WO2007036135A1 - Catalyst active component, preparation method thereof and catalyst comprising said active component - Google Patents

Catalyst active component, preparation method thereof and catalyst comprising said active component Download PDF

Info

Publication number
WO2007036135A1
WO2007036135A1 PCT/CN2006/002356 CN2006002356W WO2007036135A1 WO 2007036135 A1 WO2007036135 A1 WO 2007036135A1 CN 2006002356 W CN2006002356 W CN 2006002356W WO 2007036135 A1 WO2007036135 A1 WO 2007036135A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
titanium
weight
reaction
parts
Prior art date
Application number
PCT/CN2006/002356
Other languages
French (fr)
Chinese (zh)
Inventor
Jiang Xu
Original Assignee
Beijing Jindingke Chemical Technology Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jindingke Chemical Technology Ltd. filed Critical Beijing Jindingke Chemical Technology Ltd.
Publication of WO2007036135A1 publication Critical patent/WO2007036135A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • Catalyst active component preparation method thereof, and catalyst including the same
  • the present invention relates to a catalyst active component for ethylene polymerization or copolymerization, a process for the preparation thereof, and a catalyst using the same.
  • Ethylene polymerization generally requires a high catalytic activity of the catalyst, and has long-lasting properties. At the same time, the molecular weight and molecular weight distribution of the polymer are required to be controlled, and a good morphology is obtained to stabilize the process and improve the running efficiency.
  • the industrially used Ziegler-Natta type polyepoxy catalysts are all supported high-efficiency catalysts, and the carrier used is magnesium chloride.
  • polyethylene catalysts require not only high activity, but also good copolymerization performance, good hydrogen sensitivity, and high bulk density, uniform particle size distribution, and fine powder. Good mechanical properties, etc. This is the future direction of the development of polyethylene germination agent. This requires the catalyst to have a high mechanical wear strength and a good particle shape.
  • CN1085569A discloses a process for preparing a titanium catalyst which forms a magnesium solution with an alcohol having at least six carbon atoms and a hydrocarbon solvent, and then reacts with an organoaluminum compound to form a solid aluminum complex.
  • the solid magnesium aluminum compound is suspended in a hydrocarbon solvent, and a tetravalent titanium compound is added to obtain a solid titanium catalyst suitable for ethylene polymerization.
  • CN1050389A discloses an ethylene polymerization catalyst comprising magnesium chloride and silica, the active component being Ti, and further comprising a complexing agent R0H, an electron donor ester and an alkyl aluminum compound.
  • the catalyst is prepared by mixing magnesium chloride and silica, and then adding an appropriate amount of alcohol to make the alcohol/magnesium.
  • the molar ratio is 3_25:1, and the reaction is sufficiently carried out under stirring, and then an aluminum alkyl and an ester are added to remove excess alcohol to obtain a solid component of the catalyst.
  • the above preparation method is also not very effective, and at the same time, the catalyst cost is increased because the magnesium chloride needs to be supported on the expensive silica gel.
  • CN1118488C reports an ethylene polymerization catalyst containing a halogenated hydrocarbon and an active component of Ti.
  • the modification of the halogenated hydrocarbon improves the morphology of the magnesium chloride, not only the catalytic activity, but also the resin.
  • the bulk density has also increased significantly.
  • this catalyst requires dealkylation with an aluminum alkyl, which inevitably increases the cost of the catalyst and increases environmental concerns.
  • CN1112373C discloses an ethylene polymerization catalyst which comprises modifying a catalyst by adding an electron donor, the morphology of the magnesium chloride is improved, the catalytic activity is improved, and the bulk density of the resin is also significantly increased.
  • the tetraalkoxysilane electron donor added in this patent has a great advantage in maintaining the morphology of the catalyst and the morphology of the obtained polymer, but is easily decomposed, and its decomposition degree is sensitive to catalytic activity, polymer morphology and hydrogen modulation. Sex has a great influence.
  • One of the objects of the present invention is to provide a catalyst active component for ethylene polymerization or copolymerization. Another object of the present invention is to provide a process for preparing the above-mentioned catalyst active component.
  • the present invention provides a catalyst active component for ethylene polymerization or copolymerization, based on 100 parts by weight of the total weight of the catalyst active component, including: 12.0 ⁇ 18.0 parts by weight of magnesium; 4.0 ⁇ 8.0 parts by weight of titanium; 1.1 to 11.0 parts by weight of alkoxy group; 0.5 to 2.5 parts by weight of silicon; and 55.0 to 75.0 parts by weight of halogen.
  • the above catalyst active component according to the present invention wherein 1.0 to 6.0 parts by weight of an alkoxy group is formed from an organic alcohol based on 100 parts by weight of the total weight of the catalyst active component, and the organic alcohol is selected from the group consisting of ethanol and propanol.
  • the electron donor added may not produce an ethoxy group.
  • the present invention further provides a method (Method 1) for preparing the above-mentioned catalyst active component, the method comprising the steps of:
  • magnesium alkoxide slurry In an inert hydrocarbon solvent containing at least one C6-12 aliphatic hydrocarbon at 50 to 180 ° C, the magnesium compound and the organic compound having 2 to 10 carbon atoms Alcohol reaction for 0.5 ⁇ 3 hours, forming a homogeneous solution, wherein the molar ratio of magnesium / alcohol is 1: 0.5 ⁇ 6, 1.8 5.0 liters of inert hydrocarbon solvent per mole of magnesium compound;
  • reaction temperature is 20 to: 100 ° C, and 0.05 to 1.0 mole of the electron donor is added per mole of the magnesium compound;
  • the titanium compound Ti(OR)4-nXn is added to the reaction solution in (2) to carry out the pre-loading titanium reaction, wherein the reaction temperature is - 30 to 20 ° C, X is a halogen, and R is an alkyl group, n An integer of 0 or less than 4, 1.0 to 80.0 moles of the titanium compound is added per mole of the magnesium compound, and the titanium compound Ti (OR ) 4-n X n is added and maintained at -1 (0.5 to 3 hours under TC).
  • reaction liquid in (3) is added with a halogenated hydrocarbon to carry out a titanium-supporting reaction, wherein the reaction temperature is raised to 70 to 130 ° C in 1 to 4 hours, and the reaction is continued for 1 to 6 hours, and the halogenated hydrocarbon is The molar amount is 2 to 20 times the molar amount of the magnesium compound, and the halogenated hydrocarbon is a halogenated hydrocarbon or a halogenated cycloalkane;
  • step (1) it is preferred to use 1.8 to 5.0 liters, more preferably 2.0 to 3.0 liters of the inert hydrocarbon solvent per mole of the magnesium compound.
  • the magnesium compound used in the step (1) may be one or more selected from the group consisting of MgCl 2 , MgBr 2 , Mgl 2 , Mg(0Et) 2 , Mg (OPr) 2 , Mg ( OBu) a group of 2 compounds.
  • the reaction temperature in the step (1) is 70 to 120 ° C and the molar ratio of magnesium to alcohol is 1: 2 to 4.
  • the reaction temperature of the step (2) is 40 to 80 °C.
  • the electron donor in step (2) is one or more selected from the group consisting of having the formula (R 1 ) (R 2 ) (R 3 ) (R 4 ) Si, R ⁇ R 2 , R 3 , R 4 may all be the same or R 1 and R 2 are the same, or R 1 R 2 and R 3 may be the same, and R 1 R 2 , R 3 > R 4 may be four alkoxy groups or Three alkoxy groups or two alkoxy groups having at least one alkoxy group.
  • RR 2 , R 3 , R 4 are selected from C C C 12 alkyl, C 6 -C 9 alkaryl or d ⁇ C 12 alkoxy, C 6 ⁇ C 9 alkaryloxy or C Cn alkyl halide a C 3 -C 6 epoxy group, more preferably the electron donor is selected from the group consisting of dinonyldimethoxysilane, dipropyldimethoxysilane, diisopropyldimethoxysilane, and Isobutyldimethoxysilane, dibutyldimethoxysilane, cyclohexylmethyldimethoxysilane, cyclohexylisopropyldimethoxysilane, cyclopentylisobutyldioxyloxy Silane, cyclopentylisopropyldimethoxysilane, cyclopentylbutyldimethoxysilane, cyclopentylpropyldime
  • the temperature of the precharged titanium reaction is -20 to 20 ° C, more preferably -10 to 10, most preferably -5 ° C.
  • the step (3) preferably, 1.0 to 50.0 mol, more preferably 20.0 50.0 mol, of the titanium compound is added per mol of the magnesium compound.
  • the titanium compound Ti(OR) 4 _ n X n in the step (3) is selected from the group consisting of titanium tetrachloride, titanium tetrabromide, titanium tetraiodide, tetrabutoxy A group of titanium, tetraethoxytitanium, monochlorotriethoxytitanium, dichlorodiethoxytitanium, trichloromonoethoxytitanium, and mixtures thereof.
  • the reaction temperature is raised to 90 to 110 in 2 to 3 hours.
  • C continue to react for 2 to 4 hours, the molar amount of halogenated hydrocarbon is 5 to 20 times the molar amount of the magnesium compound.
  • the halogenated hydrocarbon used in the step (4) is selected from the group consisting of 1,2-dichloroethane, 1, 3-dichloropropane, 1, 4-dichlorobutane, a group of 1,6-dichlorohexane, monochlorocyclohexane, dichlorocyclohexane, monochlorocyclopentane, dichlorocyclopentane, and mixtures thereof.
  • reaction solution in (2) is slowly added to the titanium compound Ti(OR) 4_ n X n solution for pre-loading titanium reaction, wherein the reaction temperature is -30 to 20 ° C, preferably -10 to 10 ° C, X is a halogen, R is an alkyl group, n is 0 or an integer of 4 or less, and 1 to 80.0 mol, preferably 20.0 to 50.0 mol of the titanium compound is added per mol of the magnesium compound;
  • reaction liquid in (4) and (3) is subjected to a titanium-containing reaction after adding a halogenated hydrocarbon, which is the same as in the method 1;
  • the difference between the two is mainly:
  • the titanium compound solution is added to the magnesium alkoxide slurry by increasing the amount of the inert hydrocarbon solvent and in the preloaded titanium reaction.
  • the amount of the titanium compound is greatly reduced.
  • the magnesium alkoxide slurry prepared in the step (2) is added to the titanium compound solution, so that the use of the titanium compound is higher. Therefore, Method 1 is more preferable.
  • the present invention also provides a catalyst for ethylene polymerization or copolymerization comprising the above catalyst active component and a cocatalyst, wherein the cocatalyst is an organoaluminum compound R 3 — n AlX n , wherein X is a halogen and R is C1 ⁇ C6 alkyl, n is an integer from 0 to 3; the molar ratio of aluminum in the cocatalyst to titanium in the active component of the catalyst is from 20 to 800, preferably from 50 to 300.
  • the above catalyst according to the present invention can be used to prepare high density high strength polyethylene. It can be applied to the existing ethylene polymerization slurry method and the gas phase method, and can produce parallel or series grade polyethylene.
  • the present invention proposes a catalyst for olefin polymerization or copolymerization, introducing an electron donor which is not easily decomposed, and simultaneously introducing an electron donor and a hydrocarbon into a titanium-containing active group. In the middle.
  • the amount of the solvent is increased at the same time, so that the obtained catalyst particles are large; and only a small amount of the titanium compound is required in the preparation of the active component of the catalyst; it is not necessary to add a halogenated hydrocarbon at the time of polymerization to increase the activity of the catalyst.
  • Another feature of the catalyst of the present invention is that the introduction of the electron donor can greatly improve the hydrogen sensitivity of the catalyst; and the invention has the feature of eliminating the need for alcohol removal from the alkyl aluminum, thereby reducing the cost. Environmental pollution.
  • the catalyst particles prepared by the present invention are large, the catalyst particles have a high sedimentation speed and are easy to be washed, so that the preparation of the catalyst is simpler and the preparation cycle is greatly shortened, which is advantageous for the industrial production of the catalyst.
  • the catalyst prepared by the invention has high hydrogen sensitivity and can be twice as high as similar catalyst.
