WO2007043357A1 - Hydrocarbons, charge transfer materials, charge transfer material compositions, and organic electroluminescent devices - Google Patents

Hydrocarbons, charge transfer materials, charge transfer material compositions, and organic electroluminescent devices Download PDF

Info

Publication number
WO2007043357A1
WO2007043357A1 PCT/JP2006/319439 JP2006319439W WO2007043357A1 WO 2007043357 A1 WO2007043357 A1 WO 2007043357A1 JP 2006319439 W JP2006319439 W JP 2006319439W WO 2007043357 A1 WO2007043357 A1 WO 2007043357A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
layer
light emitting
ring
Prior art date
Application number
PCT/JP2006/319439
Other languages
French (fr)
Japanese (ja)
Inventor
Masayoshi Yabe
Misako Okabe
Yuichiro Kawamura
Tomoyuki Ogata
Atsushi Takahashi
Koichiro Iida
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to CN2006800346287A priority Critical patent/CN101268029B/en
Priority to KR1020087008377A priority patent/KR101309502B1/en
Publication of WO2007043357A1 publication Critical patent/WO2007043357A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/39Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with a bicyclo ring system containing seven carbon atoms
    • C07C13/40Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with a bicyclo ring system containing seven carbon atoms with a bicycloheptane ring structure
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/47Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with a bicyclo ring system containing ten carbon atoms
    • C07C13/48Completely or partially hydrogenated naphthalenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/54Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
    • C07C13/547Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered
    • C07C13/567Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered with a fluorene or hydrogenated fluorene ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/54Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
    • C07C13/605Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings with a bridged ring system
    • C07C13/615Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings with a bridged ring system with an adamantane ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/62Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/12Polycyclic non-condensed hydrocarbons
    • C07C15/14Polycyclic non-condensed hydrocarbons all phenyl groups being directly linked
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/24Polycyclic condensed hydrocarbons containing two rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/27Polycyclic condensed hydrocarbons containing three rings
    • C07C15/28Anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/27Polycyclic condensed hydrocarbons containing three rings
    • C07C15/30Phenanthrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/38Polycyclic condensed hydrocarbons containing four rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/50Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic non-condensed
    • C07C15/52Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic non-condensed containing a group with formula
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/50Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic non-condensed
    • C07C15/54Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic non-condensed containing a group with formula
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/18Polycyclic aromatic halogenated hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/10One of the condensed rings being a six-membered aromatic ring the other ring being six-membered, e.g. tetraline
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/36Systems containing two condensed rings the rings having more than two atoms in common
    • C07C2602/42Systems containing two condensed rings the rings having more than two atoms in common the bicyclo ring system containing seven carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/26Phenanthrenes; Hydrogenated phenanthrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • C07C2603/50Pyrenes; Hydrogenated pyrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/54Ortho- or ortho- and peri-condensed systems containing more than five condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/70Ring systems containing bridged rings containing three rings containing only six-membered rings
    • C07C2603/74Adamantanes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons

Definitions

  • Hydrocarbon compound Hydrocarbon compound, charge transport material, charge transport material composition, and organic electroluminescence device
  • the present invention relates to a novel hydrocarbon compound, a charge transport material composed of the hydrocarbon compound, and a charge transport material composition containing the hydrocarbon compound.
  • the present invention also relates to an organic electroluminescent device having high brightness, high efficiency and long life using the hydrocarbon compound.
  • An electroluminescent device using an organic thin film has been developed.
  • An electroluminescent device using an organic thin film that is, an organic electroluminescent device, usually has an anode, a cathode, and an organic layer including at least a luminescent layer provided between these electrodes on a substrate.
  • As the organic layer in addition to the light emitting layer, a hole injection layer, a hole transport layer, a hole blocking layer, an electron transport layer, an electron injection layer, and the like are used. Usually, these layers are stacked to be used as an organic electroluminescent device.
  • organic electroluminescent devices have used fluorescent light emission, but in an attempt to increase the light emission efficiency of the device, it has been studied to use phosphorescent light emission instead of fluorescent light. However, even if phosphorescence is used, sufficient luminous efficiency, luminance and lifetime are not yet obtained.
  • Non-Patent Documents 1 and 2 the following compounds (C-1) and (C-2), which are spherical molecules with excellent dispersibility, are used for thickeners, lubricants, and nanotechnology fields. It has been proposed for use as a molecular weight or molecular standard material, for X-ray beam scattering, etc., and has been attracting attention in various fields because of its excellent heat resistance.
  • Non-Patent Literature l Chem. Mater. 1990, 2, 346-349
  • Non-Patent Document 2 J. Am. Chem. Soc. 1992, 114, 1018—1025
  • the present invention is excellent in heat resistance and light resistance, has good solubility in organic solvents, has high singlet and triplet excitation levels, and has a wide electrical oxidation-reduction.
  • a hydrocarbon compound and a charge transport material having a potential difference are provided.
  • a charge transport material composition comprising the hydrocarbon compound, and an organic electroluminescence device having high luminance, high efficiency and long life using the hydrocarbon compound.
  • the hydrocarbon compound of the present invention is characterized by having a partial structure represented by the following general formula (I) in the molecule.
  • G represents a substituent represented by the following general formula (II)
  • R 2 independently represents an arbitrary hydrocarbon group.
  • the benzene ring to which R 2 and G are bonded has no substituent other than R 1 , R 2 and G.
  • R 3 to R 5 each independently represents a hydrogen atom or an arbitrary hydrocarbon group.
  • the terfel group represented by the formula (II) has no substituent other than R 3 to R 5 ! /.
  • the charge transport material of the present invention is the hydrocarbon compound of the present invention.
  • the charge transport material composition of the present invention contains the hydrocarbon compound of the present invention and a solvent.
  • the organic electroluminescence device of the present invention has a layer containing this hydrocarbon compound in an organic electroluminescence device having an anode, a cathode, and a light emitting layer provided between both electrodes on a substrate. It is characterized by.
  • FIG. 1 is a schematic cross-sectional view showing an example of an organic electroluminescent element of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
  • FIG. 8 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
  • FIG. 9 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
  • a hydrocarbon compound having the following specific structure is excellent in heat resistance and light resistance, has good solubility in organic solvents, and has high singlet and triplet properties.
  • this hydrocarbon compound has high efficiency and high efficiency in organic electroluminescent devices, particularly phosphorescent organic electroluminescent devices, having a term excitation level and a wide electric redox potential difference. We have found that long-life devices can be obtained.
  • the present invention has been achieved based on such findings, and the hydrocarbon compound of the present invention is characterized in that it has a partial structure represented by the following general formula (I) in the molecule. To do.
  • the charge transport material of the present invention is characterized by comprising this hydrocarbon compound.
  • the charge transport material composition of the present invention contains this hydrocarbon compound and a solvent.
  • the organic electroluminescent device of the present invention has a layer containing this hydrocarbon compound in an organic electroluminescent device having an anode, a cathode, and a light emitting layer provided between both electrodes on a substrate. It is characterized by.
  • G represents a substituent represented by the following general formula (II)
  • IT independently represents an arbitrary hydrocarbon group.
  • the benzene ring to which RR 2 and G are bonded has no substituent other than RR 2 and G.
  • R 3 to R 5 each independently represents a hydrogen atom or an arbitrary hydrocarbon group.
  • the turfyl group represented by the formula (II) does not have a substituent other than R 3 to R 5 ! /.
  • the hydrocarbon compound of the present invention is excellent in heat resistance and light resistance, has good solubility in organic solvents, has high singlet and triplet excited levels, and has a wide electrical range. Has a redox potential difference.
  • the organic electroluminescence device using the hydrocarbon compound of the present invention has the characteristics as a flat panel display (for example, for OA computers and wall-mounted televisions), an in-vehicle display device, a mobile phone display and a surface light emitter. It can be applied to light sources (eg, light sources for copiers, liquid crystal displays and instrument backlights), display panels, and indicator lights, and their technical value is great.
  • the charge transport material having a hydrocarbon compound power of the present invention and the charge transport material composition containing the hydrocarbon compound have an essentially excellent electrochemical durability. In addition to this, it can also be used effectively for electrophotographic photoreceptors and the like.
  • the compound of the present invention is a hydrocarbon compound, that is, a compound that is powered only by carbon atoms and hydrogen atoms.
  • the hydrocarbon compound of the present invention has a partial structure represented by the general formula (I) in the molecule (hereinafter referred to as “parts”). Sometimes referred to as “Part I”. ).
  • G represents a substituent represented by the following general formula (II), IT independently represents an arbitrary hydrocarbon group.
  • IT independently represents an arbitrary hydrocarbon group.
  • the benzene ring to which R 2 and G are bonded has no substituent other than R 2 and G.
  • R 3 to R 5 each independently represents a hydrogen atom or an arbitrary hydrocarbon group.
  • the turfyl group represented by the formula (II) does not have a substituent other than R 3 to R 5 ! /.
  • a hydrocarbon compound of the present invention in one molecule, the partial structure I have two or more, therefore, there G in the general formula (I), R 1, R 2 is 2 or more, respectively
  • G in the general formula (I) R 1, R 2 is 2 or more, respectively
  • a plurality of G present in one molecule may be the same or different, and a plurality of R 1 and R 2 present in one molecule may be the same or different. Also good.
  • G, R 1 and R 2 may be bonded to each other to form a ring.
  • R 3 to R 5 in the general formula (II) two or more of the partial structures I are present in one molecule, or R 1 and R 2 are represented by the general formula (II). When a plurality of these are present in a molecule due to being a substituent, these may be the same or different.
  • the hydrocarbon compound of the present invention has at least one partial structure (substituent G represented by the above general formula (II)) in which a plurality of phenylene groups are linearly linked at the m-position. , Excellent amorphous High solubility in organic hydrocarbon solvents.
  • -It is more preferable to have two or more partial structures (substituent G represented by the above general formula (II)) in which a plurality of len groups are linearly linked at the m-position. Most preferably.
  • substituent G represented by the above general formula (II)
  • the presence of a benzene ring having a substituent at the 1, 3, 5-position makes it possible to increase the glass without impairing the excellent characteristics as described above. It is possible to have both transition temperatures.
  • has one or more p-terphenyl skeletons as partial structures in the molecule. It is more preferable to have two or more.
  • the p-terfel skeleton those represented by the following general formula (IV) are particularly preferred (in the formula (IV), R 6 and R 7 each independently represents a hydrogen atom or an arbitrary hydrocarbon group). To express).
  • R 1 and R 2 each independently represents an arbitrary hydrocarbon group.
  • alkyl group having 1 to 30 carbon atoms for example, methyl group, ethyl group, normal propyl group, isopropyl group, normal butyl group, isobutyl group, tert-butyl group, normal hexyl group, cyclohexyl group, octyl group, Decyl group),
  • alkenyl group having 2 to 30 carbon atoms for example, a bur group, a 2,2-dimethylethenyl group, etc.
  • An alkyl group having 2 to 30 carbon atoms eg, an ethur group
  • Aromatic hydrocarbon group having 6 to 30 carbon atoms e.g., benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, taricene ring, triphenylene-ring, phenoleanthene ring, etc.
  • an alkyl group having 1 to 30 carbon atoms and an aromatic hydrocarbon group having 6 to 30 carbon atoms and most preferably R 1 and Z or R 2 are represented by the general formula ( ⁇ ). The substituents shown.
  • the substituent may further have an arbitrary number of substituents. Preferred examples of the substituent are the same as those described above.
  • R 3 to R 7 in the general formula (II) each independently represent a hydrogen atom or an arbitrary hydrocarbon group.
  • alkyl group having 1 to 30 carbon atoms for example, methyl group, ethyl group, normal propyl group, isopropyl group, normal butyl group, isobutyl group, tert-butyl group, normal hexyl group, cyclohexyl group, octyl group, Decyl group),
  • alkenyl group having 2 to 30 carbon atoms for example, a bur group, a 2,2-dimethylethenyl group, etc.
  • An alkyl group having 2 to 30 carbon atoms (eg, an ethur group),
  • Aromatic hydrocarbon group having 6 to 30 carbon atoms e.g., benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, taricene ring, triphenylene-ring, phenoleanthene ring, etc.
  • the above substituent may further have an arbitrary number of substituents. However, the substituent is preferably the same as the specific examples of the substituent.
  • R 3 is particularly preferably a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or 6 carbon atoms.
  • An aromatic hydrocarbon group having ⁇ 30 most preferably a hydrogen atom or an aromatic hydrocarbon group having 1 to 30 carbon atoms.
  • R 4 is particularly preferably a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or 6 carbon atoms.
  • R 5 is particularly preferably a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or 6 carbon atoms.
  • R 6 is particularly preferably a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or 6 carbon atoms.
  • An aromatic hydrocarbon group having ⁇ 30 most preferably a hydrogen atom or an aromatic hydrocarbon group having 6 to 30 carbon atoms.
  • R 7 is particularly preferably a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or 6 carbon atoms.
  • An aromatic hydrocarbon group having ⁇ 30 most preferably a hydrogen atom or an aromatic hydrocarbon group having 6 to 30 carbon atoms.
  • the hydrocarbon compound of the present invention is not particularly limited as long as it has one or more partial structures I in one molecule, but the number of partial structures I in one molecule is preferably 1 to : LO range, more preferably in the range of 1-3.
  • the molecular weight of the hydrocarbon compound of the present invention is preferably 5000 or less, more preferably 3000 or less.
  • the molecular weight force of hydrocarbon compounds S If this upper limit is exceeded, it will be difficult to remove impurities, the vaporization temperature will rise, and deposition will become difficult, and It is not preferable because the solubility is lowered and the film formation by the wet method may be hindered.
  • the molecular weight of the hydrocarbon compound is preferably 500 or more, more preferably 600 or more, and particularly preferably 800 or more. If the molecular weight of the hydrocarbon compound is below this lower limit, the heat resistance will be reduced, the practicality will be limited, the vaporization temperature will be lowered, making it difficult to form a film by the vapor deposition method, or in the film formation by a wet method In addition, the film quality may be impaired, which is not preferable.
  • the hydrocarbon compound of the present invention is particularly preferably a compound represented by any one of the following general formulas (III), (IV-1) and (IV-2).
  • R 3 and R 4 have the same meaning as in the above formula (II). Multiple R 3 and R 4 contained in one molecule may be the same or different! /! /.
  • R 3 and R 4 have the same meaning as in formula (II).
  • a plurality of R 3 and R 4 contained in one molecule may be the same or different.
  • R 6 and R 7 each independently represents a hydrogen atom or an arbitrary hydrocarbon group.
  • R 3 and R 4 have the same meanings as in formula (II).
  • R 6 and R 7 each independently represents a hydrogen atom or an arbitrary hydrocarbon group.
  • a plurality of R ′ and R 7 contained in one molecule may be the same or different from each other! /.
  • the hydrocarbon compound of the present invention can be synthesized by a combination of known methods. Specific examples of the synthesis method are shown below.
  • the pre-synthesis step can be omitted.
  • Q is any hydrocarbon group or any leaving group that can be substituted with a hydrocarbon group (for example, iodine, bromine, chlorine, fluorine, trifluoromethane sulfo group, p-toluene sulfo group)
  • represents —substituted boron atom such as B (OH) and —B (OR), —
  • MgX group, —ZnX group, —SnX group (where X is iodine, bromine, chlorine, fluorine, etc.
  • Examples of the acid catalyst used in this reaction include titanium tetrachloride, silicon tetrachloride, hydrochloric acid, sulfuric acid, Aluminum chloride, thiol chloride, boron trifluoride 'etherate, sulfuric acid, K
  • Nafion H (see Catalysis Letters, 6 (3-6), 341-344, (1990)), etc., usually 0.1 to LOO moles per mole of acetyl group .
  • the above reaction may be carried out without a solvent, but the solvents used are water, methanol, ethanol, isopropanol, diethylene glycol, toluene, xylene, chlorobenzene, dichlorobenzene, hexane, chloroform.
  • the temperature condition is in the range of ⁇ 20 to 200 ° C., preferably in the range of 0 to 100 ° C.
  • the reaction time is usually about 30 minutes to 48 hours.
  • the atmosphere in the reaction system is air, dry air, nitrogen, argon, etc., preferably dry air, nitrogen, argon.
  • trimethoxymethane or the like can coexist if necessary.
  • Literature related to the above reaction includes:
  • the compound obtained here is an intermediate (ie, corresponding to a Q force)
  • a known bi-aryl group coupling method or a 3-biphenyl group or its group is used.
  • the hydrocarbon compound of the present invention can be obtained.
  • a 3-biphenyl group is obtained by using the above-mentioned known aryl-reel coupling method.
  • the hydrocarbon compound of the present invention can be obtained by introducing the similar group.
  • halogenated aryls are allylboronic acid, allylboronic acid ester, allyl tin chloride, allyl zinc chloride, allyl magnesium bromide, allyl magnesium iodide, etc. 1.5 equivalents) and a zerovalent palladium catalyst such as tetrakis (triphenylphosphine) palladium (0.0001 to 0.2 equivalents relative to X), tert-butoxy sodium, tert-butoxy potassium, cesium carbonate Bases such as hum, sodium carbonate, potassium carbonate, tripotassium phosphate, triethylamine, hydroxy hydroxide, sodium hydroxide, etc.
  • a zerovalent palladium catalyst such as tetrakis (triphenylphosphine) palladium (0.0001 to 0.2 equivalents relative to X), tert-butoxy sodium, tert-butoxy potassium, cesium carbonate
  • Bases such as hum, sodium carbonate, potassium carbonate, trip
  • Methods for purifying compounds include "Separation and purification technology, ND book” (1993, edited by Japan Society of Informatics), “Advanced separation of trace components and difficult-to-purify substances by chemical conversion method” (1988) , Published by IC Co., Ltd.), or the method described in the section “Separation and purification” in “Experimental Chemistry Course (4th edition) 1” (1990, Japan Chemical Society), Known techniques can be used.
  • Product chromatography and purity analysis methods include gas chromatograph (, high-performance liquid chromatograph, high-speed amino acid analyzer, capillary electrophoresis measurement, size exclusion chromatograph (, gel permeation chromatograph (, cross-fractionation chromatograph (mass spectrometry) (,, Nuclear magnetic resonance equipment
  • the hydrocarbon compound of the present invention has high charge transportability, it can be suitably used as an electrophotographic photosensitive member, an organic electroluminescent device, a photoelectric conversion device, an organic solar cell, an organic rectifying device, etc. as a charge transport material.
  • an organic electroluminescent device that has excellent heat resistance and can be stably driven (emitted) for a long period of time can be obtained by using the charge transport material having the power of the hydrocarbon compound of the present invention. Therefore, the hydrocarbon compound and the charge transport material of the present invention are particularly suitable as an organic electroluminescent element material.
  • the charge transport material composition of the present invention contains the above-described hydrocarbon compound of the present invention and a solvent, and is preferably used for an organic electroluminescence device.
  • the solvent contained in the charge transport material composition of the present invention is not particularly limited as long as it is a solvent that dissolves the charge transport material of the present invention as a solute well.
  • aromatic hydrocarbons such as toluene, xylene, methicylene, cyclohexylbenzene, and tetralin
  • halogenated aromatic hydrocarbons such as black benzene, dichlorobenzene, and trichlorobenzene
  • Aromatic ethers such as benzene, nitrite, ru, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3 dimethylanol, 2,4 dimethylazole, etc .
  • phenol acetate, propion Aromatic esters such as acid phenyl, methyl benzoate, ethyl benzoate, propyl benzoate, n-butyl benzoate
  • Examples of the method for reducing the amount of water in the composition include nitrogen gas sealing, use of a desiccant, dehydration of the solvent in advance, use of a solvent with low water solubility, and the like.
  • a solvent having low water solubility because the solution film can prevent whitening by absorbing moisture in the atmosphere during the wet film-forming process.
  • the charge transport material composition to which the present embodiment is applied has, for example, a water solubility at 25 ° C. of 1% by weight or less, preferably 0.1% by weight or less. It is preferable that the solvent contains 10% by weight or more in the composition.
  • the boiling point of the solvent for the charge transport material composition is preferably 100 ° C or more, preferably It is effective to use a solvent having a boiling point of 150 ° C or higher, more preferably a boiling point of 200 ° C or higher. In order to obtain a more uniform film, it is necessary for the solvent to evaporate from the liquid film immediately after film formation at an appropriate rate.
  • the boiling point is usually 80 ° C or higher, preferably the boiling point is 100 ° C or lower.
  • a solvent having a boiling point of 120 ° C or higher usually a boiling point of less than 270 ° C, preferably a boiling point of less than 250 ° C, more preferably a boiling point of less than 230 ° C.
  • a solvent that satisfies the above-mentioned conditions ie, solute solubility, evaporation rate, and water solubility conditions, may be used alone, but if a solvent that satisfies all the conditions cannot be selected, two or more types of solvents may be used. It is also possible to use a mixture of solvents.
  • the charge transport material composition of the present invention preferably contains a light emitting material.
  • the light emitting material refers to a component that mainly emits light in the charge transport material composition of the present invention, and corresponds to a dopant component in an organic EL device.
  • the amount of light (unit: cdZm 2 ) emitted from the charge transport material composition usually 10 to 100%, preferably 20 to 100%, More preferably 50-: L00%, most preferably 80-: L00% power If identified as luminescence from a component material, it is defined as a luminescent material.
  • any known material can be applied, and a fluorescent light emitting material or a phosphorescent light emitting material can be used singly or in combination, but from the viewpoint of internal quantum efficiency.
  • it is a phosphorescent material.
  • Examples of fluorescent dyes that emit blue light include perylene, pyrene, anthracene, coumarin, P-bis (2-phenylethyl) benzene, and derivatives thereof.
  • Examples of the green fluorescent dye include quinacridone derivatives and coumarin derivatives.
  • Examples of yellow fluorescent dyes include rubrene and perimidone derivatives.
  • Examples of red fluorescent dyes include DCM compounds, benzopyran derivatives, rhodamine derivatives, benzothixanthene derivatives, azabenzothixanthene, and the like.
  • Examples of phosphorescent materials include organometallic complexes containing a metal selected from Group 7 to Group 11 forces in the periodic table.
  • the metal in the phosphorescent organometallic complex containing a metal selected from Group 11 of the periodic table 7 is ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, gold or the like. Can be mentioned.
  • organometallic complexes compounds represented by the following general formula (V) or the following general formula (VI) are preferable.
  • M represents a metal
  • q represents the valence of the metal
  • L and L ′ represent bidentate ligands.
  • j represents 0, 1 or 2;
  • M d represents a metal
  • T represents carbon or nitrogen
  • R 92 to R 95 each independently represent a substituent. However, when T is nitrogen, there is no R 94 or R 95 .
  • M represents an arbitrary metal, and specific examples of preferable ones include the metals described above as the metals for which the periodic table 7 and 11 group forces are also selected.
  • bidentate ligands L and L ′ in the general formula (V) each represent a ligand having the following partial structure.
  • the ring A1 represents an aromatic hydrocarbon group or an aromatic heterocyclic group, and these may have a substituent.
  • Ring A2 represents a nitrogen-containing aromatic heterocyclic group, and these may have a substituent.
  • substituents include a halogen atom such as a fluorine atom; an alkyl group such as a methyl group or an ethyl group; an alkenyl group such as a vinyl group; a methoxy carbo group.
  • Alkoxy group such as ethoxycarbol group; alkoxy group such as methoxy group and ethoxy group; aryloxy group such as phenoxy group and benzyloxy group; dialkylamino group such as dimethylamino group and jetylamino group; diphenylamino group A diarylamino group such as carbazolyl group; an acyl group such as acetyl group; a haloalkyl group such as trifluoromethyl group; a cyano group; an aromatic hydrocarbon group such as a phenol group, a naphthyl group, and a phenanthyl group.
  • the compound represented by the general formula (V) is more preferably the following general formula (Va), (Vb), (
  • M a represents the same metal as M, and w represents the valence of the metal.
  • Ring A1 may have a substituent and may represent an aromatic hydrocarbon group, and Ring A2 may have a substituent and may have a substituent! / ⁇ represents a nitrogen-containing aromatic heterocyclic group. .
  • M b represents the same metal as M, and w represents the valence of the metal.
  • Ring A1 may have a substituent, may have an aromatic hydrocarbon group or a substituent, and may represent a V ⁇ aromatic heterocyclic group, and ring A2 may have a substituent. Or a nitrogen-containing aromatic heterocyclic group.
  • M e represents the same metal as M, w represents the valence of the metal.
  • J represents 0, 1 or 2;
  • ring A1, ring A1 and ring A1 ′ may each independently have a substituent! / ⁇ ! / ⁇ may have an aromatic hydrocarbon group or substituent! / ⁇ ! ⁇
  • Ring A2 and Ring A2 ′ each independently represent a nitrogen-containing aromatic heterocyclic group which may have a substituent.
  • the group of ring A1 and ring Al ' is preferably, for example, a phenyl group, a biphenyl group, a naphthyl group, or an anthryl group.
  • Chael group, fu Examples include a ryl group, a benzochel group, a benzofuryl group, a pyridyl group, a quinolyl group, an isoquinolyl group, and a carbazolyl group.
  • the group of ring A2 and ring A2 ' is preferably a pyridyl group, pyrimidyl group, pyrazyl group, triazyl group, benzothiazole group, benzoxazole group, benzoimidazole group, quinolyl group, for example. Group, isoquinolyl group, quinoxalyl group, phenanthridyl group and the like.
  • the substituents that the compounds represented by the general formulas (Va), (Vb), (Vc) may have include halogen atoms such as fluorine atoms; methyl groups, ethyl groups, etc.
  • Alkyl groups such as vinyl groups; alkoxy groups such as methoxycarbon groups and ethoxycarbol groups; alkoxy groups such as methoxy groups and ethoxy groups; phenoxy groups and benzyloxy groups
  • a dialkylamino group such as a dimethylamino group or a jetylamino group; a diarylamino group such as a diphenylamino group; a carbazolyl group; an acyl group such as an acetylyl group; a haloalkyl group such as a trifluoromethyl group; a cyano group or the like.
  • halogen atoms such as fluorine atoms
  • Alkyl groups such
  • the carbon number is usually 1 or more and 6 or less. Furthermore, when the substituent is an alkenyl group, the carbon number is usually 2 or more and 6 or less. Further, when the substituent is an alkoxycarbo group, the carbon number is usually 2 or more and 6 or less. Furthermore, when the substituent is an alkoxy group, the carbon number is usually 1 or more and 6 or less. When the substituent is an aryloxy group, the carbon number is usually 6 or more and 14 or less. Further, when the substituent is a dialkylamino group, the carbon number is usually 2 or more and 24 or less.
  • the number of carbon atoms is usually 12 or more and 28 or less.
  • the number of carbon atoms is usually 1 or more and 14 or less.
  • the substituent is a haloalkyl group, the carbon number is usually 1 or more and 12 or less.
  • substituents may be linked to each other to form a ring.
  • substituent of ring A1 and the substituent of ring A2 are bonded, or the substituent of ring A1 ′ and the substituent of ring A2 ′ are bonded,
  • One condensed ring may be formed. Examples of such a condensed ring group include a 7,8-benzoquinoline group.
  • ring Al ring A1 ', ring A2 and ring A2'
  • alkyl preferably alkyl.
  • organometallic complex represented by the general formula (V), (Va), (Vb) or (Vc) are shown below, but are not limited to the following compounds (in the following) Ph represents a full group.
  • the ligands L and Z or L are 2-aryl pyridine ligands, that is, 2-aryl pyridines, those having an arbitrary substituent bonded thereto, and those having an arbitrary group condensed thereto. Preference is given to compounds having.
  • M d represents a metal, and specific examples thereof include the metals described above as metals for which the periodic table group 7 to 11 forces are also selected.
  • metals described above metals for which the periodic table group 7 to 11 forces are also selected.
  • ruthenium, rhodium, noradium, silver, rhenium, osmium, iridium, platinum or gold are preferable, and divalent metals such as platinum and palladium are particularly preferable.
  • R 92 and R 93 are each independently a hydrogen atom, halogen atom, alkyl group, Ararukiru group, an alkenyl group, Shiano group, an amino group, Ashiru group, ⁇ Rukokishikarubo Represents a-group, a carboxyl group, an alkoxy group, an alkylamino group, an aralkylamino group, a haloalkyl group, a hydroxyl group, an aryloxy group, an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • R 94 and R 95 each independently represents a substituent represented by the same exemplary compounds and R 92 and R 93.
  • R 94 and R 95 are absent.
  • R 92 to R 95 may further have a substituent.
  • the substituent which may further have can be any group which is not particularly limited.
  • R 92 to R 95 may be linked to each other to form a ring, and this ring may further have an arbitrary substituent.
  • T-1, T-10 to T-15 of the organometallic complex represented by the general formula (VI) are shown below, but are not limited to the following exemplified compounds.
  • Me represents a methyl group
  • Et represents an ethyl group.
  • organometallic complex the compounds described in WO2005Z019373 can also be used.
  • the charge transport material composition of the present invention may contain various other solvents as required in addition to the solvent and the light emitting material described above.
  • examples of such other solvents include amides such as N, N-dimethylformamide and N, N-dimethylacetamide, and dimethyl sulfoxide.
  • thermosetting resin when two or more layers are laminated by a wet film-forming method, in order to prevent these layers from being compatible with each other, a photo-curable resin is used for the purpose of curing and insolubilizing after film formation, A thermosetting resin can also be contained.
  • the solids concentration of the charge transport material, the luminescent material, and components that can be added as required (leveling agent, etc.) in the charge transport material composition of the present invention is usually 0.01% by weight or more, preferably 0. 05 wt% or more, more preferably 0.1 wt% or more, more preferably 0.5 wt% or more, most preferably 1 wt% or more, usually 80 wt% or less, preferably 50 wt% or less, more It is preferably 40% by weight or less, more preferably 30% by weight or less, and most preferably 20% by weight or less. If this concentration is below the lower limit, it is difficult to form a thick film when forming a thin film, and if it exceeds the upper limit, it is difficult to form a thin film.
  • the weight mixing ratio of the light-emitting material Z charge transport material is usually 0.1 / 99.9 or more, more preferably 0.5 / 99.5. More preferably 1Z99 or more, most preferably 2Z98 or more, usually 50Z50 or less, more preferably 40Z60 or less, still more preferably 30Z70 or less, and most preferably 20Z80 or less. is there. If this ratio falls below the lower limit or exceeds the upper limit, the luminous efficiency may be significantly reduced.
  • the charge transport material composition of the present invention is obtained by dissolving a solute comprising a charge transport material, a light emitting material, and various additives such as a leveling agent and an antifoaming agent that can be added as necessary in an appropriate solvent. It is prepared by. In order to shorten the time required for the dissolution process and to keep the solute concentration in the composition uniform, the solute is usually dissolved while stirring the solution. The dissolution process may be carried out at room temperature! If the dissolution rate is slow, it can be dissolved by heating. After completion of the dissolution process, a filtration process such as filtering may be performed as necessary.
  • An organic electric field generator is formed by forming a layer by a wet film-forming method using the charge transport material composition of the present invention.
  • an optical element When an optical element is produced, if moisture is present in the charge transport material composition used, moisture is mixed into the formed film and the uniformity of the film is impaired. Therefore, the moisture content in the charge transport material composition of the present invention is reduced. The amount is preferably as small as possible.
  • organic electroluminescent elements are often made of materials such as cathodes that deteriorate significantly due to moisture, when moisture is present in the charge transport material composition, moisture remains in the dried film. It is preferable that there is a possibility of deteriorating the characteristics of the element.
  • the amount of water contained in the charge transport material composition of the present invention is usually 1 wt% or less, preferably 0.1 wt% or less, more preferably 0.01 wt% or less. .
  • the charge transport material composition of the present invention is preferably in a uniform liquid state at room temperature in order to improve stability in a wet film-forming process, for example, ejection stability with a nozzle force in an ink-jet film forming method.
  • a uniform liquid at room temperature means that the composition is a liquid composed of a uniform phase and that the composition does not contain a particle component having a particle size of 0.0: Lm or more.
  • the viscosity of the charge transport material composition of the present invention when the viscosity is extremely low, for example, coating surface non-uniformity due to excessive liquid film flow in the film forming process, nozzle ejection failure in ink jet film formation, etc. are likely to occur. When the viscosity is extremely high, nozzle clogging or the like in ink jet film formation tends to occur. Therefore, the viscosity of the composition of the present invention at 25 ° C.
  • mPa ′s or more is usually 2 mPa ′s or more, preferably 3 mPa ′s or more, more preferably 5 mPa ′s or more, and usually 1OOOmPa ′s or less, preferably lOOmPa's or less, more preferably 50 mPa's or less.
  • the surface tension of the charge transport material composition of the present invention is high, the wettability of the liquid for film formation with respect to the substrate is lowered, and the film-forming surface at the time of drying in which the leveling property of the liquid film is poor. Since problems such as turbulence are likely to occur, the surface tension of the composition of the present invention at 20 ° C. is usually less than 50 mNZm, preferably less than 40 mNZm.
  • the vapor pressure of the charge transport material composition of the present invention is high, problems such as changes in the solute concentration due to evaporation of the solvent tend to occur. For this reason, the vapor pressure at 25 ° C. of the composition of the present invention is usually 50 mmHg or less, preferably 10 mmOgHg or less, more preferably lmmHg or less.
  • the charge transport material composition of the present invention is preferably filled in a container capable of preventing the transmission of ultraviolet rays, such as a brown glass bottle, and sealed and stored.
  • the storage temperature is usually ⁇ 30 ° C. or higher, preferably 0 ° C. or higher, and usually 35 ° C. or lower, preferably 25 ° C. or lower.
  • the organic electroluminescent device of the present invention has at least an anode, a cathode, and a light emitting layer provided between both electrodes on a substrate, and has a layer containing the hydrocarbon compound of the present invention.
  • This layer is preferably a layer formed by a wet film-forming method using the charge transport material composition of the present invention, and in particular, this layer is preferably a light emitting layer.
  • the hydrocarbon compound of the present invention is preferably contained in the light emitting layer or the hole blocking layer.
  • FIG. 1 is a substrate
  • 2 is an anode
  • 3 is a hole injection layer
  • 4 is A light emitting layer
  • 5 represents an electron injection layer
  • 6 represents a cathode.
  • the substrate 1 serves as a support for the organic electroluminescent element, and quartz or glass plates, metal plates or metal foils, plastic films or sheets, etc. are used.
  • a glass plate and a transparent synthetic resin plate such as polyester, polymetatalylate, polycarbonate, and polysulfone are preferable.
  • a synthetic resin substrate it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic electroluminescent element may be deteriorated by the outside air that has passed through the substrate, which is not preferable. For this reason, a method of securing a gas noria property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
  • An anode 2 is provided on the substrate 1.
  • the anode 2 plays a role of hole injection into the layer on the light emitting layer side (such as the hole injection layer 3 or the light emission layer 4).
  • This anode 2 is usually made of metal such as aluminum, gold, silver, nickel, iron ⁇ radium, platinum, metal oxide such as indium and Z or tin, copper iodide, etc. It is composed of a metal halide, carbon black, or a conductive polymer such as poly (3-methylthiophene), polypyrrole or polyaline.
  • the anode 2 is usually formed by a sputtering method, a vacuum deposition method, or the like.
  • an appropriate noinder when forming an anode using fine metal particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, or conductive polymer fine powder, an appropriate noinder
  • the anode 2 can also be formed by dispersing it in a fat solution and coating it on the substrate 1.
  • a thin film can be formed directly on the substrate 1 by electrolytic polymerization, or the anode 2 can be formed by applying a conductive polymer on the substrate 1 (Appl. Phys. Lett., 60 ⁇ , 2711, 1992).
  • the anode 2 usually has a single-layer structure, but may have a laminated structure having a plurality of material forces if desired.
  • the thickness of the anode 2 varies depending on the required transparency.
  • the visible light transmittance is usually 60% or more, preferably 80% or more.
  • the thickness of the anode is usually 5 nm or more, preferably lOnm or more, and usually lOOOnm or less, preferably about 500 nm or less. If it can be opaque, the thickness of the anode 2 is arbitrary, and the anode 2 may be the same as the substrate 1. Furthermore, it is also possible to laminate different conductive materials on the anode 2 described above.
  • the anode surface is treated with ultraviolet (UV) Z ozone, oxygen plasma, argon plasma. I prefer to handle it.
  • UV ultraviolet
  • the hole injection layer 3 is a layer that transports holes from the anode 2 to the light emitting layer 4, the hole injection layer 3 preferably contains a hole transporting compound.
  • a cationic radical in which one electron is removed from an electrically neutral compound accepts one electron from a nearby electrically neutral compound, whereby a hole is generated.
  • the hole transporting compound gives electrons to the anode 2 when energized, so that the cation of the hole transporting compound A radical is generated, and holes are transported by transferring electrons between the cation radical and an electrically neutral hole transporting compound.
  • the hole injection layer 3 contains a cation radical compound
  • the cation radical necessary for hole transport exists at a concentration higher than that generated by the acid generated by the anode 2, and the positive injection is present.
  • the hole injection layer 3 preferably contains a cation radical compound.
  • an electrically neutral hole transporting compound is present in the vicinity of the cation radical compound, electrons are transferred smoothly, and therefore the cationic radical compound and the hole transporting compound are combined in the hole injection layer 3. More preferably.
  • the cation radical compound is a cation radical that is a chemical species obtained by removing one electron from a hole transport property, a compound force, and an ionic compound that has an anti-ion force.
  • V-holes free carriers
  • the hole injection layer 3 contains a hole transporting compound and an electron accepting compound.
  • the hole injection layer 3 contains a hole transporting compound and an electron accepting compound. It is even more preferable to include. Further, it is more preferable that the hole injection layer 3 contains a cation radical compound and a hole transport compound which preferably contain a cation radical compound.
  • the hole injection layer 3 may contain a binder resin that hardly traps charges or a coating property improving agent, if necessary.
  • the hole injection layer 3 only the electron-accepting compound is formed on the anode 2 by a wet film forming method, and the charge transport material composition of the present invention is directly applied and laminated. Is also possible. In this case, a part of the charge transport material composition of the present invention is an electron accepting compound. By interacting with, a layer having excellent hole injection properties is formed.
  • the hole transporting compound a compound having an ionization potential of 4.5 eV to 6. OeV is preferable.
  • Examples of the hole transporting compound include, in addition to the charge transporting material of the present invention, aromatic amine compounds, phthalocyanine derivatives, porphyrin derivatives, oligothiophene derivatives, and polythiophene derivatives. Of these, aromatic amine compounds are preferable from the viewpoint of amorphousness and visible light transmittance.
  • aromatic tertiary amine compounds such as the charge transport material of the present invention are particularly preferable.
  • the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure and also includes a compound having a group derived from an aromatic tertiary amine.
  • the type of aromatic tertiary amine compound is not particularly limited, but from the viewpoint of the surface smoothing effect, a polymer compound having a weight average molecular weight of 1000 or more and 1000000 or less (polymerization type carbonization in which repeating units are linked). More preferred are hydrogen compounds).
  • Preferred examples of the aromatic tertiary amine polymer compound include a polymer compound having a repeating unit represented by the following general formula (VII).
  • ⁇ and Ar each independently represent an aromatic hydrocarbon group which may have a substituent, or an aromatic heterocyclic group which may have a substituent.
  • Ar 23 to Ar 25 each independently represents a divalent aromatic hydrocarbon group which may have a substituent, or a divalent aromatic heterocyclic group which may have a substituent.
  • Y represents a linking group selected from the following linking group group.
  • two groups bonded to the same N atom among Ar 21 to Ar 25 may be bonded to each other to form a ring.
  • Ar dl to Ar 41 are each independently 1 derived from an aromatic hydrocarbon ring which may have a substituent or an aromatic heterocyclic ring which may have a substituent. Represents a divalent or divalent group.
  • R 31 and R 32 each independently represents a hydrogen atom or an arbitrary substituent.
  • a monovalent or divalent group derived from any aromatic hydrocarbon ring or aromatic complex ring is applicable. These may be the same or different from each other. Moreover, you may have arbitrary substituents.
  • Examples of the aromatic hydrocarbon ring include a 5- or 6-membered monocyclic ring or a 2-5 condensed ring. Specific examples include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a taricene ring, a triphenylene ring, a acenaphthene ring, a fluoranthene ring, and a fluorene ring.
  • Examples of the aromatic heterocyclic ring include a 5- or 6-membered monocyclic ring or a 2-4 condensed ring. Specific examples include furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, strong rubazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, chenoviolol.
  • Ar 23 to Ar 25 , Ar 31 to Ar 35 , Ar 37 to Ar 4 are derived from one or more types of aromatic hydrocarbon rings and Z or aromatic heterocycles exemplified above. Two or more divalent groups can be linked and used.
  • aromatic hydrocarbon ring and a Z or an aromatic heterocyclic group derived from Ar 21 to Ar 41 may have a substituent further.
  • the molecular weight of the substituent is usually 400 or less, preferably about 250 or less.
  • the type of the substituent is not particularly limited, and examples thereof include one or more selected from the following substituent group W.
  • a halogen atom such as a fluorine atom or a chlorine atom
  • a haloalkyl group such as a trifluoromethyl group, usually having 1 or more, usually 8 or less, preferably 4 or less
  • a methylthio group or an ethylthio group An alkylthio group having a carbon number of usually 1 or more, usually 10 or less, preferably 6 or less; a phenylthio group, a naphthylthio group, a pyridylthio group, etc.
  • the number of carbon atoms is usually 2 or more, preferably 3 or more, usually 33 or less, preferably 26 or less; such as trimethylsiloxy group or triphenylsiloxy group, and usually has 2 or more carbon atoms, preferably 3 Or more, usually 33 or less, preferably 26 or less siloxy group; cyano group; phenyl group, naphthyl group, etc., aromatic hydrocarbon ring group usually having 6 or more carbon atoms, usually 30 or less, preferably 18 or less; An aromatic heterocyclic group having usually 3 or more, preferably 4 or more, usually 28 or less, preferably 17 or less, such as a group or a pyridyl group.
  • Ar 21 and Ar 22 are monovalent derived from a benzene ring, a naphthalene ring, a phenanthrene ring, a thiophene ring, and a pyridine ring from the viewpoint of the solubility, heat resistance, and hole injection 'transportability of the polymer compound. More preferred are a phenyl group and a naphthyl group.
  • Ar 23 to Ar 25 are divalent groups derived from a benzene ring, a naphthalene ring, an anthracene ring, and a phenanthrene ring from the viewpoint of heat resistance and hole injection and transport properties including redox potential.
  • Preferred are a phenylene group, a biphenylene group, and a naphthylene group.
  • R 31 and R 32 a hydrogen atom or an arbitrary substituent can be applied. These may be the same or different from each other.
  • the type of the substituent is not particularly limited, and examples of applicable substituents include alkyl groups, alkenyl groups, alkyl groups, alkoxy groups, silyl groups, siloxy groups, and aromatic hydrocarbon groups. , Aromatic heterocyclic groups, and halogen atoms. Specific examples thereof include the groups exemplified in the above substituent group W.
  • aromatic tertiary amine polymer compound having a repeating unit represented by the general formula (VII) include those described in WO2005Z089024, and preferred examples thereof are also the same.
  • a compound represented by the structural formula (PB-1) can be mentioned, but is not limited thereto.
  • Preferred examples of other aromatic tertiary amine polymer compounds include, for example, the following general formula (VIII) and
  • Examples thereof include a polymer compound containing a repeating unit represented by Z or general formula (IX).
  • Ar 5 , Ar 47 and Ar 4 ° may each independently have a substituent ⁇ an aromatic hydrocarbon group or a substituent ⁇ Represents an aromatic heterocyclic group.
  • Ar 44 and Ar 46 each independently represents a divalent aromatic hydrocarbon group which may have a substituent, or a divalent aromatic heterocyclic group which may have a substituent.
  • Ar 45 to Ar 48 two groups bonded to the same N atom may be bonded to each other to form a ring.
  • R 41 to R 43 each independently represent a hydrogen atom or an arbitrary substituent.
  • Ar 45 , Ar 47 , Ar 48 and Ar 44 , Ar 46 may include Ar 21 , Same as Ar 22 and Ar 23 to Ar 25 .
  • R 41 to R 43 are preferably a hydrogen atom or a group described in [Substituent group W]. And a hydrogen atom, an alkyl group, an alkoxy group, an amino group, an aromatic hydrocarbon group, and an aromatic hydrocarbon group.
  • aromatic tertiary amine polymer compound containing the repeating unit represented by the general formula (VIII) and Z or (IX) include those described in WO2005Z089024, and preferred examples thereof are also included. A force that is similar is not limited to them.
  • the hole injection layer is formed by a wet film forming method
  • a hole transporting compound that is easily dissolved in various solvents is preferable.
  • the aromatic tertiary amine compound for example, a binaphthyl compound (Japanese Patent Laid-Open No. 2004-014187) and an asymmetric 1,4-phenylenediamine compound (Japanese Patent Laid-Open No. 2004-026732) are preferred.
  • aromatic amine compounds that have been conventionally used as thin film refining materials having hole injection and transport properties in organic electroluminescent devices, compounds that are easily dissolved in various solvents may be appropriately selected. Good.
  • aromatic amine compound applicable to the hole transporting compound of the hole injection layer for example, it has been conventionally used as a layer forming material for hole injection and transporting in organic electroluminescence devices. A well-known compound is mentioned.
  • aromatic diamine compounds in which tertiary aromatic amine units such as 1, 1 bis (4-di-P-triamylaminophenol) cyclohexane are linked JP-A-59-194393
  • 4 , 4'-bis [N- (1-naphthyl) -N-phenolamino] biphenyl, which contains two or more tertiary amines, and two or more condensed aromatic rings are attached to the nitrogen atom.
  • Substituted aromatic amine compounds JP-A-5-234681; derivatives of triphenylbenzene and aromatic triamine compounds having a starburst structure (US Pat. No.
  • N N, —Diphenyl—N, N, —Bis (3-methylphenol) bi-fluoro 4,4, aromatic diamine compounds such as diamine (US Pat. No. 4,764,625); ⁇ , ⁇ , ⁇ ', ⁇ , monotetramethyl ⁇ , ⁇ , monobis (4 di ( ⁇ tolyl) aminophenyl) - ⁇ xylene (Japanese Patent Laid-Open No. 3-2699084); Triphenylamine derivatives that are sterically asymmetric as a whole molecule (Japanese Patent Laid-Open No.
  • phthalocyanine derivative or porphyrin derivative applicable to the hole transporting compound of the hole injection layer include porphyrin, 5, 10, 15, 20-tetraphenyl 21H , 23H Porphyrin, 5, 10, 15, 20—Tetraphenol— 21H, 23H —Porphyrin cobalt (11), 5, 10, 15, 20—Tetraferro-Lu 21H, 23H Porphyrin copper (11), 5, 10 , 15, 20—Tetraphenol—21H, 23H Porphyrin zinc ( ⁇ ), 5, 10, 15, 20—Tetraferroic 21H, 23H Porphyrin vanadium (IV) oxide, 5, 10, 15, 20—Tetra (4 Pyridyl) -21H, 23H porphyrin, 29H, 31H phthalocyanine copper ( ⁇ ), phthalocyanine zinc (11), phthalocyanine titanium, phthalocyanine oxide magnesium, phthalocyanine lead, phthalocyanine copper (11), 4, 4, 4 "
  • oligothiophene derivative applicable as the hole transporting compound of the hole injection layer include ⁇ -terthiophene and its derivatives, ⁇ -sexithiophene and its derivatives, and a naphthalene ring. Examples thereof include oligothiophene derivatives (JP-A-6-256441).
  • polythiophene derivative applicable as the hole transporting compound in the present invention include poly (3,4-ethylenedioxythiophene) (PEDOT), poly (3- Hexylthiophene) and the like.
  • the molecular weight of these hole-transporting compounds is a polymer compound (repeating repeating units). In general, the range is 9000 or less, preferably 5000 or less, and usually 200 or more, preferably 400 or more. If the molecular weight of the hole transporting compound is too high, synthesis and purification are difficult, which is not preferable. On the other hand, if the molecular weight is too low, the heat resistance may be lowered, which is also not preferable.
  • the hole transporting compound used as the material for the hole injection layer may contain one or more of these compounds, and may contain two or more kinds. Also good. When two or more kinds of hole transporting compounds are contained, the combination thereof is arbitrary, but one or more aromatic tertiary amine polymer compounds and one other hole transporting compound are used. Or it is preferable to use 2 or more types together.
  • An electron-accepting compound is preferably a compound having an oxidizing power and the ability to accept one electron from the above-described hole-transporting compound. Specifically, a compound having an electron affinity of 4 eV or more is used. Preferred is a compound that is a compound of 5 eV or more.
  • Examples include 4-isopropyl-1,4'-methyldiphenyl tetrakis (pentafluorophenol) borate and other organic group-substituted onium salts, salted iron (III) ( JP-A-11-251067), high-valence inorganic compounds such as ammonium peroxodisulfate, cyano-compounds such as tetracyanethylene, tris (pentafluorophenyl) borane (JP-A-2003-31365), etc. Aromatic boron compounds, fullerene derivatives, iodine and the like.
  • onium salts substituted with organic groups and high-valent inorganic compounds are soluble in various solvents, and can be applied to wet coating because they have strong acid-like properties.
  • an organic salt-substituted onium salt, a cyan compound, and an aromatic boron compound are preferable.
  • organically substituted onium salts, cyan compounds, and aromatic boron compounds suitable as electron-accepting compounds include those described in WO2005Z089024, and preferred examples thereof. The same applies to, for example, the force including the compound (A-2) represented by the following structural formula, but is not limited thereto.
  • the cation radical compound is a cation radical that is a chemical species obtained by removing one electron from a hole transporting compound, and an ionic compound that also has an anti-ion force.
  • the cation radical when the cation radical is derived from a hole transporting polymer compound, the cation radical has a structure in which one electron of a repeating unit force of the polymer compound is removed.
  • the cation radical is a chemical compound obtained by removing one electron from the above-described compound in the hole transporting compound, and more preferably as a hole transporting compound that is preferably a chemical species. It is more preferable to be a chemical species from the viewpoints of amorphousness, visible light transmittance, heat resistance, and solubility.
  • the cation radical compound can be generated by mixing the hole transport compound and the electron acceptor compound described above. That is, by mixing the aforementioned hole transporting compound and the electron accepting compound, electron transfer occurs from the hole transporting compound to the electron accepting compound, and the cation radical of the hole transporting compound is produced. A cationic ion compound with a counter-on force is generated.
  • Cationic labs derived from polymer compounds such as PEDOT / PSS Advanced Mater., 2000, 12 ⁇ , 481) Jameraldine hydrochloride (J. Phys. Chem., 1990, 94 ⁇ , 7716)
  • Dical compounds are also formed by acid-sodium polymerization (dehydrogenation polymerization), that is, by oxidizing a monomer chemically or electrochemically with peroxysulfate in an acidic solution. To do. In this oxidative polymerization (dehydrogenation polymerization), the monomer is oxidized, resulting in a high content. At the same time, a cation radical is generated, in which one electron is removed from the repeating unit of the polymer, with the ion derived from the acidic solution as a counter ion.
  • the hole injection layer 3 is formed on the anode 2 by a wet film forming method or a vacuum deposition method.
  • ITO indium stannate
  • ITO indium stannate
  • Ra lOnm
  • the defect of the device due to the unevenness of the surface of the anode is generated compared to the case of forming by the vacuum deposition method. Has the advantage of reducing.
  • a predetermined amount of one or more of the above-mentioned materials is added, Do not become a trap of charge if necessary! / ⁇ Binder ⁇
  • a coating improver and dissolve in a solvent to prepare a coating solution, spin coat, spray coat, dip coat, die coat, flexo
  • the positive hole injection layer 3 is formed by applying on the anode by a wet film formation method such as printing, screen printing, or ink jet method, and drying.
  • the solvent used for the layer formation by the wet film forming method the above-mentioned materials (hole transporting compound, electron accepting compound, cation radical compound) can be dissolved. If it is a solvent, the type is not particularly limited, but a deactivating substance that may deactivate each material (hole transporting compound, electron accepting compound, cation radical compound) used for the hole injection layer. Or prefer something that doesn't contain deactivating material.
  • Examples of preferable U and solvent that satisfy these conditions include ether solvents and ester solvents.
  • the ether solvent include aliphatic ethers such as ethylene glycolenoresmethinoleatenore, ethyleneglycololecinoleethenore, propylene glycol 1 monomethyl ether acetate (PGMEA); , 2-dimethoxybenzene, 1,3 dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3 dimethylaninol, 2,4 dimethylarsole, etc.
  • ether solvent include aliphatic ethers such as ethylene glycolenoresmethinoleatenore, ethyleneglycololecinoleethenore, propylene glycol 1 monomethyl ether acetate (PGMEA); , 2-dimethoxybenzene, 1,3 dimethoxybenzene, anisole, phenetole
  • ester solvents include aliphatic esters such as ethyl acetate, n-butyl acetate, ethyl acetate, and n-butyl lactate; acetate acetate, propionate, methyl benzoate, ethyl benzoate, And aromatic esters such as propyl benzoate and n-butyl benzoate. Any one of these may be used alone, or two or more may be used in any combination and ratio.
  • Solvents that can be used in addition to the ether solvents and ester solvents described above include, for example, aromatic hydrocarbon solvents such as benzene, toluene, xylene, N, N-dimethylformamide, N, N-dimethyl. Examples include amide solvents such as acetoamide, dimethyl sulfoxide and the like. Any of these may be used alone, or two or more may be used in any combination and ratio. Further, one or more of these solvents may be used in combination with one or more of the ether solvents and ester solvents described above.
  • aromatic hydrocarbon solvents such as benzene, toluene, xylene, N, N-dimethylformamide, N, N-dimethyl.
  • amide solvents such as acetoamide, dimethyl sulfoxide and the like. Any of these may be used alone, or two or more may be used in any combination and ratio. Further, one or more of these solvents may be used in combination with one or more of the
  • aromatic hydrocarbon solvents such as benzene, toluene and xylene have low ability to dissolve electron-accepting compounds and cation radical compounds, so they are mixed with ether solvents and ester solvents. It is preferable to use it.
  • the concentration of the solvent in the coating solution is usually 10% by weight or more, preferably 30% by weight or more, more preferably 50% by weight or more, and usually 99.999% by weight or less, preferably 99.99%. It is not more than wt%, more preferably not more than 99.9 wt%. When two or more solvents are used as a mixture, the total force S of these solvents must satisfy this range.
  • one or more of the above-mentioned materials are placed in a vacuum vessel. Place the crucibles in the crucibles (in case of using more than 2 kinds of materials, put them in each crucible), evacuate the vacuum container to about 10 _4 Pa with a suitable vacuum pump, and then heat the crucibles When using the upper material, heat each crucible) and evaporate by controlling the amount of evaporation (when using two or more materials, evaporate by independently controlling the amount of evaporation) and face the crucible A hole injection layer is formed on the anode of the substrate placed on the substrate. When two or more kinds of materials are used, a mixture of them can be put in a crucible and heated and evaporated to form a hole injection layer.
  • the film thickness of the hole injection layer 3 formed in this way is usually in the range of 5 nm or more, preferably lOnm or more, and usually lOOOnm or less, preferably 500 nm or less.
  • the hole injection layer 3 may be omitted as shown in FIG. [0194]
  • a light emitting layer 4 is usually provided on the hole injection layer 3.
  • the light emitting layer 4 is, for example, a layer containing the above-described light emitting material. Between the electrodes to which an electric field is applied, holes injected from the anode 2 through the hole injection layer 3 and from the cathode 6 through the electron transport layer 5 are used. It is a layer that is excited by recombination with injected electrons and becomes the main light source.
  • the light emitting layer 4 preferably contains a light emitting material (dopant) and one or more host materials, and the light emitting layer 4 more preferably contains the hydrocarbon compound of the present invention as a host material. Force that may be formed by a method It is particularly preferable that the layer be formed by a wet film-forming method using the charge transport material composition of the present invention.
  • the wet film forming method is a method in which a composition containing a solvent as described above is formed by spin coating, spray coating, dip coating, die coating, flexographic printing, screen printing, an ink jet method, or the like. is there.
  • the light emitting layer 4 may contain other materials and components as long as the performance of the present invention is not impaired. Further, the light emitting layer 4 may have a two-layer structure or a multi-layer structure having three or more layers. In this case, the composition ratio of each layer may be different, or it may contain different materials. Also good. It is also possible to provide a charge generation layer having a force such as vanadium pentoxide between the layers.
  • the organic layer such as the hole injection layer 3 and the electron transport layer 5 described later is provided in addition to the light emitting layer 4, the light emitting layer 4, the hole injection layer 3, the electron transport layer 5, etc.
  • the total film thickness combined with other organic layers is usually 30 nm or more, preferably 50 nm or more, more preferably lOOnm or more, usually lOOOnm or less, preferably 500 nm or less, more preferably 300 nm or less.
  • the conductivity of the hole injection layer 3 other than the light emitting layer 4 or the electron injection layer 5 described later is high, the amount of charge injected into the light emitting layer 4 increases. It is also possible to reduce the drive voltage while maintaining the total film thickness to some extent by increasing the film thickness of layer 3 and decreasing the film thickness of light emitting layer 4.
  • the thickness of the light emitting layer 4 is usually lOnm or more, preferably 20 nm or more, and usually 300 ⁇ m or less, preferably 200 nm or less.
  • the film thickness of the light emitting layer 4 is usually 30 nm or more, preferably 50 nm or more, usually 500 nm or less, preferably 300 nm or less. It is.
  • the electron injection layer 5 serves to efficiently inject electrons injected from the cathode 6 into the light emitting layer 4.
  • the material for forming the electron injection layer 5 is an alkali metal such as sodium or cesium, which is preferable for a metal having a low work function, or an alkaline earth metal such as norium or calcium.
  • the film thickness of the electron injection layer 5 is preferably 0.1 to 5 nm.
  • a cathode buffer layer 10 such as LiF, MgF, Li 0, Cs CO, etc. as shown in FIGS. 8 and 9 is formed at the interface between the cathode 6 and the light emitting layer 4 or the electron transport layer 8 described later. l ⁇ 5nm about)
  • organic electron transport materials represented by metal complexes such as nitrogen-containing heterocyclic compounds such as bathophenantorin described later and aluminum complexes of 8-hydroxyquinoline include sodium, potassium, cesium, lithium, rubidium. And the like (as described in JP-A-10-270171, JP-A-2002-100478, JP-A-2002-100482, etc.) to improve electron injection / transport properties and excellent film quality This is preferable because it is possible to achieve both.
  • the film thickness is usually 5 nm or more, preferably lOnm or more, usually 200 nm or less, preferably lOOnm or less.
  • the electron injection layer 5 is formed by laminating on the light emitting layer 4 by a wet film forming method or a vacuum deposition method in the same manner as the light emitting layer 4.
  • the evaporation source is placed in a crucible or metal boat installed in a vacuum vessel, the inside of the vacuum vessel is evacuated to about 10 _4 Pa with an appropriate vacuum pump, and then the crucible or metal boat is heated. Evaporate and rub An electron injection layer is formed on a substrate placed opposite to the metal boat or the metal boat.
  • the alkali metal is vapor-deposited using an Al metal dispenser in which nichrome is filled with an alkali metal chromate and a reducing agent. By heating the dispenser in a vacuum container, the alkali metal chromate is reduced and the alkali metal is evaporated.
  • an organic electron transport material and an alkali metal place the organic electron transport material in a crucible installed in a vacuum vessel and evacuate the vacuum vessel to about 10 _4 Pa with a suitable vacuum pump. Each crucible and dispenser are simultaneously heated and evaporated to form an electron injection layer on the substrate placed facing the crucible and dispenser.
  • the co-evaporation is uniformly performed in the film thickness direction of the electron injection layer 5, but there may be V and concentration distribution in the film thickness direction! /.
  • the electron injection layer 5 may be omitted as shown in FIGS.
  • the cathode 6 serves to inject electrons into a layer on the light emitting layer side (such as the electron injection layer 5 or the light emitting layer 4).
  • the material used for the cathode 6 can be the material used for the anode 2, but a metal having a low work function is preferred for efficient electron injection.
  • Tin, magnesium, indium, calcium A suitable metal such as aluminum, silver, or an alloy thereof is used.
  • Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
  • the film thickness of the cathode 6 is usually the same as that of the anode 2.
  • a cathode made of a low work function metal further laminating a metal layer having a high work function and stable to the atmosphere on the cathode increases the stability of the device.
  • metals such as aluminum, silver, copper, nickel, chromium, gold and platinum are used.
  • the element having the layer structure shown in FIG. 1 has been mainly described. However, the above description is provided as long as the performance is not impaired between the anode 2 and the cathode 6 and the light emitting layer 4 in the organic electroluminescent element of the present invention.
  • an arbitrary layer may be provided, and any layer other than the light emitting layer 4 may be omitted.
  • Examples of the layer that may be included include the electron transport layer 7.
  • the electron transport layer 7 is provided between the light emitting layer 4 and the electron injection layer 5 as shown in FIG. 2 for the purpose of further improving the luminous efficiency of the device.
  • the electron transport layer 7 is formed of a compound capable of efficiently transporting electrons injected from the cathode 6 between the electrodes to which an electric field is applied in the direction of the light emitting layer 4.
  • an electron transporting compound used for the electron transport layer 7 the electron injection efficiency from the cathode 6 or the electron injection layer 5 is high, and the injected electrons are transported efficiently with high electron mobility. It must be a compound that can
  • Examples of the material that satisfies such conditions include the charge transport material of the present invention.
  • metal complexes such as aluminum complexes of 8-hydroxyquinoline (JP 59-194 393), metal complexes of 10-hydroxybenzo [h] quinoline, oxadiazole derivatives, distyryl biphenyl derivatives, silole derivatives 3- or 5-hydroxyflavone metal complex, benzoxazole metal complex, benzothiazole metal complex, trisvens imidazolylbenzene (US Pat. No.
  • quinoxaline compound JP-A-6- 207169
  • phenant phosphorus derivatives JP-A-5-331459
  • 2-t-butyl-9,10-N ⁇ '-dicyananthraquinonedimine
  • n-type hydrogenated amorphous Examples include silicon carbide, n-type zinc sulfide, and n-type selenium zinc.
  • the thickness of the electron transport layer 7 is usually 1 nm, preferably about 5 nm, and the upper limit is usually about 300 nm, preferably about 10 nm.
  • the electron transport layer 7 is formed by laminating on the light emitting layer 4 by the wet film forming method or the vacuum deposition method in the same manner as the hole injection layer 3. Usually, a vacuum deposition method is used.
  • the hole blocking layer 8 has a function of confining holes and electrons in the light emitting layer 4 and improving luminous efficiency. That is, the hole blocking layer 8 is generated by increasing the probability of recombination with electrons in the light emitting layer 4 by blocking the holes moving from the light emitting layer 4 from reaching the electron transport layer 7. There are a role of confining excitons in the light emitting layer 4 and a role of efficiently transporting electrons injected from the electron transport layer 7 in the direction of the light emitting layer 4.
  • the hole blocking layer 8 serves to block the holes moving from the anode 2 from reaching the cathode 6, and efficiently transports the electrons injected from the cathode 6 toward the light emitting layer 4.
  • the compound that can be formed is laminated on the light emitting layer 4 so as to be in contact with the interface of the light emitting layer 4 on the cathode 6 side.
  • the physical properties required of the material constituting the hole blocking layer 8 include high electron mobility and low hole mobility, a large energy gap (difference between HOMO and LUMO), and excited triplet levels. (T1) is high.
  • the charge transport material of the present invention is preferably used.
  • the film thickness of the hole blocking layer 8 is usually 0.3 nm or more, preferably 0.5 nm or more, and usually ⁇ m or less, preferably 50 nm or less.
  • the hole blocking layer 8 can also be formed by the same method as the hole injection layer 3, but usually a vacuum evaporation method is used.
  • the electron transport layer 7 and the hole blocking layer 8 may be provided as necessary. 1) Only the electron transport layer, 2) Only the hole block layer, 3) The hole block layer Z electron transport There are usages such as layering, 4) not using, etc.
  • the hole blocking layer 8 it is also effective to provide an electron blocking layer 9 between the hole injection layer 3 and the light emitting layer 4 as shown in Figs.
  • the electron blocking layer 9 prevents electrons moving from the light emitting layer 4 from reaching the hole injection layer 3, thereby recombining with holes in the light emitting layer 4.
  • the characteristics required for the electron blocking layer 9 include a high energy gap (difference between HOMO and LUMO) with high hole transportability and a high excited triplet level (T1). Further, when the light emitting layer 4 is formed by a wet film forming method, it is preferable that the electron blocking layer 9 is also formed by a wet film forming method because the device can be easily manufactured.
  • the electron blocking layer 9 also has wet film formation compatibility.
  • the material used for such an electron blocking layer 9 include the charge transport material of the present invention, F8—TFB ⁇ .
  • examples thereof include a copolymer of dioctylfluorene and triphenylamine (described in WO2004Z084260).
  • the light-emitting layer is formed by a dry film formation method (evaporation method or the like)
  • a material used for the electron blocking layer 9 other than the charge transport material of the present invention
  • 4, 4 'bis [ N— (1 naphthyl) —N—phenylamino] aromatic diamines including two or more tertiary amins represented by biphenyl, wherein two or more condensed aromatic rings are substituted with nitrogen atoms special Kaihei 5-234681)
  • 4, 4 "—Tris (1-naphthylphenol-triamino) triphenylamine and other aromatic amine compounds having a starbust structure J.
  • R ′′ to R 19 each represent a hydrogen atom, an aryl group or an alkyl group. 1 to! ⁇ May be the same or different. R ′′ to R 19 represent an aryl. If groups or alkyl le group, R "to R 19 may further have a Ariru group or an alkyl group as a substituent.
  • polyarylene ether sulfone (Polym. Adv) containing polyvinylcarbazole, polyvinyltriphenylamine (Japanese Patent Laid-Open No. 7-53953), tetraphenylpentidine as a material for the electron blocking layer 9 is used. Tech., 7 ⁇ , 33, 199 6).
  • the structure opposite to that shown in Fig. 1, that is, the cathode 6, the electron injection layer 5, the light emitting layer 4, the hole injection layer 3, and the anode 2 can be laminated on the substrate 1 in this order.
  • the organic electroluminescent element of the present invention between two substrates, at least one of which has high transparency.
  • Sarako can also have a structure in which the layer configuration shown in FIG. 1 is stacked in multiple layers (a structure in which a plurality of light emitting units are stacked).
  • a structure in which a plurality of light emitting units are stacked instead of the interfacial layer (between the light emitting units) (two layers when the anode is IT 0 and the cathode is A1), for example, VO is used as the charge generation layer (CGL).
  • CGL charge generation layer
  • the present invention is effective when the organic electroluminescent device is a single device, a device having a structure arranged in an array, or a structure in which an anode and a cathode power are arranged in a matrix. However, it can be applied.
  • the glass transition temperature was determined by DSC measurement
  • the vaporization temperature was determined by TG-DTA measurement
  • the melting point was determined by DSC measurement or TG-DTA measurement.
  • the glass transition temperature of this product was 83 ° C.
  • the obtained solution was extracted with toluene, and the extracted solution was washed with an aqueous sodium hydrogen carbonate solution, anhydrous magnesium sulfate was added, and the solid content was removed by filtration and concentrated.
  • the target product I-2a and the target product I-3a were identified by 1 H-NMR (400 MHz; heavy acetone solvent) and DEI-MS.
  • Object I 2a was identified by 1 H-NMR (400 MHz; heavy acetone solvent) and DEI-MS.
  • the obtained solution was extracted with toluene, and the extracted solution was washed with an aqueous sodium hydrogen carbonate solution, anhydrous magnesium sulfate was added, and the solid content was removed by filtration and concentrated.
  • This was purified by silica gel column chromatography (developing solvent: n-hexane Z methylene chloride 5 Zl to 4 Zl) to obtain the target compound 1-2 (3.00 g).
  • the glass transition temperature of this product was 87 ° C, the crystallization temperature and melting point were not observed, and the vaporization start temperature was 531 ° C.
  • the resulting solution was extracted with dichloromethane, and the extracted solution was washed with brine, anhydrous magnesium sulfate and activated clay were added, and the solid content was removed by filtration and concentrated. This was purified by silica gel column chromatography to obtain the target product I-4a.
  • the glass transition temperature of this product was 99 ° C, the crystallization temperature and melting point were not observed, and the vaporization start temperature was 561 ° C.
  • the acid-reduction potential of the hydrocarbon compound (1-1) was measured by cyclic voltammetry.
  • ImolZL was dissolved in a solvent in which acetonitrile and tetrahydrofuran were mixed at a volume ratio of 1: 1 at 25 ° C, and a hydrocarbon compound (I Measurement was performed on a solution obtained by dissolving 1 mmol of ImmolZL.
  • the working electrode was glassy carbon (manufactured by BS Corporation), the counter electrode was a platinum wire, the reference electrode was a silver wire, and the running speed was measured as lOOmVZs.
  • the wavelength of the peak top observed at the shortest wavelength position was defined as the triplet excitation level (nm).
  • An organic electroluminescent device having the structure shown in FIG. 8 was produced by the following method.
  • An indium stannate oxide (ITO) transparent conductive film 150 nm deposited on glass substrate 1 (sputtered film product; sheet resistance 15 ⁇ ) is 2 mm using normal photolithography and hydrochloric acid etching.
  • Anode 2 was formed by patterning into stripes of width. The patterned ITO substrate was cleaned in the order of ultrasonic cleaning with acetone, water with pure water, and ultrasonic cleaning with isopropyl alcohol, then dried with nitrogen blow, and finally UV ozone cleaning.
  • the hole injection layer 3 was formed by a wet film forming method as follows.
  • Non-conjugated polymer compound (PB-1 (weight average molecular weight: 29400, number average molecular weight: 12600)) having an aromatic amino group having the following structural formula as a material for the hole injection layer 3 and the structure shown below
  • PB-1 weight average molecular weight: 29400, number average molecular weight: 12600
  • A-2 electron-accepting compound
  • a uniform thin film having a thickness of 30 nm was formed by the above spin coating.
  • the light emitting layer 4 was formed by a wet film forming method as follows.
  • the hydrocarbon compound (1-1) of the present invention synthesized in Synthesis Example 1 is charged with toluene as a solvent together with an iridium complex (D-1) having the structural formula shown below.
  • D-1 having the structural formula shown below.
  • Prepare material composition The charge transport material composition was spin coated under the following conditions.
  • composition I 1 Concentration in composition I 1 2.0% by weight
  • a uniform thin film having a thickness of 60 nm was formed by the above spin coating.
  • a pyridine derivative (HB-1) shown below was laminated as the hole blocking layer 8 at a crucible temperature of 260 to 264 ° C. and a film thickness of 5 nm at a deposition rate of 0.05 nmZ seconds.
  • the degree of vacuum during deposition was 3.9 X 10 _4 Pa (about 3. OX 10 _6 Torr).
  • an aluminum 8-hydroxyoxyquinoline complex (ET-1) shown below was deposited as the electron transport layer 7 in the same manner.
  • the crucible temperature of the aluminum 8-hydroxyquinoline complex is controlled in the range of 213 to 247 ° C, the vacuum during deposition is 3.9 X 10 _4 Pa (about 3. OX 10 _6 Torr), and the deposition rate was 0. InmZ seconds and the film thickness was 30 nm.
  • the substrate temperature during vacuum deposition of the hole blocking layer 8 and the electron transport layer 7 was kept at room temperature.
  • the element to which the electron transport layer 7 has been vapor-deposited is once taken out from the vacuum vapor deposition apparatus to the atmosphere, and a 2 mm wide striped shadow mask is used as a mask for cathode vapor deposition.
  • the anode 2 is in close contact with the ITO stripe perpendicular to the ITO stripe and placed in a separate vacuum deposition apparatus, and the degree of vacuum in the apparatus is 2.0 X 10 _6 Torr (about 2 6 X 10 _ 4 Pa).
  • lithium fluoride (LiF) was deposited using a molybdenum boat, the deposition rate was 0.07 nm / second, and the degree of vacuum was 2.2 X 10 _6 Torr (about 3.0 X 10 _4 Pa) was deposited on the electron transport layer 7 with a thickness of 0.5 nm.
  • the peak wavelength of the emission spectrum of the device was 470 nm, and it was identified as having iridium complex (D-1) power.
  • An organic electroluminescent device was produced in the same manner as in Example 1 except that an iridium complex (D-2) having the following structural formula was used instead of the iridium complex (D-1).
  • the maximum wavelength of the emission spectrum of the device was 512 nm, and it was identified as having an iridium complex (D-2) force.
  • the CIE chromaticity of luminescence was (0.295, 0.616).
  • the organic electroluminescent device using the hydrocarbon compound (1-1) of the present invention as the host material of the luminescent material is excellent in charge transporting property and is not easily crystallized. Thus, uniform light emission was obtained, and it was possible to drive at a low voltage with high light emission efficiency.
  • An organic electroluminescent device having the structure shown in FIG. 9 was produced by the following method.
  • the anode was formed by patterning into stripes of width.
  • the patterned ITO substrate was cleaned in the order of ultrasonic cleaning with acetone, water with pure water, and ultrasonic cleaning with isopropyl alcohol, then dried with nitrogen blow, and finally UV ozone cleaning.
  • the non-conjugated high molecular compound (PB-1) and the electron accepting compound (A-2) having an aromatic amino group used in Example 2 were used. Spin coating was performed under the same conditions as in 2 to form a uniform thin film with a thickness of 30 nm.
  • the substrate on which the hole injection layer 3 was formed was placed in a vacuum evaporation apparatus.
  • the device was evacuated using a cryopump until the degree of vacuum in the device was about 3.0 X 10 _4 Pa or less.
  • Deposition was carried out by heating the arylamine compound (EB-1) shown below, which was placed in a ceramic crucible arranged in the above apparatus, with a tantalum wire heater around the crucible.
  • the degree of vacuum at the time of deposition was 2.4 X 10 _4 Pa, the deposition rate was 0.1 nm Z seconds, and an electron blocking layer 9 having a thickness of 30 nm was obtained.
  • the compound (H—l) shown below as the main component (host material) of the light-emitting layer 4 and the organic iridium complex (D-1) as a subcomponent (dopant) were separately used.
  • the film was placed in a ceramic crucible and deposited by the binary simultaneous vapor deposition method.
  • the deposition rate of compound (H-1) was controlled at 0. InmZ seconds, the crucible temperature of iridium complex (D-1) was controlled at 251 to 254 ° C, the deposition rate was controlled at 0.008 nmZ seconds, and the film thickness was 30 nm.
  • the light emitting layer 4 containing 7% by weight of the lysium complex (D-1) was laminated on the electron blocking layer 9 .
  • the degree of vacuum during the deposition was 2.0 X 10 _4 Pa.
  • the hydrocarbon compound (1-1) of the present invention was laminated as a hole blocking layer 8 at a crucible temperature of 449 to 452 ° C with a deposition rate of 0. InmZ seconds and a film thickness of 5 nm.
  • the degree of vacuum at the time of deposition was 1.8 X 10 _4 Pa.
  • the aluminum 8-hydroxyquinoline complex (ET-1) was deposited as the electron transport layer 7 in the same manner.
  • the crucible temperature of the aluminum 8-hydroxyquinoline complex is controlled in the range of 239 to 244 ° C, the vacuum during deposition is 1.5 X 10 " 4 Pa, and the deposition rate is 0. InmZ seconds. Was 15 nm.
  • the substrate temperature during vacuum deposition of the electron blocking layer 9, the light emitting layer 4, the hole blocking layer 8 and the electron transporting layer 7 was kept at room temperature.
  • the element on which the electron transport layer 7 has been deposited is once taken out from the vacuum deposition apparatus into the atmosphere, and a 2 mm wide striped shadow mask is used as the cathode deposition mask.
  • the device was in close contact with the ITO stripe so as to be perpendicular to the ITO stripe, placed in a separate vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus was 2. OX 10 _4 Pa or less in the same manner as the organic layer.
  • lithium fluoride (LiF) was deposited using a molybdenum boat, the deposition rate was 0.5 OlnmZ seconds, the degree of vacuum was 4.7 X 10 _5 Pa, and the thickness of the electron transport layer was 7 nm. A film was formed on the substrate.
  • aluminum was heated in the same molybdenum boat, deposition rate 0. 4NmZ sec, were laminated al Miniumu layer having a thickness of 80nm in vacuum 2. 5 X 10 _4 Pa.
  • the substrate temperature during deposition of the cathode buffer layer 10 and the cathode 6 was kept at room temperature.
  • An organic electroluminescent device having the structure shown in FIG. 9 was produced.
  • An organic electroluminescence device having a light emitting area portion of 2 mm ⁇ 2 mm in size was obtained in the same manner as in Example 4 except that the thickness of the electron transport layer 7 was changed to 30 nm.
  • An organic electroluminescent device having the structure shown in FIG. 9 was produced.
  • electron transport layer 7 (ET-2) as shown in Table 2 with a crucible temperature of 190 to 191 ° C and a deposition rate of 0. InmZ seconds and a thickness of 5 nm.
  • An organic electroluminescent element having an area portion was obtained.
  • An organic electroluminescent device having the structure shown in FIG. 9 was produced.
  • An organic electroluminescent device having a light emitting area portion of 2 mm ⁇ 2 mm in size was obtained in the same manner as in Example 5 except that the material used for the electron transport layer 7 was the above compound (ET-2).
  • An organic electroluminescent device having the structure shown in FIG. 9 was produced.
  • An organic electroluminescence device having an emission area portion of 2 mm ⁇ 2 mm in size was obtained in the same manner as in Example 7 except that the thickness of the hole blocking layer 8 was changed to 10 nm.
  • An organic electroluminescent device having the structure shown in FIG. 9 was produced.
  • the compound (ET-3) shown below as the electron transport layer 7 was formed in the same manner as in Example 7 except that the crucible temperature was 222 to 225 ° C, the deposition rate was 0. InmZ seconds, and the film thickness was 5 nm.
  • An organic electroluminescent element having a light emitting area portion of X 2 mm in size was obtained.
  • An organic electroluminescent device having the structure shown in FIG. 9 was produced.
  • An organic electroluminescent device having a light emitting area portion of 2 mm ⁇ 2 mm in size was obtained in the same manner as in Example 9 except that the thickness of the hole blocking layer 8 was changed to 10 nm.
  • An organic electroluminescent device having the structure shown in FIG. 9 was produced. In the same manner as in Examples 4 to 11, layers up to the electron blocking layer 9 were formed. Next, the compound (H-1) and the hydrocarbon compound (I 1) of the present invention are used as the main component (host material) of the light-emitting layer 4, and the organic iridium complex (D-1) is separately used as the subcomponent (dopant). The film was placed in a ceramic crucible and deposited by the ternary co-evaporation method.
  • the deposition rate of compound (H-1) is 0.05 nmZ seconds
  • the crucible temperature of compound (I-1) is 376-382 ° C
  • the deposition rate is 0.05 nmZ seconds
  • the temperature was controlled at 251 to 254 ° C
  • the deposition rate was controlled at 0.008 nmZ seconds
  • a light-emitting layer 4 containing 30% by weight of iridium complex (D-1) was laminated on the electron blocking layer 9 did.
  • the degree of vacuum during the deposition was 9.4 ⁇ 10 _5 Pa.
  • the compound (ET-2) was laminated as the hole blocking layer 8 at a crucible temperature of 225 to 226 ° C and a film thickness of 5 nm at a deposition rate of 0. InmZ seconds.
  • the degree of vacuum during deposition was 6.8 X 10 " 5 Pa.
  • a compound (ET-1) is deposited in the same manner as the electron transport layer 7. It was.
  • the substrate temperature during vacuum deposition of the electron blocking layer 9, the light emitting layer 4, the hole blocking layer 8 and the electron transport layer 7 was kept at room temperature.
  • An organic electroluminescent device having the structure shown in FIG. 9 was produced.
  • An organic electroluminescent element having a light emitting area of 2 mm ⁇ 2 mm in size was obtained in the same manner as in Example 11 except that the thickness of the electron transport layer 7 was changed to 30 nm.
  • An organic electroluminescent device having the structure shown in FIG. 9 was produced.
  • An organic electroluminescent device having a light emitting area portion of 2 mm ⁇ 2 mm in size was obtained in the same manner as in Example 11 except that the hole blocking layer 8 was not laminated on the light emitting layer 4.
  • An organic electroluminescent device having the structure shown in FIG. 9 was produced.
  • An organic electroluminescent element having a light emitting area portion of 2 mm ⁇ 2 mm in size was obtained in the same manner as in Example 12 except that the hole blocking layer 8 was not laminated on the light emitting layer 4.
  • An organic electroluminescent device having the structure shown in FIG. 9 was produced. In the same manner as in Examples 4 to 14, each layer up to the electron blocking layer 9 was formed.
  • the light emitting layer 4 was further vapor-deposited as a laminated structure of two layers.
  • the compound (H-1) as the main component (host material) and the organic iridium complex (D) was further vapor-deposited as a laminated structure of two layers.
  • the compound (H-1) as the main component (host material) and the organic iridium complex (D) was further vapor-deposited as a laminated structure of two layers.
  • the compound (1-1) of the present invention is used as the main component (host material), and the organic iridium complex (D-1) is used as the subcomponent (dopant).
  • the film was placed in a ceramic crucible and deposited by the binary simultaneous vapor deposition method.
  • the crucible temperature of compound (I-1) is 396-397 ° C, the deposition rate is 0. InmZ seconds, the crucible temperature of iridium complex (D-1) is 256-257 ° C, the deposition rate is 0.008 nmZ seconds.
  • the second layer of the light emitting layer 4 having a thickness of lOnm and containing 7% by weight of iridium complex (D-1) was laminated on the first layer of the light emitting layer 4.
  • the degree of vacuum during deposition was 2.1 X 10 _4 Pa.
  • a compound (ET-2) was laminated as a hole blocking layer 8 at a crucible temperature of 225 to 226 ° C. and a film thickness of 5 nm at a deposition rate of 0. InmZ seconds.
  • the degree of vacuum during deposition was 1.6 X 10 " 4 Pa.
  • the crucible temperature of the compound (ET-1) at this time is controlled in the range of 233 to 236 ° C, the degree of vacuum during deposition is 1.6 X 10 _4 Pa, the deposition rate is 0. InmZ seconds, and the film thickness is 30 nm. It was.
  • the substrate temperature during vacuum deposition of the electron blocking layer 9, the light emitting layer 4, the hole blocking layer 8, and the electron transport layer 7 was kept at room temperature.
  • An organic electroluminescent device having the structure shown in FIG. 9 was produced.
  • An organic electroluminescent device having the structure shown in FIG. 9 was produced.
  • An organic electroluminescent device having a light emitting area portion of 2 mm ⁇ 2 mm in size was obtained in the same manner as in Example 15 except that the hole blocking layer 8 was not laminated on the light emitting layer 4.
  • An organic electroluminescent device having the structure shown in FIG. 9 was produced. Emission of 2 mm x 2 mm in size as in Example 16 except that the hole blocking layer 8 is not laminated on the light emitting layer 4 An organic electroluminescent element having an area portion was obtained.
  • An organic electroluminescent device having the structure shown in FIG. 9 was produced.
  • the light emitting layer 4 was formed as follows. Install the compound (1-1) of the present invention as the main component (host material) of the light-emitting layer 4 and the organic iridium complex (D-2) used in Example 3 as a subcomponent (dopant) in separate ceramic crucibles. Then, the film was formed by the binary simultaneous vapor deposition method.
  • the deposition rate of compound (1-1) was controlled at 0.08 nmZ seconds, and the deposition rate of iridium complex (D-2) was controlled at 0.005 nm / second, respectively. Is formed into a light emitting layer 4 containing 6% by weight. At this time, the temperature of the crucible of the compound (1-1) is 396 ⁇ 4 36 ° C, the temperature of the crucible of the iridium complex (D-2) is 271 ⁇ 273 ° C, and the vacuum is 1.2 X 10 _ 4 Pa there were.
  • the pyridine derivative (HB-1) was deposited as a hole blocking layer 8 to a thickness of 5 nm at a deposition rate of 0.09 nm /.
  • the temperature of the crucible of the pyridine derivative (HB-1) was 26 2 to 264 ° C., and the degree of vacuum was 1. OX 10 _4 Pa.
  • the substrate temperature during vacuum deposition of the light emitting layer 4 and the hole blocking layer 8 was maintained at room temperature.
  • An organic electroluminescent device having the structure shown in FIG. 9 was produced.
  • the light emitting layer 4 was formed as follows.
  • the film was deposited by the binary co-evaporation method.
  • the deposition rate of compound (1-3) was controlled at 0. InmZ seconds and the deposition rate of iridium complex (D-2) was controlled at 0.006 nmZ seconds, respectively, and the iridium complex (D-2) at a film thickness of 32 nm. A light emitting layer 4 containing 6 wt% was formed. Temperature of the crucible at this time iridium complex (D-2) is 27 2 ⁇ 275 ° C, vacuum degree: 1. was 1 X 10 _4 Pa.
  • a 5 nm film of pyridine derivative (HB-1) was deposited as the hole blocking layer 8 at a deposition rate of 0.09 nmZ seconds.
  • the temperature of the crucible (HB-1) was 262 to 264 ° C, and the degree of vacuum was 1. OX 10 _4 Pa.
  • the substrate temperature during vacuum deposition of the light emitting layer 4 and the hole blocking layer 8 was kept at room temperature.
  • An organic electroluminescent device having the structure shown in FIG. 9 was produced.
  • the substrate on which the hole injection layer 3 was formed was placed in a vacuum evaporation apparatus.
  • the degree of vacuum in the equipment is about 3.OX Exhaust using a cryopump until 10 _4 Pa or less.
  • 4 X 10 _5 Pa the deposition rate was obtained an electron blocking layer 9 having a thickness 40nm with 0. InmZ seconds.
  • the temperature of the crucible was 247 to 263 ° C, and the degree of vacuum was 2.4 X 10 _5 Pa.
  • the light emitting layer 4 was formed.
  • the hydrocarbon compound (1-1) of the present invention as the main component (host material) of the light-emitting layer 4 and the organic iridium complex (D-2) as the subcomponent (dopant) are placed in separate ceramic crucibles, Film formation was performed by the two-component simultaneous vapor deposition method.
  • the deposition rate of compound (1-1) was controlled at 0.08 nmZ seconds, and the deposition rate of iridium complex (D-2) was controlled at 0.005 nm / second, respectively. Is formed into a light emitting layer 4 containing 6% by weight.
  • the temperature of the crucible of the compound (1-1) is 333 to 3 34 ° C
  • the temperature of the crucible of the iridium complex (D-2) is 269 to 271 ° C
  • the degree of vacuum is 3.5 X 10 _ 5 Pa. there were.
  • a pyridine derivative (HB-1) was formed as a hole blocking layer 8 to a thickness of 5 nm at a deposition rate of 0.09 nmZ seconds.
  • the temperature of the crucible of the pyridine derivative (HB-1) was 239 to 242 ° C., and the degree of vacuum was 3.1 ⁇ 10 _5 Pa.
  • the substrate temperature during vacuum deposition of the light emitting layer 4 and the hole blocking layer 8 was kept at room temperature.
  • An organic electroluminescent device having the structure shown in FIG. 9 was produced.
  • the light emitting layer 4 was formed as follows.
  • the following power rubazole derivative (EM-1) as the main component (host material) of the light-emitting layer 4 and organic iridium complex (D-2) as the secondary component (dopant) are placed in separate ceramic crucibles, and two-way simultaneous Film formation was performed by the evaporation method.
  • the deposition rate of the compound (EM-1) was controlled at 0.07 nmZ seconds and the deposition rate of the iridium complex (D-2) was controlled at 0.004 nmZ seconds. ) was formed into a light-emitting layer 4 containing 6.4% by weight. At this time, the temperature of the crucible of the iridium complex (D-2) was 243 ° C, and the degree of vacuum was 7.1 X 10 _5 Pa.
  • the hydrocarbon compound (1-1) of the present invention was deposited as a hole blocking layer 8 at a deposition rate of 0.08 nm Z seconds for 5 nm.
  • the substrate temperature during vacuum deposition of the light emitting layer 4 and the hole blocking layer 8 was kept at room temperature.
  • Example 23 Production of organic electroluminescent device
  • An organic electroluminescent device having the structure shown in FIG. 9 was produced.
  • the light emitting layer 4 was formed as follows. Power rubazole derivative (EM-1) as the main component (host material) of light-emitting layer 4 and organic iridium complex (D-2) as the secondary component (dopant) are installed in separate ceramic crucibles, and two-component simultaneous vapor deposition method The film was formed by.
  • EM-1 Power rubazole derivative
  • D-2 organic iridium complex
  • the deposition rate of the compound (EM—1) was controlled at 0.07 nmZ seconds, and the deposition rate of the iridium complex (D—2) was controlled at 0.004 nmZ seconds. ) was formed into a light-emitting layer 4 containing 6.4% by weight. At this time, the temperature of the crucible of the iridium complex (D-2) was 243 ° C, and the degree of vacuum was 7.1 X 10 _5 Pa.
  • the hydrocarbon compound (1-2) of the present invention synthesized in Synthesis Example 2 was deposited as a hole blocking layer 8 at a deposition rate of 0.08 nmZ seconds to a thickness of 5 nm.
  • the temperature of the crucible of the compound (1-2) was 398 to 405 ° C., and the degree of vacuum was 6.5 ⁇ 10 _5 Pa.
  • the substrate temperature during vacuum deposition of the light emitting layer 4 and the hole blocking layer 8 was kept at room temperature.
  • a device was fabricated in the same manner as in Example 21 except that the following power rubazole derivative (EM-1) was used as the main component of the light-emitting layer 4.
  • the light emitting layer 4 is formed by placing a compound (EM-1) as a main component (host material) and an organic iridium complex (D-2) as a subcomponent (dopant) in separate ceramic crucibles, Film formation was performed by the two-component simultaneous vapor deposition method.
  • the deposition rate of the compound (EM—1) was controlled at 0.08 nmZ seconds, and the deposition rate of the iridium complex (D—2) was controlled at 0.005 nm / sec. A light emitting layer 4 containing 6% by weight of 2) was formed. At this time, the temperature of the crucible of the iridium complex (D-2) was 261 to 265 ° C, and the degree of vacuum was 1.2 X 10 _4 Pa.
  • a pyridine derivative (HB-1) was deposited as a hole blocking layer 8 at a deposition rate of 0.09 nmZ seconds.
  • the temperature of the pyridine derivative (HB-1) crucible at this time is 239-242 ° C
  • the degree of vacuum was 3.1 X 10 _5 Pa.
  • a device was produced in the same manner as in Example 19 except that the compound (C-1) was used as the main component of the light emitting layer 4. At this time, the light-emitting layer 4 is formed by using a compound (C)
  • the deposition rate of compound (C-1) was controlled at 0.08 nmZ seconds and the deposition rate of iridium complex (D-2) was controlled at 0.005 nm / second, respectively. Is formed into a light emitting layer 4 containing 6% by weight.
  • the compound temperature of crucible (C 1) is 331 to 337 ° C
  • the temperature of the crucible of iridium complex (D-2) is 240 ⁇ 241 ° C
  • vacuum degree was 7. 5 X 1 0 _5 Pa .
  • a pyridine derivative (HB-1) was deposited as a hole blocking layer 8 at a thickness of 5 nm at a deposition rate of 0.09 nmZ seconds.
  • the temperature of the crucible of the pyridine derivative (HB-1) was 231 to 236 ° C., and the degree of vacuum was 6.6 ⁇ 10 _5 Pa.
  • the light emission characteristics of the devices obtained in Examples 4 to 18 are summarized in Table 5.
  • Table 5 the maximum luminance is the value at current density of 0.25 AZcm 2 , luminous efficiency, luminance Z current, voltage is the value at luminance lOOcdZm 2 , voltage @ 2500 cd, luminance Z current @ 2500 cd is luminance at 2500 cdZm 2 Each value is shown.
  • the maximum wavelength of the emission spectrum of the device was 471 nm, and it was identified to be from the organic iridium complex (D-1).
  • Example 19 23 and Comparative Example 23 The light emission characteristics of the devices obtained in Example 19 23 and Comparative Example 23 are summarized in Table 6. .
  • Table 6 the maximum emission luminance value at a current density of 0. 25AZcm 2, luminous efficiency, luminance Z current, voltage value of the luminance LOOcdZm 2, voltage @ 2500 cd, luminance Z current @ 2500 cd are at luminance 2500CdZm 2 Are shown respectively.
  • the maximum wavelength of the emission spectrum of the device was 512 ⁇ m, and it was identified as having an organic iridium complex (D-2) force.
  • Example 20 The devices fabricated in Example 20, Example 21, and Comparative Example 2 were subjected to a continuous current test under the following conditions.
  • Example 19 The devices fabricated in Example 19 and Comparative Example 3 were subjected to a continuous current test under the following conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Indole Compounds (AREA)

Abstract

Novel hydrocarbons which are excellent in heat resistance and light resistance and in solubility in organic solvents and which exhibit high energy levels of excited singlet and triplet states and wide electric oxidation-reduction potentials have partial structures represented by the general formula (I) in the molecule: (I) wherein G is a substituent represented by the general formula (II); and R1 and R2 are each independently an arbitrary hydrocarbon group, with the proviso that the benzene ring to which R1, R2 and G are bonded has no substituent except R1, R2 and G: (II) wherein R3 to R5 are each independently hydrogen or an arbitrary hydrocarbon group, with the proviso that the terphenyl group in the general formula (II) has no substituent except R3 to R5.

