactory results are achieved on administration of Imatinib at daily dosage rates of the order of ca. 0.03-5 mg/kg per day, particularly 0.1-5 mg/kg per day, e.g., 0.1-2.5 mg/kg per day, as a single dose or in divided doses.
The effective amount of compound (IV) may be determined by one of ordinary skill in the art, and includes exemplary dosage amounts for an adult human of from about 0.1 -100 mg/kg of body weight of active compound per day, which may be administered in a single dose or in the form of individual divided doses, such as from 1-4 times per day. It will be understood that the specific dose level and frequency of dosage for any particular subject may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the species, age, body weight, general health, sex and diet of the subject, the mode and time of administration, rate of excretion, drug combination, and severity of the particular condition.
Agent (a) and agent (b) may be administered by any conventional route, in particular, enterally, e.g., orally, e.g., in the form of tablets, capsules, drink solutions or parenterally, e.g., in the form of injectable solutions or suspensions, together with one or more pharmaceutically acceptable diluents or carriers therefore.
The administration of a pharmaceutical combination of the invention results not only in a beneficial effect, e.g., a synergistic therapeutic effect, e.g., with regard to inhibiting the unregulated proliferation of, or slowing down the progression of the growth of tumors, but also in further surprising beneficial effects, e.g., less side effects, an improved quality of life or a decreased morbidity, compared to a monotherapy applying only one of the pharmaceutically active ingredients used in the combination of the invention.
A further benefit is that lower doses of the active ingredients of the combination of the invention can be used, for example, that the dosages need not only often be smaller but are also applied less frequently, or can be used in order to diminish the incidence of side effects. This is in accordance with the desires and requirements of the patients to be treated.

Claims

WE CLAIM:
1. A pharmaceutical combination comprising: a) a pyrimidylaminobenzamide compound of formula (I); and b) a compound of formula (IV).
2. A pharmaceutical combination comprising: a) imatinib of formula (III); and b) a compound of formula (IV).
3. A pharmaceutical combination according to Claim 1 wherein the compound of formula (I) is nilotinib of formula (II).
4. A method for treating or preventing proliferative disease in a subject in need thereof, comprising co-administration to said subject, e.g., concomitantly or in sequence, of a therapeutically effective amount of a pyrimidylaminobenzamide compound of formula (I), e.g., as disclosed above and a compound of formula (IV).
5. A method for treating or preventing proliferative disease in a subject in need thereof, comprising co-administration to said subject, e.g., concomitantly or in sequence, of a therapeutically effective amount of imatinib of formula (III), e.g., as disclosed above and a compound of formula (IV).
6. A pharmaceutical combination according to Claim 1 for use in a method according to Claim 4.
7. A pharmaceutical combination according to Claim 2 for use in a method according to Claim 5.
8. A pharmaceutical combination according to Claim 1 for use in the preparation of a medicament for use in a method according to Claim 4.
9. A pharmaceutical combination according to Claim 2 for use in the preparation of a medicament for use in a method according to Claim 5.
10. A pharmaceutical combination according to Claim 1 , wherein agent a) is selected from 4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-Λ/-[5-(4-methyl-1 /-/-imidazol-1 -yl)-3- (trifluoromethyl)phenyl]benzamide, and pharmaceutically acceptable salts thereof.
11. A pharmaceutical combination according to Claim 1 , wherein agent a) is selected from imatinib, and pharmaceutically acceptable salts thereof.
12. A method for treating a proliferative disease comprising administering a combination of a pyrimidylaminobenzamide compound of formula (I) and a compound of formula (IV).
13. A method for treating a proliferative disease comprising administering a combination of imatinib of formula (III); and a compound of formula (IV).
14. A method according to Claim 12 or 13, wherein the proliferative disease is selected from leukemias, chronic myelogenous leukemia (CML) and acute lymphocyte leukemia (ALL), especially the Philadelphia chromosome positive acute lymphocyte leukemia (Ph+ALL), as well as STI57l-resistant leukemias and cells expressing imatinib resistant Bcr-Abl mutations, such as Bcr-AblT3151, acute myeloid leukemias, hypereosinophilic syndrome (HES) or chronic eosinophilic leukemia (CEL), and systemic mastocytosis (SM).
15. A method according to Claim 12 or 13 wherein the proliferative disease is a solid tumor disease.
16. A method according to Claim 12 or 13 wherein the solid tumor is ovarian cancer, breast cancer, cancer of the colon and generally the gastrointestinal tract, such as gastrointestinal stromal tumors (GISTs), cervical cancer, lung cancer, e.g., small-cell lung cancer and non-small-cell lung cancer, head and neck cancer, bladder cancer, cancer of the prostate or Kaposi's sarcoma.
PCT/EP2006/068154 2005-11-07 2006-11-06 Combination of organic compounds WO2007051862A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US73436105P 2005-11-07 2005-11-07
US60/734,361 2005-11-07

Publications (1)

Publication Number Publication Date
WO2007051862A1 true WO2007051862A1 (en) 2007-05-10

Family

ID=37575179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/068154 WO2007051862A1 (en) 2005-11-07 2006-11-06 Combination of organic compounds

Country Status (1)

Country Link
WO (1) WO2007051862A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007115289A2 (en) * 2006-04-05 2007-10-11 Novartis Ag Combinations comprising bcr-abl/c-kit/pdgf-r tk inhibitors for treating cancer
WO2010007034A1 (en) * 2008-07-14 2010-01-21 Novartis Ag Use of pyrimidylaminobenzamide derivatives for the treatment of fibrosis
WO2010034670A2 (en) * 2008-09-26 2010-04-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Host cell kinases as targets for antiviral therapies against hcv infection
WO2010100248A1 (en) * 2009-03-06 2010-09-10 Novartis Ag Use of pyrimidylaminobenzamide derivatives for the treatment of disorders mediated by the leucine zipper- and sterile alpha motif-containing kinase (zak)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005281A1 (en) * 2002-07-05 2004-01-15 Novartis Ag Inhibitors of tyrosine kinases
WO2006052810A2 (en) * 2004-11-04 2006-05-18 Bristol-Myers Squibb Company Combination of a src kinase inhibitor and a bcr-abl inhibitor for the treatment of proliferative diseases

