WO2007043135A1 - Micro mirror screen - Google Patents

Micro mirror screen Download PDF

Info

Publication number
WO2007043135A1
WO2007043135A1 PCT/JP2005/018344 JP2005018344W WO2007043135A1 WO 2007043135 A1 WO2007043135 A1 WO 2007043135A1 JP 2005018344 W JP2005018344 W JP 2005018344W WO 2007043135 A1 WO2007043135 A1 WO 2007043135A1
Authority
WO
WIPO (PCT)
Prior art keywords
micromirror
light
screen
screen according
micromirrors
Prior art date
Application number
PCT/JP2005/018344
Other languages
French (fr)
Japanese (ja)
Inventor
Kazunori Miwa
Original Assignee
Kazunori Miwa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kazunori Miwa filed Critical Kazunori Miwa
Priority to PCT/JP2005/018344 priority Critical patent/WO2007043135A1/en
Publication of WO2007043135A1 publication Critical patent/WO2007043135A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens

Definitions

  • the present invention relates to a reflective or transmissive projection screen with good visibility even in the outdoors or in a bright room where the display contrast is extremely high under external light.
  • projection screens There are two types of projection screens: a front projection screen (reflection type) that emits image light from the viewer side, and a rear projection screen (transmission type) that emits image light from the opposite side of the viewer. Both types have a structure in which the image light from the projector is scattered and displayed by fine irregularities on the screen surface and diffusing material, so external light other than the image light is also scattered at the same time, resulting in a decrease in display contrast. There are structural problems such as ease.
  • Reflection-type projection screens include a mat type having an irregular surface and a bead type in which minute beads are spread to give retroreflective properties. These reflection type projection screens display the image with specular reflection component or retroreflective component and diffuse reflection component that reflects the image light from the projector on the screen surface, but if there are too many specular reflection components and retroreflective components Although it is easy to maintain contrast with external light, the viewing angle range is limited and hot spots are likely to occur in the image. On the other hand, when the diffuse reflection component is increased, the gain is low and the contrast with respect to the external light is maintained, but a good display quality can be realized.
  • a transmissive projection screen collimates the light flux from a projector with a Fresnel lens, expands the horizontal viewing angle characteristics with a lenticular lens, and further disperses a diffusing material in the lens medium to achieve a vertical viewing angle.
  • the transmissive projection screen having such a structure has a problem that the contrast of the display is lowered due to scattering of external light by the diffusing material.
  • the viewing angle range in the vertical direction by the diffusing material is about ⁇ 20 to 30 ° at the maximum, and there is a problem that the characteristics are clearly inferior in the horizontal direction.
  • concentration of the diffusing material is increased to improve the viewing angle characteristics, There is a problem in that the light extraction efficiency is lowered by diffusing light widely and increasing the components exceeding the critical angle in the lens medium and confining them in the medium.
  • the projector displays the image by diffusing the projected image light
  • the off-brightness of the display is increased by the diffuse reflection of the external light, resulting in a contrast ratio. (ONZOFF ratio) decreases.
  • the diffuse reflectance on the display surface is :
  • the display brightness is B (cdZm 2 )
  • the illuminance of outside light is L (lux)
  • the contrast ratio C on the screen under outside light is B (cdZm 2 )
  • the display brightness of the non-display portion is assumed to be zero.
  • the diffuse reflectance r varies depending on the external light incident angle and the direction of the observer.
  • surface reflection (regular reflection) on the display surface and diffuse reflection are in a trade-off relationship. Roughening the surface reduces specular reflection but increases diffuse reflection.
  • a conventional reflective projection screen uses, for example, white salt vinyl, aluminum, cloth or the like as a screen base material, and a white ink containing a pearl pigment or an aluminum paste pigment is printed thereon as a reflective layer.
  • Reflective screens are used that are coated and finely textured as required.
  • the light emitted from the bright part in the screen is reflected on the wall surface etc. and is incident again as external light, which increases the brightness of the dark part and lowers the contrast. Therefore, it is common to project with the room lighting dimmed.
  • the former method is a reflective type that improves the contrast ratio by forming a light-absorbing layer such as halftone dots, honeycombs, stripes, and grain with black ink on the display surface by printing.
  • a screen has been proposed.
  • Patent Document 1 a louver composed of a light-shielding layer and a light diffusion layer is repeatedly arranged to diffuse and reflect the image light of the projection from below to the front of the screen, while outside light from above is A structure that is absorbed by the light shielding layer is proposed.
  • Patent Document 2 describes a scan. By providing a reflective layer that selectively reflects the wavelength of the image light on the clean surface, the contrast to external light is improved.
  • a bead screen has been put into practical use, in which fine beads are spread over the entire display surface and the direction of the reflected light is returned to the incident direction so that it does not enter the viewer's eyes.
  • a reflection type screen provided with a bead screen and a light absorption layer has also been proposed.
  • a metal reflective layer although the viewing angle range is narrowed, a proposal has been made to improve the contrast and brightness by lowering the diffuse reflectance and increasing the regular reflectance.
  • Patent Document 1 Japanese Patent Laid-Open No. 51-44186
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-344951
  • washout which is an inseparable problem for self-luminous display devices.
  • the display is originally due to light scattering, so this problem is large. Not only the visibility is deteriorated, but also an excessive light source output is required, and the viewpoint of energy saving is solved. Was desired.
  • the light incident / reflection profile of the micro mirror composed of minute curved mirrors does not reflect the external light from the main external light incident angle within the light distribution range of the screen, and at least the light flux from the light source It has been clarified that it is possible to solve the above problems by realizing a micromirror screen that also has a micromirror group power set so as to satisfy the conditions for reflection within the light distribution range of the screen.
  • the invention's effect is not reflect the external light from the main external light incident angle within the light distribution range of the screen, and at least the light flux from the light source
  • projection screen with good visibility without reducing display contrast under strong external light even when a light source having a relatively low output is used.
  • Such projection screens can be applied to the power of reflection-type front projection screens and transmission-type rear projection screens, super-power-saving picto-sign display devices and traffic signals.
  • FIG. 1 is a layout view of a reflective micromirror screen. (Example 1)
  • FIG. 2 is a layout diagram of micromirrors in the vertical direction.
  • FIG. 3 is a layout diagram of micromirrors in the horizontal direction.
  • FIG. 4 is a cross-sectional view of a continuously formed micromirror array.
  • FIG. 5 is a cross-sectional view of a micromirror array embedded in a transparent body.
  • FIG. 6 is a sectional view of a see-through screen.
  • FIG. 7 is a cross-sectional view of a reflective curved screen.
  • FIG. 8 is a cross-sectional view of a reflective screen using a Fresnel lens.
  • FIG. 9 is a perspective view of a reflective screen on which strip-shaped micromirror arrays are arranged.
  • FIG. 10 is a perspective view of a reflective screen in which sub-micromirror rows are arranged.
  • FIG. 11 is a layout diagram of a transmission type micromirror screen. (Example 2)
  • FIG. 12 is a cross-sectional view of a transmission type macro mirror screen.
  • FIG. 13 is a sectional view of a transmissive curved screen.
  • FIG. 14 is a cross-sectional view for explaining a leakage light preventing structure.
  • FIG. 15 is a perspective view of a transmission type microscreen.
  • FIG. 16 is a perspective view of a display body formed by a set of micromirror screens. (Example 3)
  • image light can be distributed within a predetermined range, and external light can be efficiently absorbed or guided outside the visual range. Can be solved.
  • FIG. 1 is a layout view of a first embodiment according to the present invention.
  • the arrangement of the reflective micromirror screen 1 and projector 2, observer 3, and external light source 4 is shown.
  • the incident angle range in the vertical direction from the projector 2 with respect to the reflective micromirror screen 1 is a to a, and the viewing range is j8 to ⁇ .
  • the outside light incident angle range is ⁇ to ⁇ .
  • Micromi In order to reflect the image light of the incident angle from the projector to the viewing range j8 to ⁇ by the micromirror arranged at the farthest point 5, the micromirror screen 1 is constituted by a set of mirrors. Is normal ( ⁇ + ⁇ ) ⁇ 2 to + j8)
  • the image light can be evenly distributed in the set observation range.
  • the center axis of the micromirror is arranged in the middle of the light distribution center ( ⁇ + ⁇ ) 2 of the screen and the light source direction ⁇ of the micromirror force.
  • the micromirror method is used.
  • the center axis of the light is the light distribution center of the screen (j8 + ⁇ ) ⁇ 2 and the light source from this micromirror
  • the farthest point force can be simply arranged.
  • Micromirrors having the same curved surface can be arranged up to the nearest point.
  • the image light can be distributed evenly within the set observation range.
  • FIG. 2 shows a vertical arrangement of the micromirrors 7 of the reflective micromirror screen.
  • the space between the upper and lower micromirrors is arranged so that the image light irradiates the micromirrors at the shortest point of the screen.
  • the minimum distance between the micromirrors is ⁇ when the upper end of the micromirror is looking up at the lower end of the adjacent micromirror. This time outside
  • the image light source is also unable to reflect the image light to the observer side above j8. Same profile in vertical direction When arraying micromirrors with a mirror, it is necessary to set the distance between the micromirrors wider in order to effectively enter the micromirror at the farthest point.
  • the image light source is arranged in an oblique direction with respect to the micro screen, and all the microphone mirrors are positioned at positions where the image light incident on the nearest point and the farthest point where the image light reaches at least the effective part of the micromirror And has a profile that does not overlap the external light irradiation angle range and the visual recognition range at least at the most recent micromirror, so that it can be visually recognized without causing a decrease in contrast due to external light.