  • the catalyst of the invention has good polymerization performance, the polymerization efficiency of the catalyst is more than 50,000 times, and the particle morphology and bulk density of the polymer are also better than the prior art.
  • the electron donor may be added in two ways, one is added in the reaction step (2); the second method is to first add a part of the electron donor to the reaction temperature to 60 ⁇ : 130 ° C, preferably 90 ⁇ 110 ° C; then follow the reaction step (2) when adding another part of the electron donor.
  • the halogenated hydrocarbon is added after the completion of the titanium-supporting reaction or during the polymerization of the olefin.
  • the present invention finds that the halogenated hydrocarbon can be added during the titanium-supporting reaction or can be completed in the titanium-loaded reaction. It is added later, but it is added during the titanium-containing reaction process, which is more effective in improving the catalytic activity and increasing the polymer bulk density, and the operation is also simpler.
  • the catalyst of the invention has excellent copolymerization performance, which is much better than the prior art.
  • a small amount of comonomer is added, no oligomer is collected in the ethane, and a small amount of oligomerization can be collected when the comonomer is large.
  • the prior art generally produces a large amount of low molecular weight copolymer which is soluble in ethane, and the obtained copolymer polymer particles are also better in morphology and bulk density than the prior art, which is for the development of new products and long-term operation of the device. It is of considerable importance.
  • the catalyst of the invention not only has high catalytic activity, good copolymerization performance, but also has very good hydrogen sensitivity, and the melt index is more than double that of the polymer obtained in the prior art, and the obtained polyethylene product has good morphology and uniform particle distribution.
  • the bulk density is high.
  • the polymer has good physical and mechanical properties, especially high impact strength, and can produce high-density high-strength polyethylene. Due to the good shape of the catalyst particles of the present invention, It is only suitable for the existing acetonitrile polymerization slurry method and can also be used in the gas phase process, and can produce parallel or series grade polyethylene.
  • diisopropyldimethoxysilane diisobutyldimethoxysilane, butyldimethoxysilane, cyclohexyldimethoxysilane, cyclohexylisopropyldimethyl Oxysilane, cyclopentyl isobutyl dimethoxy silane, cyclopentyl isopropyl dimethoxy silane, cyclopentyl butyl dimethoxy silane, dicyclopentyl dimethoxy silane, Diphenyldimethoxysilane, phenyltrimethoxysilane, decyltrimethoxysilane, butyltrimethoxysilane, isobutyltrimethoxysilane, Y-chloropropyltrimethoxysilane instead of two A solid catalyst component was prepared in the same manner as in Example 1 except for propyldimethoxysilane.
  • the solid catalyst component was prepared in the same manner as in Example 1 except that the amounts and components of the electron donor used were as shown in Table 1.
  • Example 17 7. 5 octo ol diisobutyl dimethoxy silane 7. 5ramo l tetraethoxy siloxane
  • Example 18 5. 0 crypto 01 diisobutyl dimethoxy silane 10. Ommo l tetraethoxy ⁇ 3 ⁇ 4
  • Example 19 75 legs. 1 diisobutyl dimethoxy silane 11. 25mmo l tetraethoxy shoe
  • Example 21 Ommo 1 dicyclopentyldimethoxysilane 10. Ommo l tetraethoxy gram
  • Example 22 75 mmol of dicyclopentyldimethoxysilane 11.25 mmol of tetraethoxy keet
  • Example 23 7. 5 mmol of cyclohexylmethyldimethoxysilane 7. 5 mmo l tetraethoxysilane
  • Example 24 5. 0 draw ol cyclohexylmethyldimethoxysilane 10. Ommol tetraethoxy siloxane
  • Example 26 7. 5 mmol of cyclopentylisobutyldimethoxysilane 7. 5 mmo l tetraethoxysilane
  • Example 27 5. 0 draw ol cyclopentyl isobutyl dimethoxysilane 10. Ommol tetraethoxy mat
  • Example 31 75 mmol of cyclopentylisopropyldimethoxysilane 11. 25 mmol of tetraethoxysilane
  • Example 33 5. 0 leg 01 diphenyldimethoxysilane 10. Ommol tetraethoxysilane
  • Example 35 7. 5 mmol of Y-chloropropyltrimethoxysilane 7. 5 mmol of tetraethoxy shoe pit
  • Example 36 5. 0 occlusion ol ⁇ -chloropropyltrimethoxysilane 10. Ommol tetraethoxy
  • Example 37 75mtnol ⁇ -chloropropyltrimethoxycethane 11. 25mmo l tetraethoxy guane
  • Example 38 Ommol diisobutyldimethoxysilane 5.
  • Example 39 11. 25 mmol diisobutyl dimethoxy silane 3. 75 ramol tetraethoxy quinone
  • Example 40 Ommol dicyclopentyldimethoxysilane 5. Ommol tetraethoxy keet
  • Example 41 25 mmol of dicyclopentyldimethoxysilane 3. 75 mmol of tetraethoxysilane
  • Example 42 10. 0 awake ol cyclohexyl fluorenyl dimethoxy silane 5.
  • Example 44 Ommol cyclopentylisobutyl dimethoxysilane 5.
  • Example 46 Ommol cyclopentylisopropyldimethoxysilane 5. Ommol tetraethoxysilane pit
  • Example 47 25 octa ol cyclopentyl isopropyl dioxaxy silane 3. 75ramo l tetraethoxy siloxane
  • Example 48 10. 0 leg ol ⁇ -chloropropyltrimole M "silicon germanium 5. Ommol tetraethoxy ketone
  • Example 49 11. 25 mmol Y-chloropropyltrimethoxysilane 3. 75 mmo l tetraethoxysilane
  • the solid catalyst component was prepared in the same manner as in Example 50 except that the amounts and components of the electron donor used were as shown in Table 2.
  • the solid catalyst component was prepared in the same manner as in Example 62 except that the amounts and components of the electron donor used were as shown in Table 3.
  • the reaction was carried out at 110 ° C for 120 minutes to obtain a solid catalyst. After the stirring was stopped, the solid catalyst particles were found to settle quickly. After the completion of the reaction, the solid catalyst was filtered off, washed with hexane, 40 mL each time, until the filtrate was substantially colorless. , the free titanium content is less than 0.3 mg / mL, and a solid catalyst is obtained after drying.
  • the solid catalyst component was prepared in the same manner as in Example 73 except that the amount and composition of the electron donor used were as shown in Table 4.
  • Example 74 10 crypto 0 1 diisobutyldimethoxysilane 10.
  • Example 80 5 awake o l dicyclopentyldimethoxysilane 20. Ommol ⁇ -chloropropyltrimethoxysilane
  • Example 93 - 100 In addition to diisopropyldimethoxysilane, diisobutyldimethoxysilane, cyclohexylmethyldimethoxysilane, cyclopentylisobutyldimethoxysilane, cyclopentyliso Propyldimethoxysilane, cyclopentylbutyldimethoxysilane, dicyclopentyldimethoxysilane, Y-chloropropyltrimethoxysilane instead of dipropyldimethoxysilane
  • a solid catalyst component was prepared in the same manner as in Example 92.
  • a solid catalyst component was prepared in the same manner as in Example 1 except that the amount of decane was changed to 90 mL.
  • a solid catalyst component was prepared in the same manner as in Example 1 except that the amount of decane was changed to 250 mL.
  • the temperature of the titanium loading was changed to 70 ° C and 120 ° C respectively; the reaction temperature of the magnesium alkoxide slurry and the electron donor was changed to 40 ° C and 120 respectively; the temperature of the pre-loaded titanium reaction was - 10 ° C, 10
  • the solid catalyst component was prepared in the same manner as in Example 1 except for °C.
  • the solid catalyst particles were found to have a rapid sedimentation rate. After the completion of the reaction, the solid catalyst was filtered off, washed with hexane, 40 mL each time, until the filtrate was substantially free. Color, wherein the free titanium content is less than 0.3 mg / mL, and a solid catalyst is obtained after drying.
  • Example 1 Ti Mg CI Si OCH 3 OC2H5 RO1
  • Example 1 6.6 16.1 64.0 1.3 0.3 3.5
  • Example 2 6.8 15.5 64.5 1.5 0.3 3.4
  • Example 3 6.7 15.9 64.0 1.5 0.3 3.5
  • Example 4 6.6 16.0 63.8 1.4 0.3 3.6
  • Example 5 6.8 15.7 64.2 1.4 0.3 3.8
  • Example 6 6.9 15.6 64.5 1.5 0.3 4.0
  • Example 7 7.1 15.2 64.6 1.5 0.3 3.3
  • Example 8 7.0 15.3 64.5 1.5 0.3 3.4
  • Example 9 7.2 15.2 64.5 1.5 0.3 , , 3.3
  • Example 10 7.2 15.1 64.8 1.4 0.3 3.1
  • Example 11 6.5 16.0 63.2 1.4 0.3 3.9
  • Example 12 6.3 16.5 63.1 1.3 0.3 4.0
  • Example 13 6.5 16.6 62.2 1.4 0.6 4.2
  • Example 14 6.6 16.5 62.6 1.6 0.5 3.9
  • Example 15 6.5 16.6 62.7 1.6 0.5
  • the catalysts, catalytic activity and polyethylene properties used in the respective examples and comparative examples are shown in Table 6.
  • the polyethylene melt index (Ml) was determined by the ASTM-D-1238 method, and the apparent density was measured by the ASTM-D-1895 method.
  • Example 1 5. 20 0. 32 0. 48 20. 0 4. 2 95. 0 0. 8
  • Example 2 5. 25 0. 32 0. 50 20. 5 5. 3 94. 0 0. 7
  • Example 3 5. 30 0. 33 0. 53 20. 8 4. 6 94. 5 0. 9
  • Example 4 5. 31 0. 33 0. 51 20. 3 8. 2 91. 0 0. 8
  • Example 5 5 50 0. 33 0. 58 23. 0 2. 1 97. 0 0. 9
  • Example 80 6. 69 0. 38 0. 87 32. 2 3. 0 96. 7 0. 3
  • Example 81 6. 55 0. 36 0. 83 30. 8 3. 2 96. 6 0. 2
  • Example 82 6. 79 0. 37 0. 85 32. 8 3. 2 96. 5 0. 3
  • Example 84 4 70 0.
  • Example 86 4. 81 0. 31 0. 41 17. 3 8. 2 89. 0 2. 8
  • Example 87 4. 90 0. 31 0. 48 19. 5 2. 1 95. 0 2. 9
  • Example 88 5. 01 0. 31 0. 49 20. 5 13. 2 84. 0 2. 8
  • Example 89 5. 05 0. 31 0. 55 21. 5 11. 4 86. 0 2. 6
  • Example 90 5. 02 0. 32 0 56 21. 6 6.
  • Example 91 5. 03 0. 31 0. 58 21. 6 7. 3 90. 0 2. 7
  • Example 92 4. 95 0. 31 0. 45 18. 0 4. 2 94. 0 1. 8
  • Example 93 5. 05 0. 31 0. 47 18. 5 5.
  • Example 94 5. 05 0. 32 0. 48 18. 8 4. 6 93. 5 1. 9
  • Example 95 5. 11 0. 32 0. 46 18. 3 8. 2 90. 0 1. 8
  • Example 96 5. 20 0. 32 0. 53 20. 9 2 1 96. 0 1. 9
  • Example 97 5. 30 0. 32 0. 54 21. 5 13. 2 85. 0 1. 8
  • Example 98 5. 35 0. 32 0. 63 22. 5 11. 4 87. 0 1. 6
  • Example 100 5.
  • Example 102 5. 01 0. 29 0. 38 16. 0 1. 2 96. 3 2.
  • Example 103 5. 22 0. 33 0. 50 21. 0 4. 0 95. 3 0. 7
  • Example 104 4. 88 0. 30 0. 28 12. 0 0. 2 96. 0 3. 8
  • Example 105 4. 91 0. 32 0. 32 13. 0 2. 2 97. 0 0. 8 Comparative example 1 5. 23 0. 36 0. 11 10. 8 1. 0 97. 5 1. 5 than hinge example 2 4. 56 0. 33 0. 092 10. 2 12. 1 85. 0 1. 9 Comparative Example 3 3. 54 0. 28 0. 097 10. 7 0 87 13. 0
  • Preparation Example 2 Copolymerization of ethylene with ⁇ -olefin
  • the catalysts, catalytic activities and polyethylene physical properties used in the respective examples and comparative examples are shown in Tables 7 and 8, respectively.
  • the polyethylene melt index (Ml) was determined by the ASTM-D-1238 method and the apparent density was measured by the ASTM-D-1895 method.
  • Example 3 6. 25 0. 315 ⁇ 0. 01 130. 23 1. 11 44. 6
  • Example 5 6. 51 0. 31 ⁇ 0. 01 130. 04 1. 15 46. 5
  • Example 10 6. 85 0. 32 ⁇ 0. 01 129. 25 1. 41 56. 2
  • Example 16 7. 05 0. 32 ⁇ 0. 01 129. 46 1. 35 54. 0
  • Example 17 7. 25 0. 34 ⁇ 0. 01 130. 43 0. 95 38. 6
  • Example 20 7. 35 0. 35 ⁇ 0. 01 130. 03 1. 16 46. 4
  • Example 23 7. 27 0. 34 ⁇ 0. 01 130. 29 1. 08 43. 2
  • Example 35 7. 64 0. 35 ⁇ 0. 01 130. 01 1. 18 47.
  • Example 38 6. 29 0. 34 ⁇ 0. 01 130. 56 0. 98 39. 2
  • Example 39 6. 17 0. 335 ⁇ 0. 01 130. 33 1. 02 40. 8
  • Example 40 6. 40 0. 34 ⁇ 0 01 129. 83 1. 21 48. 8
  • Example 41 6. 30 0. 335 ⁇ 0. 01 129. 36 1. 38 55. 5
  • Example 42 6. 32 0. 33 ⁇ 0. 01 130. 36 1 01 40. 1
  • Example 43 6. 31 0. 34 ⁇ 0. 01 130. 39 1. 05 42. 7
  • Example 48 6. 46 0. 33 ⁇ 0. 01 129. 78 1. 21 48. 5
  • Implementation Example 49 6. 43 0. 335 ⁇ 0. 01 129. 41 1. 31 52. 0
  • Example 51 6. 53 0. 32 ⁇ 0. 01 130. 27 1. 09 43. 8
  • Example 52 6.
  • Example 53 72 0 33 ⁇ 0. 01 129. 45 1. 32 52. 8 Example 53 6. 14 0. 345 ⁇ 0. 01 129. 38 1. 39 55. 5 Example 54 6. 61 0. 325 ⁇ 0. 01 130. 33 1. 02 40. 1 Example 55 6. 85 0. 315 ⁇ 0. 01 130. 29 1. 06 42. 7 Example 60 7. 11 0. 35 ⁇ 0. 01 129. 72 1. 25 50. 5 Example 61 7. 21 0. 345 ⁇ 0. 01 129. 33 1. 35 54. 0 Comparative Example 1 6. 11 0. 34 ⁇ 0. 01 131. 23 0. 80 32. 0 Comparative example 2 5. 46 0. 31 0. 92 131. 83 0. 61 20. 4 Comparative example 3 4. 21 0. 26 1. 53 132 . 13 0. 45 18. 7
  • Example 3 10 gPE/gCat g/cm 3 mg/ml °C g/min g/min Example 3 5. 68 0. 31 0. 21 129. 33 1. 31 52. 4 Example 5 5. 73 0. 31 0. 18 129. 03 1. 45 58. 5 Example 10 5. 91 0. 32 0. 24 128. 53 1. 61 64. 2 Real; ⁇ Example 16 6. 31 0. 32 0. 23 128. 73 1. 52 60. 8 Example 17 6. 54 0. 33 0. 19 129. 93 1. 14 45. 6 Example 20 6. 68 0. 34 0. 23 129 23 1. 36 54. 4 Example 23 6. 60 0. 33 0. 20 129. 43 1. 28 51. 2 Example 35 6. 87 0. 34 0. 24 129. 19 1. 38 55. 2 Example 38 5. 66 0. 33 0. 26 129. 81 1.
  • Example 39 5. 54 0. 32 0. 29 129. 49 1. 22 48. 8 Example 40 5. 75 0. 33 0. 23 128. 95 1. 41 56. 8 Example 41 5. 67 0. 32 0. 25 1. 65 66. 2 Example 42 5. 68 0. 32 0. 23 129. 47 1. 21 48. 4 Example 43 5. 67 0. 33 0. 26 129. 34 1. 25 50. 7 Example 48 5. 81 0. 32 0. 24 128. 85 1. 41 56. 4 Example 49 5. 78 0 32 0. 26 128. 56 1. 56 62. 0 Example 51 5. 87 0. 31 0. 29 129. 29 1. 29 51. 6 Example 52 6. 04 0. 32 0. 25 128. 61 1. 52 60. 8 Example 53 5. 52 0. 33 0. 20 128. 41 1. 61 64. 4 Example 54 5. 95 0. 31 0.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