Description

明 細 書  Specification
炭化水素化合物、電荷輸送材料、電荷輸送材料組成物および有機電界 発光素子  Hydrocarbon compound, charge transport material, charge transport material composition, and organic electroluminescence device
発明の分野  Field of Invention
[0001] 本発明は新規な炭化水素化合物、該炭化水素化合物からなる電荷輸送材料、お よびこの炭化水素化合物を含む電荷輸送材料組成物に関する。本発明はまた、この 炭化水素化合物を用いた高輝度、高効率かつ長寿命の有機電界発光素子に関す るものである。  The present invention relates to a novel hydrocarbon compound, a charge transport material composed of the hydrocarbon compound, and a charge transport material composition containing the hydrocarbon compound. The present invention also relates to an organic electroluminescent device having high brightness, high efficiency and long life using the hydrocarbon compound.
発明の背景  Background of the Invention
[0002] 有機薄膜を用いた電界発光素子の開発が行われて 、る。有機薄膜を用いた電界 発光素子、すなわち有機電界発光素子は、通常、基板上に、陽極、陰極、およびこ れら両極間に設けられた少なくとも発光層を含む有機層を有する。有機層としては、 発光層以外にも、正孔注入層、正孔輸送層、正孔阻止層、電子輸送層、電子注入 層等が用いられる。通常、これらの層を積層することにより、有機電界発光素子として 使用されている。従来、有機電界発光素子は、蛍光発光を利用してきたが、素子の 発光効率を上げる試みで、蛍光ではなく燐光発光を用いることが検討されている。し かしながら、燐光発光を用いたとしても、未だ、十分な発光効率、輝度および寿命は 得られていない。  An electroluminescent device using an organic thin film has been developed. An electroluminescent device using an organic thin film, that is, an organic electroluminescent device, usually has an anode, a cathode, and an organic layer including at least a luminescent layer provided between these electrodes on a substrate. As the organic layer, in addition to the light emitting layer, a hole injection layer, a hole transport layer, a hole blocking layer, an electron transport layer, an electron injection layer, and the like are used. Usually, these layers are stacked to be used as an organic electroluminescent device. Conventionally, organic electroluminescent devices have used fluorescent light emission, but in an attempt to increase the light emission efficiency of the device, it has been studied to use phosphorescent light emission instead of fluorescent light. However, even if phosphorescence is used, sufficient luminous efficiency, luminance and lifetime are not yet obtained.
[0003] 下記の非特許文献 1および 2には、分散性に優れた球状分子である下記化合物(C — 1)、(C— 2)などが、増粘剤、潤滑剤、ナノテクノロジー分野用、分子量あるいは分 子容標準物質用、 X線ビーム散乱用などとして提案されており、耐熱性にも優れてい るとして、各種分野で注目されている。  [0003] In the following Non-Patent Documents 1 and 2, the following compounds (C-1) and (C-2), which are spherical molecules with excellent dispersibility, are used for thickeners, lubricants, and nanotechnology fields. It has been proposed for use as a molecular weight or molecular standard material, for X-ray beam scattering, etc., and has been attracting attention in various fields because of its excellent heat resistance.
[0004] [化 1]
Figure imgf000004_0001
[0004] [Chemical 1]
Figure imgf000004_0001
c - C - 2  c-C-2
[0005] しカゝしながら、これらの化合物は、有機溶剤に対する溶解性に課題を有し、湿式製 膜が困難であり、また、燐光発光材料を用いた有機電界発光素子の電荷輸送材料と しては、電気的酸化還元電位の差が比較的小さ ヽと ヽぅ課題を有する。 [0005] However, these compounds have problems in solubility in organic solvents, are difficult to form by wet film formation, and are used as charge transport materials for organic electroluminescent devices using phosphorescent materials. Therefore, the difference in electrical redox potential is relatively small.
[0006] このため、耐熱性、耐光性に優れ、かつ、有機溶剤に対する溶解性が良好で、しか も高い一重項および三重項励起準位を有し、また、広い電気的酸化還元電位差を 有する材料が望まれて 、た。  [0006] For this reason, it has excellent heat resistance and light resistance, good solubility in organic solvents, high singlet and triplet excited levels, and a wide electrical redox potential difference. The material was desired.
非特許文献 l : Chem. Mater. 1990年, 2, 346— 349頁  Non-Patent Literature l: Chem. Mater. 1990, 2, 346-349
非特許文献 2 : J. Am. Chem. Soc. 1992年, 114, 1018— 1025頁  Non-Patent Document 2: J. Am. Chem. Soc. 1992, 114, 1018—1025
発明の概要  Summary of the Invention
[0007] 本発明は、耐熱性、耐光性に優れ、かつ、有機溶剤に対する溶解性が良好で、し カゝも高い一重項および三重項励起準位を有し、また、広い電気的酸化還元電位差を 有する炭化水素化合物および電荷輸送材料と、この炭化水素化合物を含んでなる 電荷輸送材料組成物、この炭化水素化合物を用いた高輝度、高効率かつ長寿命な 有機電界発光素子を提供することを目的とする。  [0007] The present invention is excellent in heat resistance and light resistance, has good solubility in organic solvents, has high singlet and triplet excitation levels, and has a wide electrical oxidation-reduction. Provided are a hydrocarbon compound and a charge transport material having a potential difference, a charge transport material composition comprising the hydrocarbon compound, and an organic electroluminescence device having high luminance, high efficiency and long life using the hydrocarbon compound. With the goal.
[0008] 本発明の炭化水素化合物は、分子内に、下記一般式 (I)で表される部分構造を有 することを特徴とするものである。
Figure imgf000005_0001
式 (I)中、 Gは、下記一般式 (II)で表される置換基を表し、
Figure imgf000005_0002
R2は、各々独立に任 意の炭化水素基を表す。式 (I)中、
Figure imgf000005_0003
R2および Gが結合しているベンゼン環は、 R1 、 R2および G以外に置換基を有さない。
[0008] The hydrocarbon compound of the present invention is characterized by having a partial structure represented by the following general formula (I) in the molecule.
Figure imgf000005_0001
In the formula (I), G represents a substituent represented by the following general formula (II),
Figure imgf000005_0002
R 2 independently represents an arbitrary hydrocarbon group. In formula (I),
Figure imgf000005_0003
The benzene ring to which R 2 and G are bonded has no substituent other than R 1 , R 2 and G.
[化 3]  [Chemical 3]
Figure imgf000005_0004
式 (II)中、 R3〜R5は、各々独立に水素原子または任意の炭化水素基を表す。式 (II )で表されるターフェ-ル基は、 R3〜R5以外に置換基を有さな!/、。
Figure imgf000005_0004
In formula (II), R 3 to R 5 each independently represents a hydrogen atom or an arbitrary hydrocarbon group. The terfel group represented by the formula (II) has no substituent other than R 3 to R 5 ! /.
[0009] 本発明の電荷輸送材料は、本発明の炭化水素化合物カゝらなる。 [0009] The charge transport material of the present invention is the hydrocarbon compound of the present invention.
[0010] 本発明の電荷輸送材料組成物は、本発明の炭化水素化合物と、溶剤とを含有する [0010] The charge transport material composition of the present invention contains the hydrocarbon compound of the present invention and a solvent.
[0011] 本発明の有機電解発光素子は、基板上に、陽極、陰極、およびこれら両極間に設 けられた発光層を有する有機電界発光素子において、この炭化水素化合物を含有 する層を有することを特徴とする。 [0011] The organic electroluminescence device of the present invention has a layer containing this hydrocarbon compound in an organic electroluminescence device having an anode, a cathode, and a light emitting layer provided between both electrodes on a substrate. It is characterized by.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]本発明の有機電界発光素子の一例を示した模式的断面図である。  FIG. 1 is a schematic cross-sectional view showing an example of an organic electroluminescent element of the present invention.
[図 2]本発明の有機電界発光素子の別の例を示した模式的断面図である。  FIG. 2 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
[図 3]本発明の有機電界発光素子の別の例を示した模式的断面図である。  FIG. 3 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
[図 4]本発明の有機電界発光素子の別の例を示した模式的断面図である。  FIG. 4 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
[図 5]本発明の有機電界発光素子の別の例を示した模式的断面図である。  FIG. 5 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
[図 6]本発明の有機電界発光素子の別の例を示した模式的断面図である。  FIG. 6 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
[図 7]本発明の有機電界発光素子の別の例を示した模式的断面図である。 [図 8]本発明の有機電界発光素子の別の例を示した模式的断面図である。 FIG. 7 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention. FIG. 8 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
[図 9]本発明の有機電界発光素子の別の例を示した模式的断面図である。  FIG. 9 is a schematic cross-sectional view showing another example of the organic electroluminescent element of the present invention.
詳細な説明  Detailed description
[0013] 本発明者らが鋭意検討した結果、下記の特定の構造を有する炭化水素化合物が、 耐熱性、耐光性に優れ、かつ、有機溶剤に対する溶解性が良好で、しかも高い一重 項および三重項励起準位を有し、また、広い電気的酸化還元電位差を有し、この炭 化水素化合物を用いることにより、有機電界発光素子、とりわけ、燐光発光性の有機 電界発光素子において、高効率かつ長寿命なデバイスを得ることができることを見出 した。  As a result of intensive studies by the present inventors, a hydrocarbon compound having the following specific structure is excellent in heat resistance and light resistance, has good solubility in organic solvents, and has high singlet and triplet properties. By using this hydrocarbon compound, it has high efficiency and high efficiency in organic electroluminescent devices, particularly phosphorescent organic electroluminescent devices, having a term excitation level and a wide electric redox potential difference. We have found that long-life devices can be obtained.
[0014] 本発明はこのような知見に基いて達成されたものであり、本発明の炭化水素化合物 は、分子内に、下記一般式 (I)で表される部分構造を有することを特徴とする。  [0014] The present invention has been achieved based on such findings, and the hydrocarbon compound of the present invention is characterized in that it has a partial structure represented by the following general formula (I) in the molecule. To do.
[0015] 本発明の電荷輸送材料は、この炭化水素化合物からなることを特徴とする。本発明 の電荷輸送材料組成物は、この炭化水素化合物と溶剤とを含有する。 [0015] The charge transport material of the present invention is characterized by comprising this hydrocarbon compound. The charge transport material composition of the present invention contains this hydrocarbon compound and a solvent.
[0016] 本発明の有機電界発光素子は、基板上に、陽極、陰極、およびこれら両極間に設 けられた発光層を有する有機電界発光素子において、この炭化水素化合物を含有 する層を有することを特徴とする。 [0016] The organic electroluminescent device of the present invention has a layer containing this hydrocarbon compound in an organic electroluminescent device having an anode, a cathode, and a light emitting layer provided between both electrodes on a substrate. It is characterized by.
[0017] [化 4] [0017] [Chemical 4]
Figure imgf000006_0001
式 (I)中、 Gは、下記一般式 (II)で表される置換基を表し、
Figure imgf000006_0002
ITは、各々独立に任 意の炭化水素基を表す。尚、式 (I)中、 R R2および Gが結合しているベンゼン環は 、 R R2および G以外に置換基を有さない。
Figure imgf000007_0001
式 (II)中、 R3〜R5は、各々独立に水素原子または任意の炭化水素基を表す。尚、 式 (II)で表されるターフェ-ル基は、 R3〜R5以外に置換基を有さな!/、。
Figure imgf000006_0001
In the formula (I), G represents a substituent represented by the following general formula (II),
Figure imgf000006_0002
IT independently represents an arbitrary hydrocarbon group. In the formula (I), the benzene ring to which RR 2 and G are bonded has no substituent other than RR 2 and G.
Figure imgf000007_0001
In formula (II), R 3 to R 5 each independently represents a hydrogen atom or an arbitrary hydrocarbon group. In addition, the turfyl group represented by the formula (II) does not have a substituent other than R 3 to R 5 ! /.
[0018] 本発明の炭化水素化合物は、耐熱性、耐光性に優れ、かつ、有機溶剤に対する溶 解性も良好で、しかも高い一重項および三重項励起準位を有し、また、広い電気的 酸化還元電位差を有する。  The hydrocarbon compound of the present invention is excellent in heat resistance and light resistance, has good solubility in organic solvents, has high singlet and triplet excited levels, and has a wide electrical range. Has a redox potential difference.
[0019] このため、この炭化水素化合物からなる電荷輸送材料、この炭化水素化合物を含 む電荷輸送材料組成物およびこの炭化水素化合物を用いた有機電界発光素子によ れば、高輝度、高効率かつ長寿命な有機電界発光素子が提供される。  [0019] Therefore, according to the charge transport material comprising the hydrocarbon compound, the charge transport material composition containing the hydrocarbon compound, and the organic electroluminescence device using the hydrocarbon compound, high brightness and high efficiency are achieved. An organic electroluminescent device having a long lifetime is also provided.
[0020] 従って、本発明の炭化水素化合物を用いた有機電界発光素子は、フラットパネル' ディスプレイ (例えば OAコンピュータ用や壁掛けテレビ)、車載表示素子、携帯電話 表示や面発光体としての特徴を生カゝした光源 (例えば、複写機の光源、液晶ディスプ レイや計器類のバックライト光源)、表示板、標識灯への応用が考えられ、その技術 的価値は大きいものである。  Therefore, the organic electroluminescence device using the hydrocarbon compound of the present invention has the characteristics as a flat panel display (for example, for OA computers and wall-mounted televisions), an in-vehicle display device, a mobile phone display and a surface light emitter. It can be applied to light sources (eg, light sources for copiers, liquid crystal displays and instrument backlights), display panels, and indicator lights, and their technical value is great.
[0021] また、本発明の炭化水素化合物力 なる電荷輸送材料およびこの炭化水素化合物 を含む電荷輸送材料組成物は、本質的に優れた電気化学的耐久性を有することか ら、有機電界発光素子に限らず、その他、電子写真感光体等にも有効に利用するこ とがでさる。  [0021] Further, the charge transport material having a hydrocarbon compound power of the present invention and the charge transport material composition containing the hydrocarbon compound have an essentially excellent electrochemical durability. In addition to this, it can also be used effectively for electrophotographic photoreceptors and the like.
[0022] 以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説 明は、本発明の実施形態の一例 (代表例)であり、本発明はその要旨を越えない限り 、これらの内容に特定されない。  [0022] Embodiments of the present invention will be described in detail below, but the description of the constituent elements described below is an example (representative example) of the embodiments of the present invention, and the present invention goes beyond the gist. Unless otherwise specified in these contents.
[0023] [炭化水素化合物]  [0023] [Hydrocarbon compound]
本発明の化合物は、炭化水素化合物であって、すなわち、炭素原子および水素原 子のみ力 なる化合物である。  The compound of the present invention is a hydrocarbon compound, that is, a compound that is powered only by carbon atoms and hydrogen atoms.
[0024] 本発明の炭化水素化合物は、分子内に、一般式 (I)で表される部分構造 (以下「部 分構造 I」と称す場合がある。)を有することを特徴とする。 The hydrocarbon compound of the present invention has a partial structure represented by the general formula (I) in the molecule (hereinafter referred to as “parts”). Sometimes referred to as “Part I”. ).
[0025] [化 6]  [0025] [Chemical 6]
Figure imgf000008_0001
式 (I)中、 Gは、下記一般式 (II)で表される置換基を表し、
Figure imgf000008_0002
ITは、各々独立に任 意の炭化水素基を表す。尚、式 (I)中、
Figure imgf000008_0003
R2および Gが結合しているベンゼン環は 、 R2および G以外に置換基を有さない。
Figure imgf000008_0001
In the formula (I), G represents a substituent represented by the following general formula (II),
Figure imgf000008_0002
IT independently represents an arbitrary hydrocarbon group. In the formula (I),
Figure imgf000008_0003
The benzene ring to which R 2 and G are bonded has no substituent other than R 2 and G.
[化 7]  [Chemical 7]
Figure imgf000008_0004
式 (II)中、 R3〜R5は、各々独立に水素原子または任意の炭化水素基を表す。尚、 式 (II)で表されるターフェ-ル基は、 R3〜R5以外に置換基を有さな!/、。
Figure imgf000008_0004
In formula (II), R 3 to R 5 each independently represents a hydrogen atom or an arbitrary hydrocarbon group. In addition, the turfyl group represented by the formula (II) does not have a substituent other than R 3 to R 5 ! /.
[0026] なお、本発明の炭化水素化合物が、 1分子内に、上記部分構造 Iを 2個以上有し、 従って、一般式 (I)における G, R1, R2がそれぞれ 2個以上存在する場合、 1分子内 に複数存在する Gは同一であっても異なるものであってもよぐまた、 1分子内に複数 存在する R1, R2は同一であっても異なるものであってもよい。また、 G, R1, R2は、そ れぞれ結合して環を形成してもよ ヽ。 [0026] In addition, a hydrocarbon compound of the present invention, in one molecule, the partial structure I have two or more, therefore, there G in the general formula (I), R 1, R 2 is 2 or more, respectively In this case, a plurality of G present in one molecule may be the same or different, and a plurality of R 1 and R 2 present in one molecule may be the same or different. Also good. G, R 1 and R 2 may be bonded to each other to form a ring.
また、一般式 (II)の R3〜R5についても、 1分子中に上記部分構造 Iが 2個以上存在 することにより、或いは、 R1, R2が一般式 (II)で表される置換基であることにより、 1分 子内にこれらが複数存在する場合、これらは同一であっても異なるものであってもよ い。 Further, for R 3 to R 5 in the general formula (II), two or more of the partial structures I are present in one molecule, or R 1 and R 2 are represented by the general formula (II). When a plurality of these are present in a molecule due to being a substituent, these may be the same or different.
[0027] [1]構造上の特徴  [0027] [1] Structural features
本発明の炭化水素化合物は、フエ-レン基が m—位で直鎖状に複数連結された部 分構造 (上記一般式 (II)で表される置換基 G)を 1つ以上有することで、優れた非晶 質性、芳香族炭化水素系の有機溶剤に対する高い溶解性を有する。 The hydrocarbon compound of the present invention has at least one partial structure (substituent G represented by the above general formula (II)) in which a plurality of phenylene groups are linearly linked at the m-position. , Excellent amorphous High solubility in organic hydrocarbon solvents.
優れた非晶質性、芳香族炭化水素系の有機溶剤に対する高い溶解性の観点、高 い一重項および三重項励起準位を得る観点および電気的な酸化還元電位差を広く する観点力 は、フエ-レン基が m—位で直鎖状に複数連結された部分構造 (上記 一般式 (II)で表される置換基 G)を、 2つ以上有することが、より好ましぐ 3つ以上有 することが、最も好ましい。さらに、部分構造として、 1, 3, 5—位に置換基を有するベ ンゼン環 (上記一般式 (I) )が存在することによって、上述のような優れた特徴を損なう ことなく、高 、ガラス転移温度を併せ持つことが可能となる。  From the viewpoints of excellent amorphousness, high solubility in aromatic hydrocarbon organic solvents, high singlet and triplet excitation levels, and widening the electrical redox potential difference, -It is more preferable to have two or more partial structures (substituent G represented by the above general formula (II)) in which a plurality of len groups are linearly linked at the m-position. Most preferably. Further, as a partial structure, the presence of a benzene ring having a substituent at the 1, 3, 5-position (the above general formula (I)) makes it possible to increase the glass without impairing the excellent characteristics as described above. It is possible to have both transition temperatures.
[0028] 高 、電荷輸送性の観点、優れた電気化学的耐久性の観点ある!ヽは高 ヽガラス転 移温度の観点では、分子内に、部分構造として p—ターフェニル骨格を 1つ以上有し ているのがより好ましぐ 2つ以上有していることが更に好ましい。 p—ターフェ-ル骨 格としては、特に下記一般式 (IV)で表されるものが好ましい((IV)式中、 R6および R7 は、各々独立に水素原子または任意の炭化水素基を表す)。 [0028] High, from the viewpoint of charge transportability, and excellent electrochemical durability! From the viewpoint of glass transition temperature, ヽ has one or more p-terphenyl skeletons as partial structures in the molecule. It is more preferable to have two or more. As the p-terfel skeleton, those represented by the following general formula (IV) are particularly preferred (in the formula (IV), R 6 and R 7 each independently represents a hydrogen atom or an arbitrary hydrocarbon group). To express).
[0029] [化 8]  [0029] [Chemical 8]
Figure imgf000009_0001
Figure imgf000009_0001
一般式 (I)において、 R1および R2は、各々独立に任意の炭化水素基を表す。 In the general formula (I), R 1 and R 2 each independently represents an arbitrary hydrocarbon group.
この任意の炭化水素基の具体例として、好ましくは、  As a specific example of this arbitrary hydrocarbon group,
炭素数 1〜30のアルキル基(例えば、メチル基、ェチル基、ノルマルプロピル基、ィ ソプロピル基、ノルマルブチル基、イソブチル基、 tert—ブチル基、ノルマルへキシル 基、シクロへキシル基、ォクチル基、デシル基など)、  An alkyl group having 1 to 30 carbon atoms (for example, methyl group, ethyl group, normal propyl group, isopropyl group, normal butyl group, isobutyl group, tert-butyl group, normal hexyl group, cyclohexyl group, octyl group, Decyl group),
炭素数 2〜30のアルケニル基 (例えば、ビュル基、 2, 2—ジメチルェテニル基など )、  An alkenyl group having 2 to 30 carbon atoms (for example, a bur group, a 2,2-dimethylethenyl group, etc.),
炭素数 2〜30のアルキ-ル基 (例えば、ェチュル基など)、 炭素数 6〜30の芳香族炭化水素基 (例えば、ベンゼン環、ナフタレン環、アントラセ ン環、フエナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、タリセン 環、トリフエ-レン環、フノレオランテン環などの、 6員環の単環または 2〜5縮合環由来 の 1価の基、あるいは、それらが複数個連結されて形成された 1価の基 (ビフエニル基 、ターフェ-ル基など)) An alkyl group having 2 to 30 carbon atoms (eg, an ethur group), Aromatic hydrocarbon group having 6 to 30 carbon atoms (e.g., benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, taricene ring, triphenylene-ring, phenoleanthene ring, etc. Monovalent groups derived from 6-membered monocycles or 2-5 condensed rings, or monovalent groups formed by linking a plurality of them (biphenyl groups, terphenyl groups, etc.))
が挙げられ、より好ましくは、炭素数 1〜30のアルキル基、炭素数 6〜30の芳香族炭 化水素基であり、最も好ましくは、 R1および Zまたは R2は一般式 (Π)で示される置換 基である。 And more preferably an alkyl group having 1 to 30 carbon atoms and an aromatic hydrocarbon group having 6 to 30 carbon atoms, and most preferably R 1 and Z or R 2 are represented by the general formula (Π). The substituents shown.
[0031] 上記置換基は、更に任意の数の置換基を有して 、てもよ 、。その置換基として、好 ましい具体例は、上記置換基と同様である。  [0031] The substituent may further have an arbitrary number of substituents. Preferred examples of the substituent are the same as those described above.
[0032] [3]R3〜R7 [0032] [3] R 3 to R 7
一般式 (II)における R3〜R7は、各々独立に、水素原子または任意の炭化水素基を 表す。 R 3 to R 7 in the general formula (II) each independently represent a hydrogen atom or an arbitrary hydrocarbon group.
この任意の炭化水素基の具体例として、好ましくは、  As a specific example of this arbitrary hydrocarbon group,
炭素数 1〜30のアルキル基(例えば、メチル基、ェチル基、ノルマルプロピル基、ィ ソプロピル基、ノルマルブチル基、イソブチル基、 tert—ブチル基、ノルマルへキシル 基、シクロへキシル基、ォクチル基、デシル基など)、  An alkyl group having 1 to 30 carbon atoms (for example, methyl group, ethyl group, normal propyl group, isopropyl group, normal butyl group, isobutyl group, tert-butyl group, normal hexyl group, cyclohexyl group, octyl group, Decyl group),
炭素数 2〜30のアルケニル基 (例えば、ビュル基、 2, 2—ジメチルェテニル基など )、  An alkenyl group having 2 to 30 carbon atoms (for example, a bur group, a 2,2-dimethylethenyl group, etc.),
炭素数 2〜30のアルキ-ル基 (例えば、ェチュル基など)、  An alkyl group having 2 to 30 carbon atoms (eg, an ethur group),
炭素数 6〜30の芳香族炭化水素基 (例えば、ベンゼン環、ナフタレン環、アントラセ ン環、フエナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、タリセン 環、トリフエ-レン環、フノレオランテン環などの、 6員環の単環または 2〜5縮合環由来 の 1価の基、あるいは、それらが複数個連結されて形成された 1価の基 (ビフエニル基 、ターフェ-ル基など))  Aromatic hydrocarbon group having 6 to 30 carbon atoms (e.g., benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, taricene ring, triphenylene-ring, phenoleanthene ring, etc. Monovalent groups derived from 6-membered monocycles or 2-5 condensed rings, or monovalent groups formed by linking a plurality of them (biphenyl groups, terphenyl groups, etc.))
が挙げられ、より好ましくは、炭素数 1〜30のアルキル基、炭素数 6〜30の芳香族炭 化水素基であり、最も好ましくは、フエ-ル基またはそれらが複数個連結されて形成 された 1価の基である。 [0033] 上記置換基は、更に任意の数の置換基を有して 、てもよ 、が、その置換基として、 好ま 、具体例は、上記置換基の具体例と同様である。 More preferably, it is an alkyl group having 1 to 30 carbon atoms, or an aromatic hydrocarbon group having 6 to 30 carbon atoms, and most preferably a phenyl group or a plurality of them are connected. It is a monovalent group. [0033] The above substituent may further have an arbitrary number of substituents. However, the substituent is preferably the same as the specific examples of the substituent.
[0034] R3として、特に好ましくは、水素原子、炭素数 1〜30のアルキル基または炭素数 6[0034] R 3 is particularly preferably a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or 6 carbon atoms.
〜30の芳香族炭化水素基であり、最も好ましくは、水素原子または炭素数 1〜30の 芳香族炭化水素基である。 An aromatic hydrocarbon group having ˜30, most preferably a hydrogen atom or an aromatic hydrocarbon group having 1 to 30 carbon atoms.
[0035] R4として、特に好ましくは、水素原子、炭素数 1〜30のアルキル基または炭素数 6[0035] R 4 is particularly preferably a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or 6 carbon atoms.
〜30の芳香族炭化水素基であり、有機溶剤に対する溶解性を損なわない観点からFrom the viewpoint of not impairing solubility in organic solvents, which is an aromatic hydrocarbon group of ~ 30
、最も好ましくは、水素原子または炭素数 1〜30のアルキル基である。 And most preferably a hydrogen atom or an alkyl group having 1 to 30 carbon atoms.
[0036] R5として、特に好ましくは、水素原子、炭素数 1〜30のアルキル基または炭素数 6[0036] R 5 is particularly preferably a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or 6 carbon atoms.
〜30の芳香族炭化水素基であり、電気的酸化還元耐性の観点から、最も好ましくは~ 30 aromatic hydrocarbon group, most preferably from the viewpoint of electrical redox resistance
、水素原子である。 , A hydrogen atom.
[0037] R6として、特に好ましくは、水素原子、炭素数 1〜30のアルキル基または炭素数 6[0037] R 6 is particularly preferably a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or 6 carbon atoms.
〜30の芳香族炭化水素基であり、最も好ましくは、水素原子または炭素数 6〜30の 芳香族炭化水素基である。 An aromatic hydrocarbon group having ˜30, most preferably a hydrogen atom or an aromatic hydrocarbon group having 6 to 30 carbon atoms.
[0038] R7として、特に好ましくは、水素原子、炭素数 1〜30のアルキル基または炭素数 6[0038] R 7 is particularly preferably a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or 6 carbon atoms.
〜30の芳香族炭化水素基であり、最も好ましくは、水素原子または炭素数 6〜30の 芳香族炭化水素基である。 An aromatic hydrocarbon group having ˜30, most preferably a hydrogen atom or an aromatic hydrocarbon group having 6 to 30 carbon atoms.
[0039] [4] 1分子内の部分構造 Iの数 [0039] [4] Number of partial structures I in one molecule
本発明の炭化水素化合物は、部分構造 Iを 1分子内に 1以上有するものであればよ ぐその数には特に制限はないが、 1分子内の部分構造 Iの数は、好ましくは 1〜: LO の範囲であり、より好ましくは 1〜3の範囲である。  The hydrocarbon compound of the present invention is not particularly limited as long as it has one or more partial structures I in one molecule, but the number of partial structures I in one molecule is preferably 1 to : LO range, more preferably in the range of 1-3.
部分構造 Iの数がこの上限を超えると、不純物の除去が困難となったり、気化温度 が上昇して蒸着法による製膜が困難になったり、有機溶剤に対する溶解性が低下し て湿式法による製膜に支障が出る恐れがあり、好ましくない。  If the number of substructures I exceeds this upper limit, it will be difficult to remove impurities, the vaporization temperature will rise, making it difficult to form a film by vapor deposition, or the solubility in organic solvents will decrease, resulting in a wet process. There is a risk that film formation may be hindered.
[0040] [5]炭化水素化合物の分子量 [0040] [5] Molecular weight of hydrocarbon compound
本発明の炭化水素化合物の分子量は、 5000以下力好ましく、 3000以下が更に好 ましい。炭化水素化合物の分子量力 Sこの上限を上回ると、不純物の除去が困難とな つたり、気化温度が上昇して蒸着法による製膜が困難になったり、有機溶剤に対する 溶解性が低下して湿式法による製膜に支障が出る恐れがあり、好ましくない。 The molecular weight of the hydrocarbon compound of the present invention is preferably 5000 or less, more preferably 3000 or less. The molecular weight force of hydrocarbon compounds S If this upper limit is exceeded, it will be difficult to remove impurities, the vaporization temperature will rise, and deposition will become difficult, and It is not preferable because the solubility is lowered and the film formation by the wet method may be hindered.
[0041] また、炭化水素化合物の分子量は、 500以上が好ましぐ 600以上がさらに好ましく 、 800以上が特に好ましい。炭化水素化合物の分子量がこの下限を下回ると、耐熱 性が低下して、実用性が制限されたり、気化温度が低下して蒸着法による製膜が困 難になったり、湿式法による製膜において、膜質低下などで支障が出る恐れがあり、 好ましくない。  [0041] The molecular weight of the hydrocarbon compound is preferably 500 or more, more preferably 600 or more, and particularly preferably 800 or more. If the molecular weight of the hydrocarbon compound is below this lower limit, the heat resistance will be reduced, the practicality will be limited, the vaporization temperature will be lowered, making it difficult to form a film by the vapor deposition method, or in the film formation by a wet method In addition, the film quality may be impaired, which is not preferable.
[0042] [6]炭化水素化合物の好適構造  [0042] [6] Preferred structure of hydrocarbon compound
本発明の炭化水素化合物は、特に、下記一般式 (III) , (IV- 1) , (IV— 2)のいず れかで表される化合物であることが好まし 、。  The hydrocarbon compound of the present invention is particularly preferably a compound represented by any one of the following general formulas (III), (IV-1) and (IV-2).
[化 9]  [Chemical 9]
Figure imgf000012_0001
式中、 R3および R4は上記式 (II)におけると同義である。一分子中に含まれる複数の R3および R4は、それぞれ同一であっても異なって!/、てもよ!/、。
Figure imgf000012_0001
In the formula, R 3 and R 4 have the same meaning as in the above formula (II). Multiple R 3 and R 4 contained in one molecule may be the same or different! /! /.
Figure imgf000013_0001
Figure imgf000013_0001
式 (IV— 1)中、 R3および R4は前記式 (II)におけると同義である。一分子中に含まれ る複数の R3および R4は、それぞれ同一であっても異なっていてもよい。 R6および R7 は、各々独立に水素原子または任意の炭化水素基を表す。 In formula (IV-1), R 3 and R 4 have the same meaning as in formula (II). A plurality of R 3 and R 4 contained in one molecule may be the same or different. R 6 and R 7 each independently represents a hydrogen atom or an arbitrary hydrocarbon group.
Figure imgf000014_0001
式 (IV— 2)中、 R3および R4は前記式 (II)におけると同義である。 R6および R7は、各 々独立に水素原子または任意の炭化水素基を表す。一分子中に含まれる複数の R' および R7は、それぞれ同一であっても異なって 、てもよ!/、。
Figure imgf000014_0001
In formula (IV-2), R 3 and R 4 have the same meanings as in formula (II). R 6 and R 7 each independently represents a hydrogen atom or an arbitrary hydrocarbon group. A plurality of R ′ and R 7 contained in one molecule may be the same or different from each other! /.
[0045] [7]炭化水素化合物の例示 [0045] [7] Examples of hydrocarbon compounds
以下に、本発明の炭化水素化合物として好ましい具体例を示すが、本発明はこれ らに限定されるものではない。  Specific examples of preferred hydrocarbon compounds of the present invention are shown below, but the present invention is not limited thereto.
[0046] [化 12] [0046] [Chemical 12]
Figure imgf000015_0001
Figure imgf000015_0001
[0047] [化 13] [0047] [Chemical 13]
Figure imgf000016_0001
Figure imgf000016_0001
Figure imgf000016_0002
Figure imgf000016_0002
£t6 /900Zdt/13d Li££tO/LOOZ OAV £ t6 / 900Zdt / 13d Li ££ tO / LOOZ OAV
Figure imgf000017_0001
Figure imgf000017_0001
[0049] [化 15] [0049] [Chemical 15]
Figure imgf000018_0001
Figure imgf000018_0001
[0050] [化 16] [0050] [Chemical 16]
Figure imgf000019_0001
Figure imgf000019_0001
[0051] [化 17] [0051] [Chemical 17]
Figure imgf000020_0001
Figure imgf000020_0001
[0052] [化 18] [0052] [Chemical 18]
Figure imgf000021_0001
Figure imgf000021_0001
Figure imgf000021_0002
Figure imgf000021_0002
£t6U/900Zdr/∑Jd 61 LS££tO/LOOZ OAV [0053] [化 19] £ t6U / 900Zdr / ∑Jd 61 LS ££ tO / LOOZ OAV [0053] [Chemical 19]
Figure imgf000022_0001
Figure imgf000022_0001
[0054] [化 20] [0054] [Chemical 20]
Figure imgf000023_0001
Figure imgf000023_0001
[0055] [化 21] [0055] [Chemical 21]
Figure imgf000024_0001
Figure imgf000024_0001
[0056] [化 22] [0056] [Chemical 22]
Figure imgf000025_0001
Figure imgf000025_0001
[8]炭化水素化合物の合成法 [8] Synthesis of hydrocarbon compounds
本発明の炭化水素化合物は、公知の手法の組合せにより、合成することが出来る 合成方法の具体例を以下に示す。 The hydrocarbon compound of the present invention can be synthesized by a combination of known methods. Specific examples of the synthesis method are shown below.
尚、中間体が一般に入手可能である場合、合成の前段階を省くことができることは 言うまでもない。  Of course, if the intermediate is generally available, the pre-synthesis step can be omitted.
[0058] 以下の反応式中、 は、任意の炭化水素基であり、本発明に記載の R1, R2と同義 であってもよぐ一分子中に R°が複数個ある場合、それぞれは互いに同一であっても 異なっていても良い。 [0058] In the following reaction formula, is any hydrocarbon group, if the Yogu in one molecule be synonymous with R 1, R 2 according to the present invention there are a plurality of R °, respectively May be the same or different from each other.
Qは任意の炭化水素基または炭化水素基に置換可能な任意の脱離性置換基 (例 えば、ヨウ素、臭素、塩素、フッ素、トリフルォロメタンスルフォ-ル基、 p—トルエンス ルフォ-ル基など)を表し、 γは、— B (OH) 、 -B (OR)などの置換ホウ素原子、―  Q is any hydrocarbon group or any leaving group that can be substituted with a hydrocarbon group (for example, iodine, bromine, chlorine, fluorine, trifluoromethane sulfo group, p-toluene sulfo group) Γ represents —substituted boron atom such as B (OH) and —B (OR), —
2 2  twenty two
MgX基、—ZnX基、 -SnX基(但し、ここで Xは、ヨウ素、臭素、塩素、フッ素などの  MgX group, —ZnX group, —SnX group (where X is iodine, bromine, chlorine, fluorine, etc.
2  2
ハロゲン原子を表す)などのハロゲンィ匕金属元素を表す。  Represents a halogenated metal element such as a halogen atom.
[0059] 本発明の一般式 (I)で表される部分構造は、例えば、以下の 1)〜3)のような手法 により、合成することができる。  [0059] The partial structure represented by the general formula (I) of the present invention can be synthesized, for example, by the following methods 1) to 3).
[0060] 1)酸触媒を用いたァセチル基の環化反応 [0060] 1) Cyclization of acetyl group using acid catalyst
[化 23] [Chemical 23]
Figure imgf000026_0001
Figure imgf000026_0001
[0061] 本反応に用いられる酸触媒としては、四塩化チタン、四塩化珪素、塩酸、硫酸、三 塩化アルミニウム、塩化チォ -ル、ボロントリフルオリド 'エーテラート、硫酸、 K [0061] Examples of the acid catalyst used in this reaction include titanium tetrachloride, silicon tetrachloride, hydrochloric acid, sulfuric acid, Aluminum chloride, thiol chloride, boron trifluoride 'etherate, sulfuric acid, K
2 s 2 o 7 2 s 2 o 7
、Nafion H (Catalysis Letters, 6(3-6), 341-344, (1990)参照)などが挙げられ、 原料のァセチル基 1モルに対して、通常、 0. 1〜: LOOモル程度用いられる。上記反 応は無溶媒で実施しても良いが、用いられる溶媒としては、水、メタノール、エタノー ル、イソプロパノール、ジエチレングリコール、トノレェン、キシレン、クロ口ベンゼン、ジ クロ口ベンゼン、へキサン、クロ口ホルム、ジクロロメタン、ジクロロエタン、四塩化炭素 、ジェチルエーテル、テトラヒドロフラン、ジ才キサン、ジメトキシェタン、エチレングリコ ールモノェチルエーテル、硫酸、酢酸など、あるいはこれらの 2種以上の混合溶媒が 用いられる。温度条件は、— 20〜200°Cの範囲であり、好ましくは 0〜100°Cの範囲 である。反応時間は、通常、 30分〜 48時間程度である。反応系中の雰囲気は、大気 、乾燥空気、窒素、アルゴンなどであるが、好ましくは、乾燥空気、窒素、アルゴンで ある。また、必要に応じ、トリメトキシメタンなどを共存させることも可能である。 , Nafion H (see Catalysis Letters, 6 (3-6), 341-344, (1990)), etc., usually 0.1 to LOO moles per mole of acetyl group . The above reaction may be carried out without a solvent, but the solvents used are water, methanol, ethanol, isopropanol, diethylene glycol, toluene, xylene, chlorobenzene, dichlorobenzene, hexane, chloroform. Dichloromethane, dichloroethane, carbon tetrachloride, jetyl ether, tetrahydrofuran, dixane, dimethoxyethane, ethylene glycol monoethyl ether, sulfuric acid, acetic acid, or a mixed solvent of two or more of these. The temperature condition is in the range of −20 to 200 ° C., preferably in the range of 0 to 100 ° C. The reaction time is usually about 30 minutes to 48 hours. The atmosphere in the reaction system is air, dry air, nitrogen, argon, etc., preferably dry air, nitrogen, argon. In addition, trimethoxymethane or the like can coexist if necessary.
上記反応に関連する文献には、  Literature related to the above reaction includes:
Journal of Chemical Research, Synopses, (12), 778-779, (2003)、  Journal of Chemical Research, Synopses, (12), 778-779, (2003),
Polymer Preprints (American Chemical Society, Division of Polymer Chemis try), 44(2), 811, (2003)、  Polymer Preprints (American Chemical Society, Division of Polymer Chemistry), 44 (2), 811, (2003),
Huaxue Tongbao, 67(9), 700-701, (2004)、  Huaxue Tongbao, 67 (9), 700-701, (2004),
Journal of Chinese し hemical Society (Taipei, Taiwan), 49(1), 91-94, (2002)  Journal of Chinese and hemical Society (Taipei, Taiwan), 49 (1), 91-94, (2002)
Synlett, (12), 1947-1949, (2001)、 Synlett, (12), 1947-1949, (2001),
Huaxue Shiji, 22(6), 331—332, 359, (2000)、  Huaxue Shiji, 22 (6), 331—332, 359, (2000),
Huaxue Tongbao, (8), 21—22, (2000)、  Huaxue Tongbao, (8), 21-22, (2000),
Huaxue Shiji, 41(3), 130—131, (2000)、  Huaxue Shiji, 41 (3), 130-131, (2000),
Journal Chemical Research Synopses, (7), 232-233, (1997)、  Journal Chemical Research Synopses, (7), 232-233, (1997),
Tetrahedron Letters, 38(6), 1071—1074, (1997)、  Tetrahedron Letters, 38 (6), 1071-1074, (1997),
Tetrahedron Letters, 32(33), 4175—4176, (1991)、  Tetrahedron Letters, 32 (33), 4175-4176, (1991),
Catalysis Letters, 6(3—6), 341—344, (1990)、  Catalysis Letters, 6 (3—6), 341—344, (1990),
Chemische Berichte, 121(12), 2179-2185, (1988)、 Journal of Organic Chemistry, 69, 6050—6058, (2004) Chemische Berichte, 121 (12), 2179-2185, (1988), Journal of Organic Chemistry, 69, 6050—6058, (2004)
などが挙げられ、これらに記載される具体的条件を必要に応じ、利用することが出来 る。  The specific conditions described in these can be used as necessary.
[0063] 更に、ここで得られた化合物が、中間体である場合 (即ち、 Q力 に相当する場合) 、公知のァリールーァリールカップリング手法を用いて、 3—ビフエ-ル基若しくはそ の類縁基を導入することにより、本発明の炭化水素化合物を得ることができる。  [0063] Furthermore, when the compound obtained here is an intermediate (ie, corresponding to a Q force), a known bi-aryl group coupling method or a 3-biphenyl group or its group is used. By introducing the similar group, the hydrocarbon compound of the present invention can be obtained.
[0064] 公知のァリールーァリールカップリング手法としては、具体的には、 rpalladium in Heterocyclic Chemistry : A guide for the synthetic ChemistJ (第一 、 2002、 Jie Jack Li and Gordon W. Gribbleゝ Pergamon社)、「遷移金属が拓く有機合成 その多彩な反応形式と最新の成果」(1997年、辻ニ郎、化学同仁社)、「ボルハルト •ショァ一現代有機化学 下」(2004年、 K.P.C.Vollhardt,化学同人社))などに記載 または引用されている、ハロゲン化ァリールとァリールボレートとのカップリング反応な どの、環同士の結合 (カップリング)反応)を用いることができる。  [0064] As a known aryl reel coupling method, specifically, rpalladium in Heterocyclic Chemistry: A guide for the synthetic Chemist J (1st, 2002, Jie Jack Li and Gordon W. Gribble ゝ Pergamon), "Organic synthesis pioneered by transition metals, its various reaction forms and latest results" (1997, Shinniro, Kagaku Dojinsha), "Borhardt Shoichi Ichigo Organic Chemistry" (2004, KPCVollhardt, Chemical Dojinsha) )), Etc., or a ring-to-ring (coupling) reaction such as a coupling reaction between a halogenated aryl and an aryl borate).
[0065] 2)ピリリュウム塩からの合成  [0065] 2) Synthesis from pyrylium salt
例えば、 Journal flier Praktische Chemie(Liepzig), 327(5), 775-788, (1985)に 記載の下記反応が利用可能である。  For example, the following reaction described in Journal flier Praktische Chemie (Liepzig), 327 (5), 775-788, (1985) can be used.
[化 24]  [Chemical 24]
Figure imgf000028_0001
Figure imgf000028_0001
[0066] 更に、ここで得られた化合物が、中間体である場合 (即ち、 Q力 に相当する場合) 、前述した公知のァリールーァリールカップリング手法を用いて、 3—ビフエ二ル基若 しくはその類縁基を導入することにより、本発明の炭化水素化合物を得ることができる [0066] Further, when the compound obtained here is an intermediate (ie, corresponding to a Q force), a 3-biphenyl group is obtained by using the above-mentioned known aryl-reel coupling method. Alternatively, the hydrocarbon compound of the present invention can be obtained by introducing the similar group.
[0067] 3)ポリハライドからの合成 [0067] 3) Synthesis from polyhalide
例えば、下記反応などが利用可能である。 [化 25] For example, the following reactions can be used. [Chemical 25]
Figure imgf000029_0001
Figure imgf000029_0001
不活性ガス雰囲気下、ハロゲン化ァリールをァリールボロン酸、ァリールボロン酸ェ ステル、ァリールチンクロライド、ァリールジンククロライド、ァリールマグネシウムブロ マイド、ァリールマグネシウムアイオダイドなど (Xに対して、 1. 0〜1. 5当量)と、テト ラキス(トリフエ-ルフォスフィン)パラジウムなどの 0価のパラジウム触媒 (Xに対して、 0. 0001〜0. 2当量)、 tert—ブトキシナトリウム、 tert—ブトキシカリウム、炭酸セシ ゥム、炭酸ナトリウム、炭酸カリウム、リン酸三カリウム、トリェチルァミン、水酸化力リウ ム、水酸化ナトリウムなどの塩基 (Xに対して、 2〜10当量)、水、メタノール、エタノー ノレ、ノノレマノレへキサノーノレ、エチレングリコーノレ、エチレングリコーノレモノェチノレエー テル、ジェチルエーテル、ジメトキシェタン、テトラヒドロフラン、 1, 4 ジ才キサン、ベ ンゼン、トルエン、キシレン、クロ口ベンゼン、ジクロロベンゼン、ジクロロメタン、 N, N ージメチルホルムアミド、シクロへキサン、シクロへキサノン、ェチルベンゾエート、酢 酸ェチルなどの溶剤(Xに対して、 0. 01〜100リットル Zモル程度)などと共に、—4 0〜150°Cの温度条件下、 1〜60時間ほど撹拌することにより、上記反応を行うことが できる。 In an inert gas atmosphere, halogenated aryls are allylboronic acid, allylboronic acid ester, allyl tin chloride, allyl zinc chloride, allyl magnesium bromide, allyl magnesium iodide, etc. 1.5 equivalents) and a zerovalent palladium catalyst such as tetrakis (triphenylphosphine) palladium (0.0001 to 0.2 equivalents relative to X), tert-butoxy sodium, tert-butoxy potassium, cesium carbonate Bases such as hum, sodium carbonate, potassium carbonate, tripotassium phosphate, triethylamine, hydroxy hydroxide, sodium hydroxide, etc. (2-10 equivalents to X), water, methanol, ethanol, nonolemanole hexanol , Ethylene glycol, ethylene glycol monomers, jetyl Ter, dimethoxyethane, tetrahydrofuran, 1,4 di-xane, benzene, toluene, xylene, black benzene, dichlorobenzene, dichloromethane, N, N-dimethylformamide, cyclohexane, cyclohexanone, ethylbenzoate, The above reaction is carried out by stirring for about 1 to 60 hours under a temperature condition of −40 to 150 ° C. with a solvent such as ethyl acetate (about 0.01 to 100 liters Z moles relative to X). To do it can.
[0069] 上記反応式中の中間体 1あるいは 2を経る必要がある場合の合成手法の文献とし て具体的には、 Bull. Chem. Soc. Jpn" 62(10), 3122-3126, (1989)、 Synthesis, 13, 2181-2185, (2004)、 Journal of the American Chemical Society, 114(3), 1 018-1025, (1992)、 Chem. Mater., 2, 346-349, (1990)などが挙げられる。  [0069] As a reference for a synthesis method in the case where it is necessary to go through the intermediate 1 or 2 in the above reaction formula, Bull. Chem. Soc. Jpn "62 (10), 3122-3126, (1989 ), Synthesis, 13, 2181-2185, (2004), Journal of the American Chemical Society, 114 (3), 1 018-1025, (1992), Chem. Mater., 2, 346-349, (1990), etc. Is mentioned.
[0070] また、上記合成方法例で示した構造は、任意の公知連結手段を用いて、より大きな 分子量の化合物にすることが出来る。  [0070] The structure shown in the above synthesis method example can be converted to a compound having a higher molecular weight by using any known linking means.
[0071] 化合物の精製方法としては、「分離精製技術ノ、ンドブック」(1993年、(財)日本ィ匕 学会編)、「化学変換法による微量成分および難精製物質の高度分離」(1988年、( 株)アイ ピー シー発行)、あるいは「実験化学講座 (第 4版) 1」(1990年、(財)日本 化学会編)の「分離と精製」の項に記載の方法をはじめとし、公知の技術を利用可能 である。  [0071] Methods for purifying compounds include "Separation and purification technology, ND book" (1993, edited by Japan Society of Informatics), "Advanced separation of trace components and difficult-to-purify substances by chemical conversion method" (1988) , Published by IC Co., Ltd.), or the method described in the section “Separation and purification” in “Experimental Chemistry Course (4th edition) 1” (1990, Japan Chemical Society), Known techniques can be used.
[0072] 具体的には、抽出 (懸濁洗浄、煮沸洗浄、超音波洗浄、酸塩基洗浄を含む)、吸着 [0072] Specifically, extraction (including suspension washing, boiling washing, ultrasonic washing, acid-base washing), adsorption
、吸蔵、融解、晶析 (溶剤からの再結晶、再沈殿を含む)、蒸留 (常圧蒸留、減圧蒸 留)、蒸発、昇華 (常圧昇華、減圧昇華)、イオン交換、透析、濾過、限外濾過、逆浸 透、圧浸透、帯域溶解、電気泳動、遠心分離、浮上分離、沈降分離、磁気分離、各 種クロマトグラフィー (形状分類:カラム、ペーパー、薄層、キヤビラリ一。移動相分類: ガス、液体、ミセル、超臨界流体。分離機構:吸着、分配、イオン交換、分子ふるい、 キレート、ゲル濾過、排除、ァフィユティー)などが挙げられる。 , Occlusion, melting, crystallization (including recrystallization from solvent, reprecipitation), distillation (atmospheric distillation, vacuum distillation), evaporation, sublimation (atmospheric pressure sublimation, vacuum sublimation), ion exchange, dialysis, filtration, Ultrafiltration, reverse osmosis, pressure osmosis, zone lysis, electrophoresis, centrifugation, flotation separation, sedimentation separation, magnetic separation, various types of chromatography (shape classification: column, paper, thin layer, one-by-one, mobile phase classification : Gas, liquid, micelle, supercritical fluid, separation mechanism: adsorption, distribution, ion exchange, molecular sieve, chelate, gel filtration, exclusion, affinity, etc.
生成物の確認や純度の分析方法としては、ガスクロマトグラフ( 、高速液体クロ マトグラフ 、高速アミノ酸分析計 、キヤピラリー電気泳動測定 、 サイズ排除クロマトグラフ( 、ゲル浸透クロマトグラフ( 、交差分別クロマト グラフ( 質量分析( 、 、核磁気共鳴装置 Product chromatography and purity analysis methods include gas chromatograph (, high-performance liquid chromatograph, high-speed amino acid analyzer, capillary electrophoresis measurement, size exclusion chromatograph (, gel permeation chromatograph (, cross-fractionation chromatograph (mass spectrometry) (,, Nuclear magnetic resonance equipment
) )、フーリエ変換赤外分光高度計 、紫外可 視近赤外分光高度計 、電子スピン共鳴装置 、透過型電子 顕微鏡 電子線マイクロアナライザー( 、金属元素分析 (ィォ ンクロマトグラフ、誘導結合プラズマ一発光分光 原子吸光分析 蛍光 線分析装置 、非金属元素分析、微量成分分析 AS, GD— MS)等を必要に応じ、適用可能である。 )), Fourier transform infrared spectrophotometer, ultraviolet visible near infrared spectrophotometer, electron spin resonance device, transmission electron microscope, electron beam microanalyzer (, metal element analysis (ion chromatograph, inductively coupled plasma single emission spectroscopy, atom) Absorption analysis Fluorescence ray analyzer, Non-metallic element analysis, Trace component analysis AS, GD—MS) etc. can be applied as needed.
[0074] [9]炭化水素化合物の用途 [0074] [9] Use of hydrocarbon compounds
本発明の炭化水素化合物は、高い電荷輸送性を有するため、電荷輸送材料として 電子写真感光体、有機電界発光素子、光電変換素子、有機太陽電池、有機整流素 子等に好適に使用できる。  Since the hydrocarbon compound of the present invention has high charge transportability, it can be suitably used as an electrophotographic photosensitive member, an organic electroluminescent device, a photoelectric conversion device, an organic solar cell, an organic rectifying device, etc. as a charge transport material.