  • diffuse reflected light of external light may travel to the observer side due to dirt or distortion of the micromirror.
  • external light reflected by the micromirror may be reflected on the back surface of the micromirror and travel through the transparent body supporting the micromirror, or may be reflected at the support interface and return to the visible range.
  • external light can be absorbed without reflecting to the viewer side by using one surface of the micromirror as a reflective layer and the back surface as an absorption layer. The same effect can be obtained by arranging a light absorption film behind the micromirror group.
  • FIG. 3 is a diagram showing the arrangement of the micromirror groups in the horizontal direction when the projector is placed at the center of the screen for projection.
  • Each micromirror 7 constitutes one unit or less of pixels.
  • a micromirror that satisfies the curvatures in the vertical and horizontal directions can be formed of a part of a spheroid.
  • FIG. 4 shows an example of a micromirror array when a projector is projected at the center of the screen.
  • the above mirror angle It may be constituted by a series of fine wavy concave mirrors and convex mirrors satisfying the degree.
  • a color shift may occur in the projected image.
  • the diffusibility can be improved and the color shift can be reduced by setting the horizontal micromirror pitch to a fraction of the pixel size of the image light. .
  • FIG. 5 is a diagram for explaining the visible range of the group of micromirrors embedded in the transparent body.
  • the image light from the projector 2 enters the micromirror 7 through the interface of the transparent body 8. Further, by adopting a configuration in which the light is reflected and projected by the aspherical reflecting mirror 9, the entire apparatus can be reduced in size.
  • the individual micromirrors constituting the micromirror group can be displayed without affecting the resolution of the image light as long as the size of the image light projected by the projector is one pixel or less.
  • moire occurs when the spatial frequency of the image light and the repetition frequency of the micromirror group are close, so it is necessary to determine the arrangement pitch of the micromirror group in consideration of the upper limit of the spatial frequency of the image light.
  • the micromirror screen which is a group of micromirrors having such a configuration, reflects the image light incident from the image light source to the viewer side, provides good visibility in the viewing range, and allows outside light to be viewed in the viewing range. It is possible to prevent an observer from being reflected by reflecting outside, transmitting through a gap, or absorbing the absorption layer.
  • FIG. 6 is a cross-sectional view of a see-through screen in which a semi-transmissive film 10 is placed behind the micromirror screen 1 so that an image 11 behind the screen can be visually recognized, and an image projected on the screen.
  • a semi-transmissive film 10 is placed behind the micromirror screen 1 so that an image 11 behind the screen can be visually recognized, and an image projected on the screen.
  • the effect of reducing the influence of the background on the light is provided.
  • a device capable of adjusting the transparent state and the non-transparent state instead of the semi-transparent film may be used.
  • FIG. 7 is an example in which the screen is arranged in a curved shape so that the elevation angle of the image light source as seen from the micromirror array force is within a certain range.
  • FIG. 8 shows a configuration in which the image light from the projector 2 is collimated by the Fresnel lens 12 and then incident on the micromirror screen.
  • the optimal light distribution range can be realized with a group of micromirrors with a single profile while keeping the surface flat.
  • the Fresnel lens 11 may be an aspheric lens or an aspheric mirror. It can also be arranged parallel to the screen.
  • FIG. 9 is a perspective view of a micro mirror screen in which a plurality of strip-shaped micro mirror rows 14 each having a micro mirror formed thereon are juxtaposed on a resin base material 13.
  • the micromirror array 14 and the resin base material 13 can be produced by simultaneously molding by a synthetic resin molding method such as an injection molding method or a compression molding method using a resin material in which a black pigment or the like is dispersed as a molding material.
  • the thickness of the macro mirror array is ⁇ ! Form a metal thin film such as Ag film or A1 film of ⁇ 1 ⁇ m.
  • the metal thin film can be formed by electroless partial plating of Ag or vacuum deposition from the oblique direction of A1.
  • a protective film such as transparent resin is formed on the metal thin film thus formed.
  • the micromirror screen manufactured in this way is installed on the wall surface of a building and the screen is obliquely downwardly irradiated with image light from the projector, good visibility can be obtained despite direct sunlight.
  • anatase type titanium oxide or the like in the protective film an antifouling effect can be provided by a photocatalytic reaction.
  • the resin base material 13 with a transparent resin.
  • a light absorption layer can be formed by forming a black layer or the like on the back surface of the metal thin film. Even if a metal thin film is not formed, a certain reflectance can be secured by making the surface roughness of the molded product equivalent to a mirror finish, and it can be used as a micromirror screen.
  • FIG. 10 is a perspective view of a macro mirror stain which also has a force with the main micro mirror 7 and the sub micro mirror 15.
  • the image light from the image light source can be effectively distributed to the observation range regardless of the incident angle.
  • FIG. 11 is a layout view of a second embodiment according to the present invention. This shows the arrangement of the transmissive micromirror stationary 16 and the projector 2, the observer 3, and the external light source 4.
  • the incident angle range in the vertical direction from the projector 2 with respect to the transmission type microphone mouth mirror screen 16 is defined as a;
  • the external light incident angle range is ⁇ to ⁇
  • the design method of the micromirror is basically the same for the transmission type micromirror screen. In other words, the incident angle from the projector is reduced by the micromirror placed at the farthest point 5. In order to reflect the image light of a to the visible range j8 to ⁇ , the normal of the micromirror is ( ⁇
  • the center axis of the micromirror is the light distribution center (j8 + ⁇ ) +2 of the screen and the direction of the light source from this micromirror.
  • the micromirror method is used.
  • the center axis of the light is the light distribution center of the screen (j8 + ⁇ ) ⁇ 2 and the light source from this micromirror
  • a transmissive screen the area from the projection engine (projector) to the back of the screen is usually covered with a light-shielded enclosure, so that the external light irradiation range and the image light irradiation range do not overlap and maintain good visibility. it can. Even if it is not covered with an enclosure, the range in which external light is emitted to the visible range due to the reflection of the macro mirror is extremely limited.
  • FIG. 12 is an example of a cross-sectional view of a transmissive micromirror screen.
  • an arrangement of only the force micromirror 7 composed of the main micromirror 7 and the submicromirror 15 is also possible.
  • the sub-micromirror 15 By arranging the sub-micromirror 15, leakage light from the microscreen can be prevented and display with high luminance can be achieved.
  • Fig. 13 by arranging the screen in a curved shape so that the elevation angle of the image light source seen from a row of micromirrors is in a certain range, the light distribution range can be set effectively and without waste. Can be prevented.
  • FIG. 14 when the micromirror group is embedded in a transparent body, leakage light is prevented by making the incident angle of the leakage light with respect to the emission side interface equal to or greater than the critical angle. Can be stopped.
  • FIG. 15 is a perspective view of a strip-shaped transmissive micromirror screen formed of a transparent resin.
  • the micromirror 7 is formed at the interface of the transparent resin, and the image light incident surface 17 and the light absorption film 18 are also formed at the other interface of the transparent resin.
  • an acrylic or polyester thermosetting or ultraviolet curable resin can be used as the transparent resin. It can also be molded by injection molding or hot pressing using a thermoplastic resin such as polycarbonate.
  • the micromirror part formed at the resin interface can be used as a micromirror by forming a metal thin film by electroless selective plating or vacuum deposition. Moreover, it can be set as a light absorption layer by forming a black film etc. in the back surface of a metal thin film. Even if a metal thin film is not formed, it can be used as a micromirror by total reflection of light at the transparent resin interface.
  • the light absorbing film 18 can be formed by allowing a resin containing black pigment or the like to flow
  • FIG. 16 is a perspective view showing a third embodiment.
  • Reference numeral 19 represents the shape of a set of micromirrors as a display body, here a pictogram.
  • 20 is a white painted plate from the observer side, but the inner surface is a reflecting plate or a light shielding plate.
  • Reference numeral 21 denotes an LED light source, which can select an emission color suitable for display.
  • Reference numeral 22 denotes a housing having a reflecting plate or the like on the inner surface.
  • the internal illumination sign having such a structure can perform display with extremely low power consumption, and can maintain good visibility even under external light.
  • a part of the light emitted from the LED light source 21 is directly incident on the micromirror screen and is distributed to a predetermined viewing range.
  • a part of the light is reflected by the reflecting plate 20 or the reflecting plate on the inner surface of the housing 22 and enters the micromirror screen.
  • a color filter that transmits the light from the LED light source according to the shape of the display body can be placed side by side to function as a reflective display device in the daytime.
  • a display body represented by a set of micromirrors is layered, or a reflective micromirror, a transmission micromirror, and a single or multiple light sources are combined to produce a multicolor display body or selective light emission. It is also possible to make a display for performing. It can also be used for power-saving traffic signal lights with strictly defined light distribution ranges. Industrial applicability

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Abstract

It is possible to improve a reflection-type and a transmission-type projection screen. By preventing reflection of an external light applied to a projection screen toward an observer in a visual range, it is possible to improve a display contrast under the external light. An optimally designed micro mirror is repeatedly arranged on a projection screen so as to effectively arrange a video light in a predetermined visual range and absorb or introduce external light out of the visual range, thereby improving the visibility under the external light and reducing power consumption. It is possible to manufacture, at a low cost, a reflection-type and a transmission-type projection screen visible under the external light. This can be applied to a display requiring visibility under the external light and saving power consumption.

