WO2007043409A1 - Electronic ballast for discharge lamp, lighting fixture employing that electronic ballast, and lighting system equipped with that lighting fixture - Google Patents

Electronic ballast for discharge lamp, lighting fixture employing that electronic ballast, and lighting system equipped with that lighting fixture Download PDF

Info

Publication number
WO2007043409A1
WO2007043409A1 PCT/JP2006/319866 JP2006319866W WO2007043409A1 WO 2007043409 A1 WO2007043409 A1 WO 2007043409A1 JP 2006319866 W JP2006319866 W JP 2006319866W WO 2007043409 A1 WO2007043409 A1 WO 2007043409A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
discharge lamp
electronic ballast
inverter
power
Prior art date
Application number
PCT/JP2006/319866
Other languages
French (fr)
Japanese (ja)
Inventor
Toshihiro Nishida
Original Assignee
Matsushita Electric Works, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works, Ltd. filed Critical Matsushita Electric Works, Ltd.
Priority to CN2006800379384A priority Critical patent/CN101288345B/en
Publication of WO2007043409A1 publication Critical patent/WO2007043409A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling

Definitions

  • Electronic ballast for discharge lamp lighting fixture using the electronic ballast, and lighting system including the lighting fixture
  • the present invention relates to an electronic ballast that uses an inverter to light one or more discharge lamps at a high frequency, and a lighting fixture and a lighting system using the electronic ballast.
  • an electronic ballast for lighting a discharge lamp is composed of a chitsuba that converts the DC voltage obtained by rectifying a commercial power supply into an electric power source, and an inverter that receives the output power from the chiyoba and supplies high-frequency power to the discharge lamp. It is configured and responds to changes in the power required by the discharge lamp by adjusting the output power of the chiyotsuba. That is, by changing the frequency of the switching elements constituting the chitsuba, the output of the chitsuba is changed to cope with discharge lamps of different power.
  • the load that is, the situation where the power required by the discharge lamp fluctuates greatly, for example, when one discharge lamp is turned on and when a plurality of discharge lamps are turned on.
  • the inductor that constitutes the chiyotsuba it is necessary to change the inductor that constitutes the chiyotsuba according to this power. For example, as shown in Fig. 2, when one discharge lamp with a rated power of 45 W is lit and when two discharge lamps are lit, the operating frequency of the switching element of Chitsuba at each power supply voltage used. The maximum difference is about twice.
  • the control range of the driving frequency for driving the switching element of the chitsuba and the ON period of the switching element is the controllable range of the IC used for controlling the chitsuba. May be exceeded.
  • the driving frequency of the switching element of the chitsuba becomes too high and the output voltage of the chitsuba becomes excessive.
  • the present invention has been made to solve the above-described problems, and has a large load power as in the case of using one or a plurality of discharge lamps in an electronic ballast of one circuit design. It is an object of the present invention to provide an electronic ballast that can cope with different situations.
  • An electronic ballast according to the present invention operates at least one discharge lamp, and a rectifier configured to rectify an AC voltage to give a DC voltage;
  • An inductor, a capacitor, and a switching element are provided, and the switching element is configured to apply a constant DC voltage across the capacitor by continuously interrupting the DC voltage from the rectifier via the inductor.
  • An inverter comprising at least one switching element, and configured to convert the DC voltage from the chitsuba into a high-frequency AC voltage by on / off controlling the switching element at an appropriate switching frequency;
  • a resonant circuit comprising an inductor and a first capacitor and configured to resonate the high frequency AC voltage and generate a resonant AC voltage that is applied to and operates the at least one discharge lamp; Prepare.
  • the electronic ballast of the present invention is characterized by a power adjustment circuit configured to specify a target power corresponding to a power requirement determined by the at least one discharge lamp, and a resonance current flowing in the resonance circuit. A resonance index is detected, and the output power supplied to the at least one discharge lamp is maintained at the target power by changing the switching frequency of the inverter by feedback control based on the resonance index. And an inverter controller configured.
  • the electronic ballast of the present invention Since the electronic ballast of the present invention has such a configuration, the output power supplied to the discharge lamp is adjusted by feedback control based on the resonance current flowing in the resonance circuit, and the output power is supplied to the load Since the power required is maintained, it is virtually unnecessary to adjust the output voltage of the chiyotsuba, and it is possible to turn on one or more discharge lamps with an electronic ballast according to the same circuit design. .
  • the electronic ballast of the present invention it is possible to further include a temperature sensor configured to detect the ambient temperature.
  • the inverter controller further includes the above-described ambient temperature.
  • the output power supplied to the at least one discharge lamp is maintained at the target power by changing the switching frequency of the inverter. Since the electric power required by the discharge lamp may change due to a change in the ambient temperature, the discharge lamp can be lit more stably by adjusting the output power according to the ambient temperature.
  • the resonance circuit includes a first resonance circuit composed of the inductor and the first capacitor connected in series between the output terminals of the inverter, and between both ends of the first capacitor. It is preferable to provide a second resonance circuit composed of a second capacitor connected in series to the at least one discharge lamp.
  • the inverter controller is preferably configured to change the switching frequency within a predetermined range that changes according to the power demand.
  • the present invention further includes a lighting fixture provided with the electronic ballast defined above and at least one discharge lamp, and a plurality of such lighting fixtures and a management device for managing these lighting fixtures.
  • a lighting system is disclosed.
  • FIG. 1 is a circuit diagram showing an electronic ballast for a discharge lamp according to a first embodiment of the present invention.
  • FIG.2 The conventional technology that changes the frequency of the chiyotsuba according to the number of discharge lamps used.
  • FIG. 3 is a circuit diagram showing another socket structure applied to the above electronic ballast.
  • FIG. 4 is a circuit diagram showing still another socket structure applied to the above electronic ballast.
  • FIG. 5 is a graph illustrating that the inverter operating frequency varies depending on the rated power of the discharge lamp used in the electronic ballast.
  • FIG. 6 is a graph illustrating that the operating frequency of the inverter changes due to changes in ambient temperature in the electronic ballast as above.
  • FIG. 7 is a perspective view showing a lighting fixture incorporating the electronic ballast.
  • FIG. 8 is a perspective view showing a lighting apparatus incorporating the electronic ballast as described above.
  • FIG. 9 is a schematic view showing a lighting system using the same lighting fixture.
  • FIG. 1 An electronic ballast for a discharge lamp according to a first embodiment of the present invention will be described based on the circuit diagram of FIG.
  • This electronic ballast is designed to light two discharge lamps Lai and La2 connected in series. Filter 10, rectifier circuit 20, chopper 30, inverter 60, and chopper controller 40 And an inverter controller 70 and a resonance circuit 80 connected to the inverter 60.
  • the circuit ground Gnd of this electronic ballast is connected to the earth ground EZG through the capacitor C12!
  • An AC voltage from a commercial power source is converted into a pulsating DC voltage by a rectifier circuit 20 using a diode via a filter 10.
  • This pulsating DC voltage is supplied to the smoothing capacitor C4 via the inductor Tl and the diode D1 by the ONZOFF operation of the switching element Q1 of the chopper 30.
  • the ONZOFF timing of the switching element Q1 is controlled by the chopper controller 40, and a substantially constant DC voltage is generated across the smoothing capacitor C4.
  • the DC power output from the chipper 30 is converted to a high frequency by the ONZOFF operation of the switching elements Q 2 and Q 3 of the inverter 60 and supplied to the resonance circuit 80.
  • the resonant circuit 80 includes an inductor T2, a capacitor C7, and a capacitor C8, and discharge lamps Lal and La2 are connected to the output terminal of the resonant circuit. This resonance circuit 80 and the discharge lamps Lal and La2 that are the load are combined and the switching elements Q2 and Q3 are turned on and off. The high-frequency power determined by this is supplied to the discharge lamps Lal and La2.
  • Fig. 1 shows a socket structure that lights two discharge lamps connected in series. When a single discharge lamp is lit, when three discharge lamps are lit, respectively.
  • a socket structure as shown in FIGS. 3 and 4 can be employed.
  • the inverter controller 70 includes a control integrated circuit IC2 for ON / OFF driving control of the switching elements Q2 and Q3 of the inverter 60 at a high frequency. Further, the inverter controller 70 sets a target power determined by the rated power of the discharge lamp used and the number of the discharge lamps used, that is, the basics of the switching elements Q2 and Q3 for generating the target power.
  • a power adjustment circuit 72 that determines the operating frequency and a feedback control circuit 74 that matches the output power to the target power are provided.
  • the feedback control circuit 74 detects the resonance current flowing through the resonance circuit 80, and feedback-controls the output of the inverter 60 based on the resonance current.
  • the chipper 30 includes an inductor Tl, a capacitor C3, a switching element Ql, and a smoothing capacitor C4.
  • a capacitor C3 is connected between the output terminals of the rectifier 20, and the primary winding of the inductor T1 and the switching element Q1 are connected in series between the output terminals of the rectifier 20.
  • the smoothing capacitor C4 is connected in series with the diode D1 across the switching element Q1, and by turning the switching element Q1 on and off, a smoothing DC voltage is accumulated in the smoothing capacitor C4, which becomes the output of the chopper 30.
  • the current detection resistor R1 is connected to the source terminal of the switching element Q1.
  • a chopper controller 40 is provided.
  • the controller 40 is basically equivalent in configuration to a power factor correction control circuit (PFC) using a MC32262 manufactured by Motorola, which is a general-purpose chopper control IC, and the configuration is already well known. Therefore, a detailed description is omitted here, and the configuration of the external parts for the control integrated circuit IC1 will be briefly described below.
  • PFC power factor correction control circuit
  • the smoothed output voltage Vdc is divided by the series circuit of the resistor R11 and the variable resistor VR1 connected in parallel to the smoothing capacitor C4. Voltage is input.
  • a resistor R14 and a capacitor C15 are connected in parallel to the second pin (error amplifier output Z compensation terminal).