また、高い三重項励起準位を有することから、本発明の炭化水素化合物力 なる電 荷輸送材料を用いることにより、耐熱性に優れ、長期間安定に駆動 (発光)する有機 電界発光素子が得られるため、本発明の炭化水素化合物および電荷輸送材料は有 機電界発光素子材料として、とりわけ好適である。  In addition, since it has a high triplet excitation level, an organic electroluminescent device that has excellent heat resistance and can be stably driven (emitted) for a long period of time can be obtained by using the charge transport material having the power of the hydrocarbon compound of the present invention. Therefore, the hydrocarbon compound and the charge transport material of the present invention are particularly suitable as an organic electroluminescent element material.
[0075] [電荷輸送材料組成物] [0075] [Charge transport material composition]
本発明の電荷輸送材料組成物は、前述の本発明の炭化水素化合物と溶剤とを含 むものであり、好ましくは、有機電界発光素子用に使用される。  The charge transport material composition of the present invention contains the above-described hydrocarbon compound of the present invention and a solvent, and is preferably used for an organic electroluminescence device.
[0076] [1]溶剤 [0076] [1] Solvent
本発明の電荷輸送材料組成物に含まれる溶剤としては、溶質である本発明の電荷 輸送材料等が良好に溶解する溶剤であれば特に限定されない。  The solvent contained in the charge transport material composition of the present invention is not particularly limited as long as it is a solvent that dissolves the charge transport material of the present invention as a solute well.
[0077] 本発明の電荷輸送材料は溶解性が非常に高いため、種々の溶剤が適用化能であ る。例えば、トルエン、キシレン、メチシレン、シクロへキシルベンゼン、テトラリン等の 芳香族炭化水素;クロ口ベンゼン、ジクロロベンゼン、トリクロ口ベンゼン等のハロゲン 化芳香族炭化水素; 1, 2 ジメトキシベンゼン、 1, 3 ジメトキシベンゼン、 Ύ二ト、 ル、フエネトール、 2—メトキシトルエン、 3—メトキシトルエン、 4ーメトキシトルエン、 2, 3 ジメチルァ-ノール、 2, 4 ジメチルァ-ソール等の芳香族エーテル;酢酸フエ -ル、プロピオン酸フヱニル、安息香酸メチル、安息香酸ェチル、安息香酸プロピル 、安息香酸 n—ブチル等の芳香族エステル;シクロへキサノン、シクロォクタノン等の 脂環を有するケトン;メチルェチルケトン、ジブチルケトン等の脂肪族ケトン;メチルェ チルケトン、シクロへキサノール、シクロォクタノール等の脂環を有するアルコール;ブ タノール、へキサノール等の脂肪族アルコール;エチレングリコールジメチルエーテル 、エチレングリコーノレジェチノレエーテノレ、プロピレングリコーノレ 1 モノメチノレエー テルァセタート(PGMEA)等の脂肪族エーテル;酢酸ェチル、酢酸 n—ブチル、乳 酸ェチル、乳酸 n—ブチル等の脂肪族エステル等が利用できる。これらのうち、水の 溶解度が低い点、容易には変質しない点で、トルエン、キシレン、メチシレン、シクロ へキシルベンゼン、テトラリン等の芳香族炭化水素が好ま U、。 [0077] Since the charge transporting material of the present invention has very high solubility, various solvents can be applied. For example, aromatic hydrocarbons such as toluene, xylene, methicylene, cyclohexylbenzene, and tetralin; halogenated aromatic hydrocarbons such as black benzene, dichlorobenzene, and trichlorobenzene; 1, 2 dimethoxybenzene, 1, 3 dimethoxy Aromatic ethers such as benzene, nitrite, ru, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3 dimethylanol, 2,4 dimethylazole, etc .; phenol acetate, propion Aromatic esters such as acid phenyl, methyl benzoate, ethyl benzoate, propyl benzoate, n-butyl benzoate; ketones having alicyclic rings such as cyclohexanone and cyclooctanone; aliphatics such as methyl ethyl ketone and dibutyl ketone Ketone; Methyl ethyl ketone, cyclohexanol, cyclooctano Alcohols having an alicyclic ring such as: aliphatic alcohols such as butanol and hexanol; aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol oleetino oleate, propylene glycol oleate 1 monomethino terephthalate (PGMEA); N-butyl acetate, milk Aliphatic esters such as ethyl acetate and n-butyl lactate can be used. Of these, aromatic hydrocarbons such as toluene, xylene, methicylene, cyclohexylbenzene, and tetralin are preferred because they have low water solubility and are not easily altered.
[0078] 有機電界発光素子には、陰極等の水分により著しく劣化する材料が多く使用され ているため、組成物中の水分の存在は、乾燥後の膜中に水分が残留し、素子の特性 を低下させる可能性が考えられ好ましくな 、。  [0078] Since many materials such as cathodes that deteriorate significantly due to moisture are used in the organic electroluminescent device, the presence of moisture in the composition causes moisture to remain in the dried film, resulting in device characteristics. The possibility of lowering is considered preferable.
[0079] 組成物中の水分量を低減する方法としては、例えば、窒素ガスシール、乾燥剤の 使用、溶剤を予め脱水する、水の溶解度が低い溶剤を使用する等が挙げられる。な かでも、水の溶解度が低い溶剤を使用する場合は、湿式製膜工程中に、溶液膜が 大気中の水分を吸収して白化する現象を防ぐことができるため好ましい。この様な観 点からは、本実施の形態が適用される電荷輸送材料組成物は、例えば、 25°Cにお ける水の溶解度が 1重量%以下、好ましくは 0. 1重量%以下である溶剤を、組成物 中 10重量%以上含有することが好ま 、。  [0079] Examples of the method for reducing the amount of water in the composition include nitrogen gas sealing, use of a desiccant, dehydration of the solvent in advance, use of a solvent with low water solubility, and the like. In particular, it is preferable to use a solvent having low water solubility because the solution film can prevent whitening by absorbing moisture in the atmosphere during the wet film-forming process. From such a viewpoint, the charge transport material composition to which the present embodiment is applied has, for example, a water solubility at 25 ° C. of 1% by weight or less, preferably 0.1% by weight or less. It is preferable that the solvent contains 10% by weight or more in the composition.
[0080] また、湿式製膜時における組成物力ゝらの溶剤蒸発による、製膜安定性の低下を低 減するためには、電荷輸送材料組成物の溶剤として、沸点が 100°C以上、好ましくは 沸点が 150°C以上、より好ましくは沸点が 200°C以上の溶剤を用いることが効果的で ある。また、より均一な膜を得るためには、製膜直後の液膜から溶剤が適当な速度で 蒸発することが必要で、このためには通常沸点 80°C以上、好ましくは沸点 100°C以 上、より好ましくは沸点 120°C以上で、通常沸点 270°C未満、好ましくは沸点 250°C 未満、より好ましくは沸点 230°C未満の溶剤を用いることが効果的である。  [0080] Further, in order to reduce the decrease in film formation stability due to solvent evaporation due to the composition force during wet film formation, the boiling point of the solvent for the charge transport material composition is preferably 100 ° C or more, preferably It is effective to use a solvent having a boiling point of 150 ° C or higher, more preferably a boiling point of 200 ° C or higher. In order to obtain a more uniform film, it is necessary for the solvent to evaporate from the liquid film immediately after film formation at an appropriate rate. For this purpose, the boiling point is usually 80 ° C or higher, preferably the boiling point is 100 ° C or lower. In addition, it is effective to use a solvent having a boiling point of 120 ° C or higher, usually a boiling point of less than 270 ° C, preferably a boiling point of less than 250 ° C, more preferably a boiling point of less than 230 ° C.
[0081] 上述の条件、即ち溶質の溶解性、蒸発速度、水の溶解度の条件を満足する溶剤を 単独で用いてもよいが、すべての条件を満たす溶剤が選定できない場合は、 2種類 以上の溶剤を混合して用いることもできる。  [0081] A solvent that satisfies the above-mentioned conditions, ie, solute solubility, evaporation rate, and water solubility conditions, may be used alone, but if a solvent that satisfies all the conditions cannot be selected, two or more types of solvents may be used. It is also possible to use a mixture of solvents.
[0082] [2]発光材料  [0082] [2] Luminescent material
本発明の電荷輸送材料組成物は、発光材料を含有することが好ま 、。 発光材料とは、本発明の電荷輸送材料組成物において、主として発光する成分を 指し、有機 ELデバイスにおけるドーパント成分に当たる。該電荷輸送材料組成物か ら発せられる光量(単位: cdZm2)の内、通常 10〜100%、好ましくは 20〜100%、 より好ましくは 50〜: L00%、最も好ましくは 80〜: L00%力 ある成分材料からの発光 と同定される場合、それを発光材料と定義する。 The charge transport material composition of the present invention preferably contains a light emitting material. The light emitting material refers to a component that mainly emits light in the charge transport material composition of the present invention, and corresponds to a dopant component in an organic EL device. Of the amount of light (unit: cdZm 2 ) emitted from the charge transport material composition, usually 10 to 100%, preferably 20 to 100%, More preferably 50-: L00%, most preferably 80-: L00% power If identified as luminescence from a component material, it is defined as a luminescent material.
[0083] 発光材料としては、任意の公知材料を適用可能であり、蛍光発光材料あるいは燐 光発光材料を単独若しくは複数を混合して使用できるが、内部量子効率の観点から[0083] As the light emitting material, any known material can be applied, and a fluorescent light emitting material or a phosphorescent light emitting material can be used singly or in combination, but from the viewpoint of internal quantum efficiency.
、好ましくは、燐光発光材料である。 Preferably, it is a phosphorescent material.
[0084] 尚、溶剤への溶解性を向上させる目的で、発光材料分子の対称性や剛性を低下さ せたり、あるいはアルキル基などの親油性置換基を導入したりすることも、重要である [0084] For the purpose of improving the solubility in a solvent, it is also important to reduce the symmetry and rigidity of the luminescent material molecule or to introduce a lipophilic substituent such as an alkyl group.
[0085] 青色発光を与える蛍光色素としては、ペリレン、ピレン、アントラセン、クマリン、 P- ビス(2—フエニルェテュル)ベンゼンおよびそれらの誘導体等が挙げられる。緑色蛍 光色素としては、キナクリドン誘導体、クマリン誘導体等が挙げられる。黄色蛍光色素 としては、ルブレン、ペリミドン誘導体等が挙げられる。赤色蛍光色素としては、 DCM 系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチォキサンテン誘導体、 ァザべンゾチォキサンテン等が挙げられる。 [0085] Examples of fluorescent dyes that emit blue light include perylene, pyrene, anthracene, coumarin, P-bis (2-phenylethyl) benzene, and derivatives thereof. Examples of the green fluorescent dye include quinacridone derivatives and coumarin derivatives. Examples of yellow fluorescent dyes include rubrene and perimidone derivatives. Examples of red fluorescent dyes include DCM compounds, benzopyran derivatives, rhodamine derivatives, benzothixanthene derivatives, azabenzothixanthene, and the like.
[0086] 燐光発光材料としては、例えば周期表 7ないし 11族力 選ばれる金属を含む有機 金属錯体が挙げられる。  [0086] Examples of phosphorescent materials include organometallic complexes containing a metal selected from Group 7 to Group 11 forces in the periodic table.
[0087] 周期表 7な ヽし 11族から選ばれる金属を含む燐光性有機金属錯体における金属と して好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジゥ ム、白金、金等が挙げられる。これらの有機金属錯体として、好ましくは下記一般式( V)または下記一般式 (VI)で表される化合物が挙げられる。  [0087] Preferably, the metal in the phosphorescent organometallic complex containing a metal selected from Group 11 of the periodic table 7 is ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, gold or the like. Can be mentioned. As these organometallic complexes, compounds represented by the following general formula (V) or the following general formula (VI) are preferable.
ML V (V)  ML V (V)
一般式 (V)中、 Mは金属を表し、 qは上記金属の価数を表す。また、 Lおよび L'は 二座配位子を表す。 jは 0、 1または 2を表す。  In general formula (V), M represents a metal, and q represents the valence of the metal. L and L ′ represent bidentate ligands. j represents 0, 1 or 2;
[0088] [化 26] [0088] [Chemical 26]
Figure imgf000034_0001
一般式 (VI)中、 Mdは金属を表し、 Tは炭素または窒素を表す。 R92〜R95は、それ ぞれ独立に置換基を表す。ただし、 Tが窒素の場合は、 R94および R95は無い。
Figure imgf000034_0001
In the general formula (VI), M d represents a metal, and T represents carbon or nitrogen. R 92 to R 95 each independently represent a substituent. However, when T is nitrogen, there is no R 94 or R 95 .
[0089] 以下、まず、一般式 (V)で表される化合物について説明する。 [0089] Hereinafter, the compound represented by the general formula (V) will be described first.
一般式 (V)中、 Mは任意の金属を表し、好ましいものの具体例としては、周期表 7 な!、し 11族力も選ばれる金属として前述した金属が挙げられる。  In the general formula (V), M represents an arbitrary metal, and specific examples of preferable ones include the metals described above as the metals for which the periodic table 7 and 11 group forces are also selected.
また、一般式 (V)中の二座配位子 Lおよび L'は、それぞれ、以下の部分構造を有 する配位子を示す。  Further, the bidentate ligands L and L ′ in the general formula (V) each represent a ligand having the following partial structure.
[0090] [化 27] [0090] [Chemical 27]
Figure imgf000034_0002
Figure imgf000034_0002
[0091] [化 28]
Figure imgf000035_0001
[0093] 上記 L, L'の部分構造において、環 A1は、芳香族炭化水素基または芳香族複素 環基を表し、これらは置換基を有していてもよい。また、環 A2は、含窒素芳香族複素 環基を表し、これらは置換基を有していてもよい。
[0091] [Chemical 28]
Figure imgf000035_0001
[0093] In the partial structures of L and L ', the ring A1 represents an aromatic hydrocarbon group or an aromatic heterocyclic group, and these may have a substituent. Ring A2 represents a nitrogen-containing aromatic heterocyclic group, and these may have a substituent.
[0094] 環 Al, A2が置換基を有する場合、好ましい置換基としては、フッ素原子等のハロ ゲン原子;メチル基、ェチル基等のアルキル基;ビニル基等のアルケニル基;メトキシ カルボ-ル基、エトキシカルボ-ル基等のアルコキシカルボ-ル基;メトキシ基、エト キシ基等のアルコキシ基;フエノキシ基、ベンジルォキシ基などのァリールォキシ基; ジメチルァミノ基、ジェチルァミノ基等のジアルキルアミノ基;ジフエ-ルァミノ基等の ジァリールアミノ基;カルバゾリル基;ァセチル基等のァシル基;トリフルォロメチル基 等のハロアルキル基;シァノ基;フエ-ル基、ナフチル基、フエナンチル基等の芳香族 炭化水素基等が挙げられる。  [0094] When the rings Al and A2 have a substituent, preferred substituents include a halogen atom such as a fluorine atom; an alkyl group such as a methyl group or an ethyl group; an alkenyl group such as a vinyl group; a methoxy carbo group. Alkoxy group such as ethoxycarbol group; alkoxy group such as methoxy group and ethoxy group; aryloxy group such as phenoxy group and benzyloxy group; dialkylamino group such as dimethylamino group and jetylamino group; diphenylamino group A diarylamino group such as carbazolyl group; an acyl group such as acetyl group; a haloalkyl group such as trifluoromethyl group; a cyano group; an aromatic hydrocarbon group such as a phenol group, a naphthyl group, and a phenanthyl group.
[0095] 一般式 (V)で表される化合物として、さらに好ましくは、下記一般式 (Va)、 (Vb)、 ([0095] The compound represented by the general formula (V) is more preferably the following general formula (Va), (Vb), (
Vc)で表される化合物が挙げられる。 And a compound represented by Vc).
[0096] [化 30] [0096] [Chemical 30]
Figure imgf000036_0001
一般式 (Va)中、 Maは Mと同様の金属を表し、 wは上記金属の価数を表す。また、 環 A1は置換基を有して ヽてもよ 、芳香族炭化水素基を表し、環 A2は置換基を有し て!ヽてもよ!/ヽ含窒素芳香族複素環基を表す。
Figure imgf000036_0001
In general formula (Va), M a represents the same metal as M, and w represents the valence of the metal. Ring A1 may have a substituent and may represent an aromatic hydrocarbon group, and Ring A2 may have a substituent and may have a substituent! / ヽ represents a nitrogen-containing aromatic heterocyclic group. .
[0097] [化 31] [0097] [Chemical 31]
Figure imgf000037_0001
一般式 (Vb)中、 Mbは Mと同様の金属を表し、 wは上記金属の価数を表す。また、 環 A1は置換基を有して 、てもよ 、芳香族炭化水素基または置換基を有して 、てもよ Vヽ芳香族複素環基を表し、環 A2は置換基を有して ヽてもよ ヽ含窒素芳香族複素環 基を表す。
Figure imgf000037_0001
In the general formula (Vb), M b represents the same metal as M, and w represents the valence of the metal. Ring A1 may have a substituent, may have an aromatic hydrocarbon group or a substituent, and may represent a V ヽ aromatic heterocyclic group, and ring A2 may have a substituent. Or a nitrogen-containing aromatic heterocyclic group.
[0098] [化 32] [0098] [Chemical 32]
Figure imgf000037_0002
一般式 (Vc)中、 Meは Mと同様の金属を表し、 wは上記金属の価数を表す。また、 j は 0、 1または 2を表す。さら〖こ、環 A1および環 A1 'は、それぞれ独立に、置換基を有 して!/ヽてもよ!/ヽ芳香族炭化水素基または置換基を有して!/ヽてもよ!ヽ芳香族複素環基 を表す。また、環 A2および環 A2'は、それぞれ独立に、置換基を有していてもよい 含窒素芳香族複素環基を表す。
Figure imgf000037_0002
In the general formula (Vc), M e represents the same metal as M, w represents the valence of the metal. J represents 0, 1 or 2; In addition, ring A1, ring A1 and ring A1 ′ may each independently have a substituent! / ヽ! / ヽ may have an aromatic hydrocarbon group or substituent! / ヽ!ヽ Represents an aromatic heterocyclic group. Ring A2 and Ring A2 ′ each independently represent a nitrogen-containing aromatic heterocyclic group which may have a substituent.
[0099] 上記一般式 (Va)、 (Vb) , (Vc)において、環 A1および環 Al 'の基としては、好ま しくは、例えばフエ-ル基、ビフヱ-ル基、ナフチル基、アントリル基、チェ-ル基、フ リル基、ベンゾチェ-ル基、ベンゾフリル基、ピリジル基、キノリル基、イソキノリル基、 カルバゾリル基等が挙げられる。 [0099] In the above general formulas (Va), (Vb), and (Vc), the group of ring A1 and ring Al 'is preferably, for example, a phenyl group, a biphenyl group, a naphthyl group, or an anthryl group. , Chael group, fu Examples include a ryl group, a benzochel group, a benzofuryl group, a pyridyl group, a quinolyl group, an isoquinolyl group, and a carbazolyl group.
[0100] また、環 A2、環 A2'の基としては、好ましくは、例えばピリジル基、ピリミジル基、ピ ラジル基、トリアジル基、ベンゾチアゾール基、ベンゾォキサゾール基、ベンゾイミダゾ ール基、キノリル基、イソキノリル基、キノキサリル基、フエナントリジル基等が挙げられ る。  [0100] The group of ring A2 and ring A2 'is preferably a pyridyl group, pyrimidyl group, pyrazyl group, triazyl group, benzothiazole group, benzoxazole group, benzoimidazole group, quinolyl group, for example. Group, isoquinolyl group, quinoxalyl group, phenanthridyl group and the like.
[0101] さらに、一般式 (Va)、(Vb)、(Vc)で表される化合物が有していてもよい置換基と しては、フッ素原子等のハロゲン原子;メチル基、ェチル基等のアルキル基;ビニル 基等のアルケ-ル基;メトキシカルボ-ル基、エトキシカルボ-ル基等のアルコキシ力 ルポ-ル基;メトキシ基、エトキシ基等のアルコキシ基;フエノキシ基、ベンジルォキシ 基などのァリールォキシ基;ジメチルァミノ基、ジェチルァミノ基等のジアルキルァミノ 基;ジフエ-ルァミノ基等のジァリールアミノ基;カルバゾリル基;ァセチル基等のァシ ル基;トリフルォロメチル基等のハロアルキル基;シァノ基等が挙げられる。  [0101] Further, the substituents that the compounds represented by the general formulas (Va), (Vb), (Vc) may have include halogen atoms such as fluorine atoms; methyl groups, ethyl groups, etc. Alkyl groups such as vinyl groups; alkoxy groups such as methoxycarbon groups and ethoxycarbol groups; alkoxy groups such as methoxy groups and ethoxy groups; phenoxy groups and benzyloxy groups A dialkylamino group such as a dimethylamino group or a jetylamino group; a diarylamino group such as a diphenylamino group; a carbazolyl group; an acyl group such as an acetylyl group; a haloalkyl group such as a trifluoromethyl group; a cyano group or the like. Can be mentioned.
[0102] 上記置換基がアルキル基である場合は、その炭素数は通常 1以上 6以下である。さ らに、置換基がアルケニル基である場合は、その炭素数は通常 2以上 6以下である。 また、置換基がアルコキシカルボ-ル基である場合は、その炭素数は通常 2以上 6以 下である。さらに、置換基がアルコキシ基である場合は、その炭素数は通常 1以上 6 以下である。また、置換基がァリールォキシ基である場合は、その炭素数は通常 6以 上 14以下である。さらに、置換基がジアルキルアミノ基である場合は、その炭素数は 通常 2以上 24以下である。また、置換基がジァリールアミノ基である場合は、その炭 素数は通常 12以上 28以下である。さらに、置換基がァシル基である場合は、その炭 素数は通常 1以上 14以下である。また、置換基がハロアルキル基である場合は、そ の炭素数は通常 1以上 12以下である。 [0102] When the substituent is an alkyl group, the carbon number is usually 1 or more and 6 or less. Furthermore, when the substituent is an alkenyl group, the carbon number is usually 2 or more and 6 or less. Further, when the substituent is an alkoxycarbo group, the carbon number is usually 2 or more and 6 or less. Furthermore, when the substituent is an alkoxy group, the carbon number is usually 1 or more and 6 or less. When the substituent is an aryloxy group, the carbon number is usually 6 or more and 14 or less. Further, when the substituent is a dialkylamino group, the carbon number is usually 2 or more and 24 or less. In addition, when the substituent is a diarylamino group, the number of carbon atoms is usually 12 or more and 28 or less. Further, when the substituent is an acyl group, the number of carbon atoms is usually 1 or more and 14 or less. In addition, when the substituent is a haloalkyl group, the carbon number is usually 1 or more and 12 or less.
[0103] なお、これら置換基は互いに連結して環を形成してもよい。具体例としては、環 A1 が有する置換基と環 A2が有する置換基とが結合するか、または、環 A1 'が有する置 換基と環 A2'が有する置換基とが結合するかして、一つの縮合環を形成してもよい。 このような縮合環基としては、 7, 8—べンゾキノリン基等が挙げられる。 [0103] These substituents may be linked to each other to form a ring. As a specific example, the substituent of ring A1 and the substituent of ring A2 are bonded, or the substituent of ring A1 ′ and the substituent of ring A2 ′ are bonded, One condensed ring may be formed. Examples of such a condensed ring group include a 7,8-benzoquinoline group.
[0104] 中でも、環 Al、環 A1 '、環 A2および環 A2'の置換基として、より好ましくはアルキ ル基、アルコキシ基、芳香族炭化水素基、シァノ基、ハロゲン原子、ハロアルキル基、 ジァリールアミノ基、カルバゾリル基が挙げられる。 [0104] Among them, as a substituent of ring Al, ring A1 ', ring A2 and ring A2', more preferably alkyl. Group, alkoxy group, aromatic hydrocarbon group, cyano group, halogen atom, haloalkyl group, diarylamino group, and carbazolyl group.
[0105] また、一般式 (Va)、 (Vb)、 (Vc)における Ma, Mb, Mcとして好ましくは、ルテユウ ム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金または金が挙げら れる。 [0105] Moreover, the general formula (Va), (Vb), preferably as M a, M b, M c in (Vc), Ruteyuu beam, rhodium, palladium, silver, rhenium, osmium, iridium, platinum or gold Are listed.
[0106] 上記一般式 (V)、 (Va)、 (Vb)または (Vc)で示される有機金属錯体の具体例を以 下に示すが、下記の化合物に限定されるものではない(以下において、 Phはフ - ル基を表す。)。  Specific examples of the organometallic complex represented by the general formula (V), (Va), (Vb) or (Vc) are shown below, but are not limited to the following compounds (in the following) Ph represents a full group.)
[0107] [化 33] [0107] [Chemical 33]
Figure imgf000040_0001
Figure imgf000040_0001
[0108] [化 34] [0108] [Chemical 34]
Figure imgf000041_0001
Figure imgf000041_0001
[0109] 上記一般式 (V)、 (Va)、 (Vb)、(Vc)で表される有機金属錯体の中でも、特に、配 位子 Lおよび Zまたは L,として 2—ァリールピリジン系配位子、即ち、 2—ァリールピリ ジン、これに任意の置換基が結合したもの、および、これに任意の基が縮合してなる ものを有する化合物が好まし 、。 [0109] Among the organometallic complexes represented by the general formulas (V), (Va), (Vb), and (Vc), The ligands L and Z or L are 2-aryl pyridine ligands, that is, 2-aryl pyridines, those having an arbitrary substituent bonded thereto, and those having an arbitrary group condensed thereto. Preference is given to compounds having.
[0110] 次に、前記一般式 (VI)で表される化合物について説明する。  [0110] Next, the compound represented by the general formula (VI) will be described.
一般式 (VI)中、 Mdは金属を表し、具体例としては、周期表 7ないし 11族力も選ば れる金属として前述した金属が挙げられる。中でも好ましくは、ルテニウム、ロジウム、 ノラジウム、銀、レニウム、オスミウム、イリジウム、白金または金が挙げられ、特に好ま しくは、白金、パラジウム等の 2価の金属が挙げられる。 In the general formula (VI), M d represents a metal, and specific examples thereof include the metals described above as metals for which the periodic table group 7 to 11 forces are also selected. Of these, ruthenium, rhodium, noradium, silver, rhenium, osmium, iridium, platinum or gold are preferable, and divalent metals such as platinum and palladium are particularly preferable.
[0111] また、一般式 (VI)において、 R92および R93は、それぞれ独立に、水素原子、ハロゲ ン原子、アルキル基、ァラルキル基、アルケニル基、シァノ基、アミノ基、ァシル基、ァ ルコキシカルボ-ル基、カルボキシル基、アルコキシ基、アルキルアミノ基、ァラルキ ルァミノ基、ハロアルキル基、水酸基、ァリールォキシ基、芳香族炭化水素基または 芳香族複素環基を表す。 [0111] In the general formula (VI), R 92 and R 93 are each independently a hydrogen atom, halogen atom, alkyl group, Ararukiru group, an alkenyl group, Shiano group, an amino group, Ashiru group, § Rukokishikarubo Represents a-group, a carboxyl group, an alkoxy group, an alkylamino group, an aralkylamino group, a haloalkyl group, a hydroxyl group, an aryloxy group, an aromatic hydrocarbon group or an aromatic heterocyclic group.
[0112] さらに、 Tが炭素の場合、 R94および R95は、それぞれ独立に、 R92および R93と同様 の例示物で表される置換基を表す。また、前述の如ぐ Tが窒素の場合は R94および R95は無い。 [0112] Furthermore, when T is carbon, R 94 and R 95 each independently represents a substituent represented by the same exemplary compounds and R 92 and R 93. In addition, when T is nitrogen as described above, R 94 and R 95 are absent.
[0113] また、 R92〜R95はさらに置換基を有していてもよい。この場合のさらに有していても よい置換基には特に制限はなぐ任意の基を置換基とすることができる。 [0113] R 92 to R 95 may further have a substituent. In this case, the substituent which may further have can be any group which is not particularly limited.
さらに、 R92〜R95は互いに連結して環を形成してもよぐこの環がさらに任意の置換 基を有していてもよい。 Further, R 92 to R 95 may be linked to each other to form a ring, and this ring may further have an arbitrary substituent.
[0114] 一般式 (VI)で表される有機金属錯体の具体例 (T—1, T— 10〜T— 15)を以下に 示すが、下記の例示化合物に限定されるものではない。なお、以下において、 Meは メチル基を表し、 Etはェチル基を表す。  Specific examples (T-1, T-10 to T-15) of the organometallic complex represented by the general formula (VI) are shown below, but are not limited to the following exemplified compounds. In the following, Me represents a methyl group, and Et represents an ethyl group.
[0115] [化 35] [0115] [Chemical 35]
Figure imgf000043_0001
Figure imgf000043_0001
Figure imgf000043_0002
Figure imgf000043_0002
Figure imgf000043_0003
Figure imgf000043_0003
[0116] また、有機金属錯体としては、 WO2005Z019373号公報に記載の化合物も使用 することができる。 [0116] As the organometallic complex, the compounds described in WO2005Z019373 can also be used.
[0117] [3]その他の成分 [0117] [3] Other ingredients
本発明の電荷輸送材料組成物中には、前述した溶剤および発光材料以外にも、 必要に応じて、各種の他の溶剤を含んでいてもよい。このような他の溶剤としては、例 えば、 N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド等のアミド類、ジメチ ルスルホキシド等が挙げられる。  The charge transport material composition of the present invention may contain various other solvents as required in addition to the solvent and the light emitting material described above. Examples of such other solvents include amides such as N, N-dimethylformamide and N, N-dimethylacetamide, and dimethyl sulfoxide.
また、レべリング剤や消泡剤等の各種添加剤を含んで 、てもよ 、。 [0118] また、 2層以上の層を湿式製膜法により積層する際に、これらの層が相溶することを 防ぐため、製膜後に硬化させて不溶化させる目的で光硬化性榭脂や、熱硬化性榭 脂を含有させておくこともできる。 It may also contain various additives such as leveling agents and antifoaming agents. [0118] Further, when two or more layers are laminated by a wet film-forming method, in order to prevent these layers from being compatible with each other, a photo-curable resin is used for the purpose of curing and insolubilizing after film formation, A thermosetting resin can also be contained.
[0119] [4]電荷輸送材料組成物中の材料濃度と配合比  [0119] [4] Material concentration and blending ratio in charge transport material composition
本発明の電荷輸送材料組成物中の電荷輸送材料、発光材料および必要に応じて 添加可能な成分 (レべリング剤など)などの固形分濃度は、通常 0. 01重量%以上、 好ましくは 0. 05重量%以上、より好ましくは 0. 1重量%以上、さらに好ましくは 0. 5 重量%以上、最も好ましくは 1重量%以上であり、通常 80重量%以下、好ましくは 50 重量%以下、より好ましくは 40重量%以下、さらに好ましくは 30重量%以下、最も好 ましくは 20重量%以下である。この濃度が下限を下回ると、薄膜を形成する場合、厚 膜を形成するのが困難となり、上限を超えると、薄膜を形成するのが困難となる。  The solids concentration of the charge transport material, the luminescent material, and components that can be added as required (leveling agent, etc.) in the charge transport material composition of the present invention is usually 0.01% by weight or more, preferably 0. 05 wt% or more, more preferably 0.1 wt% or more, more preferably 0.5 wt% or more, most preferably 1 wt% or more, usually 80 wt% or less, preferably 50 wt% or less, more It is preferably 40% by weight or less, more preferably 30% by weight or less, and most preferably 20% by weight or less. If this concentration is below the lower limit, it is difficult to form a thick film when forming a thin film, and if it exceeds the upper limit, it is difficult to form a thin film.
[0120] また、本発明の電荷輸送材料組成物において、発光材料 Z電荷輸送材料の重量 混合比は、通常、 0. 1/99. 9以上であり、より好ましくは 0. 5/99. 5以上であり、さ らに好ましくは 1Z99以上であり、最も好ましくは 2Z98以上で、通常、 50Z50以下 であり、より好ましくは 40Z60以下であり、さらに好ましくは 30Z70以下であり、最も 好ましくは 20Z80以下である。この比が下限を下回ったり、上限を超えたりすると、 著しく発光効率が低下するおそれがある。  [0120] In the charge transport material composition of the present invention, the weight mixing ratio of the light-emitting material Z charge transport material is usually 0.1 / 99.9 or more, more preferably 0.5 / 99.5. More preferably 1Z99 or more, most preferably 2Z98 or more, usually 50Z50 or less, more preferably 40Z60 or less, still more preferably 30Z70 or less, and most preferably 20Z80 or less. is there. If this ratio falls below the lower limit or exceeds the upper limit, the luminous efficiency may be significantly reduced.
[0121] [5]電荷輸送材料組成物の調製方法  [0121] [5] Method for preparing charge transport material composition
本発明の電荷輸送材料組成物は、電荷輸送材料、発光材料、および必要に応じ て添加可能なレべリング剤や消泡剤等の各種添加剤よりなる溶質を、適当な溶剤に 溶解させることにより調製される。溶解工程に要する時間を短縮するため、および組 成物中の溶質濃度を均一に保っため、通常、液を撹拌しながら溶質を溶解させる。 溶解工程は常温で行ってもよ!ヽが、溶解速度が遅 ヽ場合は加熱して溶解させること もできる。溶解工程終了後、必要に応じて、フィルタリング等の濾過工程を経由しても よい。  The charge transport material composition of the present invention is obtained by dissolving a solute comprising a charge transport material, a light emitting material, and various additives such as a leveling agent and an antifoaming agent that can be added as necessary in an appropriate solvent. It is prepared by. In order to shorten the time required for the dissolution process and to keep the solute concentration in the composition uniform, the solute is usually dissolved while stirring the solution. The dissolution process may be carried out at room temperature! If the dissolution rate is slow, it can be dissolved by heating. After completion of the dissolution process, a filtration process such as filtering may be performed as necessary.
[0122] [6]電荷輸送材料組成物の性状、物性等  [0122] [6] Properties, physical properties, etc. of charge transport material composition
〈水分濃度〉  <Moisture concentration>
本発明の電荷輸送材料組成物を用いた湿式製膜法により層形成して有機電界発 光素子を製造する場合、用いる電荷輸送材料組成物に水分が存在すると、形成され た膜に水分が混入して膜の均一性が損なわれるため、本発明の電荷輸送材料組成 物中の水分含有量はできるだけ少ない方が好ましい。また一般に、有機電界発光素 子は、陰極等の水分により著しく劣化する材料が多く使用されているため、電荷輸送 材料組成物中に水分が存在した場合、乾燥後の膜中に水分が残留し、素子の特性 を低下させる可能性が考えられ好ましくな 、。 An organic electric field generator is formed by forming a layer by a wet film-forming method using the charge transport material composition of the present invention. When an optical element is produced, if moisture is present in the charge transport material composition used, moisture is mixed into the formed film and the uniformity of the film is impaired. Therefore, the moisture content in the charge transport material composition of the present invention is reduced. The amount is preferably as small as possible. In general, since organic electroluminescent elements are often made of materials such as cathodes that deteriorate significantly due to moisture, when moisture is present in the charge transport material composition, moisture remains in the dried film. It is preferable that there is a possibility of deteriorating the characteristics of the element.
[0123] 具体的には、本発明の電荷輸送材料組成物中に含まれる水分量は、通常 1重量 %以下、好ましくは 0. 1重量%以下、より好ましくは 0. 01重量%以下である。  [0123] Specifically, the amount of water contained in the charge transport material composition of the present invention is usually 1 wt% or less, preferably 0.1 wt% or less, more preferably 0.01 wt% or less. .
[0124] 電荷輸送材料組成物中の水分濃度の測定方法としては、日本工業規格「化学製 品の水分測定法」(JIS K0068: 2001)に記載の方法が好ましぐ例えば、カールフ イツシヤー試薬法 (JIS K0211— 1348)等により分析することができる。  [0124] As a method for measuring the moisture concentration in the charge transport material composition, the method described in the Japanese Industrial Standard "Method for Measuring Moisture of Chemical Products" (JIS K0068: 2001) is preferred. For example, the Karl Fischer reagent method (JIS K0211-1348) and the like.
[0125] 〈均一性〉  [0125] <Uniformity>
本発明の電荷輸送材料組成物は、湿式製膜プロセスでの安定性、例えば、インク ジェット製膜法におけるノズル力もの吐出安定性を高めるためには、常温で均一な液 状であることが好ましい。常温で均一な液状とは、組成物が均一相からなる液体であ り、かつ組成物中に粒径 0.: L m以上の粒子成分を含有しないことをいう。  The charge transport material composition of the present invention is preferably in a uniform liquid state at room temperature in order to improve stability in a wet film-forming process, for example, ejection stability with a nozzle force in an ink-jet film forming method. . A uniform liquid at room temperature means that the composition is a liquid composed of a uniform phase and that the composition does not contain a particle component having a particle size of 0.0: Lm or more.
[0126] 〈物性〉 [0126] <Physical properties>
本発明の電荷輸送材料組成物の粘度については、極端に低粘度の場合は、例え ば製膜工程における過度の液膜流動による塗面不均一、インクジェット製膜における ノズル吐出不良等が起こりやすくなり、極端に高粘度の場合は、インクジヱット製膜に おけるノズル目詰まり等が起こりやすくなる。このため、本発明の組成物の 25°Cにお ける粘度は、通常 2mPa' s以上、好ましくは 3mPa' s以上、より好ましくは 5mPa' s以 上であり、通常 lOOOmPa' s以下、好ましくは lOOmPa' s以下、より好ましくは 50mP a ' s以下である。  Regarding the viscosity of the charge transport material composition of the present invention, when the viscosity is extremely low, for example, coating surface non-uniformity due to excessive liquid film flow in the film forming process, nozzle ejection failure in ink jet film formation, etc. are likely to occur. When the viscosity is extremely high, nozzle clogging or the like in ink jet film formation tends to occur. Therefore, the viscosity of the composition of the present invention at 25 ° C. is usually 2 mPa ′s or more, preferably 3 mPa ′s or more, more preferably 5 mPa ′s or more, and usually 1OOOmPa ′s or less, preferably lOOmPa's or less, more preferably 50 mPa's or less.
[0127] また、本発明の電荷輸送材料組成物の表面張力が高い場合は、基板に対する製 膜用液の濡れ性が低下する、液膜のレべリング性が悪ぐ乾燥時の製膜面乱れが起 こりやすくなる等の問題が発生するため、本発明の組成物の 20°Cにおける表面張力 は、通常 50mNZm未満、好ましくは 40mNZm未満である。 [0128] さらに、本発明の電荷輸送材料組成物の蒸気圧が高い場合は、溶剤の蒸発による 溶質濃度の変化等の問題が起こりやすくなる。このため、本発明の組成物の 25°Cに おける蒸気圧は、通常 50mmHg以下、好ましくは lOmmHg以下、より好ましくは lm mHg以下である。 [0127] In addition, when the surface tension of the charge transport material composition of the present invention is high, the wettability of the liquid for film formation with respect to the substrate is lowered, and the film-forming surface at the time of drying in which the leveling property of the liquid film is poor. Since problems such as turbulence are likely to occur, the surface tension of the composition of the present invention at 20 ° C. is usually less than 50 mNZm, preferably less than 40 mNZm. [0128] Furthermore, when the vapor pressure of the charge transport material composition of the present invention is high, problems such as changes in the solute concentration due to evaporation of the solvent tend to occur. For this reason, the vapor pressure at 25 ° C. of the composition of the present invention is usually 50 mmHg or less, preferably 10 mmOgHg or less, more preferably lmmHg or less.
[0129] [7]電荷輸送材料組成物の保存方法  [0129] [7] Storage method of charge transport material composition
本発明の電荷輸送材料組成物は、紫外線の透過を防ぐことのできる容器、例えば 、褐色ガラス瓶等に充填し、密栓して保管することが好ましい。保管温度は、通常ー3 0°C以上、好ましくは 0°C以上で、通常 35°C以下、好ましくは 25°C以下である。  The charge transport material composition of the present invention is preferably filled in a container capable of preventing the transmission of ultraviolet rays, such as a brown glass bottle, and sealed and stored. The storage temperature is usually −30 ° C. or higher, preferably 0 ° C. or higher, and usually 35 ° C. or lower, preferably 25 ° C. or lower.
[0130] [有機電界発光素子]  [0130] [Organic electroluminescent device]
本発明の有機電界発光素子は、基板上に少なくとも陽極、陰極およびこれらの両 極間に設けられた発光層を有するものであって、本発明の炭化水素化合物を含有す る層を有することを特徴とする。この層は、本発明の電荷輸送材料組成物を用いて湿 式製膜法により形成された層であることが好ましぐ特にこの層は発光層であることが 好ましい。  The organic electroluminescent device of the present invention has at least an anode, a cathode, and a light emitting layer provided between both electrodes on a substrate, and has a layer containing the hydrocarbon compound of the present invention. Features. This layer is preferably a layer formed by a wet film-forming method using the charge transport material composition of the present invention, and in particular, this layer is preferably a light emitting layer.
また、特に本発明の炭化水素化合物は、発光層または正孔阻止層に含有されるこ とが好ましい。  In particular, the hydrocarbon compound of the present invention is preferably contained in the light emitting layer or the hole blocking layer.
[0131] 図 1〜9は本発明の有機電界発光素子に好適な構造例を示す断面の模式図であり 、図 1において、 1は基板、 2は陽極、 3は正孔注入層、 4は発光層、 5は電子注入層 、 6は陰極を各々表す。  1 to 9 are schematic cross-sectional views showing structural examples suitable for the organic electroluminescence device of the present invention. In FIG. 1, 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is A light emitting layer, 5 represents an electron injection layer, and 6 represents a cathode.
[0132] [1]基板  [0132] [1] Board
基板 1は有機電界発光素子の支持体となるものであり、石英やガラスの板、金属板 や金属箔、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエス テル、ポリメタタリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂の板 が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある 。基板のガスバリア性が小さすぎると、基板を通過した外気により有機電界発光素子 が劣化することがあるので好ましくない。このため、合成樹脂基板の少なくとも片面に 緻密なシリコン酸ィ匕膜等を設けてガスノリア性を確保する方法も好ましい方法の一つ である。 [0133] [2]陽極 The substrate 1 serves as a support for the organic electroluminescent element, and quartz or glass plates, metal plates or metal foils, plastic films or sheets, etc. are used. In particular, a glass plate and a transparent synthetic resin plate such as polyester, polymetatalylate, polycarbonate, and polysulfone are preferable. When using a synthetic resin substrate, it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic electroluminescent element may be deteriorated by the outside air that has passed through the substrate, which is not preferable. For this reason, a method of securing a gas noria property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method. [0133] [2] Anode
基板 1上には陽極 2が設けられる。陽極 2は発光層側の層(正孔注入層 3または発 光層 4など)への正孔注入の役割を果たすものである。  An anode 2 is provided on the substrate 1. The anode 2 plays a role of hole injection into the layer on the light emitting layer side (such as the hole injection layer 3 or the light emission layer 4).
[0134] この陽極 2は、通常、アルミニウム、金、銀、ニッケル、ノ《ラジウム、白金等の金属、ィ ンジゥムおよび Zまたはスズの酸ィ匕物などの金属酸ィ匕物、ヨウ化銅などのハロゲン化 金属、カーボンブラック、或いは、ポリ(3—メチルチオフェン)、ポリピロール、ポリア- リン等の導電性高分子などにより構成される。  [0134] This anode 2 is usually made of metal such as aluminum, gold, silver, nickel, iron << radium, platinum, metal oxide such as indium and Z or tin, copper iodide, etc. It is composed of a metal halide, carbon black, or a conductive polymer such as poly (3-methylthiophene), polypyrrole or polyaline.
[0135] 陽極 2の形成は通常、スパッタリング法、真空蒸着法などにより行われることが多い 。また、銀などの金属微粒子、ヨウ化銅などの微粒子、カーボンブラック、導電性の金 属酸化物微粒子、導電性高分子微粉末などを用いて陽極を形成する場合には、適 当なノインダー榭脂溶液に分散させて、基板 1上に塗布することにより陽極 2を形成 することもできる。さら〖こ、導電性高分子の場合は、電解重合により直接基板 1上に薄 膜を形成したり、基板 1上に導電性高分子を塗布して陽極 2を形成することもできる( Appl. Phys. Lett. , 60卷, 2711頁, 1992年)。  [0135] The anode 2 is usually formed by a sputtering method, a vacuum deposition method, or the like. In addition, when forming an anode using fine metal particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, or conductive polymer fine powder, an appropriate noinder The anode 2 can also be formed by dispersing it in a fat solution and coating it on the substrate 1. Furthermore, in the case of conductive polymers, a thin film can be formed directly on the substrate 1 by electrolytic polymerization, or the anode 2 can be formed by applying a conductive polymer on the substrate 1 (Appl. Phys. Lett., 60 卷, 2711, 1992).
[0136] 陽極 2は通常は単層構造であるが、所望により複数の材料力もなる積層構造とする ことも可能である。 [0136] The anode 2 usually has a single-layer structure, but may have a laminated structure having a plurality of material forces if desired.
[0137] 陽極 2の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可 視光の透過率を、通常 60%以上、好ましくは 80%以上とすることが望ましい。この場 合、陽極の厚みは通常 5nm以上、好ましくは lOnm以上であり、また通常 lOOOnm 以下、好ましくは 500nm以下程度である。不透明でよい場合は陽極 2の厚みは任意 であり、陽極 2は基板 1と同一でもよい。また、さらには上記の陽極 2の上に異なる導 電材料を積層することも可能である。  [0137] The thickness of the anode 2 varies depending on the required transparency. When transparency is required, the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness of the anode is usually 5 nm or more, preferably lOnm or more, and usually lOOOnm or less, preferably about 500 nm or less. If it can be opaque, the thickness of the anode 2 is arbitrary, and the anode 2 may be the same as the substrate 1. Furthermore, it is also possible to laminate different conductive materials on the anode 2 described above.
[0138] 陽極に付着した不純物を除去し、イオンィ匕ポテンシャルを調整して正孔注入性を向 上させることを目的に、陽極表面を紫外線 (UV)Zオゾン処理したり、酸素プラズマ、 アルゴンプラズマ処理したりすることは好まし 、。  [0138] For the purpose of removing impurities adhering to the anode and adjusting the ion potential to improve the hole injection property, the anode surface is treated with ultraviolet (UV) Z ozone, oxygen plasma, argon plasma. I prefer to handle it.
[0139] [3]正孔注入層  [0139] [3] Hole injection layer
正孔注入層 3は陽極 2から発光層 4へ正孔を輸送する層であるため、正孔注入層 3 には正孔輸送性ィ匕合物を含むことが好まし 、。 [0140] 正孔注入層 3では、電気的に中性の化合物から電子が一つ除かれたカチオンラジ カルが、近傍の電気的に中性な化合物から一電子を受容することによって、正孔が 移動する。素子非通電時の正孔注入層 3にカチオンラジカルィ匕合物が含まれな 、場 合は、通電時に、正孔輸送性化合物が陽極 2に電子を与えることにより正孔輸送性 化合物のカチオンラジカルが生成し、このカチオンラジカルと電気的に中性な正孔輸 送性ィ匕合物との間で電子の授受が行われることにより正孔を輸送する。 Since the hole injection layer 3 is a layer that transports holes from the anode 2 to the light emitting layer 4, the hole injection layer 3 preferably contains a hole transporting compound. [0140] In the hole injection layer 3, a cationic radical in which one electron is removed from an electrically neutral compound accepts one electron from a nearby electrically neutral compound, whereby a hole is generated. Moving. When the hole injection layer 3 when the element is not energized does not contain a cation radical compound, the hole transporting compound gives electrons to the anode 2 when energized, so that the cation of the hole transporting compound A radical is generated, and holes are transported by transferring electrons between the cation radical and an electrically neutral hole transporting compound.
[0141] 正孔注入層 3にカチオンラジカルィ匕合物が含まれると、陽極 2による酸ィ匕によって生 成する以上の濃度で正孔輸送に必要なカチオンラジカルが存在することになり、正 孔輸送性能が向上するため、正孔注入層 3にカチオンラジカルィ匕合物を含むことが 好ましい。カチオンラジカル化合物の近傍に電気的に中性な正孔輸送性化合物が 存在すると、電子の受け渡しがスムーズに行われるため、正孔注入層 3にカチオンラ ジカルイ匕合物と正孔輸送性ィ匕合物とを含むことがさらに好ましい。  [0141] When the hole injection layer 3 contains a cation radical compound, the cation radical necessary for hole transport exists at a concentration higher than that generated by the acid generated by the anode 2, and the positive injection is present. In order to improve the hole transport performance, the hole injection layer 3 preferably contains a cation radical compound. When an electrically neutral hole transporting compound is present in the vicinity of the cation radical compound, electrons are transferred smoothly, and therefore the cationic radical compound and the hole transporting compound are combined in the hole injection layer 3. More preferably.
[0142] ここで、カチオンラジカルィ匕合物とは、正孔輸送性ィ匕合物力 一電子取り除いたィ匕 学種であるカチオンラジカルと、対ァ-オン力 なるイオンィ匕合物であり、移動しやす Vヽ正孔 (フリーキャリア)を既に有して 、る。  [0142] Here, the cation radical compound is a cation radical that is a chemical species obtained by removing one electron from a hole transport property, a compound force, and an ionic compound that has an anti-ion force. We already have V-holes (free carriers) that are easy to move.
[0143] また、正孔輸送性化合物に電子受容性化合物を混合することによって、正孔輸送 性ィ匕合物から電子受容性化合物への一電子移動が起こり、上述のカチオンラジカル 化合物が生成する。このため、正孔注入層 3に正孔輸送性化合物と電子受容性化合 物とを含むことが好ましい。  [0143] Further, by mixing an electron-accepting compound with the hole-transporting compound, one electron transfer from the hole-transporting compound to the electron-accepting compound occurs, and the above-described cation radical compound is generated. . For this reason, it is preferable that the hole injection layer 3 contains a hole transporting compound and an electron accepting compound.
[0144] 以上の好ましい材料についてまとめると、正孔注入層 3に正孔輸送性ィ匕合物を含 むことが好ましぐ正孔輸送性ィ匕合物と電子受容性ィ匕合物とを含むことがさらに好ま しい。また、正孔注入層 3にカチオンラジカルィ匕合物を含むことが好ましぐカチオン ラジカルィ匕合物と正孔輸送性ィ匕合物とを含むことがさらに好ましい。  [0144] Summarizing the above preferred materials, it is preferable that the hole injection layer 3 contains a hole transporting compound and an electron accepting compound. It is even more preferable to include. Further, it is more preferable that the hole injection layer 3 contains a cation radical compound and a hole transport compound which preferably contain a cation radical compound.
[0145] さらに、必要に応じて、正孔注入層 3には電荷のトラップになりにくいバインダー榭 脂や、塗布性改良剤を含んでいてもよい。  [0145] Furthermore, the hole injection layer 3 may contain a binder resin that hardly traps charges or a coating property improving agent, if necessary.
[0146] 但し、正孔注入層 3として、電子受容性化合物のみを湿式製膜法によって陽極 2上 に製膜し、その上力 直接、本発明の電荷輸送材料組成物を塗布、積層することも 可能である。この場合、本発明の電荷輸送材料組成物の一部が電子受容性化合物 と相互作用することによって、正孔注入性に優れた層が形成される。 [0146] However, as the hole injection layer 3, only the electron-accepting compound is formed on the anode 2 by a wet film forming method, and the charge transport material composition of the present invention is directly applied and laminated. Is also possible. In this case, a part of the charge transport material composition of the present invention is an electron accepting compound. By interacting with, a layer having excellent hole injection properties is formed.
[0147] (正孔輸送性化合物)  [0147] (Hole transporting compound)
正孔輸送性化合物としては、 4. 5eV〜6. OeVのイオン化ポテンシャルを有する化 合物が好ましい。  As the hole transporting compound, a compound having an ionization potential of 4.5 eV to 6. OeV is preferable.