Description

明 細 書  Specification
マイクロミラースクリーン 技術分野  Micro mirror screen technology
[0001] 本発明は、外光下における表示コントラストが極めて高ぐ屋外や明るい室内にお V、ても視認性が良好な反射型もしくは透過型プロジェクシヨンスクリーンに関する。 背景技術  [0001] The present invention relates to a reflective or transmissive projection screen with good visibility even in the outdoors or in a bright room where the display contrast is extremely high under external light. Background art
[0002] プロジェクシヨンスクリーンには観察者側から映像光を照射するフロントプロジェクシ ヨンスクリーン (反射型)と、観察者の反対側から映像光を照射するリアプロジェクシヨン スクリーン (透過型)がある。どちらのタイプもプロジェクターからの映像光をスクリーン 表面の微細な凹凸や拡散材によって散乱させて表示する構造のために、映像光以 外の外光も同時に散乱させてしま 、、表示コントラストが低下しやす 、と 、う構造的な 問題がある。  There are two types of projection screens: a front projection screen (reflection type) that emits image light from the viewer side, and a rear projection screen (transmission type) that emits image light from the opposite side of the viewer. Both types have a structure in which the image light from the projector is scattered and displayed by fine irregularities on the screen surface and diffusing material, so external light other than the image light is also scattered at the same time, resulting in a decrease in display contrast. There are structural problems such as ease.
[0003] 反射型のプロジェクシヨンスクリーンは、不規則な表面を持ったマットタイプや微小ビ ーズを敷き詰めて再帰反射特性を持たせたビーズタイプなどがある。これらの反射型 のプロジェクシヨンスクリーンはプロジェクターからの映像光をスクリーン面で反射する 正反射成分もしくは再帰反射成分と拡散反射成分で画像を表示するが、正反射成 分や再帰反射成分が多すぎると外光に対してコントラストを保ちやすくなるものの、視 角範囲が限定され、画像にホットスポットを生じやすくなる。これに対して拡散反射成 分を増やすとゲインが低く外光に対してコントラストを保ちに《なるものの、良好な表 示品質を実現することができる。  [0003] Reflection-type projection screens include a mat type having an irregular surface and a bead type in which minute beads are spread to give retroreflective properties. These reflection type projection screens display the image with specular reflection component or retroreflective component and diffuse reflection component that reflects the image light from the projector on the screen surface, but if there are too many specular reflection components and retroreflective components Although it is easy to maintain contrast with external light, the viewing angle range is limited and hot spots are likely to occur in the image. On the other hand, when the diffuse reflection component is increased, the gain is low and the contrast with respect to the external light is maintained, but a good display quality can be realized.
[0004] 透過型のプロジェクシヨンスクリーンは、プロジェクターからの光束をフレネルレンズ で平行ィ匕し、レンチキュラーレンズで水平方向の視角特性を広げ、さらにレンズ媒質 中に拡散材を分散させて垂直方向の視角を得て 、る場合が多 、。このような構造を とる透過型のプロジェクシヨンスクリーンは拡散材により外光が散乱することによって 表示のコントラストが低下するという問題がある。また拡散材による上下方向の視角範 囲は最大 ± 20〜30° 程度であり、左右方向に対して明らかに特性が劣るという問題 がある。視角特性を改善するために拡散材の濃度を高めた場合には、入射する映像 光を広範に拡散することによってレンズ媒質中の臨界角を超える成分が増カロして媒 質中に閉じ込められることによって、光の取出し効率が低下するという問題がある。 [0004] A transmissive projection screen collimates the light flux from a projector with a Fresnel lens, expands the horizontal viewing angle characteristics with a lenticular lens, and further disperses a diffusing material in the lens medium to achieve a vertical viewing angle. There are many cases to get. The transmissive projection screen having such a structure has a problem that the contrast of the display is lowered due to scattering of external light by the diffusing material. In addition, the viewing angle range in the vertical direction by the diffusing material is about ± 20 to 30 ° at the maximum, and there is a problem that the characteristics are clearly inferior in the horizontal direction. When the concentration of the diffusing material is increased to improve the viewing angle characteristics, There is a problem in that the light extraction efficiency is lowered by diffusing light widely and increasing the components exceeding the critical angle in the lens medium and confining them in the medium.
[0005] いずれの場合も、プロジェクタ一力 投影された映像光を拡散して像を表示する構 造のため、外光も一緒に拡散反射することによって表示の OFF輝度が上昇し、コント ラスト比 (ONZOFF比)が低下する。いま、表示面上の拡散反射率を!:、表示輝度を B (cdZm2)、外光の照度を L (lux)とすると、外光下におけるスクリーン上のコントラ スト比 Cは、 [0005] In any case, because the projector displays the image by diffusing the projected image light, the off-brightness of the display is increased by the diffuse reflection of the external light, resulting in a contrast ratio. (ONZOFF ratio) decreases. Now, if the diffuse reflectance on the display surface is :, the display brightness is B (cdZm 2 ), and the illuminance of outside light is L (lux), the contrast ratio C on the screen under outside light is
C= (rL+B) /rL  C = (rL + B) / rL
とあらわすことができる。ここでは非表示部の表示輝度は 0とする。拡散反射率 rは外 光入射角や観察者の方向によって変化する。また表示面上の表面反射 (正反射)と拡 散反射はトレードオフの関係にあり、表面を粗面化することによって正反射は低減す るが、拡散反射は増加する。  It can be expressed. Here, the display brightness of the non-display portion is assumed to be zero. The diffuse reflectance r varies depending on the external light incident angle and the direction of the observer. In addition, surface reflection (regular reflection) on the display surface and diffuse reflection are in a trade-off relationship. Roughening the surface reduces specular reflection but increases diffuse reflection.
[0006] 従来の反射型プロジェクシヨンスクリーンは、例えば白色塩ィ匕ビニル、アルミニウム、 布等をスクリーン基材とし、その上に反射層として、パール顔料、アルミペースト顔料 を含む白色インキ等を印刷またはコーティングし、必要に応じて、微細な凹凸加工を 施した反射型スクリーンが用いられている。このような従来の反射型プロジェクシヨン スクリーンでは、明るい部屋で投影する場合には、大光量のプロジェクターで全体の 輝度を上げることによって視認可能だが、明部輝度は向上するが暗部輝度は改善さ れず、むしろスクリーン内の明部から発した光が壁面等に反射して再度外光として入 射し、暗部輝度を上昇させてしまいコントラストを低下させる。したがって通常は部屋 の照明を暗くして投影するのが一般的である。  [0006] A conventional reflective projection screen uses, for example, white salt vinyl, aluminum, cloth or the like as a screen base material, and a white ink containing a pearl pigment or an aluminum paste pigment is printed thereon as a reflective layer. Reflective screens are used that are coated and finely textured as required. In such a conventional reflective projection screen, when projecting in a bright room, it can be seen by increasing the overall brightness with a projector with a large amount of light, but the brightness in the bright part is improved, but the brightness in the dark part is not improved. Rather, the light emitted from the bright part in the screen is reflected on the wall surface etc. and is incident again as external light, which increases the brightness of the dark part and lowers the contrast. Therefore, it is common to project with the room lighting dimmed.
[0007] 視認性改善の方法としては、拡散反射率 rを低減する方法と、外光を反射しにくい 構造とする方法がある。前者の方法としては、表示面上に黒色のインクで網点、ハニ カム、ストライプ、砂目等の模様の光吸収層を印刷等で形成することにより、コントラス ト比の向上を図った反射型スクリーンが提案されている。また後者の例として特許文 献 1では、遮光層と光拡散層を積層したルーバーを繰り返し配置し、下方からのプロ ジェクシヨンの映像光をスクリーン前方に拡散反射する一方で、上方からの外光は遮 光層に吸収される構造を提案している。また後者の別の例として特許文献 2では、ス クリーン上に映像光の波長を選択的に反射する反射層を設けることによって、外光に 対してのコントラスト向上を図っている。 [0007] As a method for improving the visibility, there are a method for reducing the diffuse reflectance r and a method for making it difficult to reflect external light. The former method is a reflective type that improves the contrast ratio by forming a light-absorbing layer such as halftone dots, honeycombs, stripes, and grain with black ink on the display surface by printing. A screen has been proposed. As an example of the latter, in Patent Document 1, a louver composed of a light-shielding layer and a light diffusion layer is repeatedly arranged to diffuse and reflect the image light of the projection from below to the front of the screen, while outside light from above is A structure that is absorbed by the light shielding layer is proposed. As another example of the latter, Patent Document 2 describes a scan. By providing a reflective layer that selectively reflects the wavelength of the image light on the clean surface, the contrast to external light is improved.