  • Pin 3 (multiplier input terminal) receives a voltage obtained by dividing the pulsating voltage of the chitsuba input voltage (voltage across capacitor C3) by resistors R9 and RIO. Capacitor C14 is connected in parallel to pin 3.
  • the output of the secondary winding of the inductor T1 is input to the fifth pin (zero current detection input terminal) via the resistor R12 in order to detect the zero cross point of the current flowing through the inductor T1.
  • Pin 6 (ground terminal) is connected to circuit ground Gnd.
  • the 7th pin (output terminal) is connected to the gate terminal of the switching element Q1 via resistors R3 and R4 in order to drive the switching element Q1.
  • Voltage Vcc divided by resistors R20 and R21 for the power supply of the control circuit is input to pin 8 (power supply voltage terminal) after being smoothed by capacitor C13 and stabilized by Zener diode ZD1. .
  • the control integrated circuit IC1 detects the pulsating current voltage, which is the input voltage of the chopper 30, based on the input of the third pin, and the smoothed output voltage from the chopper 30 is detected. Based on the input of pin 1, the current flowing through switching element Q1 is detected based on the input of pin 4, and the current flowing through inductor T1 is detected based on the input of pin 5. While detecting, drive control of switching element Q1 is performed to generate a predetermined output DC voltage.
  • the inverter 60 receives a DC voltage generated between both ends of the output end of the chopper 30 (the smoothed output voltage Vdc of the capacitor C4) and generates a high-frequency AC output.
  • the drain terminal of the switching element Q2 is connected to the output terminal of the chiyotsuba 30, the drain terminal of the switching element Q3 is connected to the source terminal side of the switching element Q2, and the feedback is connected to the source terminal of the switching element Q3.
  • the detection resistor R2 for the control circuit is connected, and the resistor R2 is connected to the circuit ground Gnd.
  • Each gate of switching element Q2 and Q3 And the output terminal of the inverter 60 are connected to the inverter controller 70.
  • the inverter controller 70 is basically equivalent to the configuration using the L6574 manufactured by STMicro, which is a general-purpose control IC with a built-in operational amplifier, and the configuration is already well known.
  • the explanation of the configuration of the external parts for the control integrated circuit IC2 is briefly described below.
  • Capacitor C17 is connected to pin 1 (preheating time determining capacitor terminal) of control integrated circuit IC2, and resistor R17 is connected to pin 2 (preheating frequency determining resistor terminal) of control integrated circuit IC2.
  • the preheating frequency is determined by the time constant determined by capacitor C 17 and resistor R17.
  • Capacitor C18 is connected to pin 3 (lighting frequency determining capacitor terminal) of control integrated circuit IC2, and variable resistor is connected to pin 4 (lighting frequency determining resistor terminal) of control integrated circuit IC2.
  • VR2 and R22 are connected, and the lighting frequency is determined by the time constant of capacitor C18, variable resistor VR2 and resistor R22. Therefore, the control integrated circuit IC2, the capacitor C18, the variable resistor VR2, and the resistor R22 constitute the power adjustment circuit 72 that sets the target power to be supplied to the discharge lamp, that is, the basic operating frequency, and the variable resistor VR2
  • the target power (basic operating frequency) can be adjusted by changing the resistance value.
  • the integrated circuit for control IC2 pin 5 (internal operational amplifier output terminal), pin 6 (internal operational amplifier input terminal), and pin 7 (internal operational amplifier + terminal) are switching elements of inverter 60
  • the voltage of source resistor R2 of Q3 is connected to pin 6, and the divided voltage of resistor R15 and variable resistor VR3 connected in parallel with Vcc is connected to pin 7.
  • a parallel circuit consisting of capacitor C19 and resistor R19 is connected between pin 5 (internal operational amplifier output terminal) and pin 6 (internal operational amplifier input terminal), and pin 4 (lighting frequency determining resistor)
  • a series circuit of diode D4 and resistor R23 is connected between pin 5 and the 5th pin (output pin of the built-in operational amplifier), and the lighting frequency changes according to the output level of the operational amplifier.
  • Feedback control circuit 74 is configured, and depending on the value of the resonant current flowing to resonant circuit 80 (equivalent to the current flowing through resistor R2), Feedback control is performed so that the output power supplied to the discharge lamps Lai and La2 matches the target power by changing the operating frequency of the tapping elements Q2 and Q3.
  • the 8th and 9th pins of the control integrated circuit IC2 are anomaly detection terminals, and their application will not be described at this time.
  • Pin 10 (ground terminal) of control integrated circuit IC2 is connected to circuit ground Gnd.
  • Pin 11 (lower-stage switching element drive signal output terminal) of control integrated circuit IC2 is connected to the gate terminal of switching element Q3 via resistors R7 and R8.
  • Pin 12 control IC power supply terminal
  • Pin 14 upper switching element drive signal reference potential terminal
  • integrated circuit IC2 for control is connected to the connection point between the source terminal of switching element Q2 and the drain terminal of switching element Q3.
  • Pin 15 (upper switching element drive signal output terminal) of control integrated circuit IC2 is connected to the gate terminal of switching element Q2 via resistors R5 and R6.
  • a capacitor C20 is connected between the control integrated circuit IC2 and the 16th pin (upper switching element drive power supply terminal) between the 14th pin.
  • the control integrated circuit IC2 drives the switching elements Q2 and Q3 of the inverter 60 with the set preheating time and preheating frequency, and turns on the discharge lamp. Thereafter, based on the lighting frequency set in the power adjustment circuit 72, a signal corresponding to the current flowing through the switching element Q3 is input to the feedback control circuit 74, and the operating frequency of the inverter 60 is corrected. Output power that matches the target power can be obtained.
  • the electronic ballast of the present embodiment includes a preheating circuit 90 that preheats the filament of the discharge lamp in addition to the resonance circuit 80.
  • the resonance circuit 80 includes a resonance inductor T2 and a resonance capacitor C7 connected in series to the output terminal (between Vs and Gnd) of the inverter 60.
  • a capacitor C8 for blocking DC is connected to the discharge lamp at both ends of the capacitor C7. Connected in series with Lal and La2.
  • Inductor T2 and capacitor C7 form the first resonant circuit.
  • the capacitor C8 is connected in series with the inductor T2 and the discharge lamp between the output ends of the inverter 60 to form a second resonance circuit, and the capacitance ratio of the capacitor C8 to the capacitor C7 is C7. ⁇ C8.
  • the preheating circuit 90 includes a resonant inductor T3, a capacitor C6, and a switching element Q4.
  • the primary power line of the resonant inductor T3 is connected to both ends of the switching element Q3 of the inverter 60 (Vs— Gnd).
  • the non-common side filaments of the discharge lamps Lai and La2 are connected to the two secondary windings of the resonance inductor T3 through capacitors C9 and C11, respectively.
  • the other secondary winding provided in the resonant inductor T3 is connected to the common side filament of the discharge lamps Lai and La2 via the capacitor C10.
  • the operation of the resonance circuit 80 varies depending on the operation of the inverter 60.
  • the resonance curve in resonant circuit 80 is as shown in Fig. 6 (a).
  • two types of discharge lamp lamp A FHF32 rated power 32W
  • lamp B FL40ssZ36—rated power 40W
  • the inverter controller 70 determines the operating frequency of the inverter 60 by adjusting the preheating mode (and the start mode) and the lighting mode (minimum frequency fmin and feedback control circuit) from when the commercial power is applied until it is lit.
  • the discharge lamp is turned on.
  • the feedback control circuit 74 changes the operating frequency of the inverter 60 based on the current flowing through the switching element Q3 (equivalent to the current flowing through the resonance circuit 80).
  • the operating frequency of the inverter 60 becomes ⁇ ⁇ between the two discharge lamps B with different loads, and the output power changes AW accordingly.
  • the optimum output power is provided according to the rated power of the discharge lamp.
  • the target power determined by the power adjustment circuit 72 is changed by the feedback control circuit 74 changing the operating frequency of the inverter 60 according to the amount of current flowing to the resonance circuit. An output voltage that matches is obtained.
  • the range in which the operating frequency varies is set to a range according to the target power to prevent the operating frequency from changing excessively and switching loss at switching elements Q2 and Q3 from increasing excessively. It becomes like this.
  • the inverter 60 is fed so that an appropriate output power corresponding to the load power can be obtained.
  • the chopper 30 that supplies the DC voltage to the inverter 60 can be basically adjusted so as to give a constant output voltage.
  • the control integrated circuit IC1 used for the chitsuba controller 40 It is only necessary to adjust the frequency in the operating frequency range of the switching element Q1, and there is no need to change the circuit of the chitsuba 30 itself, and it is possible to cope with different load powers with one electronic circuit last.
  • the resonance circuit 80 In order to detect the resonance current flowing to the resonance circuit 80, in the illustrated embodiment, it is possible to obtain the same effect if the force is detected from the source resistance of the switching element Q3 or any other equivalent method. Needless to say.
  • the combined current of lamp current and capacitor C7 can be used as the equivalent of resonance current.
  • a temperature characteristic resistor TC which is a temperature sensor, is added to a series resistor circuit composed of a resistor R15 and a variable resistor VR3 that provide a reference potential of the feedback control circuit 74 of the inverter controller 70. Compensate for changes in the impedance of the discharge lamp based on changes in the ambient temperature and keep the output power constant!
  • control integrated circuits that are different in power from the chopper controller 40 and the inverter controller 70 are used, but an integrated circuit in which these control integrated circuits are configured on one chip is used. It is also possible to use it.
  • FIGS. 7 and 8 show an example of a lighting fixture L incorporating the above-described electronic ballast for a discharge lamp.
  • the electronic ballast is configured by mounting the above-described various electronic components on the printed circuit board 110, and is built in the case 100, and AC power is supplied from the input terminal block 120.
  • a lamp socket 102 is formed on the lower surface of the case 100, and output power is supplied to the discharge lamps Lal and La2 coupled to the lamp socket 102.
  • FIG. 9 shows a configuration of a lighting system using a plurality of the above-described lighting fixtures L.
  • This lighting system includes a management device M having a human body sensor and a programmable system.
  • the management device M can be operated efficiently by a function that turns on when a person is detected by the human body sensor, turns off when a person is absent, and turns off partly depending on the time of day. Yes, energy saving can be realized.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