[0148] 正孔輸送性化合物の例としては、本発明の電荷輸送材料の他、芳香族ァミン化合 物、フタロシアニン誘導体、ポルフィリン誘導体、オリゴチォフェン誘導体、ポリチオフ ン誘導体等が挙げられる。中でも非晶質性、可視光の透過率の点から、芳香族アミ ン化合物が好ましい。  [0148] Examples of the hole transporting compound include, in addition to the charge transporting material of the present invention, aromatic amine compounds, phthalocyanine derivatives, porphyrin derivatives, oligothiophene derivatives, and polythiophene derivatives. Of these, aromatic amine compounds are preferable from the viewpoint of amorphousness and visible light transmittance.
[0149] 芳香族アミンィ匕合物の中でも、特に、本発明の電荷輸送材料などの芳香族三級ァ ミンィ匕合物が好ましい。ここで、芳香族三級アミンィ匕合物とは、芳香族三級アミン構造 を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。  [0149] Among aromatic amine compounds, aromatic tertiary amine compounds such as the charge transport material of the present invention are particularly preferable. Here, the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure and also includes a compound having a group derived from an aromatic tertiary amine.
[0150] 芳香族三級アミンィ匕合物の種類は特に制限されないが、表面平滑ィ匕効果の点から 、重量平均分子量が 1000以上、 1000000以下の高分子化合物(繰り返し単位が連 なる重合型炭化水素化合物)がさらに好ましい。  [0150] The type of aromatic tertiary amine compound is not particularly limited, but from the viewpoint of the surface smoothing effect, a polymer compound having a weight average molecular weight of 1000 or more and 1000000 or less (polymerization type carbonization in which repeating units are linked). More preferred are hydrogen compounds).
[0151] 芳香族三級アミン高分子化合物の好ま 、例として、下記一般式 (VII)で表される 繰り返し単位を有する高分子化合物が挙げられる。  [0151] Preferred examples of the aromatic tertiary amine polymer compound include a polymer compound having a repeating unit represented by the following general formula (VII).
[0152] [化 36] [0152] [Chemical 36]
Figure imgf000049_0001
一般式 (VII)中、 τ , Ar は各々独立して、置換基を有していてもよい芳香族炭 化水素基、または置換基を有していてもよい芳香族複素環基を表す。 Ar23〜Ar25は 、各々独立して、置換基を有していてもよい 2価の芳香族炭化水素基、または置換基 を有していてもよい 2価の芳香族複素環基を表す。 Yは、下記の連結基群の中から 選ばれる連結基を表す。また、 Ar21〜Ar25のうち、同一の N原子に結合する二つの 基は互 、に結合して環を形成してもよ 、。
Figure imgf000049_0001
In general formula (VII), τ and Ar each independently represent an aromatic hydrocarbon group which may have a substituent, or an aromatic heterocyclic group which may have a substituent. Ar 23 to Ar 25 each independently represents a divalent aromatic hydrocarbon group which may have a substituent, or a divalent aromatic heterocyclic group which may have a substituent. . Y represents a linking group selected from the following linking group group. In addition, two groups bonded to the same N atom among Ar 21 to Ar 25 may be bonded to each other to form a ring.
[0153] [化 37] — A 1—[0153] [Chemical 37] — A 1—
Figure imgf000050_0001
Figure imgf000050_0001
Figure imgf000050_0002
上記各式中、 Ardl〜Ar41は、各々独立して、置換基を有していてもよい芳香族炭 化水素環、または置換基を有していてもよい芳香族複素環由来の 1価または 2価の 基を表す。 R31および R32は、各々独立して、水素原子または任意の置換基を表す。
Figure imgf000050_0002
In each of the above formulas, Ar dl to Ar 41 are each independently 1 derived from an aromatic hydrocarbon ring which may have a substituent or an aromatic heterocyclic ring which may have a substituent. Represents a divalent or divalent group. R 31 and R 32 each independently represents a hydrogen atom or an arbitrary substituent.
[0154] Ar21〜Ar25および Ar31〜Ar41としては、任意の芳香族炭化水素環または芳香族複 素環由来の、 1価または 2価の基が適用可能である。これらは各々同一であっても、 互いに異なっていてもよい。また、任意の置換基を有していてもよい。 As Ar 21 to Ar 25 and Ar 31 to Ar 41 , a monovalent or divalent group derived from any aromatic hydrocarbon ring or aromatic complex ring is applicable. These may be the same or different from each other. Moreover, you may have arbitrary substituents.
[0155] その芳香族炭化水素環としては、 5または 6員環の単環または 2〜5縮合環が挙げ られる。具体例としては、ベンゼン環、ナフタレン環、アントラセン環、フエナントレン環 、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、タリセン環、トリフエ-レン環、 ァセナフテン環、フルオランテン環、フルオレン環などが挙げられる。  [0155] Examples of the aromatic hydrocarbon ring include a 5- or 6-membered monocyclic ring or a 2-5 condensed ring. Specific examples include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a taricene ring, a triphenylene ring, a acenaphthene ring, a fluoranthene ring, and a fluorene ring.
[0156] また、その芳香族複素環としては、 5または 6員環の単環または 2〜4縮合環が挙げ られる。具体例としては、フラン環、ベンゾフラン環、チォフェン環、ベンゾチォフェン 環、ピロール環、ピラゾール環、イミダゾール環、ォキサジァゾール環、インドール環、 力ルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チェ ノビロール環、チェノチォフェン環、フロピロール環、フロフラン環、チエノフラン環、 ベンゾイソォキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン 環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、 シノリン環、キノキサリン環、フエナントリジン環、ベンゾイミダゾール環、ペリミジン環、 キナゾリン環、キナゾリノン環、ァズレン環などが挙げられる。 [0156] Examples of the aromatic heterocyclic ring include a 5- or 6-membered monocyclic ring or a 2-4 condensed ring. Specific examples include furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, strong rubazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, chenoviolol. Ring, chenothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzoisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring , Sinoline ring, quinoxaline ring, phenanthridine ring, benzimidazole ring, perimidine ring, A quinazoline ring, a quinazolinone ring, an azulene ring, etc. are mentioned.
[0157] また、 Ar23〜Ar25、 Ar31〜Ar35、 Ar37〜Ar4としては、上に例示した 1種類または 2 種類以上の芳香族炭化水素環および Zまたは芳香族複素環由来の 2価の基を 2つ 以上連結して用いることもできる。 [0157] Ar 23 to Ar 25 , Ar 31 to Ar 35 , Ar 37 to Ar 4 are derived from one or more types of aromatic hydrocarbon rings and Z or aromatic heterocycles exemplified above. Two or more divalent groups can be linked and used.
[0158] Ar21〜Ar41の芳香族炭化水素環および Zまたは芳香族複素環由来の基は、さら に置換基を有していてもよい。置換基の分子量としては、通常 400以下、中でも 250 以下程度が好ましい。置換基の種類は特に制限されないが、例としては、次の置換 基群 Wから選ばれる 1種または 2種以上が挙げられる。 [0158] aromatic hydrocarbon ring and a Z or an aromatic heterocyclic group derived from Ar 21 to Ar 41 may have a substituent further. The molecular weight of the substituent is usually 400 or less, preferably about 250 or less. The type of the substituent is not particularly limited, and examples thereof include one or more selected from the following substituent group W.
[0159] 〈置換基群 W〉  <Substituent group W>
メチル基、ェチル基等の、炭素数が通常 1以上、通常 10以下、好ましくは 8以下の アルキル基;ビニル基等の、炭素数が通常 2以上、通常 11以下、好ましくは 5以下の アルケニル基;ェチニル基等の、炭素数が通常 2以上、通常 11以下、好ましくは 5以 下のアルキニル基;メトキシ基、エトキシ基等の、炭素数が通常 1以上、通常 10以下、 好ましくは 6以下のアルコキシ基;フエノキシ基、ナフトキシ基、ピリジルォキシ基等の 、炭素数が通常 4以上、好ましくは 5以上、通常 25以下、好ましくは 14以下のァリー ルォキシ基;メトキシカルボニル基、エトキシカルボニル基等の、炭素数が通常 2以上 、通常 11以下、好ましくは 7以下のアルコキシカルボニル基;ジメチルァミノ基、ジェ チルァミノ基等の、炭素数が通常 2以上、通常 20以下、好ましくは 12以下のジアルキ ルァミノ基;ジフエ-ルァミノ基、ジトリルアミノ基、 N—カルバゾリル基等の、炭素数が 通常 10以上、好ましくは 12以上、通常 30以下、好ましくは 22以下のジァリールァミノ 基;フエニルメチルァミノ基等の、炭素数が通常 6以上、好ましくは 7以上、通常 25以 下、好ましくは 17以下のァリールアルキルアミノ基;ァセチル基、ベンゾィル基等の、 炭素数が通常 2以上、通常 10以下、好ましくは 7以下のァシル基;フッ素原子、塩素 原子等のハロゲン原子;トリフルォロメチル基等の、炭素数が通常 1以上、通常 8以下 、好ましくは 4以下のハロアルキル基;メチルチオ基、ェチルチオ基等の、炭素数が 通常 1以上、通常 10以下、好ましくは 6以下のアルキルチオ基;フエ二ルチオ基、ナ フチルチオ基、ピリジルチオ基等の、炭素数が通常 4以上、好ましくは 5以上、通常 2 5以下、好ましくは 14以下のァリールチオ基;トリメチルシリル基、トリフエニルシリル基 等の、炭素数が通常 2以上、好ましくは 3以上、通常 33以下、好ましくは 26以下のシ リル基;トリメチルシロキシ基、トリフエ-ルシロキシ基等の、炭素数が通常 2以上、好ま しくは 3以上、通常 33以下、好ましくは 26以下のシロキシ基;シァノ基;フエニル基、 ナフチル基等の、炭素数が通常 6以上、通常 30以下、好ましくは 18以下の芳香族炭 化水素環基;チェニル基、ピリジル基等の、炭素数が通常 3以上、好ましくは 4以上、 通常 28以下、好ましくは 17以下の芳香族複素環基。 An alkyl group having usually 1 or more, usually 10 or less, preferably 8 or less, such as a methyl group or an ethyl group; an alkenyl group having 2 or more carbon atoms, usually 11 or less, preferably 5 or less, such as a vinyl group An alkynyl group having a carbon number of usually 2 or more, usually 11 or less, preferably 5 or less, such as a ethynyl group; a methoxy group, an ethoxy group or the like, usually having a carbon number of 1 or more, usually 10 or less, preferably 6 or less An alkoxy group; a phenoxy group, a naphthoxy group, a pyridyloxy group, etc., an aryloxy group having usually 4 or more, preferably 5 or more, usually 25 or less, preferably 14 or less; a carbon such as a methoxycarbonyl group or an ethoxycarbonyl group; An alkoxycarbonyl group having a number of usually 2 or more, usually 11 or less, preferably 7 or less; a dimethylamino group, a dimethylamino group or the like, and usually having a carbon number of 2 or more, usually 20 or less, preferably 12 The following diallyamino groups; diphenylamino groups such as diphenylamino groups, ditolylamino groups, N-carbazolyl groups and the like, which usually have 10 or more carbon atoms, preferably 12 or more, usually 30 or less, preferably 22 or less; phenylmethylamino An arylalkylamino group having a carbon number of usually 6 or more, preferably 7 or more, usually 25 or less, preferably 17 or less, such as a cetyl group or a benzoyl group, usually 2 or more, usually 10 or less. An acyl group of 7 or less; a halogen atom such as a fluorine atom or a chlorine atom; a haloalkyl group such as a trifluoromethyl group, usually having 1 or more, usually 8 or less, preferably 4 or less; a methylthio group or an ethylthio group An alkylthio group having a carbon number of usually 1 or more, usually 10 or less, preferably 6 or less; a phenylthio group, a naphthylthio group, a pyridylthio group, etc. Normally 4 or more, preferably 5 or more, usually 2 5 or less, preferably 14 or less Ariruchio group; a trimethylsilyl group, triphenyl silyl group The number of carbon atoms is usually 2 or more, preferably 3 or more, usually 33 or less, preferably 26 or less; such as trimethylsiloxy group or triphenylsiloxy group, and usually has 2 or more carbon atoms, preferably 3 Or more, usually 33 or less, preferably 26 or less siloxy group; cyano group; phenyl group, naphthyl group, etc., aromatic hydrocarbon ring group usually having 6 or more carbon atoms, usually 30 or less, preferably 18 or less; An aromatic heterocyclic group having usually 3 or more, preferably 4 or more, usually 28 or less, preferably 17 or less, such as a group or a pyridyl group.
[0160] Ar21、 Ar22としては、高分子化合物の溶解性、耐熱性、正孔注入'輸送性の点から 、ベンゼン環、ナフタレン環、フエナントレン環、チォフェン環、ピリジン環由来の 1価 の基が好ましぐフエニル基、ナフチル基がさらに好ましい。 [0160] Ar 21 and Ar 22 are monovalent derived from a benzene ring, a naphthalene ring, a phenanthrene ring, a thiophene ring, and a pyridine ring from the viewpoint of the solubility, heat resistance, and hole injection 'transportability of the polymer compound. More preferred are a phenyl group and a naphthyl group.
[0161] また、 Ar23〜Ar25としては、耐熱性、酸化還元電位を含めた正孔注入'輸送性の点 から、ベンゼン環、ナフタレン環、アントラセン環、フエナントレン環由来の 2価の基が 好ましぐフエ二レン基、ビフエ二レン基、ナフチレン基がさらに好ましい。 [0161] In addition, Ar 23 to Ar 25 are divalent groups derived from a benzene ring, a naphthalene ring, an anthracene ring, and a phenanthrene ring from the viewpoint of heat resistance and hole injection and transport properties including redox potential. Preferred are a phenylene group, a biphenylene group, and a naphthylene group.
[0162] R31、 R32としては、水素原子または任意の置換基が適用可能である。これらは互い に同一であってもよぐ異なっていてもよい。置換基の種類は、特に制限されないが、 適用可能な置換基を例示するならば、アルキル基、ァルケ-ル基、アルキ-ル基、ァ ルコキシ基、シリル基、シロキシ基、芳香族炭化水素基、芳香族複素環基、ハロゲン 原子が挙げられる。これらの具体例としては、前記の置換基群 Wにおいて例示した 各基が挙げられる。 [0162] As R 31 and R 32 , a hydrogen atom or an arbitrary substituent can be applied. These may be the same or different from each other. The type of the substituent is not particularly limited, and examples of applicable substituents include alkyl groups, alkenyl groups, alkyl groups, alkoxy groups, silyl groups, siloxy groups, and aromatic hydrocarbon groups. , Aromatic heterocyclic groups, and halogen atoms. Specific examples thereof include the groups exemplified in the above substituent group W.
[0163] 一般式 (VII)で表される繰り返し単位を有する芳香族三級アミン高分子化合物の具 体例としては、 WO2005Z089024号に記載のものが挙げられ、その好適例も同様 であり、例えば下記構造式で表される化合物 (PB— 1)が挙げられるが、何らそれら に限定されるものではない。  [0163] Specific examples of the aromatic tertiary amine polymer compound having a repeating unit represented by the general formula (VII) include those described in WO2005Z089024, and preferred examples thereof are also the same. A compound represented by the structural formula (PB-1) can be mentioned, but is not limited thereto.
[0164] [化 38] [0164] [Chemical 38]
Figure imgf000053_0001
Figure imgf000053_0001
PB-1  PB-1
[0165] 他の芳香族三級アミン高分子化合物の好ま 、例として、下記一般式 (VIII)および [0165] Preferred examples of other aromatic tertiary amine polymer compounds include, for example, the following general formula (VIII) and
Zまたは一般式 (IX)で表される繰り返し単位を含む高分子化合物が挙げられる。 Examples thereof include a polymer compound containing a repeating unit represented by Z or general formula (IX).
[0166] [化 39] [0166] [Chemical 39]
Figure imgf000053_0002
一般式 (VIII)、 (IX)中、 Ar 5, Ar47および Ar4°は各々独立して、置換基を有してい てもよ ヽ芳香族炭化水素基、または置換基を有して ヽてもよ ヽ芳香族複素環基を表 す。 Ar44および Ar46は各々独立して、置換基を有していてもよい 2価の芳香族炭化 水素基、または置換基を有していてもよい 2価の芳香族複素環基を表す。また、 Ar45 〜Ar48のうち、同一の N原子に結合する 2つの基は互いに結合して環を形成してもよ い。 R41〜R43は各々独立して、水素原子または任意の置換基を表す。
Figure imgf000053_0002
In the general formulas (VIII) and (IX), Ar 5 , Ar 47 and Ar 4 ° may each independently have a substituent ヽ an aromatic hydrocarbon group or a substituent ヽヽ Represents an aromatic heterocyclic group. Ar 44 and Ar 46 each independently represents a divalent aromatic hydrocarbon group which may have a substituent, or a divalent aromatic heterocyclic group which may have a substituent. Of Ar 45 to Ar 48 , two groups bonded to the same N atom may be bonded to each other to form a ring. R 41 to R 43 each independently represent a hydrogen atom or an arbitrary substituent.
[0167] Ar45, Ar47, Ar48および Ar44、 Ar46の具体例、好ま 、例、有して 、てもよ 、置換 基の例および好ましい置換基の例は、それぞれ、 Ar21, Ar22および Ar23〜Ar25と同 様である。 R41〜R43は好ましくは水素原子または [置換基群 W]に記載されている置 換基であり、さらに好ましくは、水素原子、アルキル基、アルコキシ基、アミノ基、芳香 族炭化水素基、芳香族炭化水素基である。 [0167] Specific examples, preferred examples, and preferred examples of Ar 45 , Ar 47 , Ar 48 and Ar 44 , Ar 46 may include Ar 21 , Same as Ar 22 and Ar 23 to Ar 25 . R 41 to R 43 are preferably a hydrogen atom or a group described in [Substituent group W]. And a hydrogen atom, an alkyl group, an alkoxy group, an amino group, an aromatic hydrocarbon group, and an aromatic hydrocarbon group.
[0168] 一般式 (VIII)および Zまたは (IX)で表される繰り返し単位を含む芳香族三級アミン 高分子化合物の具体例としては、 WO2005Z089024号に記載のものが挙げられ、 その好適例も同様である力 何らそれらに限定されるものではない。  [0168] Specific examples of the aromatic tertiary amine polymer compound containing the repeating unit represented by the general formula (VIII) and Z or (IX) include those described in WO2005Z089024, and preferred examples thereof are also included. A force that is similar is not limited to them.
[0169] また、湿式製膜法により正孔注入層を形成する場合には、種々の溶剤に溶解し易 ぃ正孔輸送性化合物が好ましい。芳香族三級アミン化合物としては、例えば、ビナフ チル系化合物(特開 2004— 014187)および非対称 1, 4 フエ-レンジアミンィ匕合 物(特開 2004— 026732)力 ^好まし!/ヽ。  [0169] In addition, when the hole injection layer is formed by a wet film forming method, a hole transporting compound that is easily dissolved in various solvents is preferable. As the aromatic tertiary amine compound, for example, a binaphthyl compound (Japanese Patent Laid-Open No. 2004-014187) and an asymmetric 1,4-phenylenediamine compound (Japanese Patent Laid-Open No. 2004-026732) are preferred.
[0170] また、従来、有機電界発光素子における正孔注入'輸送性の薄膜精製材料として 利用されてきた芳香族ァミン化合物の中から、種々の溶剤に溶解し易い化合物を適 宜選択してもよい。正孔注入層の正孔輸送性ィ匕合物に適用可能な芳香族アミンィ匕 合物としては、例えば、有機電界発光素子における正孔注入'輸送性の層形成材料 として利用されてきた、従来公知の化合物が挙げられる。例えば、 1, 1 ビス (4ージ —P トリルァミノフエ-ル)シクロへキサン等の 3級芳香族ァミンユニットを連結した芳 香族ジァミンィ匕合物(特開昭 59— 194393号公報);4, 4'—ビス [N— (1—ナフチ ル)—N—フエ-ルァミノ]ビフエ-ルで代表される 2個以上の 3級ァミンを含み 2個以 上の縮合芳香族環が窒素原子に置換した芳香族アミンィ匕合物 (特開平 5— 234681 号公報);トリフエニルベンゼンの誘導体でスターバースト構造を有する芳香族トリアミ ン化合物(米国特許第 4, 923, 774号); N, N,—ジフエ-ル— N, N,—ビス(3—メ チルフヱ-ル)ビフヱ-ルー 4, 4,ージァミン等の芳香族ジァミン化合物(米国特許第 4, 764, 625号); α , α , α ' , α,一テトラメチル α , α,一ビス(4 ジ(ρ トリル )ァミノフエニル)—ρ キシレン (特開平 3— 269084号公報);分子全体として立体 的に非対称なトリフエ-ルァミン誘導体 (特開平 4— 129271号公報);ピレニル基に 芳香族ジァミノ基が複数個置換した化合物 (特開平 4— 175395号公報);エチレン 基で 3級芳香族ァミンユニットを連結した芳香族ジァミンィ匕合物(特開平 4— 264189 号公報);スチリル構造を有する芳香族ジァミン (特開平 4— 290851号公報);チオフ ェン基で芳香族 3級ァミンユニットを連結したィ匕合物(特開平 4— 304466号公報); スターバースト型芳香族トリアミンィ匕合物(特開平 4— 308688号公報);ベンジルフエ -ル化合物(特開平 4— 364153号公報);フルオレン基で 3級ァミンを連結した化合 物(特開平 5— 25473号公報);トリアミンィ匕合物(特開平 5— 239455号公報);ビス ジピリジルアミノビフエ-ル(特開平 5— 320634号公報); N, N, N トリフエ-ルアミ ン誘導体 (特開平 6— 1972号公報);フエノキサジン構造を有する芳香族ジァミン (特 開平 7— 138562号公報);ジァミノフエ-ルフヱナントリジン誘導体 (特開平 7— 252 474号公報);ヒドラゾンィ匕合物(特開平 2— 311591号公報);シラザンィ匕合物(米国 特許第 4, 950, 950号公報);シラナミン誘導体 (特開平 6— 49079号公報);ホスフ ァミン誘導体 (特開平 6— 25659号公報);キナタリドンィ匕合物等が挙げられる。これら の芳香族アミンィ匕合物は、必要に応じて 2種以上を混合して用いてもょ 、。 [0170] Further, among the aromatic amine compounds that have been conventionally used as thin film refining materials having hole injection and transport properties in organic electroluminescent devices, compounds that are easily dissolved in various solvents may be appropriately selected. Good. As an aromatic amine compound applicable to the hole transporting compound of the hole injection layer, for example, it has been conventionally used as a layer forming material for hole injection and transporting in organic electroluminescence devices. A well-known compound is mentioned. For example, aromatic diamine compounds in which tertiary aromatic amine units such as 1, 1 bis (4-di-P-triamylaminophenol) cyclohexane are linked (JP-A-59-194393); 4 , 4'-bis [N- (1-naphthyl) -N-phenolamino] biphenyl, which contains two or more tertiary amines, and two or more condensed aromatic rings are attached to the nitrogen atom. Substituted aromatic amine compounds (JP-A-5-234681); derivatives of triphenylbenzene and aromatic triamine compounds having a starburst structure (US Pat. No. 4,923,774); N, N, —Diphenyl—N, N, —Bis (3-methylphenol) bi-fluoro 4,4, aromatic diamine compounds such as diamine (US Pat. No. 4,764,625); α, α, α ', α, monotetramethyl α, α, monobis (4 di (ρtolyl) aminophenyl) -ρ xylene (Japanese Patent Laid-Open No. 3-2699084); Triphenylamine derivatives that are sterically asymmetric as a whole molecule (Japanese Patent Laid-Open No. 4-129271); compounds in which a plurality of aromatic diamino groups are substituted on the pyrenyl group (Japanese Patent Laid-Open No. 4-175395); tertiary with an ethylene group Aromatic diamine compounds in which aromatic amine units are linked (JP-A-4-264189); aromatic diamines having a styryl structure (JP-A-4-290851); aromatic tertiary with thiophene group A compound in which amine units are connected (Japanese Patent Laid-Open No. 4-304466); Starburst type aromatic triamine compound (JP-A-4-308688); benzylphenol compound (JP-A-4-364153); Compound in which tertiary amine is linked by a fluorene group (JP-A-5-25473) Triamine compound (JP-A-5-239455); Bisdipyridylaminobiphenyl (JP-A-5-320634); N, N, N triphenylamine derivatives (JP-A-6- 1972); aromatic diamines having a phenoxazine structure (Japanese Patent Publication No. 7-138562); diaminophenol-nantrizine derivatives (Japanese Unexamined Patent Publication No. 7-252 474); Silazane compound (US Pat. No. 4,950,950); Silanamine derivative (JP-A-6-49079); Phosphamine derivative (JP-A-6-25659); Kinatalidone compound Etc. The These aromatic amine compounds may be used as a mixture of two or more if necessary.
[0171] また、正孔注入層の正孔輸送性ィ匕合物に適用可能なフタロシアニン誘導体または ポルフィリン誘導体の好ましい具体例としては、ポルフィリン、 5, 10, 15, 20—テトラ フエ-ル— 21H, 23H ポルフィリン、 5, 10, 15, 20—テトラフエ-ル— 21H, 23H —ポルフィリンコバルト(11)、 5, 10, 15, 20—テトラフエ-ルー 21H, 23H ポルフィ リン銅(11)、 5, 10, 15, 20—テトラフエ-ル— 21H, 23H ポルフィリン亜鉛(Π)、 5 , 10, 15, 20—テトラフエ-ルー 21H, 23H ポルフィリンバナジウム(IV)ォキシド、 5, 10, 15, 20—テトラ(4 ピリジル)—21H, 23H ポルフィリン、 29H, 31H フ タロシアニン銅(π)、フタロシアニン亜鉛(11)、フタロシアニンチタン、フタロシア-ンォ キシドマグネシウム、フタロシアニン鉛、フタロシアニン銅(11)、 4, 4,, 4", 4,"ーテト ラァザ 29H, 31H フタロシアニン等が挙げられる。  [0171] Preferable specific examples of the phthalocyanine derivative or porphyrin derivative applicable to the hole transporting compound of the hole injection layer include porphyrin, 5, 10, 15, 20-tetraphenyl 21H , 23H Porphyrin, 5, 10, 15, 20—Tetraphenol— 21H, 23H —Porphyrin cobalt (11), 5, 10, 15, 20—Tetraferro-Lu 21H, 23H Porphyrin copper (11), 5, 10 , 15, 20—Tetraphenol—21H, 23H Porphyrin zinc (Π), 5, 10, 15, 20—Tetraferroic 21H, 23H Porphyrin vanadium (IV) oxide, 5, 10, 15, 20—Tetra (4 Pyridyl) -21H, 23H porphyrin, 29H, 31H phthalocyanine copper (π), phthalocyanine zinc (11), phthalocyanine titanium, phthalocyanine oxide magnesium, phthalocyanine lead, phthalocyanine copper (11), 4, 4, 4 ", 4, "Tetraza 29H, 31H Phthalo Cyanine and the like.
[0172] また、正孔注入層の正孔輸送性ィ匕合物として適用可能なオリゴチォフェン誘導体 の好ましい具体例としては、 α ターチォフェンとその誘導体、 α—セキシチォフエ ンとその誘導体、ナフタレン環を含有するオリゴチォフェン誘導体 (特開平 6— 2563 41)等が挙げられる。  [0172] Preferred specific examples of the oligothiophene derivative applicable as the hole transporting compound of the hole injection layer include α-terthiophene and its derivatives, α-sexithiophene and its derivatives, and a naphthalene ring. Examples thereof include oligothiophene derivatives (JP-A-6-256441).
[0173] また、本発明における正孔輸送性ィ匕合物として適用可能なポリチォフェン誘導体の 好ましい具体例としては、ポリ(3, 4—エチレンジォキシチォフェン)(PEDOT)、ポリ (3—へキシルチオフェン)等が挙げられる。  [0173] In addition, preferred specific examples of the polythiophene derivative applicable as the hole transporting compound in the present invention include poly (3,4-ethylenedioxythiophene) (PEDOT), poly (3- Hexylthiophene) and the like.
[0174] なお、これらの正孔輸送性ィ匕合物の分子量は、高分子化合物 (繰り返し単位が連 なる重合性ィ匕合物)の場合を除いて、通常 9000以下、好ましくは 5000以下、また、 通常 200以上、好ましくは 400以上の範囲である。正孔輸送性化合物の分子量が高 過ぎると合成および精製が困難であり好ましくない一方で、分子量が低過ぎると耐熱 性が低くなるおそれがありやはり好ましくない。 [0174] The molecular weight of these hole-transporting compounds is a polymer compound (repeating repeating units). In general, the range is 9000 or less, preferably 5000 or less, and usually 200 or more, preferably 400 or more. If the molecular weight of the hole transporting compound is too high, synthesis and purification are difficult, which is not preferable. On the other hand, if the molecular weight is too low, the heat resistance may be lowered, which is also not preferable.
[0175] 正孔注入層の材料として用いられる正孔輸送性ィ匕合物は、このような化合物のうち 何れ力 1種を単独で含有していてもよぐ 2種以上を含有していてもよい。 2種以上の 正孔輸送性化合物を含有する場合、その組み合わせは任意であるが、芳香族三級 ァミン高分子化合物 1種または 2種以上と、その他の正孔輸送性ィヒ合物 1種または 2 種以上とを併用するのが好ましい。  [0175] The hole transporting compound used as the material for the hole injection layer may contain one or more of these compounds, and may contain two or more kinds. Also good. When two or more kinds of hole transporting compounds are contained, the combination thereof is arbitrary, but one or more aromatic tertiary amine polymer compounds and one other hole transporting compound are used. Or it is preferable to use 2 or more types together.
[0176] 〈電子受容性化合物〉  [0176] <Electron-accepting compound>
電子受容性化合物とは、酸化力を有し、上述の正孔輸送性化合物から一電子受容 する能力を有する化合物が好ましぐ具体的には、電子親和力が 4eV以上であるィ匕 合物が好ましぐ 5eV以上の化合物である化合物がさらに好ましい。  An electron-accepting compound is preferably a compound having an oxidizing power and the ability to accept one electron from the above-described hole-transporting compound. Specifically, a compound having an electron affinity of 4 eV or more is used. Preferred is a compound that is a compound of 5 eV or more.
[0177] 例としては、 4—イソプロピル一 4'—メチルジフエ-ルョードニゥムテトラキス(ペンタ フルオロフヱ-ル)ボラート等の有機基の置換したォ -ゥム塩、塩ィ匕鉄 (III) (特開平 1 1— 251067)、ペルォキソ二硫酸アンモ-ゥム等の高原子価の無機化合物、テトラ シァノエチレン等のシァノ化合物、トリス(ペンタフルォロフエ-ル)ボラン(特開 2003 — 31365)等の芳香族ホウ素化合物、フラーレン誘導体、ヨウ素等が挙げられる。  [0177] Examples include 4-isopropyl-1,4'-methyldiphenyl tetrakis (pentafluorophenol) borate and other organic group-substituted onium salts, salted iron (III) ( JP-A-11-251067), high-valence inorganic compounds such as ammonium peroxodisulfate, cyano-compounds such as tetracyanethylene, tris (pentafluorophenyl) borane (JP-A-2003-31365), etc. Aromatic boron compounds, fullerene derivatives, iodine and the like.
[0178] 上記の化合物のうち、強い酸ィ匕カを有する点で有機基の置換したォニゥム塩、高 原子価の無機化合物が好ましぐ種々の溶剤に可溶で湿式塗布に適用可能である 点で有機基の置換したォ -ゥム塩、シァノ化合物、芳香族ホウ素化合物が好ましい。  [0178] Of the above-mentioned compounds, onium salts substituted with organic groups and high-valent inorganic compounds are soluble in various solvents, and can be applied to wet coating because they have strong acid-like properties. In this respect, an organic salt-substituted onium salt, a cyan compound, and an aromatic boron compound are preferable.
[0179] 電子受容性ィ匕合物として好適な有機基の置換したォ -ゥム塩、シァノ化合物、芳香 族ホウ素化合物の具体例としては、 WO2005Z089024号に記載のものが挙げられ 、その好適例も同様であり、例えば下記構造式で表される化合物 (A— 2)が挙げられ る力 何らそれらに限定されるものではない。  [0179] Specific examples of organically substituted onium salts, cyan compounds, and aromatic boron compounds suitable as electron-accepting compounds include those described in WO2005Z089024, and preferred examples thereof. The same applies to, for example, the force including the compound (A-2) represented by the following structural formula, but is not limited thereto.
[0180] [化 40] [0180] [Chemical 40]
Figure imgf000057_0001
Figure imgf000057_0001
A-2  A-2
[0181] 〈カチオンラジカルィ匕合物〉  [0181] <Cation Radical Compound>
カチオンラジカルィ匕合物とは、正孔輸送性化合物から一電子取り除いた化学種で あるカチオンラジカルと、対ァ-オン力もなるイオンィ匕合物である。但し、カチオンラジ カルが正孔輸送性の高分子化合物由来である場合、カチオンラジカルは高分子化 合物の繰り返し単位力 一電子取り除いた構造となる。  The cation radical compound is a cation radical that is a chemical species obtained by removing one electron from a hole transporting compound, and an ionic compound that also has an anti-ion force. However, when the cation radical is derived from a hole transporting polymer compound, the cation radical has a structure in which one electron of a repeating unit force of the polymer compound is removed.
[0182] カチオンラジカルは、正孔輸送性化合物に前述した化合物から一電子取り除いた 化学種であることが好ましぐ正孔輸送性ィ匕合物としてさらに好ましいィ匕合物から一 電子取り除いたィ匕学種であることが非晶質性、可視光の透過率、耐熱性、溶解性な どの点からさらに好ましい。  [0182] The cation radical is a chemical compound obtained by removing one electron from the above-described compound in the hole transporting compound, and more preferably as a hole transporting compound that is preferably a chemical species. It is more preferable to be a chemical species from the viewpoints of amorphousness, visible light transmittance, heat resistance, and solubility.
[0183] カチオンラジカルィ匕合物は、前述の正孔輸送性ィ匕合物と電子受容性ィ匕合物を混 合すること〖こより生成させることができる。即ち、前述の正孔輸送性化合物と電子受 容性化合物を混合することにより、正孔輸送性化合物から電子受容性化合物へと電 子移動が起こり、正孔輸送性ィ匕合物のカチオンラジカルと対ァ-オン力 なるカチォ ンイオンィ匕合物が生成する。  [0183] The cation radical compound can be generated by mixing the hole transport compound and the electron acceptor compound described above. That is, by mixing the aforementioned hole transporting compound and the electron accepting compound, electron transfer occurs from the hole transporting compound to the electron accepting compound, and the cation radical of the hole transporting compound is produced. A cationic ion compound with a counter-on force is generated.
[0184] PEDOT/PSS (Adv. Mater. , 2000年, 12卷, 481頁)ゃェメラルジン塩酸塩( J. Phys. Chem. , 1990年, 94卷, 7716頁)等の高分子化合物由来のカチオンラ ジカル化合物は、酸ィ匕重合 (脱水素重合)、即ち、モノマーを酸性溶液中で、ペルォ キソニ硫酸塩等を用いて化学的に、または、電気化学的に酸化することによつても生 成する。この酸化重合 (脱水素重合)の場合、モノマーが酸化されることにより、高分 子化されるとともに、酸性溶液由来のァ-オンを対ァ-オンとする、高分子の繰り返し 単位から一電子取り除かれたカチオンラジカルが生成する。 [0184] Cationic labs derived from polymer compounds such as PEDOT / PSS (Adv. Mater., 2000, 12 卷, 481) Jameraldine hydrochloride (J. Phys. Chem., 1990, 94 卷, 7716) Dical compounds are also formed by acid-sodium polymerization (dehydrogenation polymerization), that is, by oxidizing a monomer chemically or electrochemically with peroxysulfate in an acidic solution. To do. In this oxidative polymerization (dehydrogenation polymerization), the monomer is oxidized, resulting in a high content. At the same time, a cation radical is generated, in which one electron is removed from the repeating unit of the polymer, with the ion derived from the acidic solution as a counter ion.
[0185] 正孔注入層 3は、湿式製膜法または真空蒸着法により陽極 2上に形成される。  [0185] The hole injection layer 3 is formed on the anode 2 by a wet film forming method or a vacuum deposition method.
[0186] 陽極 2として一般的に用いられる ITO (インジウム 'スズ酸ィ匕物)は、その表面粗さが lOnm程度の粗さ (Ra)を有するのにカ卩えて、局所的に突起を有することが多ぐ短 絡欠陥を生じ易いという問題があった。陽極 2の上に形成される正孔注入層 3は湿式 製膜法により形成することは、真空蒸着法より形成する場合と比較して、これら陽極 表面の凹凸に起因する、素子の欠陥の発生を低減する利点を有する。  [0186] ITO (indium stannate) commonly used as anode 2 has a surface roughness of about lOnm (Ra), and has local protrusions. There is a problem that short-circuit defects are likely to occur. When the hole injection layer 3 formed on the anode 2 is formed by a wet film forming method, the defect of the device due to the unevenness of the surface of the anode is generated compared to the case of forming by the vacuum deposition method. Has the advantage of reducing.
[0187] 湿式製膜法による層形成の場合は、前述した各材料 (正孔輸送性化合物、電子受 容性化合物、カチオンラジカルィ匕合物)の 1種または 2種以上の所定量を、必要によ り電荷のトラップにならな!/ヽバインダー榭脂ゃ塗布性改良剤を添加して、溶剤に溶解 させて、塗布溶液を調製し、スピンコート、スプレーコート、ディップコート、ダイコート、 フレキソ印刷、スクリーン印刷、インクジェット法等の湿式製膜法により陽極上に塗布 し、乾燥して、正孔注入層 3を形成させる。  [0187] In the case of forming a layer by a wet film-forming method, a predetermined amount of one or more of the above-mentioned materials (hole transporting compound, electron-accepting compound, cation radical compound) is added, Do not become a trap of charge if necessary! / ヽ Binder 榭 Add a coating improver and dissolve in a solvent to prepare a coating solution, spin coat, spray coat, dip coat, die coat, flexo The positive hole injection layer 3 is formed by applying on the anode by a wet film formation method such as printing, screen printing, or ink jet method, and drying.
[0188] 湿式製膜法による層形成のために用いられる溶剤としては、前述の各材料 (正孔輸 送性化合物、電子受容性化合物、カチオンラジカルィ匕合物)を溶解することが可能な 溶剤であれば、その種類は特に限定されないが、正孔注入層に用いられる各材料( 正孔輸送性化合物、電子受容性化合物、カチオンラジカル化合物)を失活させる恐 れのある、失活物質または失活物質を発生させるものを含まな 、ものが好ま 、。  [0188] As the solvent used for the layer formation by the wet film forming method, the above-mentioned materials (hole transporting compound, electron accepting compound, cation radical compound) can be dissolved. If it is a solvent, the type is not particularly limited, but a deactivating substance that may deactivate each material (hole transporting compound, electron accepting compound, cation radical compound) used for the hole injection layer. Or prefer something that doesn't contain deactivating material.
[0189] これらの条件を満たす好ま U、溶剤としては、例えば、エーテル系溶剤およびエス テル系溶剤が挙げられる。具体的には、エーテル系溶剤としては、例えば、エチレン グリコーノレジメチノレエーテノレ、エチレングリコーノレジェチノレエーテノレ、プロピレングリコ ール 1 モノメチルエーテルァセタート(PGMEA)等の脂肪族エーテル; 1 , 2—ジ メトキシベンゼン、 1, 3 ジメトキシベンゼン、ァニソール、フエネトール、 2—メトキシト ルェン、 3—メトキシトルエン、 4ーメトキシトルエン、 2, 3 ジメチルァニノール、 2, 4 ジメチルァ-ソール等の芳香族エーテル等が挙げられる。エステル系溶剤としては 、例えば、酢酸ェチル、酢酸 n—ブチル、乳酸ェチル、乳酸 n ブチル等の脂肪族ェ ステル;酢酸フエ-ル、プロピオン酸フエ-ル、安息香酸メチル、安息香酸ェチル、安 息香酸プロピル、安息香酸 n—ブチル等の芳香族エステル等が挙げられる。これらは 何れ力 1種を単独で用いてもよぐ 2種以上を任意の組み合わせおよび比率で用い てもよい。 [0189] Examples of preferable U and solvent that satisfy these conditions include ether solvents and ester solvents. Specifically, examples of the ether solvent include aliphatic ethers such as ethylene glycolenoresmethinoleatenore, ethyleneglycololecinoleethenore, propylene glycol 1 monomethyl ether acetate (PGMEA); , 2-dimethoxybenzene, 1,3 dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3 dimethylaninol, 2,4 dimethylarsole, etc. Examples include ether. Examples of ester solvents include aliphatic esters such as ethyl acetate, n-butyl acetate, ethyl acetate, and n-butyl lactate; acetate acetate, propionate, methyl benzoate, ethyl benzoate, And aromatic esters such as propyl benzoate and n-butyl benzoate. Any one of these may be used alone, or two or more may be used in any combination and ratio.
[0190] 上述のエーテル系溶剤およびエステル系溶剤以外に使用可能な溶剤としては、例 えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶剤、 N, N—ジメチルホ ルムアミド、 N, N—ジメチルァセトアミド等のアミド系溶剤、ジメチルスルホキシド等が 挙げられる。これらは何れ力 1種を単独で用いてもよぐ 2種以上を任意の組み合わ せおよび比率で用いてもよい。また、これらの溶剤のうち 1種または 2種以上を、上述 のエーテル系溶剤およびエステル系溶剤のうち 1種または 2種以上と組み合わせて 用いてもよい。特に、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶剤は、 電子受容性ィ匕合物およびカチオンラジカルィ匕合物を溶解する能力が低いため、ェ 一テル系溶剤およびエステル系溶剤と混合して用いることが好ま ヽ。  [0190] Solvents that can be used in addition to the ether solvents and ester solvents described above include, for example, aromatic hydrocarbon solvents such as benzene, toluene, xylene, N, N-dimethylformamide, N, N-dimethyl. Examples include amide solvents such as acetoamide, dimethyl sulfoxide and the like. Any of these may be used alone, or two or more may be used in any combination and ratio. Further, one or more of these solvents may be used in combination with one or more of the ether solvents and ester solvents described above. In particular, aromatic hydrocarbon solvents such as benzene, toluene and xylene have low ability to dissolve electron-accepting compounds and cation radical compounds, so they are mixed with ether solvents and ester solvents. It is preferable to use it.
[0191] 塗布溶液中における溶剤の濃度は、通常 10重量%以上、好ましくは 30重量%以 上、より好ましくは 50%重量以上、また、通常 99. 999重量%以下、好ましくは 99. 9 9重量%以下、さらに好ましくは 99. 9重量%以下の範囲である。なお、 2種以上の溶 剤を混合して用いる場合には、これらの溶剤の合計力 Sこの範囲を満たすようにする。  [0191] The concentration of the solvent in the coating solution is usually 10% by weight or more, preferably 30% by weight or more, more preferably 50% by weight or more, and usually 99.999% by weight or less, preferably 99.99%. It is not more than wt%, more preferably not more than 99.9 wt%. When two or more solvents are used as a mixture, the total force S of these solvents must satisfy this range.
[0192] 真空蒸着法による層形成の場合には、前述した各材料 (正孔輸送性化合物、電子 受容性化合物、カチオンラジカルィ匕合物)の 1種または 2種以上を真空容器内に設 置されたるつぼに入れ (2種以上材料を用いる場合は各々のるつぼに入れ)、真空容 器内を適当な真空ポンプで 10_4Pa程度まで排気した後、るつぼを加熱して(2種以 上材料を用いる場合は各々のるつぼを加熱して)、蒸発量を制御して蒸発させ (2種 以上材料を用いる場合はそれぞれ独立に蒸発量を制御して蒸発させ)、るつぼと向 き合って置かれた基板の陽極上に正孔注入層を形成させる。なお、 2種以上の材料 を用いる場合は、それらの混合物をるつぼに入れ、加熱し蒸発させて正孔注入層形 成に用いることもできる。 [0192] In the case of forming a layer by vacuum deposition, one or more of the above-mentioned materials (hole transporting compound, electron accepting compound, cation radical compound) are placed in a vacuum vessel. Place the crucibles in the crucibles (in case of using more than 2 kinds of materials, put them in each crucible), evacuate the vacuum container to about 10 _4 Pa with a suitable vacuum pump, and then heat the crucibles When using the upper material, heat each crucible) and evaporate by controlling the amount of evaporation (when using two or more materials, evaporate by independently controlling the amount of evaporation) and face the crucible A hole injection layer is formed on the anode of the substrate placed on the substrate. When two or more kinds of materials are used, a mixture of them can be put in a crucible and heated and evaporated to form a hole injection layer.
[0193] このようにして形成される正孔注入層 3の膜厚は、通常 5nm以上、好ましくは lOnm 以上、また、通常 lOOOnm以下、好ましくは 500nm以下の範囲である。  [0193] The film thickness of the hole injection layer 3 formed in this way is usually in the range of 5 nm or more, preferably lOnm or more, and usually lOOOnm or less, preferably 500 nm or less.
なお、正孔注入層 3は、図 6に示す如ぐこれを省略しても良い。 [0194] [4]発光層 The hole injection layer 3 may be omitted as shown in FIG. [0194] [4] Luminescent layer
正孔注入層 3の上には通常発光層 4が設けられる。発光層 4は例えば前述の発光 材料を含む層であり、電界を与えられた電極間において、陽極 2から正孔注入層 3を 通じて注入された正孔と、陰極 6から電子輸送層 5を通じて注入された電子との再結 合により励起されて、主たる発光源となる層である。発光層 4は発光材料 (ドーパント) と 1種または 2種以上のホスト材料を含むことが好ましぐ発光層 4は本発明の炭化水 素化合物をホスト材料として含むことがさらに好ましぐ真空蒸着法で形成しても良い 力 本発明の電荷輸送材料組成物を用い、湿式製膜法によって作製された層である ことが特に好ましい。  A light emitting layer 4 is usually provided on the hole injection layer 3. The light emitting layer 4 is, for example, a layer containing the above-described light emitting material. Between the electrodes to which an electric field is applied, holes injected from the anode 2 through the hole injection layer 3 and from the cathode 6 through the electron transport layer 5 are used. It is a layer that is excited by recombination with injected electrons and becomes the main light source. The light emitting layer 4 preferably contains a light emitting material (dopant) and one or more host materials, and the light emitting layer 4 more preferably contains the hydrocarbon compound of the present invention as a host material. Force that may be formed by a method It is particularly preferable that the layer be formed by a wet film-forming method using the charge transport material composition of the present invention.
[0195] ここで、湿式製膜法とは、前述の如ぐ溶剤を含む組成物を、スピンコート、スプレー コート、ディップコート、ダイコート、フレキソ印刷、スクリーン印刷、インクジェット法等 により製膜するものである。  [0195] Here, the wet film forming method is a method in which a composition containing a solvent as described above is formed by spin coating, spray coating, dip coating, die coating, flexographic printing, screen printing, an ink jet method, or the like. is there.
[0196] なお、発光層 4は、本発明の性能を損なわない範囲で、他の材料、成分を含んでい てもよい。また、発光層 4は、 2層または 3層以上力 なる複層構造であってもよぐそ の場合、それぞれの層の組成比が異なっていてもよいし、異なる材料を含有するもの であってもよい。また、層間に五酸ィ匕バナジウムなど力もなる電荷発生層を設けること も可能である。  [0196] The light emitting layer 4 may contain other materials and components as long as the performance of the present invention is not impaired. Further, the light emitting layer 4 may have a two-layer structure or a multi-layer structure having three or more layers. In this case, the composition ratio of each layer may be different, or it may contain different materials. Also good. It is also possible to provide a charge generation layer having a force such as vanadium pentoxide between the layers.
[0197] 一般に有機電界発光素子において、同じ材料を用いた場合、電極間の膜厚が薄 い方が、実効電界が大きくなる為、注入される電流が多くなるので、駆動電圧は低下 する。その為、電極間の総膜厚は薄い方が、有機電界発光素子の駆動電圧は低下 するが、あまりに薄いと、 ITO等の電極に起因する突起により短絡が発生する為、あ る程度の膜厚が必要となる。  [0197] In general, when the same material is used in the organic electroluminescence device, the thinner the film thickness between the electrodes, the larger the effective electric field, and the greater the injected current, the lower the drive voltage. For this reason, the driving voltage of the organic electroluminescence device decreases when the total film thickness between the electrodes is thin, but if it is too thin, a short circuit occurs due to a protrusion caused by an electrode such as ITO. Thickness is required.
[0198] 本発明においては、発光層 4以外に、正孔注入層 3および後述の電子輸送層 5等 の有機層を有する場合、発光層 4と正孔注入層 3や電子輸送層 5等の他の有機層と を合わせた総膜厚は通常 30nm以上、好ましくは 50nm以上であり、さらに好ましくは lOOnm以上で、通常 lOOOnm以下、好ましくは 500nm以下であり、さらに好ましく は 300nm以下である。また、発光層 4以外の正孔注入層 3や後述の電子注入層 5の 導電性が高い場合、発光層 4に注入される電荷量が増加する為、例えば正孔注入 層 3の膜厚を厚くして発光層 4の膜厚を薄くし、総膜厚をある程度の膜厚を維持した まま駆動電圧を下げることも可能である。 [0198] In the present invention, when the organic layer such as the hole injection layer 3 and the electron transport layer 5 described later is provided in addition to the light emitting layer 4, the light emitting layer 4, the hole injection layer 3, the electron transport layer 5, etc. The total film thickness combined with other organic layers is usually 30 nm or more, preferably 50 nm or more, more preferably lOOnm or more, usually lOOOnm or less, preferably 500 nm or less, more preferably 300 nm or less. In addition, when the conductivity of the hole injection layer 3 other than the light emitting layer 4 or the electron injection layer 5 described later is high, the amount of charge injected into the light emitting layer 4 increases. It is also possible to reduce the drive voltage while maintaining the total film thickness to some extent by increasing the film thickness of layer 3 and decreasing the film thickness of light emitting layer 4.
[0199] よって、発光層 4の膜厚は、通常 lOnm以上、好ましくは 20nm以上で、通常 300η m以下、好ましくは 200nm以下である。なお、本発明の素子が、陽極および陰極の 両極間に、発光層 4のみを有する場合の発光層 4の膜厚は、通常 30nm以上、好ま しくは 50nm以上、通常 500nm以下、好ましくは 300nm以下である。  Accordingly, the thickness of the light emitting layer 4 is usually lOnm or more, preferably 20 nm or more, and usually 300 ηm or less, preferably 200 nm or less. When the element of the present invention has only the light emitting layer 4 between the anode and the cathode, the film thickness of the light emitting layer 4 is usually 30 nm or more, preferably 50 nm or more, usually 500 nm or less, preferably 300 nm or less. It is.
[0200] [5]電子注入層  [0200] [5] Electron injection layer
電子注入層 5は陰極 6から注入された電子を効率よく発光層 4へ注入する役割を果 たす。電子注入を効率よく行うには、電子注入層 5を形成する材料は、仕事関数の低 い金属が好ましぐナトリウムやセシウム等のアルカリ金属、ノリウムゃカルシウムなど のアルカリ土類金属が用いられる。  The electron injection layer 5 serves to efficiently inject electrons injected from the cathode 6 into the light emitting layer 4. In order to efficiently perform electron injection, the material for forming the electron injection layer 5 is an alkali metal such as sodium or cesium, which is preferable for a metal having a low work function, or an alkaline earth metal such as norium or calcium.
電子注入層 5の膜厚は 0. l〜5nmが好ましい。  The film thickness of the electron injection layer 5 is preferably 0.1 to 5 nm.
[0201] また、陰極 6と発光層 4または後述の電子輸送層 8との界面に、図 8, 9に示す如ぐ LiF、 MgF、 Li 0、 Cs CO等の陰極バッファ層 10 (厚さ 0. l〜5nm程度)を挿入  [0201] Further, a cathode buffer layer 10 (thickness 0) such as LiF, MgF, Li 0, Cs CO, etc. as shown in FIGS. 8 and 9 is formed at the interface between the cathode 6 and the light emitting layer 4 or the electron transport layer 8 described later. l ~ 5nm about)
2 2 2 3  2 2 2 3
することも、素子の効率を向上させる有効な方法である(Appl.Phys丄 ett.,70卷, 152 頁, 1997年;特開平 10— 74586号公報; IEEETrans.Electron.Devices, 44卷, 1245 頁, 1997年; SID 04 Digest, 154頁)。  This is also an effective method for improving the efficiency of the device (Appl. Phys. Ett., 70 卷, p. 152, 1997; JP-A-10-74586; IEEE Trans. Electron. Devices, 44 卷, 1245). Page, 1997; SID 04 Digest, page 154).
[0202] さらに、後述するバソフヱナント口リン等の含窒素複素環化合物や 8—ヒドロキシキノ リンのアルミニウム錯体などの金属錯体に代表される有機電子輸送材料に、ナトリウ ム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープする(特開平 1 0— 270171号公報、特開 2002— 100478号公報、特開 2002— 100482号公報 などに記載)ことにより、電子注入 ·輸送性が向上し優れた膜質を両立させることが可 能となるため好ましい。この場合の膜厚は通常 5nm以上、好ましくは lOnm以上で、 通常 200nm以下、好ましくは lOOnm以下である。  [0202] Further, organic electron transport materials represented by metal complexes such as nitrogen-containing heterocyclic compounds such as bathophenantorin described later and aluminum complexes of 8-hydroxyquinoline include sodium, potassium, cesium, lithium, rubidium. And the like (as described in JP-A-10-270171, JP-A-2002-100478, JP-A-2002-100482, etc.) to improve electron injection / transport properties and excellent film quality This is preferable because it is possible to achieve both. In this case, the film thickness is usually 5 nm or more, preferably lOnm or more, usually 200 nm or less, preferably lOOnm or less.