[0008] この他に表示面に微小ビーズを一面に敷き詰め、反射光の方向を入射方向に再 帰させることによって、観察者の目に入らないようにするビーズスクリーンも実用化さ れており、ビーズスクリーンと光吸収層を設けた反射型スクリーンも提案されている。 また金属反射層を用いることによって、視角範囲が狭くなるものの拡散反射率を下げ て正反射率をあげ、コントラストと輝度の向上を図る提案もされている。  [0008] In addition to this, a bead screen has been put into practical use, in which fine beads are spread over the entire display surface and the direction of the reflected light is returned to the incident direction so that it does not enter the viewer's eyes. A reflection type screen provided with a bead screen and a light absorption layer has also been proposed. In addition, by using a metal reflective layer, although the viewing angle range is narrowed, a proposal has been made to improve the contrast and brightness by lowering the diffuse reflectance and increasing the regular reflectance.
[0009] し力しながらこれらの従来技術では、スクリーンの反射率を下げるタイプでは大光量 のプロジェクターが必要になり、またルーバー等の遮光物を利用するものは、視角範 囲が制限され有効な外光照射角が限られるという問題がある。また金属反射層を用 いたスクリーンは視角範囲がかなり狭く使用分野が制限される。これら従来の技術で はこれらの問題にカ卩えて、拡散反射光を除去しきれていないために表示コントラスト の改善が不十分である。  [0009] However, these conventional technologies require a projector with a large amount of light to reduce the screen reflectivity, and those using light-shielding objects such as louvers have a limited viewing angle range and are effective. There is a problem that the external light irradiation angle is limited. In addition, screens using a metal reflective layer have a very narrow viewing angle range, limiting the field of use. With these conventional techniques, the display contrast is insufficiently improved because these diffuse reflections are not completely removed.
特許文献 1:特開昭 51—44186号公報  Patent Document 1: Japanese Patent Laid-Open No. 51-44186
特許文献 2:特開 2003 - 344951号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-344951
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 映像表示や照明表示など光を用いた表示において、外光の散乱によって生じるコ ントラスト低下の問題はゥォッシュアウトと呼ばれ、自発光型の表示装置には不可分 の問題である。特にプロジェクシヨンスクリーンでは、元来が光の散乱による表示を行 つているためにこの問題は大きぐ単に視認性が劣化するのみならず、過大な光源出 力を要求し、省エネルギーの観点力もも解決が望まれて 、た。 [0010] In display using light such as video display and illumination display, the problem of contrast reduction caused by scattering of external light is called washout, which is an inseparable problem for self-luminous display devices. Especially for projection screens, the display is originally due to light scattering, so this problem is large. Not only the visibility is deteriorated, but also an excessive light source output is required, and the viewpoint of energy saving is solved. Was desired.
課題を解決するための手段  Means for solving the problem
[0011] 微小な曲面ミラーで構成されるマイクロミラーの光の入反射プロファイルを、主たる 外光入射角からの外光をスクリーンの配光範囲内に反射せず、光源からの光束を少 なくともスクリーンの配光範囲内に反射する条件を満足するように設定したマイクロミ ラー群力もなるマイクロミラースクリーンを実現することによって、上記の問題を解決す ることが可會であることが解明された。 発明の効果 [0011] The light incident / reflection profile of the micro mirror composed of minute curved mirrors does not reflect the external light from the main external light incident angle within the light distribution range of the screen, and at least the light flux from the light source It has been clarified that it is possible to solve the above problems by realizing a micromirror screen that also has a micromirror group power set so as to satisfy the conditions for reflection within the light distribution range of the screen. The invention's effect
[0012] 本発明によって、比較的低出力の光源を用いても強い外光下における表示コントラ ストが低下せず、良好な視認性を持つプロジェクシヨンスクリーンを実現することが可 能であり、このようなプロジェクシヨンスクリーンは反射型のフロントプロジェクシヨンスク リーンや透過型のリアプロジェクシヨンスクリーンのほ力、超省電力型のピクトサイン表 示装置や交通信号機などに応用することができる。  [0012] According to the present invention, it is possible to realize a projection screen with good visibility without reducing display contrast under strong external light even when a light source having a relatively low output is used. Such projection screens can be applied to the power of reflection-type front projection screens and transmission-type rear projection screens, super-power-saving picto-sign display devices and traffic signals.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]図 1は反射型マイクロミラースクリーンの配置図である。(実施例 1)  FIG. 1 is a layout view of a reflective micromirror screen. (Example 1)
[図 2]図 2は垂直方向のマイクロミラーの配置図である。  FIG. 2 is a layout diagram of micromirrors in the vertical direction.
[図 3]図 3は水平方向のマイクロミラーの配置図である。  [FIG. 3] FIG. 3 is a layout diagram of micromirrors in the horizontal direction.
[図 4]図 4は連続的に形成されたマイクロミラー列の断面図である。  FIG. 4 is a cross-sectional view of a continuously formed micromirror array.
[図 5]図 5は透明体に埋設したマイクロミラー列の断面図である。  FIG. 5 is a cross-sectional view of a micromirror array embedded in a transparent body.
[図 6]図 6はシースルー型スクリーンの断面構造図である。  [FIG. 6] FIG. 6 is a sectional view of a see-through screen.
[図 7]図 7は反射型曲面スクリーンの断面図である。  FIG. 7 is a cross-sectional view of a reflective curved screen.
[図 8]図 8はフレネルレンズを用いた反射型スクリーンの断面図である。  FIG. 8 is a cross-sectional view of a reflective screen using a Fresnel lens.
[図 9]図 9は短冊状マイクロミラー列を配置した反射型スクリーンの斜視図である。  FIG. 9 is a perspective view of a reflective screen on which strip-shaped micromirror arrays are arranged.
[図 10]図 10はサブマイクロミラー列を配置した反射型スクリーンの斜視図である。  FIG. 10 is a perspective view of a reflective screen in which sub-micromirror rows are arranged.
[図 11]図 11は透過型マイクロミラースクリーンの配置図である。(実施例 2)  FIG. 11 is a layout diagram of a transmission type micromirror screen. (Example 2)
[図 12]図 12は透過型マクロミラースクリーンの断面図である。  FIG. 12 is a cross-sectional view of a transmission type macro mirror screen.
[図 13]図 13は透過型曲面スクリーンの断面図である。  FIG. 13 is a sectional view of a transmissive curved screen.
[図 14]図 14は漏れ光防止構造を説明する断面図である。  FIG. 14 is a cross-sectional view for explaining a leakage light preventing structure.
[図 15]図 15は透過型マイクロスクリーンの斜視図である。  FIG. 15 is a perspective view of a transmission type microscreen.
[図 16]図 16はマイクロミラースクリーンの集合が形成する表示体の斜視図である。(実 施例 3)  FIG. 16 is a perspective view of a display body formed by a set of micromirror screens. (Example 3)
符号の説明  Explanation of symbols
[0014] 1 マイクロミラースクリーン [0014] 1 Micro mirror screen
2 プロジェクター  2 Projector
3 観察者 4 外光光源 3 Observer 4 External light source
5 スクリーン最遠点  5 Farthest screen point
6 スクリーン最近点  6 screen latest
7 マイクロミラー  7 Micromirror
8 透明体  8 Transparent body
9 非球面反射ミラー  9 Aspheric reflection mirror
10 半透過膜  10 Semi-permeable membrane
11 スクリーン背後の像  11 Statue behind the screen
12 フレ ^ノレレンズ  12 Fure ^ Norenz
13 樹脂基材  13 Resin base material
14 短冊状のマイクロミラー列  14 Strip-shaped micromirror array
15 サブマイクロミラー  15 Sub-micromirror
16 透過型マイクロミラースクリーン  16 Transmission type micro mirror screen
17 光入射部  17 Light incident part
18 光吸収膜  18 Light absorption film
19 表示体(マイクロミラースクリーンの集合)  19 Display (A collection of micromirror screens)
20 反射板もしくは遮光版  20 Reflector or shading plate
21 LED光源  21 LED light source
22 筐体  22 Enclosure
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 綿密に光学設計されたマイクロミラー群を繰り返し配置することによって、映像光を 所定の範囲に配光し、外光を効率よく吸収もしくは視覚範囲外に導くことができ、上 記の問題を解決することができる。  [0015] By repeatedly arranging a group of micromirrors that have been carefully optically designed, image light can be distributed within a predetermined range, and external light can be efficiently absorbed or guided outside the visual range. Can be solved.
実施例 1  Example 1
[0016] 図 1は本発明による第一の実施例の配置図である。反射型マイクロミラースクリーン 1 およびプロジェクター 2、観察者 3、および外光光源 4の配置を表す。反射型マイクロ ミラースクリーン 1に対するプロジェクター 2からの垂直方向の入射角範囲を、 a 〜a とし、視認範囲を j8 〜β とする。また外光入射角範囲を γ 〜γ とする。マイクロミ ラーの集合によってマイクロミラースクリーン 1が構成されるとして、最遠点 5に配置さ れるマイクロミラーによって、プロジェクターからの入射角ひ の映像光を視認範囲 j8 〜β に反射させるためには、マイクロミラーの法線が(α + β )Ζ2から + j8 ) FIG. 1 is a layout view of a first embodiment according to the present invention. The arrangement of the reflective micromirror screen 1 and projector 2, observer 3, and external light source 4 is shown. The incident angle range in the vertical direction from the projector 2 with respect to the reflective micromirror screen 1 is a to a, and the viewing range is j8 to β. The outside light incident angle range is γ to γ. Micromi In order to reflect the image light of the incident angle from the projector to the viewing range j8 to β by the micromirror arranged at the farthest point 5, the micromirror screen 1 is constituted by a set of mirrors. Is normal (α + β) Ζ2 to + j8)