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005281A1 (en) * 2002-07-05 2004-01-15 Novartis Ag Inhibitors of tyrosine kinases
WO2006052810A2 (en) * 2004-11-04 2006-05-18 Bristol-Myers Squibb Company Combination of a src kinase inhibitor and a bcr-abl inhibitor for the treatment of proliferative diseases

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BROXTERMAN ET AL: "Anticancer therapeutics: ''Addictive'' targets, multi-targeted drugs, new drug combinations", DRUG RESISTANCE UPDATES, CHURCHILL LIVINGSTONE, EDINBURGH, GB, vol. 8, no. 4, August 2005 (2005-08-01), pages 183 - 197, XP005112189, ISSN: 1368-7646 *
BURGESS, MICHAEL R. ET AL: "Comparative analysis of two clinically active BCR-ABL kinase inhibitors reveals the role of conformation-specific binding in resistance", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA , 102(9), 3395-3400 CODEN: PNASA6; ISSN: 0027-8424, 2005, XP002414415 *
FOR THE EUROPEAN ORGANISATION FOR RESEARCH AND TREATMENT OF CANCER SOFT TISSUE AND BONE SARCOMA GROUP VAN OOSTEROM A T ET AL: "Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study", LANCET THE, LANCET LIMITED. LONDON, GB, vol. 358, no. 9291, 27 October 2001 (2001-10-27), pages 1421 - 1423, XP004806045, ISSN: 0140-6736 *
O'HARE, THOMAS ET AL: "Combined Abl Inhibitor Therapy for Minimizing Drug Resistance in Chronic Myeloid Leukemia: Src/Abl Inhibitors Are Compatible with Imatinib", CLINICAL CANCER RESEARCH , 11(19, PT. 1), 6987-6993 CODEN: CCREF4; ISSN: 1078-0432, 1 October 2005 (2005-10-01), XP002414414 *
O'HARE, THOMAS ET AL: "In vitro Activity of Bcr-Abl Inhibitors AMN107 and BMS-354825 against Clinically Relevant Imatinib -Resistant Abl Kinase Domain Mutants", CANCER RESEARCH ( 2005 ), 65(11), 4500-4505 CODEN: CNREA8; ISSN: 0008-5472, 1 June 2005 (2005-06-01), XP002414413 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007115289A2 (en) * 2006-04-05 2007-10-11 Novartis Ag Combinations comprising bcr-abl/c-kit/pdgf-r tk inhibitors for treating cancer
WO2007115289A3 (en) * 2006-04-05 2008-04-10 Novartis Ag Combinations comprising bcr-abl/c-kit/pdgf-r tk inhibitors for treating cancer
WO2010007034A1 (en) * 2008-07-14 2010-01-21 Novartis Ag Use of pyrimidylaminobenzamide derivatives for the treatment of fibrosis
JP2011528015A (en) * 2008-07-14 2011-11-10 ノバルティス アーゲー Use of pyrimidylaminobenzamide derivatives for the treatment of fibrosis
WO2010034670A2 (en) * 2008-09-26 2010-04-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Host cell kinases as targets for antiviral therapies against hcv infection
WO2010034670A3 (en) * 2008-09-26 2010-11-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Host cell kinases as targets for antiviral therapies against hcv infection
CN102227237A (en) * 2008-09-26 2011-10-26 国家健康与医学研究院 Host cell kinases as targets for antiviral therapies against hcv infection
US8759010B2 (en) 2008-09-26 2014-06-24 Inserm (Institut National De La Sante Et De La Recherche Medicale) Host cell kinases as targets for antiviral therapies against HCV infection
WO2010100248A1 (en) * 2009-03-06 2010-09-10 Novartis Ag Use of pyrimidylaminobenzamide derivatives for the treatment of disorders mediated by the leucine zipper- and sterile alpha motif-containing kinase (zak)
AU2010220262B2 (en) * 2009-03-06 2014-01-09 Novartis Ag Use of pyrimidylaminobenzamide derivatives for the treatment of disorders mediated by the leucine zipper- and sterile alpha motif-containing kinase (ZAK)

Similar Documents

Publication Publication Date Title
US20110281902A1 (en) Combinations comprising a protein kinase inhibitor being a pyrimidylaminobenzamide compound and a hsp90 inhibitor such as 17-aag
US8653093B2 (en) Combination of pyrimidylaminobenzamide compounds and imatinib for treating or preventing proliferative diseases
US20100152198A1 (en) Use of c-src inhibitors in combination with a pyrimidylaminobenzamide compound for the treatment of leukemia
EP2007391B1 (en) Combination comprising a) a pyrimidylaminobenzamide compound, and b) a thr315lle kinase inhibitor
US20080255171A1 (en) Combination of Nilotinib with Farnesyl Transferase Inhibitors
WO2007051862A1 (en) Combination of organic compounds
US20080207658A1 (en) Pharmaceutical Combination of Bcr-Abl and Raf Inhibitors
AU2011202833B2 (en) Combination comprising a) a pyrimidylaminobenzamide compound, and b) a Thr315lle kinase inhibitor
AU2013201915A1 (en) Use of c-Src inhibitors in combination with a pyrimidylaminobenzamide compound for the treatment of leukemia

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06807759

Country of ref document: EP

Kind code of ref document: A1