[0203] 電子注入層 5は、発光層 4と同様にして湿式製膜法、或いは真空蒸着法により発光 層 4上に積層することにより形成される。真空蒸着法の場合には、真空容器内に設置 されたるつぼまたは金属ボートに蒸着源を入れ、真空容器内を適当な真空ポンプで 10_4Pa程度にまで排気した後、るつぼまたは金属ボートを加熱して蒸発させ、るつ ぼまたは金属ボートと向き合って置かれた基板上に電子注入層を形成する。 [0203] The electron injection layer 5 is formed by laminating on the light emitting layer 4 by a wet film forming method or a vacuum deposition method in the same manner as the light emitting layer 4. In the case of the vacuum evaporation method, the evaporation source is placed in a crucible or metal boat installed in a vacuum vessel, the inside of the vacuum vessel is evacuated to about 10 _4 Pa with an appropriate vacuum pump, and then the crucible or metal boat is heated. Evaporate and rub An electron injection layer is formed on a substrate placed opposite to the metal boat or the metal boat.
[0204] アルカリ金属の蒸着は、クロム酸アルカリ金属と還元剤をニクロムに充填したアル力 リ金属ディスペンサーを用いて行う。このディスペンサーを真空容器内で加熱すること により、クロム酸アルカリ金属が還元されてアルカリ金属が蒸発される。有機電子輸送 材料とアルカリ金属とを共蒸着する場合は、有機電子輸送材料を真空容器内に設置 されたるつぼに入れ、真空容器内を適当な真空ポンプで 10_4Pa程度にまで排気し た後、各々のるつぼおよびディスペンサーを同時に加熱して蒸発させ、るつぼおよび ディスペンサーと向き合って置かれた基板上に電子注入層を形成する。 [0204] The alkali metal is vapor-deposited using an Al metal dispenser in which nichrome is filled with an alkali metal chromate and a reducing agent. By heating the dispenser in a vacuum container, the alkali metal chromate is reduced and the alkali metal is evaporated. When co-depositing an organic electron transport material and an alkali metal, place the organic electron transport material in a crucible installed in a vacuum vessel and evacuate the vacuum vessel to about 10 _4 Pa with a suitable vacuum pump. Each crucible and dispenser are simultaneously heated and evaporated to form an electron injection layer on the substrate placed facing the crucible and dispenser.
[0205] このとき、電子注入層 5の膜厚方向において均一に共蒸着されるが、膜厚方向にお V、て濃度分布があっても構わな!/、。  At this time, the co-evaporation is uniformly performed in the film thickness direction of the electron injection layer 5, but there may be V and concentration distribution in the film thickness direction! /.
なお、電子注入層 5は、図 5〜9に示す如ぐこれを省略しても良い。  The electron injection layer 5 may be omitted as shown in FIGS.
[0206] [6]陰極  [0206] [6] Cathode
陰極 6は、発光層側の層(電子注入層 5または発光層 4など)に電子を注入する役 割を果たす。陰極 6として用いられる材料は、前記陽極 2に使用される材料を用いる ことが可能であるが、効率よく電子注入を行うには、仕事関数の低い金属が好ましぐ スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の適当な金属または それらの合金が用いられる。具体例としては、マグネシウム 銀合金、マグネシウム —インジウム合金、アルミニウム—リチウム合金等の低仕事関数合金電極が挙げられ る。  The cathode 6 serves to inject electrons into a layer on the light emitting layer side (such as the electron injection layer 5 or the light emitting layer 4). The material used for the cathode 6 can be the material used for the anode 2, but a metal having a low work function is preferred for efficient electron injection. Tin, magnesium, indium, calcium A suitable metal such as aluminum, silver, or an alloy thereof is used. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
[0207] 陰極 6の膜厚は通常、陽極 2と同様である。低仕事関数金属から成る陰極を保護す る目的で、この上にさらに、仕事関数が高く大気に対して安定な金属層を積層するこ とは素子の安定性を増す。この目的のために、アルミニウム、銀、銅、ニッケル、クロム 、金、白金等の金属が使われる。  [0207] The film thickness of the cathode 6 is usually the same as that of the anode 2. For the purpose of protecting a cathode made of a low work function metal, further laminating a metal layer having a high work function and stable to the atmosphere on the cathode increases the stability of the device. For this purpose, metals such as aluminum, silver, copper, nickel, chromium, gold and platinum are used.
[0208] [7]その他の構成層  [0208] [7] Other constituent layers
以上、図 1に示す層構成の素子を中心に説明してきたが、本発明の有機電界発光 素子における陽極 2および陰極 6と発光層 4との間には、その性能を損なわない限り 、上記説明にある層の他にも、任意の層を有していてもよぐまた発光層 4以外の任 意の層を省略してもよい。 [0209] 有してもよい層としては例えば、電子輸送層 7が挙げられる。電子輸送層 7は素子 の発光効率をさらに向上させることを目的として、図 2に示す如ぐ発光層 4と電子注 入層 5との間に設けられる。 As described above, the element having the layer structure shown in FIG. 1 has been mainly described. However, the above description is provided as long as the performance is not impaired between the anode 2 and the cathode 6 and the light emitting layer 4 in the organic electroluminescent element of the present invention. In addition to the layers described above, an arbitrary layer may be provided, and any layer other than the light emitting layer 4 may be omitted. [0209] Examples of the layer that may be included include the electron transport layer 7. The electron transport layer 7 is provided between the light emitting layer 4 and the electron injection layer 5 as shown in FIG. 2 for the purpose of further improving the luminous efficiency of the device.
[0210] 電子輸送層 7は、電界を与えられた電極間において陰極 6から注入された電子を効 率よく発光層 4の方向に輸送することができる化合物より形成される。電子輸送層 7に 用いられる電子輸送性ィ匕合物としては、陰極 6または電子注入層 5からの電子注入 効率が高ぐかつ、高い電子移動度を有し注入された電子を効率よく輸送することが できる化合物であることが必要である。  [0210] The electron transport layer 7 is formed of a compound capable of efficiently transporting electrons injected from the cathode 6 between the electrodes to which an electric field is applied in the direction of the light emitting layer 4. As an electron transporting compound used for the electron transport layer 7, the electron injection efficiency from the cathode 6 or the electron injection layer 5 is high, and the injected electrons are transported efficiently with high electron mobility. It must be a compound that can
このような条件を満たす材料としては、本発明の電荷輸送材料が挙げられる。また、 その他、 8—ヒドロキシキノリンのアルミニウム錯体などの金属錯体(特開昭 59— 194 393号公報)、 10—ヒドロキシベンゾ [h]キノリンの金属錯体、ォキサジァゾール誘導 体、ジスチリルビフエ-ル誘導体、シロール誘導体、 3—または 5—ヒドロキシフラボン 金属錯体、ベンズォキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスべンズ イミダゾリルベンゼン (米国特許第 5, 645, 948号)、キノキサリンィ匕合物(特開平 6— 207169号公報)、フ ナント口リン誘導体 (特開平 5— 331459号公報)、 2— t—ブ チル— 9, 10— N, Ν'—ジシァノアントラキノンジィミン、 n型水素化非晶質炭化シリ コン、 n型硫化亜鉛、 n型セレンィ匕亜鉛などが挙げられる。  Examples of the material that satisfies such conditions include the charge transport material of the present invention. In addition, metal complexes such as aluminum complexes of 8-hydroxyquinoline (JP 59-194 393), metal complexes of 10-hydroxybenzo [h] quinoline, oxadiazole derivatives, distyryl biphenyl derivatives, silole derivatives 3- or 5-hydroxyflavone metal complex, benzoxazole metal complex, benzothiazole metal complex, trisvens imidazolylbenzene (US Pat. No. 5,645,948), quinoxaline compound (JP-A-6- 207169), phenant phosphorus derivatives (JP-A-5-331459), 2-t-butyl-9,10-N, Ν'-dicyananthraquinonedimine, n-type hydrogenated amorphous Examples include silicon carbide, n-type zinc sulfide, and n-type selenium zinc.
[0211] 電子輸送層 7の膜厚は、通常下限は lnm、好ましくは 5nm程度であり、上限は通 常 300nm、好ましくは lOOnm程度である。  [0211] The thickness of the electron transport layer 7 is usually 1 nm, preferably about 5 nm, and the upper limit is usually about 300 nm, preferably about 10 nm.
[0212] 電子輸送層 7は、正孔注入層 3と同様にして湿式製膜法、或いは真空蒸着法により 発光層 4上に積層することにより形成される。通常は、真空蒸着法が用いられる。  [0212] The electron transport layer 7 is formed by laminating on the light emitting layer 4 by the wet film forming method or the vacuum deposition method in the same manner as the hole injection layer 3. Usually, a vacuum deposition method is used.
[0213] また、特に、発光物質として燐光材料を用いたり、青色発光材料を用いたりする場 合、図 3, 4, 7〜9に示す如ぐ正孔阻止層 8を設けることも効果的である。正孔阻止 層 8は正孔と電子を発光層 4内に閉じこめて、発光効率を向上させる機能を有する。 即ち、正孔阻止層 8は、発光層 4から移動してくる正孔が電子輸送層 7に到達するの を阻止することで、発光層 4内で電子との再結合確率を増やし、生成した励起子を発 光層 4内に閉じこめる役割と、電子輸送層 7から注入された電子を効率よく発光層 4 の方向に輸送する役割がある。 [0214] 正孔阻止層 8は、陽極 2から移動してくる正孔を陰極 6に到達するのを阻止する役 割と、陰極 6から注入された電子を率よく発光層 4の方向に輸送することができる化合 物により、発光層 4の上に、発光層 4の陰極 6側の界面に接するように積層形成され る。 [0213] In particular, when a phosphorescent material or a blue light emitting material is used as the light emitting substance, it is also effective to provide a hole blocking layer 8 as shown in FIGS. is there. The hole blocking layer 8 has a function of confining holes and electrons in the light emitting layer 4 and improving luminous efficiency. That is, the hole blocking layer 8 is generated by increasing the probability of recombination with electrons in the light emitting layer 4 by blocking the holes moving from the light emitting layer 4 from reaching the electron transport layer 7. There are a role of confining excitons in the light emitting layer 4 and a role of efficiently transporting electrons injected from the electron transport layer 7 in the direction of the light emitting layer 4. [0214] The hole blocking layer 8 serves to block the holes moving from the anode 2 from reaching the cathode 6, and efficiently transports the electrons injected from the cathode 6 toward the light emitting layer 4. The compound that can be formed is laminated on the light emitting layer 4 so as to be in contact with the interface of the light emitting layer 4 on the cathode 6 side.
[0215] 正孔阻止層 8を構成する材料に求められる物性としては、電子移動度が高く正孔 移動度が低いこと、エネルギーギャップ(HOMO、 LUMOの差)が大きいこと、励起 三重項準位 (T1)が高 、ことが挙げられる。  [0215] The physical properties required of the material constituting the hole blocking layer 8 include high electron mobility and low hole mobility, a large energy gap (difference between HOMO and LUMO), and excited triplet levels. (T1) is high.
[0216] このような条件を満たす正孔阻止層材料としては、本発明の電荷輸送材料を用い ることが好ましい。その他、ビス(2—メチル 8 キノリノラト)(フエノラト)アルミニウム 、ビス(2—メチル 8 キノリノラト)(トリフエ-ルシラノラト)アルミニウム等の混合配位 子錯体、ビス(2—メチル 8 キノラト)アルミニウム一 μ—ォキソ一ビス一(2—メチ ルー 8—キノリラト)アルミニウム二核金属錯体等の金属錯体、ジスチリルビフエ-ル 誘導体等のスチリル化合物(特開平 11 242996)、 3—(4ービフ 二ルイル) 4 フエ-ルー 5 (4—tert ブチルフエ-ル) 1, 2, 4ートリアゾール等のトリァゾー ル誘導体 (特開平 7— 41759号公報)、バソクプロイン等のフ ナント口リン誘導体( 特開平 10— 79297号公報)が挙げられる。  [0216] As the hole blocking layer material satisfying such conditions, the charge transport material of the present invention is preferably used. In addition, bis (2-methyl-8quinolinato) (phenolato) aluminum, bis (2-methyl-8quinolinolato) (triphenylsilanolato) aluminum and other mixed coordination complexes, bis (2-methyl-8quinolinato) aluminum 1 μ-oxo 1-bis (2-methyl-8-quinolylato) metal complexes such as aluminum binuclear metal complexes, styryl compounds such as distyrylbiphenyl derivatives (JP-A-11 242996), 3- (4-biphenyl-2-ruyl) 4 Examples include (4-tert butylphenol) triazole derivatives such as 1,2,4-triazole (JP-A-7-41759), and funcant phosphorus derivatives such as bathocuproine (JP-A-10-79297).
[0217] さらに、 WO2005Z022962号公報に記載の 2, 4, 6位が置換されたピリジン環を 少なくとも 1個有する化合物も正孔阻止材料として好ましい。  [0217] Furthermore, compounds having at least one pyridine ring substituted at positions 2, 4, and 6 described in WO2005Z022962 are also preferable as the hole blocking material.
[0218] 正孔阻止層 8の膜厚は、通常 0. 3nm以上、好ましくは 0. 5nm以上で、通常 ΙΟΟη m以下、好ましくは 50nm以下である。  [0218] The film thickness of the hole blocking layer 8 is usually 0.3 nm or more, preferably 0.5 nm or more, and usually ΙΟΟηm or less, preferably 50 nm or less.
[0219] 正孔阻止層 8も正孔注入層 3と同様の方法で形成することができるが、通常は真空 蒸着法が用いられる。  [0219] The hole blocking layer 8 can also be formed by the same method as the hole injection layer 3, but usually a vacuum evaporation method is used.
[0220] 電子輸送層 7および正孔阻止層 8は必要に応じて、適宜設ければよぐ 1)電子輸 送層のみ、 2)正孔阻止層のみ、 3)正孔阻止層 Z電子輸送層の積層、 4)用いない、 等、用法がある。  [0220] The electron transport layer 7 and the hole blocking layer 8 may be provided as necessary. 1) Only the electron transport layer, 2) Only the hole block layer, 3) The hole block layer Z electron transport There are usages such as layering, 4) not using, etc.
[0221] 正孔阻止層 8と同様の目的で、図 4, 9に示す如ぐ正孔注入層 3と発光層 4の間に 電子阻止層 9を設けることも効果的である。電子阻止層 9は、発光層 4から移動してく る電子が正孔注入層 3に到達するのを阻止することで、発光層 4内で正孔との再結 合確率を増やし、生成した励起子を発光層 4内に閉じこめる役割と、正孔注入層 3か ら注入された正孔を効率よく発光層 4の方向に輸送する役割がある。 [0221] For the same purpose as the hole blocking layer 8, it is also effective to provide an electron blocking layer 9 between the hole injection layer 3 and the light emitting layer 4 as shown in Figs. The electron blocking layer 9 prevents electrons moving from the light emitting layer 4 from reaching the hole injection layer 3, thereby recombining with holes in the light emitting layer 4. There is a role of increasing the coupling probability and confining the generated excitons in the light emitting layer 4 and a role of efficiently transporting holes injected from the hole injection layer 3 in the direction of the light emitting layer 4.
[0222] 電子阻止層 9に求められる特性としては、正孔輸送性が高ぐエネルギーギャップ( HOMO, LUMOの差)が大きいこと、励起三重項準位 (T1)が高いことが挙げられ る。また、発光層 4を湿式製膜法で形成する場合、電子阻止層 9も湿式製膜法で形 成することが、素子製造が容易となるため、好ましい。  [0222] The characteristics required for the electron blocking layer 9 include a high energy gap (difference between HOMO and LUMO) with high hole transportability and a high excited triplet level (T1). Further, when the light emitting layer 4 is formed by a wet film forming method, it is preferable that the electron blocking layer 9 is also formed by a wet film forming method because the device can be easily manufactured.
[0223] このため、電子阻止層 9も湿式製膜適合性を有することが好ましぐこのような電子 阻止層 9に用いられる材料としては、本発明の電荷輸送材料の他、 F8— TFB〖こ代 表されるジォクチルフルオレンとトリフエ-ルァミンの共重合体 (WO2004Z084260 号公報記載)等が挙げられる。  [0223] For this reason, it is preferable that the electron blocking layer 9 also has wet film formation compatibility. Examples of the material used for such an electron blocking layer 9 include the charge transport material of the present invention, F8—TFB 〖. Examples thereof include a copolymer of dioctylfluorene and triphenylamine (described in WO2004Z084260).
[0224] なお、発光層を乾式成膜法 (蒸着法など)で形成する場合、電子阻止層 9に用いら れる材料としては、本発明の電荷輸送材料以外には、 4, 4' ビス [N— (1 ナフチ ル)—N—フエ-ルァミノ]ビフエ-ルで代表される 2個以上の 3級ァミンを含み 2個以 上の縮合芳香族環が窒素原子に置換した芳香族ジァミン (特開平 5— 234681号公 報)、 4, 4,, 4"—トリス(1—ナフチルフエ-ルァミノ)トリフエ-ルァミン等のスターバ 一スト構造を有する芳香族ァミン化合物 (J. Lumin. , 72— 74卷、 985頁、 1997 年)、トリフエ-ルァミンの四量体から成る芳香族ァミン化合物(Chem. Commun. , 2175頁、 1996年)、 2, 2,, 7, 7, テトラキス—(ジフエ-ルァミノ)— 9, 9,—スピ ロビフルオレン等のスピロ化合物(Synth. Metals, 91卷、 209頁、 1997年)、 4 , 4'— N, N' ジカルバゾールビフエ-ルなどの力ルバゾール誘導体、あるいは下記 一般式 (a)で示されるモノアミンィ匕合物などが挙げられる。これらの化合物は、 1種を 単独で用いてもよ!、し、必要に応じて複数種混合して用いてもよ!ヽ。  [0224] When the light-emitting layer is formed by a dry film formation method (evaporation method or the like), as a material used for the electron blocking layer 9, other than the charge transport material of the present invention, 4, 4 'bis [ N— (1 naphthyl) —N—phenylamino] aromatic diamines including two or more tertiary amins represented by biphenyl, wherein two or more condensed aromatic rings are substituted with nitrogen atoms (special Kaihei 5-234681)), 4, 4, 4 "—Tris (1-naphthylphenol-triamino) triphenylamine and other aromatic amine compounds having a starbust structure (J. Lumin., 72-74 卷) , 985, 1997), aromatic amine compounds consisting of tetramers of triphenylamine (Chem. Commun., 2175, 1996), 2, 2, 7, 7, tetrakis- (diphenylamino) — 9, 9, — Spiro compounds such as spirobifluorene (Synth. Metals, 91 卷, p. 209, 1997), 4, 4′— N, N ′ dicarbazol Powerful rubazole derivatives such as biphenyl, or monoamine compounds represented by the following general formula (a), etc. These compounds may be used alone or as needed. You can use a mixture of several types!
[0225] [化 41] [0225] [Chemical 41]
Figure imgf000066_0001
式 (a)中、 R"〜R19は、水素原子、ァリール基またはアルキル基を表す。 1〜!^ はそれぞれ同一であっても異なって 、てもよ 、。 R"〜R19がァリール基またはアルキ ル基の場合には、 R"〜R19はさらに置換基としてァリール基またはアルキル基を有し ていてもよい。
Figure imgf000066_0001
In the formula (a), R ″ to R 19 each represent a hydrogen atom, an aryl group or an alkyl group. 1 to! ^ May be the same or different. R ″ to R 19 represent an aryl. If groups or alkyl le group, R "to R 19 may further have a Ariru group or an alkyl group as a substituent.
[0226] 上記の化合物以外に、電子阻止層 9の材料として、ポリビニルカルバゾール、ポリビ -ルトリフエ-ルァミン(特開平 7— 53953号公報)、テトラフエ-ルペンジジンを含有 するポリアリーレンエーテルサルホン(Polym. Adv. Tech. , 7卷、 33頁、 199 6年)等の高分子材料が挙げられる。  [0226] In addition to the above compounds, polyarylene ether sulfone (Polym. Adv) containing polyvinylcarbazole, polyvinyltriphenylamine (Japanese Patent Laid-Open No. 7-53953), tetraphenylpentidine as a material for the electron blocking layer 9 is used. Tech., 7 卷, 33, 199 6).
[0227] 真空蒸着法の場合には、電子阻止層 9の材料を真空容器内に設置されたルツボに 入れ、真空容器内を適当な真空ポンプで 10— 4Pa程度にまで排気した後、ルツボを加 熱して、正孔輸送材料を蒸発させ、ルツボと向かい合って置かれた、基板 1上に形成 された正孔注入層 3の上に、電子阻止層 9を形成させる。 [0227] In the case of vacuum deposition method, put the material of the electron blocking layer 9 in the installed crucible in a vacuum vessel, after evacuating to about 10- 4 Pa with a suitable vacuum pump vacuum vessel, the crucible Is heated to evaporate the hole transport material, and an electron blocking layer 9 is formed on the hole injection layer 3 formed on the substrate 1 placed facing the crucible.
[0228] なお、図 1とは逆の構造、即ち、基板 1上に陰極 6、電子注入層 5、発光層 4、正孔 注入層 3、陽極 2の順に積層することも可能であり、既述したように少なくとも一方が透 明性の高い 2枚の基板の間に本発明の有機電界発光素子を設けることも可能である 。同様に、図 2〜図 9に示した前記各層構成とは逆の構造に積層することも可能であ る。  [0228] It should be noted that the structure opposite to that shown in Fig. 1, that is, the cathode 6, the electron injection layer 5, the light emitting layer 4, the hole injection layer 3, and the anode 2 can be laminated on the substrate 1 in this order. As described above, it is also possible to provide the organic electroluminescent element of the present invention between two substrates, at least one of which has high transparency. Similarly, it is also possible to laminate in a structure opposite to that of each of the layers shown in FIGS.
[0229] さら〖こは、図 1に示す層構成を複数段重ねた構造 (発光ユニットを複数積層させた 構造)とすることも可能である。その際には段間 (発光ユニット間)の界面層(陽極が IT 0、陰極が A1の場合はその 2層)の代わりに、例えば V O等を電荷発生層(CGL)と して用いると段間の障壁が少なくなり、発光効率'駆動電圧の観点力もより好ましい。 [0229] Sarako can also have a structure in which the layer configuration shown in FIG. 1 is stacked in multiple layers (a structure in which a plurality of light emitting units are stacked). In this case, instead of the interfacial layer (between the light emitting units) (two layers when the anode is IT 0 and the cathode is A1), for example, VO is used as the charge generation layer (CGL). When used as such, the barrier between the stages is reduced, and the viewpoint power of the light emission efficiency 'drive voltage is more preferable.
[0230] 本発明は、有機電界発光素子が、単一の素子、アレイ状に配置された構造からな る素子、陽極と陰極力 ¾—Yマトリックス状に配置された構造の 、ずれにお!、ても適 用することができる。  [0230] The present invention is effective when the organic electroluminescent device is a single device, a device having a structure arranged in an array, or a structure in which an anode and a cathode power are arranged in a matrix. However, it can be applied.
実施例  Example
[0231] 次に、本発明を実施例によってさらに具体的に説明する力 本発明はその要旨を 超えない限り、以下の実施例の記載に限定されるものではない。  Next, the power to further specifically explain the present invention by way of examples. The present invention is not limited to the description of the following examples unless it exceeds the gist thereof.
なお、以下において、ガラス転移温度は DSC測定により、気化温度は TG— DTA 測定により、融点は DSC測定または TG— DTA測定によりそれぞれ求めた。  In the following, the glass transition temperature was determined by DSC measurement, the vaporization temperature was determined by TG-DTA measurement, and the melting point was determined by DSC measurement or TG-DTA measurement.
[0232] [合成例 1:本発明の炭化水素化合物 (I 1)の合成]  [Synthesis Example 1: Synthesis of Hydrocarbon Compound (I 1) of the Present Invention]
[化 42]  [Chemical 42]
Figure imgf000067_0001
Figure imgf000067_0001
200mL四つ口フラスコに、 3,一ブロモアセトフエノン(11. 9g)、脱水エタノールを 窒素下で加え、更にテトラクロロシラン(20. 3g)を滴下してカ卩えた。 6時間室温で攪 拌した後、氷に空け析出した固体を濾取した。濾取物をトルエンに溶かし、不溶物を 除去しエタノールとトルエンの混合溶剤にて再結晶を行ったところ、化合物 (I— la) の白色針状結晶(6. 4g)を得た。 [0234] 300mL四つ口フラスコに、化合物 I—la (l. 7g)、 3 ビフエ-ルボロン酸(2. 5g) 、 1, 2 ジメトキシェタン(96mL)、水(14mL)をカ卩え、窒素パブリングを行った。こ の系に、炭酸カリウム (4. Og)、テトラキス(トリフエ-ルホスフィン)パラジウム (0) (332 mg)を加え 6時間加熱還流した。ジクロロメタンで抽出し、活性白土を入れて撹拌し た。固形分を濾過で除去した後、濃縮し、これをカラムクロマトグラフィー、ついで昇 華精製を行い、 目的物である炭化水素化合物 (I 1) (1. 7g)を得た。 To a 200 mL four-necked flask, 3,1-bromoacetophenone (11.9 g) and dehydrated ethanol were added under nitrogen, and tetrachlorosilane (20.3 g) was further added dropwise to prepare. After stirring at room temperature for 6 hours, the solid deposited on ice was collected by filtration. The filtered product was dissolved in toluene, the insoluble material was removed, and recrystallization was performed with a mixed solvent of ethanol and toluene. As a result, white needle crystals (6.4 g) of compound (I-la) were obtained. [0234] In a 300 mL four-necked flask, compound I-la (l. 7 g), 3 biphenylboronic acid (2.5 g), 1,2 dimethoxyethane (96 mL), and water (14 mL) were added. Nitrogen publishing was performed. To this system, potassium carbonate (4. Og) and tetrakis (triphenylphosphine) palladium (0) (332 mg) were added and heated to reflux for 6 hours. The mixture was extracted with dichloromethane, activated clay was added, and the mixture was stirred. The solid content was removed by filtration and then concentrated, and this was subjected to column chromatography, followed by sublimation purification to obtain the desired hydrocarbon compound (I 1) (1.7 g).
[0235] このもののガラス転移温度は 83°Cであった。  [0235] The glass transition temperature of this product was 83 ° C.
DEI -MS m/z = 762 (M+) DEI -MS m / z = 762 (M + )
[0236] [合成例 2 :本発明の炭化水素化合物 (I 2)の合成]  [Synthesis Example 2: Synthesis of Hydrocarbon Compound (I 2) of the Present Invention]
[化 43]  [Chemical 43]
Figure imgf000068_0001
Figure imgf000068_0001
[0237] 窒素雰囲気下、 300mLの四つ口フラスコに、化合物 I la (6. 99g)、 3 ビフエ- ルボロン酸(5. 10g)、トルエン(64mL)、エタノール(16mL)の混合溶液に、炭酸力 リウム(8. 90g)と水(32mL)の混合溶液、テトラキス(トリフエ-ルホスフィン)パラジゥ ム(0) (744mg)を、順次加え、加熱還流下、 8時間撹拌した。得られた溶液から、ト ルェンで抽出し、抽出溶液を炭酸水素ナトリウム水溶液で洗浄後、無水硫酸マグネ シゥムを加えてから、固形分を濾過で除去し、濃縮した。これをシリカゲルカラムクロ マトグラフィー(展開溶媒: n—へキサン Z塩化メチレン = 3Zl〜lZl)およびメタノ ール溶媒中での懸濁洗浄で精製し、 目的物 I— 2a (3. 33g)および目的物 I— 3a (l. 17g)を得た。 [0237] Under a nitrogen atmosphere, a 300 mL four-necked flask was charged with a mixed solution of Compound I la (6.99 g), 3 biphenylboronic acid (5.10 g), toluene (64 mL), and ethanol (16 mL). A mixed solution of strength lithium (8.90 g) and water (32 mL) and tetrakis (triphenylphosphine) palladium (0) (744 mg) were sequentially added, and the mixture was stirred for 8 hours while heating under reflux. The obtained solution was extracted with toluene, and the extracted solution was washed with an aqueous sodium hydrogen carbonate solution, anhydrous magnesium sulfate was added, and the solid content was removed by filtration and concentrated. This was purified by silica gel column chromatography (developing solvent: n-hexane Z methylene chloride = 3Zl to lZl) and suspension washing in methanol solvent to obtain the target I-2a (3.33g) and target Compound I-3a (l. 17 g) was obtained.
[0238] 目的物 I— 2aおよび目的物 I— 3aは、 H— NMR (400MHz ;重アセトン溶媒)およ び DEI— MSにより、同定した。 目的物 I 2a [0238] The target product I-2a and the target product I-3a were identified by 1 H-NMR (400 MHz; heavy acetone solvent) and DEI-MS. Object I 2a
DEI -MS m/z = 688 (M+) DEI -MS m / z = 688 (M + )
'H-NMR (400MHz, CD COCD ) 7. 29〜8. 24ppm (33H, m)  'H-NMR (400MHz, CD COCD) 7.29-8.24ppm (33H, m)
3 3  3 3
目的物 I 3a  Object I 3a
DEI -MS m/z = 614 (M+) DEI -MS m / z = 614 (M + )
'H-NMR (400MHz, CD COCD ) 7. 27〜8. 25ppm (24H, m)  'H-NMR (400MHz, CD COCD) 7.27-8.25ppm (24H, m)
3 3  3 3
[0239] [化 44]  [0239] [Chemical 44]
Figure imgf000069_0001
Figure imgf000069_0001
[0240] 窒素雰囲気下、 200mLの四つ口フラスコに、化合物 I 2a (3. 26g)、 4ービフエ- ルボロン酸(1. 13g)、トルエン(24mL)、エタノール(6mL)の混合溶液に、炭酸カリ ゥム(1. 63g)と水(6mL)の混合溶液、テトラキス(トリフエニルホスフィン)パラジウム( 0) (274mg)を、順次加え、加熱還流下、 6. 5時間撹拌した。得られた溶液から、ト ルェンで抽出し、抽出溶液を炭酸水素ナトリウム水溶液で洗浄後、無水硫酸マグネ シゥムを加えてから、固形分を濾過で除去し、濃縮した。これをシリカゲルカラムクロ マトグラフィー (展開溶媒: n—へキサン Z塩化メチレン =5Zl〜4Zl)で精製し、 目 的物 1— 2 (3. 00g)を得た。これを更に、高真空下、最高加熱温度 400°Cの条件で 昇華精製し、高純度の目的物 1— 2 (1. 89g)を得た。 [0240] Under a nitrogen atmosphere, in a 200 mL four-necked flask, a mixed solution of Compound I 2a (3.26 g), 4-biphenylboronic acid (1.13 g), toluene (24 mL), and ethanol (6 mL) was mixed with carbonic acid. A mixed solution of potassium (1.63 g) and water (6 mL) and tetrakis (triphenylphosphine) palladium (0) (274 mg) were sequentially added, and the mixture was stirred for 6.5 hours under heating to reflux. The obtained solution was extracted with toluene, and the extracted solution was washed with an aqueous sodium hydrogen carbonate solution, anhydrous magnesium sulfate was added, and the solid content was removed by filtration and concentrated. This was purified by silica gel column chromatography (developing solvent: n-hexane Z methylene chloride = 5 Zl to 4 Zl) to obtain the target compound 1-2 (3.00 g). This was further purified by sublimation under high vacuum at a maximum heating temperature of 400 ° C. to obtain high-purity target product 1-2 (1.89 g).
[0241] このもののガラス転移温度は 87°C、結晶化温度および融点は観測されず、気化開 始温度は 531°Cであった。  [0241] The glass transition temperature of this product was 87 ° C, the crystallization temperature and melting point were not observed, and the vaporization start temperature was 531 ° C.
DEI -MS m/z = 762 (M+) Ή-NMR (400MHz, CD COCD ) 7. 33〜8. 27ppm (42H, m) DEI -MS m / z = 762 (M + ) NMR-NMR (400MHz, CD COCD) 7.33-8.27ppm (42H, m)
3 3  3 3
[0242] [合成例 3 :本発明の炭化水素化合物 (I 3)の合成]  [0242] [Synthesis Example 3: Synthesis of Hydrocarbon Compound (I 3) of the Present Invention]
[化 45]  [Chemical 45]
Figure imgf000070_0001
Figure imgf000070_0001
[0243] 窒素雰囲気下、 lOOmLの四つ口フラスコに、化合物 I 3a (l. 10g)、 4ービフエ- ルボロン酸(1. 06g)、トルエン(9mL)、エタノール(3mL)の混合溶液に、炭酸力リウ ム(1. 23g)と水(4. 4mL)の混合溶液、テトラキス(トリフエ-ルホスフィン)パラジウム (0) (103mg)を、順次加え、加熱還流下、 6時間撹拌した。得られた混合溶液の一 部を、薄層シリカゲルカラムクロマトグラフィー(展開溶媒: n—へキサン Z塩化メチレ ン)で精製し、 目的物 I - 3を得た。 [0243] In a nitrogen atmosphere, in a lOOmL four-necked flask, a mixed solution of Compound I 3a (l. 10g), 4-biphenylboronic acid (1.06g), toluene (9mL), and ethanol (3mL) was mixed with carbonic acid. A mixed solution of strength rhodium (1.23 g) and water (4.4 mL) and tetrakis (triphenylphosphine) palladium (0) (103 mg) were sequentially added, and the mixture was stirred for 6 hours under heating to reflux. A part of the obtained mixed solution was purified by thin layer silica gel column chromatography (developing solvent: n-hexane Z methyl chloride) to obtain the target product I-3.
DEI -MS m/z = 762 (M+) DEI -MS m / z = 762 (M + )
[0244] [合成例 4 :本発明の炭化水素化合物 (I 4)の合成]  [Synthesis Example 4: Synthesis of Hydrocarbon Compound (I 4) of the Present Invention]
[化 46] [Chem 46]
Figure imgf000071_0001
Figure imgf000071_0001
Figure imgf000071_0002
Figure imgf000071_0002
[0245] 窒素気流中、 300mLの三つ口フラスコに、 3 ブロモヨードベンゼン(12. 99g)、 3 ービフエ-ルボロン酸(10g)、 1, 2 ジメトキシェタン(184mL)の混合溶液に、炭酸 カリウム(15. 9g)と水(60mL)の混合溶液、テトラキス(トリフエ-ルホスフィン)パラジ ゥム(0) (1. 59g)を順次加え、加熱還流下、 5. 5時間撹拌した。得られた溶液から、 ジクロロメタンで抽出し、抽出溶液を食塩水で洗浄後、無水硫酸マグネシウムおよび 活性白土を加えてから、固形分を濾過で除去し、濃縮した。これをシリカゲルカラムク 口マトグラフィ一で精製し、 目的物 I—4aを得た。  [0245] In a nitrogen stream, in a 300 mL three-necked flask, potassium carbonate was added to a mixed solution of 3 bromoiodobenzene (12. 99 g), 3-biphenylboronic acid (10 g), and 1,2 dimethoxyethane (184 mL). A mixed solution of (15.9 g) and water (60 mL) and tetrakis (triphenylphosphine) palladium (0) (1.59 g) were sequentially added, and the mixture was stirred for 5.5 hours while heating under reflux. The resulting solution was extracted with dichloromethane, and the extracted solution was washed with brine, anhydrous magnesium sulfate and activated clay were added, and the solid content was removed by filtration and concentrated. This was purified by silica gel column chromatography to obtain the target product I-4a.
[0246] 300mL四つ口フラスコに、化合物 I 4a (7. 9g)、脱水エーテル(50ml)を窒素下 で加えた。ドライアイスバスにて系を— 70°C付近まで冷やしながら攪拌し、 n—プチ ルリチウムの 1. 58molZLへキサン溶液(17. 7ml)をゆっくりとカロえた。その後系を 室温まで戻した後、再び— 70°C付近まで冷やし、トリイソプロピルボレート(11. 7ml) を加え、ゆっくりと室温〖こ戻したところ、白濁していた。氷にあけ、中和した後トルエン •Brineにて抽出洗浄、その後減圧濃縮し、へキサンで懸洗することにより白色粉末 である化合物 I— 4b (5. lg)を得た。  [0246] To a 300 mL four-necked flask, Compound I 4a (7.9 g) and dehydrated ether (50 ml) were added under nitrogen. The system was stirred in a dry ice bath while cooling to around 70 ° C, and a 1.58 molZL hexane solution (17.7 ml) of n-butyllithium was slowly added. After returning the system to room temperature, it was cooled again to around -70 ° C, triisopropyl borate (11.7 ml) was added, and the mixture was slowly returned to room temperature. Poured into ice, neutralized, extracted and washed with toluene • Brine, concentrated under reduced pressure, and then washed with hexane to give Compound I-4b (5. lg) as a white powder.
[0247] 300mL四つ口フラスコに、化合物 I— 4b (4. 3g)、化合物 I— la (2. lg)、 1, 2— ジメトキシェタン(120mL)、水(18mL)をカ卩え、窒素パブリングを行った。系に、炭 酸カリウム(5. Og)、テトラキス(トリフエ-ルホスフィン)パラジウム(0) (418mg)をカロ え 6時間加熱還流した。ジクロロメタンで抽出し、活性白土処理した後、固形分を濾 過で除去した。減圧濃縮し、これをシリカゲルカラムクロマトグラフィーにて精製し目 的物 I 4 (3. 8g)を得た。これの一部を更に、高真空下、最高加熱温度 490°Cの条 件で昇華精製し、高純度の目的物 I 4 (1. 4g)を得た。 [0247] In a 300 mL four-necked flask, compound I-4b (4.3 g), compound I-la (2. lg), 1,2-dimethoxyethane (120 mL), and water (18 mL) were added. Nitrogen publishing was performed. To the system, potassium carbonate (5. Og) and tetrakis (triphenylphosphine) palladium (0) (418 mg) were heated and refluxed for 6 hours. After extracting with dichloromethane and treating with activated clay, the solid content is filtered. Removed in excess. After concentration under reduced pressure, this was purified by silica gel column chromatography to obtain the target compound I 4 (3.8 g). A part of this was further purified by sublimation under high vacuum under conditions of a maximum heating temperature of 490 ° C. to obtain high-purity target product I 4 (1.4 g).
[0248] このもののガラス転移温度は 99°C、結晶化温度および融点は観測されず、気化開 始温度は 561°Cであった。 [0248] The glass transition temperature of this product was 99 ° C, the crystallization temperature and melting point were not observed, and the vaporization start temperature was 561 ° C.
DEI -MS m/z = 990 (M+) DEI -MS m / z = 990 (M + )
[0249] [実施例 1 :本発明の炭化水素化合物の評価] [Example 1: Evaluation of hydrocarbon compound of the present invention]
〈トルエンへの溶解性評価〉  <Evaluation of solubility in toluene>
炭化水素化合物 (I 1) , (1-2) , (I 4)の常温常圧下におけるトルエンに対する 溶解度を調べた。結果を表 1に示した。  Solubility of hydrocarbon compounds (I 1), (1-2) and (I 4) in toluene at room temperature and normal pressure was investigated. The results are shown in Table 1.
[0250] 〈酸化還元電位の評価〉 [0250] <Evaluation of redox potential>
炭化水素化合物 (1—1)の酸ィ匕還元電位をサイクリックボルタンメトリーにより測定し た。  The acid-reduction potential of the hydrocarbon compound (1-1) was measured by cyclic voltammetry.
支持電解質として、過塩素酸テトラプチルアンモ -ゥム 0. ImolZLを、ァセトニトリ ルとテトラヒドロフランを 25°Cで容量比 1: 1で混合した溶剤に溶解させたものに、さら に炭化水素化合物 (I 1)を ImmolZL溶解した液について測定を行った。  As a supporting electrolyte, tetraptylammonium perchlorate 0. ImolZL was dissolved in a solvent in which acetonitrile and tetrahydrofuran were mixed at a volume ratio of 1: 1 at 25 ° C, and a hydrocarbon compound (I Measurement was performed on a solution obtained by dissolving 1 mmol of ImmolZL.
作用電極はグラッシ一カーボン (ビー ·エー 'エス社製)、対電極として白金線、参照 電極として銀線を用い、走引速度を lOOmVZsとして測定した。  The working electrode was glassy carbon (manufactured by BS Corporation), the counter electrode was a platinum wire, the reference electrode was a silver wire, and the running speed was measured as lOOmVZs.
酸化還元電位は、内部標準としてフエ口セン Zフエロセ -ゥム(FcZFc+)を用い、 この電位が + 0. 41V vs. SCEであるとして電位を対飽和甘コゥ電極(SCE)に換 昇した。  As the redox potential, Huecsen Z Ferroceum (FcZFc +) was used as an internal standard, and the potential was converted to a saturated sweet coco electrode (SCE) assuming that this potential was +0.41 V vs. SCE.
上記評価結果を表 2に示した。  The evaluation results are shown in Table 2.
[0251] 〈三重項励起準位の評価〉 [0251] <Evaluation of triplet excited levels>
炭化水素化合物 (I 1)および (I 4)について、窒素雰囲気下、希薄エタノール溶 媒中、温度 77Kでの燐光スペクトルにより三重項励起準位を測定した。  For the hydrocarbon compounds (I 1) and (I 4), triplet excited levels were measured by phosphorescence spectrum at a temperature of 77 K in a dilute ethanol solvent in a nitrogen atmosphere.
得られた燐光スペクトルにお ヽて、最も波長の短 、位置に観測されたピークトップ の波長を、三重項励起準位 (nm)とした。  In the obtained phosphorescence spectrum, the wavelength of the peak top observed at the shortest wavelength position was defined as the triplet excitation level (nm).
上記評価結果を表 3に示した。 [0252] [比較例 1 :従来化合物 (C 1)の評価] The evaluation results are shown in Table 3. [0252] [Comparative Example 1: Evaluation of conventional compound (C 1)]
前掲の化合物(C— 1)について、実施例 1と同様にしてトルエンへの溶解性と酸ィ匕 還元電位と三重項励起準位の評価を行って、結果を表 1〜3に示した。  For the above compound (C-1), the solubility in toluene, the acid reduction potential, and the triplet excited level were evaluated in the same manner as in Example 1, and the results are shown in Tables 1 to 3.
[0253] [表 1] [0253] [Table 1]
Figure imgf000073_0001
Figure imgf000073_0001
[0254] [表 2] [0254] [Table 2]
Figure imgf000073_0002
Figure imgf000073_0002
[0255] [表 3] [0255] [Table 3]
Figure imgf000073_0003
表 1〜3より、本発明の炭化水素化合物は、特徴的に優れた溶剤溶解性を示し、ま た、酸化還元電位差も、従来化合物よりも大きいことが明らかである。また、本発明の 炭化水素化合物は従来化合物よりも、三重項励起準位が大きいことが明らかである。 [0257] [実施例 2 :有機電界発光素子の製造'評価]
Figure imgf000073_0003
From Tables 1 to 3, it is clear that the hydrocarbon compound of the present invention has characteristically excellent solvent solubility, and the oxidation-reduction potential difference is larger than that of conventional compounds. In addition, it is clear that the hydrocarbon compound of the present invention has a triplet excited level larger than that of the conventional compound. [0257] [Example 2: Production of organic electroluminescent device 'evaluation]
図 8に示す構造を有する有機電界発光素子を以下の方法で作製した。 ガラス基板 1の上にインジウム'スズ酸ィ匕物 (ITO)透明導電膜を 150nm堆積したも の (スパッター製膜品;シート抵抗 15 Ω )を通常のフォトリソグラフィ技術と塩酸エッチ ングを用いて 2mm幅のストライプにパターユングして陽極 2を形成した。パターン形 成した ITO基板を、アセトンによる超音波洗浄、純水による水洗、イソプロピルアルコ ールによる超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン 洗浄を行った。  An organic electroluminescent device having the structure shown in FIG. 8 was produced by the following method. An indium stannate oxide (ITO) transparent conductive film 150 nm deposited on glass substrate 1 (sputtered film product; sheet resistance 15 Ω) is 2 mm using normal photolithography and hydrochloric acid etching. Anode 2 was formed by patterning into stripes of width. The patterned ITO substrate was cleaned in the order of ultrasonic cleaning with acetone, water with pure water, and ultrasonic cleaning with isopropyl alcohol, then dried with nitrogen blow, and finally UV ozone cleaning.
[0258] 次 、で、正孔注入層 3を以下のように湿式製膜法によって形成した。正孔注入層 3 の材料として、下記に示す構造式の芳香族アミノ基を有する非共役系高分子化合物 (PB- 1 (重量平均分子量: 29400,数平均分子量: 12600) )と下記に示す構造式 の電子受容性化合物 (A— 2)とを用い、下記の条件でスピンコートした。  [0258] Next, the hole injection layer 3 was formed by a wet film forming method as follows. Non-conjugated polymer compound (PB-1 (weight average molecular weight: 29400, number average molecular weight: 12600)) having an aromatic amino group having the following structural formula as a material for the hole injection layer 3 and the structure shown below Using the electron-accepting compound (A-2) of the formula, spin coating was performed under the following conditions.
[0259] [化 47] [0259] [Chemical 47]
Figure imgf000075_0001
Figure imgf000075_0001
Figure imgf000075_0002
Figure imgf000075_0002
A- 2  A- 2
[0260] スピンコート条件  [0260] Spin coating conditions
溶剤 安息香酸ェチル  Solvent Ethyl benzoate
塗布液濃度 PB— 1 2. 0重量%  Coating solution concentration PB— 1 2.0% by weight
A— 2 0. 4重量%  A—2 0.4% by weight
スピナ回転数 1500rpm  Spinner speed 1500rpm
スピナ回転時間 30秒  Spinner rotation time 30 seconds
乾燥条件 230°C X 15分  Drying conditions 230 ° C X 15 minutes
上記のスピンコートにより膜厚 30nmの均一な薄膜が形成された。  A uniform thin film having a thickness of 30 nm was formed by the above spin coating.
[0261] 続、て、発光層 4を以下のように湿式製膜法によって形成した。発光層 4の材料とし て、合成例 1で合成した本発明の炭化水素化合物 (1—1)を、下記に示す構造式のィ リジゥム錯体 (D- 1)と共に溶剤としてトルエンを用いた電荷輸送材料組成物を調製 し、この電荷輸送材料組成物を用いて下記の条件でスピンコートした。 [0261] Subsequently, the light emitting layer 4 was formed by a wet film forming method as follows. As a material for the light-emitting layer 4, the hydrocarbon compound (1-1) of the present invention synthesized in Synthesis Example 1 is charged with toluene as a solvent together with an iridium complex (D-1) having the structural formula shown below. Prepare material composition The charge transport material composition was spin coated under the following conditions.
[0262] [化 48]  [0262] [Chemical 48]
[0263] [化 49] [0263] [Chemical 49]
Figure imgf000076_0001
Figure imgf000076_0001
D— 1  D— 1
[0264] スピンコート条件 [0264] Spin coating conditions
溶剤 トルエン  Solvent Toluene
組成物中濃度 I 1 2. 0重量%  Concentration in composition I 1 2.0% by weight
D- 1 0. 1重量%  D- 1 0.1% by weight
スピナ回転数 1500rpm  Spinner speed 1500rpm
スピナ回転時間 60秒 乾燥条件 80°C X 60分 (減圧下) Spinner rotation time 60 seconds Drying conditions 80 ° CX 60 minutes (under reduced pressure)
上記のスピンコートにより膜厚 60nmの均一な薄膜が形成された。  A uniform thin film having a thickness of 60 nm was formed by the above spin coating.
[0265] 次に、正孔阻止層 8として下記に示すピリジン誘導体 (HB— 1)をるつぼ温度 260 〜264°Cとして、蒸着速度 0. 05nmZ秒で 5nmの膜厚で積層した。蒸着時の真空 度は 3. 9 X 10_4Pa (約 3. O X 10_6Torr)であった。 Next, a pyridine derivative (HB-1) shown below was laminated as the hole blocking layer 8 at a crucible temperature of 260 to 264 ° C. and a film thickness of 5 nm at a deposition rate of 0.05 nmZ seconds. The degree of vacuum during deposition was 3.9 X 10 _4 Pa (about 3. OX 10 _6 Torr).
[0266] [化 50] [0266] [Chemical 50]
Figure imgf000077_0001
Figure imgf000077_0001
H B - 1  H B-1
[0267] 次に、正孔阻止層 8の上に、電子輸送層 7として下記に示すアルミニウムの 8—ヒド 口キシキノリン錯体 (ET— 1)を同様にして蒸着した。この時のアルミニウムの 8—ヒドロ キシキノリン錯体のるつぼ温度は 213〜247°Cの範囲で制御し、蒸着時の真空度は 3. 9 X 10_4Pa (約 3. O X 10_6Torr)、蒸着速度は 0. InmZ秒で膜厚は 30nmとし た。 [0267] Next, on the hole blocking layer 8, an aluminum 8-hydroxyoxyquinoline complex (ET-1) shown below was deposited as the electron transport layer 7 in the same manner. At this time, the crucible temperature of the aluminum 8-hydroxyquinoline complex is controlled in the range of 213 to 247 ° C, the vacuum during deposition is 3.9 X 10 _4 Pa (about 3. OX 10 _6 Torr), and the deposition rate Was 0. InmZ seconds and the film thickness was 30 nm.
[0268] [化 51]  [0268] [Chemical 51]
Figure imgf000077_0002
上記の正孔阻止層 8および電子輸送層 7を真空蒸着する時の基板温度は室温に 保持した。
Figure imgf000077_0002
The substrate temperature during vacuum deposition of the hole blocking layer 8 and the electron transport layer 7 was kept at room temperature.
ここで、電子輸送層 7までの蒸着を行った素子を一度前記真空蒸着装置内より大 気中に取り出して、陰極蒸着用のマスクとして 2mm幅のストライプ状シャドーマスクを 、陽極 2の ITOストライプとは直交するように素子に密着させて、別の真空蒸着装置 内に設置して有機層と同様にして装置内の真空度が 2. 0 X 10_6Torr (約 2. 6 X 10 _4Pa)以下になるまで排気した。 Here, the element to which the electron transport layer 7 has been vapor-deposited is once taken out from the vacuum vapor deposition apparatus to the atmosphere, and a 2 mm wide striped shadow mask is used as a mask for cathode vapor deposition. The anode 2 is in close contact with the ITO stripe perpendicular to the ITO stripe and placed in a separate vacuum deposition apparatus, and the degree of vacuum in the apparatus is 2.0 X 10 _6 Torr (about 2 6 X 10 _ 4 Pa).
[0270] 次に、陰極バッファ層 10として、フッ化リチウム(LiF)を、モリブデンボートを用いて 、蒸着速度 0. 07nm/秒、真空度 2. 2 X 10_6Torr (約 3. 0 X 10_4Pa)で、 0. 5nm の膜厚で電子輸送層 7の上に製膜した。次に、陰極 6としてアルミニウムを同様にモリ ブデンボートにより加熱して、蒸着速度 0. 3nmZ秒、真空度 4. 3 X 10_6Torr (約 5 . 6 X 10_4Pa)で膜厚 80nmのアルミニウム層を形成して陰極 6を完成させた。以上 の陰極バッファ層 10及び陰極 6の蒸着時の基板温度は室温に保持した。 [0270] Next, as the cathode buffer layer 10, lithium fluoride (LiF) was deposited using a molybdenum boat, the deposition rate was 0.07 nm / second, and the degree of vacuum was 2.2 X 10 _6 Torr (about 3.0 X 10 _4 Pa) was deposited on the electron transport layer 7 with a thickness of 0.5 nm. Next, aluminum is similarly heated as a cathode 6 by a molybdenum den boat, and an aluminum layer having a film thickness of 80 nm is deposited at a deposition rate of 0.3 nm Z seconds and a vacuum of 4.3 X 10 _6 Torr (approximately 5.6 X 10 _4 Pa) Thus, the cathode 6 was completed. The substrate temperature during deposition of the cathode buffer layer 10 and the cathode 6 was kept at room temperature.
[0271] 以上の様にして、 2mm X 2mmのサイズの発光面積部分を有する有機電界発光素 子が得られた。  [0271] As described above, an organic electroluminescent element having a light emitting area portion of 2 mm X 2 mm in size was obtained.
この素子の発光特性は表 4に示す通りであった。  The light emission characteristics of this device were as shown in Table 4.
素子の発光スペクトルのピーク波長は 470nmであり、イリジウム錯体(D—1)力 の ものと同定された。  The peak wavelength of the emission spectrum of the device was 470 nm, and it was identified as having iridium complex (D-1) power.
[0272] [実施例 3 :有機電界発光素子の製造'評価] [0272] [Example 3: Production of organic electroluminescent device 'evaluation]
イリジウム錯体 (D- 1)の代わりに下記構造式のイリジウム錯体 (D- 2)を用いた以 外は、実施例 1と同様に有機電界発光素子を作製した。  An organic electroluminescent device was produced in the same manner as in Example 1 except that an iridium complex (D-2) having the following structural formula was used instead of the iridium complex (D-1).
この素子の発光特性は表 4に示す通りであった。  The light emission characteristics of this device were as shown in Table 4.
[0273] [化 52] [0273] [Chemical 52]
Figure imgf000078_0001
Figure imgf000078_0001
D - 2  D-2
[0274] 素子の発光スペクトルの極大波長は 512nmであり、イリジウム錯体(D— 2)力ものも のと同定された。発光の CIE色度は(0. 295, 0. 616)であった。  [0274] The maximum wavelength of the emission spectrum of the device was 512 nm, and it was identified as having an iridium complex (D-2) force. The CIE chromaticity of luminescence was (0.295, 0.616).
[0275] [表 4] 輝度 Z電流 電圧 発光効率 [0275] [Table 4] Luminance Z Current Voltage Luminous efficiency
イリジウム  Iridium
例 [cd/A] [V] [1 m/w] 錯体の種類  Example [cd / A] [V] [1 m / w] Complex type
@100cd/m2 @100cd/m2 帽 Ocd/m2 実施例 2 D-1 4.9 10.0 1.6 実施例 3 D-2 13.9 1 1.2 3.9 @ 100cd / m 2 @ 100cd / m 2 cap Ocd / m 2 Example 2 D-1 4.9 10.0 1.6 Example 3 D-2 13.9 1 1.2 3.9
[0276] 表 4より明らかなように、本発明の炭化水素化合物 (1—1)を発光材料のホスト材料 として用いた有機電界発光素子は、電荷輸送性に優れ、容易には結晶化しないため 、均一な発光が得られ、発光効率が高ぐ低い電圧で駆動可能であった。 As is apparent from Table 4, the organic electroluminescent device using the hydrocarbon compound (1-1) of the present invention as the host material of the luminescent material is excellent in charge transporting property and is not easily crystallized. Thus, uniform light emission was obtained, and it was possible to drive at a low voltage with high light emission efficiency.
[0277] [実施例 4 :有機電界発光素子の製造]  [0277] [Example 4: Production of organic electroluminescent device]
図 9に示す構造を有する有機電界発光素子を以下の方法で作製した。 ガラス基板 1の上にインジウム'スズ酸ィ匕物 (ITO)透明導電膜 2を 150nm堆積した もの (スパッター成膜品;シート抵抗 15 Ω )を通常のフォトリソグラフィ技術と塩酸エツ チングを用いて 2mm幅のストライプにパターユングして陽極を形成した。パターン形 成した ITO基板を、アセトンによる超音波洗浄、純水による水洗、イソプロピルアルコ ールによる超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン 洗浄を行った。  An organic electroluminescent device having the structure shown in FIG. 9 was produced by the following method. An indium stannate oxide (ITO) transparent conductive film 2 deposited on a glass substrate 1 with a thickness of 150 nm (sputtered film; sheet resistance 15 Ω) is 2 mm using normal photolithography and hydrochloric acid etching. The anode was formed by patterning into stripes of width. The patterned ITO substrate was cleaned in the order of ultrasonic cleaning with acetone, water with pure water, and ultrasonic cleaning with isopropyl alcohol, then dried with nitrogen blow, and finally UV ozone cleaning.
[0278] 正孔注入層 3の材料として、実施例 2で用いた芳香族アミノ基を有する非共役系高 分子化合物 (PB— 1)と電子受容性化合物 (A— 2)を用い、実施例 2と同様の条件で スピンコートして、膜厚 30nmの均一な薄膜を形成した。  [0278] As the material for the hole injection layer 3, the non-conjugated high molecular compound (PB-1) and the electron accepting compound (A-2) having an aromatic amino group used in Example 2 were used. Spin coating was performed under the same conditions as in 2 to form a uniform thin film with a thickness of 30 nm.
[0279] 次に正孔注入層 3を成膜した基板を真空蒸着装置内に設置した。上記装置の粗排 気を油回転ポンプにより行った後、装置内の真空度が約 3. 0 X 10_4Pa以下になる までクライオポンプを用いて排気した。上記装置内に配置されたセラミックるつぼに入 れた、下記に示すァリールアミンィ匕合物(EB— 1)をるつぼの周囲のタンタル線ヒータ 一で加熱して蒸着を行った。蒸着時の真空度 2. 4 X 10_4Pa、蒸着速度は 0. lnm Z秒で膜厚 30nmの電子阻止層 9を得た。 [0279] Next, the substrate on which the hole injection layer 3 was formed was placed in a vacuum evaporation apparatus. After the crude exhaust of the above device was performed by an oil rotary pump, the device was evacuated using a cryopump until the degree of vacuum in the device was about 3.0 X 10 _4 Pa or less. Deposition was carried out by heating the arylamine compound (EB-1) shown below, which was placed in a ceramic crucible arranged in the above apparatus, with a tantalum wire heater around the crucible. The degree of vacuum at the time of deposition was 2.4 X 10 _4 Pa, the deposition rate was 0.1 nm Z seconds, and an electron blocking layer 9 having a thickness of 30 nm was obtained.
[0280] [化 53] [0280] [Chemical 53]
Figure imgf000080_0001
Figure imgf000080_0001
[0281] 引続き、発光層 4の主成分 (ホスト材料)として下記に示すィ匕合物 (H—l)を、副成 分 (ドーパント)として前記有機イリジウム錯体 (D- 1)を、別々のセラミックるつぼに設 置し、 2元同時蒸着法により成膜を行った。  [0281] Subsequently, the compound (H—l) shown below as the main component (host material) of the light-emitting layer 4 and the organic iridium complex (D-1) as a subcomponent (dopant) were separately used. The film was placed in a ceramic crucible and deposited by the binary simultaneous vapor deposition method.
[0282] [化 54]  [0282] [Chemical 54]
Figure imgf000080_0002
化合物 (H— 1)の蒸着速度は 0. InmZ秒に、イリジウム錯体 (D— 1)のるつぼ温 度は 251〜254°C、蒸着速度は 0. 008nmZ秒にそれぞれ制御し、膜厚 30nmでィ リジゥム錯体 (D—1)が 7重量%含有された発光層 4を電子阻止層 9の上に積層した 。蒸着時の真空度は 2. 0 X 10_4Paであった。
Figure imgf000080_0002
The deposition rate of compound (H-1) was controlled at 0. InmZ seconds, the crucible temperature of iridium complex (D-1) was controlled at 251 to 254 ° C, the deposition rate was controlled at 0.008 nmZ seconds, and the film thickness was 30 nm. The light emitting layer 4 containing 7% by weight of the lysium complex (D-1) was laminated on the electron blocking layer 9 . The degree of vacuum during the deposition was 2.0 X 10 _4 Pa.
[0284] さらに、正孔阻止層 8として本発明の炭化水素化合物(1—1)をるつぼ温度 449〜4 52°Cとして、蒸着速度 0. InmZ秒で 5nmの膜厚で積層した。蒸着時の真空度は 1 . 8 X 10_4Paであった。 [0284] Further, the hydrocarbon compound (1-1) of the present invention was laminated as a hole blocking layer 8 at a crucible temperature of 449 to 452 ° C with a deposition rate of 0. InmZ seconds and a film thickness of 5 nm. The degree of vacuum at the time of deposition was 1.8 X 10 _4 Pa.
[0285] 正孔阻止層 8の上に、電子輸送層 7として前記アルミニウムの 8—ヒドロキシキノリン 錯体 (ET— 1)を同様にして蒸着した。この時のアルミニウムの 8—ヒドロキシキノリン 錯体のるつぼ温度は 239〜244°Cの範囲で制御し、蒸着時の真空度は 1. 5 X 10"4 Pa、蒸着速度は 0. InmZ秒で膜厚は 15nmとした。 On the hole blocking layer 8, the aluminum 8-hydroxyquinoline complex (ET-1) was deposited as the electron transport layer 7 in the same manner. At this time, the crucible temperature of the aluminum 8-hydroxyquinoline complex is controlled in the range of 239 to 244 ° C, the vacuum during deposition is 1.5 X 10 " 4 Pa, and the deposition rate is 0. InmZ seconds. Was 15 nm.
[0286] 上記の電子阻止層 9、発光層 4、正孔阻止層 8及び電子輸送層 7を真空蒸着する 時の基板温度は室温に保持した。  [0286] The substrate temperature during vacuum deposition of the electron blocking layer 9, the light emitting layer 4, the hole blocking layer 8 and the electron transporting layer 7 was kept at room temperature.
[0287] ここで、電子輸送層 7までの蒸着を行った素子を一度前記真空蒸着装置内より大 気中に取り出して、陰極蒸着用のマスクとして 2mm幅のストライプ状シャドーマスクを 、陽極 2の ITOストライプとは直交するように素子に密着させて、別の真空蒸着装置 内に設置して有機層と同様にして装置内の真空度が 2. O X 10_4Pa以下になるまで 排気した。陰極バッファ層 10として、先ず、フッ化リチウム (LiF)をモリブデンボートを 用いて、蒸着速度 0. OlnmZ秒、真空度 4. 7 X 10_5Paで、 0. 5nmの膜厚で電子 輸送層 7の上に成膜した。次に、陰極 6として、アルミニウムを同様にモリブデンボート により加熱して、蒸着速度 0. 4nmZ秒、真空度 2. 5 X 10_4Paで膜厚 80nmのアル ミニゥム層を積層した。以上の陰極バッファ層 10及び陰極 6の蒸着時の基板温度は 室温に保持した。 [0287] Here, the element on which the electron transport layer 7 has been deposited is once taken out from the vacuum deposition apparatus into the atmosphere, and a 2 mm wide striped shadow mask is used as the cathode deposition mask. The device was in close contact with the ITO stripe so as to be perpendicular to the ITO stripe, placed in a separate vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus was 2. OX 10 _4 Pa or less in the same manner as the organic layer. As the cathode buffer layer 10, first, lithium fluoride (LiF) was deposited using a molybdenum boat, the deposition rate was 0.5 OlnmZ seconds, the degree of vacuum was 4.7 X 10 _5 Pa, and the thickness of the electron transport layer was 7 nm. A film was formed on the substrate. Next, as the cathode 6, aluminum was heated in the same molybdenum boat, deposition rate 0. 4NmZ sec, were laminated al Miniumu layer having a thickness of 80nm in vacuum 2. 5 X 10 _4 Pa. The substrate temperature during deposition of the cathode buffer layer 10 and the cathode 6 was kept at room temperature.
[0288] 以上の様にして、 2mm X 2mmのサイズの発光面積部分を有する有機電界発光素 子が得られた。  [0288] As described above, an organic electroluminescent element having a light emitting area portion of 2 mm x 2 mm in size was obtained.
[0289] [実施例 5 :有機電界発光素子の製造] [Example 5: Production of organic electroluminescence device]
図 9に示す構造を有する有機電界発光素子を作製した。電子輸送層 7の膜厚を 30 nmとした以外は実施例 4と同様にして、 2mm X 2mmのサイズの発光面積部分を有 する有機電界発光素子を得た。  An organic electroluminescent device having the structure shown in FIG. 9 was produced. An organic electroluminescence device having a light emitting area portion of 2 mm × 2 mm in size was obtained in the same manner as in Example 4 except that the thickness of the electron transport layer 7 was changed to 30 nm.
[0290] [実施例 6 :有機電界発光素子の製造] [0290] [Example 6: Production of organic electroluminescence device]
図 9に示す構造を有する有機電界発光素子を作製した。電子輸送層 7として下記 に示す (ET— 2)をるつぼ温度を 190〜191°Cとして、蒸着速度 0. InmZ秒で 5nm の膜厚で積層した以外は、実施例 4と同様にして、 2mm X 2mmのサイズの発光面 積部分を有する有機電界発光素子を得た。 An organic electroluminescent device having the structure shown in FIG. 9 was produced. As electron transport layer 7 (ET-2) as shown in Table 2 with a crucible temperature of 190 to 191 ° C and a deposition rate of 0. InmZ seconds and a thickness of 5 nm. An organic electroluminescent element having an area portion was obtained.
[0291] [化 55] [0291] [Chemical 55]
Figure imgf000082_0001
Figure imgf000082_0001
( E T - 2 ) (E T-2)
[0292] [実施例 7 :有機電界発光素子の製造] [Example 7: Production of organic electroluminescence device]
図 9に示す構造を有する有機電界発光素子を作製した。電子輸送層 7に使用した 材料を上記化合物 (ET—2)とした以外は実施例 5と同様にして、 2mm X 2mmのサ ィズの発光面積部分を有する有機電界発光素子を得た。  An organic electroluminescent device having the structure shown in FIG. 9 was produced. An organic electroluminescent device having a light emitting area portion of 2 mm × 2 mm in size was obtained in the same manner as in Example 5 except that the material used for the electron transport layer 7 was the above compound (ET-2).
[0293] [実施例 8 :有機電界発光素子の製造]  [Example 8: Production of organic electroluminescence device]
図 9に示す構造を有する有機電界発光素子を作製した。正孔阻止層 8の膜厚を 10 nmとした以外は実施例 7と同様にして、 2mm X 2mmのサイズの発光面積部分を有 する有機電界発光素子を得た。  An organic electroluminescent device having the structure shown in FIG. 9 was produced. An organic electroluminescence device having an emission area portion of 2 mm × 2 mm in size was obtained in the same manner as in Example 7 except that the thickness of the hole blocking layer 8 was changed to 10 nm.
[0294] [実施例 9 :有機電界発光素子の製造] [Example 9: Production of organic electroluminescent device]
図 9に示す構造を有する有機電界発光素子を作製した。電子輸送層 7として下記 に示す化合物 (ET— 3)をるつぼ温度を 222〜225°Cとして、蒸着速度 0. InmZ秒 で 5nmの膜厚で積層した以外は実施例 7と同様にして、 2mm X 2mmのサイズの発 光面積部分を有する有機電界発光素子を得た。  An organic electroluminescent device having the structure shown in FIG. 9 was produced. The compound (ET-3) shown below as the electron transport layer 7 was formed in the same manner as in Example 7 except that the crucible temperature was 222 to 225 ° C, the deposition rate was 0. InmZ seconds, and the film thickness was 5 nm. An organic electroluminescent element having a light emitting area portion of X 2 mm in size was obtained.
[0295] [化 56] [0295] [Chemical 56]
Figure imgf000083_0001
Figure imgf000083_0001
( E T - 3 ) (E T-3)
[0296] [実施例 10 :有機電界発光素子の製造] [Example 10: Production of organic electroluminescence device]
図 9に示す構造を有する有機電界発光素子を作製した。正孔阻止層 8の膜厚を 10 nmとした以外は実施例 9と同様にして、 2mm X 2mmのサイズの発光面積部分を有 する有機電界発光素子を得た。  An organic electroluminescent device having the structure shown in FIG. 9 was produced. An organic electroluminescent device having a light emitting area portion of 2 mm × 2 mm in size was obtained in the same manner as in Example 9 except that the thickness of the hole blocking layer 8 was changed to 10 nm.
[0297] [実施例 11 :有機電界発光素子の製造]  [Example 11: Production of organic electroluminescent device]
図 9に示す構造を有する有機電界発光素子を作製した。実施例 4〜 11と同様にし て、電子阻止層 9までの各層を形成した。次に、発光層 4の主成分 (ホスト材料)として 化合物 (H— 1)及び本発明の炭化水素化合物 (I 1)を、副成分 (ドーパント)として 有機イリジウム錯体 (D—1)を、別々のセラミックるつぼに設置し、 3元同時蒸着法に より成膜を行った。化合物 (H— 1)の蒸着速度は 0. 05nmZ秒に、化合物(I— 1)の るつぼ温度は 376〜382°C、蒸着速度は 0. 05nmZ秒に、イリジウム錯体(D—1) のるつぼ温度は 251〜254°C、蒸着速度は 0. 008nmZ秒にそれぞれ制御し、膜厚 30nmでイリジウム錯体 (D— 1)が 7重量%含有された発光層 4を電子阻止層 9の上 に積層した。蒸着時の真空度は 9. 4 X 10_5Paであった。 An organic electroluminescent device having the structure shown in FIG. 9 was produced. In the same manner as in Examples 4 to 11, layers up to the electron blocking layer 9 were formed. Next, the compound (H-1) and the hydrocarbon compound (I 1) of the present invention are used as the main component (host material) of the light-emitting layer 4, and the organic iridium complex (D-1) is separately used as the subcomponent (dopant). The film was placed in a ceramic crucible and deposited by the ternary co-evaporation method. The deposition rate of compound (H-1) is 0.05 nmZ seconds, the crucible temperature of compound (I-1) is 376-382 ° C, the deposition rate is 0.05 nmZ seconds, and the crucible of iridium complex (D-1). The temperature was controlled at 251 to 254 ° C, the deposition rate was controlled at 0.008 nmZ seconds, and a light-emitting layer 4 containing 30% by weight of iridium complex (D-1) was laminated on the electron blocking layer 9 did. The degree of vacuum during the deposition was 9.4 × 10 _5 Pa.
[0298] 引き続き、正孔阻止層 8として化合物(ET— 2)をるつぼ温度を 225〜226°Cとして 、蒸着速度 0. InmZ秒で 5nmの膜厚で積層した。蒸着時の真空度は 6. 8 X 10"5 Paであった。 [0298] Subsequently, the compound (ET-2) was laminated as the hole blocking layer 8 at a crucible temperature of 225 to 226 ° C and a film thickness of 5 nm at a deposition rate of 0. InmZ seconds. The degree of vacuum during deposition was 6.8 X 10 " 5 Pa.
この正孔阻止層 8の上に、電子輸送層 7として化合物 (ET— 1)を同様にして蒸着し た。この時の化合物(ET— 1)のるつぼ温度は 235〜238°Cの範囲で制御し、蒸着 時の真空度は 6. 4 X 10_5Pa、蒸着速度は 0. InmZ秒で膜厚は 15nmとした。 On this hole blocking layer 8, a compound (ET-1) is deposited in the same manner as the electron transport layer 7. It was. The crucible temperature of the compound (ET- 1) of time controlled in the range of 235-238 ° C, vacuum degree during vapor deposition is 6. 4 X 10 _5 Pa, 15nm film thickness deposition rate is 0. InmZ seconds It was.
[0299] 上記の電子阻止層 9、発光層 4、正孔阻止層 8及び電子輸送層 7を真空蒸着する 時の基板温度は室温に保持した。 [0299] The substrate temperature during vacuum deposition of the electron blocking layer 9, the light emitting layer 4, the hole blocking layer 8 and the electron transport layer 7 was kept at room temperature.
[0300] 最後に、実施例 4〜11と同様にして、陰極バッファ層 10及び陰極 6を形成すること により、 2mm X 2mmのサイズの発光面積部分を有する有機電界発光素子を得た。 [0300] Finally, by forming the cathode buffer layer 10 and the cathode 6 in the same manner as in Examples 4 to 11, an organic electroluminescent device having a light emitting area portion of 2 mm X 2 mm in size was obtained.
[0301] [実施例 12 :有機電界発光素子の製造] [0301] [Example 12: Production of organic electroluminescent device]
図 9に示す構造を有する有機電界発光素子を作製した。電子輸送層 7の膜厚を 30 nmとした以外は実施例 11と同様にして、 2mm X 2mmのサイズの発光面積部分を 有する有機電界発光素子を得た。  An organic electroluminescent device having the structure shown in FIG. 9 was produced. An organic electroluminescent element having a light emitting area of 2 mm × 2 mm in size was obtained in the same manner as in Example 11 except that the thickness of the electron transport layer 7 was changed to 30 nm.
[0302] [実施例 13 :有機電界発光素子の製造] [0302] [Example 13: Production of organic electroluminescence device]
図 9に示す構造を有する有機電界発光素子を作製した。発光層 4の上に正孔阻止 層 8を積層しないこと以外は実施例 11と同様にして、 2mm X 2mmのサイズの発光 面積部分を有する有機電界発光素子を得た。  An organic electroluminescent device having the structure shown in FIG. 9 was produced. An organic electroluminescent device having a light emitting area portion of 2 mm × 2 mm in size was obtained in the same manner as in Example 11 except that the hole blocking layer 8 was not laminated on the light emitting layer 4.
[0303] [実施例 14 :有機電界発光素子の製造] [0303] [Example 14: Production of organic electroluminescence device]
図 9に示す構造を有する有機電界発光素子を作製した。発光層 4の上に正孔阻止 層 8を積層しないこと以外は実施例 12と同様にして、 2mm X 2mmのサイズの発光 面積部分を有する有機電界発光素子を得た。  An organic electroluminescent device having the structure shown in FIG. 9 was produced. An organic electroluminescent element having a light emitting area portion of 2 mm × 2 mm in size was obtained in the same manner as in Example 12 except that the hole blocking layer 8 was not laminated on the light emitting layer 4.
[0304] [実施例 15 :有機電界発光素子の製造] [0304] [Example 15: Production of organic electroluminescence device]
図 9に示す構造を有する有機電界発光素子を作製した。実施例 4〜14と同様に、 電子阻止層 9までの各層を形成した。  An organic electroluminescent device having the structure shown in FIG. 9 was produced. In the same manner as in Examples 4 to 14, each layer up to the electron blocking layer 9 was formed.
[0305] 引続き、発光層 4を更に 2層の積層構造として蒸着した。まず第 1層として、主成分( ホスト材料)として化合物 (H— 1)を、副成分 (ドーパント)として有機イリジウム錯体 (D[0305] Subsequently, the light emitting layer 4 was further vapor-deposited as a laminated structure of two layers. First, as the first layer, the compound (H-1) as the main component (host material) and the organic iridium complex (D
— 1)を、別々のセラミックるつぼに設置し、 2元同時蒸着法により成膜を行った。 化合物 (H— 1)の蒸着速度は 0. InmZ秒に、イリジウム錯体 (D— 1)のるつぼ温 度は 255〜256°C、蒸着速度は 0. 008nmZ秒にそれぞれ制御し、膜厚 20nmでィ リジゥム錯体 (D— 1)が 7重量%含有された発光層 4の第 1層を電子阻止層 9の上に 積層した。蒸着時の真空度は 2. 3 X 10_4Paであった。 [0306] 次いで、発光層 4の第 2層として、主成分 (ホスト材料)として本発明の化合物 (1—1 )を、副成分 (ドーパント)として有機イリジウム錯体 (D—1)を、別々のセラミックるつぼ に設置し、 2元同時蒸着法により成膜を行った。 — 1) was placed in a separate ceramic crucible and deposited by the binary co-evaporation method. The deposition rate of the compound (H-1) was controlled at 0. InmZ seconds, the crucible temperature of the iridium complex (D-1) was controlled at 255-256 ° C, and the deposition rate was controlled at 0.008 nmZ seconds. The first layer of the light-emitting layer 4 containing 7% by weight of the iridium complex (D-1) was laminated on the electron blocking layer 9. The degree of vacuum during deposition was 2.3 X 10 _4 Pa. [0306] Next, as the second layer of the light-emitting layer 4, the compound (1-1) of the present invention is used as the main component (host material), and the organic iridium complex (D-1) is used as the subcomponent (dopant). The film was placed in a ceramic crucible and deposited by the binary simultaneous vapor deposition method.
化合物 (I— 1)のるつぼ温度は 396〜397°C、蒸着速度は 0. InmZ秒に、イリジゥ ム錯体(D— 1)のるつぼ温度は 256〜257°C、蒸着速度は 0. 008nmZ秒にそれぞ れ制御し、膜厚 lOnmでイリジウム錯体 (D—1)が 7重量%含有された発光層 4の第 2 層を発光層 4の第 1層の上に積層した。蒸着時の真空度は 2. 1 X 10_4Paであった。 The crucible temperature of compound (I-1) is 396-397 ° C, the deposition rate is 0. InmZ seconds, the crucible temperature of iridium complex (D-1) is 256-257 ° C, the deposition rate is 0.008 nmZ seconds. The second layer of the light emitting layer 4 having a thickness of lOnm and containing 7% by weight of iridium complex (D-1) was laminated on the first layer of the light emitting layer 4. The degree of vacuum during deposition was 2.1 X 10 _4 Pa.
[0307] 引き続き、正孔阻止層 8として化合物(ET— 2)をるつぼ温度を 225〜226°Cとして 、蒸着速度 0. InmZ秒で 5nmの膜厚で積層した。蒸着時の真空度は 1. 6 X 10"4 Paであった。 Subsequently, a compound (ET-2) was laminated as a hole blocking layer 8 at a crucible temperature of 225 to 226 ° C. and a film thickness of 5 nm at a deposition rate of 0. InmZ seconds. The degree of vacuum during deposition was 1.6 X 10 " 4 Pa.
[0308] 正孔阻止層 8の上に、電子輸送層 7として化合物 (ET— 1)を同様にして蒸着した。  [0308] On the hole blocking layer 8, a compound (ET-1) was deposited in the same manner as the electron transporting layer 7.
この時の化合物(ET— 1)のるつぼ温度は 233〜236°Cの範囲で制御し、蒸着時の 真空度は 1. 6 X 10_4Pa、蒸着速度は 0. InmZ秒で膜厚は 30nmとした。 The crucible temperature of the compound (ET-1) at this time is controlled in the range of 233 to 236 ° C, the degree of vacuum during deposition is 1.6 X 10 _4 Pa, the deposition rate is 0. InmZ seconds, and the film thickness is 30 nm. It was.
[0309] 上記の電子阻止層 9、発光層 4、正孔阻止層 8及び電子輸送層 7を真空蒸着する 時の基板温度は室温に保持した。  [0309] The substrate temperature during vacuum deposition of the electron blocking layer 9, the light emitting layer 4, the hole blocking layer 8, and the electron transport layer 7 was kept at room temperature.
[0310] 最後に、実施例 4〜14と同様にして、陰極バッファ層 10及び陰極 6を形成すること により、 2mm X 2mmのサイズの発光面積部分を有する有機電界発光素子を得た。  [0310] Finally, by forming the cathode buffer layer 10 and the cathode 6 in the same manner as in Examples 4 to 14, an organic electroluminescent device having a light emitting area portion of 2 mm X 2 mm in size was obtained.
[0311] [実施例 16 :有機電界発光素子の製造]  [0311] [Example 16: Production of organic electroluminescence device]
図 9に示す構造を有する有機電界発光素子を作製した。発光層 4を形成する際、 第 1層の膜厚を 10nm、第 2層の膜厚を 20nmとした以外は実施例 15と同様にして、 2mm X 2mmのサイズの発光面積部分を有する有機電界発光素子を得た。  An organic electroluminescent device having the structure shown in FIG. 9 was produced. When forming the light emitting layer 4, an organic electric field having a light emitting area portion of 2 mm × 2 mm in the same manner as in Example 15 except that the film thickness of the first layer was 10 nm and the film thickness of the second layer was 20 nm. A light emitting device was obtained.
[0312] [実施例 17 :有機電界発光素子の製造]  [0312] [Example 17: Production of organic electroluminescence device]
図 9に示す構造を有する有機電界発光素子を作製した。発光層 4の上に正孔阻止 層 8を積層しないこと以外は実施例 15と同様にして、 2mm X 2mmのサイズの発光 面積部分を有する有機電界発光素子を得た。  An organic electroluminescent device having the structure shown in FIG. 9 was produced. An organic electroluminescent device having a light emitting area portion of 2 mm × 2 mm in size was obtained in the same manner as in Example 15 except that the hole blocking layer 8 was not laminated on the light emitting layer 4.
[0313] [実施例 18 :有機電界発光素子の製造]  [0313] [Example 18: Production of organic electroluminescent device]
図 9に示す構造を有する有機電界発光素子を作製した。発光層 4の上に正孔阻止 層 8を積層しないこと以外は実施例 16と同様にして、 2mm X 2mmのサイズの発光 面積部分を有する有機電界発光素子を得た。 An organic electroluminescent device having the structure shown in FIG. 9 was produced. Emission of 2 mm x 2 mm in size as in Example 16 except that the hole blocking layer 8 is not laminated on the light emitting layer 4 An organic electroluminescent element having an area portion was obtained.
[0314] [実施例 19 :有機電界発光素子の製造]  [Example 19: Production of organic electroluminescent device]
図 9に示す構造を有する有機電界発光素子を作製した。実施例 4と同様にして、電 子阻止層 9までの各層を形成した後、発光層 4を以下の通り形成した。発光層 4の主 成分 (ホスト材料)として本発明の化合物 (1—1)を、副成分 (ドーパント)として実施例 3で用いた有機イリジウム錯体 (D— 2)を、別々のセラミックるつぼに設置し、 2元同時 蒸着法により成膜を行った。  An organic electroluminescent device having the structure shown in FIG. 9 was produced. In the same manner as in Example 4, after forming each layer up to the electron blocking layer 9, the light emitting layer 4 was formed as follows. Install the compound (1-1) of the present invention as the main component (host material) of the light-emitting layer 4 and the organic iridium complex (D-2) used in Example 3 as a subcomponent (dopant) in separate ceramic crucibles. Then, the film was formed by the binary simultaneous vapor deposition method.
[0315] 化合物 (1—1)の蒸着速度は 0. 08nmZ秒に、イリジウム錯体 (D— 2)の蒸着速度 は 0. 005nm/秒にそれぞれ制御し、膜厚 32nmでイリジウム錯体 (D— 2)が 6重量 %含有された発光層 4を成膜した。このとき化合物 (1—1)のるつぼの温度は 396〜4 36°C、イリジウム錯体(D— 2)のるつぼの温度は 271〜273°C、真空度は 1. 2 X 10 _4Paであった。 [0315] The deposition rate of compound (1-1) was controlled at 0.08 nmZ seconds, and the deposition rate of iridium complex (D-2) was controlled at 0.005 nm / second, respectively. Is formed into a light emitting layer 4 containing 6% by weight. At this time, the temperature of the crucible of the compound (1-1) is 396 ~ 4 36 ° C, the temperature of the crucible of the iridium complex (D-2) is 271 ~ 273 ° C, and the vacuum is 1.2 X 10 _ 4 Pa there were.
[0316] 次に、正孔阻止層 8として前記ピリジン誘導体 (HB— 1)を蒸着速度 0. 09nm/ で 5nmの厚さに成膜した。このときのピリジン誘導体(HB— 1)のるつぼの温度は 26 2〜264°C、真空度は 1. O X 10_4Paであった。 Next, the pyridine derivative (HB-1) was deposited as a hole blocking layer 8 to a thickness of 5 nm at a deposition rate of 0.09 nm /. At this time, the temperature of the crucible of the pyridine derivative (HB-1) was 26 2 to 264 ° C., and the degree of vacuum was 1. OX 10 _4 Pa.
[0317] 上記の発光層 4及び正孔阻止層 8を真空蒸着する時の基板温度は室温に保持し た。  [0317] The substrate temperature during vacuum deposition of the light emitting layer 4 and the hole blocking layer 8 was maintained at room temperature.
[0318] 引き続き、実施例 4と同様にして、電子輸送層 7、陰極バッファ層 10及び陰極 6を形 成することにより、 2mm X 2mmのサイズの発光面積部分を有する有機電界発光素 子を得た。  [0318] Subsequently, by forming the electron transport layer 7, the cathode buffer layer 10, and the cathode 6 in the same manner as in Example 4, an organic electroluminescent element having a light emitting area portion of 2 mm X 2 mm in size was obtained. It was.
[0319] [実施例 20 :有機電界発光素子の製造]  [0319] [Example 20: Production of organic electroluminescent device]
図 9に示す構造を有する有機電界発光素子を作製した。実施例 4と同様にして、電 子阻止層 9までの各層を形成した後、発光層 4を以下の通り形成した。発光層 4の主 成分 (ホスト材料)として合成例 3で合成した本発明の炭化水素化合物 (1— 3)を、副 成分 (ドーパント)として有機イリジウム錯体 (D - 2)を、別々のセラミックるつぼに設置 し、 2元同時蒸着法により成膜を行った。  An organic electroluminescent device having the structure shown in FIG. 9 was produced. In the same manner as in Example 4, after forming each layer up to the electron blocking layer 9, the light emitting layer 4 was formed as follows. The hydrocarbon component (1-3) of the present invention synthesized in Synthesis Example 3 as the main component (host material) of the light emitting layer 4, the organic iridium complex (D-2) as the subcomponent (dopant), and separate ceramic crucibles. The film was deposited by the binary co-evaporation method.
[0320] [化 57] [0320] [Chemical 57]
Figure imgf000087_0001
Figure imgf000087_0001
1 - 3  13
[0321] 化合物 (1— 3)の蒸着速度は 0. InmZ秒に、イリジウム錯体 (D— 2)の蒸着速度は 0. 006nmZ秒にそれぞれ制御し、膜厚 32nmでイリジウム錯体 (D— 2)が 6重量% 含有された発光層 4を成膜した。このときイリジウム錯体 (D— 2)のるつぼの温度は 27 2〜275°C、真空度は 1. 1 X 10_4Paであった。 [0321] The deposition rate of compound (1-3) was controlled at 0. InmZ seconds and the deposition rate of iridium complex (D-2) was controlled at 0.006 nmZ seconds, respectively, and the iridium complex (D-2) at a film thickness of 32 nm. A light emitting layer 4 containing 6 wt% was formed. Temperature of the crucible at this time iridium complex (D-2) is 27 2~275 ° C, vacuum degree: 1. was 1 X 10 _4 Pa.
[0322] 次に、正孔阻止層 8としてピリジン誘導体 (HB— 1)を蒸着速度 0. 09nmZ秒で 5n m成膜した。このときの(HB—1)のるつぼの温度は 262〜264°C、真空度は 1. O X 10_4Paであった。 Next, a 5 nm film of pyridine derivative (HB-1) was deposited as the hole blocking layer 8 at a deposition rate of 0.09 nmZ seconds. At this time, the temperature of the crucible (HB-1) was 262 to 264 ° C, and the degree of vacuum was 1. OX 10 _4 Pa.
上記の発光層 4及び正孔阻止層 8を真空蒸着する時の基板温度は室温に保持し た。  The substrate temperature during vacuum deposition of the light emitting layer 4 and the hole blocking layer 8 was kept at room temperature.
[0323] 引き続き、実施例 4と同様にして、電子輸送層 7、陰極バッファ層 10及び陰極 6を形 成することにより、 2mm X 2mmのサイズの発光面積部分を有する有機電界発光素 子を得た。  [0323] Subsequently, by forming the electron transport layer 7, the cathode buffer layer 10, and the cathode 6 in the same manner as in Example 4, an organic electroluminescent element having a light emitting area portion of 2 mm x 2 mm in size was obtained. It was.
[0324] [実施例 21 :有機電界発光素子の製造]  [0324] [Example 21: Production of organic electroluminescent device]
図 9に示す構造を有する有機電界発光素子を作製した。実施例 4と同様にして、正 孔注入層 3を形成した後、正孔注入層 3を成膜した基板を真空蒸着装置内に設置し た。上記装置の粗排気を油回転ポンプにより行った後、装置内の真空度が約 3. O X 10_4Pa以下になるまでクライオポンプを用いて排気した。上記装置内に配置された セラミックるつぼに入れた、下記に示すァリールアミンィ匕合物 (HT— 1)をるつぼの周 囲のタンタル線ヒーターで加熱して蒸着を行った。蒸着時の真空度 2. 4 X 10_5Pa、 蒸着速度は 0. InmZ秒で膜厚 40nmの電子阻止層 9を得た。このときのるつぼの温 度は 247〜263°C、真空度は 2. 4 X 10_5Paであった。 An organic electroluminescent device having the structure shown in FIG. 9 was produced. In the same manner as in Example 4, after the hole injection layer 3 was formed, the substrate on which the hole injection layer 3 was formed was placed in a vacuum evaporation apparatus. After rough exhaust of the above equipment with an oil rotary pump, the degree of vacuum in the equipment is about 3.OX Exhaust using a cryopump until 10 _4 Pa or less. Arylamine compound (HT-1) shown below, placed in a ceramic crucible placed in the above apparatus, was heated by a tantalum wire heater around the crucible for vapor deposition. Vacuum degree during vapor deposition 2. 4 X 10 _5 Pa, the deposition rate was obtained an electron blocking layer 9 having a thickness 40nm with 0. InmZ seconds. At this time, the temperature of the crucible was 247 to 263 ° C, and the degree of vacuum was 2.4 X 10 _5 Pa.
[0325] [化 58]  [0325] [Chemical 58]
Figure imgf000088_0001
Figure imgf000088_0001
H T - 1  H T-1
[0326] 次に、発光層 4の成膜を行った。発光層 4の主成分 (ホスト材料)として本発明の炭 化水素化合物 (1—1)を、副成分 (ドーパント)として有機イリジウム錯体 (D— 2)を、別 々のセラミックるつぼに設置し、 2元同時蒸着法により成膜を行った。 Next, the light emitting layer 4 was formed. The hydrocarbon compound (1-1) of the present invention as the main component (host material) of the light-emitting layer 4 and the organic iridium complex (D-2) as the subcomponent (dopant) are placed in separate ceramic crucibles, Film formation was performed by the two-component simultaneous vapor deposition method.
[0327] 化合物 (1—1)の蒸着速度は 0. 08nmZ秒に、イリジウム錯体 (D— 2)の蒸着速度 は 0. 005nm/秒にそれぞれ制御し、膜厚 32nmでイリジウム錯体 (D— 2)が 6重量 %含有された発光層 4を成膜した。このとき化合物 (1—1)のるつぼの温度は 333〜3 34°C、イリジウム錯体(D— 2)のるつぼの温度は 269〜271°C、真空度は 3. 5 X 10 _5Paであった。 [0327] The deposition rate of compound (1-1) was controlled at 0.08 nmZ seconds, and the deposition rate of iridium complex (D-2) was controlled at 0.005 nm / second, respectively. Is formed into a light emitting layer 4 containing 6% by weight. At this time, the temperature of the crucible of the compound (1-1) is 333 to 3 34 ° C, the temperature of the crucible of the iridium complex (D-2) is 269 to 271 ° C, and the degree of vacuum is 3.5 X 10 _ 5 Pa. there were.
[0328] 次 、で、正孔阻止層 8としてピリジン誘導体 (HB— 1)を蒸着速度 0. 09nmZ秒で 5nmの厚さに成膜した。このときのピリジン誘導体(HB— 1)のるつぼの温度は 239 〜242°C、真空度は 3. 1 X 10_5Paであった。 Next, a pyridine derivative (HB-1) was formed as a hole blocking layer 8 to a thickness of 5 nm at a deposition rate of 0.09 nmZ seconds. At this time, the temperature of the crucible of the pyridine derivative (HB-1) was 239 to 242 ° C., and the degree of vacuum was 3.1 × 10 _5 Pa.
上記の発光層 4及び正孔阻止層 8を真空蒸着する時の基板温度は室温に保持し た。  The substrate temperature during vacuum deposition of the light emitting layer 4 and the hole blocking layer 8 was kept at room temperature.
[0329] 引き続き、実施例 4と同様にして、電子輸送層 7、陰極バッファ層 10及び陰極 6を形 成することにより、 2mm X 2mmのサイズの発光面積部分を有する有機電界発光素 子を得た。 Subsequently, the electron transport layer 7, the cathode buffer layer 10, and the cathode 6 were formed in the same manner as in Example 4. As a result, an organic electroluminescent element having a light emitting area portion of 2 mm × 2 mm in size was obtained.
[0330] [実施例 22 :有機電界発光素子の製造]  [Example 22: Production of organic electroluminescent device]
図 9に示す構造を有する有機電界発光素子を作製した。実施例 4と同様にして、電 子阻止層 9までの各層を形成した後、発光層 4を以下の通り形成した。発光層 4の主 成分 (ホスト材料)として以下の力ルバゾール誘導体 (EM— 1)を、副成分 (ドーパント )として有機イリジウム錯体 (D— 2)を、別々のセラミックるつぼに設置し、 2元同時蒸 着法により成膜を行った。  An organic electroluminescent device having the structure shown in FIG. 9 was produced. In the same manner as in Example 4, after forming each layer up to the electron blocking layer 9, the light emitting layer 4 was formed as follows. The following power rubazole derivative (EM-1) as the main component (host material) of the light-emitting layer 4 and organic iridium complex (D-2) as the secondary component (dopant) are placed in separate ceramic crucibles, and two-way simultaneous Film formation was performed by the evaporation method.
[0331] [化 59]  [0331] [Chemical 59]
Figure imgf000089_0001
Figure imgf000089_0001
E M- 1  E M- 1
[0332] 化合物 (EM— 1)の蒸着速度は 0. 07nmZ秒に、イリジウム錯体 (D— 2)の蒸着速 度は 0. 004nmZ秒にそれぞれ制御し、膜厚 32nmでイリジウム錯体 (D— 2)が 6. 4 重量%含有された発光層 4を成膜した。このときイリジウム錯体 (D— 2)のるつぼの温 度は 243°C、真空度は 7. 1 X 10_5Paであった。 [0332] The deposition rate of the compound (EM-1) was controlled at 0.07 nmZ seconds and the deposition rate of the iridium complex (D-2) was controlled at 0.004 nmZ seconds. ) Was formed into a light-emitting layer 4 containing 6.4% by weight. At this time, the temperature of the crucible of the iridium complex (D-2) was 243 ° C, and the degree of vacuum was 7.1 X 10 _5 Pa.
[0333] 次に、正孔阻止層 8として本発明の炭化水素化合物 (1—1)を蒸着速度 0. 08nm Z秒で 5nm成膜した。このときの化合物(I 1)のるつぼの温度は 342〜357°C、真 空度は 6. 9 X 10_5Paであった。 [0333] Next, the hydrocarbon compound (1-1) of the present invention was deposited as a hole blocking layer 8 at a deposition rate of 0.08 nm Z seconds for 5 nm. Crucible temperature 342~357 ° C of the compounds of this time (I 1), was true Sorado is 6. 9 X 10 _5 Pa.
上記の発光層 4及び正孔阻止層 8を真空蒸着する時の基板温度は室温に保持し た。  The substrate temperature during vacuum deposition of the light emitting layer 4 and the hole blocking layer 8 was kept at room temperature.
[0334] 引き続き、実施例 4と同様にして、電子輸送層 7、陰極バッファ層 10及び陰極 6を形 成することにより、 2mm X 2mmのサイズの発光面積部分を有する有機電界発光素 子を得た。  [0334] Subsequently, by forming the electron transport layer 7, the cathode buffer layer 10, and the cathode 6 in the same manner as in Example 4, an organic electroluminescent device having a light emitting area portion of 2 mm x 2 mm in size was obtained. It was.
[0335] [実施例 23 :有機電界発光素子の製造] 図 9に示す構造を有する有機電界発光素子を作製した。実施例 4と同様にして、電 子阻止層 9までの各層を形成した後、発光層 4を以下の通り形成した。発光層 4の主 成分 (ホスト材料)として力ルバゾール誘導体 (EM— 1)を、副成分 (ドーパント)として 有機イリジウム錯体 (D— 2)を、別々のセラミックるつぼに設置し、 2元同時蒸着法に より成膜を行った。 [0335] [Example 23: Production of organic electroluminescent device] An organic electroluminescent device having the structure shown in FIG. 9 was produced. In the same manner as in Example 4, after forming each layer up to the electron blocking layer 9, the light emitting layer 4 was formed as follows. Power rubazole derivative (EM-1) as the main component (host material) of light-emitting layer 4 and organic iridium complex (D-2) as the secondary component (dopant) are installed in separate ceramic crucibles, and two-component simultaneous vapor deposition method The film was formed by.
[0336] 化合物 (EM— 1)の蒸着速度は 0. 07nmZ秒に、イリジウム錯体 (D— 2)の蒸着速 度は 0. 004nmZ秒にそれぞれ制御し、膜厚 32nmでイリジウム錯体 (D— 2)が 6. 4 重量%含有された発光層 4を成膜した。このときイリジウム錯体 (D— 2)のるつぼの温 度は 243°C、真空度は 7. 1 X 10_5Paであった。 [0336] The deposition rate of the compound (EM—1) was controlled at 0.07 nmZ seconds, and the deposition rate of the iridium complex (D—2) was controlled at 0.004 nmZ seconds. ) Was formed into a light-emitting layer 4 containing 6.4% by weight. At this time, the temperature of the crucible of the iridium complex (D-2) was 243 ° C, and the degree of vacuum was 7.1 X 10 _5 Pa.
[0337] 次に、正孔阻止層 8として合成例 2で合成した本発明の炭化水素化合物 (1— 2)を 蒸着速度 0. 08nmZ秒で 5nm成膜した。このときの化合物 (1— 2)のるつぼの温度 は 398〜405°C、真空度は 6. 5 X 10_5Paであった。 [0337] Next, the hydrocarbon compound (1-2) of the present invention synthesized in Synthesis Example 2 was deposited as a hole blocking layer 8 at a deposition rate of 0.08 nmZ seconds to a thickness of 5 nm. At this time, the temperature of the crucible of the compound (1-2) was 398 to 405 ° C., and the degree of vacuum was 6.5 × 10 _5 Pa.
[0338] [化 60]  [0338] [Chemical 60]
Figure imgf000090_0001
ェ一 2
Figure imgf000090_0001
2
[0339] 上記の発光層 4及び正孔阻止層 8を真空蒸着する時の基板温度は室温に保持し た。 [0339] The substrate temperature during vacuum deposition of the light emitting layer 4 and the hole blocking layer 8 was kept at room temperature.
[0340] 引き続き、実施例 4と同様にして、電子輸送層 7、陰極バッファ層 10及び陰極 6を形 成することにより、 2mm X 2mmのサイズの発光面積部分を有する有機電界発光素 子を得た。 [0340] Subsequently, by forming the electron transport layer 7, the cathode buffer layer 10, and the cathode 6 in the same manner as in Example 4, an organic electroluminescent element having a light emitting area portion of 2 mm x 2 mm in size was formed. I got a child.
[0341] [比較例 2 :有機電界発光素子の製造]  [0341] [Comparative Example 2: Production of organic electroluminescent device]
発光層 4の主成分として、以下に示す力ルバゾール誘導体 (EM— 1)を用いたこと 以外は、実施例 21と同様に素子を作製した。このときの発光層 4の成膜は、主成分 ( ホスト材料)として化合物 (EM— 1)を、副成分 (ドーパント)として有機イリジウム錯体 (D— 2)を、別々のセラミックるつぼに設置し、 2元同時蒸着法により成膜を行った。  A device was fabricated in the same manner as in Example 21 except that the following power rubazole derivative (EM-1) was used as the main component of the light-emitting layer 4. In this case, the light emitting layer 4 is formed by placing a compound (EM-1) as a main component (host material) and an organic iridium complex (D-2) as a subcomponent (dopant) in separate ceramic crucibles, Film formation was performed by the two-component simultaneous vapor deposition method.
[0342] [化 61]  [0342] [Chemical 61]
Figure imgf000091_0001
Figure imgf000091_0001
E M— 1  E M— 1
[0343] 化合物 (EM— 1)の蒸着速度は 0. 08nmZ秒に、イリジウム錯体 (D— 2)の蒸着速 度は 0. 005nm/秒にそれぞれ制御し、膜厚 32nmでイリジウム錯体 (D— 2)が 6重 量%含有された発光層 4を成膜した。このときイリジウム錯体 (D— 2)のるつぼの温度 は 261〜265°C、真空度は 1. 2 X 10_4Paであった。 [0343] The deposition rate of the compound (EM—1) was controlled at 0.08 nmZ seconds, and the deposition rate of the iridium complex (D—2) was controlled at 0.005 nm / sec. A light emitting layer 4 containing 6% by weight of 2) was formed. At this time, the temperature of the crucible of the iridium complex (D-2) was 261 to 265 ° C, and the degree of vacuum was 1.2 X 10 _4 Pa.
[0344] 次 、で、正孔阻止層 8としてピリジン誘導体 (HB— 1)を蒸着速度 0. 09nmZ秒でNext, a pyridine derivative (HB-1) was deposited as a hole blocking layer 8 at a deposition rate of 0.09 nmZ seconds.
5nm成膜した。このときのピリジン誘導体(HB— 1)のるつぼの温度は 239〜242°CA 5 nm film was formed. The temperature of the pyridine derivative (HB-1) crucible at this time is 239-242 ° C
、真空度は 3. 1 X 10_5Paであった。 The degree of vacuum was 3.1 X 10 _5 Pa.
[0345] 引き続き、実施例 21と同様にして、電子輸送層 7、陰極バッファ層 10及び陰極 6を 形成することにより、 2mm X 2mmのサイズの発光面積部分を有する有機電界発光 素子を得た。 Subsequently, in the same manner as in Example 21, by forming the electron transport layer 7, the cathode buffer layer 10, and the cathode 6, an organic electroluminescent device having a light emitting area portion of 2 mm × 2 mm in size was obtained.
[0346] [比較例 3 :有機電界発光素子の製造] [0346] [Comparative Example 3: Production of organic electroluminescent device]
発光層 4の主成分として、化合物 (C— 1)を用いたこと以外は、実施例 19と同様に 素子を作製した。このときの発光層 4の成膜は、主成分 (ホスト材料)として化合物 (C A device was produced in the same manner as in Example 19 except that the compound (C-1) was used as the main component of the light emitting layer 4. At this time, the light-emitting layer 4 is formed by using a compound (C
— 1)を、副成分 (ドーパント)として有機イリジウム錯体 (D— 2)を、別々のセラミックる つぼに設置し、 2元同時蒸着法により成膜を行った。 [0347] [化 62] — An organic iridium complex (D-2) as a secondary component (dopant) was placed in a separate ceramic crucible and a film was formed by binary co-evaporation. [0347] [Chemical 62]
Figure imgf000092_0001
Figure imgf000092_0001
[0348] 化合物(C— 1)の蒸着速度は 0. 08nmZ秒に、イリジウム錯体 (D— 2)の蒸着速度 は 0. 005nm/秒にそれぞれ制御し、膜厚 32nmでイリジウム錯体 (D— 2)が 6重量 %含有された発光層 4を成膜した。このとき化合物(C 1)のるつぼの温度は 331〜 337°C、イリジウム錯体(D— 2)のるつぼの温度は 240〜241°C、真空度は 7. 5 X 1 0_5Paであった。 [0348] The deposition rate of compound (C-1) was controlled at 0.08 nmZ seconds and the deposition rate of iridium complex (D-2) was controlled at 0.005 nm / second, respectively. Is formed into a light emitting layer 4 containing 6% by weight. In this case the compound temperature of crucible (C 1) is 331 to 337 ° C, the temperature of the crucible of iridium complex (D-2) is 240~241 ° C, vacuum degree was 7. 5 X 1 0 _5 Pa .
[0349] 次 、で、正孔阻止層 8としてピリジン誘導体 (HB— 1)を蒸着速度 0. 09nmZ秒で 5nm成膜した。このときのピリジン誘導体(HB— 1)のるつぼの温度は 231〜236°C 、真空度は 6. 6 X 10_5Paであった。 Next, a pyridine derivative (HB-1) was deposited as a hole blocking layer 8 at a thickness of 5 nm at a deposition rate of 0.09 nmZ seconds. At this time, the temperature of the crucible of the pyridine derivative (HB-1) was 231 to 236 ° C., and the degree of vacuum was 6.6 × 10 _5 Pa.
[0350] 引き続き、実施例 19と同様にして、電子輸送層 7、陰極バッファ層 10及び陰極 6を 形成することにより、 2mm X 2mmのサイズの発光面積部分を有する有機電界発光 素子を得た。  Subsequently, by forming the electron transport layer 7, the cathode buffer layer 10, and the cathode 6 in the same manner as in Example 19, an organic electroluminescent device having an emission area portion of 2 mm × 2 mm in size was obtained.
[0351] [有機電界発光素子の評価]  [0351] [Evaluation of organic electroluminescence device]
実施例 4〜 18で得られた素子の発光特性を表 5にまとめて示す。表 5において、最 大発光輝度は電流密度 0. 25AZcm2での値、発光効率、輝度 Z電流、電圧は輝度 lOOcdZm2での値、電圧 @ 2500cd、輝度 Z電流 @ 2500cdは輝度 2500cdZm2 での値を各々示す。素子の発光スペクトルの極大波長は 471nmであり、有機イリジ ゥム錯体 (D—1)からのものと同定された。 The light emission characteristics of the devices obtained in Examples 4 to 18 are summarized in Table 5. In Table 5, the maximum luminance is the value at current density of 0.25 AZcm 2 , luminous efficiency, luminance Z current, voltage is the value at luminance lOOcdZm 2 , voltage @ 2500 cd, luminance Z current @ 2500 cd is luminance at 2500 cdZm 2 Each value is shown. The maximum wavelength of the emission spectrum of the device was 471 nm, and it was identified to be from the organic iridium complex (D-1).
[0352] [表 5] [0352] [Table 5]
Figure imgf000093_0001
実施例 19 23及び比較例 2 3で得られた素子の発光特性を表 6にまとめて示す 。表 6において、最大発光輝度は電流密度 0. 25AZcm2での値、発光効率、輝度 Z電流、電圧は輝度 lOOcdZm2での値、電圧 @ 2500cd、輝度 Z電流 @ 2500cd は輝度 2500cdZm2での値を各々示す。素子の発光スペクトルの極大波長は 512η mであり、有機イリジウム錯体 (D— 2)力ものものと同定された。
Figure imgf000093_0001
The light emission characteristics of the devices obtained in Example 19 23 and Comparative Example 23 are summarized in Table 6. . In Table 6, the maximum emission luminance value at a current density of 0. 25AZcm 2, luminous efficiency, luminance Z current, voltage value of the luminance LOOcdZm 2, voltage @ 2500 cd, luminance Z current @ 2500 cd are at luminance 2500CdZm 2 Are shown respectively. The maximum wavelength of the emission spectrum of the device was 512ηm, and it was identified as having an organic iridium complex (D-2) force.
[表 6] [Table 6]
Figure imgf000095_0001
Figure imgf000095_0001
Figure imgf000095_0002
Figure imgf000095_0002
実施例 20、実施例 21及び比較例 2で作製した素子について、以下の条件で連続 通電試験を行った。 The devices fabricated in Example 20, Example 21, and Comparative Example 2 were subjected to a continuous current test under the following conditions.
通電電流波形 DC (直流)定電流  Current carrying waveform DC (direct current) constant current
通電電流密度 30mAZcm2 (—定) Current density 30mAZcm 2 (—constant)
試験環境温度 23°C  Test environment temperature 23 ° C
それぞれの素子について、輝度が開始時輝度の半分の値となる時間 (輝度半減時 間)を測定した。結果を表 7に示す。  For each element, the time during which the luminance was half of the starting luminance (luminance half-time) was measured. The results are shown in Table 7.
[0356] [表 7] [0356] [Table 7]
Figure imgf000096_0001
Figure imgf000096_0001
※実施例 20の素子については、試験中の輝度が開始時輝度の半分 まで低下していないため、輝度一通電時間曲線を外挿して算出した。  * For the element of Example 20, the luminance during the test did not drop to half of the starting luminance, so the luminance-one energization time curve was extrapolated.
[0357] このことより、本発明の化合物は、従来知られている化合物 EM— 1に対して、連続 通電時すなわち連続点灯時の安定性に優れていることが明らかである。 [0357] From this, it is clear that the compound of the present invention is superior in stability during continuous energization, that is, continuous lighting, to the conventionally known compound EM-1.
[0358] [実施例 22]  [0358] [Example 22]
実施例 19及び比較例 3で作製した素子について、以下の条件で連続通電試験を 行った。  The devices fabricated in Example 19 and Comparative Example 3 were subjected to a continuous current test under the following conditions.
通電電流波形 DC (直流)定電流  Current carrying waveform DC (direct current) constant current
通電電流密度 250mAZcm2 (—定) Energized current density 250mAZcm 2 (—Constant)
試験環境温度 23°C  Test environment temperature 23 ° C
それぞれの素子について、通電 40秒後の輝度を、通電開始時の輝度で除した値 を測定した。結果を表 8に示す。  For each element, the value obtained by dividing the luminance after 40 seconds of energization by the luminance at the start of energization was measured. The results are shown in Table 8.
[0359] [表 8] (通電 40秒後の輝度 [cd/m2]) [0359] [Table 8] (Luminance after 40 seconds energization [cd / m 2 ])
発光層の主成分  Main component of light emitting layer
(通電開始時の輝度 [cd/m2])の値 実施例 1 9の素子 1—1 0.99 Value of (Brightness at start of energization [cd / m 2 ]) Example 1 9 element 1-1 0.99
比較例 3の素子 C- 1 0,83  Device of Comparative Example 3 C- 1 0,83
[0360] このことより、本発明の化合物は、従来知られている化合物 C—1に対して、連続通 電時すなわち連続点灯時の安定性に優れていることが明らかである。 [0360] From this, it is clear that the compound of the present invention is superior in stability during continuous conduction, that is, continuous lighting, to the conventionally known compound C-1.
[0361] 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れるこ となく様々な変更が可能であることは当業者に明らかである。  [0361] Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
なお、本出願は、 2005年 10月 7日付で出願された日本特許出願 (特願 2005— 2 95110)に基づいており、その全体が引用により援用される。  This application is based on a Japanese patent application filed on October 7, 2005 (Japanese Patent Application No. 2005-2 95110), which is incorporated by reference in its entirety.

Claims

請求の範囲 The scope of the claims
分子内に、下記一般式 (I)で表される部分構造を有することを特徴とする炭化水素 化合物。  A hydrocarbon compound having a partial structure represented by the following general formula (I) in the molecule.
[化 63]  [Chemical 63]
Figure imgf000098_0001
式 (I)中、 Gは、下記一般式 (II)で表される置換基を表し、 R\ ITは、各々独立に任 意の炭化水素基を表す。式 (I)中、 R\ R2および Gが結合しているベンゼン環は、 R1 、 R2および G以外に置換基を有さない。
Figure imgf000098_0001
In the formula (I), G represents a substituent represented by the following general formula (II), and R \ IT independently represents an arbitrary hydrocarbon group. In formula (I), the benzene ring to which R \ R 2 and G are bonded has no substituent other than R 1 , R 2 and G.
[化 64]  [Chemical 64]
Figure imgf000098_0002
式 (II)中、 R3〜R5は、各々独立に水素原子または任意の炭化水素基を表す。式 (II )で表されるターフェ-ル基は、 R3〜R5以外に置換基を有さな!/、。
Figure imgf000098_0002
In formula (II), R 3 to R 5 each independently represents a hydrogen atom or an arbitrary hydrocarbon group. The terfel group represented by the formula (II) has no substituent other than R 3 to R 5 ! /.
[2] R1が、前記一般式 (II)で表される置換基であることを特徴とする請求項 1に記載の 炭化水素化合物。 [2] The hydrocarbon compound according to claim 1, wherein R 1 is a substituent represented by the general formula (II).
[3] R2が、前記一般式 (II)で表される置換基であることを特徴とする請求項 1に記載の 炭化水素化合物。 [3] The hydrocarbon compound according to claim 1, wherein R 2 is a substituent represented by the general formula (II).
[4] 前記炭化水素化合物は下記一般式 (III)で表されることを特徴とする請求項 1に記 載の炭化水素化合物。  [4] The hydrocarbon compound according to claim 1, wherein the hydrocarbon compound is represented by the following general formula (III):
[化 65] [Chemical 65]
Figure imgf000099_0001
式 (III)中、 R3および R4は上記式 (II)におけると同義である。一分子中に含まれる複 数の R3および R4は、それぞれ同一であっても異なって!/、てもよ!/、。
Figure imgf000099_0001
In the formula (III), R 3 and R 4 have the same meaning as in the above formula (II). Multiple R 3 and R 4 contained in one molecule may be the same or different from each other! /, May! /.
[5] 分子内に、部分構造として p—ターフェニル骨格を有することを特徴とする請求項 1 に記載の炭化水素化合物。 [5] The hydrocarbon compound according to claim 1, which has a p-terphenyl skeleton as a partial structure in the molecule.
[6] 前記炭化水素化合物は下記一般式 (IV— 1)で表されることを特徴とする請求項 5 に記載の炭化水素化合物。 6. The hydrocarbon compound according to claim 5, wherein the hydrocarbon compound is represented by the following general formula (IV-1).
[化 66] [Chemical 66]
Figure imgf000100_0001
Figure imgf000100_0001
式 (IV— 1)中、 R3および R4は前記式 (II)におけると同義である。一分子中に含まれ る複数の R3および R4は、それぞれ同一であっても異なっていてもよい。 R6および R7 は、各々独立に水素原子または任意の炭化水素基を表す。 In formula (IV-1), R 3 and R 4 have the same meaning as in formula (II). A plurality of R 3 and R 4 contained in one molecule may be the same or different. R 6 and R 7 each independently represents a hydrogen atom or an arbitrary hydrocarbon group.
前記炭化水素化合物は下記一般式 (IV— 2)で表されることを特徴とする請求項 5 に記載の炭化水素化合物。  6. The hydrocarbon compound according to claim 5, wherein the hydrocarbon compound is represented by the following general formula (IV-2).
[化 67] [Chemical 67]
Figure imgf000101_0001
式 (IV— 2)中、 R3および R4は前記式 (II)におけると同義である。 R6および R7は、各 々独立に水素原子または任意の炭化水素基を表す。一分子中に含まれる複数の R6 および R7は、それぞれ同一であっても異なって 、てもよ!/、。
Figure imgf000101_0001
In formula (IV-2), R 3 and R 4 have the same meanings as in formula (II). R 6 and R 7 each independently represents a hydrogen atom or an arbitrary hydrocarbon group. Multiple R 6 and R 7 contained in one molecule may be the same or different from each other! /.
[8] 分子量が、 500〜5000の範囲である請求項 1に記載の炭化水素化合物。 8. The hydrocarbon compound according to claim 1, wherein the molecular weight is in the range of 500 to 5,000.
[9] 請求項 1に記載の炭化水素化合物からなることを特徴とする電荷輸送材料。 [9] A charge transport material comprising the hydrocarbon compound according to claim 1.
[10] 請求項 1に記載の炭化水素化合物と溶剤とを含有することを特徴とする電荷輸送 材料組成物。 [10] A charge transporting material composition comprising the hydrocarbon compound according to claim 1 and a solvent.
[11] 燐光発光材料を、更に含有することを特徴とする請求項 10に記載の電荷輸送材料 組成物。  11. The charge transport material composition according to claim 10, further comprising a phosphorescent material.
[12] 基板上に、陽極、陰極、およびこれら両極間に設けられた発光層を有する有機電 界発光素子において、請求項 1に記載の炭化水素化合物を含有する層を有すること を特徴とする有機電界発光素子。  [12] An organic electroluminescent device having an anode, a cathode, and a light emitting layer provided between both electrodes on a substrate, characterized in that it has a layer containing the hydrocarbon compound according to claim 1. Organic electroluminescent device.
[13] 前記炭化水素化合物を含有する層が発光層または正孔阻止層であることを特徴と する請求項 12に記載の有機電界発光素子。  13. The organic electroluminescence device according to claim 12, wherein the layer containing the hydrocarbon compound is a light emitting layer or a hole blocking layer.
PCT/JP2006/319439 2005-10-07 2006-09-29 Hydrocarbons, charge transfer materials, charge transfer material compositions, and organic electroluminescent devices WO2007043357A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2006800346287A CN101268029B (en) 2005-10-07 2006-09-29 Hydrocarbon compound, charge transfer material, charge transfer material composition and organic electroluminescent element
KR1020087008377A KR101309502B1 (en) 2005-10-07 2006-09-29 Hydrocarbons, charge transfer materials, charge transfer material compositions, and organic electroluminescent devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-295110 2005-10-07
JP2005295110 2005-10-07

Publications (1)

Publication Number Publication Date
WO2007043357A1 true WO2007043357A1 (en) 2007-04-19

Family

ID=37942604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319439 WO2007043357A1 (en) 2005-10-07 2006-09-29 Hydrocarbons, charge transfer materials, charge transfer material compositions, and organic electroluminescent devices

Country Status (4)

Country Link
KR (1) KR101309502B1 (en)
CN (1) CN101268029B (en)
TW (1) TWI377189B (en)
WO (1) WO2007043357A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008033943A1 (en) 2008-07-18 2010-01-21 Merck Patent Gmbh New materials for organic electroluminescent devices
EP2511254B1 (en) 2007-08-08 2016-05-11 Universal Display Corporation Single triphenylene chromophores in phosphorescent light emitting diodes
WO2018135656A1 (en) * 2017-01-23 2018-07-26 三菱ケミカル株式会社 Composition for forming light emitting layer and organic electroluminescent element containing said composition for forming light emitting layer
WO2022255402A1 (en) * 2021-06-04 2022-12-08 三菱ケミカル株式会社 Aromatic compound and organic electroluminescent element
KR20240016964A (en) 2021-06-04 2024-02-06 미쯔비시 케미컬 주식회사 Compounds and organic electroluminescent devices

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101931922B1 (en) 2009-09-16 2018-12-21 메르크 파텐트 게엠베하 Formulations for the production of electronic devices
EP2496544B1 (en) * 2009-11-05 2014-08-20 Fibrostatin, S.L. Gpbp inhibition using q2 peptidomimetics
CN105949177B (en) * 2010-05-03 2019-02-01 默克专利有限公司 Preparation and electronic device
US9159930B2 (en) 2010-11-26 2015-10-13 Merck Patent Gmbh Formulations and electronic devices
US9224958B2 (en) 2013-07-19 2015-12-29 Universal Display Corporation Organic electroluminescent materials and devices
JP2018022705A (en) * 2017-11-06 2018-02-08 ユニバーサル ディスプレイ コーポレイション Solution processable and doped triarylamine hole injection material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142267A (en) * 2001-08-24 2003-05-16 Konica Corp Material for organic electroluminescent element, electroluminescent element using the same, and display device
JP2003321403A (en) * 2002-04-26 2003-11-11 Sony Corp Polyphenylene derivative and organic electroluminescent element using polyphenylene derivative
WO2005057987A1 (en) * 2003-12-15 2005-06-23 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142267A (en) * 2001-08-24 2003-05-16 Konica Corp Material for organic electroluminescent element, electroluminescent element using the same, and display device
JP2003321403A (en) * 2002-04-26 2003-11-11 Sony Corp Polyphenylene derivative and organic electroluminescent element using polyphenylene derivative
WO2005057987A1 (en) * 2003-12-15 2005-06-23 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9590180B2 (en) 2007-06-23 2017-03-07 Universal Display Corporation Organic electroluminescent materials and devices
US10957858B2 (en) 2007-08-08 2021-03-23 Universal Display Corporation Organic electroluminescent materials and devices
JP2022137188A (en) * 2007-08-08 2022-09-21 ユニバーサル ディスプレイ コーポレイション Single triphenylene chromophores in phosphorescent light emitting diodes
JP2021022747A (en) * 2007-08-08 2021-02-18 ユニバーサル ディスプレイ コーポレイション Single triphenylene chromophore in phosphorescent light emitting diode
JP2017073555A (en) * 2007-08-08 2017-04-13 ユニバーサル ディスプレイ コーポレイション Single triphenylene chromophores in phosphorescent light emitting diodes
JP7379601B2 (en) 2007-08-08 2023-11-14 ユニバーサル ディスプレイ コーポレイション Single triphenylene chromophore in phosphorescent light emitting diode
US10312450B2 (en) 2007-08-08 2019-06-04 Universal Display Corporation Organic electroluminescent materials and devices
JP2019165247A (en) * 2007-08-08 2019-09-26 ユニバーサル ディスプレイ コーポレイション Single triphenylene chromophores in phosphorescent light emitting diodes
KR20200013113A (en) * 2007-08-08 2020-02-05 유니버셜 디스플레이 코포레이션 Single triphenylene chromophores in phosphorescent light emitting diodes
KR20200137041A (en) * 2007-08-08 2020-12-08 유니버셜 디스플레이 코포레이션 Single triphenylene chromophores in phosphorescent light emitting diodes
KR102342708B1 (en) * 2007-08-08 2021-12-22 유니버셜 디스플레이 코포레이션 Single triphenylene chromophores in phosphorescent light emitting diodes
US9608206B2 (en) 2007-08-08 2017-03-28 Universal Display Corporation Organic electroluminescent materials and devices
US11690286B2 (en) 2007-08-08 2023-06-27 Universal Display Corporation Organic electroluminescent materials and devices
KR102189768B1 (en) * 2007-08-08 2020-12-14 유니버셜 디스플레이 코포레이션 Single triphenylene chromophores in phosphorescent light emitting diodes
KR20210156866A (en) * 2007-08-08 2021-12-27 유니버셜 디스플레이 코포레이션 Single triphenylene chromophores in phosphorescent light emitting diodes
JP7106616B2 (en) 2007-08-08 2022-07-26 ユニバーサル ディスプレイ コーポレイション A single triphenylene chromophore in a phosphorescent light-emitting diode
KR102513201B1 (en) * 2007-08-08 2023-03-22 유니버셜 디스플레이 코포레이션 Single triphenylene chromophores in phosphorescent light emitting diodes
EP2511254B1 (en) 2007-08-08 2016-05-11 Universal Display Corporation Single triphenylene chromophores in phosphorescent light emitting diodes
DE102008033943A1 (en) 2008-07-18 2010-01-21 Merck Patent Gmbh New materials for organic electroluminescent devices
TWI775802B (en) * 2017-01-23 2022-09-01 日商三菱化學股份有限公司 Composition for forming light-emitting layer and organic electroluminescence element containing the composition for forming light-emitting layer
WO2018135656A1 (en) * 2017-01-23 2018-07-26 三菱ケミカル株式会社 Composition for forming light emitting layer and organic electroluminescent element containing said composition for forming light emitting layer
WO2022255402A1 (en) * 2021-06-04 2022-12-08 三菱ケミカル株式会社 Aromatic compound and organic electroluminescent element
KR20240016964A (en) 2021-06-04 2024-02-06 미쯔비시 케미컬 주식회사 Compounds and organic electroluminescent devices
KR20240016268A (en) 2021-06-04 2024-02-06 미쯔비시 케미컬 주식회사 Aromatic compounds and organic electroluminescent devices

Also Published As

Publication number Publication date
CN101268029A (en) 2008-09-17
CN101268029B (en) 2012-09-05
KR20080061370A (en) 2008-07-02
KR101309502B1 (en) 2013-09-24
TWI377189B (en) 2012-11-21
TW200720222A (en) 2007-06-01

Similar Documents

Publication Publication Date Title
JP5040216B2 (en) Organic compound, charge transport material, material for organic electroluminescence device, charge transport material composition, and organic electroluminescence device
JP5168840B2 (en) Charge transport material, composition for organic electroluminescence device, and organic electroluminescence device
JP4893173B2 (en) Composition for organic electroluminescent device and organic electroluminescent device
JP5206907B2 (en) Organic compound, charge transport material, composition containing the compound, organic electroluminescent element, display device and lighting device
WO2007043357A1 (en) Hydrocarbons, charge transfer materials, charge transfer material compositions, and organic electroluminescent devices
WO2007063760A1 (en) Organic compound, charge-transporting material, composition for charge-transporting material and organic electroluminescent device
JP5167607B2 (en) Charge transport material, charge transport material composition, and organic electroluminescent device
JP5499487B2 (en) Quinoline compounds, materials for organic electroluminescent elements, compositions for organic electroluminescent elements, organic electroluminescent elements, organic EL displays, and organic EL lighting
EP3121165A1 (en) Monoamine compound, charge transport material, composition for charge transport film, organic electroluminescent element, organic el display device, and organic el lighting
JP2007182432A (en) Organic compound, electric charge-transporting material, electric charge-transporting material composition and organic electric field light-emitting element
JP5417750B2 (en) Charge transport material for wet film formation, charge transport material composition for wet film formation method, organic electroluminescence device, and organic EL display
JP5458516B2 (en) Anthracene compound, charge transport material for wet film formation, charge transport material composition for wet film formation, organic electroluminescence device, and organic EL display
JP5028934B2 (en) Hydrocarbon compound, charge transport material, charge transport material composition, and organic electroluminescent device
JP2019172608A (en) 1,3,5-triazine compound, composition containing the compound, organic electroluminescent element, display device, and luminaire
JP2008115131A (en) Organic compound, charge-transporting material, composition for charge-transporting material, and organic electroluminescent element
JP2007100083A (en) Composition for use in organic electroluminescence element, and organic electroluminescence element
JP5708426B2 (en) Composition for organic electroluminescent device and organic electroluminescent device
JP2008031068A (en) Organic compound, electric charge-transporting material, electric charge-transporting material composition and orgnic electric field light-emitting element
JP2009096771A (en) Diarylpyrene compound, material for organic electroluminescent device, composition for organic electroluminescent device, and organic electroluminescent device
JP5145652B2 (en) Organic compound, charge transport material, composition for organic electroluminescence device, and organic electroluminescence device
JP5555972B2 (en) Organic electroluminescence device
JP2008001621A (en) Trityl compound, method for producing trityl compound, charge-transport material, luminescent material and organic electroluminescent device
JP5194623B2 (en) Tetraarylpyrene compound, charge transport material, material for organic electroluminescence device, composition for organic electroluminescence device, and organic electroluminescence device
JP5549051B2 (en) Anthracene compound, charge transport material for wet film formation, charge transport material composition for wet film formation, and organic electroluminescence device
JP5685882B2 (en) Charge transport material, composition for charge transport film, organic electroluminescence device, organic electroluminescence device display device, and organic electroluminescence device illumination device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680034628.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087008377

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810845

Country of ref document: EP

Kind code of ref document: A1