2 1 1 1 2 2 1 1 1 2
Z2の範囲にあれば良い。この法線方向に連続的に変化する曲面によって、 1画素 に相当するマイクロミラーを構成することによって、設定した観察範囲に均等に映像 光を配光させることができる。このときマイクロミラーの中心軸はスクリーンの配光中心 ( β + β )Ζ2とこのマイクロミラー力もの光源方向 α の中間方向に向け配置する。 It should be in the range of Z2. By forming a micromirror corresponding to one pixel by the curved surface continuously changing in the normal direction, the image light can be evenly distributed in the set observation range. At this time, the center axis of the micromirror is arranged in the middle of the light distribution center (β + β) 2 of the screen and the light source direction α of the micromirror force.
1 2 1  1 2 1
[0017] またスクリーンの最近点 6に配置されるマイクロミラーによって、プロジェクターからの 入射角 α の映像光を視認範囲 j8 〜β に反射させるためには、マイクロミラーの法  [0017] In addition, in order to reflect the image light having the incident angle α from the projector to the viewing range j8 to β by the micromirror disposed at the nearest point 6 of the screen, the micromirror method is used.
2 1 2  2 1 2
線が(ひ + β )Ζ2から(ひ + β )Ζ2の範囲にあれば良い。またこのときマイクロミ  It suffices if the line is in the range of (ひ + β) Ζ2 to (ひ + β) Ζ2. At this time
2 1 2 2  2 1 2 2
ラーの中心軸はスクリーンの配光中心(j8 + β )Ζ2とこのマイクロミラーからの光源  The center axis of the light is the light distribution center of the screen (j8 + β) Ζ2 and the light source from this micromirror
1 2  1 2
方向 α の中間方向に向け配置する。最遠点と最近点の間に配置するマイクロミラー  Place it in the middle of direction α. Micromirror placed between the farthest point and the nearest point
2  2
も同様に配置する。  Are similarly arranged.
[0018] 簡易的に最遠点力 最近点まで、同一の曲面を持つマイクロミラーを配置すること も可能である。マイクロミラーの法線の最小値 Θ 、最大値 Θ を求めると、  [0018] The farthest point force can be simply arranged. Micromirrors having the same curved surface can be arranged up to the nearest point. When the minimum value Θ and the maximum value Θ of the normal of the micromirror are obtained,
mm max
Figure imgf000008_0001
mm max
Figure imgf000008_0001
となる。したがって最遠点力 最近点まで同一の曲面を持つマイクロミラーの繰り返し 配置によってスクリーンを構成する場合には、 Θ 力 0 に連続的に変化する曲  It becomes. Therefore, when the screen is constructed by repeatedly arranging micromirrors with the same curved surface up to the nearest point, the curve that continuously changes to Θ force 0
min max  min max
面によって、 1画素に相当するマイクロミラーを構成することによって、設定した観察範 囲に均等に映像光を配光させることができる。  By configuring a micromirror corresponding to one pixel depending on the surface, the image light can be distributed evenly within the set observation range.
[0019] 図 2は反射型マイクロミラースクリーンのマイクロミラー 7の垂直方向の配置を示す。  FIG. 2 shows a vertical arrangement of the micromirrors 7 of the reflective micromirror screen.
図 2のように上下のマイクロミラーの間隔を、最短でもスクリーン最近点においても映 像光がマイクロミラーに照射するように配置する。マイクロミラー間の最小間隔はマイ クロミラー上端が隣接するマイクロミラー下端を仰ぎ見る角度が α となる。このとき外 As shown in Fig. 2, the space between the upper and lower micromirrors is arranged so that the image light irradiates the micromirrors at the shortest point of the screen. The minimum distance between the micromirrors is α when the upper end of the micromirror is looking up at the lower end of the adjacent micromirror. This time outside
2  2
光がスクリーンから観察者側に反射しない最小の外光照射角度は j8 となり、 γ = β を超える上方力ゝらの外光は観察範囲に反射しない。映像光源もまた j8 を超える上 方へは映像光を観察者側に反射することができない。上下方向に同一のプロフアイ ルを持つマイクロミラーを配列する場合、最遠点のマイクロミラーに有効に入射するた めにはマイクロミラーの間隔をより広く設定する必要がある。したがって映像光源をマ イクロスクリーンに対して斜め方向に配置し、映像光が到達する最近点および最遠点 に入射する映像光が少なくともマイクロミラーの有効部に照射する位置にすべてのマ イク口ミラーが置かれ、少なくとも最近点のマイクロミラーにおける外光照射角範囲と 視認範囲が重ならないプロファイルを持つことによって外光によるコントラストの低下 を起こさずに視認することができる。 The minimum external light irradiation angle at which light does not reflect from the screen to the viewer side is j8, and external light of upward force exceeding γ = β is not reflected in the observation range. The image light source is also unable to reflect the image light to the observer side above j8. Same profile in vertical direction When arraying micromirrors with a mirror, it is necessary to set the distance between the micromirrors wider in order to effectively enter the micromirror at the farthest point. Therefore, the image light source is arranged in an oblique direction with respect to the micro screen, and all the microphone mirrors are positioned at positions where the image light incident on the nearest point and the farthest point where the image light reaches at least the effective part of the micromirror And has a profile that does not overlap the external light irradiation angle range and the visual recognition range at least at the most recent micromirror, so that it can be visually recognized without causing a decrease in contrast due to external light.
[0020] 実際にはマイクロミラーの汚れや歪によって外光の拡散反射光が観察者側に進行 することもある。またマイクロミラーによって反射した外光がマイクロミラーの背面で反 射してマイクロミラーを支持する透明体中を進行したり、支持体界面で反射して視認 範囲に再帰してくることがある。これを防止するためにマイクロミラーの一面を反射層 としその背面を吸収層とすることによって、外光を観察者側に反射することなく吸収す ることができる。またマイクロミラー群の背後に光吸収膜を配置することによつても同 等の効果が得られる。  [0020] Actually, diffuse reflected light of external light may travel to the observer side due to dirt or distortion of the micromirror. In addition, external light reflected by the micromirror may be reflected on the back surface of the micromirror and travel through the transparent body supporting the micromirror, or may be reflected at the support interface and return to the visible range. In order to prevent this, external light can be absorbed without reflecting to the viewer side by using one surface of the micromirror as a reflective layer and the back surface as an absorption layer. The same effect can be obtained by arranging a light absorption film behind the micromirror group.
[0021] また、水平方向の映像光入射範囲、視認範囲、外光入射範囲についても同様に設 定することができる。図 3はプロジェクターをスクリーンの中央に配置して投影するとき の、水平方向のマイクロミラー群の配置を示す図である。それぞれのマイクロミラー 7 は 1単位以下の画素を構成する。  [0021] In addition, the horizontal image light incident range, the visible range, and the external light incident range can be set in the same manner. FIG. 3 is a diagram showing the arrangement of the micromirror groups in the horizontal direction when the projector is placed at the center of the screen for projection. Each micromirror 7 constitutes one unit or less of pixels.
[0022] 垂直方向と水平方向の曲率を満足するマイクロミラーは回転楕円体の一部で構成す ることができる。個々のマイクロミラーの配列を、上下または左右のマイクロミラーに対 して 2分の 1ピッチ分オフセットすることで、映像光照射時に発生するモアレを抑制す ることができる。またオフセット量を特定の規則に従って定めたり、不規則にすること によって、より効果を上げることができる。  [0022] A micromirror that satisfies the curvatures in the vertical and horizontal directions can be formed of a part of a spheroid. By offsetting the arrangement of the individual micromirrors by a half pitch with respect to the top and bottom or left and right micromirrors, it is possible to suppress moiré that occurs during image light irradiation. In addition, the effect can be improved by setting the offset amount according to a specific rule or making it irregular.
[0023] 垂直方向の配置で十分に外光対策がとれる場合は、水平方向ではマイクロミラー の空隙部分を反射鏡部材で連続的に形成することも可能である。図 4はプロジェクタ 一をスクリーンのほぼ中央に配置して投影するときのマイクロミラー列の例を示す。個 々のマイクロミラー 7を左右対称とし、 0 =— Θ とすることで水平方向に連続した  [0023] When the arrangement in the vertical direction can sufficiently take measures against external light, it is possible to continuously form the gap portion of the micromirror with the reflecting mirror member in the horizontal direction. Fig. 4 shows an example of a micromirror array when a projector is projected at the center of the screen. By making each micromirror 7 symmetrical, 0 = — Θ, it is continuous in the horizontal direction.
mm max  mm max
マイクロミラー列として製作することが可能である。さらに簡易的には、上記のミラー角 度を満足する微細な波状の凹面鏡と凸面鏡の連続で構成しても良い。また、映像光 源の赤 ·緑'青の各画素が空間的に配置されている場合、投影された映像にカラー シフトが発生することがある。例えば各画素が水平方向に並んでいる場合には、水平 方向のマイクロミラーピッチを映像光の画素サイズの数分の 1以下とすることで拡散性 が向上し、カラーシフトを低減することができる。 It can be manufactured as a micromirror array. More simply, the above mirror angle It may be constituted by a series of fine wavy concave mirrors and convex mirrors satisfying the degree. In addition, when the red, green, and blue pixels of the image light source are spatially arranged, a color shift may occur in the projected image. For example, when the pixels are arranged in the horizontal direction, the diffusibility can be improved and the color shift can be reduced by setting the horizontal micromirror pitch to a fraction of the pixel size of the image light. .