An electronic ballast for operating at least one discharge lamp, comprising a chopper for applying a constant DC voltage, an inverter arranged to convert the DC voltage from the chopper into a high frequency AC voltage, and a resonance circuit for applying the high frequency AC voltage while resonating to at least one discharge lamp thus generating a resonant AC voltage for operating it. The electronic ballast further comprises a power regulation circuit arranged to specify a target power corresponding to a power request determined by at least one discharge lamp, and an inverter controller for sustaining the output power to the discharge lamp at the target power level by varying the switching frequency of the inverter by feedback control based on a resonance current flowing through the resonance circuit.

Description

明 細 書  Specification
放電ランプ用電子バラスト、この電子バラストを用いた照明器具、及びこの 照明器具を備えた照明システム  Electronic ballast for discharge lamp, lighting fixture using the electronic ballast, and lighting system including the lighting fixture
技術分野  Technical field
[0001] 本発明は、インバータを用いて一本若しくは複数本の放電ランプを高周波点灯させ る電子バラスト、並びにこれを用いた照明器具および照明システムに関するものであ る。  The present invention relates to an electronic ballast that uses an inverter to light one or more discharge lamps at a high frequency, and a lighting fixture and a lighting system using the electronic ballast.
背景技術  Background art
[0002] 一般に、放電ランプを点灯させる電子バラストは、商用電源を整流した DC電圧を電 力変換するチヨツバと、このチヨツバからの出力電力を受けて放電ランプに高周波電 力を供給するインバータとで構成されており、放電ランプが必要とする電力の変化に 対しては、チヨツバの出力電力を調整することで対応している。即ち、チヨツバを構成 するスイッチング素子の周波数を変化させることで、チヨツバの出力を変化させて、異 なる電力の放電ランプに対応することが行われて 、る。  [0002] Generally, an electronic ballast for lighting a discharge lamp is composed of a chitsuba that converts the DC voltage obtained by rectifying a commercial power supply into an electric power source, and an inverter that receives the output power from the chiyoba and supplies high-frequency power to the discharge lamp. It is configured and responds to changes in the power required by the discharge lamp by adjusting the output power of the chiyotsuba. That is, by changing the frequency of the switching elements constituting the chitsuba, the output of the chitsuba is changed to cope with discharge lamps of different power.
[0003] し力しながら、負荷、即ち、放電ランプが必要とする電力が大きく変動する状況、例 えば、 1本の放電ランプを点灯させる場合と、複数本の放電ランプを点灯させる場合 のように、負荷電力が大きく異なる状況では、チヨツバを構成するインダクタもこの電 力に応じて変えることが必要となる。例えば、図 2に示すように、定格電力が 45Wの放 電ランプを一本点灯させる場合と、同放電ランプを 2本点灯させる場合は、それぞれ 使用する電源電圧において、チヨツバのスイッチング素子の動作周波数が最大で 2倍 程度の差が生じる。このような状況下において、チヨツバの出力を調整するには限度 があり、チヨツバのスイッチング素子を駆動する駆動周波数やスイッチング素子の ON 期間の制御範囲が、チヨツバの制御に使用する ICの制御可能範囲を超えてしまうこと がある。例えば、放電ランプ側で必要とする電力が低い場合は、チヨツバのスィッチン グ素子の駆動周波数が高くなりすぎて、チヨツバの出力電圧が過大となる。これを防 ぐために、チヨッパを構成するインダクタにインダクタンスの大きいものを使用して、動 作周波数を低い範囲に抑えることが考えられるが、この場合は、負荷電力が大きくな ると、スイッチング素子の ON時間を大きくしても、チヨツバの出力電圧が不足すること があり、インバータが必要とする電力を確保することが困難となる。このため、一つの 回路設計の電子バラストで、 1本や複数本の放電ランプを点灯させることは実質的に 不可能であり、放電ランプ側での電力に応じて、チヨツバを個別に設計しなければな らず、使用するインダクタについても、異なるインダクタンスのものを用意することが必 要である問題がある。 [0003] However, the load, that is, the situation where the power required by the discharge lamp fluctuates greatly, for example, when one discharge lamp is turned on and when a plurality of discharge lamps are turned on. In addition, in situations where the load power is significantly different, it is necessary to change the inductor that constitutes the chiyotsuba according to this power. For example, as shown in Fig. 2, when one discharge lamp with a rated power of 45 W is lit and when two discharge lamps are lit, the operating frequency of the switching element of Chitsuba at each power supply voltage used. The maximum difference is about twice. Under such circumstances, there is a limit to adjusting the output of the chitsuba, and the control range of the driving frequency for driving the switching element of the chitsuba and the ON period of the switching element is the controllable range of the IC used for controlling the chitsuba. May be exceeded. For example, when the electric power required on the discharge lamp side is low, the driving frequency of the switching element of the chitsuba becomes too high and the output voltage of the chitsuba becomes excessive. In order to prevent this, it is conceivable to use a high inductance inductor for the chopper, and to keep the operating frequency in a low range. As a result, even if the ON time of the switching element is increased, the output voltage of the chiyotsuba may be insufficient, making it difficult to secure the power required by the inverter. For this reason, it is virtually impossible to turn on one or more discharge lamps with an electronic ballast of a single circuit design, and it is necessary to individually design the chitsuba according to the power on the discharge lamp side. However, there is a problem that it is necessary to prepare inductors with different inductances.
発明の開示  Disclosure of the invention
[0004] 本発明は、上記の問題点を解決するためになされたものであり、一つの回路設計 の電子バラストで 1本や複数本の放電ランプを使用する場合のように、負荷電力が大 きく異なる状況に対応できる電子バラストを提供することを本発明の課題とするもので ある。  [0004] The present invention has been made to solve the above-described problems, and has a large load power as in the case of using one or a plurality of discharge lamps in an electronic ballast of one circuit design. It is an object of the present invention to provide an electronic ballast that can cope with different situations.
[0005] 本発明に係る電子バラストは、少なくとも 1本の放電ランプを動作させるものであり、 AC電圧を整流して DC電圧を与える用に構成された整流器と、  [0005] An electronic ballast according to the present invention operates at least one discharge lamp, and a rectifier configured to rectify an AC voltage to give a DC voltage;
インダクタ、コンデンサ、及びスイッチング素子を備え、このスイッチング素子が上記 整流器からの上記インダクタを介した DC電圧を継続的に断続することにより上記コン デンサの両端に一定の DC電圧を与えるように構成されたチヨツバと、  An inductor, a capacitor, and a switching element are provided, and the switching element is configured to apply a constant DC voltage across the capacitor by continuously interrupting the DC voltage from the rectifier via the inductor. Chiyotsuba,
少なくとも一つのスイッチング素子を備え、このスイッチング素子を適宜のスィッチン グ周波数でオン'オフ制御することで上記チヨツバからの DC電圧を高周波 AC電圧に 変換するように構成されたインバータと、  An inverter comprising at least one switching element, and configured to convert the DC voltage from the chitsuba into a high-frequency AC voltage by on / off controlling the switching element at an appropriate switching frequency;
インダクタと第 1のコンデンサとを備え、上記の高周波 AC電圧を共振させて上記少な くとも一つの放電ランプに印加されてこれを動作させる共振 AC電圧を発生させるよう に構成された共振回路とを備える。  A resonant circuit comprising an inductor and a first capacitor and configured to resonate the high frequency AC voltage and generate a resonant AC voltage that is applied to and operates the at least one discharge lamp; Prepare.
[0006] 本発明の電子バラストの特徴は、上記少なくとも一つの放電ランプによって決まる 電力要求に対応する目標電力を指定するように構成された電力調整回路と、上記共 振回路に流れる共振電流を示す共振指標を検知し、この共振指標に基づいて上記 インバータのスイッチング周波数をフィードバック制御によって変化させることにより上 記の少なくとも一つの放電ランプに供給される出力電力を上記の目標電力に維持す るように構成されたインバータコントローラとを備えたことである。 [0007] このような構成を有するため、本発明の電子バラストでは、共振回路に流れる共振 電流に基づくフィードバック制御により、放電ランプに供給される出力電力を調整して 、この出力電力を、負荷が要求する電力に維持するものであるため、チヨツバの出力 電圧の調整が実質的に不要となり、同一の回路設計に係る電子バラストで 1本ゃ複 数本の放電ランプを点灯させることが可能となる。 [0006] The electronic ballast of the present invention is characterized by a power adjustment circuit configured to specify a target power corresponding to a power requirement determined by the at least one discharge lamp, and a resonance current flowing in the resonance circuit. A resonance index is detected, and the output power supplied to the at least one discharge lamp is maintained at the target power by changing the switching frequency of the inverter by feedback control based on the resonance index. And an inverter controller configured. [0007] Since the electronic ballast of the present invention has such a configuration, the output power supplied to the discharge lamp is adjusted by feedback control based on the resonance current flowing in the resonance circuit, and the output power is supplied to the load Since the power required is maintained, it is virtually unnecessary to adjust the output voltage of the chiyotsuba, and it is possible to turn on one or more discharge lamps with an electronic ballast according to the same circuit design. .
[0008] 本発明の電子バラストにおいては、更に周囲温度を検出するように構成された温度 センサを備えることが可能であり、この場合、上記のインバータコントローラは、更に上 記の周囲温度に基づいて、上記インバータのスイッチング周波数を変化させることに より上記の少なくとも一つの放電ランプに供給される出力電力を上記の目標電力に 維持するように構成されることが好ましい。周囲温度の変化により放電ランプが要求 する電力に変化が生じることがあるため、周囲温度に応じて出力電力を調整すること で、より一層安定した放電ランプの点灯を行うことが可能となる。  [0008] In the electronic ballast of the present invention, it is possible to further include a temperature sensor configured to detect the ambient temperature. In this case, the inverter controller further includes the above-described ambient temperature. Preferably, the output power supplied to the at least one discharge lamp is maintained at the target power by changing the switching frequency of the inverter. Since the electric power required by the discharge lamp may change due to a change in the ambient temperature, the discharge lamp can be lit more stably by adjusting the output power according to the ambient temperature.
[0009] 更に、上記の共振回路は、上記インバータの出力端間に直列接続された上記イン ダクタと上記第 1コンデンサとで構成される第 1共振回路と、上記第 1コンデンサの両 端間で上記少なくとも一つの放電ランプに直列に接続される第 2のコンデンサで構成 される第 2共振回路とを備えるように構成することが好ま 、。このような構成の共振 回路を用いることで、負荷に応じた適切な出力電力の制御を行うことができ、より一層 安定した放電ランプの点灯を行うことが可能となる。  [0009] Further, the resonance circuit includes a first resonance circuit composed of the inductor and the first capacitor connected in series between the output terminals of the inverter, and between both ends of the first capacitor. It is preferable to provide a second resonance circuit composed of a second capacitor connected in series to the at least one discharge lamp. By using the resonance circuit having such a configuration, it is possible to control the output power appropriately according to the load, and it is possible to light the discharge lamp more stably.
[0010] また、上記のインバータコントローラは上記のスイッチング周波数を上記の電力要 求に応じて変化する所定の範囲内で変化させるように構成することが好ましい。この 構成を採用することで、負荷に応じた適切な出力制御を行うことが出来、安定した放 電ランプの点灯を行うことが出来る。  [0010] In addition, the inverter controller is preferably configured to change the switching frequency within a predetermined range that changes according to the power demand. By adopting this configuration, it is possible to perform appropriate output control according to the load, and to stably turn on the discharge lamp.
[0011] 本発明は、更に、上記で規定された電子バラストと少なくとも一つの放電ランプを備 えた照明器具や、このような複数の照明器具とこれらの照明器具を管理する管理装 置を備えた照明システムを開示する。  [0011] The present invention further includes a lighting fixture provided with the electronic ballast defined above and at least one discharge lamp, and a plurality of such lighting fixtures and a management device for managing these lighting fixtures. A lighting system is disclosed.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]本発明の第 1の実施形態に係る放電ランプ用電子バラストを示す回路図。  FIG. 1 is a circuit diagram showing an electronic ballast for a discharge lamp according to a first embodiment of the present invention.
[図 2]使用する放電ランプの本数によってチヨツバの周波数を変化させる従来技術の 問題点を示すグラフ図。 [Fig.2] The conventional technology that changes the frequency of the chiyotsuba according to the number of discharge lamps used. The graph which shows a problem.
[図 3]同上の電子バラストに適用される他のソケット構造を示す回路図。  FIG. 3 is a circuit diagram showing another socket structure applied to the above electronic ballast.
[図 4]同上の電子バラストに適用される更に他のソケット構造を示す回路図。  FIG. 4 is a circuit diagram showing still another socket structure applied to the above electronic ballast.
[図 5]同上の電子バラストにおいて使用する放電ランプの定格電力の違いによってィ ンバータの動作周波数が変化することを説明するグラフ図。  FIG. 5 is a graph illustrating that the inverter operating frequency varies depending on the rated power of the discharge lamp used in the electronic ballast.
[図 6]同上の電子バラストにおいて周囲温度の変化によってインバータの動作周波数 が変化することを説明するグラフ図。  FIG. 6 is a graph illustrating that the operating frequency of the inverter changes due to changes in ambient temperature in the electronic ballast as above.
[図 7]同上の電子バラストを内蔵した照明器具を示す斜視図。  FIG. 7 is a perspective view showing a lighting fixture incorporating the electronic ballast.
[図 8]同上の電子バラストを内蔵した照明器具を示す斜視図。  FIG. 8 is a perspective view showing a lighting apparatus incorporating the electronic ballast as described above.
[図 9]図 9は同上の照明器具を使用した照明システムを示す概略図。  FIG. 9 is a schematic view showing a lighting system using the same lighting fixture.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 第 1の実施形態  [0013] First Embodiment
本発明の第 1の実施形態に係る放電ランプ用電子バラストについて、図 1の回路図 に基づいて説明する。この電子バラストは、 2本の直列に接続された放電ランプ Lai、 La2を点灯させるように設計され、フィルタ 10と、整流回路 20と、チヨッパ 30と、イン ノ ータ 60と、チヨッパコントローラ 40と、インバータコントローラ 70と、インバータ 60に 接続された共振回路 80とで構成される。この電子バラストの回路グランド Gndはコン デンサ C 12を介して対地アース EZGに接続されて!、る。  An electronic ballast for a discharge lamp according to a first embodiment of the present invention will be described based on the circuit diagram of FIG. This electronic ballast is designed to light two discharge lamps Lai and La2 connected in series. Filter 10, rectifier circuit 20, chopper 30, inverter 60, and chopper controller 40 And an inverter controller 70 and a resonance circuit 80 connected to the inverter 60. The circuit ground Gnd of this electronic ballast is connected to the earth ground EZG through the capacitor C12!
[0014] 商用電源からの交流電圧は、フィルタ 10を介して、ダイオードによる整流回路 20に より脈流 DC電圧に変換される。この脈流 DC電圧はチヨッパ 30のスイッチング素子 Q 1の ONZOFF動作により、インダクタ Tl、ダイオード D1を介して平滑コンデンサ C4 へ供給される。スイッチング素子 Q1の ONZOFFタイミングはチヨッパコントローラ 40 により制御され、平滑コンデンサ C4の両端に略一定な DC電圧が発生する。  An AC voltage from a commercial power source is converted into a pulsating DC voltage by a rectifier circuit 20 using a diode via a filter 10. This pulsating DC voltage is supplied to the smoothing capacitor C4 via the inductor Tl and the diode D1 by the ONZOFF operation of the switching element Q1 of the chopper 30. The ONZOFF timing of the switching element Q1 is controlled by the chopper controller 40, and a substantially constant DC voltage is generated across the smoothing capacitor C4.
[0015] チヨッパ 30から出力される DC電力は、インバータ 60のスイッチング素子 Q2、 Q3の ONZOFF動作により、高周波に変換されて、共振回路 80へ供給される。共振回路 80はインダクタ T2とコンデンサ C7、コンデンサ C8により構成され、共振回路の出力 端に放電ランプ Lal、 La2が接続される。この共振回路 80及び負荷である放電ラン プ Lal、 La2の合成インピーダンスと、スイッチング素子 Q2、 Q3の ONZOFFによつ て決まる高周波電力が放電ランプ Lal、 La2に供給される。 The DC power output from the chipper 30 is converted to a high frequency by the ONZOFF operation of the switching elements Q 2 and Q 3 of the inverter 60 and supplied to the resonance circuit 80. The resonant circuit 80 includes an inductor T2, a capacitor C7, and a capacitor C8, and discharge lamps Lal and La2 are connected to the output terminal of the resonant circuit. This resonance circuit 80 and the discharge lamps Lal and La2 that are the load are combined and the switching elements Q2 and Q3 are turned on and off. The high-frequency power determined by this is supplied to the discharge lamps Lal and La2.
[0016] 図 1では、 2本の直列接続される放電ランプを点灯させるようなソケット構造を示して いる力 1本の放電ランプを点灯させる場合、 3本の放電ランプを点灯させる場合は、 それぞれ、図 3、図 4に示すようなソケット構造を採用することができる。  [0016] Fig. 1 shows a socket structure that lights two discharge lamps connected in series. When a single discharge lamp is lit, when three discharge lamps are lit, respectively. A socket structure as shown in FIGS. 3 and 4 can be employed.
[0017] インバータコントローラ 70は、インバータ 60のスイッチング素子 Q2、 Q3を高周波で ONZOFF駆動制御するための制御用集積回路 IC2を備える。更に、このインバー タコントローラ 70は、使用する放電ランプの定格電力及び使用する放電ランプの本 数によって決まる目標電力を設定する、即ち、この目標電力を発生させるためのスィ ツチング素子 Q2、 Q3の基本動作周波数を決定する電力調整回路 72と、出力電力を この目標電力に一致させるフィードバック制御回路 74を備える。フィードバック制御 回路 74は、上記の共振回路 80へ流れる共振電流を検出して、この共振電流に基づ いてインバータ 60の出力をフィードバック制御する。  The inverter controller 70 includes a control integrated circuit IC2 for ON / OFF driving control of the switching elements Q2 and Q3 of the inverter 60 at a high frequency. Further, the inverter controller 70 sets a target power determined by the rated power of the discharge lamp used and the number of the discharge lamps used, that is, the basics of the switching elements Q2 and Q3 for generating the target power. A power adjustment circuit 72 that determines the operating frequency and a feedback control circuit 74 that matches the output power to the target power are provided. The feedback control circuit 74 detects the resonance current flowing through the resonance circuit 80, and feedback-controls the output of the inverter 60 based on the resonance current.
[0018] ここで、チヨッパ 30とその制御回路であるチヨッパコントローラ 40について、構成及 び動作を簡単に説明する。チヨッパ 30はインダクタ Tl、コンデンサ C3、スイッチング 素子 Ql、平滑コンデンサ C4を備える。整流器 20の出力端間にコンデンサ C3が接続 されると共に、インダクタ T1の 1次卷線とスイッチング素子 Q1とが整流器 20の出力端 間に直列に接続される。平滑コンデンサ C4はスイッチング素子 Q1の両端間でダイォ ード D1と直列に接続され、スイッチング素子 Q 1をオン ·オフすることで平滑コンデンサ C4に平滑 DC電圧を蓄積し、これがチヨッパ 30の出力となる。スイッチング素子 Q1の ソース端子には電流検出抵抗 R1が接続される。  [0018] Here, the configuration and operation of the chopper 30 and the chopper controller 40, which is its control circuit, will be briefly described. The chipper 30 includes an inductor Tl, a capacitor C3, a switching element Ql, and a smoothing capacitor C4. A capacitor C3 is connected between the output terminals of the rectifier 20, and the primary winding of the inductor T1 and the switching element Q1 are connected in series between the output terminals of the rectifier 20. The smoothing capacitor C4 is connected in series with the diode D1 across the switching element Q1, and by turning the switching element Q1 on and off, a smoothing DC voltage is accumulated in the smoothing capacitor C4, which becomes the output of the chopper 30. . The current detection resistor R1 is connected to the source terminal of the switching element Q1.
[0019] このチヨッパ 30のスイッチング素子 Q1を最適に動作させるためにチヨッパコントロー ラ 40が設けられている。このコントローラ 40は、力率改善制御回路(PFC)として、汎 用のチヨッパ制御用 ICであるモトローラ社製の MC32262を用いたものと基本的に等 価の構成であり、その構成はすでに周知であるのでここでは詳しい説明は省略し、制 御用集積回路 IC1に対する外付け部品の構成を以下に簡単に説明する。  [0019] In order to optimally operate the switching element Q1 of the chopper 30, a chopper controller 40 is provided. The controller 40 is basically equivalent in configuration to a power factor correction control circuit (PFC) using a MC32262 manufactured by Motorola, which is a general-purpose chopper control IC, and the configuration is already well known. Therefore, a detailed description is omitted here, and the configuration of the external parts for the control integrated circuit IC1 will be briefly described below.
[0020] 制御用集積回路 IC1の 1番ピン(出力電圧帰還端子)には、平滑用のコンデンサ C 4に並列接続された抵抗 R11と可変抵抗 VR1の直列回路によって平滑出力電圧 Vd cを分圧した電圧が入力される。 [0021] 2番ピン (誤差アンプ出力 Z補償端子)には抵抗 R14とコンデンサ C15とが並列接 続される。 [0020] On the first pin (output voltage feedback terminal) of the control integrated circuit IC1, the smoothed output voltage Vdc is divided by the series circuit of the resistor R11 and the variable resistor VR1 connected in parallel to the smoothing capacitor C4. Voltage is input. [0021] A resistor R14 and a capacitor C15 are connected in parallel to the second pin (error amplifier output Z compensation terminal).
[0022] 3番ピン (マルチプライヤ入力端子)にはチヨツバ入力電圧 (コンデンサ C3の両端電 圧)の脈流電圧を抵抗 R9、 RIOによって分圧した電圧が入力される。 3番ピンにはコ ンデンサ C 14が並列接続されて 、る。  [0022] Pin 3 (multiplier input terminal) receives a voltage obtained by dividing the pulsating voltage of the chitsuba input voltage (voltage across capacitor C3) by resistors R9 and RIO. Capacitor C14 is connected in parallel to pin 3.
[0023] 4番ピン (電流検知入力端子)にはスイッチング素子 Q1に流れる電流を検出するた めに、抵抗 R1で得られた電圧が抵抗 R13を介して入力される。 4番ピンにはコンデン サ C16が並列接続されている。 [0023] In order to detect the current flowing through the switching element Q1 to the fourth pin (current detection input terminal), the voltage obtained by the resistor R1 is input via the resistor R13. Capacitor C16 is connected in parallel to pin 4.
[0024] 5番ピン (ゼロ電流検出入力端子)にはインダクタ T1を流れる電流のゼロクロス点を 検出するためにインダクタ T1の二次卷線の出力が抵抗 R12を介して入力される。 [0024] The output of the secondary winding of the inductor T1 is input to the fifth pin (zero current detection input terminal) via the resistor R12 in order to detect the zero cross point of the current flowing through the inductor T1.
[0025] 6番ピン (グランド端子)は回路グランド Gndに接続される。 [0025] Pin 6 (ground terminal) is connected to circuit ground Gnd.
[0026] 7番ピン(出力端子)にはスイッチング素子 Q1を駆動するために、抵抗 R3、 R4を介 してスイッチング素子 Q1のゲート端子が接続されている。  [0026] The 7th pin (output terminal) is connected to the gate terminal of the switching element Q1 via resistors R3 and R4 in order to drive the switching element Q1.
[0027] 8番ピン (電源電圧端子)には制御回路の電源用として抵抗 R20、 R21にて分圧さ れた電圧 Vccが、コンデンサ C13で平滑されツエナーダイオード ZD1で安定化され て入力される。 [0027] Voltage Vcc divided by resistors R20 and R21 for the power supply of the control circuit is input to pin 8 (power supply voltage terminal) after being smoothed by capacitor C13 and stabilized by Zener diode ZD1. .
[0028] 以上のように構成することにより、制御用集積回路 IC1はチヨツバ 30の入力電圧で ある脈流電圧を 3番ピンの入力に基づ 、て検出し、チヨッパ 30からの平滑出力電圧 を 1番ピンの入力に基づ 、て検出し、スイッチング素子 Q1に流れる電流を 4番ピンの 入力に基づ 、て検出し、さらにインダクタ T1に流れる電流を 5番ピンの入力に基づ ヽ て検出しながら、スイッチング素子 Q1の駆動制御を行って、所定の出力 DC電圧を発 生させる。  [0028] By configuring as described above, the control integrated circuit IC1 detects the pulsating current voltage, which is the input voltage of the chopper 30, based on the input of the third pin, and the smoothed output voltage from the chopper 30 is detected. Based on the input of pin 1, the current flowing through switching element Q1 is detected based on the input of pin 4, and the current flowing through inductor T1 is detected based on the input of pin 5. While detecting, drive control of switching element Q1 is performed to generate a predetermined output DC voltage.
[0029] インバータ 60は、チヨッパ 30の出力端(コンデンサ C4の平滑出力電圧 Vdc)の両 端間に発生する DC電圧を入力として、高周波 AC出力を発生させる。チヨツバ 30の出 力端には、スイッチング素子 Q2のドレイン端子が接続され、スイッチング素子 Q2のソ ース端子側にはスイッチング素子 Q3のドレイン端子が接続され、さらにスイッチング 素子 Q3のソース端子にはフィードバック制御回路用の検出抵抗 R2が接続されて、 抵抗 R2は回路グランド Gndへと接続されている。スイッチング素子 Q2、 Q3の各ゲー ト端子及びインバータ 60の出力端はインバータコントローラ 70へ接続される。 [0029] The inverter 60 receives a DC voltage generated between both ends of the output end of the chopper 30 (the smoothed output voltage Vdc of the capacitor C4) and generates a high-frequency AC output. The drain terminal of the switching element Q2 is connected to the output terminal of the chiyotsuba 30, the drain terminal of the switching element Q3 is connected to the source terminal side of the switching element Q2, and the feedback is connected to the source terminal of the switching element Q3. The detection resistor R2 for the control circuit is connected, and the resistor R2 is connected to the circuit ground Gnd. Each gate of switching element Q2 and Q3 And the output terminal of the inverter 60 are connected to the inverter controller 70.
[0030] インバータコントローラ 70は、オペアンプ内蔵の汎用の制御用 ICである STマイクロ 社製の L6574を用いたものと基本的に等価の構成であり、その構成はすでに周知で あるので、ここでは詳しい説明は省略し、制御用集積回路 IC2に対する外付け部品 の構成を以下に簡単に説明する。  [0030] The inverter controller 70 is basically equivalent to the configuration using the L6574 manufactured by STMicro, which is a general-purpose control IC with a built-in operational amplifier, and the configuration is already well known. The explanation of the configuration of the external parts for the control integrated circuit IC2 is briefly described below.
[0031] 制御用集積回路 IC2の 1番ピン(予熱時間決定用コンデンサ端子)にはコンデンサ C17が接続され、制御用集積回路 IC2の 2番ピン (予熱周波数決定用抵抗端子)に は抵抗 R17が接続され、コンデンサ C 17及び抵抗 R17で決定される時定数により予 熱時の周波数が決定される。  [0031] Capacitor C17 is connected to pin 1 (preheating time determining capacitor terminal) of control integrated circuit IC2, and resistor R17 is connected to pin 2 (preheating frequency determining resistor terminal) of control integrated circuit IC2. The preheating frequency is determined by the time constant determined by capacitor C 17 and resistor R17.
[0032] 制御用集積回路 IC2の 3番ピン(点灯周波数決定用コンデンサ端子)にはコンデン サ C18が接続され、制御用集積回路 IC2の 4番ピン (点灯周波数決定用抵抗端子) には可変抵抗 VR2及び R22が接続され、コンデンサ C 18及び可変抵抗 VR2及び抵 抗 R22の時定数で点灯時周波数が決定される。従って、制御用集積回路 IC2と、コ ンデンサ C18と、可変抵抗 VR2と、抵抗 R22とで、放電ランプに供給する目標電力、 即ち基本動作周波数を設定する電力調整回路 72が構成され、可変抵抗 VR2の抵抗 値を変更させることで、目標電力 (基本動作周波数)が調整できる。  [0032] Capacitor C18 is connected to pin 3 (lighting frequency determining capacitor terminal) of control integrated circuit IC2, and variable resistor is connected to pin 4 (lighting frequency determining resistor terminal) of control integrated circuit IC2. VR2 and R22 are connected, and the lighting frequency is determined by the time constant of capacitor C18, variable resistor VR2 and resistor R22. Therefore, the control integrated circuit IC2, the capacitor C18, the variable resistor VR2, and the resistor R22 constitute the power adjustment circuit 72 that sets the target power to be supplied to the discharge lamp, that is, the basic operating frequency, and the variable resistor VR2 The target power (basic operating frequency) can be adjusted by changing the resistance value.
[0033] 制御用集積回路 IC2の 5番ピン(内蔵オペアンプの出力端子)及び 6番ピン(内蔵 オペアンプの入力端子)、 7番ピン(内蔵オペアンプの +端子)については、インバー タ 60のスイッチング素子 Q3のソース抵抗 R2の電圧が 6番ピンに接続され、 Vccと並 列に接続された抵抗 R15と可変抵抗 VR3の分圧電圧が 7番ピンに接続される。また 、 5番ピン(内蔵オペアンプの出力端子)と 6番ピン(内蔵オペアンプの入力端子)の 間にコンデンサ C 19及び抵抗 R19からなる並列回路が接続され、 4番ピン (点灯周 波数決定用抵抗端子)と 5番ピン(内蔵オペアンプの出力端子)の間にはダイオード D4と抵抗 R23の直列回路が接続され、オペアンプの出力レベルに応じて点灯周波 数が変化する構成となっている。即ち、制御用集積回路 IC2に内蔵されるオペアンプ と、この集積回路 IC2の 5番ピン、 6番ピン、 7番ピンに接続される抵抗 R21、ダイオード D4、コンデンサ C19、及び抵抗 R19にで、上記のフィードバック制御回路 74が構成さ れ、共振回路 80へ流れる共振電流の値 (抵抗 R2を流れる電流と等価)に応じて、スィ ツチング素子 Q2、 Q3の動作周波数を変更させることで、放電ランプ Lai、 La2に供給 する出力電力を、 目標電力に一致させるようにフィードバック制御が行われる。なお、 制御用集積回路 IC2の 8番ピン、 9番ピンは異常検出端子であり、その応用について 今回は説明を省略する。 [0033] The integrated circuit for control IC2 pin 5 (internal operational amplifier output terminal), pin 6 (internal operational amplifier input terminal), and pin 7 (internal operational amplifier + terminal) are switching elements of inverter 60 The voltage of source resistor R2 of Q3 is connected to pin 6, and the divided voltage of resistor R15 and variable resistor VR3 connected in parallel with Vcc is connected to pin 7. Also, a parallel circuit consisting of capacitor C19 and resistor R19 is connected between pin 5 (internal operational amplifier output terminal) and pin 6 (internal operational amplifier input terminal), and pin 4 (lighting frequency determining resistor) A series circuit of diode D4 and resistor R23 is connected between pin 5 and the 5th pin (output pin of the built-in operational amplifier), and the lighting frequency changes according to the output level of the operational amplifier. That is, the operational amplifier built in the control integrated circuit IC2 and the resistor R21, the diode D4, the capacitor C19, and the resistor R19 connected to the 5th pin, the 6th pin, and the 7th pin of the integrated circuit IC2 Feedback control circuit 74 is configured, and depending on the value of the resonant current flowing to resonant circuit 80 (equivalent to the current flowing through resistor R2), Feedback control is performed so that the output power supplied to the discharge lamps Lai and La2 matches the target power by changing the operating frequency of the tapping elements Q2 and Q3. Note that the 8th and 9th pins of the control integrated circuit IC2 are anomaly detection terminals, and their application will not be described at this time.
[0034] 制御用集積回路 IC2の 10番ピン (グランド端子)は回路グランド Gndに接続される。 [0034] Pin 10 (ground terminal) of control integrated circuit IC2 is connected to circuit ground Gnd.
[0035] 制御用集積回路 IC2の 11番ピン (下段スイッチング素子駆動信号出力端子)は抵 抗 R7、R8を介してスイッチング素子 Q3のゲート端子と接続される。 [0035] Pin 11 (lower-stage switching element drive signal output terminal) of control integrated circuit IC2 is connected to the gate terminal of switching element Q3 via resistors R7 and R8.
[0036] 制御用集積回路 IC2の 12番ピン (制御用 IC電源端子)は Vccと接続される。制御 用集積回路 IC2の 14番ピン (上段スイッチング素子駆動信号基準電位端子)はスィ ツチング素子 Q2のソース端子とスイッチング素子 Q3のドレイン端子の接続点に接続 される。 [0036] Pin 12 (control IC power supply terminal) of control integrated circuit IC2 is connected to Vcc. Pin 14 (upper switching element drive signal reference potential terminal) of integrated circuit IC2 for control is connected to the connection point between the source terminal of switching element Q2 and the drain terminal of switching element Q3.
[0037] 制御用集積回路 IC2の 15番ピン (上段スイッチング素子駆動信号出力端子)は抵 抗 R5、R6を介してスイッチング素子 Q2のゲート端子に接続される。  [0037] Pin 15 (upper switching element drive signal output terminal) of control integrated circuit IC2 is connected to the gate terminal of switching element Q2 via resistors R5 and R6.
[0038] 制御用集積回路 IC2の 16番ピン (上段スイッチング素子駆動電源端子)にはコンデ ンサ C20が 14番ピンとの間に接続される。  [0038] A capacitor C20 is connected between the control integrated circuit IC2 and the 16th pin (upper switching element drive power supply terminal) between the 14th pin.
[0039] 以上のように構成することにより、電源投入後、制御用集積回路 IC2は設定された 予熱時間及び予熱周波数でインバータ 60のスイッチング素子 Q2、 Q3を駆動し、放 電ランプを点灯させた後、電力調整回路 72にて設定された点灯周波数を基準にし て、スイッチング素子 Q3に流れる電流に応じた信号がフィードバック制御回路 74に 入力され、インバータ 60の動作周波数を修正することで、上記の目標電力に一致す る出力電力を得ることができる。  [0039] With the configuration as described above, after the power is turned on, the control integrated circuit IC2 drives the switching elements Q2 and Q3 of the inverter 60 with the set preheating time and preheating frequency, and turns on the discharge lamp. Thereafter, based on the lighting frequency set in the power adjustment circuit 72, a signal corresponding to the current flowing through the switching element Q3 is input to the feedback control circuit 74, and the operating frequency of the inverter 60 is corrected. Output power that matches the target power can be obtained.
[0040] 本実施形態の電子バラストには、共振回路 80にカ卩えて、放電ランプのフィラメントを 予熱する予熱回路 90が備えられる。共振回路 80はインバータ 60の出力端 (Vs— Gn d間)に直列に接続された共振用インダクタ T2と共振コンデンサ C7を備え、コンデン サ C7の両端には、直流阻止用のコンデンサ C8が放電ランプ Lal、 La2と直列に接 続されている。インダクタ T2とコンデンサ C7は第 1の共振回路を形成する。コンデンサ C8は、インバータ 60の出力端間でインダクタ T2と放電ランプと直列に接続されて、第 2の共振回路を構成しており、コンデンサ C7に対するコンデンサ C8の容量比は C7 < C8となっている。 [0040] The electronic ballast of the present embodiment includes a preheating circuit 90 that preheats the filament of the discharge lamp in addition to the resonance circuit 80. The resonance circuit 80 includes a resonance inductor T2 and a resonance capacitor C7 connected in series to the output terminal (between Vs and Gnd) of the inverter 60. A capacitor C8 for blocking DC is connected to the discharge lamp at both ends of the capacitor C7. Connected in series with Lal and La2. Inductor T2 and capacitor C7 form the first resonant circuit. The capacitor C8 is connected in series with the inductor T2 and the discharge lamp between the output ends of the inverter 60 to form a second resonance circuit, and the capacitance ratio of the capacitor C8 to the capacitor C7 is C7. <C8.
[0041] 予熱回路 90は、共振インダクタ T3、コンデンサ C6、スイッチング素子 Q4を備え、 共振インダクタ T3の一次卷線力 コンデンサ C6とスイッチング素子 Q4を介してイン バータ 60のスイッチング素子 Q3の両端 (Vs— Gnd間)に接続されている。共振用ィ ンダクタ T3が有する 2つの二次卷線に対し、それぞれコンデンサ C9、 C11を介して 放電ランプ Lai, La2の非共通側フィラメントが接続される。共振用インダクタ T3が備 えるもう一つの二次卷線はコンデンサ C10を介して放電ランプ Lai, La2の共通側フ イラメントに接続されている。  [0041] The preheating circuit 90 includes a resonant inductor T3, a capacitor C6, and a switching element Q4. The primary power line of the resonant inductor T3 is connected to both ends of the switching element Q3 of the inverter 60 (Vs— Gnd). The non-common side filaments of the discharge lamps Lai and La2 are connected to the two secondary windings of the resonance inductor T3 through capacitors C9 and C11, respectively. The other secondary winding provided in the resonant inductor T3 is connected to the common side filament of the discharge lamps Lai and La2 via the capacitor C10.
[0042] 共振回路 80の動作はインバータ 60の動作によって変化する。共振回路 80での共 振カーブは図 6 (a)のようになっており、ここでは、 2種の放電ランプランプ A(FHF32 一定格電力 32W)、ランプ B (FL40ssZ36—定格電力 40W)について説明している  The operation of the resonance circuit 80 varies depending on the operation of the inverter 60. The resonance curve in resonant circuit 80 is as shown in Fig. 6 (a). Here, two types of discharge lamp lamp A (FHF32 rated power 32W) and lamp B (FL40ssZ36—rated power 40W) are explained. is doing
[0043] 商用電源が印加されてから点灯するまでに、インバータコントローラ 70によってイン バータ 60の動作周波数が、予熱モード (及び始動モード)と点灯モード (最小周波数 f minと帰還制御回路の調整により決定する周波数)とに切り替わることで放電ランプを 点灯状態へ移行させる。点灯後は、フィードバック制御回路 74がスイッチング素子 Q 3を流れる電流(共振回路 80へ流れる電流と等価)に基づいて、インバータ 60の動 作周波数を変化させる。これにより、図 2に示すように、負荷が異なる 2つの放電ラン プ Bとの間では、インバータ 60の動作周波数が Δ废化し、これに伴って、出力電 力が AW変化することで、それぞれの放電ランプの定格電力に応じた最適の出力電 力が与えられる。放電ランプの本数が変わる場合も同様に、フィードバック制御回路 7 4が共振回路へ流れる電流の大きさに応じてインバータ 60の動作周波数を変化させ ることで、電力調整回路 72によって決定される目標電力に一致する出力電圧が得ら れる。 [0043] The inverter controller 70 determines the operating frequency of the inverter 60 by adjusting the preheating mode (and the start mode) and the lighting mode (minimum frequency fmin and feedback control circuit) from when the commercial power is applied until it is lit. The discharge lamp is turned on. After lighting, the feedback control circuit 74 changes the operating frequency of the inverter 60 based on the current flowing through the switching element Q3 (equivalent to the current flowing through the resonance circuit 80). As a result, as shown in Fig. 2, the operating frequency of the inverter 60 becomes Δ 废 between the two discharge lamps B with different loads, and the output power changes AW accordingly. The optimum output power is provided according to the rated power of the discharge lamp. Similarly, when the number of discharge lamps changes, the target power determined by the power adjustment circuit 72 is changed by the feedback control circuit 74 changing the operating frequency of the inverter 60 according to the amount of current flowing to the resonance circuit. An output voltage that matches is obtained.
[0044] 尚、動作周波数が変動する範囲は目標電力に応じた範囲に設定されて、動作周波 数が過剰に変化してスイッチング素子 Q2、 Q3でのスイッチングロスが極端に増大す るのを防ぐようになって 、る。  [0044] The range in which the operating frequency varies is set to a range according to the target power to prevent the operating frequency from changing excessively and switching loss at switching elements Q2 and Q3 from increasing excessively. It becomes like this.
[0045] このように、負荷電力に応じた適切な出力電力が得られるようにインバータ 60をフィ ードバック制御することにより、インバータ 60へ DC電圧を供給するチヨッパ 30につい ては、基本的に一定の出力電圧を与えるように調整するだけで良い。この結果、使用 する放電ランプの本数が変わるように負荷電力が大きく変化する場合でも、チヨツバ コントローラ 40に使用する制御用集積回路 IC1にお 、て規定されて!、るチヨッパ 30の 動作周波数範囲 (スイッチング素子 Q1の動作周波数の範囲)での周波数の調整だけ で済み、チヨツバ 30自体の回路を変更する必要が無くなり、一つの回路設計の電子 ノ《ラストで異なる負荷電力に対応することが出来る。 [0045] In this way, the inverter 60 is fed so that an appropriate output power corresponding to the load power can be obtained. By performing the feedback control, the chopper 30 that supplies the DC voltage to the inverter 60 can be basically adjusted so as to give a constant output voltage. As a result, even if the load power changes greatly so that the number of discharge lamps used changes, it is specified in the control integrated circuit IC1 used for the chitsuba controller 40! It is only necessary to adjust the frequency in the operating frequency range of the switching element Q1, and there is no need to change the circuit of the chitsuba 30 itself, and it is possible to cope with different load powers with one electronic circuit last.
尚、共振回路 80へ流れる共振電流を検出するために、図示の実施形態では、スイツ チング素子 Q3のソース抵抗より検出している力 その他同等の手法であれば同等の 効果を得ることができることは言うまでもない。例えば、図 1において、ランプ電流とコ ンデンサ C7の合成電流を共振電流と等価のものとして使用することができる。  In order to detect the resonance current flowing to the resonance circuit 80, in the illustrated embodiment, it is possible to obtain the same effect if the force is detected from the source resistance of the switching element Q3 or any other equivalent method. Needless to say. For example, in FIG. 1, the combined current of lamp current and capacitor C7 can be used as the equivalent of resonance current.
[0046] 更に、本実施形態では、インバータコントローラ 70のフィードバック制御回路 74の 基準電位を与える抵抗 R15及び可変抵抗 VR3からなる直列抵抗回路に温度センサ である温度特性抵抗 TC (サーミスタ)を追加して、周囲温度の変化に基づく放電ラン プのインピーダンス変化を補償して、出力電力を一定とするようにして!/、る。  Furthermore, in this embodiment, a temperature characteristic resistor TC (thermistor), which is a temperature sensor, is added to a series resistor circuit composed of a resistor R15 and a variable resistor VR3 that provide a reference potential of the feedback control circuit 74 of the inverter controller 70. Compensate for changes in the impedance of the discharge lamp based on changes in the ambient temperature and keep the output power constant!
[0047] 周囲温度の変化に伴って、放電ランプにインピーダンス変化が生じる、即ち、最適 な温度 (例えば 25°C)から周囲温度が高温側や低温側にずれると、上記のフィードバ ック制御回路 74の動作により、図?に示すように、動作周波数に対する出力電圧の 変化を示す曲線が、動作周波数が低い方に ΔΓΤれて、 Δ\Υの電力を補償し、電力 調整回路 72で設定した目標電力に一致する出力電力が与えられる。  [0047] When the ambient temperature changes, impedance changes occur in the discharge lamp, that is, when the ambient temperature deviates from the optimum temperature (for example, 25 ° C) to the high temperature side or the low temperature side, the feedback control circuit described above. Figure by the action of 74? As shown in Fig. 4, the curve indicating the change in output voltage with respect to the operating frequency is shifted to the lower operating frequency by ΔΓΤ to compensate for the power of Δ \ Υ and the output power that matches the target power set by the power adjustment circuit 72 Is given.
[0048] なお、本実施形態では、チヨッパコントローラ 40とインバータコントローラ 70と力 夫 々異なる制御用集積回路を用いているが、これらの制御用集積回路が 1チップに構 成された集積回路を使用することも可能である。  In the present embodiment, control integrated circuits that are different in power from the chopper controller 40 and the inverter controller 70 are used, but an integrated circuit in which these control integrated circuits are configured on one chip is used. It is also possible to use it.
[0049] 図 7及び図 8は、上述の放電ランプ用電子バラストを組み込んだ照明器具 Lの一例 を示す。電子バラストはプリント回路基板 110に上述した各種の電子部品を実装して 構成されて、ケース 100内に内蔵され、入力端子台 120から AC電源が供給される。 ケース 100の下面にはランプソケット 102が形成され、このランプソケット 102に結合 される放電ランプ Lal、 La2に出力電力が供給される。 図 9は、上述の照明器具 Lを複数使用する照明システムの構成を示す。この照明シ ステムでは、人体感知センサー及びプログラム可能なシステムを備えた管理装置 Mを 備える。管理装置 Mは人体感知センサーにより人を感知すると点灯し、人が不在にな ると消灯する機能や、時間帯により部分的に消灯するなどの機能により効率的な照 明システムの運用が可能であり、省エネルギーを実現することが可能となる。 [0049] FIGS. 7 and 8 show an example of a lighting fixture L incorporating the above-described electronic ballast for a discharge lamp. The electronic ballast is configured by mounting the above-described various electronic components on the printed circuit board 110, and is built in the case 100, and AC power is supplied from the input terminal block 120. A lamp socket 102 is formed on the lower surface of the case 100, and output power is supplied to the discharge lamps Lal and La2 coupled to the lamp socket 102. FIG. 9 shows a configuration of a lighting system using a plurality of the above-described lighting fixtures L. This lighting system includes a management device M having a human body sensor and a programmable system. The management device M can be operated efficiently by a function that turns on when a person is detected by the human body sensor, turns off when a person is absent, and turns off partly depending on the time of day. Yes, energy saving can be realized.

Claims

請求の範囲 The scope of the claims
[1] 少なくとも一本の放電ランプを動作させるための電子バラストであって、  [1] An electronic ballast for operating at least one discharge lamp,
AC電圧を整流して DC電圧を与える用に構成された整流器と、  A rectifier configured to rectify the AC voltage and provide a DC voltage;
インダクタ、コンデンサ、及びスイッチング素子を備え、このスイッチング素子が上 記整流器からの上記インダクタを介した DC電圧を継続的に断続することにより上記コ ンデンサの両端に一定の DC電圧を与えるように構成されたチヨツバと、  An inductor, a capacitor, and a switching element are provided, and the switching element is configured to apply a constant DC voltage across the capacitor by continuously interrupting the DC voltage from the rectifier through the inductor. With Chiyotsuba,
少なくとも一つのスイッチング素子を備え、このスイッチング素子を適宜のスィッチ ング周波数でオン'オフ制御することで上記チヨッノからの DC電圧を高周波 AC電圧 に変換するように構成されたインバータと、  An inverter comprising at least one switching element and configured to convert the DC voltage from Chiyono into a high-frequency AC voltage by on / off-controlling the switching element at an appropriate switching frequency;
インダクタと第 1のコンデンサとを備え、上記の高周波 AC電圧を共振させて上記少 なくとも一つの放電ランプに印加されてこれを動作させる共振 AC電圧を発生させるよ うに構成された共振回路とを備え、  A resonant circuit comprising an inductor and a first capacitor and configured to resonate the high frequency AC voltage and generate a resonant AC voltage that is applied to and operates the at least one discharge lamp; Prepared,
上記少なくとも一つの放電ランプによって決まる電力要求に対応する目標電力を指 定するように構成された電力調整回路と、  A power conditioning circuit configured to specify a target power corresponding to a power requirement determined by the at least one discharge lamp;
上記共振回路に流れる共振電流を示す共振指標を検知し、この共振指標に基づ いて上記インバータのスイッチング周波数をフィードバック制御によって変化させるこ とにより上記の少なくとも一つの放電ランプに供給される出力電力を上記の目標電力 に維持するように構成されたインバータコントローラとを備えたことを特徴とする電子 バラスト。  A resonance index indicating a resonance current flowing in the resonance circuit is detected, and the output power supplied to the at least one discharge lamp is changed by changing the switching frequency of the inverter by feedback control based on the resonance index. An electronic ballast comprising an inverter controller configured to maintain the above target power.
[2] 請求項 1に記載の電子バラストにおいて、  [2] In the electronic ballast according to claim 1,
周囲温度を検出するように構成された温度センサを備え、  With a temperature sensor configured to detect the ambient temperature;
上記のインバータコントローラは、更に上記の周囲温度に基づいて、上記インバータ のスイッチング周波数を変化させることにより上記の少なくとも一つの放電ランプに供 給される出力電力を上記の目標電力に維持するように構成されたことを特徴とする電 子バラスト。  The inverter controller is further configured to maintain the output power supplied to the at least one discharge lamp at the target power by changing a switching frequency of the inverter based on the ambient temperature. Electronic ballast characterized by that.
[3] 請求項 1に記載の電子バラストにおいて、  [3] In the electronic ballast according to claim 1,
上記の共振回路は、上記インバータの出力端間に直列接続された上記インダクタと 上記第 1コンデンサとで構成される第 1共振回路と、上記第 1コンデンサの両端間で 上記少なくとも一つの放電ランプに直列に接続される第 2のコンデンサで構成される 第 2共振回路とを備えることを特徴とする電子バラスト。 The resonance circuit includes a first resonance circuit composed of the inductor and the first capacitor connected in series between the output terminals of the inverter, and between both ends of the first capacitor. An electronic ballast, comprising: a second resonance circuit including a second capacitor connected in series to the at least one discharge lamp.
[4] 請求項 1〜3の何れかに記載の電子バラストにおいて、 [4] In the electronic ballast according to any one of claims 1 to 3,
上記のインバータコントローラは上記のスイッチング周波数を上記の電力要求に応じ て変化する所定の範囲内で変化させるように構成されたことを特徴とする電子バラス  The inverter controller is configured to change the switching frequency within a predetermined range that changes according to the power demand.
[5] 請求項 1〜3の何れかに規定の電子バラストと、上記少なくとも一つの放電ランプを備 えた照明器具。 [5] A lighting fixture comprising the electronic ballast as defined in any one of claims 1 to 3 and the at least one discharge lamp.
[6] 請求項 5で規定された複数の照明器具と、これらの照明器具を管理する管理装置と を備えた照明システム。  [6] A lighting system comprising: a plurality of lighting fixtures as defined in claim 5; and a management device that manages these lighting fixtures.
PCT/JP2006/319866 2005-10-12 2006-10-04 Electronic ballast for discharge lamp, lighting fixture employing that electronic ballast, and lighting system equipped with that lighting fixture WO2007043409A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006800379384A CN101288345B (en) 2005-10-12 2006-10-04 Electronic ballast, lighting fixture employing that electronic ballast, and lighting system equipped with that lighting fixture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-297375 2005-10-12
JP2005297375A JP2007109458A (en) 2005-10-12 2005-10-12 Discharge lamp lighting device, lighting fitting, and illuminating system

Publications (1)

Publication Number Publication Date
WO2007043409A1 true WO2007043409A1 (en) 2007-04-19

Family

ID=37942653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319866 WO2007043409A1 (en) 2005-10-12 2006-10-04 Electronic ballast for discharge lamp, lighting fixture employing that electronic ballast, and lighting system equipped with that lighting fixture

Country Status (3)

Country Link
JP (1) JP2007109458A (en)
CN (1) CN101288345B (en)
WO (1) WO2007043409A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164386A (en) * 1998-11-25 2000-06-16 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2000323290A (en) * 1999-05-14 2000-11-24 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2001326089A (en) * 2000-05-15 2001-11-22 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2003133085A (en) * 2001-10-25 2003-05-09 Matsushita Electric Works Ltd Lighting system
JP2004039328A (en) * 2002-07-01 2004-02-05 Meiji Natl Ind Co Ltd Discharge lamp lighting device
JP2004095521A (en) * 2002-08-30 2004-03-25 Hitachi Lighting Ltd Fluorescent tube lighting device
JP2005086915A (en) * 2003-09-09 2005-03-31 Toshiba Lighting & Technology Corp Power supply device, discharge lamp lighting device, and lighting equipment
JP2005259431A (en) * 2004-03-10 2005-09-22 Matsushita Electric Works Ltd Lighting control system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164386A (en) * 1998-11-25 2000-06-16 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2000323290A (en) * 1999-05-14 2000-11-24 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2001326089A (en) * 2000-05-15 2001-11-22 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2003133085A (en) * 2001-10-25 2003-05-09 Matsushita Electric Works Ltd Lighting system
JP2004039328A (en) * 2002-07-01 2004-02-05 Meiji Natl Ind Co Ltd Discharge lamp lighting device
JP2004095521A (en) * 2002-08-30 2004-03-25 Hitachi Lighting Ltd Fluorescent tube lighting device
JP2005086915A (en) * 2003-09-09 2005-03-31 Toshiba Lighting & Technology Corp Power supply device, discharge lamp lighting device, and lighting equipment
JP2005259431A (en) * 2004-03-10 2005-09-22 Matsushita Electric Works Ltd Lighting control system

Also Published As

Publication number Publication date
CN101288345B (en) 2012-06-13
JP2007109458A (en) 2007-04-26
CN101288345A (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP2607766Y2 (en) Operating circuit device of gas discharge lamp in DC power supply
US7129647B2 (en) Electronic ballast with programmable processor
JP3795863B2 (en) Single-stage PFC + ballast control circuit / general-purpose power converter
JP2004134360A (en) Ballast for three-way dimming compact fluorescent lamp
AU2010202097A1 (en) Electronic high intensity discharge lamp driver
US8525429B2 (en) Method for controlling gas discharge lamps
JP5198405B2 (en) Power circuit
JPH11509963A (en) Circuit layout
WO2007043409A1 (en) Electronic ballast for discharge lamp, lighting fixture employing that electronic ballast, and lighting system equipped with that lighting fixture
KR200228628Y1 (en) Electronic Stabilizer For Each Dimming Control
JP4124791B2 (en) Electronic ballast for fluorescent lamp
KR200407783Y1 (en) Electronic ballast having a dimming-controlling part of which the lamp current is maintained uniformly by feedback-controlling with the detected current
JP2790133B2 (en) Lighting control device and lamp lighting device
EP1825722A1 (en) Electronic ballast with higher startup voltage
JP2004531040A (en) Operating device for tube fluorescent lamp with internal cold position
KR102504278B1 (en) A Converter Circuit for LED Lamps Having Power Factor Correction Function with Dimming Function
CN102177766A (en) Driver circuit for a semiconductor light source (led)
JP4140219B2 (en) Discharge lamp lighting device
JP4547847B2 (en) Discharge lamp lighting device
KR200407784Y1 (en) Electronic ballast having a dimming-controlling part including initial dimming-controlling circuit
KR200407568Y1 (en) Electronic ballast with dimming control by individual dimming
US10154563B2 (en) Electronic ballast and method for controlling a load
JP3593901B2 (en) Lighting device
KR200407782Y1 (en) Electronic ballast having a dimming-controlling part driven by a separate power supply
JP4378610B2 (en) Discharge lamp lighting system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680037938.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811206

Country of ref document: EP

Kind code of ref document: A1