A catalyst active component for ethylene polymerization or copolymerization, preparation method thereof and a catalyst using said active component. The catalyst active component according to invention comprises from 12.0 to 18.0 parts by weight magnesium, from 4.0 to 8.0 parts by weight titanium, from 1.1 to 11.0 parts by weight alkoxy, from 0.5 to 2.5 parts by weight silicon, and from 55.0 to 75.0 parts by weight halogen, based on 100 parts by weight the total weight of the catalyst active component. The preparation method of the active compent as described above according to invention includes steps of making a magnesium alcoholate slurry, reacting of said slurry with an electron donor, pre-supporting titanium reaction and supporting titanium reaction. The catalyst of invention has high catalytic activity, good copolymerization performance, good hydrogen response and high melt index. The polyethylene product has good morphology, uniform particle size distribution, high bulk density, good physics property, and high impact strength. The catalyst can be used to produce high density and high strength polyethylene.

Description

一种催化剂活性组分及其制备方法、 和包括该活性組分的催化剂 技术领域  Catalyst active component, preparation method thereof, and catalyst including the same
本发明涉及一种用于乙烯聚合或共聚合的催化剂活性组分、 及其制备方法, 以及使用该活性组分的催化剂。  The present invention relates to a catalyst active component for ethylene polymerization or copolymerization, a process for the preparation thereof, and a catalyst using the same.
背景技术  Background technique
乙烯聚合通常要求催化剂有较高的催化活性, 并具有长效性, 同时, 也要求 聚合物分子量和分子量分布可控制, 以及具有良好的形态, 以使工艺稳定, 提高 运转效能。 目前, 工业上使用的 Ziegler-Natta型聚乙婦催化剂均为负载型高效催 化剂, 所用的载体一 ^&都为氯化镁。 当前, 聚乙烯催化剂巳经不仅要求活性高, 更重要的是要求共聚性能好, 氢调灵敏性好, 且所得聚乙烯的堆密度要大、 粒度 分布要均匀、 细粉少, 聚合物的物理机械性能好等特点, 这是未来聚乙烯娘化剂 发展的方向。 这就要求催化剂需具有较高的机械磨损强度并具有良好的颗粒形 态。  Ethylene polymerization generally requires a high catalytic activity of the catalyst, and has long-lasting properties. At the same time, the molecular weight and molecular weight distribution of the polymer are required to be controlled, and a good morphology is obtained to stabilize the process and improve the running efficiency. At present, the industrially used Ziegler-Natta type polyepoxy catalysts are all supported high-efficiency catalysts, and the carrier used is magnesium chloride. At present, polyethylene catalysts require not only high activity, but also good copolymerization performance, good hydrogen sensitivity, and high bulk density, uniform particle size distribution, and fine powder. Good mechanical properties, etc. This is the future direction of the development of polyethylene germination agent. This requires the catalyst to have a high mechanical wear strength and a good particle shape.
CN1085569A公开了一种制备钛催化剂的方法, 该方法将卤化镁与含至少六 个碳原子的醇和烃溶剂形成镁溶液,然后再与有机铝化合物反应制成固体摸铝络 合物。将该固体镁铝化合物悬浮于烃溶剂中,加入四价钛化合物即得到适用于乙 烯聚合的固体钛催化剂。  CN1085569A discloses a process for preparing a titanium catalyst which forms a magnesium solution with an alcohol having at least six carbon atoms and a hydrocarbon solvent, and then reacts with an organoaluminum compound to form a solid aluminum complex. The solid magnesium aluminum compound is suspended in a hydrocarbon solvent, and a tetravalent titanium compound is added to obtain a solid titanium catalyst suitable for ethylene polymerization.
CN1050389A公开了一种乙烯聚合催化剂, 该催化剂含有氯化镁和二氧化硅, 活性组分为 Ti , 此外还含有络合剂 R0H、 给电子体酯和烷基铝化合物。 该催化 剂的制备方法是将氯化镁和二氧化硅混合, 再加入适量醇, 使醇 /镁  CN1050389A discloses an ethylene polymerization catalyst comprising magnesium chloride and silica, the active component being Ti, and further comprising a complexing agent R0H, an electron donor ester and an alkyl aluminum compound. The catalyst is prepared by mixing magnesium chloride and silica, and then adding an appropriate amount of alcohol to make the alcohol/magnesium.
摩尔比为 3_25: 1 , 搅拌下充分反应, 再加入烷基铝和酯, 除去多余的醇, 得到 催化剂固体组分。 The molar ratio is 3_25:1, and the reaction is sufficiently carried out under stirring, and then an aluminum alkyl and an ester are added to remove excess alcohol to obtain a solid component of the catalyst.
以上制备方法也不是很有效, 同时, 由于需把氯化镁负载于价格昂贵的硅胶 上, 这样也导致催化剂成本提高。  The above preparation method is also not very effective, and at the same time, the catalyst cost is increased because the magnesium chloride needs to be supported on the expensive silica gel.
因此,通过合适化学修饰氯化镁以得到形态良好的催化剂也是当前乙烯聚合 催化剂的研究方向。  Therefore, it is also the research direction of current ethylene polymerization catalysts by suitably chemically modifying magnesium chloride to obtain a well-formed catalyst.
化学修饰氯化镁的方法有很多, CN1118488C报道了一种乙烯聚合催化剂, 该催化剂含有卤代烃, 活性组分为 Ti , 通过卤代烃的修饰, 氯化镁的形态得到 了改善, 不仅催化活性提高, 树脂的堆密度也明显增加。 但是此催化剂需要用烷 基铝进行脱醇, 这势必增加了催化剂成本, 并增加环保问题。 CN1112373C公开了一种乙烯聚合催化剂, 该催化剂含有通过加入给电子体 对催化剂进行修饰, 氯化镁的形态得到了改善, 催化活性提高, 树脂的堆密度也 明显增大。但此专利所加的四烷氧基硅烷给电子体虽然对保持催化剂形态以及所 得聚合物的形态有 ί艮大的益处, 但容易分解, 其分解程度对催化活性、 聚合物形 态以及氢调敏感性均有很大影响。 There are many methods for chemically modifying magnesium chloride. CN1118488C reports an ethylene polymerization catalyst containing a halogenated hydrocarbon and an active component of Ti. The modification of the halogenated hydrocarbon improves the morphology of the magnesium chloride, not only the catalytic activity, but also the resin. The bulk density has also increased significantly. However, this catalyst requires dealkylation with an aluminum alkyl, which inevitably increases the cost of the catalyst and increases environmental concerns. CN1112373C discloses an ethylene polymerization catalyst which comprises modifying a catalyst by adding an electron donor, the morphology of the magnesium chloride is improved, the catalytic activity is improved, and the bulk density of the resin is also significantly increased. However, the tetraalkoxysilane electron donor added in this patent has a great advantage in maintaining the morphology of the catalyst and the morphology of the obtained polymer, but is easily decomposed, and its decomposition degree is sensitive to catalytic activity, polymer morphology and hydrogen modulation. Sex has a great influence.
发明内容  Summary of the invention
本发明的目的之一是提供一种用于乙烯聚合或共聚合的催化剂活性组分。 本发明的另一目的是提供一种制备上述催化剂活性组分的方法。  One of the objects of the present invention is to provide a catalyst active component for ethylene polymerization or copolymerization. Another object of the present invention is to provide a process for preparing the above-mentioned catalyst active component.
本发明的再一目的是提供一种包括上述活性组分的催化剂。  It is still another object of the present invention to provide a catalyst comprising the above active component.
根据本发明的技术方案,本发明提供一种用于乙烯聚合或共聚合的催化剂活 性组分, 基于 100重量份的催化剂活性组分的总重量, 包括: 12.0 ~ 18.0重量份 的镁; 4.0 ~ 8.0重量份的钛; 1.1~11.0重量份的烷氧基; 0.5〜2.5重量份的硅; 以 及 55.0 ~ 75.0重量份的卤素。  According to the technical solution of the present invention, the present invention provides a catalyst active component for ethylene polymerization or copolymerization, based on 100 parts by weight of the total weight of the catalyst active component, including: 12.0 ~ 18.0 parts by weight of magnesium; 4.0 ~ 8.0 parts by weight of titanium; 1.1 to 11.0 parts by weight of alkoxy group; 0.5 to 2.5 parts by weight of silicon; and 55.0 to 75.0 parts by weight of halogen.
上述根据本发明的催化剂活性组分,其中基于 100重量份的催化剂活性组分 总重量, 1.0 ~ 6.0重量份的烷氧基由有机醇所生成,所述的有机醇选自包括乙醇、 丙醇、 丁醇、 己醇、 2-甲基戊醇、 正庚醇、 2-乙基己醇、 正辛醇、 及其混合物的 组; 并且, 基于 100重量份的催化剂活性组分总重量, 0.1 2.0重量份烷氧基为 由制备过程中的给电子分解而得的甲氧基, 0.0 - 3.0重量份烷氧基为由制备过程 中的给电子分解而得的乙氧基,根据所使用的给电子体的不同, 所加入的给电子 体也可能不产生乙氧基。  The above catalyst active component according to the present invention, wherein 1.0 to 6.0 parts by weight of an alkoxy group is formed from an organic alcohol based on 100 parts by weight of the total weight of the catalyst active component, and the organic alcohol is selected from the group consisting of ethanol and propanol. a group of butanol, hexanol, 2-methylpentanol, n-heptanol, 2-ethylhexanol, n-octanol, and mixtures thereof; and, based on 100 parts by weight of the total weight of the catalyst active component, 0.1 2.0 parts by weight of the alkoxy group is a methoxy group obtained by decomposition of electrons in the preparation process, and 0.0 - 3.0 parts by weight of the alkoxy group is an ethoxy group obtained by decomposition of electrons in the preparation process, depending on the use. Depending on the electron donor, the electron donor added may not produce an ethoxy group.
根据本发明的另一技术方案,本发明还提供了制备上述催化剂活性组分的方 法(方法 1 ), 所述方法包括以下步骤:  According to another aspect of the present invention, the present invention further provides a method (Method 1) for preparing the above-mentioned catalyst active component, the method comprising the steps of:
( 1 )、 镁醇合物浆液的制备: 在 50〜: 180°C下, 在含有至少一种 C6 ~ 12脂肪 烃的惰性烃类溶剂中, 镁化合物与含 2 ~10个碳原子的有机醇反应 0.5 ~ 3小时, 形成均匀溶液, 其中镁 /醇的摩尔比为 1: 0.5〜6, 每摩尔镁化合物使用 1.8 5.0升 惰性烃类溶剂;  (1) Preparation of magnesium alkoxide slurry: In an inert hydrocarbon solvent containing at least one C6-12 aliphatic hydrocarbon at 50 to 180 ° C, the magnesium compound and the organic compound having 2 to 10 carbon atoms Alcohol reaction for 0.5 ~ 3 hours, forming a homogeneous solution, wherein the molar ratio of magnesium / alcohol is 1: 0.5 ~ 6, 1.8 5.0 liters of inert hydrocarbon solvent per mole of magnesium compound;
( 2 )、 将制备的镁醇合物浆液与给电子体反应, 其中反应温度为 20〜: 100°C , 基于每摩尔鎂化合物, 加入 0.05 ~ 1.0摩尔的给电子体;  (2) reacting the prepared magnesium alkoxide slurry with an electron donor, wherein the reaction temperature is 20 to: 100 ° C, and 0.05 to 1.0 mole of the electron donor is added per mole of the magnesium compound;
( 3 )、 将钛化合物 Ti ( OR ) 4-nXn加入( 2 ) 中的反应液中进行预载钛反应, 其中反应温度为- 30~20°C , X为卤素, R为烷基, n为 0或小于等于 4的整数, 基于每摩尔镁化合物加入 1.0~80.0摩尔的所述钛化合物,加完钛化合物 Ti ( OR ) 4-nXn后保持在 -1( TC下 0.5 ~ 3小时; (4)、 在(3)中的反应液加入卤代烃进行载钛反应, 其中在 1~4小时内将 反应温度升到 70〜130°C, 继续反应 1~6小时, 卤代烃的摩尔用量为镁化合物的 摩尔用量的 2〜20倍, 所述卤代烃为卤代浣烃或卤代环烷烃; (3) The titanium compound Ti(OR)4-nXn is added to the reaction solution in (2) to carry out the pre-loading titanium reaction, wherein the reaction temperature is - 30 to 20 ° C, X is a halogen, and R is an alkyl group, n An integer of 0 or less than 4, 1.0 to 80.0 moles of the titanium compound is added per mole of the magnesium compound, and the titanium compound Ti (OR ) 4-n X n is added and maintained at -1 (0.5 to 3 hours under TC). ; (4) The reaction liquid in (3) is added with a halogenated hydrocarbon to carry out a titanium-supporting reaction, wherein the reaction temperature is raised to 70 to 130 ° C in 1 to 4 hours, and the reaction is continued for 1 to 6 hours, and the halogenated hydrocarbon is The molar amount is 2 to 20 times the molar amount of the magnesium compound, and the halogenated hydrocarbon is a halogenated hydrocarbon or a halogenated cycloalkane;
(5)、 过滤(4) 中反应浆液, 用溶剂洗涤、 干燥, 得 固体催化剂。  (5), filtering the reaction slurry in (4), washing with a solvent, and drying to obtain a solid catalyst.
根据本发明的方法, 在步骤(1)中, 优选每摩尔镁化合物使用 1.8~5.0升、 更优选 2.0 - 3.0升惰性烃类溶剂。  According to the process of the present invention, in the step (1), it is preferred to use 1.8 to 5.0 liters, more preferably 2.0 to 3.0 liters of the inert hydrocarbon solvent per mole of the magnesium compound.
根据本发明的方法, 在步骤(1) 中所使用的镁化合物可以为一种或多种选 自包括 MgCl2、 MgBr2、 Mgl2、 Mg(0Et)2、 Mg (OPr) 2 、 Mg (OBu) 2的组的化合物。 According to the method of the present invention, the magnesium compound used in the step (1) may be one or more selected from the group consisting of MgCl 2 , MgBr 2 , Mgl 2 , Mg(0Et) 2 , Mg (OPr) 2 , Mg ( OBu) a group of 2 compounds.
根据本发明的方法, 优选步驟(1)的反应温度为 70~120°C、 镁 /醇的摩尔 比为 1: 2~4。  According to the process of the present invention, it is preferred that the reaction temperature in the step (1) is 70 to 120 ° C and the molar ratio of magnesium to alcohol is 1: 2 to 4.
根据本发明的方法, 优选步驟(2)的反应温度为 40~80°C。  According to the process of the present invention, it is preferred that the reaction temperature of the step (2) is 40 to 80 °C.