[0024] またマイクロミラー群を透明榭脂等の透明体中に埋設して配置することにより、反射 範囲を広げたり、映像光の入射角を大きくとることができる。図 5は透明体中に埋設し たマイクロミラー群の視認範囲を説明する図である。プロジェクター 2からの映像光を 透明体 8の界面を介してマイクロミラー 7に入射する。また非球面反射ミラー 9で反射 して投影する構成をとることによって装置全体の小型化ができる。  [0024] In addition, by arranging the micromirror group so as to be embedded in a transparent body such as transparent resin, it is possible to widen the reflection range and increase the incident angle of the image light. FIG. 5 is a diagram for explaining the visible range of the group of micromirrors embedded in the transparent body. The image light from the projector 2 enters the micromirror 7 through the interface of the transparent body 8. Further, by adopting a configuration in which the light is reflected and projected by the aspherical reflecting mirror 9, the entire apparatus can be reduced in size.
[0025] マイクロミラー群を構成する個々のマイクロミラーは、プロジェクタ一力 投影される 映像光の 1画素以下の大きさであれば、映像光の解像度に影響せずに表示すること が可能である。ただし映像光の空間周波数とマイクロミラー群の繰り返し周波数が近 いとモアレを発生するので、映像光の空間周波数の上限を考慮して、マイクロミラー 群の配列ピッチを決める必要がある。  [0025] The individual micromirrors constituting the micromirror group can be displayed without affecting the resolution of the image light as long as the size of the image light projected by the projector is one pixel or less. . However, moire occurs when the spatial frequency of the image light and the repetition frequency of the micromirror group are close, so it is necessary to determine the arrangement pitch of the micromirror group in consideration of the upper limit of the spatial frequency of the image light.
[0026] このような構成のマイクロミラー群力 なるマイクロミラースクリーンは、映像光源から 入射する映像光を観察者側に反射し、視認範囲で良好な視認性が得られるとともに 、外光を観察範囲外に反射させたり空隙部を通して透過させたり、あるいは吸収層に 吸収させることによって観察者にいたることを防止することができる。  [0026] The micromirror screen, which is a group of micromirrors having such a configuration, reflects the image light incident from the image light source to the viewer side, provides good visibility in the viewing range, and allows outside light to be viewed in the viewing range. It is possible to prevent an observer from being reflected by reflecting outside, transmitting through a gap, or absorbing the absorption layer.
[0027] 図 6はマイクロミラースクリーン 1の背後に半透過膜 10を設置して、スクリーン背後の 像 11が視認できるシースルー型スクリーンの断面構造図であり、さらにスクリーン上 に投影されて ヽる映像光への背景の影響を低減する効果を持たせた例である。半透 過膜に代えて透明状態と非透明状態を調整できるデバイスであっても良い。  [0027] FIG. 6 is a cross-sectional view of a see-through screen in which a semi-transmissive film 10 is placed behind the micromirror screen 1 so that an image 11 behind the screen can be visually recognized, and an image projected on the screen. In this example, the effect of reducing the influence of the background on the light is provided. A device capable of adjusting the transparent state and the non-transparent state instead of the semi-transparent film may be used.
[0028] 図 7はマイクロミラー列力 見た映像光源の仰角が一定範囲となるようにスクリーン を曲面状に配置した例である。このような構成をとることで、マイクロミラーを最適配置 することができ、配光範囲を無駄なく有効に設定できる。  FIG. 7 is an example in which the screen is arranged in a curved shape so that the elevation angle of the image light source as seen from the micromirror array force is within a certain range. By adopting such a configuration, the micromirrors can be optimally arranged, and the light distribution range can be set effectively without waste.
[0029] 図 8はプロジェクター 2からの映像光をフレネルレンズ 12で平行化した後、マイクロミ ラースクリーンに入射する構成としたものである。このような構成にすることで、スクリー ンを平面に保ったまま単一のプロファイルのマイクロミラー群で最適な配光範囲を実 現することができる。フレネルレンズ 11は非球面レンズもしくは非球面ミラーであって も良い。またスクリーンに平行に配置することもできる。 FIG. 8 shows a configuration in which the image light from the projector 2 is collimated by the Fresnel lens 12 and then incident on the micromirror screen. With this configuration, the screen The optimal light distribution range can be realized with a group of micromirrors with a single profile while keeping the surface flat. The Fresnel lens 11 may be an aspheric lens or an aspheric mirror. It can also be arranged parallel to the screen.
[0030] 図 9は榭脂基材 13上に、マイクロミラーを形成した短冊状のマイクロミラー列 14を多 数並置したマイクロミラースクリーンの斜視図である。マイクロミラー列 14および榭脂 基材 13は、黒色顔料等を分散した榭脂を成形材料として、射出成形法や圧縮成形 法等の合成樹脂成形法で同時に成形することによって作製できる。マクロミラー列に は厚さ ΙΟΟηπ!〜 1 μ m程度の Ag膜や A1膜等の金属薄膜を形成する。金属薄膜は Agの無電解部分めつきや A1の斜め方向からの真空蒸着によって形成することがで きる。このように形成した金属薄膜の上に透明榭脂等の保護膜を形成する。  FIG. 9 is a perspective view of a micro mirror screen in which a plurality of strip-shaped micro mirror rows 14 each having a micro mirror formed thereon are juxtaposed on a resin base material 13. The micromirror array 14 and the resin base material 13 can be produced by simultaneously molding by a synthetic resin molding method such as an injection molding method or a compression molding method using a resin material in which a black pigment or the like is dispersed as a molding material. The thickness of the macro mirror array is ΙΟΟηπ! Form a metal thin film such as Ag film or A1 film of ~ 1 μm. The metal thin film can be formed by electroless partial plating of Ag or vacuum deposition from the oblique direction of A1. A protective film such as transparent resin is formed on the metal thin film thus formed.
[0031] このようにして作製したマイクロミラースクリーンをビルの壁面等に設置し、スクリーン の斜め下方力 プロジェクターの映像光を照射すると、直射日光下にもかかわらず良 好な視認性が得られる。また保護膜中にアナターゼ型酸ィ匕チタン等を含ませることに よって光触媒反応によって防汚効果を持たせることができる。また、榭脂基材 13を透 明榭脂で形成することも可能である。この場合は金属薄膜の背面に黒色層等を形成 することによって光吸収層とすることができる。また金属薄膜を形成しなくても、成形 品の表面粗さを鏡面仕上げ相当にすることによって一定の反射率が確保でき、マイ クロミラースクリーンとして利用することができる。  [0031] When the micromirror screen manufactured in this way is installed on the wall surface of a building and the screen is obliquely downwardly irradiated with image light from the projector, good visibility can be obtained despite direct sunlight. In addition, by including anatase type titanium oxide or the like in the protective film, an antifouling effect can be provided by a photocatalytic reaction. It is also possible to form the resin base material 13 with a transparent resin. In this case, a light absorption layer can be formed by forming a black layer or the like on the back surface of the metal thin film. Even if a metal thin film is not formed, a certain reflectance can be secured by making the surface roughness of the molded product equivalent to a mirror finish, and it can be used as a micromirror screen.
[0032] 図 10は主たるマイクロミラー 7とサブマイクロミラー 15と力もなるマクロミラースタリー ンの斜視図である。サブマイクロミラー 15を形成することによって入射角によらず、映 像光源からの映像光を有効に観察範囲に配光することができる。  FIG. 10 is a perspective view of a macro mirror stain which also has a force with the main micro mirror 7 and the sub micro mirror 15. By forming the sub-micromirror 15, the image light from the image light source can be effectively distributed to the observation range regardless of the incident angle.
実施例 2  Example 2
[0033] 図 11は本発明による第二の実施例の配置図である。透過型マイクロミラースタリー ン 16およびプロジェクター 2、観察者 3、および外光光源 4の配置を表す。透過型マ イク口ミラースクリーン 16に対するプロジェクター 2からの垂直方向の入射角範囲を、 a; 〜 α  FIG. 11 is a layout view of a second embodiment according to the present invention. This shows the arrangement of the transmissive micromirror stationary 16 and the projector 2, the observer 3, and the external light source 4. The incident angle range in the vertical direction from the projector 2 with respect to the transmission type microphone mouth mirror screen 16 is defined as a;
1 2とし、視認範囲を j8 〜β  1 2 and the viewing range is j8 to β
1 2とする。また外光入射角範囲を γ 〜γ  1 2 The external light incident angle range is γ to γ
1 2とする。 透過型マイクロミラースクリーンでもマイクロミラーの設計手法は基本的に同じである。 すなわち最遠点 5に配置されるマイクロミラーによって、プロジェクターからの入射角 a の映像光を視認範囲 j8 〜β に反射させるためには、マイクロミラーの法線が(α1 2 The design method of the micromirror is basically the same for the transmission type micromirror screen. In other words, the incident angle from the projector is reduced by the micromirror placed at the farthest point 5. In order to reflect the image light of a to the visible range j8 to β, the normal of the micromirror is (α
1 1 2 1 1 2
+ β  + β
1 1 )Ζ2から(ひ + β  1 1) From Ζ2 (H + β
1 2 )Ζ2の範囲にあれば良い。このときマイクロミラーの中心 軸はスクリーンの配光中心(j8 + β )Ζ2とこのマイクロミラーからの光源方向ひ の  1 2) It should be in the range of Ζ2. At this time, the center axis of the micromirror is the light distribution center (j8 + β) +2 of the screen and the direction of the light source from this micromirror.
1 2 1 中間方向に向け配置する。  1 2 1 Place in the middle direction.
[0034] またスクリーンの最近点 6に配置されるマイクロミラーによって、プロジェクターからの 入射角 α の映像光を視認範囲 j8 〜β に反射させるためには、マイクロミラーの法 In addition, in order to reflect the image light having the incident angle α from the projector to the viewing range j8 to β by the micromirror disposed at the nearest point 6 of the screen, the micromirror method is used.
2 1 2  2 1 2
線が(ひ + β )Ζ2から(ひ + β )Ζ2の範囲にあれば良い。またこのときマイクロミ It suffices if the line is in the range of (ひ + β) Ζ2 to (ひ + β) Ζ2. At this time
2 1 2 2 2 1 2 2
ラーの中心軸はスクリーンの配光中心(j8 + β )Ζ2とこのマイクロミラーからの光源  The center axis of the light is the light distribution center of the screen (j8 + β) Ζ2 and the light source from this micromirror
1 2  1 2
方向 α の中間方向に向け配置する。最遠点と最近点の間に配置するマイクロミラー Place it in the middle of direction α. Micromirror placed between the farthest point and the nearest point
2 2
も同様に配置する。  Are similarly arranged.
[0035] 簡易的に最遠点力 最近点まで、同一の曲面を持つマイクロミラーを配置する場合 の、マイクロミラーの法線の最小値 Θ 、最大値 Θ を求めると、  [0035] When the minimum value Θ and the maximum value Θ of the normal of the micromirror in the case where the micromirror having the same curved surface is arranged up to the nearest point are calculated as follows:
mm max
Figure imgf000012_0001
mm max
Figure imgf000012_0001
となる。  It becomes.
[0036] 透過型スクリーンでは通常プロジェクシヨンエンジン(プロジェクター)からスクリーン 背面にかけては遮光したエンクロージャーで覆うために、外光照射範囲と映像光照 射範囲が重複することはなぐ良好な視認性を保つことができる。またェンクロージャ 一で覆わない場合であっても、マクロミラーの反射によって外光が視認範囲に出射す る範囲は極めて限られる。  [0036] In a transmissive screen, the area from the projection engine (projector) to the back of the screen is usually covered with a light-shielded enclosure, so that the external light irradiation range and the image light irradiation range do not overlap and maintain good visibility. it can. Even if it is not covered with an enclosure, the range in which external light is emitted to the visible range due to the reflection of the macro mirror is extremely limited.
[0037] 図 12は透過型マイクロミラースクリーンの断面図の一例である。ここでは主たるマイ クロミラー 7とサブマイクロミラー 15で構成されている力 マイクロミラー 7のみの配列 でも可能である。サブマイクロミラー 15を配置することによってマイクロスクリーンから の漏れ光を防止し、輝度の高い表示ができる。また、図 13に示すように、マイクロミラ 一列から見た映像光源の仰角が一定範囲となるようにスクリーンを曲面状に配置する ことによって、配光範囲を無駄なく有効に設定でき、漏れ光も防止することができる。 また、図 14に示すように、マイクロミラー群を透明体中に埋設して配置する場合には 、漏れ光の出射側界面に対する入射角を臨界角以上にすることによって漏れ光を防 止することができる。 FIG. 12 is an example of a cross-sectional view of a transmissive micromirror screen. Here, an arrangement of only the force micromirror 7 composed of the main micromirror 7 and the submicromirror 15 is also possible. By arranging the sub-micromirror 15, leakage light from the microscreen can be prevented and display with high luminance can be achieved. In addition, as shown in Fig. 13, by arranging the screen in a curved shape so that the elevation angle of the image light source seen from a row of micromirrors is in a certain range, the light distribution range can be set effectively and without waste. Can be prevented. Further, as shown in FIG. 14, when the micromirror group is embedded in a transparent body, leakage light is prevented by making the incident angle of the leakage light with respect to the emission side interface equal to or greater than the critical angle. Can be stopped.
[0038] 図 15は透明樹脂で形成した短冊状の透過型マイクロミラースクリーンの斜視図であ る。マイクロミラー 7は透明樹脂の界面に形成されており、同じく透明樹脂の他の界面 に映像光入射面 17および光吸収膜 18が形成されている。透明樹脂にはアクリル系 やポリエステル系の熱硬化や紫外線硬化榭脂を使用することができる。またポリカー ボネート等の熱可塑性榭脂を使って射出成形や、ホットプレス等の方法で成形するこ ともできる。榭脂界面に形成したマイクロミラー部には無電解選択めつきや真空蒸着 によって金属薄膜を形成することによってマイクロミラーとして用いることができる。ま た金属薄膜の背面に黒色膜等を形成することによって光吸収層とすることができる。 また金属薄膜を形成しなくても透明榭脂界面での光の全反射によってマイクロミラー として用いることも可能である。光吸収膜 18は黒色顔料等を含む榭脂を流下させるこ とで形成することができる。  FIG. 15 is a perspective view of a strip-shaped transmissive micromirror screen formed of a transparent resin. The micromirror 7 is formed at the interface of the transparent resin, and the image light incident surface 17 and the light absorption film 18 are also formed at the other interface of the transparent resin. As the transparent resin, an acrylic or polyester thermosetting or ultraviolet curable resin can be used. It can also be molded by injection molding or hot pressing using a thermoplastic resin such as polycarbonate. The micromirror part formed at the resin interface can be used as a micromirror by forming a metal thin film by electroless selective plating or vacuum deposition. Moreover, it can be set as a light absorption layer by forming a black film etc. in the back surface of a metal thin film. Even if a metal thin film is not formed, it can be used as a micromirror by total reflection of light at the transparent resin interface. The light absorbing film 18 can be formed by allowing a resin containing black pigment or the like to flow down.
実施例 3  Example 3
[0039] 図 16は、第三の実施例を示す斜視図である。 19はマイクロミラーの集合が表示体と しての形状、ここではピクトグラムを表現している。 20は観察者側からは白色の塗装 板であるが、内面側は反射板もしくは遮光板となっている。 21は LED光源であり、表 示に適した発光色を選ぶことができる。 22は内面に反射板等を有する筐体である。  FIG. 16 is a perspective view showing a third embodiment. Reference numeral 19 represents the shape of a set of micromirrors as a display body, here a pictogram. 20 is a white painted plate from the observer side, but the inner surface is a reflecting plate or a light shielding plate. Reference numeral 21 denotes an LED light source, which can select an emission color suitable for display. Reference numeral 22 denotes a housing having a reflecting plate or the like on the inner surface.
[0040] このような構造の内照サインはきわめて省電力で表示を行うことができ、かつ外光下 においても良好な視認性を保つことができる。 LED光源 21から出射した光は、一部 が直接マイクロミラースクリーンに入射して所定の視認範囲に配光される。また一部 は反射板 20もしくは筐体 22の内面の反射板等に反射して、マイクロミラースクリーン に入射する。また、表示体の形状に合わせて LED光源の光を透過させるカラーフィ ルターを併置することによって昼間は反射形の表示装置として機能させることもできる  [0040] The internal illumination sign having such a structure can perform display with extremely low power consumption, and can maintain good visibility even under external light. A part of the light emitted from the LED light source 21 is directly incident on the micromirror screen and is distributed to a predetermined viewing range. A part of the light is reflected by the reflecting plate 20 or the reflecting plate on the inner surface of the housing 22 and enters the micromirror screen. In addition, a color filter that transmits the light from the LED light source according to the shape of the display body can be placed side by side to function as a reflective display device in the daytime.
[0041] また、マイクロミラーの集合で表現される表示体を重層したり、反射形マイクロミラー と透過型マイクロミラーおよび単一または複数の光源を組み合わせることによって、多 色の表示体としたり選択発光を行う表示とすることも可能である。また配光範囲を厳 密に規定した省電力の交通信号灯などに使用することもできる。 産業上の利用の可能性 [0041] In addition, a display body represented by a set of micromirrors is layered, or a reflective micromirror, a transmission micromirror, and a single or multiple light sources are combined to produce a multicolor display body or selective light emission. It is also possible to make a display for performing. It can also be used for power-saving traffic signal lights with strictly defined light distribution ranges. Industrial applicability
外光下においても良好な視認性を確保できるとともに、省電力な反射形および透 過型のプロジェクシヨンスクリーンを安価に製造することができる。また、外光下にお ける視認性および省電力性が不可欠な表示等の用途にも適用できる。  Good visibility can be ensured even under external light, and power-saving reflective and transparent projection screens can be manufactured at low cost. It can also be applied to displays and other applications that require visibility and power saving under external light.