优选地, 根据本发明的方法, 步骤(2) 中的所述给电子体为一种或多种选 自包括具有分子式 (R1) (R2) (R3) (R4)Si, R\ R2、 R3、 R4可以全部相同或 R1和 R2相 同、 或 R1 R2和 R3相同, 并且 R1 R2、 R3> R4中可以是四个烷氧基或三个烷氧基 或两个烷氧基, 至少有一个烷氧基。 R R2、 R3、 R4选自 C广 C12的烷基、 C6~C9 烷芳基或 d ~ C12的烷氧基、 C6 ~ C9烷芳氧基或 C Cn的卤代烷基、 C3 ~ C6环 氧基,更优选所述给电子体选自包括二曱基二曱氧基硅烷、二丙基二曱氧基硅烷、 二异丙基二甲氧基硅烷、 二异丁基二甲氧基硅烷、 二丁基二曱氧基硅烷、 环已基 甲基二曱氧基硅烷、 环已基异丙基二曱氧基硅烷、 环戊基异丁基二曱氧基硅烷、 环戊基异丙基二曱氧基硅烷、环戊基丁基二曱氧基硅烷、环戊基丙基二曱氧基硅 烷、 二环戊基二曱氧基硅烷、 二苯基二曱氧基硅烷、 苯基三曱氧基硅烷、 曱基三 甲氧基硅烷、丁基三甲氧基硅烷、异丁基三曱氧基硅烷、 γ-氯丙基三甲氧基硅烷、 γ-(2,3环氧丙氧)丙基三甲氧基硅烷、二曱基二乙氧基硅烷、二丙基二乙氧基硅烷、 二异丙基二乙氧基硅烷、 二异丁基二乙氧基硅烷、 二丁基二乙氧基硅烷、 环已基 甲基二乙氧基硅烷、 环已基异丙基二乙氧基硅烷、 环戊基异丁基二乙氧基硅烷、 环戊基异丙基二乙氧基硅烷、环戊基丁基二乙氧基硅烷、环戊基丙基二乙氧基硅 烷、 二环戊基二乙氧基硅烷、 二苯基二乙氧 圭烷、 苯基三乙氧基硅烷、 甲基三 乙氧基硅烷、丁基三乙氧基硅烷、异丁基三乙氧基硅烷、 γ-氯丙基三乙氧基硅烷、 乙烯基三乙氧基硅烷、 乙烯基三曱氧基硅烷、 四甲氧基硅烷、 四乙氧基硅烷 /及 其混合物的组。 Preferably, according to the method of the present invention, the electron donor in step (2) is one or more selected from the group consisting of having the formula (R 1 ) (R 2 ) (R 3 ) (R 4 ) Si, R \ R 2 , R 3 , R 4 may all be the same or R 1 and R 2 are the same, or R 1 R 2 and R 3 may be the same, and R 1 R 2 , R 3 > R 4 may be four alkoxy groups or Three alkoxy groups or two alkoxy groups having at least one alkoxy group. RR 2 , R 3 , R 4 are selected from C C C 12 alkyl, C 6 -C 9 alkaryl or d ~ C 12 alkoxy, C 6 ~ C 9 alkaryloxy or C Cn alkyl halide a C 3 -C 6 epoxy group, more preferably the electron donor is selected from the group consisting of dinonyldimethoxysilane, dipropyldimethoxysilane, diisopropyldimethoxysilane, and Isobutyldimethoxysilane, dibutyldimethoxysilane, cyclohexylmethyldimethoxysilane, cyclohexylisopropyldimethoxysilane, cyclopentylisobutyldioxyloxy Silane, cyclopentylisopropyldimethoxysilane, cyclopentylbutyldimethoxysilane, cyclopentylpropyldimethoxysilane, dicyclopentyldimethoxysilane, diphenyl Dimethoxysilane, phenyltrimethoxysilane, decyltrimethoxysilane, butyltrimethoxysilane, isobutyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ-( 2,3 epoxypropoxy)propyltrimethoxysilane, dimercaptodiethoxysilane, dipropyldiethoxysilane, diisopropyldiethoxysilane, diisobutyldiethoxy Silane, dibutyldiethoxysilane , cyclohexylmethyldiethoxysilane, cyclohexylisopropyldiethoxysilane, cyclopentylisobutyldiethoxysilane, cyclopentylisopropyldiethoxysilane, cyclopentane Butyl diethoxysilane, cyclopentylpropyl diethoxysilane, dicyclopentyldiethoxysilane, diphenyldiethoxycarbane, phenyltriethoxysilane, methyl three Ethoxysilane, butyltriethoxysilane, isobutyltriethoxysilane, γ-chloropropyltriethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetra a group of methoxysilane, tetraethoxysilane/and mixtures thereof.
优选地, 根据本发明的方法, 在步骤(3) 中, 预载钛反应的温度为 -20〜20 °C、 更优选-10〜10 、 最优选为 -5°C。 根据本发明的方法,在步骤( 3 )中,优选地,基于每摩尔镁化合物加入 1.0〜50.0 摩尔、 更优选 20.0 50.0摩尔的所述钛化合物。 Preferably, according to the method of the present invention, in the step (3), the temperature of the precharged titanium reaction is -20 to 20 ° C, more preferably -10 to 10, most preferably -5 ° C. According to the process of the present invention, in the step (3), preferably, 1.0 to 50.0 mol, more preferably 20.0 50.0 mol, of the titanium compound is added per mol of the magnesium compound.
优选地, 根据本发明的方法, 步骤(3) 中的所述钛化合物 Ti (OR) 4_nXn 为选自包括四氯化钛、 四溴化钛、 四碘化钛、 四丁氧基钛、 四乙氧基钛、 一氯三 乙氧基钛、 二氯二乙氧基钛、 三氯一乙氧基钛中、 及其混合物的组。 Preferably, according to the method of the present invention, the titanium compound Ti(OR) 4 _ n X n in the step (3) is selected from the group consisting of titanium tetrachloride, titanium tetrabromide, titanium tetraiodide, tetrabutoxy A group of titanium, tetraethoxytitanium, monochlorotriethoxytitanium, dichlorodiethoxytitanium, trichloromonoethoxytitanium, and mixtures thereof.
优选地, 根据本发明的方法, 在步骤(4)中, 在 2~3小时内将反应温度升 到 90~110。C, 继续反应 2~4小时, 卤代烃的摩尔用量为镁化合物的摩尔用量的 5~20倍。  Preferably, according to the method of the present invention, in the step (4), the reaction temperature is raised to 90 to 110 in 2 to 3 hours. C, continue to react for 2 to 4 hours, the molar amount of halogenated hydrocarbon is 5 to 20 times the molar amount of the magnesium compound.
优选地, 根据本发明的方法, 步骤(4) 中所使用的卤代烃为选自包括 1, 2-二氯乙烷、 1, 3-二氯丙烷、 1, 4-二氯丁烷、 1, 6-二氯己烷、 一氯环己烷、 二 氯环己烷、 一氯环戊烷、 二氯环戊烷、 及其混合物的组。  Preferably, according to the method of the present invention, the halogenated hydrocarbon used in the step (4) is selected from the group consisting of 1,2-dichloroethane, 1, 3-dichloropropane, 1, 4-dichlorobutane, a group of 1,6-dichlorohexane, monochlorocyclohexane, dichlorocyclohexane, monochlorocyclopentane, dichlorocyclopentane, and mixtures thereof.
(1)、 鎂醇合物浆液的制备: 除每摩尔镁化合物使用 0.2〜1.0、 优选 0.5 ~ 0.8 升惰性烃类溶剂外, 与方法 1的步驟( 1 )相同; (1) Preparation of the magnesium alkoxide slurry: the same as the step (1) of the method 1, except that 0.2 to 1.0, preferably 0.5 to 0.8 liters of the inert hydrocarbon solvent is used per mole of the magnesium compound;
(2)、 镁醇合物浆液与给电子体反应, 与方法 1相同;  (2) The magnesium alkoxide slurry reacts with the electron donor, which is the same as the method 1;
(3)、 将(2) 中的反应液緩慢加入到钛化合物 Ti (OR) 4_nXn溶液中进行预 载钛反应, 其中反应温度为 -30~20°C、 优选 -10~10°C, X为卤素, R为烷基, n 为 0或小于等于 4的整数,基于每摩尔镁化合物加入 10.0〜80.0摩尔、优选 20.0 ~ 50.0摩尔的所述钛化合物; (3) The reaction solution in (2) is slowly added to the titanium compound Ti(OR) 4_ n X n solution for pre-loading titanium reaction, wherein the reaction temperature is -30 to 20 ° C, preferably -10 to 10 ° C, X is a halogen, R is an alkyl group, n is 0 or an integer of 4 or less, and 1 to 80.0 mol, preferably 20.0 to 50.0 mol of the titanium compound is added per mol of the magnesium compound;
( 4 )、 (3) 中的反应液加入卤代烃后进行载钛反应, 与方法 1相同;  The reaction liquid in (4) and (3) is subjected to a titanium-containing reaction after adding a halogenated hydrocarbon, which is the same as in the method 1;
(5)、 过滤(4) 中反应浆液, 用溶剂洗涤、 干燥, 得到固体催化剂。  (5), filtering the reaction slurry in (4), washing with a solvent, and drying to obtain a solid catalyst.
比较方法' 1和 2可以看出, 两者的不同主要在于: 在方法 1中, 通过增加惰 性烃类溶剂的用量、 以及在预载钛反应中将钛化合物溶液加入到镁醇合物浆液 中, 这样, 钛化合物的用量大大降低。 然而, 在方法 2中, 步骤(2)制备的镁 醇合物浆液被加入到钛化合物溶液中, 这样钛化合物的用章较高。 因此, 方法 1 更优选。  Comparing the methods '1 and 2, it can be seen that the difference between the two is mainly: In the method 1, the titanium compound solution is added to the magnesium alkoxide slurry by increasing the amount of the inert hydrocarbon solvent and in the preloaded titanium reaction. Thus, the amount of the titanium compound is greatly reduced. However, in the method 2, the magnesium alkoxide slurry prepared in the step (2) is added to the titanium compound solution, so that the use of the titanium compound is higher. Therefore, Method 1 is more preferable.
本发明还提供了一种包括上述催化剂活性組分和助催化剂的用于乙烯聚合 或共聚合的催化剂, 所述助催化剂为有机铝化合物 R3_nAlXn, 其中 X为卤素, R 为 C1〜C6烷基, n为 0 ~ 3的整数; 助催化剂中的铝与催化剂活性组分中的钛的 摩尔比为 20~800、 优选 50 ~ 300。 The present invention also provides a catalyst for ethylene polymerization or copolymerization comprising the above catalyst active component and a cocatalyst, wherein the cocatalyst is an organoaluminum compound R 3n AlX n , wherein X is a halogen and R is C1 ~C6 alkyl, n is an integer from 0 to 3; the molar ratio of aluminum in the cocatalyst to titanium in the active component of the catalyst is from 20 to 800, preferably from 50 to 300.
上述根据本发明的催化剂可以用于制备高密度高强度聚乙烯。并可适合现有 乙烯聚合淤浆法以及气相法工艺, 可生产并联或串联牌号聚乙烯。 本发明为了克服上述现有技术中存在的缺点,提出一种用于烯烃聚合或共聚 合的催化剂, 引入不易分解的给电子体, 并将给电子体和 代烃同时引入到含钛 的活性组分当中。在根据本发明的方法中采用同时增加溶剂量, 这样所得催化剂 颗粒大; 并且, 在催化剂活性组分的制备过程中仅仅需要少量钛化合物; 不需要 在聚合的时候加入卤代烃以提高催化剂活性; 本发明的催化剂再一个特点是, 引 入给电子体后可很大呈度上提高催化剂的氢调敏感性好;本发明还有个特点就是 无需用烷基铝脱醇, 降低了成本减少了环境污染。 The above catalyst according to the present invention can be used to prepare high density high strength polyethylene. It can be applied to the existing ethylene polymerization slurry method and the gas phase method, and can produce parallel or series grade polyethylene. In order to overcome the above-mentioned shortcomings in the prior art, the present invention proposes a catalyst for olefin polymerization or copolymerization, introducing an electron donor which is not easily decomposed, and simultaneously introducing an electron donor and a hydrocarbon into a titanium-containing active group. In the middle. In the method according to the present invention, the amount of the solvent is increased at the same time, so that the obtained catalyst particles are large; and only a small amount of the titanium compound is required in the preparation of the active component of the catalyst; it is not necessary to add a halogenated hydrocarbon at the time of polymerization to increase the activity of the catalyst. Another feature of the catalyst of the present invention is that the introduction of the electron donor can greatly improve the hydrogen sensitivity of the catalyst; and the invention has the feature of eliminating the need for alcohol removal from the alkyl aluminum, thereby reducing the cost. Environmental pollution.
本发明的催化剂克服了现有技术中的不足, 具有以下特点:  The catalyst of the present invention overcomes the deficiencies in the prior art and has the following characteristics:
1 )由于本发明制备的催化剂颗粒大, 催化剂颗粒的沉降速度快, 容易洗涤, 因此使催化剂的制备更为简单, 制备周期大大缩短, 这对于催化剂的工业生产十 分有利。  1) Since the catalyst particles prepared by the present invention are large, the catalyst particles have a high sedimentation speed and are easy to be washed, so that the preparation of the catalyst is simpler and the preparation cycle is greatly shortened, which is advantageous for the industrial production of the catalyst.
2 )本发明制备的催化剂氢调敏感性高, 可比类似催化剂高出一倍。  2) The catalyst prepared by the invention has high hydrogen sensitivity and can be twice as high as similar catalyst.
3 )在催化剂制备过程中免除了用烷基铝脱醇, 同时也減少了 TiCl4用量, 从 而减少了对环境的污染。 3) In the preparation of the catalyst, the dealumination of the aluminum alkyl is eliminated, and the amount of TiCl 4 is also reduced, thereby reducing environmental pollution.
4 )本发明的催化剂具有良好的聚合性能,催化剂的聚合效率在 5万倍以上, 聚合物的颗粒形态和堆密度也好于现有技术。  4) The catalyst of the invention has good polymerization performance, the polymerization efficiency of the catalyst is more than 50,000 times, and the particle morphology and bulk density of the polymer are also better than the prior art.
5 )给电子体的加入可以有两种方式, 一种是在反应步骤(2 )加入; 第二种 方式是先将反应温度控制到 60〜: 130°C时加入一部分给电子体, 优选 90〜110°C ; 然后再按照反应步骤(2 ) 中当加入另外一部分给电子体。  5) The electron donor may be added in two ways, one is added in the reaction step (2); the second method is to first add a part of the electron donor to the reaction temperature to 60~: 130 ° C, preferably 90 ~110 ° C; then follow the reaction step (2) when adding another part of the electron donor.
6 )在现有技术中, 卤代烃是在载钛反应完成后或在烯烃聚合时被加入, 然 而, 本发明发现卤代烃可以在载钛反应过程被加入 ,也可以在载钛反应完成后被 加入, 但在载钛反应过程中被加入, 对提高催化活性、 增加聚合物堆密度效果更 加明显, 且操作也更为简单。  6) In the prior art, the halogenated hydrocarbon is added after the completion of the titanium-supporting reaction or during the polymerization of the olefin. However, the present invention finds that the halogenated hydrocarbon can be added during the titanium-supporting reaction or can be completed in the titanium-loaded reaction. It is added later, but it is added during the titanium-containing reaction process, which is more effective in improving the catalytic activity and increasing the polymer bulk density, and the operation is also simpler.
本发明的催化剂具有优异的共聚性能, 这方面大大优于现有技术, ^加入少 量的共聚单体时, 乙烷中未收集到低聚物, 在共聚单体较多时, 能收集少量低聚 物, 而现有技术通常会产生大量的能溶于乙烷的低分子量共聚物, 所得共聚聚合 物颗粒形态和堆密度也好于现有技术,这对于新产品的开发和装置的长周期运行 具有相当重要性。 本发明的催化剂不仅催化活性高, 共聚性能好, 而且氢调敏感 性非常好,熔融指数比现有技术所得聚合物要高出一倍以上, 且制得的聚乙烯产 品形态好、 颗粒分布均匀, 堆密度高, 同时, 聚合物的物理机械性能好, 尤其抗 冲击强度高, 可以生产高密度高强度聚乙烯。 由于本发明催化剂颗粒形态好, 不 仅适合现有乙浠聚合淤浆法还可以用于气相法工艺,并可生产并联或串联牌号聚 乙烯。 The catalyst of the invention has excellent copolymerization performance, which is much better than the prior art. When a small amount of comonomer is added, no oligomer is collected in the ethane, and a small amount of oligomerization can be collected when the comonomer is large. However, the prior art generally produces a large amount of low molecular weight copolymer which is soluble in ethane, and the obtained copolymer polymer particles are also better in morphology and bulk density than the prior art, which is for the development of new products and long-term operation of the device. It is of considerable importance. The catalyst of the invention not only has high catalytic activity, good copolymerization performance, but also has very good hydrogen sensitivity, and the melt index is more than double that of the polymer obtained in the prior art, and the obtained polyethylene product has good morphology and uniform particle distribution. The bulk density is high. At the same time, the polymer has good physical and mechanical properties, especially high impact strength, and can produce high-density high-strength polyethylene. Due to the good shape of the catalyst particles of the present invention, It is only suitable for the existing acetonitrile polymerization slurry method and can also be used in the gas phase process, and can produce parallel or series grade polyethylene.
具体实施方式  detailed description
下面通过实例详细说明本发明,应该清楚地理解, 这里所描述的本发明形式 仅仅是说明性的, 不意味着限制本发明。本发明包括了在权利要求范围内的所有 改进。  The invention will be described in detail by way of example only, and it is to be understood that The invention includes all modifications that come within the scope of the claims.
实施例 1  Example 1
把 4· 76克 ( 0. 05mol ) MgCl2、 l OOmL癸烷和 31mL异辛醇 ( 0. 2mol ), 加热 至 13Q°C反应 180分钟, 降温至 5G°C , 于此温度下加入 15mraol二丙基二甲氧基 硅烷给电子体、 继续反应 60分钟, 冷却至室温后。 在(TC下用 90分钟时间緩慢 滴加 50mLTiCl4于混合溶液中,滴加完毕后保持温度 0°C下 60分钟,然后加入 25mL 氯代环己烷用 120分钟时间緩慢升温至 110°C反应 120分钟, 得到固体催化剂, 停止搅拌后,会发现固体催化剂颗粒沉降速度很快。反应结束后热过滤出固体催 化剂。 用己烷洗涤, 每次 40mL , 至滤液基本为无色, 其中游离钛含量小于 0. 3mg/mL, 干燥后得固体催化剂。 4.76 g (0.05 mol) MgCl 2 , 100 mL decane and 31 mL isooctanol (0.2 mol), heated to 13Q ° C for 180 minutes, cooled to 5G ° C, at this temperature added 15mraol II The propyldimethoxysilane was supplied to the electron body, and the reaction was continued for 60 minutes, and after cooling to room temperature. 50 ml of TiCl 4 was slowly added dropwise to the mixed solution under TC for 90 minutes. After the addition was completed, the temperature was kept at 0 ° C for 60 minutes, and then 25 mL of chlorocyclohexane was added and the temperature was slowly raised to 110 ° C for 120 minutes. After 120 minutes, a solid catalyst was obtained. After stopping the stirring, the solid catalyst particles were found to settle quickly. After the reaction, the solid catalyst was filtered off hot. After washing with hexane, 40 mL each time, the filtrate was substantially colorless, and the free titanium content. Less than 0.3 mg/mL, after drying, a solid catalyst was obtained.
实施例 2 ~ 16  Example 2 ~ 16
除了分别用二异丙基二甲氧基硅烷、二异丁基二甲氧基硅烷、 丁基二甲氧基 硅烷、 环已基曱基二甲氧基硅烷、 环已基异丙基二甲氧基硅烷、 环戊基异丁基二 曱氧基硅烷、 环戊基异丙基二甲氧基硅烷、 环戊基丁基二甲氧基硅烷、 二环戊基 二甲氧基硅烷代、 二苯基二甲氧基硅烷、 苯基三甲氧基硅烷代、 曱基三甲氧基硅 烷、 丁基三甲氧基硅烷、 异丁基三甲氧基硅烷、 Y -氯丙基三甲氧基硅烷代替二 丙基二甲氧基硅烷外, 用与实施例 1相同的方法制备固体催化剂组分。  In addition to diisopropyldimethoxysilane, diisobutyldimethoxysilane, butyldimethoxysilane, cyclohexyldimethoxysilane, cyclohexylisopropyldimethyl Oxysilane, cyclopentyl isobutyl dimethoxy silane, cyclopentyl isopropyl dimethoxy silane, cyclopentyl butyl dimethoxy silane, dicyclopentyl dimethoxy silane, Diphenyldimethoxysilane, phenyltrimethoxysilane, decyltrimethoxysilane, butyltrimethoxysilane, isobutyltrimethoxysilane, Y-chloropropyltrimethoxysilane instead of two A solid catalyst component was prepared in the same manner as in Example 1 except for propyldimethoxysilane.
实施例 17 ~ 49  Example 17 ~ 49
除所使用的给电子体的用量和組分如表 1所示外,用与实施例 1相同的方法 制备固体催化剂组分。  The solid catalyst component was prepared in the same manner as in Example 1 except that the amounts and components of the electron donor used were as shown in Table 1.
表 1  Table 1
实施例 给电子体 Example electron donor
实施例 17 7. 5隱 o l二异丁基二甲氧基硅烷 7. 5ramo l四乙氧基娃烷 Example 17 7. 5 octo ol diisobutyl dimethoxy silane 7. 5ramo l tetraethoxy siloxane
实施例 18 5. 0隱 01二异丁基二曱氧基硅烷 10. Ommo l四乙氧基 ϋ¾ Example 18 5. 0 crypto 01 diisobutyl dimethoxy silane 10. Ommo l tetraethoxy ϋ 3⁄4
实施例 19 3. 75腿。1二异丁基二曱氧基硅烷 11. 25mmo l四乙氧基鞋烷 Example 19 3. 75 legs. 1 diisobutyl dimethoxy silane 11. 25mmo l tetraethoxy shoe
实施例 20 7. 5mmo l二环戊基二曱氧硅烷 7. 5ramo l四乙氧基鞋烷 Example 20 7. 5mmo l dicyclopentyldimethoxysilane 7. 5ramo l tetraethoxysole
实施例 21 5. Ommo 1二环戊基二甲氧娃烷 10. Ommo l四乙氧基 ϋ克 实施例 22 3. 75mmol二环戊基二曱氧硅烷 11. 25mmol四乙氧基圭坑 Example 21 5. Ommo 1 dicyclopentyldimethoxysilane 10. Ommo l tetraethoxy gram Example 22 3. 75 mmol of dicyclopentyldimethoxysilane 11.25 mmol of tetraethoxy keet
实施例 23 7. 5mmol环已基甲基二曱氧基硅烷 7. 5mmo l四乙氧基硅烷 Example 23 7. 5 mmol of cyclohexylmethyldimethoxysilane 7. 5 mmo l tetraethoxysilane
实施例 24 5. 0画 ol环已基甲基二曱氧基硅烷 10. Ommol四乙氧基娃烷 Example 24 5. 0 draw ol cyclohexylmethyldimethoxysilane 10. Ommol tetraethoxy siloxane
实施例 25 3. 75mmol环巳基甲基二甲氧基硅烷 11. 25mmol四乙氧基娃烷 Example 25 3. 75 mmol of cyclodecylmethyldimethoxysilane 11. 25 mmol of tetraethoxysilane
实施例 26 7. 5mmol环戊基异丁基二曱氧硅烷 7. 5mmo l四乙氧基硅烷 Example 26 7. 5 mmol of cyclopentylisobutyldimethoxysilane 7. 5 mmo l tetraethoxysilane
实施例 27 5. 0画 ol环戊基异丁基二甲氧硅烷 10. Ommol四乙氧基娃坑 Example 27 5. 0 draw ol cyclopentyl isobutyl dimethoxysilane 10. Ommol tetraethoxy mat
实施例 28 3. 75mraol环戊基异丁基二甲氧硅烷 11. 25mmol四乙氧基娃烷 Example 28 3. 75mraol cyclopentylisobutyl dimethoxysilane 11. 25mmol tetraethoxy siloxane
实施例 29 7. 5mmol环戊基异丙基二曱氧硅烷 7. 5mrao l四乙氧基娃燒 Example 29 7. 5 mmol of cyclopentylisopropyldimethoxysilane 7. 5mrao l tetraethoxysilane
实施例 30 5. 0隱 o l环戊基异丙基二甲氧硅烷 10. Ommol四乙氧基娃坑 EXAMPLE 30 5. 0 隐 o l Cyclopentyl isopropyl dimethoxy silane 10. Ommol tetraethoxy vat
实施例 31 3. 75mmol环戊基异丙基二甲氧硅烷 11. 25mmol四乙氧基娃坑 Example 31 3. 75 mmol of cyclopentylisopropyldimethoxysilane 11. 25 mmol of tetraethoxysilane
实施例 32 7. 5匪 ol二苯基二甲氧基硅烷 7. 5mmol四乙氧基鞋坑 Example 32 7. 5匪 ol diphenyldimethoxysilane 7. 5mmol tetraethoxy shoe pit
实施例 33 5. 0腿 01二苯基二曱氧基硅烷 10. Ommol四乙氧基硅烷 Example 33 5. 0 leg 01 diphenyldimethoxysilane 10. Ommol tetraethoxysilane
实施例 34 3. 75mmol二苯基二甲氧基硅烷 11. 25mmol四乙氧基鞋烷 Example 34 3. 75 mmol of diphenyldimethoxysilane 11. 25 mmol of tetraethoxysole
实施例 35 7. 5mmol Y -氯丙基三甲氧基硅烷 7. 5mmol四乙氧基鞋坑 Example 35 7. 5 mmol of Y-chloropropyltrimethoxysilane 7. 5 mmol of tetraethoxy shoe pit
实施例 36 5. 0隱 ol γ -氯丙基三甲氧基硅烷 10. Ommol四乙氧 Example 36 5. 0 occlusion ol γ-chloropropyltrimethoxysilane 10. Ommol tetraethoxy
实施例 37 3. 75mtnol γ -氯丙基三甲氧基圭烷 11. 25mmo l四乙氧基圭烷 Example 37 3. 75mtnol γ-chloropropyltrimethoxycethane 11. 25mmo l tetraethoxy guane
实施例 38 10. Ommol二异丁基二甲氧基硅烷 5. Ommol四乙氧基圭烷 Example 38 10. Ommol diisobutyldimethoxysilane 5. Ommol tetraethoxy ketone
实施例 39 11. 25mmol二异丁基二曱氧基硅烷 3. 75ramol四乙氧基圭垸 Example 39 11. 25 mmol diisobutyl dimethoxy silane 3. 75 ramol tetraethoxy quinone
实施例 40 10. Ommol二环戊基二曱氧硅烷 5. Ommol四乙氧基圭坑 Example 40 10. Ommol dicyclopentyldimethoxysilane 5. Ommol tetraethoxy keet
实施例 41 11. 25mmol二环戊基二曱氧硅烷 3. 75mmol四乙氧基硅烷 Example 41 11. 25 mmol of dicyclopentyldimethoxysilane 3. 75 mmol of tetraethoxysilane
实施例 42 10. 0醒 ol环已基曱基二曱氧基硅烷 5. Ommol四 氧基硅烷 Example 42 10. 0 awake ol cyclohexyl fluorenyl dimethoxy silane 5. Ommol tetraoxy silane
实施例 43 11. 25ramol环已基甲基二曱氧基硅烷 3. 75mmol四乙氧基娃烷 Example 43 11. 25ramol cyclohexylmethyldimethoxysilane 3. 75mmol tetraethoxysilane
实施例 44 10. Ommol环戊基异丁基二甲氧硅烷 5. Ommol四乙氧基破坑 Example 44 10. Ommol cyclopentylisobutyl dimethoxysilane 5. Ommol tetraethoxy crater
实施例 45 11. 2 ramo l环戊基异丁基二曱氧硅烷 3. 75mmol四乙氧基圭烷 Example 45 11. 2 ramo l cyclopentyl isobutyl dioxaxy silane 3. 75 mmol of tetraethoxy ketone
实施例 46 10. Ommol环戊基异丙基二甲氧硅烷 5. Ommol四乙氧基娃坑 Example 46 10. Ommol cyclopentylisopropyldimethoxysilane 5. Ommol tetraethoxysilane pit
实施例 47 11. 25隱 ol环戊基异丙基二曱氧硅烷 3. 75ramo l四乙氧基娃烷 Example 47 11. 25 octa ol cyclopentyl isopropyl dioxaxy silane 3. 75ramo l tetraethoxy siloxane
实施例 48 10. 0腿 ol γ -氯丙基三曱 M "硅垸 5. Ommol四乙氧 ^圭烷 Example 48 10. 0 leg ol γ-chloropropyltrimole M "silicon germanium 5. Ommol tetraethoxy ketone
实施例 49 11. 25mmol Y -氯丙基三曱氧基硅烷 3. 75mmo l四乙氧基娃烷 Example 49 11. 25 mmol Y-chloropropyltrimethoxysilane 3. 75 mmo l tetraethoxysilane
实施例 50  Example 50
把 4· 76克( 0. 05mol ) MgCl2、 l OOmL癸烷和 31mL异辛醇 ( 0. 2mol ), 加热 至 130Ό反应 180分钟, 降温至 80°C , 于此温度下加入 5腿 o l四乙氧基硅烷反应 60分钟后再降温至 50。C ,于此温度下加入 10瞧 ol二丙基二曱氧基硅烷给电子体、 继续反应 60分钟, 冷却至室温后。 在 0°C下用 90分钟时间緩慢滴加 50mLTiCl4 于混合溶液中, 滴加完毕后保持温度 0°C下 60分钟, 然后加入 25mL氯代环己烷 用 120分钟时间緩慢升温至 110°C反应 120分钟,得到固体催化剂,停止搅拌后, 会发现固体催化剂颗粒沉降速度很快。反应结束后热过滤出固体催化剂。 用己烷 洗涤, 每次 40mL, 至滤液基本为无色, 其中游离钛含量小于 0. 3mg/mL, 干燥后 得固体催化剂。 4.76 g (0.05 mol) MgCl 2 , 100 mL decane and 31 mL isooctanol (0.2 mol) were heated to 130 Torr for 180 minutes, and cooled to 80 ° C. At this temperature, 5 legs ol were added. Ethoxysilane reaction After 60 minutes, cool down to 50. C, 10 瞧ol of dipropyldimethoxy silane was added to the electron at this temperature, the reaction was continued for 60 minutes, and after cooling to room temperature. 50 mL of TiCl 4 was slowly added dropwise to the mixed solution at 0 ° C for 90 minutes. After the addition was completed, the temperature was kept at 0 ° C for 60 minutes, and then 25 mL of chlorocyclohexane was added and the temperature was slowly raised to 110 ° C over 120 minutes. The reaction was carried out for 120 minutes to obtain a solid catalyst. After the stirring was stopped, the solid catalyst particles were found to settle quickly. After the end of the reaction, the solid catalyst was filtered off hot. Washing with hexane, 40 mL each time, until the filtrate is substantially colorless, wherein the free titanium content is less than 0.3 mg/mL, and a solid catalyst is obtained after drying.
实施例 51 ~ 61  Example 51 ~ 61
除所使用的给电子体的用量和组分如表 2所示外, 用与实施例 50相同的方 法制备固体催化剂组分。  The solid catalyst component was prepared in the same manner as in Example 50 except that the amounts and components of the electron donor used were as shown in Table 2.
表 2 Table 2
Figure imgf000009_0002
Figure imgf000009_0002
实施例 62  Example 62
把 4. 76克( 0. 05mol ) MgCl2、 30mL癸烷和 20mL异辛醇 ( 0. 125mo l ), 加热 至 1 30°C反应 180分钟, 降温至 50°C , 于此温度下加入 15mmo l二丙基二曱氧基 硅烷给电子体、 继续反应 60分钟, 冷却至室温后。 在- 10°C下用 90分钟时间緩 慢将其滴加在
Figure imgf000009_0001
, 滴加完毕后保持温度(TC下 60分钟, 然后加入 25mL氯代环己烷用 120分钟时间緩慢升温至 110°C反应 120分钟, 得 到固体催化剂, 停止搅拌后, 会发现固体催化剂颗粒沉降速度很快。 反应结束后 热过滤出固体催化剂。 用己烷洗涤, 每次 40mL, 至滤液基本为无色, 其中游离 钛含量小于 0. 3mg/mL, 干燥后得固体催化剂。 实施例 63 ~ 72
4.76 g (0.05 mol) MgCl 2 , 30 mL decane and 20 mL isooctanol (0.125 mol) were heated to 130 ° C for 180 minutes, cooled to 50 ° C, and 15 mmo was added at this temperature. l Dipropyldimethoxysilane is supplied to the electron donor, and the reaction is continued for 60 minutes, and after cooling to room temperature. Slowly add it at -10 ° C for 90 minutes
Figure imgf000009_0001
After the completion of the dropwise addition, the temperature was maintained (60 minutes after TC, and then 25 mL of chlorocyclohexane was added and the temperature was slowly raised to 110 ° C for 120 minutes to obtain a solid catalyst. After stopping the stirring, the solid catalyst particles sedimentation rate was found. The solid catalyst is obtained after drying. The solid catalyst is filtered off with hexane, 40 mL each time, until the filtrate is substantially colorless, wherein the free titanium content is less than 0.3 mg/mL. Example 63 ~ 72
除所使用的给电子体的用量和组分如表 3所示外, 用与实施例 62相同的方 法制备固体催化剂组分。  The solid catalyst component was prepared in the same manner as in Example 62 except that the amounts and components of the electron donor used were as shown in Table 3.
表 3  table 3
Figure imgf000010_0001
Figure imgf000010_0001
实施例 73  Example 73
把 4. 76克( 0. 05mol ) MgCl2、 l OOmL癸烷和 31mL异辛醇 ( 0. 2mol ), 加热 至 U0。C反应 180分钟, 降温至 50Ό , 于此温度下加入 l Oramol二丙基二甲氧基 硅烷和 10. 0瞧 ο ΐ γ -氯丙基三甲氧基硅烷给电子体、 继续反应 60分钟, 冷却至 室温后。 在 0°C下用 90分钟时间缓慢滴加 5 (½1^ 14于混合溶液中, 滴加完毕后 保持温度 0°C下 60分钟, 然后加入 25mL氯代环己烷用 120分钟时间緩慢升温至 110°C反应 120分钟, 得到固体催化剂, 停止搅拌后, 会发现固体催化剂颗粒沉 降速度很快。 反应结束后热过滤出固体催化剂。 用己烷洗涤, 每次 40mL, 至滤 液基本为无色, 其中游离钛含量小于 0. 3mg/mL, 干燥后得固体催化剂。 4.76 g (0.05 mol) MgCl 2 , 100 mL decane and 31 mL isooctanol (0.2 mol) were heated to U0. C reaction for 180 minutes, cooling to 50 Ό, at this temperature add 1 Oramol dipropyl dimethoxy silane and 10. 0 瞧ο ΐ γ-chloropropyl trimethoxy silane to the electron, continue the reaction for 60 minutes, cooling After room temperature. Slowly add 5 (1⁄21^ 14) to the mixed solution at 0 °C for 90 minutes. After the addition, keep the temperature at 0 °C for 60 minutes, then add 25 mL of chlorocyclohexane and slowly heat up for 120 minutes. The reaction was carried out at 110 ° C for 120 minutes to obtain a solid catalyst. After the stirring was stopped, the solid catalyst particles were found to settle quickly. After the completion of the reaction, the solid catalyst was filtered off, washed with hexane, 40 mL each time, until the filtrate was substantially colorless. , the free titanium content is less than 0.3 mg / mL, and a solid catalyst is obtained after drying.
实施例 74 ~ 82  Example 74 ~ 82
除所使用的给电子体的用量和组分如表 4所示外, 用与实施例 73相同的方 法制备固体催化剂组分。  The solid catalyst component was prepared in the same manner as in Example 73 except that the amount and composition of the electron donor used were as shown in Table 4.
表 4  Table 4
实施例 给电子体  Example electron donor
实施例 74 10隱01二异丁基二甲氧基硅烷 10. Ommol γ -氯丙基三曱氧基硅烷 Example 74 10 crypto 0 1 diisobutyldimethoxysilane 10. Ommol γ-chloropropyltrimethoxysilane
实施例 75 l Ommol二环戊基二曱氧硅烷 10. 0匪 ol γ -氯丙基三曱氧基硅烷  EXAMPLE 75 l Ommol Dicyclopentyldimethoxysilane 10. 0匪 ol γ-chloropropyltrimethoxysilane
实施例 76 l Ommol 环已基曱基二曱氧基硅 10. Ommol γ -氯丙基三甲氧基硅烷 实施例 77 l Onimol 环戊基异丁基二曱氧硅 10. 0隱 o l Y -氯丙基三甲氧基硅烷 实施例 78 5mmol二丙基二甲氧基硅烷 20. Ommo l γ -氯丙基三甲氧基硅烷 Ommol γ-chloropropyltrimethoxysilane Example 77 l Onimol Cyclopentyl isobutyl dioxane 10. Occult ol Y-chloropropyltrimethoxysilane Example 78 5 mmol of dipropyldimethoxysilane 20. Ommo l γ-chloropropyl Trimethoxysilane
实施例 79 5mrao l二异丁基二甲氧基硅烷 20. Ommol Y -氯丙基三甲氧基硅烷 Example 79 5mrao l diisobutyldimethoxysilane 20. Ommol Y-chloropropyltrimethoxysilane
实施例 80 5醒 o l二环戊基二甲氧硅烷 20. Ommol γ -氯丙基三曱氧基硅烷 Example 80 5 awake o l dicyclopentyldimethoxysilane 20. Ommol γ-chloropropyltrimethoxysilane
实施例 81 5mmol环已基甲基二甲氧基硅烷 20. Ommo l γ -氯丙基三甲氧基硅烷 Example 81 5 mmol of cyclohexylmethyldimethoxysilane 20. Ommo l γ-chloropropyltrimethoxysilane
实施例 82 5mmol环戊基异丁基二甲氧硅烷 20. 0醒 ol γ -氯丙基三曱氧基硅烷 Example 82 5 mmol of cyclopentylisobutyldimethoxysilane 20. 0 awake ol γ-chloropropyltrimethoxysilane
实施例 83  Example 83
把 4· 76克( 0. 05mol ) MgCl2、 l OOraL癸烷和 31mL丁醇 ( 0. 2mol ) ( 0. 2mol ), 加热至 130°C反应 180分钟, 降温至 50°C , 于此温度下加入 15瞧 ol二丙基二曱 氧基硅烷继续反应 60分钟, 冷却至室温后。 在 0°C下用 90分钟时间缓慢滴加 50mLTiCl4于混合溶液中, 滴加完毕后保持温度 0°C下 60分钟, 然后加入 25mL 氯代环己烷用 120分钟时间緩慢升温至 110°C反应 120分钟, 得到固体催化剂, 停止搅拌后,会发现固体催化剂颗粒沉降速度很快。反应结束后热过滤出固体催 化剂。 用己烷洗涤, 每次 40mL , 至滤液基本为无色, 其中游离钛含量小于 0. 3mg/iiiL, 干燥后得固体催化剂。 4.76 g (0.05 mol) MgCl 2 , l OOra L decane and 31 mL butanol (0.2 mol) (0.2 mol), heated to 130 ° C for 180 minutes, cooled to 50 ° C, at this temperature The reaction was continued by adding 15 瞧ol of dipropyldimethoxysilane for 60 minutes, and after cooling to room temperature. 50 mL of TiCl 4 was slowly added dropwise to the mixed solution at 0 ° C for 90 minutes. After the addition was completed, the temperature was kept at 0 ° C for 60 minutes, and then 25 mL of chlorocyclohexane was added and the temperature was slowly raised to 110 ° over 120 minutes. The reaction of C for 120 minutes gave a solid catalyst, and after stopping the stirring, it was found that the solid catalyst particles settled quickly. After the end of the reaction, the solid catalyst was filtered off hot. The mixture was washed with hexane, 40 mL each time, until the filtrate was substantially colorless, wherein the free titanium content was less than 0.3 mg/iiiL, and the solid catalyst was obtained after drying.
实施例 84 ~ 91  Example 84 ~ 91
除分别用二异丙基二曱氧基硅烷、二异丁基二甲氧^圭烷、环巳基甲基二甲 氧基硅烷、 环戊基异丁基二甲氧基硅烷、 环戊基异丙基二甲氧基硅烷、 环戊基丁 基二曱氧基硅烷、 二环戊基二曱氧基硅烷、 Y -氯丙基三曱氧基硅烷代替二 ^基 二甲氧基硅烷外, 用与实施例 83相同的方法制备固体催化剂组分。  In addition to diisopropyldimethoxysilane, diisobutyldimethoxymethane, cyclodecylmethyldimethoxysilane, cyclopentylisobutyldimethoxysilane, cyclopentyl Isopropyldimethoxysilane, cyclopentylbutyldimethoxysilane, dicyclopentyldimethoxysilane, Y-chloropropyltrimethoxysilane, in place of dimethoxydimethoxysilane The solid catalyst component was prepared in the same manner as in Example 83.
实施例 92  Example 92
把 4. 76克(0.。5m。l ) MgCl2、 l OOmL癸烷和 23. 4mL异辛醇( 0. 15mol ), 加 热至 130°C反应 180分钟, 降温至 50°C , 于此温度下加入 15mmol二丙基二曱氧 基硅烷继续反应 60 分钟, 冷却至室温后。 在 0°C下用 90 分钟时间緩慢滴加
Figure imgf000011_0001
于混合溶液中, 滴加完毕后保持温度 0°C下 60分钟, 然后加入 25mL 氯代环己烷用 120分钟时间緩慢升温至 110°C反应 120分钟, 得到固体催化剂, 停止搅拌后,会发现固体催化剂颗粒沉降速度很快。反应结束后热过滤出固体催 化剂。 用己烷洗涤, 每次 40mL , 至滤液基本为无色, 其中游离钛含量小于 0. 3mg/mL, 干燥后得固体催化剂。
4.76 g (0. 5 m.l) MgCl 2 , 100 mL of decane and 23. 4 mL of isooctanol (0.15 mol), heated to 130 ° C for 180 minutes, cooled to 50 ° C, where The reaction was continued for 60 minutes by adding 15 mmol of dipropyldimethoxysilane at a temperature, and after cooling to room temperature. Slowly add at 90 °C for 0 minutes at 0 °C
Figure imgf000011_0001
In the mixed solution, after the completion of the dropwise addition, the temperature was maintained at 0 ° C for 60 minutes, and then 25 mL of chlorocyclohexane was added and the temperature was slowly raised to 110 ° C for 120 minutes to obtain a solid catalyst. After stopping the stirring, it was found. The solid catalyst particles settle quickly. After the end of the reaction, the solid catalyst was filtered off hot. The mixture was washed with hexane, 40 mL each time, until the filtrate was substantially colorless, wherein the free titanium content was less than 0.3 mg/mL, and a solid catalyst was obtained after drying.
实施例 93 - 100 除分别用二异丙基二甲氧基硅烷、二异丁基二甲氧基硅烷、环已基甲基二甲 氧基硅烷、 环戊基异丁基二曱氧基硅烷、 环戊基异丙基二曱氧基硅烷、 环戊基丁 基二曱氧基硅烷、 二环戊基二曱氧基硅烷、 Y -氯丙基三甲氧基硅烷代替二丙基 二甲氧基硅烷外, 用与实施例 92相同的方法制备固体催化剂组分。 Example 93 - 100 In addition to diisopropyldimethoxysilane, diisobutyldimethoxysilane, cyclohexylmethyldimethoxysilane, cyclopentylisobutyldimethoxysilane, cyclopentyliso Propyldimethoxysilane, cyclopentylbutyldimethoxysilane, dicyclopentyldimethoxysilane, Y-chloropropyltrimethoxysilane instead of dipropyldimethoxysilane A solid catalyst component was prepared in the same manner as in Example 92.
实施例 101  Example 101
把 4· 76克( 0. 05mol ) MgCl2、 l OOmL癸烷和 31mL异辛醇 ( 0. 2mol ), 加热 至 130°C反应 180分钟, 降温至 50°C , 于此温度下加入 1. 5匪 ο1γ-(2,3环氧丙氧) 丙基三甲氧基硅烷和 13.5匪 o l γ -氯丙基三甲氧基硅烷继续反应 60分钟,冷却至 室温后。 在 0°C下用 90分钟时间緩慢滴加 501111^^14于混合溶液中, 滴加完毕后 保持温度 0°C下 60分钟, 然后加入 25mL氯代环己烷用 120分钟时间緩慢升温至 110°C反应 120分钟, 得到固体催化剂, 停止搅拌后, 会发现固体催化剂颗粒沉 降速度很快。 反应结束后热过滤出固体催化剂。 用己烷洗涤, 每次 40mL, 至滤 液基本为无色, 其中游离钛含量小于 0. 3mg/mL, 干燥后得固体催化剂。 4.76 g (0.05 mol) MgCl 2 , 100 mL decane and 31 mL isooctanol (0.2 mol) were heated to 130 ° C for 180 minutes, cooled to 50 ° C, and added at this temperature. 5匪ο1γ-(2,3 epoxypropoxy)propyltrimethoxysilane and 13.5 匪ol γ-chloropropyltrimethoxysilane were further reacted for 60 minutes and cooled to room temperature. Slowly add 501111^^1 4 to the mixed solution at 0 ° C for 90 minutes. After the completion of the dropwise addition, keep the temperature at 0 ° C for 60 minutes, then add 25 mL of chlorocyclohexane and slowly heat up to 120 minutes. The reaction was carried out at 110 ° C for 120 minutes to obtain a solid catalyst. After the stirring was stopped, the solid catalyst particles were found to settle quickly. After the end of the reaction, the solid catalyst was filtered off hot. Washing with hexane, 40 mL each time, until the filtrate is substantially colorless, wherein the free titanium content is less than 0.3 mg/mL, and a solid catalyst is obtained after drying.
实施例 102  Example 102
除癸烷用量改为 90mL外, 用与实施例 1相同的方法制备固体催化剂组分。  A solid catalyst component was prepared in the same manner as in Example 1 except that the amount of decane was changed to 90 mL.
实施例 103  Example 103
除癸烷用量改为 250mL外, 用与实施例 1相同的方法制备固体催化剂组分。  A solid catalyst component was prepared in the same manner as in Example 1 except that the amount of decane was changed to 250 mL.
实施例 104 ~ 1 05  Example 104 ~ 1 05
除载钛温度分别改为 70°C、 120°C ; 镁醇合物浆液与给电子体的反应温度分 别改为 40°C、 120 ; 预载钛反应的温度分别为- 10°C、 10°C外, 用与实施例 1 相同的方法制备固体催化剂组分。  The temperature of the titanium loading was changed to 70 ° C and 120 ° C respectively; the reaction temperature of the magnesium alkoxide slurry and the electron donor was changed to 40 ° C and 120 respectively; the temperature of the pre-loaded titanium reaction was - 10 ° C, 10 The solid catalyst component was prepared in the same manner as in Example 1 except for °C.
比较实施例 1  Comparative Example 1
把 4. 76克( 0. 05mol ) MgCl2、 l OOmL癸烷和 31mL异辛醇 ( 0. 2mol ), 加热 至 130°C反应 180分钟, 降温至 50°C , 于此温度下加入 15mmol四乙氧基硅坑给 电子体、 继续反应 60分钟, 冷却至室温后。 在 0°C下用 90分钟时间緩慢滴加 501^1^( 14于混合溶液中, 滴加完毕后保持温度 Q°C下 60分钟, 然后加入 25mL 氯代环己烷用 120分钟时间緩慢升温至 110°C反应 120分钟, 得到固体催化剂, 停止搅拌后,会发现固体催化剂颗粒沉降速度很快。反应结束后热过滤出固体催 化剂。 用己烷洗涤, 每次 40mL , 至滤液基本为无色, 其中游离钛含量小于 0. 3mg/mL, 干燥后得固体催化剂。 4.76 g (0.05 mol) MgCl 2 , 100 mL decane and 31 mL isooctanol (0.2 mol) were heated to 130 ° C for 180 minutes, cooled to 50 ° C, and 15 mmol was added at this temperature. The ethoxylated silicon pit was fed to the electron body, and the reaction was continued for 60 minutes, and after cooling to room temperature. Slowly add 501^1^ (1 4 in the mixed solution at 0 ° C for 90 minutes, keep the temperature at Q ° C for 60 minutes after the addition, then add 25 mL of chlorocyclohexane for 120 minutes. The temperature was raised to 110 ° C for 120 minutes to obtain a solid catalyst. After stopping the stirring, the solid catalyst particles were found to have a rapid sedimentation rate. After the completion of the reaction, the solid catalyst was filtered off, washed with hexane, 40 mL each time, until the filtrate was substantially free. Color, wherein the free titanium content is less than 0.3 mg / mL, and a solid catalyst is obtained after drying.
比较实施例 2  Comparative Example 2
MgCl24. 76克, 加 50mL癸烷和 31mL异辛醇, 加热至 130 °C回流反应 180分 钟, 降温至 50 °C , 于此温度下加入 3. 3raL四乙氧基硅烷继续反应 60分钟, 冷却 至室温后。 在 0 Ό下用 90分钟时间緩慢滴加 20 OmLT i C 14于混合溶液中, 滴加完 毕后用 90分钟时间緩慢升温至 110°C反应 120分钟, 反应结束, 停止搅拌后, 发现固体催化剂颗粒沉降速度很慢。 热过滤出固体催化剂。 用己烷洗涤, 每次 40mL , 至滤液基本为无色, 其中游离钛含量小于 0. 3mg/mL, 干燥后得固体催化 剂。 MgCl 2 4. 76 g, add 50 mL of decane and 31 mL of isooctanol, heat to 130 ° C and reflux for 180 minutes. The temperature was lowered to 50 ° C. At this temperature, 3.rara tetraethoxysilane was added to continue the reaction for 60 minutes, and after cooling to room temperature. 20 OmLT i C 1 4 was slowly added dropwise to the mixed solution at 0 Torr for 90 minutes. After the completion of the dropwise addition, the temperature was slowly raised to 110 ° C for 120 minutes for 90 minutes. After the reaction was completed, the solid catalyst was found after the stirring was stopped. The sedimentation rate of the particles is very slow. The solid catalyst was filtered off hot. The mixture was washed with hexane, 40 mL each time, until the filtrate was substantially colorless, wherein the free titanium content was less than 0.3 mg/mL, and a solid catalyst was obtained after drying.
比较实施例 3  Comparative Example 3
MgCl24. 76克, 加 150mL癸烷和 1 3. 5mL乙醇, 保温 30 °C下反应 120分钟, 于此温度下再滴加一氯二乙基铝(配制成 1. 23摩尔浓度的己烷溶液) 21. 6mL, 于 35 °C下继续反应 90分钟,升温至 60°C下 30分钟后,緩慢滴加 16mLTiCl4于混 合溶液中, 滴加完毕后升温至 65 °C反应 120分钟, 反应结束, 停止搅拌后, 发 现固体催化剂颗粒沉降速度很慢。热过滤出固体催化剂。用己烷洗涤,每次 40mL, 至滤液基本为无色, 其中游离钛含量小于 0. 3mg/mL, 干燥后得固体催化剂。 MgCl 2 4.76 g, adding 150 mL of decane and 3.4 mL of ethanol, and reacting at 30 ° C for 120 minutes. At this temperature, diethylaluminum monochloride was added dropwise (to prepare a concentration of 1.23 molar). Alkyl solution) 21. 6mL, continue the reaction at 35 °C for 90 minutes, and after heating to 60 ° C for 30 minutes, slowly add 16mL TiCl 4 in the mixed solution, after the addition is completed, the temperature is raised to 65 ° C for 120 minutes. After the completion of the reaction, the stirring of the solid catalyst particles was found to be slow. The solid catalyst was filtered off hot. The mixture was washed with hexane, 40 mL each time, until the filtrate was substantially colorless, wherein the free titanium content was less than 0.3 mg/mL, and a solid catalyst was obtained after drying.
测试各实施例和对比实施例制备的催化剂活性组分的组成, 结果如以下表 5 所示。  The compositions of the catalyst active components prepared in the respective examples and comparative examples were tested, and the results are shown in Table 5 below.
表 5 各实施例和对比实施例的催化剂活性组分的组成  Table 5 Composition of Catalyst Active Components of Examples and Comparative Examples
催化剂组成(质量%)  Catalyst composition (% by mass)
催化剂  Catalyst
Ti Mg CI Si OCH3 OC2H5 RO① 实施例 1 6.6 16.1 64.0 1.3 0.3 3.5 实施例 2 6.8 15.5 64.5 1.5 0.3 3.4 实施例 3 6.7 15.9 64.0 1.5 0.3 3.5 实施例 4 6.6 16.0 63.8 1.4 0.3 3.6 实施例 5 6.8 15.7 64.2 1.4 0.3 3.8 实施例 6 6.9 15.6 64.5 1.5 0.3 4.0 实施例 7 7.1 15.2 64.6 1.5 0.3 3.3 实施例 8 7.0 15.3 64.5 1.5 0.3 3.4 实施例 9 7.2 15.2 64.5 1.5 0.3 , , 3.3 实施例 10 7.2 15.1 64.8 1.4 0.3 3.1 实施例 11 6.5 16.0 63.2 1.4 0.3 3.9 实施例 12 6.3 16.5 63.1 1.3 0.3 4.0 实施例 13 6.5 16.6 62.2 1.4 0.6 4.2 实施例 14 6.6 16.5 62.6 1.6 0.5 3.9 实施例 15 6.5 16.6 62.7 1.6 0.5 4.0 实施例 16 6.6 16.7 63.5 1.5 0.4 3.6
Figure imgf000014_0001
实施 54 7.3 15.6 64.9 1.5 0.3 1.4 3.9 实施例 55 6.7 17.0 62.5 1.4 0.4 1.2 4.0 实施例 56 7.1 16.1 64.1 1.6 0.4 1.4 3.8 实施例 57 7.0 15.8 64.0 1.4 0.3 1.1 4.1 实施例 58 7.4 15.5 64.2 1.2 0.2 1.2 3.5 实施例 59 6.8 16.8 64.0 1.5 0.1 1.0 4.1 实施例 60 7.2 16.5 65.2 1.6 0.4 1.5 3.5 实施例 61 6.8 16.8 64.8 1.5 0.3 1.4 4.1 实施例 62 6.8 15.6 64.7 1.4 0.3 3.2 实施例 63 6.9 15.3 64.9 1.5 0.3 3.1 实施例 64 6.8 15.9 64.0 1.5 0.3 3.2 实施例 65 6.6 16.5 64.0 1.5 0.3 3.3 实施例 66 6.7 16.2 64.0 1.5 0.3 3.4 实施例 67 6.9 15.2 65.2 1.5 0.3 3.4 实 例 68 6.8 16.3 64.2 1.3 0.3 1.2 3.8 实施例 69 6.7 16.1 64.5 1.4 0.3 1.3 3.5 实施例 70 6.6 16.9 64.6 1.2 0.3 1.4 3.6 实施例 71 6.7 16.8 64.6 1.3 0.3 1.3 3.6 实施例 72 6.9 16.1 65.2 1.5 0.3 1.4 3.8 实施例 73 7.1 15.5 65.5 1.6 0.5 3.6 实施例 74 6.8 16.3 65.6 1.7 0.4 3.7 实施例 75 6.7 16.8 65.6 1.7 0.5 3.7 实施例 76 6.8 16.4 65.7 1.6 0.5 3.5 实施例 77 7.0 15.9 65.4 1.7 0.5 3.6 实施例 78 6.7 15.2 64.5 2.2 0.8 3.2 实施例 79 6.5 15.3 64.6 2.3 0.9 3.3 实施例 80 6.6 15.1 64.6 2.0 0.8 3.3 实施例 81 6.4 15.2 64.7 2.1 1.0 3.2 实施例 82 6.5 15.3 64.4 2.2 1.1 3.1 实施例 83® 6.6 16.1 64.0 1.3 0.3 3.5 实施例 84® 6.8 15.5 64.5 1.5 0.3 3.4 实施例 85® 6.7 15.9 64.0 1.5 0.3 3.5 实施例 86® 6.6 16.0 63.8 1.4 0.3 3.6 实施例 87® 6.8 15.7 64.2 1.4 0.3 , 3.8 实施例 88® 6.9 15.6 64.5 1.5 0.3 4.0 实施例 89® 7.1 15.2 64.6 1.5 0.3 3.3 实施例 90® 7.0 15.3 64.5 1.5 0.3 3.4 实施 91β 7.2 15.2 65.5 1.5 0.3 3.3 实 ¾例 92 6.8 16.1 65.0 1.3 0.3 2.9 实 3fe例 93 6.9 15.5 65.5 1.5 0.3 2.8 实施例 94 6.8 15.9 65.0 1.5 0.3 3.0 实施例 95 6.9 16.0 64.8 1.4 0.3 3.0 实^ <例 96 7.0 15.7 65.2 1.4 0.3 2.8 实施例 97 7.1 15.6 65.5 1.5 0.3 2.9 实施例 98 7.3 15.2 65.6 1.5 0.3 3.1 实施例 99 7.4 15.3 65.5 1.5 0.3 3.0 实施例 100 7.6 15.2 65.5 1.5 0.3 2.8 实施例 101 7.2 15.8 65.2 1.5 0.3 3.5 实施例 102 6.5 16.4 63.8 1.4 0.3 3.4 实施例 103 6.6 16.0 64.2 1.3 0.3 3.6 实施例 104 6.2 16.9 63.5 1.3 0.3 3.6 实施例 105 7.1 15.6 64.8 1.2 0.25 3.0 比较例 1 7.3 15.0 62.0 0.4 2.5 3.5 比较例 2 6.5 16.0 61.0 0.2 2.0 3.2 比较例 3 5.1 16.0 61.0 10.0
Ti Mg CI Si OCH 3 OC2H5 RO1 Example 1 6.6 16.1 64.0 1.3 0.3 3.5 Example 2 6.8 15.5 64.5 1.5 0.3 3.4 Example 3 6.7 15.9 64.0 1.5 0.3 3.5 Example 4 6.6 16.0 63.8 1.4 0.3 3.6 Example 5 6.8 15.7 64.2 1.4 0.3 3.8 Example 6 6.9 15.6 64.5 1.5 0.3 4.0 Example 7 7.1 15.2 64.6 1.5 0.3 3.3 Example 8 7.0 15.3 64.5 1.5 0.3 3.4 Example 9 7.2 15.2 64.5 1.5 0.3 , , 3.3 Example 10 7.2 15.1 64.8 1.4 0.3 3.1 Example 11 6.5 16.0 63.2 1.4 0.3 3.9 Example 12 6.3 16.5 63.1 1.3 0.3 4.0 Example 13 6.5 16.6 62.2 1.4 0.6 4.2 Example 14 6.6 16.5 62.6 1.6 0.5 3.9 Example 15 6.5 16.6 62.7 1.6 0.5 4.0 Example 16 6.6 16.7 63.5 1.5 0.4 3.6
Figure imgf000014_0001
Implementation 54 7.3 15.6 64.9 1.5 0.3 1.4 3.9 Example 55 6.7 17.0 62.5 1.4 0.4 1.2 4.0 Example 56 7.1 16.1 64.1 1.6 0.4 1.4 3.8 Example 57 7.0 15.8 64.0 1.4 0.3 1.1 4.1 Example 58 7.4 15.5 64.2 1.2 0.2 1.2 3.5 Implementation Example 59 6.8 16.8 64.0 1.5 0.1 1.0 4.1 Example 60 7.2 16.5 65.2 1.6 0.4 1.5 3.5 Example 61 6.8 16.8 64.8 1.5 0.3 1.4 4.1 Example 62 6.8 15.6 64.7 1.4 0.3 3.2 Example 63 6.9 15.3 64.9 1.5 0.3 3.1 Example 64 6.8 15.9 64.0 1.5 0.3 3.2 Example 65 6.6 16.5 64.0 1.5 0.3 3.3 Example 66 6.7 16.2 64.0 1.5 0.3 3.4 Example 67 6.9 15.2 65.2 1.5 0.3 3.4 Example 68 6.8 16.3 64.2 1.3 0.3 1.2 3.8 Example 69 6.7 16.1 64.5 1.4 0.3 1.3 3.5 Example 70 6.6 16.9 64.6 1.2 0.3 1.4 3.6 Example 71 6.7 16.8 64.6 1.3 0.3 1.3 3.6 Example 72 6.9 16.1 65.2 1.5 0.3 1.4 3.8 Example 73 7.1 15.5 65.5 1.6 0.5 3.6 Example 74 6.8 16.3 65.6 1.7 0.4 3.7 Example 75 6.7 16.8 65.6 1.7 0.5 3.7 Example 76 6.8 16.4 65.7 1.6 0.5 3.5 Example 77 7.0 15.9 65.4 1.7 0.5 3.6 Example 78 6.7 15.2 64.5 2.2 0.8 3.2 Example 79 6.5 15.3 64.6 2.3 0.9 3.3 Example 80 6.6 15.1 64.6 2.0 0.8 3.3 Example 81 6.4 15.2 64.7 2.1 1.0 3.2 Example 82 6.5 15.3 64.4 2.2 1.1 3.1 Example 83® 6.6 16.1 64.0 1.3 0.3 3.5 Example 84® 6.8 15.5 64.5 1.5 0.3 3.4 Example 85® 6.7 15.9 64.0 1.5 0.3 3.5 Example 86® 6.6 16.0 63.8 1.4 0.3 3.6 Example 87® 6.8 15.7 64.2 1.4 0.3 , 3.8 Example 88® 6.9 15.6 64.5 1.5 0.3 Example 89® 7.1 15.2 64.6 1.5 0.3 3.3 Example 90® 7.0 15.3 64.5 1.5 0.3 3.4 Implementation 91 β 7.2 15.2 65.5 1.5 0.3 3.3 Real 3⁄4 Example 92 6.8 16.1 65.0 1.3 0.3 2.9 Real 3fe Example 93 6.9 15.5 65.5 1.5 0.3 2.8 Example 94 6.8 15.9 65.0 1.5 0.3 3.0 Example 95 6.9 16.0 64.8 1.4 0.3 3.0 Real ^ < Example 96 7.0 15.7 65.2 1.4 0.3 2.8 Example 97 7.1 15.6 65.5 1.5 0.3 2.9 Example 98 7.3 15.2 65.6 1.5 0.3 3.1 Example 99 7.4 15.3 65.5 1.5 0.3 3.0 Example 100 7.6 15.2 65.5 1.5 0.3 2.8 Example 101 7.2 15.8 65.2 1.5 0.3 3.5 Example 102 6.5 16.4 63.8 1.4 0.3 3.4 Example 103 6.6 16.0 64.2 1.3 0.3 3.6 Example 104 6.2 16.9 63.5 1.3 0.3 3.6 Example 105 7.1 15.6 64.8 1.2 0.25 3.0 Comparative Example 1 7.3 15.0 62.0 0.4 2.5 3.5 Comparative Example 2 6.5 16.0 61.0 0.2 2.0 3.2 Comparative Example 3 5.1 16.0 61.0 10.0
2-乙基己氧基基团; ①丁氧基基团  2-ethylhexyloxy group; 1 butoxy group
制备实施例 1 : 乙烯聚合  Preparation Example 1 : Ethylene polymerization
在 10升不锈钢高压釜中, 经氮气置换后, 依次加入脱水己烷 3升, 三乙基 铝的己烷溶液(按 Al /Ti摩尔比为 200 ), 以及上述实施例 1制备的催化剂 20mg , 通入氢气至 0. 2Mpa (表压 ), 生温至 70°C ,再通入乙烯至釜压为 0. 8Mpa (表压 ), 在 80°C , 保持釜压为 0. 8Mp下聚合反应 2小时, 得到聚乙烯产品。  In a 10 liter stainless steel autoclave, after replacement with nitrogen, 3 liters of dehydrated hexane, a hexane solution of triethylaluminum (in an Al/Ti molar ratio of 200), and 20 mg of the catalyst prepared in the above Example 1 were successively added. The polymerization is carried out at a temperature of 0. 8Mp. The polymerization is carried out at a temperature of 80 ° C. The polymerization is maintained at 0. 8Mp. 2 hours, a polyethylene product was obtained.
各实施例和对比实施例所用催化剂、 催化活性和聚乙烯物性见表 6。 聚乙烯 熔融指数(Ml )用 ASTM-D-1238方法测定, 表观密度用 ASTM-D- 1895方法测定。  The catalysts, catalytic activity and polyethylene properties used in the respective examples and comparative examples are shown in Table 6. The polyethylene melt index (Ml) was determined by the ASTM-D-1238 method, and the apparent density was measured by the ASTM-D-1895 method.
表 6  Table 6
PE粒度分布 wt°/» 催化活性 X 堆密度 I,16 MI21.6 PE particle size distribution wt°/» Catalytic activity X Bulk density I, 16 MI 21 . 6
催化剂 >800 200  Catalyst >800 200
10_,gPE/gCat g/cm1 g/min g/min <75um um ~600um 10 _, gPE/gCat g/cm 1 g/min g/min <75um um ~600um
实施例 1 5. 20 0. 32 0. 48 20. 0 4. 2 95. 0 0. 8 实施例 2 5. 25 0. 32 0. 50 20. 5 5. 3 94. 0 0. 7 实施例 3 5. 30 0. 33 0. 53 20. 8 4. 6 94. 5 0. 9 实施例 4 5. 31 0. 33 0. 51 20. 3 8. 2 91. 0 0. 8 实施例 5 5. 50 0. 33 0. 58 23. 0 2. 1 97. 0 0. 9
Figure imgf000017_0001
Figure imgf000018_0001
实施例 80 6. 69 0. 38 0. 87 32. 2 3. 0 96. 7 0. 3 实施例 81 6. 55 0. 36 0. 83 30. 8 3. 2 96. 6 0. 2 实施例 82 6. 79 0. 37 0. 85 32. 8 3. 2 96. 5 0. 3 实施例 83 4. 65 0. 30 0. 40 17. 0 4. 2 93. 0 2. 8 实施例 84 4. 70 0. 30 0. 42 17. 5 5. 3 92. 0 2. 7 实施例 85 4. 75 0. 31 0. 43 17. 8 4. 6 92. 5 2. 9 实施例 86 4. 81 0. 31 0. 41 17. 3 8. 2 89. 0 2. 8 实施例 87 4. 90 0. 31 0. 48 19. 5 2. 1 95. 0 2. 9 实施例 88 5. 01 0. 31 0. 49 20. 5 13. 2 84. 0 2. 8 实施例 89 5. 05 0. 31 0. 55 21. 5 11. 4 86. 0 2. 6 实施例 90 5. 02 0. 32 0. 56 21. 6 6. 3 91. 0 2. 7 实施例 91 5. 03 0. 31 0. 58 21. 6 7. 3 90. 0 2. 7 实施例 92 4. 95 0. 31 0. 45 18. 0 4. 2 94. 0 1. 8 实施例 93 5. 05 0. 31 0. 47 18. 5 5. 3 93. 0 1. 7 实施例 94 5. 05 0. 32 0. 48 18. 8 4. 6 93. 5 1. 9 实施例 95 5. 11 0. 32 0. 46 18. 3 8. 2 90. 0 1. 8 实施例 96 5. 20 0. 32 0. 53 20. 9 2. 1 96. 0 1. 9 实施例 97 5. 30 0. 32 0. 54 21. 5 13. 2 85. 0 1. 8 实施例 98 5. 35 0. 32 0. 63 22. 5 11. 4 87. 0 1. 6 实施例 99 5. 30 0. 33 0. 61 22. 6 6. 3 92. 0 1. 7 实施例 100 5. 33 0. 32 0. 63 22. 6 7. 3 91. 0 1. 7 实施例 101 6. 82 0. 35 0. 43 20. 6 4. 3 95. 0 0. 7 实施例 102 5. 01 0. 29 0. 38 16. 0 1. 2 96. 3 2. 5 实施例 103 5. 22 0. 33 0. 50 21. 0 4. 0 95. 3 0. 7 实施例 104 4. 88 0. 30 0. 28 12. 0 0. 2 96. 0 3. 8 实施例 105 4. 91 0. 32 0. 32 13. 0 2. 2 97. 0 0. 8 比较例 1 5. 23 0. 36 0. 11 10. 8 1. 0 97. 5 1. 5 比铰例 2 4. 56 0. 33 0. 092 10. 2 12. 1 85. 0 1. 9 比较例 3 3. 54 0. 28 0. 097 10. 7 0 87 13. 0 制备实施例 2 乙烯与 α-烯烃共聚合
Example 1 5. 20 0. 32 0. 48 20. 0 4. 2 95. 0 0. 8 Example 2 5. 25 0. 32 0. 50 20. 5 5. 3 94. 0 0. 7 Example 3 5. 30 0. 33 0. 53 20. 8 4. 6 94. 5 0. 9 Example 4 5. 31 0. 33 0. 51 20. 3 8. 2 91. 0 0. 8 Example 5 5 50 0. 33 0. 58 23. 0 2. 1 97. 0 0. 9
Figure imgf000017_0001
Figure imgf000018_0001
Example 80 6. 69 0. 38 0. 87 32. 2 3. 0 96. 7 0. 3 Example 81 6. 55 0. 36 0. 83 30. 8 3. 2 96. 6 0. 2 Example 82 6. 79 0. 37 0. 85 32. 8 3. 2 96. 5 0. 3 Example 83 4. 65 0. 30 0. 40 17. 0 4. 2 93. 0 2. 8 Example 84 4 70 0. 30 0. 42 17. 5 5. 3 92. 0 2. 7 Example 85 4. 75 0. 31 0. 43 17. 8 4. 6 92. 5 2. 9 Example 86 4. 81 0. 31 0. 41 17. 3 8. 2 89. 0 2. 8 Example 87 4. 90 0. 31 0. 48 19. 5 2. 1 95. 0 2. 9 Example 88 5. 01 0. 31 0. 49 20. 5 13. 2 84. 0 2. 8 Example 89 5. 05 0. 31 0. 55 21. 5 11. 4 86. 0 2. 6 Example 90 5. 02 0. 32 0 56 21. 6 6. 3 91. 0 2. 7 Example 91 5. 03 0. 31 0. 58 21. 6 7. 3 90. 0 2. 7 Example 92 4. 95 0. 31 0. 45 18. 0 4. 2 94. 0 1. 8 Example 93 5. 05 0. 31 0. 47 18. 5 5. 3 93. 0 1. 7 Example 94 5. 05 0. 32 0. 48 18. 8 4. 6 93. 5 1. 9 Example 95 5. 11 0. 32 0. 46 18. 3 8. 2 90. 0 1. 8 Example 96 5. 20 0. 32 0. 53 20. 9 2 1 96. 0 1. 9 Example 97 5. 30 0. 32 0. 54 21. 5 13. 2 85. 0 1. 8 Example 98 5. 35 0. 32 0. 63 22. 5 11. 4 87. 0 1. 6 Implementation 99 5. 30 0. 33 0. 61 22. 6 6. 3 92. 0 1. 7 Example 100 5. 33 0. 32 0. 63 22. 6 7. 3 91. 0 1. 7 Example 101 6 82 0. 35 0. 43 20. 6 4. 3 95. 0 0. 7 Example 102 5. 01 0. 29 0. 38 16. 0 1. 2 96. 3 2. 5 Example 103 5. 22 0. 33 0. 50 21. 0 4. 0 95. 3 0. 7 Example 104 4. 88 0. 30 0. 28 12. 0 0. 2 96. 0 3. 8 Example 105 4. 91 0. 32 0. 32 13. 0 2. 2 97. 0 0. 8 Comparative example 1 5. 23 0. 36 0. 11 10. 8 1. 0 97. 5 1. 5 than hinge example 2 4. 56 0. 33 0. 092 10. 2 12. 1 85. 0 1. 9 Comparative Example 3 3. 54 0. 28 0. 097 10. 7 0 87 13. 0 Preparation Example 2 Copolymerization of ethylene with α-olefin
在 10升不锈钢高压釜中, 经氮气置换后, 依次加入脱水己烷 3. 5升, 三乙 基铝的己烷溶液(按 Al /Ti摩尔比为 200 ),以及上述实施例 1制备的催化剂 20mg , 分别加入 20克丙烯和 40克丁烯 - 1 , 通入至 0. 2Mpa的氢气(扣除丙烯或丁烯- 1 压力后的表压), 生温至 70 °C , 再通入乙烯至釜压为 0. 8Mpa (扣除丙烯或丁烯 -1 压力后的表压), 在 80°C , 保持釜压为 0. 8Mp下聚合反应 2小时, 得到聚乙烯产 口口 0 各实施例和对比实施例所用催化剂、催化活性和聚乙烯物性分别见表 7和表 8。 聚乙烯熔融指数 ( Ml ) 用 ASTM-D-1238 方法测定, 表观密度用 ASTM-D-1895 方法测定。 In a 10 liter stainless steel autoclave, after replacement with nitrogen, 3.5 parts of dehydrated hexane was added in sequence, a hexane solution of triethylaluminum (in an Al/Ti molar ratio of 200), and the catalyst prepared in the above Example 1. 20mg, respectively, adding 20g of propylene and 40g of butene-1, and introducing hydrogen to 0. 2Mpa (after depressing the pressure of propylene or butene-1 pressure), the temperature is up to 70 °C, and then ethylene is introduced. autoclave is 0. 8Mpa (gauge pressure net of propylene or butene-1 pressure) at 80 ° C, the autoclave was maintained at 0. 8Mp polymerization for 2 hours to obtain polyethylene production mouth 0 The catalysts, catalytic activities and polyethylene physical properties used in the respective examples and comparative examples are shown in Tables 7 and 8, respectively. The polyethylene melt index (Ml) was determined by the ASTM-D-1238 method and the apparent density was measured by the ASTM-D-1895 method.
表 7 与丙婦共聚的结果  Table 7 Results of copolymerization with women
催化活性 堆密度 低聚物 MI,,, MI  Catalytic activity bulk density oligomer MI,,, MI
催化剂 熔点 °C  Catalyst melting point °C
10"4gPE/gCat g/cm3 mg/ml g/min g/min 实施例 3 6. 25 0. 315 <0. 01 130. 23 1. 11 44. 6 实施例 5 6. 51 0. 31 <0. 01 130. 04 1. 15 46. 5 实施例 10 6. 85 0. 32 <0. 01 129. 25 1. 41 56. 2 实施例 16 7. 05 0. 32 <0. 01 129. 46 1. 35 54. 0 实施例 17 7. 25 0. 34 <0. 01 130. 43 0. 95 38. 6 实施例 20 7. 35 0. 35 <0. 01 130. 03 1. 16 46. 4 实施例 23 7. 27 0. 34 <0. 01 130. 29 1. 08 43. 2 实施例 35 7. 64 0. 35 <0. 01 130. 01 1. 18 47. 2 实施例 38 6. 29 0. 34 <0. 01 130. 56 0. 98 39. 2 实施例 39 6. 17 0. 335 <0. 01 130. 33 1. 02 40. 8 实施例 40 6. 40 0. 34 <0. 01 129. 83 1. 21 48. 8 实施例 41 6. 30 0. 335 <0. 01 129. 36 1. 38 55. 5 实施例 42 6. 32 0. 33 <0. 01 130. 36 1. 01 40. 1 实施例 43 6. 31 0. 34 <0. 01 130. 39 1. 05 42. 7 实施例 48 6. 46 0. 33 <0. 01 129. 78 1. 21 48. 5 实施例 49 6. 43 0. 335 <0. 01 129. 41 1. 31 52. 0 实施例 51 6. 53 0. 32 <0. 01 130. 27 1. 09 43. 8 实施例 52 6. 72 0. 33 <0. 01 129. 45 1. 32 52. 8 实施例 53 6. 14 0. 345 <0. 01 129. 38 1. 39 55. 5 实施例 54 6. 61 0. 325 <0. 01 130. 33 1. 02 40. 1 实施例 55 6. 85 0. 315 <0. 01 130. 29 1. 06 42. 7 实施例 60 7. 11 0. 35 <0. 01 129. 72 1. 25 50. 5 实施例 61 7. 21 0. 345 <0. 01 129. 33 1. 35 54. 0 比较例 1 6. 11 0. 34 <0. 01 131. 23 0. 80 32. 0 比较例 2 5. 46 0. 31 0. 92 131. 83 0. 61 20. 4 比较例 3 4. 21 0. 26 1. 53 132. 13 0. 45 18. 710" 4 gPE / gCat g / cm 3 mg / ml g / min g / min Example 3 6. 25 0. 315 <0. 01 130. 23 1. 11 44. 6 Example 5 6. 51 0. 31 <0. 01 130. 04 1. 15 46. 5 Example 10 6. 85 0. 32 <0. 01 129. 25 1. 41 56. 2 Example 16 7. 05 0. 32 <0. 01 129. 46 1. 35 54. 0 Example 17 7. 25 0. 34 <0. 01 130. 43 0. 95 38. 6 Example 20 7. 35 0. 35 <0. 01 130. 03 1. 16 46. 4 Example 23 7. 27 0. 34 <0. 01 130. 29 1. 08 43. 2 Example 35 7. 64 0. 35 <0. 01 130. 01 1. 18 47. 2 Example 38 6. 29 0. 34 <0. 01 130. 56 0. 98 39. 2 Example 39 6. 17 0. 335 <0. 01 130. 33 1. 02 40. 8 Example 40 6. 40 0. 34 <0 01 129. 83 1. 21 48. 8 Example 41 6. 30 0. 335 <0. 01 129. 36 1. 38 55. 5 Example 42 6. 32 0. 33 <0. 01 130. 36 1 01 40. 1 Example 43 6. 31 0. 34 <0. 01 130. 39 1. 05 42. 7 Example 48 6. 46 0. 33 <0. 01 129. 78 1. 21 48. 5 Implementation Example 49 6. 43 0. 335 <0. 01 129. 41 1. 31 52. 0 Example 51 6. 53 0. 32 <0. 01 130. 27 1. 09 43. 8 Example 52 6. 72 0 33 <0. 01 129. 45 1. 32 52. 8 Example 53 6. 14 0. 345 <0. 01 129. 38 1. 39 55. 5 Example 54 6. 61 0. 325 <0. 01 130. 33 1. 02 40. 1 Example 55 6. 85 0. 315 <0. 01 130. 29 1. 06 42. 7 Example 60 7. 11 0. 35 <0. 01 129. 72 1. 25 50. 5 Example 61 7. 21 0. 345 <0. 01 129. 33 1. 35 54. 0 Comparative Example 1 6. 11 0. 34 <0. 01 131. 23 0. 80 32. 0 Comparative example 2 5. 46 0. 31 0. 92 131. 83 0. 61 20. 4 Comparative example 3 4. 21 0. 26 1. 53 132 . 13 0. 45 18. 7
8与丁烯共聚的结果 8 results of copolymerization with butene
催化活性 堆密度 低聚物 熔点 MI,16 MI21.6 实施例 Catalytic active bulk density oligomer melting point MI, 16 MI 21 . 6 Examples
10 gPE/gCat g/cm3 mg/ml °C g/min g/min 实施例 3 5. 68 0. 31 0. 21 129. 33 1. 31 52. 4 实施例 5 5. 73 0. 31 0. 18 129. 03 1. 45 58. 5 实施例 10 5. 91 0. 32 0. 24 128. 53 1. 61 64. 2 实;^例 16 6. 31 0. 32 0. 23 128. 73 1. 52 60. 8 实施例 17 6. 54 0. 33 0. 19 129. 93 1. 14 45. 6 实^例 20 6. 68 0. 34 0. 23 129. 23 1. 36 54. 4 实施例 23 6. 60 0. 33 0. 20 129. 43 1. 28 51. 2 实施例 35 6. 87 0. 34 0. 24 129. 19 1. 38 55. 2 实施例 38 5. 66 0. 33 0. 26 129. 81 1. 18 47. 2 实施例 39 5. 54 0. 32 0. 29 129. 49 1. 22 48. 8 实施例 40 5. 75 0. 33 0. 23 128. 95 1. 41 56. 8 实 例 41 5. 67 0. 32 0. 25 1. 65 66. 2 实施例 42 5. 68 0. 32 0. 23 129. 47 1. 21 48. 4 实施例 43 5. 67 0. 33 0. 26 129. 34 1. 25 50. 7 实施例 48 5. 81 0. 32 0. 24 128. 85 1. 41 56. 4 实施例 49 5. 78 0. 32 0. 26 128. 56 1. 56 62. 0 实施例 51 5. 87 0. 31 0. 29 129. 29 1. 29 51. 6 实施例 52 6. 04 0. 32 0. 25 128. 61 1. 52 60. 8 实施例 53 5. 52 0. 33 0. 20 128. 41 1. 61 64. 4 实施例 54 5. 95 0. 31 0. 29 129. 52 1. 22 48. 8 实施例 55 6. 16 0. 30 0. 35 129. 59 1. 26 50. 4 实施例 60 6. 41 0. 34 0. 18 128. 66 1. 48 59. 5 实施例 61 6. 48 0. 33 0. 16 128. 21 1. 66 66. 4 比较例 1 5. 49 0. 30 0. 39 130. 12 1. 0 40. 5 比较例 2 4. 12 0. 29 3. 92 130. 89 0. 81 32. 6 比皎例 3 3. 79 0. 25 17. 53 131. 2 0. 55 21. 6 10 gPE/gCat g/cm 3 mg/ml °C g/min g/min Example 3 5. 68 0. 31 0. 21 129. 33 1. 31 52. 4 Example 5 5. 73 0. 31 0. 18 129. 03 1. 45 58. 5 Example 10 5. 91 0. 32 0. 24 128. 53 1. 61 64. 2 Real; ^ Example 16 6. 31 0. 32 0. 23 128. 73 1. 52 60. 8 Example 17 6. 54 0. 33 0. 19 129. 93 1. 14 45. 6 Example 20 6. 68 0. 34 0. 23 129 23 1. 36 54. 4 Example 23 6. 60 0. 33 0. 20 129. 43 1. 28 51. 2 Example 35 6. 87 0. 34 0. 24 129. 19 1. 38 55. 2 Example 38 5. 66 0. 33 0. 26 129. 81 1. 18 47. 2 Example 39 5. 54 0. 32 0. 29 129. 49 1. 22 48. 8 Example 40 5. 75 0. 33 0. 23 128. 95 1. 41 56. 8 Example 41 5. 67 0. 32 0. 25 1. 65 66. 2 Example 42 5. 68 0. 32 0. 23 129. 47 1. 21 48. 4 Example 43 5. 67 0. 33 0. 26 129. 34 1. 25 50. 7 Example 48 5. 81 0. 32 0. 24 128. 85 1. 41 56. 4 Example 49 5. 78 0 32 0. 26 128. 56 1. 56 62. 0 Example 51 5. 87 0. 31 0. 29 129. 29 1. 29 51. 6 Example 52 6. 04 0. 32 0. 25 128. 61 1. 52 60. 8 Example 53 5. 52 0. 33 0. 20 128. 41 1. 61 64. 4 Example 54 5. 95 0. 31 0. 29 129. 52 1. 22 48. 8 Example 55 6. 16 0. 30 0. 35 129. 59 1. 26 50. 4 Example 60 6. 41 0. 34 0. 18 128. 66 1. 48 59. 5 Example 61 6. 48 0. 33 0. 16 128. 21 1. 66 66. 4 Comparative example 1 5. 49 0. 30 0. 39 130 12 1. 0 40. 5 Comparative example 2 4. 12 0. 29 3. 92 130. 89 0. 81 32. 6 Comparative example 3 3. 79 0. 25 17. 53 131. 2 0. 55 21. 6

Claims

权利要求 Rights request
1、 一种用于乙烯聚合或共聚合的催化剂活性组分, 其特征在于, 基于 100 重量份的催化剂活性组分的总重量, 包括: A catalyst active component for ethylene polymerization or copolymerization, characterized in that, based on 100 parts by weight of the total weight of the catalyst active component,
12.0-18.0重量份的镁;  12.0-18.0 parts by weight of magnesium;
4.0 ~ 8.0重量份的钛;  4.0 to 8.0 parts by weight of titanium;
1.1~11.0重量份的烷氧基;  1.1 to 11.0 parts by weight of an alkoxy group;
0.5〜2.5重量份的硅; 以及  0.5 to 2.5 parts by weight of silicon;
55.0 -75.0重量份的卤素。  55.0 -75.0 parts by weight of halogen.
2、 如权利要求 1所述的活性组分, 其特征在于, 基于 100重量份的催化剂 活性组分总重量, 其中 0.1 ~ 2.0重量份的烷氧基为曱氧基。  The active component according to claim 1, wherein 0.1 to 2.0 parts by weight of the alkoxy group is a decyloxy group based on 100 parts by weight of the total of the active components of the catalyst.
3、 如权利要求 1所述的活性组分, 其特征在于, 基于 100重量份的催化剂 活性组分总重量, 其中 0.0 ~ 3.0重量份的烷氧基为乙氧基。  The active component according to claim 1, wherein from 0.0 to 3.0 parts by weight of the alkoxy group is an ethoxy group based on 100 parts by weight of the total of the active components of the catalyst.
4、 制备权利要求 1的催化剂活性组分的方法, 其特征在于所述方法包括以 下步骤:  A method of producing a catalyst active component according to claim 1, characterized in that the method comprises the following steps:
( 1 )、 镁醇合物浆液的制备: 在 50〜180°C下, 在含有至少一种 C6~ 12脂肪 烃的惰性烃类溶剂中, 镁化合物与含 2 -10个碳原子的有机醇反应 0.5 ~ 3小时, 形成均匀溶液, 其中镁 /醇的摩尔比为 1: 0.5-6, 每摩尔镁化合物使用 1.8〜5.0升 惰性烃类溶剂;  (1) Preparation of magnesium alkoxide slurry: Magnesium compound and organic alcohol having 2 to 10 carbon atoms in an inert hydrocarbon solvent containing at least one C6-12 aliphatic hydrocarbon at 50 to 180 °C The reaction is carried out for 0.5 to 3 hours to form a homogeneous solution in which the molar ratio of magnesium to alcohol is 1:0.5-6, and 1.8 to 5.0 liters of an inert hydrocarbon solvent is used per mole of the magnesium compound;
(2)、 将制备的镁醇合物浆液与给电子体反应, 其中反应温度为 20~100°C, 基于每摩尔 4美化合物, 加入 0.05 ~ 1.0摩尔的给电子体;  (2) reacting the prepared magnesium alkoxide slurry with an electron donor, wherein the reaction temperature is 20 to 100 ° C, and 0.05 to 1.0 mole of the electron donor is added per mole of the compound of 4 US dollars;
(3)、 将钛化合物 Ti (OR) 4-nXn加入(2) 中的反应液中进行预载钛反应, 其中反应温度为 -20〜20°C, X为卤素, R为烷基, n为 0或小于等于 4的整数, 基于每摩尔镁化合物加入 1.0~50.0摩尔的所述钛化合物,加完钛化合物 Ti ( OR ) 4-nXn后在 -10〜0°C下保持 0.5 ~ 3小时; (3) The titanium compound Ti (OR) 4- n X n is added to the reaction liquid in (2) to carry out a pre-loaded titanium reaction, wherein the reaction temperature is -20 to 20 ° C, X is a halogen, and R is an alkyl group. , n is 0 or an integer of 4 or less, based on 1.0 to 50.0 moles of the titanium compound per mole of the magnesium compound, and is maintained at -10 to 0 ° C after the addition of the titanium compound Ti ( OR ) 4-n X n 0.5 ~ 3 hours;
(4)、 在(3) 中的反应液加入卤代烃进行载钛反应, 其中在 1~4小时内将 反应温度升到 70~130°C, 继续反应 1~6小时, 卤代烃的摩尔用量为镁化合物的 摩尔用量的 2~20倍, 所述 ¾代烃为 ι¾代烷烃或! ¾代环烷烃;  (4) In the reaction solution of (3), a halogenated hydrocarbon is added to carry out a titanium-supporting reaction, wherein the reaction temperature is raised to 70-130 ° C in 1 to 4 hours, and the reaction is continued for 1 to 6 hours, and the halogenated hydrocarbon is The molar amount is 2 to 20 times the molar amount of the magnesium compound, and the 3⁄4 generation hydrocarbon is an ι 3⁄4 alkane or a 3⁄4 generation cycloalkane;
(5)、 过滤(4) 中反应浆液, 用溶剂洗涤、 干燥, 得到固体催化剂。  (5), filtering the reaction slurry in (4), washing with a solvent, and drying to obtain a solid catalyst.
5、 如权利要求 4所述的方法, 其特征在于, 在步驟(1)中, 每摩尔鍰化合 物使用 2.0 ~ 3.0升惰性烃类溶剂。 6、 如权利要求 4所述的方法, 其特征在于, 在步骤(1 ) 中, 所述镁 /醇的 摩尔比为 1: 2 ~ 4。 5. The method according to claim 4, wherein in the step (1), 2.0 to 3.0 liters of an inert hydrocarbon solvent is used per mole of the ruthenium compound. 6. The method according to claim 4, wherein in the step (1), the magnesium/alcohol molar ratio is 1:2 to 4.
7、 如权利要求 4所述的方法, 其特征在于, 步骤(1' )的反应温度为 70 ~ 120 °C。  7. The method according to claim 4, wherein the reaction temperature of the step (1') is 70 to 120 °C.
8、 如权利要求 4所述的方法, 其特征在于, 步骤(2 )的反应温度为 40 ~ 80°C。  8. The method according to claim 4, wherein the reaction temperature of the step (2) is 40 to 80 °C.
9、 如权利要求 4所述的方法, 其特征在于, 在步骤(3 ) 中, 预载钛反应的 温度为-10〜10°〇。  9. The method according to claim 4, wherein in the step (3), the temperature of the pre-loaded titanium reaction is -10 to 10 °.
10、 如权利要求 4所述的方法, 其特征在于, 在步骤(3 ) 中, 基于每摩尔 镁化合物加入 1.0〜50.0摩尔的所述钛化合物。  The method according to claim 4, wherein in the step (3), 1.0 to 50.0 moles of the titanium compound is added per mole of the magnesium compound.
11、 如权利要求 4所述的方法, 其特征在于, 在步骤(4 )中, 在 2 ~ 3小时 内将反应温度升到 90~110°C , 继续反应 2 ~ 4小时, 卤代烃的摩尔用量为镁化合 物的摩尔用量的 5 ~ 20倍。  The method according to claim 4, wherein in the step (4), the reaction temperature is raised to 90 to 110 ° C in 2 to 3 hours, and the reaction is continued for 2 to 4 hours, and the halogenated hydrocarbon is The molar amount is 5 to 20 times the molar amount of the magnesium compound.
12、 如权利要求 4所述的方法, 其特征在于, 所述给电子体为一种或多种选 自包括具有分子式 (R1) (R2) (R3) (R4) Si, R\ R2、 R\ R4可以全部相同或 R1和 R2相 同、 或 I 1、 R2和 R3相同, 并且 R R2、 R3、 R4中可以是四个烷氧基或三个烷氧基 或两个烷氧基, 至少有一个烷氧基, I 1、 R2、 R3、 R4选自 C广 C12的烷基、 C6 ~ C9 烷芳基或 d ~ C12的烷氧基、 C6 ~ C9烷芳氧基或(^〜( 12的卤代烷基、 C3 - C6环 氧基。 The method according to claim 4, wherein the electron donor is one or more selected from the group consisting of the formula (R 1 ) (R 2 ) (R 3 ) (R 4 ) Si, R \ R 2 , R\ R 4 may all be the same or R 1 and R 2 are the same, or I 1 , R 2 and R 3 are the same, and RR 2 , R 3 , R 4 may be four alkoxy groups or three alkoxy or two alkoxy groups, at least one alkoxy, I 1, R 2, R 3, R 4 is selected from C 12 to C broad group, C 6 ~ C 9 alkaryl or d ~ C 12 alkoxy, C 6 ~ C 9 alkaryloxy or (^~( 12 haloalkyl, C 3 - C 6 epoxy).
13、 如权利要求 4或 12所述的方法, 其特征在于, 所述给电子体选自包括 二曱基二甲氧基硅烷、 二丙基二甲氧基硅烷、 二异丙基二甲氧基硅烷、 二异丁基 二甲氧基硅烷、 二丁基二甲氧基硅烷、 环已基甲基二甲氧基硅烷、 环已基异丙基 二甲氧基硅烷、 环戊基异丁基二甲氧基硅烷、 环戊基异丙基二甲氧基硅烷、 环戊 基丁基二甲氧基硅烷、 环戊基丙基二曱氧基硅烷、 二环戊基二曱氧基硅烷、 二苯 基二曱氧基硅烷、 苯基三曱氧基硅烷、 甲基三甲氧基硅烷、 丁基三曱氧^圭烷、 异丁基三甲氧基硅烷、 γ-氯丙基三曱氧基硅烷、 γ-(2,3环氧丙氧)丙基三甲氧基硅 烷、 二甲基二乙氧基硅烷、 二丙基二乙氧基硅烷、 二异丙基二乙氧基硅烷、 二异 丁基二乙氧基硅烷、 二丁基二乙氧基硅烷、 环已基甲基二乙氧基硅烷、 环已基异 丙基二乙氧基硅烷、 环戊基异丁基二乙氧基硅烷、 环戊基异丙基二乙氧基硅烷、 环戊基丁基二乙氧基硅烷、 环戊基丙基二乙氧基硅烷、 二环戊基二乙氧基硅烷、 二苯基二乙氧基硅烷、 苯基三乙氧基硅烷、 曱基三乙氧基硅烷、 丁基三乙氧基硅 烷、 异丁基三乙氧基硅烷、 γ-氯丙基三乙氧基硅烷、 乙烯基三乙氧基硅烷、 乙烯 基三甲氧基硅烷、 四曱氧基硅烷、 四乙氧基硅烷 /及其混合物的组。 The method according to claim 4 or 12, wherein the electron donor is selected from the group consisting of dimercaptodimethoxysilane, dipropyldimethoxysilane, and diisopropyldimethoxy Silane, diisobutyldimethoxysilane, dibutyldimethoxysilane, cyclohexylmethyldimethoxysilane, cyclohexylisopropyldimethoxysilane, cyclopentylisobutylene Dimethoxysilane, cyclopentylisopropyldimethoxysilane, cyclopentylbutyldimethoxysilane, cyclopentylpropyldimethoxysilane, dicyclopentyldimethoxysilane , diphenyldimethoxysilane, phenyltrimethoxysilane, methyltrimethoxysilane, butyltrioxane, isobutyltrimethoxysilane, γ-chloropropyltrioxane Silane, γ-(2,3 epoxypropoxy)propyltrimethoxysilane, dimethyldiethoxysilane, dipropyldiethoxysilane, diisopropyldiethoxysilane, two Isobutyldiethoxysilane, dibutyldiethoxysilane, cyclohexylmethyldiethoxysilane, cyclohexylisopropyldiethoxysilane, cyclopentylisobutylene Diethoxysilane, cyclopentylisopropyldiethoxysilane, cyclopentylbutyldiethoxysilane, cyclopentylpropyldiethoxysilane, dicyclopentyldiethoxysilane , diphenyldiethoxysilane, phenyltriethoxysilane, decyltriethoxysilane, butyltriethoxysilane Alkane, isobutyltriethoxysilane, γ-chloropropyltriethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane/and a group of its mixtures.
14、 如权利要求 4所述的方法, 其特征在于, 步骤(3) 中的所述 4太化合物 Ti (OR) 4-ηΧη为选自包括四氯化钛、 四溴化钛、 四碘化钛、 四丁氧基钛、 四乙 氧基钛、 一氯三乙氧基钛、 二氯二乙氧基钛、 三氯一乙氧基钛中、 及其混合物的 组。 The method according to claim 4, wherein the 4 too compound Ti(OR) 4-η Χ η in the step (3) is selected from the group consisting of titanium tetrachloride, titanium tetrabromide, and tetra A group of titanium iodide, titanium tetrabutoxide, titanium tetraethoxide, titanium monochlorotriethoxy, titanium dichlorodiethoxytitanium, trichloromonoethoxytitanium, and mixtures thereof.
15、 如权利要求 4所述的方法, 其特征在于, 步骤(4) 中所使用的卤代烃 为选自包括 1, 2-二氯乙烷、 1, 3-二氯丙烷、 1, 4-二氯丁烷、 1, 6-二氯己烷、 一氯环己烷、 二氯环己烷、 一氯环戊烷、 二氯环戊烷、 及其混合物的组。  The method according to claim 4, wherein the halogenated hydrocarbon used in the step (4) is selected from the group consisting of 1,2-dichloroethane, 1, 3-dichloropropane, 1, 4 a group of dichlorobutane, 1,6-dichlorohexane, monochlorocyclohexane, dichlorocyclohexane, monochlorocyclopentane, dichlorocyclopentane, and mixtures thereof.
16、 一种用于烯烃聚合或共聚合的催化剂, 其特征在于包括  16. A catalyst for the polymerization or copolymerization of olefins, characterized by comprising
(i)权利要求 1所述的催化剂活性组分; 和  (i) the catalyst active component of claim 1;
(ii)助催化剂, 有机铝化合物 R3.nAlXn, 其中 X为卤素, R为 C1〜C6烷基, n为 0~3的整数; (ii) a cocatalyst, an organoaluminum compound R 3 . n AlX n , wherein X is a halogen, R is a C1 to C6 alkyl group, and n is an integer from 0 to 3;
其中助催化剂中的铝与催化剂活性组分中的钛的摩尔比为 20~800。  The molar ratio of aluminum in the cocatalyst to titanium in the active component of the catalyst is from 20 to 800.
17、 如权利要求 16所述的用于烯烃聚合或共聚合的催化剂, 其特征在于, 其中助催化剂中的铝与催化剂活性组分中的钛的摩尔比为 50 ~ 300。  The catalyst for olefin polymerization or copolymerization according to claim 16, wherein the molar ratio of aluminum in the cocatalyst to titanium in the active component of the catalyst is from 50 to 300.
PCT/CN2006/002356 2005-09-28 2006-09-12 Catalyst active component, preparation method thereof and catalyst comprising said active component WO2007036135A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510105626.X 2005-09-28
CNB200510105626XA CN100424099C (en) 2005-09-28 2005-09-28 Catalyst active component, its preparation and catalyst containing it

Publications (1)

Publication Number Publication Date
WO2007036135A1 true WO2007036135A1 (en) 2007-04-05

Family

ID=37899369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/002356 WO2007036135A1 (en) 2005-09-28 2006-09-12 Catalyst active component, preparation method thereof and catalyst comprising said active component

Country Status (2)

Country Link
CN (1) CN100424099C (en)
WO (1) WO2007036135A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2567391C2 (en) * 2009-08-21 2015-11-10 Чайна Петролеум Энд Кемикал Корпорейшн Catalyst component for ethylene polymerisation, preparation thereof and catalyst including catalyst component

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100484970C (en) * 2007-04-30 2009-05-06 中国石油化工股份有限公司 Method for preparing solid catalyst in olefin polymerization catalyst
CN102093498B (en) * 2009-12-11 2012-07-18 中国石油天然气股份有限公司 Material special for polyethylene and preparation method thereof
CN101880341B (en) * 2010-06-21 2012-05-30 中国石油天然气股份有限公司 Ethylene homopolymerization or copolymerization catalyst and preparation and application thereof
CN102329400B (en) * 2011-06-23 2013-03-27 中国石油天然气股份有限公司 Olefin polymerization catalyst containing silane compound, preparation and application thereof
CN102863560A (en) * 2011-07-04 2013-01-09 中国石油化工股份有限公司 External electron donor component, alkene polymerization catalyst containing external electron donor component and application thereof
CN104098727B (en) * 2013-04-03 2016-11-16 中国石油天然气股份有限公司 A kind of high-density polyethylene resin and preparation thereof and application
CN105461745B (en) * 2015-08-17 2019-04-02 临邑县鲁晶化工有限公司 A kind of dialkyl dialkoxy silicane and its synthetic method
CN106632743B (en) * 2015-10-29 2020-07-21 中国石油化工股份有限公司 Catalyst system for ethylene polymerization and use thereof
CN105542038B (en) * 2015-11-14 2018-02-09 新***山子天利高新技术股份有限公司 Mixture of siloxanes and the method for regulating and controlling small-entity polypropylene process polymerisation speed
CN114426596A (en) * 2020-10-15 2022-05-03 中国石油化工股份有限公司 Catalyst for olefin polymerization, application thereof, olefin polymerization method and polymer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814312A (en) * 1986-12-26 1989-03-21 Toa Nenryo Kogyo Kabushiki Kaisha Method for production of catalyst component for olefin polymerization
CN1099041A (en) * 1993-05-07 1995-02-22 三星综合化学株式会社 Highly active catalyst for polymerization of olefins and method for the preparation of the same
CN1217345A (en) * 1997-11-14 1999-05-26 中国科学院化学研究所 Ethene-polymerization carrier catalyst system
US6051666A (en) * 1995-04-10 2000-04-18 Dsm N.V. Method for preparing a catalyst suitable for polymerizing an olefin

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990251A (en) * 1993-07-13 1999-11-23 Bp Chemicals Limited Process for polymerising olefin with a Ziegler-Natta catalyst
JP3529941B2 (en) * 1995-05-18 2004-05-24 三井化学株式会社 Solid titanium catalyst component, production method thereof, olefin polymerization catalyst containing solid titanium catalyst component, and olefin polymerization method
JP4098419B2 (en) * 1998-03-11 2008-06-11 三菱化学株式会社 Impact resistant propylene block copolymer
KR100389962B1 (en) * 2000-11-10 2003-07-02 삼성종합화학주식회사 Preparation method of catalyst for ethylene polymeration or copolymeration
ES2567259T3 (en) * 2001-11-01 2016-04-21 Idemitsu Kosan Co., Ltd. Solid catalytic component for the polymerization of olefins, catalyst for the polymerization of olefins and process for the production of an olefinic polymer
CA2365718A1 (en) * 2001-12-18 2003-06-18 Nova Chemicals Corporation High temperature ziegler-natta solution catalysts
CN1213082C (en) * 2002-10-31 2005-08-03 中国石油化工股份有限公司 Catalyst for ethylene polymerization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814312A (en) * 1986-12-26 1989-03-21 Toa Nenryo Kogyo Kabushiki Kaisha Method for production of catalyst component for olefin polymerization
CN1099041A (en) * 1993-05-07 1995-02-22 三星综合化学株式会社 Highly active catalyst for polymerization of olefins and method for the preparation of the same
US6051666A (en) * 1995-04-10 2000-04-18 Dsm N.V. Method for preparing a catalyst suitable for polymerizing an olefin
CN1217345A (en) * 1997-11-14 1999-05-26 中国科学院化学研究所 Ethene-polymerization carrier catalyst system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2567391C2 (en) * 2009-08-21 2015-11-10 Чайна Петролеум Энд Кемикал Корпорейшн Catalyst component for ethylene polymerisation, preparation thereof and catalyst including catalyst component

Also Published As

Publication number Publication date
CN100424099C (en) 2008-10-08
CN1939937A (en) 2007-04-04

Similar Documents

Publication Publication Date Title
WO2007036135A1 (en) Catalyst active component, preparation method thereof and catalyst comprising said active component
JP3022834B2 (en) Olefin polymerization and copolymerization catalysts
JP2004513990A (en) Method for producing catalyst for ethylene polymerization or copolymerization
KR100361224B1 (en) Method for preparing catalyst for ethylene homo- and co-polymerization
KR100430844B1 (en) Catalyst having increased average particle size for olefin polymerization and copolymerization
JP2003501496A (en) Catalyst for ethylene polymerization and copolymerization
JP2004513993A (en) Method for producing ethylene polymer and copolymer
JP4073785B2 (en) Process for producing olefin polymerization catalyst
KR20070011378A (en) Magnesium chloride-based adducts and catalyst components obtained therefrom
KR100430845B1 (en) Catalyst having high catalytic activity, increased average particle size and narrow particle size distribution for alpha-olefin polymerization and copolymerization
JP3817547B2 (en) Catalyst for ethylene polymerization and copolymerization
US7193022B2 (en) Method of polymerization and copolymerization of ethylene
KR100430848B1 (en) Improved Olefin Polymerization and Copolymerization Catalysts
JP2004513992A (en) Method for producing ethylene polymer and copolymer
KR20200065146A (en) Carrier composition for polyolefin polymerization catalyst, method for preparing carrier and catalyst composition comprising the same
CN111072806A (en) Catalyst component and catalyst for olefin polymerization, application thereof and olefin polymerization method
JP2005513254A (en) Ethylene polymerization and copolymerization method
KR100435980B1 (en) Olefin polymerization and copolymerization method using solid complex titanium catalyst for producing polymer having high apparent density
CN101519463A (en) Preparation method of catalyst for ethylene polymerization and copolymerization
CN111072815A (en) Catalyst component and catalyst for olefin polymerization, application thereof and olefin polymerization method
KR100612106B1 (en) Method of propylene polymerization
CN114507303B (en) External electron donor for olefin polymerization, catalyst system and olefin polymerization method
TWI823951B (en) Catalyst component for olefin polymerization, preparation method thereof and catalyst containing same
JP4879931B2 (en) Solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
KR100827539B1 (en) A method for producing a solid vanadium titanium catalyst for ehtylene homo- and copolymerization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06790970

Country of ref document: EP

Kind code of ref document: A1