Claims

請求の範囲 The scope of the claims
[I] 微小な曲面ミラーで構成されるマイクロミラー力 なる反射領域と、透明体または吸 収体または空隙からなる非反射領域とで構成され、主たる外光入射角からの外光を スクリーンの配光範囲内に反射せず、光源力 の光束を少なくともスクリーンの配光 範囲内に反射する条件を満足するプロファイルを持つマイクロミラー群力 なることを 特徴とするマイクロミラースクリーン。  [I] Consists of a micromirror force reflecting area composed of minute curved mirrors and a non-reflective area consisting of a transparent body, absorber, or air gap. A micromirror screen characterized by having a micromirror group power that does not reflect within the light range and has a profile that satisfies at least the condition of reflecting the luminous flux of light source within the light distribution range of the screen.
[2] 前記マイクロミラーがマイクロミラースクリーンを構成する透明体と、空隙との界面で 構成され、光源力ゝらの入射光が前記界面で全反射することによってスクリーンの配光 範囲に反射することを特徴とする請求項 1記載のマイクロミラースクリーン。  [2] The micromirror is composed of an interface between a transparent body constituting the micromirror screen and a gap, and incident light from the light source power is reflected to the light distribution range of the screen by total reflection at the interface. The micromirror screen according to claim 1, wherein:
[3] 前記マイクロミラーが反射層と光吸収層の複合材もしくは表面反射を有する光吸収 材で構成されることを特徴とする請求項 1記載のマイクロミラースクリーン。  3. The micromirror screen according to claim 1, wherein the micromirror is composed of a composite material of a reflective layer and a light absorbing layer or a light absorbing material having surface reflection.
[4] 前記マイクロミラー群に隣接して光吸収膜を配置することを特徴とする請求項 1記載 のマイクロミラースクリーン。  4. The micromirror screen according to claim 1, wherein a light absorption film is disposed adjacent to the micromirror group.
[5] 前記マイクロミラーが金属薄膜で形成されることを特徴とする請求項 1記載のマイク 口ミラースクリーン。  5. The microphone mirror screen according to claim 1, wherein the micro mirror is formed of a metal thin film.
[6] 前記マイクロミラー群を曲面状に配置することを特徴とする請求項 1記載のマイクロ ミラースクリーン。  6. The micro mirror screen according to claim 1, wherein the micro mirror group is arranged in a curved shape.
[7] プロジェクターからの映像光を平行ィ匕した後、前記マイクロミラー群に入射すること を特徴とする請求項 1記載のマイクロミラースクリーン。  7. The micromirror screen according to claim 1, wherein the image light from the projector is collimated and then incident on the micromirror group.
[8] 前記マイクロミラーからなる反射領域が、水平方向に配列されたマイクロミラー列か らなり、前記反射領域と前記非反射領域とが交互に配列されていることを特徴とする 請求項 1記載のマイクロミラースクリーン。 8. The reflective region comprising the micromirrors comprises a micromirror array arranged in a horizontal direction, and the reflective regions and the non-reflective regions are alternately arranged. Micro mirror screen.
[9] 前記マイクロミラー群が、複数の入反射角プロファイルを持ったマイクロミラーの集 合で構成されることを特徴とする請求項 1記載のマイクロミラースクリーン。 9. The micromirror screen according to claim 1, wherein the group of micromirrors is composed of a group of micromirrors having a plurality of incident / reflecting angle profiles.
[10] 前記マイクロミラー群の集合が表示体としての形状もしくはその一部を表現する構 造であることを特徴とする請求項 1記載のマイクロミラースクリーン。 10. The micromirror screen according to claim 1, wherein the set of micromirror groups has a structure representing a shape as a display body or a part thereof.
[I I] 前記マイクロミラー群の集合が表示体としての形状もしくはその一部を表現するよう に遮光板を併置することを特徴とする請求項 1記載のマイクロミラースクリーン。 [II] The micromirror screen according to claim 1, wherein a light shielding plate is juxtaposed so that the set of micromirror groups represents a shape as a display body or a part thereof.
[12] 前記マイクロミラー群の集合が表現する表示体が単一または複数の光源力 入射 する光束の合成または、重層されたマイクロミラー群の集合からの光束の合成によつ て表現されることを特徴とする請求項 1記載のマイクロミラースクリーン。 [12] The display body expressed by the set of micromirror groups is expressed by combining light beams incident on a single or plural light sources or by combining light beams from a set of stacked micromirror groups. The micromirror screen according to claim 1, wherein:
[13] 前記マイクロミラー群を構成するマイクロミラーが、入射光を特定の表示光出射角に 反射する表示反射領域と、入射光を他のマクロミラーへ進行させる進行反射領域と 力も構成されることを特徴とする請求項 1記載のマイクロミラースクリーン。  [13] The micromirrors constituting the group of micromirrors also include a display reflection region that reflects incident light at a specific display light emission angle, and a progressive reflection region and force that causes the incident light to travel to other macromirrors. The micromirror screen according to claim 1, wherein:
PCT/JP2005/018344 2005-10-04 2005-10-04 Micro mirror screen WO2007043135A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/018344 WO2007043135A1 (en) 2005-10-04 2005-10-04 Micro mirror screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/018344 WO2007043135A1 (en) 2005-10-04 2005-10-04 Micro mirror screen

Publications (1)

Publication Number Publication Date
WO2007043135A1 true WO2007043135A1 (en) 2007-04-19

Family

ID=37942405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018344 WO2007043135A1 (en) 2005-10-04 2005-10-04 Micro mirror screen

Country Status (1)

Country Link
WO (1) WO2007043135A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132931A (en) * 2012-02-16 2012-07-12 Yuichi Hirai Laser receiver
WO2023199926A1 (en) * 2022-04-15 2023-10-19 デクセリアルズ株式会社 Screen, method for manufacturing same, and die

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616118A (en) * 1979-07-18 1981-02-16 Mitsubishi Electric Corp Reflective screen
JPH01209436A (en) * 1988-02-18 1989-08-23 Kawasaki Heavy Ind Ltd Projecting image screen and its production
JPH03107992A (en) * 1989-09-20 1991-05-08 Tradebest Internatl Corp Lightable display device
JPH03189633A (en) * 1989-12-20 1991-08-19 Hitachi Ltd Reflection type projection screen
JPH04240838A (en) * 1991-01-25 1992-08-28 Victor Co Of Japan Ltd Reflection type screen
JPH04287033A (en) * 1991-03-15 1992-10-12 Seiko Epson Corp Back projection type display device
JPH06332074A (en) * 1993-05-20 1994-12-02 Fujitsu General Ltd Projection screen
JPH0843949A (en) * 1994-08-02 1996-02-16 Matsushita Electric Ind Co Ltd Transmission type screen
JP2003029344A (en) * 2001-07-13 2003-01-29 Arisawa Mfg Co Ltd Screen
JP2004505290A (en) * 2000-07-25 2004-02-19 スクラム テクノロジーズ インコーポレイテッド Black serrated optical panel
JP2004078024A (en) * 2002-08-21 2004-03-11 Nec Viewtechnology Ltd Reflection type screen
JP2005107011A (en) * 2003-09-29 2005-04-21 Daicel Chem Ind Ltd Reflection screen, display method and display device using same
JP2005292679A (en) * 2004-04-05 2005-10-20 Aterio Design Kk Micromirror screen

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616118A (en) * 1979-07-18 1981-02-16 Mitsubishi Electric Corp Reflective screen
JPH01209436A (en) * 1988-02-18 1989-08-23 Kawasaki Heavy Ind Ltd Projecting image screen and its production
JPH03107992A (en) * 1989-09-20 1991-05-08 Tradebest Internatl Corp Lightable display device
JPH03189633A (en) * 1989-12-20 1991-08-19 Hitachi Ltd Reflection type projection screen
JPH04240838A (en) * 1991-01-25 1992-08-28 Victor Co Of Japan Ltd Reflection type screen
JPH04287033A (en) * 1991-03-15 1992-10-12 Seiko Epson Corp Back projection type display device
JPH06332074A (en) * 1993-05-20 1994-12-02 Fujitsu General Ltd Projection screen
JPH0843949A (en) * 1994-08-02 1996-02-16 Matsushita Electric Ind Co Ltd Transmission type screen
JP2004505290A (en) * 2000-07-25 2004-02-19 スクラム テクノロジーズ インコーポレイテッド Black serrated optical panel
JP2003029344A (en) * 2001-07-13 2003-01-29 Arisawa Mfg Co Ltd Screen
JP2004078024A (en) * 2002-08-21 2004-03-11 Nec Viewtechnology Ltd Reflection type screen
JP2005107011A (en) * 2003-09-29 2005-04-21 Daicel Chem Ind Ltd Reflection screen, display method and display device using same
JP2005292679A (en) * 2004-04-05 2005-10-20 Aterio Design Kk Micromirror screen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132931A (en) * 2012-02-16 2012-07-12 Yuichi Hirai Laser receiver
WO2023199926A1 (en) * 2022-04-15 2023-10-19 デクセリアルズ株式会社 Screen, method for manufacturing same, and die

Similar Documents

Publication Publication Date Title
TWI794456B (en) optical device
CN101162361B (en) Screen and projection system
US7349154B2 (en) Reflection type screen
JP6123678B2 (en) LIGHTING DEVICE AND DISPLAY DEVICE HAVING LIGHTING DEVICE
JP2005292679A (en) Micromirror screen
TWI571695B (en) High contrast rear projection screen for use with a diverging illumination source
US7522339B2 (en) High contrast projection systen
JP6167315B2 (en) Screen and video display system
KR20040079423A (en) Transparent screen and projection display apparatus
JP2011123379A (en) Light beam control unit, direct backlight apparatus and liquid crystal display apparatus
JP4083191B2 (en) Reflective screen
EP3985435B1 (en) Projection screen
CN110969952A (en) LED display screen
JP2004226696A (en) Screen, optical film and method for manufacturing optical film
JP4684859B2 (en) Light convergence sheet, surface light source device
US20110241977A1 (en) Enhanced viewing brightness for surface display
JP2010191105A (en) Screen and projection system
JP2014115576A (en) Display device
JP4025432B2 (en) Rear projection screen
CN114690530A (en) Optical projection screen and projection system with high imaging display uniformity
WO2007043135A1 (en) Micro mirror screen
WO2006011218A1 (en) Fresnel optical element, display screen and, projection type display device
JP2010204573A (en) Reflective screen and video display system
US20080102230A1 (en) Diffusing Plate For Transmissive Screen, Transmissive Screen And Rear Projection Display Apparatus
EP1784688B1 (en) Rear projection screen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05790526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP