WO2007026723A1 - Projection mask, laser machining method, laser machining device, and thin film transistor element - Google Patents

Projection mask, laser machining method, laser machining device, and thin film transistor element Download PDF

Info

Publication number
WO2007026723A1
WO2007026723A1 PCT/JP2006/317019 JP2006317019W WO2007026723A1 WO 2007026723 A1 WO2007026723 A1 WO 2007026723A1 JP 2006317019 W JP2006317019 W JP 2006317019W WO 2007026723 A1 WO2007026723 A1 WO 2007026723A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
light transmission
projection mask
semiconductor film
light
Prior art date
Application number
PCT/JP2006/317019
Other languages
French (fr)
Japanese (ja)
Inventor
Junichiro Nakayama
Hiroshi Tsunasawa
Ikumi Itsumi
Masashi Maekawa
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2007026723A1 publication Critical patent/WO2007026723A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • H01L21/0268Shape of mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1296Multistep manufacturing methods adapted to increase the uniformity of device parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes

Definitions

  • the present invention relates to a projection mask, a laser processing method, and a laser processing apparatus used when crystallizing an irradiation object by irradiating laser light, and further, a thin film transistor formed on a crystallized irradiation object It relates to an element.
  • a semiconductor device is formed of a single crystal silicon (Si) or a thin silicon film formed on a glass substrate. Such semiconductor devices are used for image sensors and active matrix liquid crystal display devices.
  • a semiconductor device used in a liquid crystal display device is configured by forming a regular array of thin film transistor (abbreviation: TFT) elements on a transparent substrate, and each TFT element functions as a pixel controller.
  • TFT thin film transistor
  • the TFT element used in the liquid crystal display device is formed on an amorphous silicon film, it is replaced with an amorphous silicon film having a low electron mobility, and a polycrystalline silicon film having a high electron mobility.
  • a polycrystalline silicon film is a laser beam emitted from an excimer laser on an amorphous silicon or microcrystalline silicon film deposited on a substrate, for example, a line length of 200 mm or more and less than 400 mm and a line width of 0.2 mm or more. 1. It is melted by irradiating a linear laser beam of less than Omm, and crystallizing silicon in the solidification process (Excimer Laser Crystallization; abbreviated as ELC) (hereinafter sometimes referred to as “ELC method”) It is formed.
  • ELC Excimer Laser Crystallization
  • the semiconductor film irradiated with the laser beam is melted leaving a part of the semiconductor film that is not melted over the entire thickness direction. If the semiconductor film is simply melted and solidified by the ELC method, crystal nuclei are generated everywhere on the entire interface between the unmelted region and the molten region, and the crystal is directed to the outermost layer of the semiconductor film. Growing and different A large number of crystal grains having different sizes and different crystal orientations are formed. Therefore, the crystal grain size is very small, specifically, lOOnm or more and less than 200nm. When a large number of small crystal grains are formed, a large number of crystal grain boundaries, which are the contact interfaces between the crystal grains, are formed, and these crystal grain boundaries capture electrons and serve as barriers for electron transfer. In other words, the electron mobility is lower than that of a polycrystalline silicon film having a relatively large crystal grain size.
  • the electron mobility differs from one crystal to another, in other words, a large number of TFT elements having different operating performances are formed.
  • the non-uniformity of the switching characteristics occurs in the TFT array.
  • the liquid crystal display device has a problem that a response speed is high, a pixel and a response speed are low, and a pixel coexists in one display screen. Therefore, to further improve the performance of liquid crystal display devices, it is necessary to form TFT arrays with uniform switching characteristics.
  • the crystallization region of the polycrystalline silicon film forming the TFT element is widened and the quality of the polycrystalline silicon film is improved, in other words, the crystallized crystal. It is necessary to increase the grain size as much as possible and to control the crystal orientation. Therefore, various techniques for obtaining a polycrystalline silicon film having performance close to that of single crystal silicon have been proposed.
  • FIG. 36 is a diagram showing the configuration of the first conventional laser carriage apparatus 1.
  • FIG. 37 is a cross-sectional view showing the configuration of the semiconductor element 8.
  • 38A to 38D are diagrams schematically showing a crystal growth process in the semiconductor film 17.
  • the first conventional technique is a laser crystallization technique classified as a lateral growth method, and a laser processing apparatus 1 forms long and narrow crystals aligned in the crystal growth direction.
  • the laser carriage apparatus 1 includes a light source 2 capable of emitting pulsed laser light 12, a variable attenuator 3, a plurality of mirrors 4 that reflect the laser light 12 emitted from the light source 2 and change its direction,
  • the variable focus field lens 5, the projection mask 6 that allows the laser beam that has passed through the variable focus field lens 5 to pass in a predetermined pattern, and the laser beam that has passed the projection mask 6 are applied to one surface portion of a semiconductor element 8 to be described later.
  • the imaging lens 7 to be imaged and the semiconductor element 8 can be placed and the semiconductor element 8 can be moved in the direction indicated by the arrow 11.
  • a control unit 10 that performs output control of the light source 2 and drive control in the direction indicated by the arrow 11 of the stage 9.
  • the light source 2 is realized by, for example, an excimer laser.
  • the laser beam 12, which also emits excimer laser power as the light source 2 was placed on the stage 9 via the variable attenuator 3, the mirror 4, the variable focus field lens 5, the projection mask 6, and the imaging lens 7.
  • One surface of the semiconductor element 8 is irradiated.
  • the semiconductor element 8 includes a transparent substrate 15 having optical transparency, a base film 16 formed on the transparent substrate 15, and a semiconductor film 17 formed on the base film 16.
  • region B the region indicated by the arrow B of the semiconductor film 17
  • the region other than that of the semiconductor film 17 is masked, and laser light 12 emitted from the excimer laser power is irradiated onto the region B of the semiconductor film 17 to induce heat in the semiconductor film 17.
  • the energy of the laser beam 12 irradiated to the region B is converted into thermal energy, and heat can be induced to the region B of the semiconductor film 17, and the semiconductor film 17 is extended in the thickness direction. Can be melted.
  • the semiconductor film 17 in which the region B is melted is solidified by cooling, and as shown in FIG. 38A, the boundary Bl, B2 between the region B and the other regions is directed toward the center of the region B. In this way, crystals are grown. Further, as shown in FIG. 38B, a new region C overlapping with a part of the region B is set so that a crystal is formed in the region B and the portion is included. Melt. Then, the semiconductor film 17 melted in the region C is solidified to form crystals in the region C as shown in FIG. 38C. By repeating such a procedure, a desired crystal is grown stepwise along the extending direction A of the semiconductor film 17. As a result, as shown in FIG. 38D, a semiconductor crystal having a polycrystalline structure can be enlarged, and a polycrystalline silicon film having a large crystal grain can be formed (for example, JP 2000-505241 A). reference).
  • the slit of the mask is divided into a plurality of blocks, and the polycrystalline silicon film is formed by arranging the partially grown crystals without growing the crystal over the entire surface of the substrate. (For example, see Special Table 2003-509844).
  • a TFT element formed on a substrate having a crystallized semiconductor film is not necessarily fixed in one direction in order to increase the mounting density as much as possible or for the convenience of circuit arrangement.
  • the direction of the current flowing from the source S to the drain D in other words, the direction of the current indicated by the arrow J is parallel to the crystal growth direction.
  • the current flows in a direction perpendicular to the crystal growth direction.
  • the third conventional technique forms an amorphous silicon film using a mask that also has the region force of the stripe pattern in the second direction in which the arrangement direction is orthogonal to the first direction and the first direction.
  • the laser beam is irradiated while moving the substrate by 1Z4 of the mask width.
  • crystal grains of a certain size are formed so as to eliminate the anisotropy of the crystallized region formed in the amorphous silicon film (see, for example, JP-A-2003-22969).
  • the substrate is irradiated with laser light using a mask in which regions having a stripe pattern in the first direction and regions having a stripe pattern in the second direction are alternately arranged. Then, in the region crystallized by the final irradiation of the laser beam, the area between the crystal part grown in the first direction and the crystal part grown in the second direction orthogonal to the first direction is Not equal. In other words, there is a problem that the substrate on which the amorphous silicon film is formed cannot be crystallized uniformly.
  • the angle between the direction of the current flowing through the TFT element and the growth direction of the crystal is 0 degree, and the direction of the current and the growth of the crystal.
  • the electrical characteristics do not match when the angle with the direction is 90 degrees, and the drain current value when the TFT switch is on is different, so devices such as TFT liquid crystal displays can be designed. It has become an obstacle when doing. Disclosure of the invention
  • An object of the present invention is to provide a projection mask, a laser processing method, and a laser processing apparatus capable of uniformly crystallizing an irradiation object, and to provide electrical characteristics when formed on the irradiation object. It is an object to provide a thin film transistor element that can be made uniform.
  • the present invention is a projection mask on which a first light transmission pattern and a second light transmission pattern that transmit light for crystallizing an irradiation object are formed,
  • the first to fourth areas are projection masks arranged in the order of a first area, a second area, a third area, and a fourth area.
  • a first light transmission pattern and a second light transmission pattern that transmit light for crystallizing the irradiation object are formed, and a plurality of these first and second light transmission patterns are formed.
  • This is a projection mask.
  • the first to fourth regions are arranged in the order of the first region, the third region, the fourth region, and the second region.
  • the present invention also provides a first light transmission pattern that transmits light for crystallizing the irradiation object.
  • M (m is an even number of 2 or more) first light transmission patterns, which are formed in a projection mask on which a first light transmission pattern extending in a first direction is formed.
  • Area (m is an even number of 2 or more) first light transmission patterns, which are formed in a projection mask on which a first light transmission pattern extending in a first direction is formed.
  • n (n is an even number of 2 or more) second light transmission pattern regions formed with a second light transmission pattern extending in a second direction orthogonal to the first direction,
  • the projection mask is characterized by being arranged in the order of mZ2 first light transmission pattern regions, n second light transmission pattern regions, and mZ2 first light transmission pattern regions.
  • the first light transmission pattern region and the second light transmission pattern region may include n Z2 second light transmission pattern regions, m first light transmission pattern regions, and nZ2 second light transmission patterns. They are arranged in the order of pattern areas.
  • the invention is characterized in that the first and second light transmission patterns are formed such that both end portions in each extending direction are tapered when viewed in the thickness direction of the projection mask.
  • the present invention provides a laser beam that is crystallized by irradiating a laser beam in first and second directions orthogonal to each other to crystallize the irradiation object on the layer made of the amorphous material that is the irradiation object.
  • a crystallization step of crystallizing the amorphous material by arranging the first and second irradiation regions in the order of the first irradiation region, the second irradiation region, the second irradiation region, and the first irradiation region. This is a laser processing method.
  • the present invention is further characterized by further including a moving step of moving the irradiation object relative to the light source that emits the laser light.
  • the present invention is characterized in that it further includes a repeating step of repeating the crystallization step and the moving step.
  • the crystallization step includes A first irradiation step of irradiating an irradiation object with a laser beam having one oscillation wavelength;
  • the present invention provides a laser beam which is crystallized by irradiating a layer made of an amorphous material, which is an irradiation object, with laser light in first and second directions orthogonal to each other to crystallize the irradiation object.
  • a first irradiation region is formed on the irradiation target so that the laser light extends in the first direction
  • a second irradiation region is formed on the irradiation target so that the laser light extends in the second direction.
  • the present invention also relates to a laser processing apparatus for irradiating a layer of amorphous material force, which is an object to be irradiated, with laser light for crystallization.
  • a projection mask formed with a light transmission pattern that transmits laser light emitted from the light source and extending in a predetermined first direction or a second direction orthogonal to the first direction;
  • a rotation driving means capable of rotationally driving the projection mask relative to the irradiation object; and a linear driving means capable of linearly driving the projection mask relative to the irradiation object in the first or second direction.
  • the laser processing apparatus is characterized by being controlled step by step.
  • a thin film transistor element formed on an irradiation object crystallized using the laser processing apparatus.
  • FIG. 1 is a diagram showing a configuration of a laser processing apparatus 20 according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the configuration of the semiconductor element 27.
  • FIG. 3 is a plan view showing the projection mask 25.
  • FIG. 4 is an enlarged plan view showing a part of the state of the crystal 42 formed in the semiconductor film 37.
  • FIG. 5 is a plan view schematically showing the projection mask 6.
  • 6A to 6D are diagrams showing the growth process of the crystal 42 stepwise when the semiconductor film 17 is crystallized using the projection mask 6 shown in FIG.
  • FIG. 7 is an enlarged plan view of section II of FIG. 6B.
  • FIG. 8 is a plan view schematically showing the projection mask 6A.
  • FIG. 9 is a plan view showing a state of the crystal 42 formed in the semiconductor film 17 by repeating the process using the projection mask 6A shown in FIG.
  • FIG. 10 is a plan view schematically showing the projection mask 25.
  • FIG. 11A to FIG. 11D are diagrams showing the growth process of the crystal 42 stepwise when the semiconductor film 37 is crystallized using the projection mask 25 shown in FIG.
  • FIG. 12 is an enlarged plan view of section IV of FIG. 11D.
  • FIG. 13 is a plan view schematically showing the projection mask 25A.
  • FIG. 14 is a plan view showing a state of the crystal 42 formed on the semiconductor film 37 by performing the repetition process using the projection mask 25A shown in FIG.
  • FIG. 15 is a plan view showing the crystallized semiconductor film 37 and the thin film transistor element 50 formed in the semiconductor film 37.
  • FIG. 16 is a plan view showing the crystallized semiconductor film 37 and the thin film transistor element 50 formed in the semiconductor film 37.
  • FIG. 17 is a plan view schematically showing the projection mask 25B.
  • FIG. 18 shows a semiconductor circuit by performing an iterative process using the projection mask 25B shown in FIG. 4 is a plan view showing a state of a crystallization region 41 formed in the body film 37.
  • FIG. 18 shows a semiconductor circuit by performing an iterative process using the projection mask 25B shown in FIG. 4 is a plan view showing a state of a crystallization region 41 formed in the body film 37.
  • FIG. 19 is a plan view schematically showing the projection mask 25C.
  • FIG. 20 is a plan view showing a state of the crystallization region 41 formed in the semiconductor film 37 by performing the repetition process using the projection mask 25C shown in FIG.
  • FIG. 21 is a plan view showing the projection mask 100.
  • FIG. 22 is a plan view schematically showing the projection mask 100.
  • FIG. 23A to FIG. 23D are diagrams showing the growth process of the crystal 42 when the semiconductor film 37 is crystallized using the projection mask 100 shown in FIG.
  • FIG. 24 is an enlarged plan view of section VIII of FIG. 23D.
  • FIG. 25 is a plan view showing the crystallized semiconductor film 37 and the thin film transistor element 50 formed in the semiconductor film 37.
  • FIG. 26 is a plan view showing the projection mask 110.
  • FIG. 27 is a plan view schematically showing the projection mask 110.
  • FIG. 28A to FIG. 28D are diagrams showing the growth process of the crystal 42 when the semiconductor film 37 is crystallized using the projection mask 110 shown in FIG.
  • FIG. 29 is an enlarged plan view of section IX of FIG. 28D.
  • FIG. 30 is a plan view showing the crystallized semiconductor film 37 and the thin film transistor element 50 formed in the semiconductor film 37.
  • FIG. 30 is a plan view showing the crystallized semiconductor film 37 and the thin film transistor element 50 formed in the semiconductor film 37.
  • FIG. 31 is a diagram showing a configuration of a laser processing apparatus 60 according to the sixth embodiment of the present invention.
  • FIG. 32 is a graph showing the relationship between the output time of the first laser beam 65 and the second laser beam 66 and the output.
  • FIG. 33 is a diagram showing a configuration of a laser processing apparatus 70 according to the seventh embodiment of the present invention.
  • FIG. 34A to FIG. 34D are diagrams showing the rotation process of the projection mask 71 rotated by the rotation drive unit 72 step by step.
  • FIG. 35A to FIG. 35D are diagrams showing the rotation process of the projection mask 200 rotated by the rotation drive unit 72 in a stepwise manner.
  • FIG. 36 is a diagram showing a configuration of the laser processing apparatus 1 of the first conventional technique.
  • FIG. 37 is a cross-sectional view showing the configuration of the semiconductor element 8.
  • 38A to 38D are diagrams schematically showing a crystal growth process in the semiconductor film 17.
  • FIG. 1 is a diagram showing a configuration of a laser processing apparatus 20 according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the configuration of the semiconductor element 27.
  • FIG. 3 is a plan view showing the projection mask 25.
  • the laser processing method according to the first embodiment of the present invention is performed by the laser processing apparatus 20.
  • the laser carriage device 20 includes a light source 21, a variable attenuator 22, a mirror, a variable focus field lens 24, a projection mask 25, an imaging lens 26, a stage 28, and a control unit 29.
  • the light source 21 can emit pulsed laser light, and is realized by, for example, an excimer laser oscillator using a salty xenon (XeCl) having a wavelength of 308 nm.
  • XeCl salty xenon
  • laser light having a pulse width of 30 ns is emitted from an excimer laser oscillator. Since the light source and the excimer laser oscillator are substantially the same, in the following description, the “light source 21” may be referred to as the “excimer laser oscillator 21”.
  • the variable attenuator 22 is a laser beam emitted from the light source 21. It is configured so that the transmittance can be set. By changing the transmittance with the variable attenuator 22, the illuminance of the laser light 31 emitted from the light source 21 can be adjusted.
  • the mirror 23 reflects the laser light 31 emitted from the light source 21 and changes its direction.
  • the variable focus field lens 24 is a lens that adjusts the focus by emitting the laser beam 31 emitted from the light source 21 and incident.
  • the projection mask 25 is formed with a light transmission pattern that transmits light for crystallizing the irradiation object.
  • the laser light that has passed through the variable focus field lens 24 is passed through a predetermined mask formed on the projection mask 25.
  • the light transmission pattern is transmitted.
  • the imaging lens 26 forms an image of the laser light transmitted through the projection mask 25 on one surface in the thickness direction of a semiconductor element 27 described later.
  • the stage 28 has a predetermined first moving direction X (the left-right direction in FIG. 1 in FIG. 1) X and a second moving direction (in FIG. 1, the direction perpendicular to the first moving direction X and the thickness direction of the stage 28). It is configured to be movable in the direction perpendicular to the paper surface (Y). On the stage 28, a semiconductor element 27 as an irradiation object is placed.
  • the control unit 29 is a processing circuit realized by a microcomputer or the like that includes a central processing unit (abbreviation: CPU).
  • a light source 21 and a stage 28 are electrically connected to the control unit 29.
  • the control unit 29 controls the output of the light source 21, specifically controls the oscillation pulse time and period of the laser light 31 emitted from the light source 21, and the first movement direction X and second movement direction Y of the stage 28. Specifically, the position of the semiconductor element 27 placed on the stage 28 is controlled.
  • the control unit 29 For control of the oscillation pulse time and period of the laser beam, the control unit 29 generates a correspondence table using the oscillation pulse time and period predetermined for each crystallization processing condition of the semiconductor element 27 as related information, for example.
  • the storage unit to be stored is provided in the control unit 29, and a control signal based on the related information in the correspondence table read from the storage unit is given to the light source 21.
  • the drive control of the stage 28 may be configured to perform numerical control (abbreviation: NC) based on information given to the control unit 29 in advance, and a position sensor that detects the position of the semiconductor element 27 It may be configured to control in response to the detection output of the position sensor force.
  • NC numerical control
  • a laser beam 31 emitted from a light source 21 in accordance with a control signal from a control unit 29 passes through a variable attenuator 22, a variable focus field lens 24, and a projection mask 25, and is formed by a semiconductor element by an imaging lens 26.
  • One surface portion in the thickness direction of 27 is irradiated.
  • the semiconductor element 27 includes a transparent substrate 35 having optical transparency, a base film 36, and a semiconductor film 37.
  • the base film 36 and the semiconductor film 37 are sequentially stacked on the transparent substrate 35. Is done.
  • Materials used for the base film 36 are silicon dioxide (SiO 2), nitrous oxide
  • Dielectric materials such as silicon dioxide (SiON), silicon nitride (SiN), and aluminum nitride (A1N).
  • Underlayer 36 is transparent by vapor deposition, ion plating, sputtering, etc. Laminated on the substrate 35.
  • an amorphous silicon film which is a semiconductor film 37 is laminated.
  • the semiconductor film 37 is laminated on the base film 36 by plasma enhanced chemical vapor deposition (abbreviation: PECVD), vapor deposition or sputtering. At this point, the semiconductor film 37 is in an amorphous state.
  • the film thickness of the base film 36 is lOOnm
  • the film thickness of the semiconductor film 37 is 50 nm.
  • the projection mask 25 is formed by, for example, patterning a chromium thin film on a synthetic quartz substrate (hereinafter sometimes simply referred to as “substrate”).
  • the projection mask 25 includes a plurality of first light transmission patterns 25a and second light transmission patterns that penetrate through the substrate in the thickness direction and transmit light for crystallizing the semiconductor film 37 of the semiconductor element 27 that is the irradiation target. 25b is formed.
  • the portions of the projection mask 25 other than the first and second light transmission patterns 25a and 25b are non-transmission portions 25c that do not transmit light.
  • the projection mask 25 according to the present embodiment has a rectangular shape projected onto a virtual plane perpendicular to the thickness direction.
  • the projection mask 25 includes a first area, a second area, and a third area. And it is divided into 4 areas, 4th area.
  • the projection mask 25 includes the first block BA corresponding to the first area, the second block BB corresponding to the second area, the third block BC corresponding to the third area, and the fourth block BD corresponding to the fourth area.
  • the first area may be referred to as a first block BA, the second area as a second block BB, the third area as a third block BC, and the fourth area as a fourth block BD.
  • the shape projected onto a virtual plane perpendicular to the thickness direction of the projection mask 25 is a rectangular shape extending in the short direction of the projection mask 25.
  • the first block BA, the second block BB, the third block BC, and the fourth block BD are provided in a line in the longitudinal direction of the projection mask 25 in this order.
  • a plurality of first light transmission patterns 25a are formed on the first block BA and the fourth block BD.
  • FIG. 3 shows three first light transmission patterns 25a formed on the first and fourth blocks BA and BD for easy understanding.
  • the first light transmission pattern 25a has a predetermined first direction in a plane including a first axis extending along the longitudinal direction of the projection mask 25 and a second axis extending along the short direction of the projection mask 25. This embodiment Then, it extends in the second axis direction.
  • the plurality of first light transmission patterns 25 a are formed at intervals in the longitudinal direction of the projection mask 25.
  • the first light transmission pattern 25a of the first block BA is formed at a position corresponding to the non-transmission portion 25c of the fourth block BD, and the first light transmission pattern 25a of the fourth block BD is the first light transmission pattern 25a.
  • One block BA is formed at a position corresponding to the non-transmissive portion 25c.
  • a plurality of second light transmission patterns 25b are formed in the third block BC and the fourth block BD.
  • FIG. 3 shows three second light transmission patterns 25b formed in the second and third blocks BB and BC for easy understanding.
  • the plurality of second light transmission patterns 25b extend in a predetermined second direction, in the present embodiment, in the first axis direction in a plane including the first and second axis lines.
  • the plurality of second light transmission patterns 25b are formed at intervals in the short-side direction of the projection mask 25.
  • the second light transmission pattern 25b of the second block BB is formed at a position corresponding to the non-transmission part 25c of the third block BC, and the second light transmission pattern 25b of the third block BC is The second block BB is formed at a position corresponding to the non-transmissive portion 25c.
  • the first and second light transmission patterns 25a and 25b of the present embodiment are hexagonal when viewed in the thickness direction of the projection mask 25, and both end portions of the first and second light transmission patterns 25a and 25b in the extending directions. Is formed in a tapered shape when viewed in the thickness direction of the projection mask 25.
  • the arrow F of the semiconductor film 37 is used.
  • the semiconductor film 37 is formed by masking areas other than the area shown (hereinafter sometimes referred to as “area F”) and irradiating the area F of the semiconductor film 37 with the laser light 31 emitted from the excimer laser oscillator 21. To induce heat.
  • the first irradiation region in which the semiconductor film 37 is irradiated with the laser light 31 is formed so as to extend in the first direction in which the semiconductor film 37 should be crystallized.
  • the laser beam 31 is applied to the semiconductor film 37 so as to extend in the second direction orthogonal to the first direction in which the semiconductor film 37 is to be crystallized.
  • a second irradiated area is formed. The first and second irradiation areas correspond to the area F.
  • the energy of the laser light 31 irradiated to the semiconductor film 37 is converted into thermal energy, and Heat can be induced in the region F of the semiconductor film 37, and the semiconductor film 37 can be melted in the thickness direction.
  • the semiconductor film 37 in which the region F is melted is solidified by cooling and crystallized. More specifically, in the crystallization step, the first and second irradiation regions are arranged in the order of the first irradiation region, the second irradiation region, the second irradiation region, and the first irradiation region, and the semiconductor film 37 is crystallized.
  • the control unit 29 controls the drive of the stage 28 to move the stage 28 by a predetermined distance dimension in the first moving direction X-direction.
  • the semiconductor element 27 placed on the stage 28 can be moved by a predetermined distance dimension in the first movement direction X.
  • the laser beam 31 transmitted through the plurality of first and second light transmission patterns 25a and 25b formed on the projection mask 25 is irradiated to one surface portion in the thickness direction of the semiconductor film 37 of the semiconductor element 27.
  • This area is an area moved by a predetermined distance dimension in the first movement direction X- direction. The new area partially overlaps the area before the movement.
  • the predetermined distance dimension when the stage 28 is moved in the first movement direction X-direction is the lateral dimension W of the first to fourth blocks BA to BD of the projection mask 25.
  • FIG. 4 is an enlarged plan view showing a part of the state of the crystal 42 formed in the semiconductor film 37.
  • the same reference symbol “X” as in the first movement direction of the stage 28 is attached, and the semiconductor film Reference numeral “Y”, which is the same as the second moving direction of the stage 28, will be given as a reference numeral 37 in the short direction.
  • the semiconductor film 37 that is the irradiation object is crystallized by alternately performing the crystallization process and the movement process in the repetition process. Specifically, in the repeating process, the semiconductor film 37 is irradiated with laser light 31 emitted from the light source 21 and transmitted through the first and second light transmission patterns 25a and 25b of the projection mask 25.
  • the semiconductor film 37 A crystallization process for crystallizing the region irradiated with the laser beam 31, and a distance corresponding to the lateral dimension W of the first to fourth blocks BA to BD in the first moving direction X-direction with the stage 28
  • the movement process of moving only by the distance is performed alternately.
  • the crystallization process is performed four times and the transfer process is performed three times.
  • the semiconductor film 37 is irradiated with the laser light transmitted through the first light transmission pattern 25a and crystallized (hereinafter referred to as ⁇ first crystallization ''). 4 la and the region crystallized by being irradiated with the laser light transmitted through the second light transmission pattern 25b (hereinafter sometimes referred to as the “second crystallized region”) 41 b Is formed adjacent to each other.
  • the first crystallized region 41a is formed in the semiconductor film 37 by being irradiated with the laser light 31 transmitted through the second light transmission pattern 25b formed in the third block BC by the final irradiation of the laser light 31 emitted from the light source 21. It is a crystallization region.
  • the semiconductor film 37 in the region irradiated with the laser light having the shape of the second light transmission pattern 25b, the semiconductor film 37 is directed from both ends in the short direction Y to the short direction Y central portion. As a result, crystal 42 grows step by step.
  • the crystal 42 grown from the short side Y-direction and the crystal 42 grown from the other side of the short direction Y collide with each other to form the final protrusion 43a protruding in one thickness direction of the semiconductor film 37.
  • the final protrusion 43a formed in the first crystallization region 41a by the final irradiation of the laser light is formed in parallel with the longitudinal direction X of the semiconductor film 37.
  • the second crystallized region 41b is formed on the semiconductor film 37 by being irradiated with the laser light 31 transmitted through the first light transmission pattern 25a formed on the fourth block BD by the final irradiation of the laser light 31 emitted from the light source 21. It is a crystallization region.
  • the longitudinal direction X both end forces of the semiconductor film 37 are applied to the longitudinal direction X toward the central portion. Crystal 42 grows step by step.
  • the crystal 42 grown from the longitudinal direction X-direction and the crystal 42 grown from the other longitudinal direction X collide with each other to form a final protrusion 43b protruding in one thickness direction of the semiconductor film 37.
  • the final protrusion 43b formed in the second crystallization region 41b by the final irradiation of the laser light is formed in parallel to the short direction Y of the semiconductor film 37.
  • the final protrusions 43a and 43b are indicated by solid lines in FIG. 4 in order to distinguish from the protrusions 45a and 45b described later.
  • the semiconductor film 37 irradiated with the laser beam before the final irradiation has a crystal 42 grown from the longitudinal direction X-side of the portion irradiated with the laser beam and a crystal grown from the other side of the longitudinal direction X.
  • a protrusion 45 a that protrudes in one thickness direction of the semiconductor film 37 is formed.
  • This protrusion 45a is indicated by a broken line in the first crystallization region 41a of FIG.
  • the semiconductor film 37 irradiated with the laser beam in the stage before the final irradiation is irradiated with the crystal 42 grown from the short direction Y-side of the portion irradiated with the laser light and the short direction Y grown from the other side.
  • FIG. 4 shows a boundary portion 46 between a plurality of crystals grown by the above repeating process.
  • the projections 45a and 45b formed by laser light irradiation and the boundary dimension 46 between the crystals 42 in the thickness direction are the final projections 43a and 43b, the projections 45a and 45b, and the boundary part 46, respectively. It is getting smaller.
  • FIG. 5 is a plan view schematically showing the projection mask 6.
  • the projection mask 6 is provided in the order of the four area forces of the first block B A, the second block BB, the third block BC, and the fourth block BD.
  • a plurality of first light transmission patterns 6a are formed in the second and fourth blocks BB and BD.
  • the plurality of first light transmission patterns 6a includes a first axis extending along the longitudinal direction of the projection mask 6 and a second axis extending along the short direction of the projection mask 6, in a predetermined direction, Specifically, it extends in the first axis direction.
  • the plurality of first light transmission patterns 6 a are formed at intervals in the longitudinal direction of the projection mask 6.
  • the first light transmission pattern 6a of the second block BB is formed at a position corresponding to the non-transmission portion 6c of the fourth block BD, and the first light transmission pattern 6a of the fourth block BD is non-transmission of the second block BB. It is formed at a position corresponding to the transmission part 6c.
  • a plurality of second light transmission patterns 6b are formed on the first and third blocks BA and BC. Yes.
  • the plurality of second light transmission patterns 6b extend in a predetermined direction, specifically in the second axis direction, in a plane including the first axis and the second axis.
  • the plurality of second light transmission patterns 6 b are formed at intervals in the short direction of the projection mask 6.
  • the second light transmission pattern 6b of the first block BA is formed at a position corresponding to the non-transmission part 6c of the third block BC, and the second light transmission pattern 6b of the third block BC is not formed of the first block BA. It is formed at a position corresponding to the transmission part 6c.
  • FIG. 6A to 6D are diagrams showing the growth process of the crystal 42 stepwise when the semiconductor film 17 is crystallized using the projection mask 6 shown in FIG.
  • FIG. 6A is a diagram showing a state of the crystal 42 formed by the first crystallization process.
  • FIG. 6B is a diagram showing a state of the crystal 42 formed by the second crystallization step after the stage 9 is moved in a predetermined direction by the first movement step.
  • FIG. 6C is a diagram showing a state of the crystal 42 formed by the third crystallization process after the stage 9 has been moved in a predetermined direction by the second movement process.
  • FIG. 6D is a diagram showing a state of the crystal 42 formed by the fourth crystallization step after the stage 9 is moved in the predetermined direction by the third movement step.
  • FIG. 7 is an enlarged plan view of section II of FIG. 6D.
  • a laser beam 12 emitted from the light source 2 and transmitted through the second light transmission pattern 6b of the first block BA of the projection mask 6 is placed on the stage 9
  • the semiconductor film 17 of the element 8 is irradiated
  • the region of the semiconductor film 17 irradiated with the laser light 12 is crystallized to form a crystal 42 as shown in FIG. 6A.
  • the stage 9 is moved in one predetermined direction by a distance dimension corresponding to the short direction dimension of the first to fourth blocks BA to BD of the projection mask 6.
  • the first film of the second block BB of the second block BB emitted from the light source 2 is emitted from the light source 2 to the semiconductor film 17 in which the crystal 42 is formed by the first crystallization process.
  • the laser beam 12 that has passed through the light transmission pattern 6a is irradiated.
  • the region irradiated with 12 is crystallized, and as shown in FIG. 6B, a new crystal 42 is formed so as to overlap with a part of the crystal 42 formed by the first crystallization process.
  • the stage 9 is moved in one predetermined direction by a distance dimension corresponding to the short-side dimension of the first to fourth blocks BA to BD of the projection mask 6.
  • the light is emitted from the light source 2 to the semiconductor film 17 on which the crystals 42 are formed in the first and second crystallization processes.
  • the laser beam 12 that has passed through the second light transmission pattern 6b of the block BC is irradiated.
  • the region irradiated with the laser beam 12 is crystallized, as shown in FIG. 6C.
  • a new crystal 42 is formed so as to overlap with a part of the crystal 42 formed by the first and second crystallization steps. Then, in the third moving step, the stage 9 is moved in one predetermined direction by a distance dimension corresponding to the short dimension of the first to fourth blocks BA to BD of the projection mask 6.
  • the light emitted from the light source 2 to the semiconductor film 17 on which the crystal 42 has been formed by the first to third crystallization processes Irradiate the laser beam 12 that has passed through the first light transmission pattern 6a of the 4-block BD.
  • the region irradiated with the laser beam 12 is crystallized as shown in FIG. 6D.
  • a new crystal 42 is formed so as to overlap with a part of the crystal 42 formed by the first to third crystallization steps.
  • the first optical film is formed on the semiconductor film 17 as shown in FIG.
  • the first crystallization region 41a crystallized by being irradiated with the laser beam 12 transmitted through the transmission pattern 6a
  • the second crystallization region crystallized by being irradiated with the laser beam 12 transmitted through the second light transmission pattern 6b
  • a crystallization region 41 containing 4 lbs is formed.
  • the area of the region 41a and the area of the second crystallization region 41b included in the surrounding region 47 The ratio is 25:75. Therefore, the area of the first crystallization region 41a is not equal to the area of the second crystallization region 4 lb. Therefore, when the semiconductor film 17 is crystallized using the projection mask 6 as shown in FIG. 5, the semiconductor film 17 cannot be crystallized uniformly.
  • FIG. 8 is a plan view schematically showing the projection mask 6A.
  • a plurality of second light transmission patterns 6b are formed on the first and second blocks BA, BB of the projection mask 6A shown in FIG.
  • the plurality of second light transmission patterns 6b extend in a predetermined first direction, specifically in a second axis direction, in a plane including the first axis and the second axis.
  • the plurality of second light transmission patterns 6b are formed at intervals in the short direction of the projection mask 6A.
  • the second light transmission pattern 6b of the first block BA is formed at a position corresponding to the non-transmission portion 6c of the second block BB, and the second light transmission pattern 6b of the second block BB is not a non-transmission of the first block BA. It is formed at a position corresponding to the transmission part 6c.
  • a plurality of first light transmission patterns 6a are formed in the third and fourth blocks BC and BD of the projection mask 6A shown in FIG.
  • the plurality of first light transmission patterns 6a extend in a predetermined second direction, specifically in the first axis direction, within a plane including the first axis and the second axis.
  • the plurality of first light transmission patterns 6a are formed at intervals in the longitudinal direction of the projection mask 6A.
  • the first light transmission pattern 6a of the third block BC is formed at a position corresponding to the non-transmission part 6c of the fourth block BD, and the first light transmission pattern 6a of the fourth block BD is not the non-transmission part of the third block BC. It is formed at a position corresponding to the transmission part 6c.
  • FIG. 9 is a plan view showing a state of the crystal 42 formed in the semiconductor film 17 by repeating the process using the projection mask 6A shown in FIG.
  • the second light transmission pattern 6b is transmitted to the semiconductor film 17 as shown in FIG.
  • a second crystallized region 41b crystallized by irradiation with laser light is formed.
  • the area of the first crystallization region 41a included in the surrounding region 47 surrounded by the plurality of final protrusions 43b and the protrusions 45b formed in the semiconductor film 17, and the second crystallization region 41b included in the surrounding region 47 The ratio to the area is 0: 100. Therefore, the area of the first crystallization region 4 la is not equal to the area of the second crystallization region 41b.
  • Figure 8 When the semiconductor film 17 is crystallized using such a projection mask 6A, the semiconductor film 17 cannot be crystallized uniformly. Therefore, in the present invention, the semiconductor film 37 is uniformly crystallized by performing the crystallization process and the movement process using the projection mask 25 described below.
  • FIG. 10 is a plan view schematically showing the projection mask 25.
  • a plurality of first light transmission patterns 25a are formed in the first and fourth blocks BA and BD, and a plurality of second light transmission patterns are formed in the second and third blocks BB and BC. 25b is formed.
  • the portions other than the first and second light transmission patterns 25a and 25b of the projection mask 25 are non-transmission portions 25c that do not transmit light.
  • FIG. 10 shows the first and second light transmission patterns 25a and 25b in a rectangular shape for easy understanding.
  • FIG. 11A to FIG. 11D are diagrams showing the growth process of the crystal 42 stepwise when the semiconductor film 37 is crystallized using the projection mask 25 shown in FIG.
  • FIG. 11A is a diagram showing a state of the crystal 42 formed by the first crystallization process.
  • FIG. 11B is a diagram showing a state of the crystal 42 formed by the second crystallization process after the stage 28 has been moved in the first movement direction X determined in advance by the first movement process.
  • FIG. 11C is a diagram showing a state of the crystal 42 formed by the third crystallization process after the stage 28 is moved in the first movement direction X by the second movement process.
  • FIG. 11D is a diagram showing a state of the crystal 42 formed by the fourth crystallization step after the stage 28 is moved in the first movement direction X by the third movement step.
  • Figure 12 is an enlarged plan view of section IV in Figure 11D.
  • a laser beam 31 emitted from the light source 21 and transmitted through the first light transmission pattern 25a of the first block BA of the projection mask 25 is a semiconductor element 27 placed on the stage 28.
  • the semiconductor film 37 is irradiated, the region of the semiconductor film 37 irradiated with the laser light 31 is crystallized to form a crystal 42 as shown in FIG. 11A.
  • the stage 28 is moved in a predetermined first movement direction X-direction.
  • the projection mask 25 is moved by a distance dimension corresponding to the short dimension of the first to fourth blocks BA to BD.
  • the second light source 21 emits the second block BB of the second block BB of the projection mask 25 to the semiconductor film 37 in which the crystal 42 is formed by the first crystallization process.
  • the laser beam 31 that has passed through the light transmission pattern 25b is irradiated.
  • the region irradiated with the laser light 31 is crystallized, and as shown in FIG. A new crystal 42 is formed so as to overlap with a part of the crystal 42 formed by the first crystallization process.
  • the stage 28 is moved in the first movement direction X by a distance corresponding to the short dimension of the first to fourth blocks BA to BD of the projection mask 25.
  • the light is emitted from the light source 21 to the semiconductor film 37 on which the crystals 42 are formed in the first and second crystallization processes, and
  • the laser beam 31 that has passed through the second light transmission pattern 25b of the 3-block BC is irradiated.
  • the region irradiated with the laser beam 31 is crystallized, as shown in FIG. 11C.
  • a new crystal 42 is formed so as to overlap with a part of the crystal 42 formed by the first and second crystallization steps.
  • the stage 28 is moved in the first movement direction X-direction by a distance dimension corresponding to the short-side dimension of the first to fourth blocks BA to BD of the projection mask 25.
  • the light source 21 emits the semiconductor film 37 on which the crystal 42 has been formed by the first to third crystallization processes. Irradiate the laser beam 31 that has passed through the first light transmission pattern 25a of the 4-block BD. Accordingly, in the semiconductor film 37 in which the crystal 42 is formed by the first to third crystallization steps, the region irradiated with the laser beam 31 is crystallized, as shown in FIG. 11D. A new crystal 42 is formed so as to overlap with a part of the crystal 42 formed by the first to third crystallization steps.
  • the semiconductor film 37 is irradiated with the laser beam 31 that has passed through the first light transmission pattern 25a and crystallized, and the first crystallization region 41a is crystallized.
  • a crystallization region 41 including a second crystallization region 41b crystallized by irradiation with the laser beam 31 transmitted through the second light transmission pattern 25b is formed.
  • the force in the lateral direction Y both ends of the semiconductor film 37 is also directed toward the central portion in the lateral direction Y.
  • Crystal 42 grows step by step. Then, the crystal 42 grown from the short-side Y-direction side and the crystal 42 grown from the other side of the short-side direction Y collide to form a final protrusion 43a that protrudes in one thickness direction of the semiconductor film 37.
  • the final protrusion 43 a formed in the first crystallized region 41 a by the final irradiation with the laser light is formed in parallel with the longitudinal direction X of the semiconductor film 37.
  • the second crystallized region 41b stepwise in a direction from the both ends of the semiconductor film 37 in the longitudinal direction X to the longitudinal direction X in the region irradiated with the laser light having the shape of the first light transmission pattern 25a.
  • Crystal 42 grows on the surface. Then, the crystal 42 grown from the longitudinal direction X-direction collides with the crystal 42 grown from the other longitudinal direction X to form a final protrusion 43b protruding in one thickness direction of the semiconductor film 37.
  • the final protrusion 43b formed in the second crystallization region 41b by the final irradiation of the laser light is formed in parallel to the short direction Y of the semiconductor film 37.
  • the final protrusions 43a and 43b are shown in FIG. 12 as solid lines! /, To distinguish them from the protrusions 45a and 45b described later.
  • the semiconductor film 37 irradiated with the laser beam before the final irradiation has a crystal 42 grown from the longitudinal direction X-side of the portion irradiated with the laser beam and a crystal grown from the other side of the longitudinal direction X.
  • a protrusion 45 a that protrudes in one thickness direction of the semiconductor film 37 is formed.
  • This protrusion 45a is indicated by a broken line in the first crystallization region 41a of FIG.
  • the semiconductor film 37 irradiated with the laser beam in the stage before the final irradiation is irradiated with the crystal 42 grown from the short direction Y-side of the portion irradiated with the laser light and the short direction Y grown from the other side.
  • FIG. 12 also shows a boundary portion 46 between a plurality of crystals grown by the above repeating process. Yes.
  • the final protrusions 43a and 43b formed by the final irradiation of the laser light the protrusions 45a and 45b formed by the laser light irradiation before the final irradiation, and the boundary portion 46 between the crystals 42
  • the dimension in the thickness direction of each of them decreases in the order of the final projecting portions 43a and 43b, the projecting portions 45a and 45b, and the boundary portion 46, respectively.
  • the plurality of final protrusions 43a, 43b and protrusions 45a, 45b formed on the semiconductor film 37 are included in the surrounding region 47 and the area of the first crystallization region 41a included in the surrounding region 47 surrounded by the surrounding region 47.
  • the ratio with the area of the second crystallization region 41b is 50:50 as shown in FIG. In other words, the area of the first crystallization region 41a is equal to the area of the second crystallization region 41b. Therefore, the semiconductor film 37 can be uniformly crystallized by repeating the process using the projection mask 25 as shown in FIG.
  • FIG. 13 is a plan view schematically showing the projection mask 25A.
  • the projection mask 25A Similar to the projection mask 25, the projection mask 25A has a rectangular shape projected onto a virtual plane perpendicular to the thickness direction, and includes the first block BA, the second block BB, the third block BC, and the fourth block BD.
  • the shape projected on a virtual plane perpendicular to the thickness direction of the projection mask 25A is a rectangular shape extending in the short direction of the projection mask 25A.
  • the first block BA, the second block BB, the third block BC, and the fourth block BD are provided in a line in the longitudinal direction of the projection mask 25 in this order.
  • a plurality of first light transmission patterns 25a are formed in the second and third blocks BB and BC of the projection mask 25A.
  • the plurality of first light transmission patterns 25a extend in a predetermined second direction, specifically in the first axis direction, in a plane including the first axis and the second axis.
  • the plurality of first light transmission patterns 25a are formed at intervals in the longitudinal direction of the projection mask 25A.
  • the first light transmission pattern 25a of the second block BB is formed at a position corresponding to the non-transmission portion 25c of the third block BC, and the first light transmission pattern 25a of the third block BC is non-transmission of the second block BB. It is formed at a position corresponding to the transmission part 25c.
  • a plurality of second light transmission patterns 25b are formed on the first and fourth blocks BA and BD of the projection mask 25A.
  • the plurality of second light transmission patterns 25b extend in a predetermined first direction, specifically the second axis direction, in a plane including the first axis and the second axis. ing.
  • the plurality of second light transmission patterns 25b are formed at intervals in the short direction of the projection mask 25A.
  • the second light transmission pattern 25b of the first block BA is formed at a position corresponding to the non-transmission portion 25c of the fourth block BD
  • the second light transmission pattern 25b of the fourth block BD is non-transmission of the first block BA. It is formed at a position corresponding to the portion 25c.
  • the first and second light transmission patterns 25a and 25b are shown in a rectangular shape for easy understanding.
  • FIG. 14 is a plan view showing a state of the crystal 42 formed on the semiconductor film 37 by performing the repetition process using the projection mask 25A shown in FIG.
  • the laser light transmitted through the first light transmission pattern 25a is applied to the semiconductor film 37 as shown in FIG.
  • a crystallization region 41 is formed that includes a first crystallization region 41a that has been irradiated and crystallized, and a second crystallization region 41b that has been crystallized by being irradiated with laser light that has passed through the second light transmission pattern 25b. Is done.
  • the longitudinal direction X both ends force of the semiconductor film 37 in the region irradiated with the laser light having the shape of the first light transmission pattern 25a is directed to the longitudinal direction X central portion.
  • Crystal 42 grows step by step. Then, the crystal 42 grown from the longitudinal direction X-side and the crystal 42 grown from the other side of the longitudinal direction X collide with each other, so that a final protrusion 43a protruding in one thickness direction of the semiconductor film 37 is formed.
  • the final protrusion 43 a formed in the first crystallization region 41 a by the final irradiation of the laser light is formed in parallel with the short direction Y of the semiconductor film 37.
  • the force in both the lateral direction Y ends of the semiconductor film 37 is also directed toward the central portion in the lateral direction Y.
  • Crystal 42 grows step by step. Then, the crystal 42 grown from the short-side Y-direction side and the crystal 42 grown from the other side of the short-side direction Y collide to form a final protrusion 43b protruding in one thickness direction of the semiconductor film 37.
  • the final protrusion 43 b formed in the second crystallization region 41 b by the final irradiation with the laser light is formed in parallel with the longitudinal direction X of the semiconductor film 37.
  • the final protrusions 43a and 43b are indicated by a solid line in FIG. 14 to distinguish them from protrusions 45a and 45b, which will be described later.
  • the semiconductor film 37 that has been irradiated with the laser beam before the final irradiation is irradiated with the laser beam.
  • Short direction Y-side force of the projected part The grown crystal 42 collides with the short direction Y other side force-grown crystal 42, and a protrusion 45a protruding in one thickness direction of the semiconductor film 37 is formed. It is formed.
  • This protrusion 45a is indicated by a broken line in the first crystallization region 41a of FIG.
  • the semiconductor film 37 irradiated with the laser beam before the last irradiation was grown from the crystal 42 grown from the longitudinal direction X-side of the portion irradiated with the laser beam and from the other side of the longitudinal direction X.
  • FIG. 14 shows a boundary portion 46 between a plurality of crystals grown by the above repeating process.
  • the final protrusions 43a and 43b formed by the final irradiation of the laser light the protrusions 45a and 45b formed by the laser light irradiation before the final irradiation, and the boundary portion 46 between the crystals 42
  • the dimension in the thickness direction of each of them decreases in the order of the final projecting portions 43a and 43b, the projecting portions 45a and 45b, and the boundary portion 46, respectively.
  • the plurality of final protrusions 43a, 43b and protrusions 45a, 45b formed on the semiconductor film 37 are included in the surrounding region 47 and the area of the first crystallization region 41a included in the surrounding region 47 surrounded by the surrounding region 47.
  • the ratio with the area of the second crystallization region 41b is 50:50 as shown in FIG. In other words, the area of the first crystallization region 41a is equal to the area of the second crystallization region 41b. Therefore, the semiconductor film 37 can be uniformly crystallized by repeating the process using the projection mask 25A as shown in FIG.
  • FIG. 15 is a plan view showing the crystallized semiconductor film 37 and the thin film transistor element 50 formed in the semiconductor film 37.
  • FIG. 16 is a plan view showing the crystallized semiconductor film 37 and the thin film transistor element 50 formed in the semiconductor film 37. 15 and 16 show a part of the crystallized region 41 formed in the semiconductor film 37 for easy understanding.
  • the reference numeral “X” that is the same as the first moving direction of the stage 28 is attached as the reference numeral in the longitudinal direction of the semiconductor film 37 of the semiconductor element 27 placed on the stage 28, and the semiconductor film
  • the reference numeral “Y”, which is the same as the second moving direction of the stage 28, will be described as a reference numeral 37 in the short direction.
  • the semiconductor film 37 has a crystallization region 41 that is square and includes the first crystallization region 41a and the second crystallization region 41b. They are formed side by side in the longitudinal direction X and the lateral direction Y of 37 respectively.
  • FIG. 15 shows the longitudinal direction X-direction force of the semiconductor film 37 in which the crystallized region 41 is formed by repeating the process using the projection mask 25 shown in FIG. 10 and the projection mask 25A shown in FIG.
  • the TFT elements 50 are arranged so that the drain D, the gate G, and the source S are arranged in this order from the short direction Y-direction of the semiconductor film 37 in which the crystallized region 41 is formed to the other side.
  • the formed semiconductor film 37 is shown.
  • the TFT element 50 formed in the semiconductor film 37 is arranged so that the source S ⁇ gate G and the drain D are arranged in this order as the longitudinal direction X-direction force of the semiconductor film 37 is also directed to the other side.
  • the formation direction of the element 50 is referred to as a second formation direction.
  • the first to fourth blocks in which the first or second light transmission patterns 25a and 25b are formed BA to BD force are arranged side by side as shown in FIGS.
  • the projection masks 25 and 25A are irradiated with laser light 31, and the laser light 31 transmitted through the first and second light transmission patterns 25a and 25b formed on the projection masks 25 and 25A is applied to the semiconductor film 37. Irradiate.
  • the area of the first crystallization region 41a crystallized by being irradiated with the laser beam 31 transmitted through the first light transmission pattern 25a, and the second The ratio with the area of the second crystallization region 41b crystallized by irradiating the laser beam 31 transmitted through the light transmission pattern 25b can be made equal.
  • the semiconductor film 37 can be uniformly crystallized.
  • the stage 28 on which the semiconductor element 27 is placed is moved relative to the light source 21 that emits the laser beam 31 to thereby move the semiconductor film that is the irradiation object.
  • 37 desired regions can be irradiated with laser light 31 and desired It can be crystallized so as to have a shape.
  • the first and second directions perpendicular to each other, in which the amorphous material should be crystallized are specifically formed on the semiconductor film 37 of the layer having the amorphous material force.
  • the semiconductor film 37 is irradiated with a laser beam 31 in the longitudinal and short directions to crystallize the semiconductor film 37, and the semiconductor film 37 is applied to the light source 21 that emits the laser beam 31.
  • the present embodiment for example, when a plurality of TFT elements 50 are formed in the semiconductor film 37 uniformly crystallized as described above, specifically, a layer made of an amorphous material cover, Even if the formation direction of the TFT element 50 is different such that the formation direction of one TFT element 50 with respect to the conductor film 37 is the first formation direction and the formation direction of the other TFT element 50 is the second formation direction.
  • the ratio of the area of the first crystallization region 41a and the area of the second crystallization region 41b included in the channel portion of each TFT element 50 formed in the above can be made equal.
  • the electrical characteristics, specifically the switching characteristics, of the plurality of TFT elements 50 formed in the semiconductor film 37 can be made the same. In other words, the switching characteristics of the plurality of TFT elements 50 can be made uniform.
  • the switching characteristics of the TFT element 50 can be made uniform regardless of the direction in which the TFT element 50 is formed on the semiconductor film 37, the degree of freedom in designing a display device using the TFT element 50 can be increased. it can.
  • the first and second light transmission patterns 25a and 25b are formed such that both ends in the extending direction are tapered as viewed in the thickness direction of the projection masks 25 and 25A. Accordingly, the semiconductor film is formed in a tapered shape such as a rectangular shape. Unlike the light transmission pattern, the semiconductor film 37 irradiated with the laser light in the shape of the first and second light transmission patterns 25a and 25b is provided. In the irradiated region, the protrusion 41 formed by the collision of the crystals that also grow in both ends in the extending direction and the direction perpendicular to the thickness direction of the semiconductor film 37 reaches the tapered portions at both ends in the extending direction. It is formed.
  • the semiconductor film 37 can be crystallized more uniformly as compared with the case where both end portions in the extending direction of the light transmission pattern are not tapered. Therefore semiconductor film
  • each TFT formed in each forming direction even when the forming direction of one TFT element 50 with respect to the semiconductor film 37 is different from the forming direction of the other TFT element 50.
  • the ratio of the area of the first crystallization region 41a included in the channel portion of the element 50 to the area of the second crystallization region 41b can be made equal.
  • the electrical characteristics, more specifically the switching characteristics, of the plurality of TFT elements 50 formed on the semiconductor film 37 can be reliably made the same. In other words, the switching characteristics of the plurality of TFT elements 50 can be made uniform uniformly.
  • the projection mask 25 when the semiconductor film 37 is crystallized, the projection mask 25, while moving the semiconductor film 37 by the lateral dimension W of each area BA to BD of the projection masks 25, 25A. Since the semiconductor film 37 is irradiated with the laser light that has passed through the first and second light transmission patterns 25a and 25b formed on 25A, the laser light can be superimposed and irradiated on the same region of the semiconductor film 37. it can. Therefore, for example, a crystal grain having a larger grain size can be formed compared to the case where the semiconductor film 37 is crystallized using a projection mask in which only a light transmission pattern extending in one direction is formed. Mobility can be relatively high. Accordingly, for example, when the TFT element 50 is formed in the semiconductor film 37, the switching characteristics of the TFT element 50 can be further improved.
  • the laser light transmitted through the first and second light transmission patterns 25a and 25b can be applied to the same region of the semiconductor film 37, the laser light can be irradiated with an abnormality in the light source 21, such as a laser. Even if a defect such as laser light not being superimposed on the same region in one of the multiple crystallization processes due to an optical oscillation abnormality occurs, the semiconductor film 37 Can be crystallized almost uniformly. Accordingly, for example, when the TFT element 50 is formed in the semiconductor film 37, it is possible to prevent the switching characteristics of the TFT element 50 from being extremely deteriorated.
  • the laser processing apparatus of the present embodiment is similar in configuration to the laser processing apparatus 20 of the first embodiment described above, and only includes another projection mask 25B instead of the projection mask 25. Therefore, the projection mask 25B will be described, and the same components will be denoted by the same reference numerals and description thereof will be omitted.
  • the laser carriage device is used to The step of crystallizing the semiconductor film 37 of the semiconductor element 27 placed on the die 28 is the same as that in the first embodiment described above, and a description thereof will be omitted.
  • the laser processing method according to the second embodiment of the present invention is performed by the laser processing apparatus according to the present embodiment.
  • FIG. 17 is a plan view schematically showing the projection mask 25B.
  • the projection mask 25B has a rectangular shape projected onto a virtual plane perpendicular to the thickness direction.
  • m (m is an even number equal to or greater than 2) first light transmission pattern regions and the first light transmission pattern 25a extending in a predetermined first direction are formed. It includes n (n is an even number of 2 or more) second light transmission pattern regions in which second light transmission patterns 25b extending in a second direction orthogonal to the direction are formed.
  • the projection mask 25B of the present embodiment is arranged in the order of mZ2 first light transmission pattern regions, n second light transmission pattern regions, and mZ2 first light transmission pattern regions.
  • the predetermined first direction is a second axis in a plane including a first axis extending along the longitudinal direction of the projection mask 25B and a second axis extending along the short direction of the projection mask 25B. The direction.
  • FIG. 17 shows a projection mask 25B when the variables m and n are both “2” for easy understanding.
  • FIG. 17 includes two first light transmission pattern regions and two second light transmission pattern regions, one first light transmission pattern region, and two second light transmission patterns.
  • a projection mask 25B is shown, which is arranged in the order of the pattern region and one first light transmission pattern region. More specifically, the projection mask 25B includes the first block BA corresponding to the first light transmission pattern region, the second and third blocks BB and BC corresponding to the second light transmission pattern region, and the first light transmission pattern region. Is divided into 4th block BDs corresponding to. In the first to fourth blocks BA to BD, the shape projected onto a virtual plane perpendicular to the thickness direction of the projection mask 25B is a rectangular shape extending in the short direction of the projection mask 25B.
  • the first block BA includes a first pattern portion P1 and a second pattern portion P2 where a plurality of first light transmission patterns 25a are formed.
  • the fourth block BD includes a seventh pattern portion P7 and an eighth pattern portion P8 in which a plurality of first light transmission patterns 25a are formed.
  • the first, second, seventh and eighth pattern portions PI, P2, P7 and P8 are perpendicular to the thickness direction of the projection mask 25B.
  • the shape projected on the virtual plane is a rectangular shape extending in the short direction of the projection mask 25B.
  • the plurality of first light transmission patterns 25a are formed at intervals in the longitudinal direction of the projection mask 25B.
  • the portions other than the first light transmission pattern 25a of the first and fourth blocks BA and BD are non-transmission portions 25c that do not transmit light.
  • the first, second, seventh, and eighth pattern portions PI, P2, P7, and P8 have non-transmissive portions 25c, which are the first, second, seventh, and eighth pattern portions PI, P2, and P2, respectively.
  • P7 and P8 are overlapped, they are provided at positions that do not overlap each other.
  • the first light transmission pattern 25a of the first, second, seventh, and eighth pattern portions PI, P2, P7, and P8 is formed in a region other than the non-transmissive portion 25c provided as described above. .
  • the second block BB includes a third pattern portion P3 and a fourth pattern portion P4 where a plurality of second light transmission patterns 25b are formed.
  • the third block BC includes a fifth pattern portion P5 and a sixth pattern portion P6 in which a plurality of second light transmission patterns 25b are formed.
  • the third, fourth, fifth, and sixth pattern parts P3, P4, P5, and P6 are rectangular shapes that are projected in a virtual plane perpendicular to the thickness direction of the projection mask 25B and that extend in the short direction of the projection mask 25B. It is.
  • the plurality of second light transmission patterns 25b are formed at intervals in the short direction of the projection mask 25B.
  • the portions other than the second light transmission pattern 25b of the second and third blocks BB and BC are non-transmission portions 25c that do not transmit light.
  • the non-transmissive portions 25c of the third, fourth, fifth, and sixth pattern portions P3, P4, P5, and P6 are the third, fourth, fifth, and sixth pattern portions P3, P4, When P5 and P6 are overlapped, they are placed in positions that do not overlap each other.
  • the second light transmission pattern 25b of the third, fourth, fifth, and sixth pattern portions P3, P4, P5, and P6 is formed in a region other than the non-transmissive portion 25c provided as described above. .
  • the first and second light transmission patterns 25a and 25b of the present embodiment are hexagonal when viewed in the thickness direction of the projection mask 25B, and the first and second light transmission patterns Both end portions in the extending direction of the patterns 25a and 25b are formed in a tapered shape when viewed in the thickness direction of the projection mask 25B.
  • the first and second light transmission patterns 25a and 25b are formed in a rectangular shape for easy understanding. Show.
  • FIG. 18 is a plan view showing a state of the crystallized region 41 formed in the semiconductor film 37 by performing the repetition process using the projection mask 25B shown in FIG.
  • the semiconductor film 37 is crystallized by repeating the process using the projection mask 25B shown in FIG. Section VI in FIG. 18 is a crystallization region 41 formed by performing eight crystallization steps and seven transfer steps in a repeated process.
  • the same reference symbol “X” as that of the first movement direction of the stage 28 is given as the reference symbol in the longitudinal direction of the semiconductor film 37 of the semiconductor element 27 placed on the stage 28, and the semiconductor film
  • the reference numeral “Y”, which is the same as the second moving direction of the stage 28, will be given as a reference numeral 37 in the short direction.
  • the control unit 29 drives and controls the stage 28, thereby moving the stage 28 by a predetermined distance dimension in the first moving direction X-direction.
  • the semiconductor element 27 placed on the stage 28 can be moved in the first movement direction X-direction by a predetermined distance dimension.
  • the laser beam 31 transmitted through the plurality of first and second light transmission patterns 25a and 25b formed on the projection mask 25 ⁇ ⁇ ⁇ is irradiated to one surface in the thickness direction of the semiconductor film 37 of the semiconductor element 27.
  • the new area is the area moved by a predetermined distance in the first movement direction X- direction. The new area partially overlaps the area before the movement.
  • the predetermined distance dimension when the stage 28 is moved in the first movement direction X-direction is the lateral dimension WZ2 of the first to eighth pattern portions P1 to P8 of the projection mask 25B.
  • the semiconductor film 37 is irradiated with the laser light 31 transmitted through the first light transmission pattern 25a and crystallized by the first crystallization region 41a and the second light transmission pattern.
  • a crystallization region 41 including the second crystallization region 41b crystallized by irradiation with the laser beam 31 transmitted through 25b is formed side by side in the longitudinal direction X or the lateral direction Y of the semiconductor film 37.
  • the first crystallization region 41a and the second crystallization region 4 lb formed in the section VI by performing the crystallization process 8 times and the transfer process 7 times are the length of the semiconductor film 37. Alternating in direction X.
  • the areas of the first crystallization region 41a and the second crystallization region 41b formed in the section VI are equal. Therefore, Figure 17
  • the semiconductor film 37 can be uniformly crystallized by repeating the steps using the projection mask 25B shown in FIG.
  • the first light transmission pattern 25a is formed, and m (m is an even number of 2 or more) first light transmission pattern regions and N (where n is an even number of 2 or more) second light transmission pattern regions on which the second light transmission pattern 25b is formed, mZ2 first light transmission pattern regions, n second light transmission patterns
  • a projection mask is used in which a pattern area and mZ2 first light transmission pattern areas are arranged in this order.
  • the variables m and n are both “2”, as shown in FIG. 17, two first light transmission pattern regions and two second light transmission pattern regions are one first light transmission pattern.
  • a pattern region, two second light transmission pattern regions, and one first light transmission pattern region are arranged in this order.
  • the projection mask 25B on which the plurality of first and second light transmission pattern regions are arranged is irradiated with the laser light 31, and the first and second light patterns formed in the light transmission pattern regions of the projection mask 25B.
  • the semiconductor film 37 is irradiated with laser light 31 that has passed through the light transmission patterns 25a and 25b. Specifically, the semiconductor film 37 is irradiated with the laser beam 31 while moving the stage 28 by the short dimension WZ2 of the first to eighth pattern portions P1 to P8 of each light transmission pattern region.
  • the ratio of the area of the first crystallization region 41a and the area of the second crystallization region 41b can be made equal.
  • the semiconductor film 37 can be uniformly crystallized.
  • the direction in which one TFT element 50 is formed with respect to the semiconductor film 37 even when the formation direction of the TFT element 50 with respect to the semiconductor film 37 is different, such as the first formation direction and the formation direction of the other TFT element 50 are the second formation direction, each TFT element 50 formed in each formation direction.
  • the ratio of the area of the first crystallization region 41a included in the channel portion to the area of the second crystallization region 41b can be made equal.
  • the electrical characteristics of the plurality of TFT elements 50 formed in the semiconductor film 37 can be made the same.
  • the switching characteristics of the plurality of TFT elements 50 can be made uniform.
  • the degree of freedom in designing a display device using the TFT element 50 can be increased. it can.
  • the semiconductor film 37 is made more uniform.
  • crystal grains having a relatively large grain size can be formed.
  • the electrical characteristics of each TFT element 50 are The characteristics, specifically the switching characteristics, can be significantly improved.
  • the laser processing apparatus of the present embodiment is similar in configuration to the laser processing apparatus 20 of the first embodiment described above, and only includes another projection mask 25C instead of the projection mask 25. Therefore, the projection mask 25C will be described, and the same components will be denoted by the same reference numerals and description thereof will be omitted. Since the projection mask 25C has a configuration similar to that of the projection mask 25B of the second embodiment, the same components are denoted by the same reference numerals and the description thereof is omitted.
  • the process of crystallizing the semiconductor film 37 of the semiconductor element 27 placed on the stage 28 by the laser carriage apparatus is the same as that in the first embodiment described above, and a description thereof will be omitted.
  • the laser processing method according to the third embodiment of the present invention is performed by the laser cache device according to the present embodiment.
  • FIG. 19 is a plan view schematically showing the projection mask 25C.
  • the projection mask 25C has a rectangular shape projected onto a virtual plane perpendicular to its thickness direction.
  • the projection mask 25C includes m (m is an even number of 2 or more) first light transmission pattern regions in which a first light transmission pattern 25a extending in a predetermined first direction is formed, and a second direction orthogonal to the first direction The second light transmission pattern 25b extending in the region is formed, and n (n is an even number of 2 or more) second light transmission pattern regions.
  • the projection mask 25C of the present embodiment is arranged in the order of nZ2 second light transmission pattern regions, m first light transmission pattern regions, and nZ2 second light transmission pattern regions.
  • the predetermined first direction is the projection mass.
  • the second axial direction in a plane including the first axis extending along the longitudinal direction of the projection 25C and the second axis extending along the lateral direction of the projection mask 25C.
  • FIG. 19 shows a projection mask 25C when the variables m and n are both “2” for easy understanding.
  • FIG. 19 includes two first light transmission pattern regions and two second light transmission pattern regions, one second light transmission pattern region, and two first light transmission patterns.
  • a projection mask 25C is shown that is arranged in the order of the pattern region and one second light transmission pattern region. More specifically, the projection mask 25C includes the first block BA corresponding to the second light transmission pattern region, the second and third blocks BB and BC corresponding to the first light transmission pattern region, and the second light transmission pattern region. Is divided into 4th block BDs corresponding to. In the first to fourth blocks BA to BD, the shape projected on a virtual plane perpendicular to the thickness direction of the projection mask 25C is a rectangular shape extending in the short direction of the projection mask 25C.
  • the first block BA includes a first pattern portion P1 and a second pattern portion P2 where a plurality of second light transmission patterns 25b are formed.
  • the fourth block BD includes a seventh pattern portion P7 and an eighth pattern portion P8 in which a plurality of second light transmission patterns 25b are formed.
  • the first, second, seventh, and eighth pattern portions PI, P2, P7, and P8 are rectangular shapes that are projected on a virtual plane perpendicular to the thickness direction of the projection mask 25C and that extend in the short direction of the projection mask 25C. It is.
  • the plurality of second light transmission patterns 25b are formed at intervals in the short direction of the projection mask 25C.
  • the portions other than the second light transmission pattern 25b of the first and fourth blocks BA and BD are non-transmission portions 25c that do not transmit light.
  • the first, second, seventh, and eighth pattern portions PI, P2, P7, and P8 have non-transmissive portions 25c, which are the first, second, seventh, and eighth pattern portions PI, P2, and P2, respectively.
  • P7 and P8 are overlapped, they are provided at positions that do not overlap each other.
  • the second light transmission pattern 25b of the first, second, seventh, and eighth pattern portions PI, P2, P7, and P8 is formed in a region other than the non-transmissive portion 25c provided as described above. .
  • the second block BB includes a third pattern portion P3 and a fourth pattern portion P4 in which a plurality of first light transmission patterns 25a are formed.
  • the third block BC includes a fifth pattern portion P5 and a sixth pattern portion P6 in which a plurality of first light transmission patterns 25a are formed. 3rd and 4th
  • the fifth and sixth pattern portions ⁇ 3, ⁇ 4, ⁇ 5, and ⁇ 6 are rectangular shapes in which the shape projected on a virtual plane perpendicular to the thickness direction of the projection mask 25C extends in the short direction of the projection mask 25C.
  • the plurality of first light transmission patterns 25a are formed at intervals in the longitudinal direction of the projection mask 25C.
  • the portions of the second and third blocks BB and BC other than the first light transmission pattern 25a are non-transmission portions 25c that do not transmit light.
  • the non-transmissive portions 25c of the third, fourth, fifth, and sixth pattern portions P3, P4, P5, and P6 are the third, fourth, fifth, and sixth pattern portions P3, P4, When P5 and P6 are overlapped, they are placed in positions that do not overlap each other.
  • the first light transmission pattern 25a of the third, fourth, fifth, and sixth pattern portions P3, P4, P5, and P6 is formed in a region other than the non-transmissive portion 25c provided as described above. .
  • the first and second light transmission patterns 25a and 25b of the present embodiment are hexagonal when viewed in the thickness direction of the projection mask 25C, and the first and second light transmission patterns Both ends in the extending direction of the patterns 25a and 25b are formed in a tapered shape when viewed in the thickness direction of the projection mask 25C.
  • the first and second light transmission patterns 25a and 25b are shown in a rectangular shape for easy understanding.
  • FIG. 20 is a plan view showing a state of the crystallization region 41 formed in the semiconductor film 37 by performing the repetition process using the projection mask 25C shown in FIG.
  • the semiconductor film 37 is crystallized by repeating the process using the projection mask 25C shown in FIG.
  • Section VII in FIG. 20 is a crystallization region 41 formed by performing eight crystallization steps and seven transfer steps in a repeated process.
  • the same reference symbol “X” as that of the first movement direction of the stage 28 is given as the reference symbol in the longitudinal direction of the semiconductor film 37 of the semiconductor element 27 placed on the stage 28, and the semiconductor film
  • the reference numeral “Y”, which is the same as the second moving direction of the stage 28, will be given as a reference numeral in the short direction of 37.
  • the control unit 29 drives and controls the stage 28, thereby moving the stage 28 by a predetermined distance dimension in the first moving direction X-direction.
  • Stage 28 first move By moving in the X direction, the semiconductor element 27 placed on the stage 28 can be moved by a predetermined distance in the first moving direction X.
  • the laser beam 31 transmitted through the plurality of first and second light transmission patterns 25a, 25b formed on the projection mask 25C is irradiated to one surface portion in the thickness direction of the semiconductor film 37 of the semiconductor element 27.
  • the new area is the area moved by a predetermined distance in the first movement direction X- direction. The new area partially overlaps the area before the movement.
  • the predetermined distance dimension when the stage 28 is moved in the first movement direction X-direction is the lateral dimension WZ2 of the first to eighth pattern portions P1 to P8 of the projection mask 25C.
  • the semiconductor film 37 is irradiated with the laser light 31 transmitted through the first light transmission pattern 25a and crystallized by the first crystallization region 41a and the second light transmission pattern.
  • a crystallization region 41 including the second crystallization region 41b crystallized by irradiation with the laser beam 31 transmitted through 25b is formed side by side in the longitudinal direction X or the lateral direction Y of the semiconductor film 37.
  • the first crystallization region 41a and the second crystallization region 4 lb formed by performing the crystallization process of 8 times and the transfer process of 7 times are used for the semiconductor film 37. They are formed alternately in the longitudinal direction X.
  • the areas of the first crystallization region 41a and the second crystallization region 41b formed in the section VII are equal. Therefore, the semiconductor film 37 can be uniformly crystallized by repeating the process using the projection mask 25C shown in FIG.
  • the laser processing apparatus of the present embodiment is similar in configuration to the laser cache apparatus 20 of the first embodiment described above, and includes another projection mask 100 instead of the projection mask 25. The only difference is that the projection mask 100 will be described in the same configuration. The same reference numerals are assigned and explanations are omitted.
  • the process of crystallizing the semiconductor film 37 of the semiconductor element 27 placed on the stage 28 by the laser carriage device is the same as in the first embodiment described above, and thus the description thereof is omitted.
  • the laser processing method according to the fourth embodiment of the present invention is performed by the laser processing apparatus according to the present embodiment.
  • FIG. 21 is a plan view showing the projection mask 100.
  • the projection mask 100 according to the present embodiment includes a plurality of first light transmission patterns 100a that penetrate in the thickness direction of the substrate and transmit light for crystallizing the semiconductor film 37 of the semiconductor element 27 that is the irradiation target. And the second light transmission pattern 100b is formed. Portions other than the first and second light transmission patterns 100a and 100b of the projection mask 100 are non-transmission portions 100c that do not transmit light.
  • projection mask 100 according to the present embodiment has a rectangular shape projected onto a virtual plane perpendicular to the thickness direction.
  • the projection mask 100 corresponds to the first block BA corresponding to the first area, the second block BB corresponding to the second area, and the third area corresponding to the third area. 3 blocks BC and 4th block BD corresponding to 4th area are included.
  • the first block BA, the second block BB, the third block BC, and the fourth block BD are long sides in which the shape projected on a virtual plane perpendicular to the thickness direction of the projection mask 100 extends in the short direction of the projection mask 100. Open letter.
  • the first block BA, the second block BB, the third block BC, and the fourth block BD are arranged in a line in the order corresponding to the longitudinal direction of the projection mask 100 in this order.
  • a plurality of first light transmission patterns 100a are formed in the first and second blocks BA and BB.
  • FIG. 21 shows eleven first light transmission patterns 100a for easy understanding.
  • the first light transmission pattern 100a is a first predetermined in a plane including a first axis extending along the longitudinal direction of the projection mask 100 and a second axis extending along the short direction of the projection mask 100.
  • the direction extends in the direction inclined 45 degrees from the second axis to one of the predetermined circumferential directions around the intersection of the first axis and the second axis in the present embodiment.
  • the one circumferential direction refers to a direction in which the laser beam incident side plane of the projection mask 100 is angularly displaced clockwise around the intersection of the first axis and the second axis.
  • the plurality of first light transmission patterns 100a is a direction orthogonal to the first direction in the plane, in other words, Then, it forms in the 2nd direction mentioned later at intervals.
  • the first light transmission pattern 100a of the first block BA is formed at a position corresponding to the non-transmission part 100c of the second block BB, and the first light transmission pattern 100a of the second block BB is A plurality of second light transmission patterns 100b are formed in the third and fourth blocks BC and BD formed at positions corresponding to the non-transmission part 100c of the first block BA.
  • eleven second light transmission patterns 100b are shown for easy understanding.
  • the second light transmission pattern 100b has a second axis line centered on the intersection of the first axis line and the second axis line in the second direction defined in the present embodiment in the plane including the first axis line and the second axis line.
  • the force extends in a direction inclined 45 degrees to the other circumferential direction in other words, in other words, in a direction perpendicular to the first direction.
  • the other circumferential direction refers to a direction in which an angular displacement is made counterclockwise about the intersection of the first axis and the second axis on the laser beam incident side plane of the projection mask 100.
  • the plurality of second light transmission patterns 100b are formed in the plane at intervals in the direction orthogonal to the second direction, in other words, in the first direction.
  • the second light transmission pattern 100b of the third block BC is formed at a position corresponding to the non-transmission part 100c of the fourth block BD
  • the second light transmission pattern 100b of the fourth block BD is
  • the first and second light transmission patterns 100a and 100b of the present embodiment, which are formed at positions corresponding to the non-transmission portion 100c of the third block BC, are hexagonal when viewed in the thickness direction of the projection mask 100.
  • Both end portions in the extending direction of the first and second light transmission patterns 100a and 100b are formed in a tapered shape when viewed in the thickness direction of the projection mask 100.
  • FIG. 22 is a plan view schematically showing the projection mask 100. In the projection mask 100 shown in FIG.
  • a plurality of first light transmission patterns 100a are formed in the first and second blocks BA, BB, and a plurality of second lights are formed in the third and fourth blocks BC, BD.
  • a transmissive pattern 100b is formed.
  • the portions other than the first and second light transmission patterns 100a and 100b of the projection mask 100 are non-transmission portions 100c that do not transmit light.
  • the first and second light transmission patterns 100a and 100b are shown in a substantially rectangular shape for easy understanding.
  • the growth process of the crystal 42 formed by repeating the process using the projection mask 100 shown in FIG. 22 will be described. In the present embodiment, a case where the crystallization process is performed four times and the movement process is performed three times in the repetition process will be described.
  • FIG. 23A to FIG. 23D are diagrams showing the growth process of the crystal 42 when the semiconductor film 37 is crystallized using the projection mask 100 shown in FIG.
  • FIG. 23A is a diagram showing a state of the crystal 42 formed by the first crystallization process.
  • FIG. 23B is a diagram showing a state of the crystal 42 formed by the second crystallization step after the stage 28 is moved in the first movement direction X determined in advance by the first movement step.
  • FIG. 23C is a diagram showing a state of the crystal 42 formed by the third crystallization process after the stage 28 is moved in the first movement direction X by the second movement process.
  • FIG. 23D is a diagram showing a state of the crystal 42 formed by the fourth crystallization step after the stage 28 is moved in the first movement direction X by the third movement step.
  • FIG. 24 is an enlarged plan view of section VIII of FIG. 23D.
  • the laser light 31 emitted from the light source 21 and transmitted through the first light transmission pattern 100a of the first block BA of the projection mask 100 is a semiconductor element 27 placed on the stage 28.
  • the semiconductor film 37 is irradiated, the region of the semiconductor film 37 irradiated with the laser beam 31 is crystallized, and a crystal 42 is formed as shown in FIG. 23A.
  • the stage 28 is moved in the first movement direction X--by a predetermined distance dimension corresponding to the lateral dimension of the first to fourth blocks BA to BD of the projection mask 100. Move.
  • the second light source 21 emits the second block BB of the second block BB of the projection mask 100 to the semiconductor film 37 in which the crystal 42 is formed in the first crystallization process.
  • the laser beam 31 that has passed through the light transmission pattern 100b is irradiated.
  • the region irradiated with the laser light 31 is crystallized, as shown in FIG. 23B.
  • a new crystal 42 is formed so as to overlap with a part of the crystal 42 formed by the first crystallization process.
  • the stage 28 is moved in the first movement direction X-direction by a distance dimension corresponding to the short-side dimension of the first to fourth blocks BA to BD of the projection mask 100. Move.
  • the light is emitted from the light source 21 to the semiconductor film 37 on which the crystal 42 is formed in the first and second crystallization processes. Irradiate the laser beam 31 that has passed through the second light transmission pattern 100b of the 3-block BC.
  • the region irradiated with the laser beam 31 is crystallized, as shown in FIG. 23C.
  • a new crystal 42 is formed so as to overlap with a part of the crystal 42 formed by the first and second crystallization steps.
  • the stage 28 is moved in the first movement direction X by a distance dimension corresponding to the lateral dimension of the first to fourth blocks BA to BD of the projection mask 100. .
  • the light source 21 emits the semiconductor film 37 on which the crystal 42 has been formed by the first to third crystallization processes.
  • Laser light 31 that has passed through the first light transmission pattern 100a of the block BD is irradiated.
  • the region irradiated with the laser beam 31 is crystallized, as shown in FIG. 23D.
  • a new crystal 42 is formed so as to overlap with a part of the crystal 42 formed by the first to third crystallization steps.
  • the semiconductor film 37 has the second light transmission as shown in FIG. A second crystallized region 41b crystallized by irradiating the laser beam transmitted through the pattern 100b is formed.
  • the first axis extending in the longitudinal direction X of the semiconductor film 37 and the second axis extending in the short direction Y of the region irradiated with the laser light having the shape of the second light transmission pattern 100b
  • the direction inclined 45 degrees clockwise from the second axis in a direction angularly displaced from the second axis (hereinafter referred to as “first The crystal 42 grows stepwise in such a way that the force at both ends of K1 is also directed toward the center of the first tilt direction K1.
  • the final protrusion 43b formed in the second crystallization region 41b by the final irradiation of the laser light is a direction perpendicular to the first inclined direction K1 when viewed in the thickness direction of the semiconductor film 37 (hereinafter referred to as the present embodiment). (Which may be referred to as a “second tilt direction”).
  • the final protrusion 43b is indicated by a solid line in FIG. 24 in order to distinguish it from the protrusion 45b described later.
  • the semiconductor film 37 irradiated with the laser beam in the stage before the final irradiation has the crystal 42 grown from the second tilt direction K2-side of the portion irradiated with the laser beam and the second tilt direction K2 on the other side.
  • the protrusions 45b projecting in one direction in the thickness direction of the semiconductor film 37 are formed by collision with the crystal 42 grown from above.
  • the protrusion 45b is indicated by a broken line in the second crystallization region 4 lb of FIG.
  • FIG. 24 shows a boundary portion 46 between a plurality of crystals grown by the above repeating process.
  • the final protrusion 43b formed by the final irradiation of the laser light, the protrusion 45b formed by the laser light irradiation at the stage before the final irradiation, and the thickness direction dimension of the boundary portion 46 between the crystals 42 are The final protrusion 43b, the protrusion 45b, and the boundary portion 46 are reduced in this order.
  • FIG. 25 is a plan view showing the crystallized semiconductor film 37 and the thin film transistor element 50 formed in the semiconductor film 37.
  • FIG. 25 shows a part of the second crystallization region 41b formed in the semiconductor film 37 for easy understanding.
  • the same reference symbol “X” as that of the first movement direction of the stage 28 is given as the reference symbol in the longitudinal direction of the semiconductor film 37 of the semiconductor element 27 placed on the stage 28, and the semiconductor film
  • the reference numeral “Y”, which is the same as the second moving direction of the stage 28, will be given as a reference numeral in the short direction of 37.
  • the second crystallization region 41b having a square shape is formed in the semiconductor film 37 as shown in FIG. They are formed continuously in the tilt direction K1 and the second tilt direction K2, respectively.
  • the source 3 and the gate G And a thin film transistor element (hereinafter sometimes referred to as a “TFT element”) 50 formed in the semiconductor film 37 so as to be arranged in the order of the drain D and the first crystallization region.
  • TFT element thin film transistor element
  • the TFT element 50 formed in the semiconductor film 37 is shown so that the drain direction 0, the gate G, and the source S are arranged in this order as the lateral direction Y-direction of the semiconductor film 37 in which the region 41a is formed is also directed to the other side. .
  • the laser light 31 is applied to the projection mask 100 and the first and second light transmission patterns 100a and 100b formed on the projection mask 100 are transmitted.
  • the semiconductor film 37 is irradiated with 31.
  • the semiconductor film 37 irradiated with the laser light having the shapes of the first and second light transmission patterns 100a and 100b can be melted and uniformly crystallized.
  • the stage 28 on which the semiconductor element 27 is placed is moved relative to the light source 21 that emits the laser beam 31 to thereby move the semiconductor film that is the irradiation object.
  • the desired region 37 can be irradiated with the laser beam 31 and can be crystallized into a desired shape.
  • the first and second directions perpendicular to each other, in which the amorphous material should be crystallized are specifically formed on the semiconductor film 37 of the layer having the amorphous material force.
  • the semiconductor film 37 is irradiated with a laser beam 31 in the longitudinal and short directions to crystallize the semiconductor film 37, and the semiconductor film 37 is applied to the light source 21 that emits the laser beam 31.
  • the present embodiment for example, when a plurality of TFT elements 50 are formed in the semiconductor film 37 uniformly crystallized as described above, specifically, a layer made of an amorphous material cover, Even if the formation direction of the TFT element 50 is different such that the formation direction of one TFT element 50 with respect to the conductor film 37 is the first formation direction and the formation direction of the other TFT element 50 is the second formation direction.
  • the shape of the crystallization region included in the channel portion of each TFT element 50 formed in the same can be made the same.
  • a plurality of TFT elements 50 are formed in a plurality of directions relative to the crystal growth direction.
  • the source S force of the TFT element 50 The direction of the current flowing through the drain D can be made the same.
  • the electrical characteristics of the plurality of TFT elements 50 formed on the semiconductor film 37, specifically, switching. The characteristics can be the same. In other words, the switching characteristics of the plurality of TFT elements 50 can be made uniform.
  • the semiconductor film 37 when the semiconductor film 37 is crystallized, the semiconductor film 37 is formed on the projection mask 100 while being moved by the lateral dimension W of each area BA to BD of the projection mask 100. Since the semiconductor film 37 is irradiated with the laser light transmitted through the first and second light transmission patterns 100a and 100b, the laser light can be applied to the same region of the semiconductor film 37 in an overlapping manner. Therefore, in the present embodiment, for example, a crystal grain having a large grain size can be formed as compared with the case where the semiconductor film 37 is crystallized using a projection mask in which only a light transmission pattern extending in one direction is formed. The electron mobility of the semiconductor film 37 can be made relatively high.
  • the switching characteristics of the TFT element 50 can be further improved.
  • the laser light transmitted through the first and second light transmission patterns 100a and 100b can be irradiated with being superimposed on the same region of the semiconductor film 37, the laser light is abnormal in the light source 21, for example, laser light. Even if there is a problem such as laser light not being superimposed on the same region in one of the multiple crystallization processes due to an abnormal oscillation of the semiconductor, The film 37 can be crystallized almost uniformly. Accordingly, for example, when the TFT element 50 is formed in the semiconductor film 37, it is possible to prevent the switching characteristics of the TFT element 50 from being extremely deteriorated.
  • the switching characteristics of the TFT element 50 can be made uniform regardless of the direction in which the TFT element 50 is formed on the semiconductor film 37, so that the design of a display device using the TFT element 50 can be made.
  • the degree of freedom can be increased.
  • the first and second light transmission patterns 100a and 100b are formed such that both end portions in each extending direction are tapered as viewed in the thickness direction of the projection mask 100. Therefore, unlike the light transmission pattern, which is formed in a tapered shape such as a rectangular shape, the irradiation of the semiconductor film 37 irradiated with the laser light in the shape of the first and second light transmission patterns 100a and 100b is performed. In the region, projections 41 formed by the collision of crystals that also grow in both ends in the direction perpendicular to the extending direction and the thickness direction of the semiconductor film 37 are formed to taper portions at both ends in the extending direction.
  • the semiconductor film 37 can be crystallized more uniformly as compared with the case where both end portions in the extending direction of the light transmission pattern are not tapered. Therefore, when the TFT element 50 is formed on the semiconductor film 37, even when the formation direction of one TFT element 50 with respect to the semiconductor film 37 is different from the formation direction of the other TFT element 50, a plurality of TFT elements 50 formed on the semiconductor film 37 are formed.
  • the electrical characteristics of the TFT element 50 specifically, the switching characteristics can be reliably made the same. In other words, the switching characteristics of the plurality of TFT elements 50 can be made uniform uniformly.
  • the laser processing apparatus of the present embodiment is similar in configuration to the laser processing apparatus 20 of the first embodiment described above, and only includes another projection mask 110 instead of the projection mask 25. Therefore, the projection mask 110 will be described, and the same components will be denoted by the same reference numerals and description thereof will be omitted.
  • the process of crystallizing the semiconductor film 37 of the semiconductor element 27 placed on the stage 28 by the laser carriage device is the same as in the first embodiment described above, and thus the description thereof is omitted.
  • the laser processing method according to the fifth embodiment of the present invention is performed by the laser processing apparatus according to the present embodiment.
  • FIG. 26 is a plan view showing the projection mask 110. Since the projection mask 110 of the present embodiment is similar in configuration to the projection mask 100 of the fourth embodiment, only the different points will be described, and the same configuration is denoted by the same reference numeral. Description is omitted.
  • Projection mask 110 has a rectangular shape projected onto a virtual plane perpendicular to its thickness direction, and includes a first block BA, a second block BB, a third block BC, and a fourth block BD.
  • the first to fourth blocks BA to BD have a rectangular shape that extends in the short direction of the projection mask 110 and is shaped on a virtual plane perpendicular to the thickness direction of the projection mask 110.
  • the first block BA, the second block BB, the third block BC, and the fourth block BD are provided in a line in this order in the arrangement direction corresponding to the longitudinal direction of the projection mask 110.
  • first and fourth blocks BA and BD of the projection mask 110 a plurality of first light transmission patterns 100a are formed.
  • the first light transmission pattern 100a of the first block BA is formed at a position corresponding to the non-transmission part 100c of the fourth block BD, and the first light transmission pattern 100a of the fourth block BD is the same as that of the first block BA. It is formed at a position corresponding to the non-transmissive portion 100c.
  • eleven first light transmission patterns 100a are shown for easy understanding!
  • a plurality of second light transmission patterns 100b are formed.
  • the second light transmission pattern 100b of the second block BB is formed at a position corresponding to the non-transmission part 100c of the third block BC
  • the second light transmission pattern 100b of the third block BC is the same as that of the second block BB. It is formed at a position corresponding to the non-transmissive portion 100c.
  • eleven second light transmission patterns 100b are shown for easy understanding!
  • FIG. 27 is a plan view schematically showing the projection mask 110.
  • a plurality of first light transmission patterns 100a are formed in the first and fourth blocks BA, BD, and a plurality of second lights are formed in the second and third blocks BB, BC.
  • a transmissive pattern 100b is formed.
  • the portions other than the first and second light transmission patterns 100a and 100b of the projection mask 110 are non-transmission portions 100c that do not transmit light.
  • the first and second light transmission patterns 100a and 100b are shown in a substantially rectangular shape.
  • FIG. 28A to FIG. 28D are diagrams showing the growth process of the crystal 42 when the semiconductor film 37 is crystallized using the projection mask 110 shown in FIG.
  • FIG. 28A is a diagram showing a state of the crystal 42 formed by the first crystallization process.
  • FIG. 28B is a diagram showing a state of the crystal 42 formed by the second crystallization process after the stage 28 is moved in the first moving direction X determined in advance by the first movement process.
  • FIG. 4 is a diagram showing a state of a crystal 42 formed by a third crystallization process after the stage 28 is moved in the first movement direction X by the second movement process.
  • FIG. 28D is a diagram showing a state of the crystal 42 formed by the fourth crystallization step after the stage 28 is moved in the first movement direction X by the third movement step.
  • FIG. 29 is an enlarged plan view of section IX of FIG. 28D.
  • the first light emitted from the light source 21 and projected from the projection mask 110 the first light emitted from the light source 21 and projected from the projection mask 110.
  • the semiconductor film 37 of the semiconductor element 27 placed on the stage 28 is irradiated with the laser light 31 transmitted through the first light transmission pattern 100a of the block BA
  • the region of the semiconductor film 37 irradiated with the laser light 31 is Crystallization forms crystals 42 as shown in FIG. 28A.
  • the stage 28 is moved in the first movement direction X in the predetermined distance dimension corresponding to the transverse dimension W of the first to fourth blocks BA to BD of the projection mask 110. Move.
  • the second light source 21 emits the second block BB of the second block BB of the projection mask 110 to the semiconductor film 37 in which the crystal 42 is formed by the first crystallization process.
  • the laser beam 31 that has passed through the light transmission pattern 100b is irradiated.
  • the region irradiated with the laser light 31 is crystallized, as shown in FIG. 28B.
  • a new crystal 42 is formed so as to overlap with a part of the crystal 42 formed by the first crystallization process.
  • the stage 28 is moved in the first movement direction X-direction by a distance dimension corresponding to the lateral dimension W of the first to fourth blocks BA to BD of the projection mask 110.
  • the light is emitted from the light source 21 to the semiconductor film 37 on which the crystals 42 are formed in the first and second crystallization processes, and the projection mask 110 Irradiate the laser beam 31 that has passed through the second light transmission pattern 100b of the 3-block BC.
  • the region irradiated with the laser beam 31 is crystallized, as shown in FIG. 28C.
  • a new crystal 42 is formed so as to overlap with a part of the crystal 42 formed by the first and second crystallization steps.
  • the stage 28 is moved in the first movement direction X by a distance dimension corresponding to the lateral dimension W of the first to fourth blocks BA to BD of the projection mask 110.
  • the light source 21 emits the semiconductor film 37 on which the crystal 42 has been formed by the first to third crystallization processes.
  • Laser light 31 that has passed through the first light transmission pattern 100a of the block BD is irradiated. Accordingly, the semiconductor film 37 in which the crystal 42 is formed by the first to third crystallization steps.
  • the region irradiated with the laser beam 31 is crystallized and, as shown in FIG. 28D, overlaps with a part of the crystal 42 formed by the first to third crystallization steps, and is newly added. Crystal 42 is formed.
  • the first light transmission is made in the semiconductor film 37 as shown in FIG.
  • the first crystallization region 41a crystallized by being irradiated with the laser light transmitted through the pattern 100a
  • the second crystallized region crystallized by being irradiated with the laser light transmitted through the second light transmission pattern 100b
  • a crystallization region 41 including 41b is formed.
  • the first axis extending in the longitudinal direction X of the semiconductor film 37 and the second axis extending in the lateral direction Y of the region irradiated with the laser light having the shape of the first light transmission pattern 100a
  • first (It may be referred to as “inclination direction”
  • second inclination direction A direction perpendicular to K1 (hereinafter, this may be referred to as “second inclination direction” in the present embodiment) From both ends of K2 to the center of the second inclination direction K2
  • the crystal 42 grows step by step.
  • the final protrusion 43a formed in the first crystallization region 41a by the final irradiation of the laser light is formed in parallel with the first tilt direction K1 of the semiconductor film 37.
  • the semiconductor film 37 is directed from both ends of the first inclined direction K1 to the central portion of the first inclined direction K1.
  • the crystal 42 grows step by step.
  • the crystal 42 grown from one side of the first tilt direction K1 collides with the crystal 42 grown from the first tilt direction K1 on the other side, and a final projection 43b protruding in one thickness direction of the semiconductor film 37 is formed. Is done.
  • the final protrusion 43b formed in the second crystallization region 41b by the final irradiation of the laser light is formed in parallel with the second tilt direction K1 of the semiconductor film 37.
  • the final protrusions 43a and 43b are indicated by solid lines in FIG. 29 in order to distinguish from the protrusions 45a and 45b described later.
  • the semiconductor film 37 that has been irradiated with the laser beam before the final irradiation is irradiated with the laser beam.
  • Projected portion protruding in one thickness direction of the semiconductor film 37 when the crystal 42 grown from one side of the first inclined direction Kl of the projected portion collides with the crystal 42 grown from the other side of the first inclined direction Kl. 45a is formed.
  • the protrusion 45a is indicated by a broken line in the first crystallization region 41a of FIG.
  • the semiconductor film 37 irradiated with the laser beam before the final irradiation is grown on the crystal 42 grown from the second inclined direction K2-side of the portion irradiated with the laser beam and the second inclined direction K2 grown from the other side.
  • FIG. 29 shows a boundary portion 46 between a plurality of crystals grown by the above repeating process.
  • the final protrusions 43a and 43b formed by the final irradiation of the laser light the protrusions 45a and 45b formed by the laser light irradiation before the final irradiation, and the boundary portion 46 between the crystals 42
  • the dimension in the thickness direction of each of them decreases in the order of the final projecting portions 43a and 43b, the projecting portions 45a and 45b, and the boundary portion 46, respectively.
  • the plurality of final protrusions 43a, 43b and protrusions 45a, 45b formed on the semiconductor film 37 are included in the surrounding region 47 and the area of the first crystallization region 41a included in the surrounding region 47 surrounded by the surrounding region 47.
  • the ratio with the area of the second crystallization region 41b is 50:50 as shown in FIG. In other words, the area of the first crystallization region 41a is equal to the area of the second crystallization region 41b. Therefore, the semiconductor film 37 can be uniformly crystallized by repeating the process using the projection mask 110 shown in FIG.
  • FIG. 30 is a plan view showing the crystallized semiconductor film 37 and the thin film transistor element 50 formed in the semiconductor film 37.
  • FIG. FIG. 30 shows a part of the crystallization region 41 formed in the semiconductor film 37 for easy understanding.
  • the same reference symbol “X” as in the first movement direction of the stage 28 is attached
  • the same reference symbol “Y” as that in the second movement direction of the stage 28 is used for description.
  • the semiconductor film 37 has a square shape as shown in FIG. 30 and has the first crystallization region 41a and the second crystallization region 41b.
  • the crystallization region 41 including the first tilt direction K1 and the second tilt direction of the semiconductor film 37. They are formed side by side in the oblique direction K2.
  • the longitudinal direction X—direction force of the semiconductor film 37 in which the crystallization region 41 is formed by repeating the process using the projection mask 110 described above is also directed toward the other side, and the source S, the gate G, and the drain
  • the TFT element 50 formed in the semiconductor film 37 and the semiconductor film 37 in which the crystallized region 41 is formed are arranged in the order of D in the short direction ⁇ —direction force.
  • the TFT elements 50 formed in the semiconductor film 37 are shown in order of the source S!
  • the laser light 31 is applied to the projection mask 110 and the first and second light transmission patterns 100a and 100b formed on the projection mask 110 are transmitted.
  • the semiconductor film 37 is irradiated with 31.
  • the area of the first crystallization region 41a crystallized by being irradiated with the laser light 31 transmitted through the first light transmission pattern 100a, and the second light
  • the ratio with the area of the second crystallization region 41b crystallized by irradiating the laser beam 31 transmitted through the transmission pattern 100b can be made equal.
  • the semiconductor film 37 can be uniformly crystallized.
  • the stage 28 on which the semiconductor element 27 is placed is moved relative to the light source 21 that emits the laser beam 31 to thereby move the semiconductor film that is the irradiation object.
  • the desired region 37 can be irradiated with the laser beam 31 and can be crystallized into a desired shape.
  • the first and second directions perpendicular to each other, in which the amorphous material should be crystallized are specifically formed on the semiconductor film 37 of the layer having the amorphous material force.
  • the semiconductor film 37 is irradiated with a laser beam 31 in the longitudinal and short directions to crystallize the semiconductor film 37, and the semiconductor film 37 is applied to the light source 21 that emits the laser beam 31.
  • the direction of formation of one TFT element 50 with respect to the conductor film 37 is the first formation direction
  • the direction of formation of the other TFT element 50 is the second formation direction.
  • the ratio of the area of the first crystallization region 41a and the area of the second crystallization region 41b included in the channel portion of each TFT element 50 formed in each formation direction is made equal. be able to.
  • the electrical characteristics, specifically the switching characteristics, of the plurality of TFT elements 50 formed in the semiconductor film 37 can be made the same. In other words, the switching characteristics of the plurality of TFT elements 50 can be made uniform.
  • the semiconductor film 37 when the semiconductor film 37 is crystallized, the semiconductor film 37 is formed on the projection mask 110 while being moved by the lateral dimension W of each region BA to BD of the projection mask 110. Since the semiconductor film 37 is irradiated with the laser light transmitted through the first and second light transmission patterns 100a and 100b, the laser light can be applied to the same region of the semiconductor film 37 in an overlapping manner. Therefore, in the present embodiment, for example, a crystal grain having a large grain size can be formed as compared with the case where the semiconductor film 37 is crystallized using a projection mask in which only a light transmission pattern extending in one direction is formed. The electron mobility of the semiconductor film 37 can be made relatively high.
  • the switching characteristics of the TFT element 50 can be further improved.
  • the laser light transmitted through the first and second light transmission patterns 100a and 100b can be irradiated with being superimposed on the same region of the semiconductor film 37, the laser light is abnormal in the light source 21, for example, laser light. Even if there is a problem such as laser light not being superimposed on the same region in one of the multiple crystallization processes due to an abnormal oscillation of the semiconductor, The film 37 can be crystallized almost uniformly. Accordingly, for example, when the TFT element 50 is formed in the semiconductor film 37, it is possible to prevent the switching characteristics of the TFT element 50 from being extremely deteriorated.
  • the switching characteristics of the TFT element 50 can be made uniform regardless of the direction in which the TFT element 50 is formed on the semiconductor film 37, so that the design of a display device using the TFT element 50 can be made.
  • the degree of freedom can be increased.
  • the first and second light transmission patterns 100a and 100b are formed such that both end portions in each extending direction are tapered as viewed in the thickness direction of the projection mask 110. Therefore, unlike a light transmission pattern, a semiconductor film irradiated with laser light in the shape of the first and second light transmission patterns 100a and 100b, which is formed in a tapered shape such as a rectangular shape. In the irradiation region 37, protrusions 41 formed by the collision of crystals that grow both ends in the direction perpendicular to the extending direction and the thickness direction of the semiconductor film 37 are formed on the tapered portions at both ends in the extending direction. Is formed. As a result, the semiconductor film 37 can be crystallized more uniformly as compared with the case where both end portions in the extending direction of the light transmission pattern are not tapered.
  • the TFT element 50 when the TFT element 50 is formed on the semiconductor film 37, even when the formation direction of one TFT element 50 with respect to the semiconductor film 37 is different from the formation direction of the other TFT element 50, a plurality of TFT elements 50 are formed on the semiconductor film 37.
  • the electrical characteristics of the TFT element 50 specifically, the switching characteristics can be reliably made the same. In other words, the switching characteristics of the plurality of TFT elements 50 can be made uniform uniformly.
  • FIG. 31 is a diagram showing a configuration of a laser processing apparatus 60 according to the sixth embodiment of the present invention.
  • the laser cleaning method according to the sixth embodiment of the present invention is performed by a laser processing apparatus 60. Since the configuration of the laser carriage device 60 is similar to that of the laser carriage device 20 of the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the laser processing device 60 includes a first light source 61, a variable attenuator 22, a mirror 23, a variable focus field lens 24, a projection mask 25, an imaging lens 26, a second light source 62, a uniform illumination optical system 63, a stage 28, and a control. Part 29 is included.
  • the first light source 61 is realized by an excimer laser oscillator capable of emitting a first laser beam 65 having a wavelength in the ultraviolet region, specifically, 308 nm.
  • the second light source 62 is realized by a laser oscillator capable of emitting the second laser light 66 having a wavelength from the visible range to the infrared range. More specifically, the second light source 62 can emit a second laser beam 66 having a wavelength of 534 nm, a YAG harmonic laser oscillator capable of emitting a second laser beam 66 having a wavelength of 534 nm, and a second laser beam 66 having a wavelength of 1064 nm. This is realized by a YAG laser oscillator and a carbon dioxide laser oscillator capable of emitting the second laser light 66 having a wavelength of 10.6 m.
  • the first laser beam 65 has a higher absorption rate into the semiconductor film 37 in the solid state than in the molten state.
  • the first laser beam 65 has an energy amount sufficient to melt the amorphous silicon film that is the semiconductor film 37 in the solid state. This amount of energy depends on various conditions such as the type of material of the semiconductor film 37, the film thickness, and the area of the crystallization region. Changes and cannot be defined uniquely. Therefore, it is desirable to use the first laser beam 65 having an appropriate amount of energy according to each condition of the semiconductor film 37. Specifically, it is recommended to use the first laser beam 65 having an energy amount capable of heating the amorphous silicon film as the semiconductor film 37 to a temperature equal to or higher than the melting point in the entire film thickness. The same applies to the case where another type of semiconductor film 37 is crystallized instead of the amorphous silicon film.
  • the second laser beam 66 has a higher absorption rate into the semiconductor film 37 in the molten state than in the solid state.
  • the second laser beam 66 is less than the amount of energy sufficient to melt the semiconductor film 37 in the solid state. This amount of energy varies depending on the conditions such as the type of material of the semiconductor film 37, the film thickness, and the area of the crystallized region, and cannot be uniquely determined. Therefore, it is desirable to use the second laser light 66 having an appropriate energy amount according to the above conditions of the semiconductor film 37. Specifically, it is recommended to use the second laser beam 66 having an energy amount less than that sufficient to heat the semiconductor film 37 to a temperature equal to or higher than the melting point. This is the same when applied to other types of semiconductor films 37 instead of amorphous silicon films.
  • the first laser light 65 emitted from the first light source 61 in accordance with the control signal from the control unit 10 passes through the variable attenuator 22, the mirror 23, the variable focus field lens 24, the projection mask 25, and the imaging lens 26, and then on the stage.
  • the surface of the semiconductor film 37 of the semiconductor element 27 placed on 28 is irradiated to one surface in the thickness direction.
  • the second laser light 66 emitted from the second light source 62 passes through the uniform irradiation optical system 63 and the mirror 23 for uniformly irradiating the semiconductor film 37 as the irradiation target with the second laser light, and the stage 23. Irradiated to one surface portion in the thickness direction of the semiconductor film 37 of the semiconductor element 27 placed on 28.
  • the first laser beam 65 can also be made to enter a directional force perpendicular to the one surface portion in the thickness direction of the semiconductor film 37, and the second laser beam 66 can be applied in the thickness direction of the semiconductor film 37. It can be incident on the surface from an oblique direction.
  • the first light source 61 can emit a pulsed laser beam as long as it can emit the first laser beam 65 and can melt the semiconductor film 37.
  • Excimer laser oscillation capable of emitting the first laser beam 65 with a wavelength of 308 nm It is not limited to a vessel.
  • the first light source 61 may be a laser oscillator capable of emitting laser light having a wavelength in the ultraviolet region, for example, a solid-state laser oscillator typified by an excimer laser oscillator and a YAG laser oscillator.
  • the oscillator constituting the second light source is a laser oscillator capable of emitting the second laser light 66 having a wavelength that is absorbed by the molten semiconductor film 37.
  • FIG. 32 is a graph showing the relationship between the output time of the first laser beam 65 and the second laser beam 66 and the output.
  • the horizontal axis of the graph represents time, and the vertical axis of the graph represents the output of the first and second laser beams 65 and 66, specifically the amount of energy per unit area of the first and second laser beams 65 and 66.
  • a curve VI indicated by a broken line in FIG. 32 represents an output characteristic of the first laser light 65 emitted from the first light source 61 such as an excimer laser oscillator.
  • a curve V2 indicated by a solid line in FIG. 32 represents an output characteristic of the second laser light 66 emitted from the second light source 62 such as a carbon dioxide laser oscillator.
  • the output of the first laser beam 65 in other words, the amount of energy per unit area is, for example, 200 mjZcm 2 or more and less than lOOOmjZcm 2 .
  • Amount of energy output per unit area in other words of the second laser beam 66 is, for example LOOmjZcm 2 than on lOOOiujZcm less than 2.
  • the second laser beam 66 is emitted from the second light source 62 from time tO to time t3, and the first laser beam 65 is transmitted at time tl after time tO. From the first light source 61 for time t2 before time t3.
  • the time during which the first laser beam 65 is emitted is 1Z100 or less of the time during which the second laser beam 66 is emitted, which is shorter than the time during which the second laser beam 66 is emitted. It is about 1Z1000 when the laser beam 66 is emitted. More specifically, the time from time tO to time t3 is, for example, 100 s, and the time from time tl to time t2 is, for example, 100 ns.
  • the rise and fall of the output of the first laser beam 65 are relatively steep, and the output reaches the maximum value in a relatively short time after the time tl has elapsed. After that, the output is reduced in a relatively short time. Also, as shown by curve V2, the output reaches the maximum value in a relatively short time after the elapse of time tO, and the output is held at the maximum value until time t2 elapses. Output of second laser beam 66 after time t2 has elapsed The fall of the output is more gradual than the rise, and the output is gradually reduced until time t3 elapses.
  • the relationship between the output time of the first laser beam 65 and the second laser beam 66 and the output is not limited to the relationship shown in the graph of FIG. 32, but may be similar to the relationship shown in the graph of FIG. preferable.
  • the amorphous silicon film as the semiconductor film 37 is in a molten state.
  • the step of irradiating the semiconductor film 37, which is an irradiation object, with the second laser light 66 from time tO to time t1 and from time t2 to time t3 is performed by crystallization.
  • This corresponds to the first irradiation stage in the process.
  • the stage of irradiating the first laser beam 65 and the second laser beam 66 on the semiconductor film 37, which is an irradiation object, between the time tl and the time t2 corresponds to the second irradiation stage in the crystallization process.
  • the first laser beam 65 emitted from the first light source 61 is emitted from the projection mask 25 at the timing shown by the curve VI in FIG. 32, specifically, from time tl to time t2.
  • the first and second light transmission patterns 25a and 25b formed on the semiconductor element 27 are transmitted through the first and second light transmission patterns 25a and 25b to irradiate the first region defined on one surface in the thickness direction of the semiconductor film 37 of the semiconductor element 27.
  • the second laser light 66 emitted from the second light source 62 at the timing as shown by the curve V2 in FIG.
  • the semiconductor film 37 in the first region is melted, and the melted first region semiconductor film 37 is solidified and crystallized.
  • the control unit 29 drives and controls the stage 28 to move the stage 28 by a predetermined distance dimension in the first moving direction X-direction.
  • the semiconductor element 27 placed on the stage 28 can be moved in the first movement direction X-direction by a predetermined distance dimension.
  • the first laser light 65 transmitted through the plurality of first and second light transmission patterns 25a and 25b formed on the projection mask 25 is irradiated onto one surface in the thickness direction of the semiconductor film 37 of the semiconductor element 27.
  • the new area to be created is an area moved by a predetermined distance dimension in the first movement direction X-direction. The new area partially overlaps the area before the movement.
  • Stage 28 1st The predetermined distance dimension when moving in the movement direction X-direction is, for example, the first to fourth blocks BA of the projection mask 25: the dimension W in the short direction of the BD.
  • the first laser beam 65 emitted from the first light source 61 is formed on the projection mask 25 again at the timing shown by the curve VI in FIG. 32 in the crystallization process.
  • the first and second light transmission patterns 25a and 25b are transmitted to irradiate the second region defined on one surface in the thickness direction of the semiconductor film 37 of the semiconductor element 27 placed on the stage 28.
  • the second region partially overlaps the first region.
  • the semiconductor film 37 in the second region is melted, and the melted second region semiconductor film 37 is solidified and crystallized. Further, in the repetitive process, the crystallization process and the transfer process are alternately performed until the crystallized region of the semiconductor film 37 reaches a predetermined size. Thereby, the semiconductor film 37 can be uniformly crystallized, for example, as in the above-described embodiment.
  • the laser film 60 is used to irradiate the semiconductor film 37 that is the object to be irradiated with the first and second laser beams 65 and 66, thereby forming the semiconductor film 37.
  • the TFT element 50 is formed in the uniformly crystallized semiconductor film 37 which is uniformly crystallized. Therefore, when a plurality of TFT elements 50 are formed in the uniformly crystallized semiconductor film 37, each TFT element 50 is formed on the semiconductor film 37 even when the forming direction of one TFT element 50 is different from the forming direction of the other TFT element 50.
  • the ratio of the area of the first crystallization region 41a included in the channel portion of each TFT element 50 formed in the formation direction can be made equal to the area of the second crystallization region 41b.
  • the electrical characteristics, specifically the switching characteristics, of the plurality of TFT elements 50 formed in the semiconductor film 37 can be made the same.
  • the switching characteristics of the plurality of TFT elements 50 can be made uniform.
  • the degree of freedom in designing a display device using the TFT element 50 can be increased.
  • the semiconductor film 37 in the molten state is subjected to the crystallization process.
  • the cooling rate of the molten semiconductor film 37 can be reduced by irradiating the second laser beam 66 in addition to the first laser beam 65.
  • the time until the molten semiconductor film 37 is solidified can be extended.
  • the lateral dimension of the lateral growth of the polycrystalline semiconductor formed by solidifying the amorphous silicon film, which is the semiconductor film 37 in the molten state can be greatly extended.
  • the semiconductor film 37 when the semiconductor film 37 is crystallized, it can be grown into relatively large crystal grains.
  • the electron mobility of the crystallized semiconductor film 37 can be made relatively high, and the TFT element 50 can be formed in the semiconductor film 37 with relatively high electron mobility.
  • the electrical characteristics of the TFT element 50 specifically, the switching characteristics can be improved.
  • FIG. 33 is a diagram showing a configuration of a laser processing apparatus 70 according to the seventh embodiment of the present invention.
  • FIG. 34A to FIG. 34D are diagrams showing the rotation process of the projection mask 71 rotated by the rotation drive unit 72 step by step.
  • the laser processing method according to the seventh embodiment of the present invention is performed by a laser carriage device 70. Since the laser carriage device 70 is similar in configuration to the laser carriage device 20 of the first embodiment, the same reference numerals are given to the same configuration, and description thereof is omitted.
  • the laser processing device 70 includes a light source 21, a variable attenuator 22, a mirror, a variable focus field lens 24, a projection mask 71, an imaging lens 26, a stage 28, a control unit 29, a rotation drive unit 72, and a linear drive unit 73. Consists of including. In the present embodiment, the direction perpendicular to the first movement direction X and the second movement direction Y of the stage 28 may be referred to as the “Z-axis direction”.
  • the projection mask 71 of the present embodiment is formed with a plurality of light transmission patterns 71a.
  • the portion other than the light transmission pattern 71a of the projection mask 71 is a non-transmission portion 7 lb that does not transmit light.
  • the projection mask 71 has a rectangular shape projected onto a virtual plane perpendicular to the thickness direction thereof.
  • the light transmission pattern 71a is a predetermined direction in a plane including a first axis extending along the longitudinal direction of the projection mask 71 and a second axis extending along the short direction of the projection mask 71. In, it extends in the second axis direction.
  • the plurality of light transmission patterns 71a are spaced apart in the longitudinal direction of the projection mask 71.
  • the light transmission pattern 71a has a hexagonal shape when viewed in the thickness direction of the projection mask 71, and both end portions in the longitudinal direction, which is the extending direction of the light transmission pattern 71a, taper when viewed in the thickness direction of the projection mask 71. Is formed.
  • the light transmission pattern 71a is shown in a rectangular shape for easy understanding.
  • the rotation drive unit 72 includes a rotation drive mechanism for driving the projection mask 71 to rotate relative to the semiconductor film 37 as an irradiation target, and a rotation drive source for driving the rotation drive mechanism. And have.
  • the rotation drive source is realized by a motor, for example.
  • the projection mask 71 is a third axis that extends in the thickness direction of the projection mask 71 through the center of the plane including the first axis and the second axis, and is orthogonal to the first and second axes.
  • a rotation drive unit 72 is configured to be able to be rotated around the third axis.
  • the linear drive unit 73 is a straight line for driving the projection mask 71 relatively linearly in the longitudinal direction or the short direction of the light transmission pattern 71a formed on the projection mask 71 with respect to the semiconductor film 37 that is the irradiation target.
  • the linear drive source is realized by a motor, for example.
  • the projection mask 71 is configured to be linearly driven by the linear drive unit 73 in the first axis direction or the second axis direction, in other words, in the second movement direction Y or Z axis direction of the stage 28.
  • the control unit 29 is electrically connected to the rotation drive unit 72 and the linear drive unit 73.
  • the control unit 29 gives a control signal for synchronously driving the rotation drive unit 72 and the linear drive unit 73 to the rotation drive unit 72 and the linear drive unit 73. Based on the control signal supplied from the control unit 29, the rotation drive unit 72 and the linear drive unit 73 rotate the projection mask 71 and drive it linearly as described above.
  • the rotation driving means is constituted by the rotation driving section 72
  • the linear driving means is constituted by the linear driving section 73.
  • the control means is configured by the control unit 29.
  • the laser beam 31 emitted from the light source 21 according to the control signal from the control unit 29 passes through the variable attenuator 22, the mirror 23, the variable focus field lens 24, and the projection mask 71 as shown in FIG. 26 irradiates one surface portion in the thickness direction of the semiconductor film 37 provided on the semiconductor element 27.
  • the semiconductor film 37 is irradiated with the laser light 31 emitted from the light source 21 and transmitted through the light transmission pattern 71a of the projection mask 71, and the region of the semiconductor film 37 irradiated with the laser light 31.
  • a crystallization process for crystallizing the projection mask 71 is performed four times, and a process of rotating the projection mask 71 around the third axis by the rotation driving unit 72 is performed three times.
  • the projection mask 71 is aligned with the longitudinal direction of the light transmission pattern 71a and the Z-axis direction, and the arrangement direction of the light transmission pattern 71a and the second moving direction Y of the stage 28 Are arranged so as to coincide with each other, the semiconductor film 37 is irradiated with a laser beam 31 emitted from the light source 21 through the projection mask 71.
  • the rotation driving unit 73 rotates the projection mask 71 shown in FIG. 34A by 90 degrees clockwise around the third axis, and as shown in FIG. 34B, the longitudinal direction of the light transmission pattern 71a
  • the projection mask 71 is arranged so that the second moving direction Y of the stage 28 coincides with the alignment direction of the light transmission pattern 71a and the Z-axis direction.
  • the semiconductor film 37 is irradiated with the laser light 31 emitted from the light source 21 via the projection mask 71.
  • the rotation driving unit 73 rotates the projection mask 71 shown in FIG. 34B 180 degrees around the third axis and clockwise, and as shown in FIG. 34C, the longitudinal direction of the light transmission pattern 71a
  • the projection mask 71 is arranged so that the second moving direction Y of the stage 28 coincides with the alignment direction of the light transmission pattern 71a and the Z-axis direction.
  • the semiconductor film 37 is irradiated with the laser light 31 emitted from the light source 21 via the projection mask 71.
  • the rotation driving unit 73 rotates the projection mask 71 shown in FIG. 34C by 90 degrees about the third axis and counterclockwise, and as shown in FIG. 34D, the light transmission pattern 71a is long.
  • the projection mask 71 is arranged so that the direction and the Z-axis direction coincide with each other, and the arrangement direction of the light transmission patterns 71a coincides with the second movement direction Y of the stage 28.
  • the semiconductor film 37 is irradiated with the laser light 31 emitted from the light source 21 via the projection mask 71, and the crystallization process is completed. .
  • the crystallization process and the process of rotating the projection mask 71 around the third axis by the rotation driving unit 72 are performed, as in the first to sixth embodiments described above.
  • the semiconductor film 37 can be uniformly crystallized in the same manner as when the stage 28 is moved relative to the light source 21, specifically, the stage 28 is moved in the first movement direction X and the second movement direction Y.
  • the projection mask 71 on which the plurality of light transmission patterns 71a are formed is rotationally driven around the third axis by the rotational drive unit 72. Further, the projection mask 71 is linearly driven by the linear drive unit 73 in the first axis direction or the second axis direction, in other words, in the second movement direction Y or Z axis direction of the stage 28.
  • the rotation drive unit 72 and the linear drive unit 73 are synchronously driven by the control unit 29, and the longitudinal direction of the light transmission pattern 71a of the projection mask 71 is sequentially Z-axis direction, the second movement direction Y of the stage 28, and the vertical axis.
  • the direction and the second movement direction are controlled stepwise.
  • the projection mask 71 is formed by the rotation driving unit 72 and the linear driving unit 73.
  • the semiconductor film 37 can be rotated and driven linearly.
  • the laser light emitted from the light source 21 can pass through the light transmission pattern 71a whose extending direction changes in the Z-axis direction and the second movement direction Y by the rotation drive by the rotation drive unit 72. Therefore, it is possible to irradiate the semiconductor film 37 with a laser beam having the shape of the light transmission pattern 71a extending in the Z-axis direction and the second movement direction Y.
  • the projection mask 71 in which the light transmission pattern 71a extending in the Z-axis direction is formed is used, the first light whose extending directions are orthogonal to each other as in the first to third embodiments described above.
  • the area of the first crystallized region 41a in the semiconductor film 37 crystallized by the final irradiation of the laser light The ratio with the area of the second crystallization region 41b can be made equal. Therefore, the semiconductor film 37 that is an irradiation object can be uniformly crystallized.
  • the direction in which one TFT element 50 is formed with respect to the semiconductor film 37. Is the first formation direction, and the other TFT element 50 is the second formation direction.
  • the ratio can be made equal.
  • the electrical characteristics, more specifically the switching characteristics, of the plurality of TFT elements 50 formed in the semiconductor film 37 can be made the same. In other words, the switching characteristics of the plurality of TFT elements 50 can be made uniform.
  • the switching characteristics of the TFT element 50 can be made uniform regardless of the direction in which the TFT element 50 is formed on the semiconductor film 37, so that the design of a display device using the TFT element 50 can be made.
  • the degree of freedom can be increased.
  • FIG. 35A to FIG. 35D are diagrams showing the rotation process of the projection mask 200 rotated by the rotation drive unit 72 step by step.
  • the direction perpendicular to the first movement direction X and the second movement direction Y of the stage 28 may be referred to as the “Z-axis direction”.
  • a plurality of light transmission patterns 200a are formed.
  • the portions other than the light transmission pattern 200a of the projection mask 200 are non-transmission portions 200b that do not transmit light.
  • the projection mask 200 has a rectangular shape projected onto a virtual plane perpendicular to the thickness direction thereof.
  • the light transmission pattern 200a has a first axis and a second axis in a plane including a first axis extending along the longitudinal direction of the projection mask 200 and a second axis extending along the short direction of the projection mask 200.
  • the plurality of light transmission patterns 200a are formed at intervals in a direction perpendicular to the inclination direction when viewed in the thickness direction of the projection mask 200.
  • the light transmission pattern 200a has a hexagonal shape when viewed in the thickness direction of the projection mask 200, and light transmission Both end portions in the inclination direction, which is the extending direction of the pattern 200a, are formed in a tapered shape when viewed in the thickness direction of the projection mask 200.
  • the light transmission pattern 200a is shown in a substantially rectangular shape for easy understanding.
  • the semiconductor film 37 is irradiated with the laser beam 31 emitted from the light source 21 and transmitted through the light transmission pattern 200a of the projection mask 200, and the region of the semiconductor film 37 irradiated with the laser beam 31 is irradiated.
  • a crystallization process for crystallization is performed four times, and a process of rotating the projection mask 200 about the third axis extending in the thickness direction of the projection mask 200 by the rotation driving unit 72 is performed three times.
  • the projection mask 200 is aligned with the longitudinal direction of the projection mask 200 and the Z-axis direction, and the short side direction of the projection mask 200 and the second moving direction of the stage 28 are aligned.
  • the semiconductor film 37 is irradiated with the laser beam 31 emitted from the light source 21 through the projection mask 200.
  • the rotation driving unit 73 rotates the projection mask 200 shown in FIG. 35A 180 degrees around the third axis and clockwise, and as shown in FIG. 35B, the longitudinal direction of the projection mask 200 and Z
  • the projection mask 200 is arranged so that the axial direction matches and the short side direction of the projection mask 200 coincides with the second movement direction Y of the stage 28.
  • the semiconductor film 37 is irradiated with the laser light 31 emitted from the light source 21 through the projection mask 200.
  • the rotation driving unit 73 rotates the projection mask 200 shown in FIG. 35B by 90 degrees about the third axis and counterclockwise, and as shown in FIG. 35C, the projection mask 200 is moved in the longitudinal direction. And the second movement direction Y of the stage 28 coincide with each other, and the projection mask 200 is arranged so that the short side direction of the projection mask 200 and the Z-axis direction coincide.
  • the semiconductor film 37 is irradiated with the laser light 31 emitted from the light source 21 through the projection mask 200.
  • the rotation driving unit 73 rotates the projection mask 200 shown in FIG. 35C 180 degrees around the third axis and clockwise, and as shown in FIG. 35D, the longitudinal direction of the projection mask 200 and the stage
  • the projection mask 200 is arranged so that the second movement direction Y of 28 coincides with the short direction of the projection mask 200 and the Z-axis direction.
  • the projection mask 200 is arranged as shown in FIG. 35D, the laser light 31 emitted from the light source 21 is emitted from the projection mask 200.
  • the semiconductor film 37 is irradiated to complete the crystallization process.
  • the stage as in the first to sixth embodiments described above is performed.
  • the semiconductor film 37 is uniformly crystallized in the same manner as when the stage 28 is moved relative to the light source 21, specifically, the stage 28 is moved in the first movement direction X and the second movement direction Y. It is out.
  • the rotation driving unit 72 and the linear driving unit 73 are used.
  • the projection mask 200 can be rotationally driven and linearly driven relative to the semiconductor film 37.
  • the laser light emitted from the light source 21 is changed in the extending direction by the rotation driving by the rotation driving unit 72 in a direction orthogonal to the inclination direction when viewed in the inclination direction and the thickness direction of the projection mask 200.
  • the light transmitting pattern 200a can be transmitted. Therefore, it is possible to irradiate the semiconductor film 37 with laser light having the shape of the light transmission pattern 200a extending in the tilt direction and the direction orthogonal to the tilt direction.
  • the projection mask 200 having the light transmission pattern 200a extending in the inclined direction is used, the first light transmission whose extending directions are orthogonal to each other as in the fourth and fifth embodiments described above.
  • the semiconductor film 37 irradiated with the laser light having the shape of the light transmission pattern 200a is melted and uniformly crystallized. Can be made.
  • the direction in which one TFT element 50 is formed with respect to the semiconductor film 37 is included in the channel portion of each TFT element 50 formed in each formation direction.
  • the shape of the crystallized regions can be made the same. In other words, a plurality of TFT elements 50 with respect to the crystal growth direction are formed in any direction of the first formation direction and the second formation direction with respect to the semiconductor film 37 where the crystallized region is formed.
  • TFT element 50 Current flowing from source S to drain D Can be made the same direction.
  • the electrical characteristics, specifically the switching characteristics, of the plurality of TFT elements 50 formed in the semiconductor film 37 can be made the same. In other words, the switching characteristics of the plurality of TFT elements 50 can be made uniform.
  • the switching characteristics of the TFT element 50 can be made uniform regardless of the direction in which the TFT element 50 is formed on the semiconductor film 37, so that the design of a display device using the TFT element 50 can be made.
  • the degree of freedom can be increased.
  • the irradiation object is an object to be irradiated using the laser carriage devices 20 and 60 including one projection mask 25 on which the first and second light transmission patterns 25a and 25b are formed.
  • a laser processing apparatus including a projection mask including a plurality of mask portions may be used.
  • the semiconductor film 37 is irradiated with laser light transmitted through one mask portion where the first light transmission pattern 25a is formed and transmitted through the other mask portion where the second light transmission pattern 25b is formed.
  • the semiconductor film 37 may be crystallized by irradiating the semiconductor film 37 with laser light. Even in this case, the semiconductor film 37 can be uniformly crystallized as in the case of using the single projection mask 25, and the switching characteristics of the plurality of TFT elements 50 formed on the semiconductor film 37 can be made uniform. Can do.
  • a plurality of first light transmission patterns 100a are formed in the first and second blocks BA and BB, and the third and fourth blocks BC and BD are formed.
  • a plurality of first light transmission patterns 100a are formed in the first and fourth blocks BA, BD using the projection mask 100 on which a plurality of second light transmission patterns 100b are formed.
  • the force projection masks described in the case of using the projection mask 110 in which a plurality of second light transmission patterns 100b are formed in the second and third blocks BB and BC are not limited to these, and the following (A) to ( You can use the projection mask of D)!
  • a plurality of second light transmission patterns 100b are formed on the first and fourth blocks BA and BD.
  • (C) A projection mask in which a plurality of first light transmission patterns 100a are formed in the first and third blocks BA, BC, and a plurality of second light transmission patterns 100b are formed in the second and fourth blocks BB, BD. .
  • (D) A projection mask in which a plurality of second light transmission patterns 100b are formed in the first and third blocks BA, BC, and a plurality of first light transmission patterns 100a are formed in the second and fourth blocks BB, BD. .
  • the semiconductor film 37 can be uniformly crystallized as in the fourth and fifth embodiments described above.
  • the switching characteristics of the plurality of formed TFT elements 50 can be made uniform.
  • the projection mask (B) can be used to crystallize the semiconductor film 37 more uniformly, and a plurality of TFTs formed on the semiconductor film 37 can be obtained.
  • the switching characteristics of the element 50 can be improved.
  • the laser light emitted from the light source 21 by the light source 21 and the control unit 29, which are irradiation region forming means, extends in the first direction in which the semiconductor film 37 should be crystallized.
  • a first irradiation region irradiated to the semiconductor film 37 is formed.
  • the light source 21 and the control unit 29 form a second irradiation region in which the semiconductor film 37 is irradiated so that the laser light emitted from the light source 21 extends in the second direction orthogonal to the first direction.
  • the first and second irradiation areas are arranged in the order of the first irradiation area, the second irradiation area, the second irradiation area, and the first irradiation area by the control unit 29 as an arrangement unit.
  • the laser beam is irradiated so as to extend in the first direction, and the portion crystallized.
  • the area can be made equal to the area of the crystallized portion irradiated with laser light so as to extend in the second direction. Therefore, the semiconductor film 37 that is the object to be irradiated is uniformly formed. It can be crystallized.
  • the first and second irradiation areas are formed by the irradiation area forming means, and the first and second irradiation areas are arranged in the order as described above by the arranging means, whereby the laser carriage device of each of the above-described embodiments.
  • the semiconductor film 37 that is an irradiation object can be uniformly crystallized without using the projection masks 25, 25A, 25B, 25C, 71, 100, 110, and 200 provided on 20, 20, and 70. Therefore, the number of parts of the laser carriage devices 20, 60, 70 can be reduced. As a result, the structure of the laser carriage devices 20, 60, 70 can be simplified and reduced in size, and the manufacturing cost of the laser processing devices 20, 60, 70 can be reduced.
  • the projection mask 71 is rotationally driven and linearly driven by the rotational drive unit 72 and the linear drive unit 73.
  • the stage 28 can be driven to rotate relative to the projection mask 71 by the rotation driving unit 72.
  • the stage 28 is in the thickness direction of the stage 28. You may comprise so that rotation drive is possible around the axis line extended in a Z-axis direction.
  • the stage 28 can be linearly driven relative to the projection mask 71 by the linear drive unit 73.
  • the stage 28 can be linearly driven in the first movement direction X and the second movement direction Y. May be.
  • the rotation drive unit 72 and the linear drive unit 73 are configured to drive the stage 28 to rotate and linearly drive as described above based on the control signal given from the control unit 29. To do. Even with such a configuration, it is possible to obtain the same effects as those of the seventh embodiment described above.
  • the projection mask is a first light transmission pattern that transmits light for crystallizing the irradiation object, and a first light transmission pattern extending in a predetermined first direction is formed.
  • 2nd light transmission pattern which transmits the light for crystallizing 1 area
  • the first to fourth regions are arranged on the projection mask in the order of the first region, the second region, the third region, and the fourth region.
  • the first to fourth regions irradiate light onto the projection masks arranged in the order as described above, and the light that has passed through the first and second light transmission patterns formed on the projection mask is applied to the irradiation object. Irradiate. Specifically, light is irradiated while moving the irradiation object by a dimension in a predetermined direction of each region of the projection mask. As a result, in the object to be crystallized by the final irradiation of the laser light, the area of the crystallized region irradiated with the light having the shape of the first light transmission pattern and the shape of the second light transmission pattern are obtained. The area of the crystallized region irradiated with light can be made equal. Therefore, the irradiation object can be crystallized uniformly.
  • TFT elements thin film transistor elements
  • the formation direction of one TFT element and the formation direction of the other TFT element with respect to the irradiation object Even when is different, the electrical characteristics of each TFT element, specifically, the switching characteristics can be made the same. In other words, the switching characteristics of each TFT element can be made uniform.
  • the irradiation object when the irradiation object is crystallized, the light transmitted through the first and second light transmission patterns formed on the projection mask while moving the irradiation object by a dimension in a predetermined direction of each region of the projection mask.
  • the crystal grain size can be increased, and the electron mobility of the irradiation object can be relatively increased.
  • the object to be irradiated can be crystallized almost uniformly.
  • the TFT element is formed on the object to be irradiated, it is possible to prevent the switching characteristics of the TFT element from being extremely deteriorated.
  • the projection mask is formed with the first light transmission pattern that transmits light for crystallizing the irradiation object.
  • a plurality of regions where the first and second light transmission patterns are formed are arranged side by side.
  • the projection mask includes a first region in which a first light transmission pattern extending in a first inclination direction that is inclined with respect to an arrangement direction in which a plurality of regions are arranged, and a second region in which the first light transmission pattern is formed.
  • the first to fourth areas are arranged on the projection mask in the order of the first area, the second area, the third area, and the fourth area.
  • the first to fourth regions irradiate light onto the projection masks arranged in the order as described above, and the light that has passed through the first and second light transmission patterns formed on the projection mask is applied to the irradiation object. Irradiate. Specifically, light is irradiated while moving the irradiation object by the dimension in the alignment direction of each area of the projection mask. As a result, the portion irradiated with the light having the shape of the first light transmission pattern and the second light transmission pattern in the irradiation object can be melted, and the irradiation object can be uniformly crystallized.
  • TFT elements thin film transistor elements
  • the formation direction of one TFT element and the other TFT element with respect to the irradiation object are formed.
  • the electrical characteristics of each TFT element specifically, the switching characteristics can be made the same. In other words, the switching characteristics of each TFT element can be made uniform.
  • the light transmitted through the first and second light transmission patterns formed on the projection mask while moving the irradiation object by the dimension in the alignment direction of each region of the projection mask By irradiating the irradiation object with the light, it is possible to irradiate the light on the same region of the irradiation object.
  • the crystal grain size can be increased, and the electron mobility of the irradiation object can be made relatively high. it can.
  • the switching characteristics of the TFT element can be further improved.
  • the object to be irradiated can be crystallized almost uniformly.
  • the TFT element is formed on the object to be irradiated, it is possible to prevent the switching characteristics of the TFT element from being extremely deteriorated.
  • the first to fourth regions are arranged on the projection mask in the order of the first region, the third region, the fourth region, and the second region.
  • the first to fourth regions irradiate the projection mask arranged in the order as described above with light, and irradiate the light transmitted through the first and second light transmission patterns formed on the projection mask. Irradiate. Specifically, light is irradiated while moving the irradiation object by the dimension in the alignment direction of each region of the projection mask. As a result, the portion of the irradiation object irradiated with the light having the shape of the first light transmission pattern and the second light transmission pattern can be melted to uniformly crystallize the irradiation object.
  • TFT elements thin film transistor elements
  • the formation direction of one TFT element and the formation direction of the other TFT element with respect to the irradiation object Even when is different, the electrical characteristics of each TFT element, specifically, the switching characteristics can be made the same. In other words, the switching characteristics of each TFT element can be made uniform.
  • the light transmitted through the first and second light transmission patterns formed on the projection mask while moving the irradiation object by the dimension in the alignment direction of each region of the projection mask By irradiating the irradiation object with the light, it is possible to irradiate the light on the same region of the irradiation object, so that, for example, a projection mask in which only a light transmission pattern extending in one direction is formed is used.
  • the crystal grain size can be increased and the electron mobility of the irradiation object can be made relatively high as compared with the case where the irradiation object is crystallized.
  • TF the switching characteristics of the T element can be further improved.
  • the object to be irradiated can be crystallized almost uniformly.
  • the TFT element is formed on the object to be irradiated, it is possible to prevent the switching characteristics of the TFT element from being extremely deteriorated.
  • the projection mask is a first light transmission pattern that transmits light for crystallizing the irradiation object, and a first light transmission pattern extending in a predetermined first direction is formed.
  • (m is an even number of 2 or more) first light transmission pattern regions and n (n is an even number of 2 or more) number of second light transmission patterns that transmit light for crystallizing the irradiation object
  • the second light transmission pattern region The first light transmissive pattern region and the second light transmissive pattern region are provided on the projection mask with mZ2 first light transmissive pattern regions, n second light transmissive pattern regions, and mZ2 first light transmissive pattern regions. Arranged in this order.
  • the m first light transmission pattern regions and the n second light transmission pattern regions are irradiated with light onto the projection masks arranged in the order as described above, and the first masks formed in the respective regions of the projection masks.
  • transmitted the 2nd light transmissive pattern is irradiated to an irradiation target object.
  • the irradiation object is irradiated with light while moving the irradiation object by a dimension in a predetermined direction of each region of the projection mask.
  • the area of the crystallized region irradiated with the light having the shape of the first light transmission pattern and the shape of the second light transmission pattern can be made equal. Therefore, the irradiation object can be crystallized uniformly.
  • TFT elements thin film transistor elements
  • the electrical characteristics of each TFT element can be made the same.
  • the switching characteristics of each TFT element can be made uniform.
  • the irradiation object can be crystallized more uniformly.
  • relatively large crystal grains can be formed.
  • the first light transmissive pattern region and the second light transmissive pattern region have nZ2 second light transmissive pattern regions, m first light transmissive pattern regions, and nZ2 pieces on the projection mask.
  • the second light transmission pattern regions are arranged in order.
  • the m first light transmission pattern regions and the n second light transmission pattern regions irradiate light onto the projection masks arranged in the order as described above, and the first light transmission pattern regions are formed in the respective regions of the projection mask.
  • the object to be irradiated is irradiated with light transmitted through the first and second light transmission patterns.
  • the irradiation object is irradiated with light while moving the irradiation object by a dimension in a predetermined direction of each region of the projection mask.
  • the irradiation object crystallized by the final irradiation of the laser beam, the area of the crystallized region irradiated with the light having the shape of the first light transmission pattern and the shape of the second light transmission pattern
  • the area of the crystallized region irradiated with light can be made equal. Therefore, the irradiation object can be crystallized uniformly.
  • TFT elements thin film transistor elements
  • the formation direction of one TFT element and the formation direction of the other TFT element with respect to the irradiation object Even when is different, the electrical characteristics of each TFT element, specifically, the switching characteristics can be made the same. In other words, the switching characteristics of each TFT element can be made uniform.
  • the irradiation object can be crystallized more uniformly. And relatively large crystal grains can be formed.
  • relatively large crystal grains By forming relatively large crystal grains in this way and making the electron mobility of the irradiation object relatively high, for example, a plurality of TFTs can be formed on the irradiation object.
  • the electrical characteristics of each TFT element specifically, the switching characteristics can be significantly improved.
  • the first and second light transmission patterns are formed such that both end portions in the extending direction are tapered as viewed in the thickness direction of the projection mask. Therefore, unlike a light transmission pattern that is not tapered, such as a rectangular shape, the extension direction and irradiation target in the irradiation area of the irradiation target irradiated with the light in the shape of the first and second light transmission patterns Protrusions formed by collision of crystals growing from both ends in a direction perpendicular to the thickness direction of the object are formed up to both ends in the extending direction of the irradiation region. As a result, the object to be irradiated can be crystallized more uniformly as compared with the case where both ends in the extending direction of the first and second light transmission patterns are not tapered.
  • the switching characteristics of a plurality of TFT elements can be made uniform uniformly.
  • the first irradiation region is formed so that the laser beam is irradiated to the irradiation target so as to extend in the first direction in which the irradiation target is crystallized, and the laser beam is orthogonal to the first direction.
  • a second irradiation region irradiated on the irradiation object is formed so as to extend in the second direction.
  • the first and second irradiation regions are arranged in the order of the first irradiation region, the second irradiation region, the second irradiation region, and the first irradiation region to crystallize the amorphous material.
  • the area of the crystallized portion irradiated with the laser beam extending in the first direction and the laser beam extending in the second direction can be made equal. Therefore, the amorphous material that is the object to be irradiated can be uniformly crystallized.
  • a plurality of thin film transistor elements are formed in the layer of amorphous material that is uniformly crystallized in this way (hereinafter, sometimes referred to as “amorphous material layer”).
  • amorphous material layer the layer of amorphous material that is uniformly crystallized in this way.
  • the target object in the moving step, can be irradiated with the laser beam by moving the target object relative to the light source that emits the laser beam. It can be crystallized to
  • the amorphous material layer is irradiated with laser light in the first and second directions orthogonal to each other to crystallize the amorphous material.
  • the irradiation target in the first irradiation stage of the crystallization process, is irradiated with laser light having one oscillation wavelength, and in the second irradiation stage of the crystallization process, the other oscillation wavelength is different from the one oscillation wavelength.
  • An irradiation target is irradiated with laser light having an oscillation wavelength of.
  • the laser beam having one oscillation wavelength is irradiated in the first irradiation stage, and the irradiation target in the molten state is irradiated with the laser beam having the other oscillation wavelength.
  • the cooling rate can be reduced.
  • the irradiation object when the irradiation object is crystallized, it can be grown into relatively large crystal grains.
  • the electron mobility of the irradiated object can be made relatively high, and a thin film transistor (abbreviation: TFT element) is formed on the irradiated object having a relatively high electron mobility.
  • TFT element thin film transistor
  • the irradiation region forming means forms the first irradiation region where the irradiation target is irradiated so that the laser beam extends in the first direction in which the irradiation target should be crystallized.
  • a second irradiation region is formed on the irradiation target so as to extend in a second direction orthogonal to the one direction.
  • the first and second irradiation areas are arranged by the arrangement means in the order of the first irradiation area, the second irradiation area, the second irradiation area, and the first irradiation area.
  • the first irradiation region and the second irradiation region of the object to be crystallized by the final irradiation of the laser beam are irradiated with the laser beam so as to extend in the first direction and are crystallized.
  • the area of the portion that has been crystallized by irradiating the laser beam so as to extend in the second direction can be made equal. Therefore, it is possible to uniformly crystallize the amorphous material that is the irradiation object.
  • the first and second irradiation areas are formed by the irradiation area forming means, and the first and second irradiation areas are arranged as described above by the arranging means, so that the irradiation can be performed without using the projection mask.
  • the amorphous material as the object can be crystallized uniformly. As a result, the number of parts of the laser carriage device can be reduced. As a result, the structure of the laser carriage apparatus can be simplified and the size can be reduced, and the manufacturing cost of the laser processing apparatus can be reduced.
  • the projection mask is a light transmission pattern that transmits the laser light emitted from the light source cover, and the light transmission extends in a predetermined first direction or a second direction orthogonal to the first direction.
  • a pattern is formed.
  • the projection mask is rotationally driven relative to the irradiation object by the rotational driving means.
  • the projection mask is linearly driven relative to the irradiation object in the first or second direction by the linear driving means.
  • the rotation driving means and the linear driving means are synchronously driven by the control means, and are controlled stepwise so that the light transmission pattern of the projection mask is sequentially in the first direction, the second direction, the second direction, and the first direction.
  • the projection mask is irradiated by the rotation drive means and the linear drive means. It can be rotated and driven linearly relative to the object. As a result, the light emitted from the light source can be transmitted through the light transmission pattern whose extending direction changes in either the first direction or the second direction by the rotational drive by the rotational drive means. Therefore, it is possible to irradiate the irradiation target with laser light having the shape of each light transmission pattern extending in the first and second directions.
  • a projection mask in which a light transmission pattern extending in the first direction or the second direction is formed is used, a projection mask in which a light transmission pattern extending in the first direction and the second direction is formed is used.
  • the object to be crystallized by the final irradiation of the laser beam is crystallized by being irradiated so that the laser beam extends in the first direction.
  • the area of the portion that has been crystallized by irradiating the laser beam so as to extend in the second direction can be made equal. Therefore, it is possible to uniformly crystallize the amorphous material that is the irradiation object.
  • a plurality of thin film transistor elements are formed in the layer of amorphous material that is uniformly crystallized in this way (hereinafter, sometimes referred to as “amorphous material layer”).
  • amorphous material layer the layer of amorphous material that is uniformly crystallized in this way.
  • a laser processing apparatus is used to uniformly crystallize an irradiation object by irradiating the irradiation object with laser light, and a thin film transistor element (abbreviation: abbreviation: TFT element) is formed. Therefore, when a plurality of TFT elements are formed on a uniformly crystallized irradiation target, each TFT element is formed even when the direction of formation of one TFT element relative to the irradiation target is different from the direction of formation of the other TFT element.
  • the electrical characteristics specifically the switching characteristics, can be made the same. In other words, the switching characteristics of each TFT element can be made uniform. As described above, the switching characteristics of the TFT element can be made uniform regardless of the direction in which the TFT element is formed with respect to the irradiation object, so that the degree of freedom in designing a display device using the TFT element can be increased. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Abstract

There are provided a projection mask, a laser machining method, and a laser machining device capable of uniformly crystallizing an object irradiated and a thin film transistor element capable of obtaining uniform electric characteristic of TFT elements formed on the object irradiated. In a projection mask (25), a first light transmitting pattern (25a) is formed in a first and a fourth block (BA, BD) and a second light transmitting pattern (25b) are formed in a second and a third block (BB, BC). In the projection mask (25), the first block (BA), the second block (BB), the third block (BC), and the fourth block (BD) are arranged in this order. A laser beam (31) emitted from a light source (21) is applied to the projection mask (25) and the laser beam which has passed through the first and the second light transmitting pattern (25a, 25b) is applied to a semiconductor film (37).

Description

明 細 書  Specification
投影マスク、レーザ加工方法、レーザ加工装置および薄膜トランジスタ素 子  Projection mask, laser processing method, laser processing apparatus, and thin film transistor element
技術分野  Technical field
[0001] 本発明は、照射対象物にレーザ光を照射して結晶化させるときに用いられる投影 マスク、レーザ加工方法およびレーザ加工装置に関し、さらに結晶化された照射対 象物に形成される薄膜トランジスタ素子に関する。  TECHNICAL FIELD [0001] The present invention relates to a projection mask, a laser processing method, and a laser processing apparatus used when crystallizing an irradiation object by irradiating laser light, and further, a thin film transistor formed on a crystallized irradiation object It relates to an element.
背景技術  Background art
[0002] 半導体デバイスは、単結晶シリコン (Si)またはガラス基板上に成層されるシリコン薄 膜に形成される。このような半導体デバイスは、イメージセンサおよびアクティブマトリ タス液晶表示装置などに用 、られる。液晶表示装置に用いられる半導体デバイスは 、透明な基板上にたとえば薄膜トランジスタ (略称: TFT)素子の規則的なアレイが形 成されること〖こよって構成され、各 TFT素子は画素コントローラとして機能して 、る。 液晶表示装置に用いられている TFT素子は、非晶質シリコン膜に形成されているけ れども、電子移動度の低い非晶質シリコン膜に代えて、電子移動度の高い多結晶シ リコン膜に TFT素子を形成することによって、 TFT素子のスイッチング特性を向上し 、消費電力が低くて応答速度が高 、液晶表示装置が製造されるようになってきて 、 る。  [0002] A semiconductor device is formed of a single crystal silicon (Si) or a thin silicon film formed on a glass substrate. Such semiconductor devices are used for image sensors and active matrix liquid crystal display devices. A semiconductor device used in a liquid crystal display device is configured by forming a regular array of thin film transistor (abbreviation: TFT) elements on a transparent substrate, and each TFT element functions as a pixel controller. RU Although the TFT element used in the liquid crystal display device is formed on an amorphous silicon film, it is replaced with an amorphous silicon film having a low electron mobility, and a polycrystalline silicon film having a high electron mobility. By forming TFT elements on the LCD, switching characteristics of the TFT elements are improved, and power consumption is low and response speed is high, so that liquid crystal display devices are being manufactured.
多結晶シリコン膜は、基板上に堆積している非晶質シリコンまたは微結晶シリコン膜 にエキシマレーザから発せられるレーザ光、たとえば線長が 200mm以上 400mm未 満で、かつ線幅が 0. 2mm以上 1. Omm未満である線状のレーザ光を照射して溶融 し、凝固過程においてシリコンを結晶化(Excimer Laser Crystallization;略称: ELC) させる方法 (以下、「ELC法」と称する場合がある)によって形成される。  A polycrystalline silicon film is a laser beam emitted from an excimer laser on an amorphous silicon or microcrystalline silicon film deposited on a substrate, for example, a line length of 200 mm or more and less than 400 mm and a line width of 0.2 mm or more. 1. It is melted by irradiating a linear laser beam of less than Omm, and crystallizing silicon in the solidification process (Excimer Laser Crystallization; abbreviated as ELC) (hereinafter sometimes referred to as “ELC method”) It is formed.
ELC法では、レーザ光を照射した部分の半導体膜を厚み方向全域にわたって溶 融するのではなぐ半導体膜の一部の領域を残して溶融する。 ELC法によって半導 体膜を単に溶融凝固させるだけでは、未溶融領域と溶融領域との界面の全面にお いて、至る所に結晶核が発生し、半導体膜の最表層に向力つて結晶が成長して、異 なる大きさでかつ異なる結晶方位を有する多数の結晶粒が形成される。したがって結 晶粒径は非常に小さぐ具体的には lOOnm以上 200nm未満となる。多数の小さな 結晶粒が形成されると、結晶粒同士の接触界面である結晶粒界が多数形成され、こ の結晶粒界が、電子を捕獲して電子移動の障壁となるので、結晶粒界が少ない、換 言すれば結晶粒径が比較的大きい多結晶シリコン膜に比べて電子移動度が低くな る。 In the ELC method, the semiconductor film irradiated with the laser beam is melted leaving a part of the semiconductor film that is not melted over the entire thickness direction. If the semiconductor film is simply melted and solidified by the ELC method, crystal nuclei are generated everywhere on the entire interface between the unmelted region and the molten region, and the crystal is directed to the outermost layer of the semiconductor film. Growing and different A large number of crystal grains having different sizes and different crystal orientations are formed. Therefore, the crystal grain size is very small, specifically, lOOnm or more and less than 200nm. When a large number of small crystal grains are formed, a large number of crystal grain boundaries, which are the contact interfaces between the crystal grains, are formed, and these crystal grain boundaries capture electrons and serve as barriers for electron transfer. In other words, the electron mobility is lower than that of a polycrystalline silicon film having a relatively large crystal grain size.
また大きさおよび方位が異なる小さな結晶内においては、電子移動度が結晶毎に それぞれ異なるので、換言すれば異なる動作性能を備える TFT素子が多数形成さ れること〖こなるので、各 TFT素子の相互間で構造の不均一性が生じるとともに、 TFT アレイにスイッチング特性の不均一性が生じる。このような不均一性が生じると、液晶 表示装置にぉ 、て、一表示画面中に応答速度の高 、画素と応答速度の低 、画素と が並存するという問題が生じる。したがって液晶表示装置のさらなる性能向上のため には、スイッチング特性の均一化された TFTアレイが形成される必要がある。 TFT素 子のスイッチング特性を均一化するためには、 TFT素子を形成する多結晶シリコン 膜の結晶化領域を広くするとともに、多結晶シリコン膜の品質を向上する、換言すれ ば結晶化される結晶粒径を可能な限り大きくすること、および結晶方位を制御するこ となどが必要とされる。そこで、単結晶シリコンに近い性能を有する多結晶シリコン膜 を得るための種々の技術が提案されている。  Also, in small crystals of different sizes and orientations, the electron mobility differs from one crystal to another, in other words, a large number of TFT elements having different operating performances are formed. In addition to the non-uniformity of the structure between them, the non-uniformity of the switching characteristics occurs in the TFT array. When such non-uniformity occurs, the liquid crystal display device has a problem that a response speed is high, a pixel and a response speed are low, and a pixel coexists in one display screen. Therefore, to further improve the performance of liquid crystal display devices, it is necessary to form TFT arrays with uniform switching characteristics. In order to make the switching characteristics of TFT elements uniform, the crystallization region of the polycrystalline silicon film forming the TFT element is widened and the quality of the polycrystalline silicon film is improved, in other words, the crystallized crystal. It is necessary to increase the grain size as much as possible and to control the crystal orientation. Therefore, various techniques for obtaining a polycrystalline silicon film having performance close to that of single crystal silicon have been proposed.
図 36は、第 1の従来技術のレーザカ卩ェ装置 1の構成を示す図である。図 37は、半 導体素子 8の構成を示す断面図である。図 38A〜図 38Dは、半導体膜 17における 結晶の成長過程を模式的に示す図である。第 1の従来技術は、ラテラル成長法に分 類されるレーザ結晶化技術であり、レーザ加工装置 1によって、結晶の成長方向に方 位の揃った長細状の結晶を形成する。レーザカ卩ェ装置 1は、パルス状のレーザ光 12 を発することが可能な光源 2、可変減衰器 3、光源 2から発せられるレーザ光 12を反 射してその方向を変化させる複数のミラー 4、可変焦点視野レンズ 5、可変焦点視野 レンズ 5を透過したレーザ光を所定のパターンに限定して通過させる投影マスク 6、投 影マスク 6を通過したレーザ光を後述する半導体素子 8の一表面部に結像させる結 像レンズ 7、半導体素子 8を載置して半導体素子 8を矢符 11で示す方向に移動可能 なステージ 9、ならびに光源 2の出力制御およびステージ 9の矢符 11で示す方向へ の駆動制御を行う制御部 10を含んで構成される。光源 2は、たとえばエキシマレーザ によって実現される。光源 2であるエキシマレーザ力も発せられたレーザ光 12は、可 変減衰器 3、ミラー 4、可変焦点視野レンズ 5、投影マスク 6、結像レンズ 7を経由して 、ステージ 9に載置された半導体素子 8の一表面部に照射される。 FIG. 36 is a diagram showing the configuration of the first conventional laser carriage apparatus 1. As shown in FIG. FIG. 37 is a cross-sectional view showing the configuration of the semiconductor element 8. 38A to 38D are diagrams schematically showing a crystal growth process in the semiconductor film 17. The first conventional technique is a laser crystallization technique classified as a lateral growth method, and a laser processing apparatus 1 forms long and narrow crystals aligned in the crystal growth direction. The laser carriage apparatus 1 includes a light source 2 capable of emitting pulsed laser light 12, a variable attenuator 3, a plurality of mirrors 4 that reflect the laser light 12 emitted from the light source 2 and change its direction, The variable focus field lens 5, the projection mask 6 that allows the laser beam that has passed through the variable focus field lens 5 to pass in a predetermined pattern, and the laser beam that has passed the projection mask 6 are applied to one surface portion of a semiconductor element 8 to be described later. The imaging lens 7 to be imaged and the semiconductor element 8 can be placed and the semiconductor element 8 can be moved in the direction indicated by the arrow 11. And a control unit 10 that performs output control of the light source 2 and drive control in the direction indicated by the arrow 11 of the stage 9. The light source 2 is realized by, for example, an excimer laser. The laser beam 12, which also emits excimer laser power as the light source 2, was placed on the stage 9 via the variable attenuator 3, the mirror 4, the variable focus field lens 5, the projection mask 6, and the imaging lens 7. One surface of the semiconductor element 8 is irradiated.
半導体素子 8は、図 37に示すように、光透過性を有する透明基板 15、透明基板 15 上に形成される下地膜 16および下地膜 16上に形成される半導体膜 17を含む。下 地膜 16上の半導体膜 17の延設方向、図 37では矢符 Aで示す方向に沿って結晶領 域を形成するにあたり、まず半導体膜 17の矢符 Bで示す領域 (以下、「領域 B」と称す る場合がある)以外の領域をマスキングし、エキシマレーザ力 発せられるレーザ光 1 2を半導体膜 17の領域 Bに照射することで半導体膜 17に熱を誘導する。これによつ て領域 Bに照射されたレーザ光 12のエネルギが熱エネルギに変換されて、半導体膜 17の領域 Bに熱を誘導することができるとともに、半導体膜 17をその厚み方向にわ たって溶融することができる。  As shown in FIG. 37, the semiconductor element 8 includes a transparent substrate 15 having optical transparency, a base film 16 formed on the transparent substrate 15, and a semiconductor film 17 formed on the base film 16. In forming the crystal region along the extending direction of the semiconductor film 17 on the underlying film 16, the direction indicated by the arrow A in FIG. 37, the region indicated by the arrow B of the semiconductor film 17 (hereinafter referred to as “region B”). The region other than that of the semiconductor film 17 is masked, and laser light 12 emitted from the excimer laser power is irradiated onto the region B of the semiconductor film 17 to induce heat in the semiconductor film 17. As a result, the energy of the laser beam 12 irradiated to the region B is converted into thermal energy, and heat can be induced to the region B of the semiconductor film 17, and the semiconductor film 17 is extended in the thickness direction. Can be melted.
次に、領域 Bが溶融されている半導体膜 17を冷却することによって凝固させ、図 38 Aに示すように、領域 Bとそれ以外の領域との境界 Bl, B2から、領域 Bの中心に向か うように結晶を成長させる。さらに、図 38Bに示すように、領域 Bにおいて結晶が形成 されて 、な 、部分が含まれるように、領域 Bの一部と重畳する新たな領域 Cを設定し 、前記手順と同様に領域 Cを溶融する。そして、領域 Cで溶融されている半導体膜 1 7を凝固させ、図 38Cに示すように、領域 Cに結晶を形成する。このような手順を繰返 して、所望の結晶を半導体膜 17の延設方向 Aに沿って段階的に成長させる。これに よって、図 38Dに示すように、多結晶構造の半導体結晶を拡大させることができ、結 晶粒の大きい多結晶シリコン膜を形成することができる(たとえば、特表 2000— 505 241号公報参照)。  Next, the semiconductor film 17 in which the region B is melted is solidified by cooling, and as shown in FIG. 38A, the boundary Bl, B2 between the region B and the other regions is directed toward the center of the region B. In this way, crystals are grown. Further, as shown in FIG. 38B, a new region C overlapping with a part of the region B is set so that a crystal is formed in the region B and the portion is included. Melt. Then, the semiconductor film 17 melted in the region C is solidified to form crystals in the region C as shown in FIG. 38C. By repeating such a procedure, a desired crystal is grown stepwise along the extending direction A of the semiconductor film 17. As a result, as shown in FIG. 38D, a semiconductor crystal having a polycrystalline structure can be enlarged, and a polycrystalline silicon film having a large crystal grain can be formed (for example, JP 2000-505241 A). reference).
前述の第 1の従来技術では、ステージ 9の移動速度が低ぐ半導体膜 17の結晶化 に長時間を要する。この問題点を解決するために第 2の従来技術がある。第 2の従来 技術では、マスクのスリットを複数のブロックに分割し、基板全面で結晶を成長させず に、部分的に成長させた結晶を並べるようにして多結晶シリコン膜を形成するように 構成される(たとえば、特表 2003— 509844号公報参照)。 In the first prior art described above, it takes a long time to crystallize the semiconductor film 17 where the moving speed of the stage 9 is low. There is a second conventional technique to solve this problem. In the second prior art, the slit of the mask is divided into a plurality of blocks, and the polycrystalline silicon film is formed by arranging the partially grown crystals without growing the crystal over the entire surface of the substrate. (For example, see Special Table 2003-509844).
前述のように結晶化した半導体膜を有する基板上に形成される TFT素子は、可能 な限り実装密度を高くするために、または回路配置の都合のために必ずしも一方向 に固定されて配設されるわけではなぐ表示素子などのアレイ構造にも依存して配設 される。したがって、 TFT素子は、図 38Dに模式的に示すように、ソース Sからドレイ ン Dに流れる電流の方向、換言すると矢符 Jで示す電流が流れる方向と結晶の成長 方向とが平行となるように配設される場合と、前記電流が流れる方向と結晶の成長方 向とが垂直となるように配設される場合とがある。電流が流れる方向と結晶の成長方 向とが平行である場合の TFT素子のスイッチング特性は良好であるけれども、電流 が流れる方向と結晶の成長方向とが垂直である場合の TFT素子のスイッチング特性 には不均一性が生じるという問題がある。  As described above, a TFT element formed on a substrate having a crystallized semiconductor film is not necessarily fixed in one direction in order to increase the mounting density as much as possible or for the convenience of circuit arrangement. However, it is arranged depending on the array structure such as the display element. Therefore, in the TFT element, as schematically shown in FIG. 38D, the direction of the current flowing from the source S to the drain D, in other words, the direction of the current indicated by the arrow J is parallel to the crystal growth direction. In some cases, the current flows in a direction perpendicular to the crystal growth direction. Although the switching characteristics of the TFT element are good when the current flow direction and the crystal growth direction are parallel, the switching characteristics of the TFT element when the current flow direction and the crystal growth direction are perpendicular Has the problem of non-uniformity.
この問題点を解決すべく第 3の従来技術では、配列方向が第 1方向および第 1方 向に直交する第 2方向のストライプパターンの領域力も成るマスクを用いて、非晶質 シリコン膜が形成された基板をマスク幅の 1Z4だけ移動させながらレーザ光を照射 する。そして一定の大きさの結晶粒を形成し、非晶質シリコン膜に形成される結晶化 領域の異方性を解消するように構成される(たとえば、特開 2003— 22969号公報参 照)。  In order to solve this problem, the third conventional technique forms an amorphous silicon film using a mask that also has the region force of the stripe pattern in the second direction in which the arrangement direction is orthogonal to the first direction and the first direction. The laser beam is irradiated while moving the substrate by 1Z4 of the mask width. Then, crystal grains of a certain size are formed so as to eliminate the anisotropy of the crystallized region formed in the amorphous silicon film (see, for example, JP-A-2003-22969).
し力し第 3の従来技術のように、第 1方向のストライプパターンを有する領域と、第 2 方向のストライプパターンを有する領域とが交互に配列されたマスクを用いて、基板 にレーザ光を照射して結晶化させると、レーザ光の最終照射によって結晶化された 領域において、予め定める第 1方向に成長した結晶部分と、第 1方向に直交する第 2 方向に成長した結晶部分との面積が同等にならない。換言すれば、非晶質シリコン 膜が形成された基板を均一に結晶化させることができないという問題がある。  As in the third prior art, the substrate is irradiated with laser light using a mask in which regions having a stripe pattern in the first direction and regions having a stripe pattern in the second direction are alternately arranged. Then, in the region crystallized by the final irradiation of the laser beam, the area between the crystal part grown in the first direction and the crystal part grown in the second direction orthogonal to the first direction is Not equal. In other words, there is a problem that the substrate on which the amorphous silicon film is formed cannot be crystallized uniformly.
均一に結晶化されていないシリコン基板に TFT素子を形成すると、 TFT素子を流 れる電流の方向と結晶の成長方向とのなす角度が 0度である場合と、前記電流の方 向と結晶の成長方向とのなす角度が 90度である場合とで電気的特性が一致しないう え、 TFT素子のスィッチがオン(ON)状態時のドレイン電流の値が異なるので、 TFT 液晶ディスプレイなどのデバイスを設計するときの支障となっている。 発明の開示 When a TFT element is formed on a silicon substrate that is not uniformly crystallized, the angle between the direction of the current flowing through the TFT element and the growth direction of the crystal is 0 degree, and the direction of the current and the growth of the crystal. The electrical characteristics do not match when the angle with the direction is 90 degrees, and the drain current value when the TFT switch is on is different, so devices such as TFT liquid crystal displays can be designed. It has become an obstacle when doing. Disclosure of the invention
本発明の目的は、照射対象物を均一に結晶化させることができる投影マスク、レー ザ加工方法およびレーザ加工装置を提供することであり、また照射対象物に形成し たときの電気的特性を均一にすることができる薄膜トランジスタ素子を提供することで ある。  An object of the present invention is to provide a projection mask, a laser processing method, and a laser processing apparatus capable of uniformly crystallizing an irradiation object, and to provide electrical characteristics when formed on the irradiation object. It is an object to provide a thin film transistor element that can be made uniform.
本発明は、照射対象物を結晶化させるための光を透過する第 1光透過パターンお よび第 2光透過パターンが形成される投影マスクであって、  The present invention is a projection mask on which a first light transmission pattern and a second light transmission pattern that transmit light for crystallizing an irradiation object are formed,
予め定める第 1方向に延びる第 1光透過パターンが形成される第 1領域と、 第 1方向に直交する第 2方向に延びる第 2光透過パターンが形成される第 2領域と 前記第 2光透過パターンが形成される第 3領域と、  A first region in which a first light transmission pattern extending in a first direction is formed, a second region in which a second light transmission pattern extending in a second direction orthogonal to the first direction is formed, and the second light transmission A third region where a pattern is formed;
前記第 1光透過パターンが形成される第 4領域とを含み、  A fourth region where the first light transmission pattern is formed,
前記第 1〜第 4領域は、第 1領域、第 2領域、第 3領域および第 4領域の順に並べて 配設されることを特徴とする投影マスクである。  The first to fourth areas are projection masks arranged in the order of a first area, a second area, a third area, and a fourth area.
また本発明は、照射対象物を結晶化させるための光を透過する第 1光透過パター ンおよび第 2光透過パターンが形成され、これら第 1および第 2光透過パターンが形 成される複数の領域を並べて配設する投影マスクであって、  In the present invention, a first light transmission pattern and a second light transmission pattern that transmit light for crystallizing the irradiation object are formed, and a plurality of these first and second light transmission patterns are formed. A projection mask in which areas are arranged side by side,
前記複数の領域が並べられる並び方向に対して傾斜する第 1傾斜方向に延びる第 1光透過パターンが形成される第 1領域と、  A first region in which a first light transmission pattern extending in a first inclined direction inclined with respect to an arrangement direction in which the plurality of regions are arranged is formed;
前記第 1光透過パターンが形成される第 2領域と、  A second region where the first light transmission pattern is formed;
第 1傾斜方向に直交する第 2傾斜方向に延びる第 2光透過パターンが形成される 第 3領域と、  A third region in which a second light transmission pattern extending in a second inclination direction orthogonal to the first inclination direction is formed; and
前記第 2光透過パターンが形成される第 4領域とを含み、前記第 1〜第 4領域は、 第 1領域、第 2領域、第 3領域および第 4領域の順に並べて配設されることを特徴とす る投影マスクである。  A fourth region where the second light transmission pattern is formed, and the first to fourth regions are arranged in the order of the first region, the second region, the third region, and the fourth region. This is a projection mask.
また本発明は、前記第 1〜第 4領域は、第 1領域、第 3領域、第 4領域および第 2領 域の順に並べて配設されることを特徴とする。  In the invention, it is preferable that the first to fourth regions are arranged in the order of the first region, the third region, the fourth region, and the second region.
また本発明は、照射対象物を結晶化させるための光を透過する第 1光透過パター ンおよび第 2光透過パターンが形成される投影マスクであって、 予め定める第 1方向に延びる第 1光透過パターンが形成される m (mは 2以上の偶 数)個の第 1光透過パターン領域と、 The present invention also provides a first light transmission pattern that transmits light for crystallizing the irradiation object. M (m is an even number of 2 or more) first light transmission patterns, which are formed in a projection mask on which a first light transmission pattern extending in a first direction is formed. Area,
第 1方向に直交する第 2方向に延びる第 2光透過パターンが形成される n (nは 2以 上の偶数)個の第 2光透過パターン領域とを含み、  And n (n is an even number of 2 or more) second light transmission pattern regions formed with a second light transmission pattern extending in a second direction orthogonal to the first direction,
mZ2個の第 1光透過パターン領域、 n個の第 2光透過パターン領域、および mZ2 個の第 1光透過パターン領域の順に並べて配設されることを特徴とする投影マスクで ある。  The projection mask is characterized by being arranged in the order of mZ2 first light transmission pattern regions, n second light transmission pattern regions, and mZ2 first light transmission pattern regions.
また本発明は、前記第 1光透過パターン領域および第 2光透過パターン領域は、 n Z2個の第 2光透過パターン領域、 m個の第 1光透過パターン領域、および nZ2個 の第 2光透過パターン領域の順に並べて配設されることを特徴とする。  In the present invention, the first light transmission pattern region and the second light transmission pattern region may include n Z2 second light transmission pattern regions, m first light transmission pattern regions, and nZ2 second light transmission patterns. They are arranged in the order of pattern areas.
また本発明は、前記第 1および第 2光透過パターンは、各延び方向の両端部が、投 影マスクの厚み方向に見て先細状に形成されることを特徴とする。  Further, the invention is characterized in that the first and second light transmission patterns are formed such that both end portions in each extending direction are tapered when viewed in the thickness direction of the projection mask.
また本発明は、照射対象物である非晶質材料カゝら成る層に、照射対象物を結晶化 させるべき互いに直交する第 1および第 2方向に、レーザ光を照射して結晶化させる レーザ加工方法であって、  Further, the present invention provides a laser beam that is crystallized by irradiating a laser beam in first and second directions orthogonal to each other to crystallize the irradiation object on the layer made of the amorphous material that is the irradiation object. A processing method,
レーザ光が前記第 1方向に延びるように照射対象物に照射される第 1照射領域を 形成する工程と、  Forming a first irradiation region in which the irradiation target is irradiated so that the laser light extends in the first direction;
レーザ光が前記第 2方向に延びるように照射対象物に照射される第 2照射領域を 形成する工程と、  Forming a second irradiation region in which the irradiation object is irradiated so that the laser light extends in the second direction;
第 1および第 2照射領域を、第 1照射領域、第 2照射領域、第 2照射領域および第 1 照射領域の順に並べて、前記非晶質材料を結晶化する結晶化工程とを含むことを 特徴とするレーザ加工方法である。  A crystallization step of crystallizing the amorphous material by arranging the first and second irradiation regions in the order of the first irradiation region, the second irradiation region, the second irradiation region, and the first irradiation region. This is a laser processing method.
また本発明は、照射対象物を、レーザ光を発する光源に対して相対移動させる移 動工程をさらに含むことを特徴とする。  The present invention is further characterized by further including a moving step of moving the irradiation object relative to the light source that emits the laser light.
また本発明は、結晶化工程と移動工程とを繰返す繰返し工程をさらに含むことを特 徴とする。  In addition, the present invention is characterized in that it further includes a repeating step of repeating the crystallization step and the moving step.
また本発明は、結晶化工程は、 一の発振波長のレーザ光を照射対象物に照射する第 1照射段階と、 In the present invention, the crystallization step includes A first irradiation step of irradiating an irradiation object with a laser beam having one oscillation wavelength;
前記一の発振波長のレーザ光を照射するとともに、前記一の発振波長とは異なる 他の発振波長のレーザ光を照射対象物に照射する第 2照射段階とを含むことを特徴 とする。  And a second irradiation step of irradiating the object to be irradiated with laser light having another oscillation wavelength different from the one oscillation wavelength.
また本発明は、照射対象物である非晶質材料カゝら成る層に、照射対象物を結晶化 させるべき互いに直交する第 1および第 2方向に、レーザ光を照射して結晶化させる レーザカ卩ェ装置であって、  Further, the present invention provides a laser beam which is crystallized by irradiating a layer made of an amorphous material, which is an irradiation object, with laser light in first and second directions orthogonal to each other to crystallize the irradiation object. A device,
レーザ光が前記第 1方向に延びるように照射対象物に照射される第 1照射領域を 形成し、レーザ光が前記第 2方向に延びるように照射対象物に照射される第 2照射 領域を形成する照射領域形成手段と、第 1および第 2照射領域を、第 1照射領域、第 2照射領域、第 2照射領域および第 1照射領域の順に並べて配設する配設手段とを 含むことを特徴とするレーザ加工装置である。  A first irradiation region is formed on the irradiation target so that the laser light extends in the first direction, and a second irradiation region is formed on the irradiation target so that the laser light extends in the second direction. An irradiation region forming means for arranging the first and second irradiation regions in order of the first irradiation region, the second irradiation region, the second irradiation region, and the first irradiation region. It is a laser processing apparatus.
また本発明は、照射対象物である非晶質材料力 成る層にレーザ光を照射して結 晶化させるレーザ加工装置であって、  The present invention also relates to a laser processing apparatus for irradiating a layer of amorphous material force, which is an object to be irradiated, with laser light for crystallization.
レーザ光を発する光源と、  A light source that emits laser light;
前記光源から発せられるレーザ光を透過する光透過パターンであって、予め定める 第 1方向またはこの第 1方向に直交する第 2方向に延びる光透過パターンが形成さ れる投影マスクと、  A projection mask formed with a light transmission pattern that transmits laser light emitted from the light source and extending in a predetermined first direction or a second direction orthogonal to the first direction;
投影マスクを照射対象物に対して相対的に回動駆動可能な回動駆動手段と、 投影マスクを照射対象物に対して第 1または第 2方向に相対的に直線駆動可能な 直線駆動手段と、  A rotation driving means capable of rotationally driving the projection mask relative to the irradiation object; and a linear driving means capable of linearly driving the projection mask relative to the irradiation object in the first or second direction. ,
回動駆動手段および直線駆動手段を同期駆動させる制御手段とを含み、 前記制御手段は、投影マスクの光透過パターンが順次、第 1方向、第 2方向、第 2 方向および第 1方向となるように段階的に制御することを特徴とするレーザ加工装置 である。  A rotation drive means and a control means for synchronously driving the linear drive means, wherein the control means sequentially sets the light transmission pattern of the projection mask in the first direction, the second direction, the second direction, and the first direction. The laser processing apparatus is characterized by being controlled step by step.
また本発明は、前記レーザ加工装置を用いて結晶化された照射対象物に形成され ることを特徴とする薄膜トランジスタ素子である。  According to another aspect of the present invention, there is provided a thin film transistor element formed on an irradiation object crystallized using the laser processing apparatus.
図面の簡単な説明 本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確にな るであろう。 Brief Description of Drawings Objects, features and advantages of the present invention will become more apparent from the following detailed description and drawings.
図 1は、本発明の第 1の実施の形態であるレーザ加工装置 20の構成を示す図であ る。  FIG. 1 is a diagram showing a configuration of a laser processing apparatus 20 according to the first embodiment of the present invention.
図 2は、半導体素子 27の構成を示す断面図である。  FIG. 2 is a cross-sectional view showing the configuration of the semiconductor element 27.
図 3は、投影マスク 25を示す平面図である。  FIG. 3 is a plan view showing the projection mask 25.
図 4は、半導体膜 37に形成される結晶 42の状態の一部を拡大して示す平面図で ある。  FIG. 4 is an enlarged plan view showing a part of the state of the crystal 42 formed in the semiconductor film 37.
図 5は、投影マスク 6を模式的に示す平面図である。  FIG. 5 is a plan view schematically showing the projection mask 6.
図 6A〜図 6Dは、図 5に示す投影マスク 6を用いて半導体膜 17を結晶化させるとき の結晶 42の成長過程を段階的に示す図である。  6A to 6D are diagrams showing the growth process of the crystal 42 stepwise when the semiconductor film 17 is crystallized using the projection mask 6 shown in FIG.
図 7は、図 6Bのセクション IIを拡大した平面図である。  FIG. 7 is an enlarged plan view of section II of FIG. 6B.
図 8は、投影マスク 6Aを模式的に示す平面図である。  FIG. 8 is a plan view schematically showing the projection mask 6A.
図 9は、図 8に示す投影マスク 6Aを用いて繰返し工程を行うことによって、半導体 膜 17に形成される結晶 42の状態を示す平面図である。  FIG. 9 is a plan view showing a state of the crystal 42 formed in the semiconductor film 17 by repeating the process using the projection mask 6A shown in FIG.
図 10は、投影マスク 25を模式的に示す平面図である。  FIG. 10 is a plan view schematically showing the projection mask 25.
図 11A〜図 11Dは、図 10に示す投影マスク 25を用いて半導体膜 37を結晶化させ るときの結晶 42の成長過程を段階的に示す図である。  FIG. 11A to FIG. 11D are diagrams showing the growth process of the crystal 42 stepwise when the semiconductor film 37 is crystallized using the projection mask 25 shown in FIG.
図 12は、図 11Dのセクション IVを拡大した平面図である。  FIG. 12 is an enlarged plan view of section IV of FIG. 11D.
図 13は、投影マスク 25Aを模式的に示す平面図である。  FIG. 13 is a plan view schematically showing the projection mask 25A.
図 14は、図 13に示す投影マスク 25Aを用いて繰返し工程を行うことによって、半導 体膜 37に形成される結晶 42の状態を示す平面図である。  FIG. 14 is a plan view showing a state of the crystal 42 formed on the semiconductor film 37 by performing the repetition process using the projection mask 25A shown in FIG.
図 15は、結晶化された半導体膜 37およびその半導体膜 37に形成される薄膜トラ ンジスタ素子 50を示す平面図である。  FIG. 15 is a plan view showing the crystallized semiconductor film 37 and the thin film transistor element 50 formed in the semiconductor film 37.
図 16は、結晶化された半導体膜 37およびその半導体膜 37に形成される薄膜トラ ンジスタ素子 50を示す平面図である。  FIG. 16 is a plan view showing the crystallized semiconductor film 37 and the thin film transistor element 50 formed in the semiconductor film 37.
図 17は、投影マスク 25Bを模式的に示す平面図である。  FIG. 17 is a plan view schematically showing the projection mask 25B.
図 18は、図 17に示す投影マスク 25Bを用いて繰返し工程を行うことによって、半導 体膜 37に形成される結晶化領域 41の状態を示す平面図である。 FIG. 18 shows a semiconductor circuit by performing an iterative process using the projection mask 25B shown in FIG. 4 is a plan view showing a state of a crystallization region 41 formed in the body film 37. FIG.
図 19は、投影マスク 25Cを模式的に示す平面図である。  FIG. 19 is a plan view schematically showing the projection mask 25C.
図 20は、図 19に示す投影マスク 25Cを用いて繰返し工程を行うことによって、半導 体膜 37に形成される結晶化領域 41の状態を示す平面図である。  FIG. 20 is a plan view showing a state of the crystallization region 41 formed in the semiconductor film 37 by performing the repetition process using the projection mask 25C shown in FIG.
図 21は、投影マスク 100を示す平面図である。  FIG. 21 is a plan view showing the projection mask 100.
図 22は、投影マスク 100を模式的に示す平面図である。  FIG. 22 is a plan view schematically showing the projection mask 100.
図 23A〜図 23Dは、図 22に示す投影マスク 100を用いて半導体膜 37を結晶化さ せるときの結晶 42の成長過程を段階的に示す図である。  FIG. 23A to FIG. 23D are diagrams showing the growth process of the crystal 42 when the semiconductor film 37 is crystallized using the projection mask 100 shown in FIG.
図 24は、図 23Dのセクション VIIIを拡大した平面図である。  FIG. 24 is an enlarged plan view of section VIII of FIG. 23D.
図 25は、結晶化された半導体膜 37およびその半導体膜 37に形成される薄膜トラ ンジスタ素子 50を示す平面図である。  FIG. 25 is a plan view showing the crystallized semiconductor film 37 and the thin film transistor element 50 formed in the semiconductor film 37.
図 26は、投影マスク 110を示す平面図である。  FIG. 26 is a plan view showing the projection mask 110.
図 27は、投影マスク 110を模式的に示す平面図である。  FIG. 27 is a plan view schematically showing the projection mask 110.
図 28A〜図 28Dは、図 27に示す投影マスク 110を用いて半導体膜 37を結晶化さ せるときの結晶 42の成長過程を段階的に示す図である。  FIG. 28A to FIG. 28D are diagrams showing the growth process of the crystal 42 when the semiconductor film 37 is crystallized using the projection mask 110 shown in FIG.
図 29は、図 28Dのセクション IXを拡大した平面図である。  FIG. 29 is an enlarged plan view of section IX of FIG. 28D.
図 30は、結晶化された半導体膜 37およびその半導体膜 37に形成される薄膜トラ ンジスタ素子 50を示す平面図である。  FIG. 30 is a plan view showing the crystallized semiconductor film 37 and the thin film transistor element 50 formed in the semiconductor film 37. FIG.
図 31は、本発明の第 6の実施の形態であるレーザ加工装置 60の構成を示す図で ある。  FIG. 31 is a diagram showing a configuration of a laser processing apparatus 60 according to the sixth embodiment of the present invention.
図 32は、第 1レーザ光 65および第 2レーザ光 66を発する時間と出力との関係を示 すグラフである。  FIG. 32 is a graph showing the relationship between the output time of the first laser beam 65 and the second laser beam 66 and the output.
図 33は、本発明の第 7の実施の形態であるレーザ加工装置 70の構成を示す図で ある。  FIG. 33 is a diagram showing a configuration of a laser processing apparatus 70 according to the seventh embodiment of the present invention.
図 34A〜図 34Dは、回動駆動部 72によって回動される投影マスク 71の回動過程 を段階的に示す図である。  FIG. 34A to FIG. 34D are diagrams showing the rotation process of the projection mask 71 rotated by the rotation drive unit 72 step by step.
図 35A〜図 35Dは、回動駆動部 72によって回動される投影マスク 200の回動過 程を段階的に示す図である。 図 36は、第 1の従来技術のレーザ加工装置 1の構成を示す図である。 FIG. 35A to FIG. 35D are diagrams showing the rotation process of the projection mask 200 rotated by the rotation drive unit 72 in a stepwise manner. FIG. 36 is a diagram showing a configuration of the laser processing apparatus 1 of the first conventional technique.
図 37は、半導体素子 8の構成を示す断面図である。  FIG. 37 is a cross-sectional view showing the configuration of the semiconductor element 8.
図 38A〜図 38Dは、半導体膜 17における結晶の成長過程を模式的に示す図であ る。  38A to 38D are diagrams schematically showing a crystal growth process in the semiconductor film 17.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下図面を参考にして本発明の好適な実施例を詳細に説明する。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
以下に、本発明を実施するための複数の形態について説明する。以下の説明にお V、て、先行して説明して 、る事項に対応する部分につ!、ては同一の参照符を付し、 重複する説明を省略する場合がある。構成の一部のみを説明している場合、構成の 他の部分は、先行して説明している部分と同様とする。  Hereinafter, a plurality of modes for carrying out the present invention will be described. In the following description, the parts corresponding to the matters described in advance will be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the structure is described, the other parts of the structure are the same as the parts described in advance.
図 1は、本発明の第 1の実施の形態であるレーザ加工装置 20の構成を示す図であ る。図 2は、半導体素子 27の構成を示す断面図である。図 3は、投影マスク 25を示す 平面図である。本発明の第 1の実施の形態であるレーザ加工方法は、レーザ加工装 置 20によって実施される。レーザカ卩ェ装置 20は、光源 21、可変減衰器 22、ミラー、 可変焦点視野レンズ 24、投影マスク 25、結像レンズ 26、ステージ 28および制御部 2 9を含んで構成される。光源 21は、パルス状のレーザ光を発することが可能であり、 たとえば波長が 308nmの塩ィ匕キセノン (XeCl)を用いたエキシマレーザ発振器によ つて実現される。本実施の形態では、エキシマレーザ発振器から、パルス幅が 30ns であるレーザ光が発せられる。光源とエキシマレーザ発振器とは実質的に同一である ので、以下の説明では「光源 21」を「エキシマレーザ発振器 21」と称する場合がある 可変減衰器 22は、光源 21から発せられたレーザ光 31の透過率を設定可能に構成 される。可変減衰器 22で透過率を変えることによって、光源 21から発せられたレーザ 光 31の照度を調整することができる。ミラー 23は、光源 21から発せられたレーザ光 3 1を反射してその方向を変化させる。可変焦点視野レンズ 24は、光源 21から発せら れて入射したレーザ光 31魏光して焦点を調整するレンズである。投影マスク 25に は、照射対象物を結晶化させるための光を透過する光透過パターンが形成される。 可変焦点視野レンズ 24を透過したレーザ光は、投影マスク 25に形成される所定の 光透過パターンを透過する。結像レンズ 26は、投影マスク 25を透過したレーザ光を 後述する半導体素子 27の厚み方向一表面部に結像させる。ステージ 28は、予め定 める第 1移動方向(図 1では紙面の左右方向) Xと、第 1移動方向 Xおよびステージ 28 の厚み方向にそれぞれ垂直な方向である第 2移動方向(図 1では紙面に垂直な方向 )Yとにそれぞれ移動可能に構成される。ステージ 28上には、照射対象物である半 導体素子 27が載置される。 FIG. 1 is a diagram showing a configuration of a laser processing apparatus 20 according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view showing the configuration of the semiconductor element 27. FIG. 3 is a plan view showing the projection mask 25. The laser processing method according to the first embodiment of the present invention is performed by the laser processing apparatus 20. The laser carriage device 20 includes a light source 21, a variable attenuator 22, a mirror, a variable focus field lens 24, a projection mask 25, an imaging lens 26, a stage 28, and a control unit 29. The light source 21 can emit pulsed laser light, and is realized by, for example, an excimer laser oscillator using a salty xenon (XeCl) having a wavelength of 308 nm. In this embodiment, laser light having a pulse width of 30 ns is emitted from an excimer laser oscillator. Since the light source and the excimer laser oscillator are substantially the same, in the following description, the “light source 21” may be referred to as the “excimer laser oscillator 21”. The variable attenuator 22 is a laser beam emitted from the light source 21. It is configured so that the transmittance can be set. By changing the transmittance with the variable attenuator 22, the illuminance of the laser light 31 emitted from the light source 21 can be adjusted. The mirror 23 reflects the laser light 31 emitted from the light source 21 and changes its direction. The variable focus field lens 24 is a lens that adjusts the focus by emitting the laser beam 31 emitted from the light source 21 and incident. The projection mask 25 is formed with a light transmission pattern that transmits light for crystallizing the irradiation object. The laser light that has passed through the variable focus field lens 24 is passed through a predetermined mask formed on the projection mask 25. The light transmission pattern is transmitted. The imaging lens 26 forms an image of the laser light transmitted through the projection mask 25 on one surface in the thickness direction of a semiconductor element 27 described later. The stage 28 has a predetermined first moving direction X (the left-right direction in FIG. 1 in FIG. 1) X and a second moving direction (in FIG. 1, the direction perpendicular to the first moving direction X and the thickness direction of the stage 28). It is configured to be movable in the direction perpendicular to the paper surface (Y). On the stage 28, a semiconductor element 27 as an irradiation object is placed.
制御部 29は、中央演算処理装置(Central Processing Unit ;略称: CPU)を備える マイクロコンピュータなどによって実現される処理回路である。制御部 29には、光源 2 1およびステージ 28が電気的に接続されている。制御部 29は、光源 21の出力を制 御、具体的には光源 21から発せられるレーザ光 31の発振パルス時間および周期を 制御するとともに、ステージ 28の第 1移動方向 Xおよび第 2移動方向 Yへの駆動制御 、具体的にはステージ 28上に載置される半導体素子 27の位置を制御する。レーザ 光の発振パルス時間および周期の制御は、制御部 29が、たとえば半導体素子 27の 結晶化処理条件毎に予め定められる発振パルス時間および周期を関連情報として 対応表を生成し、その対応表が記憶される記憶部を制御部 29に設け、記憶部から 読出した前記対応表の関連情報に基づく制御信号を光源 21に与えることによって実 現される。ステージ 28の駆動制御は、予め制御部 29に与えられる情報に基づいて 数値制御(Numerical Control;略称: NC)を行うように構成してもよ 、し、半導体素子 27の位置を検出する位置センサを設け、位置センサ力もの検出出力に応答して制 御を行うように構成してもよ 、。  The control unit 29 is a processing circuit realized by a microcomputer or the like that includes a central processing unit (abbreviation: CPU). A light source 21 and a stage 28 are electrically connected to the control unit 29. The control unit 29 controls the output of the light source 21, specifically controls the oscillation pulse time and period of the laser light 31 emitted from the light source 21, and the first movement direction X and second movement direction Y of the stage 28. Specifically, the position of the semiconductor element 27 placed on the stage 28 is controlled. For control of the oscillation pulse time and period of the laser beam, the control unit 29 generates a correspondence table using the oscillation pulse time and period predetermined for each crystallization processing condition of the semiconductor element 27 as related information, for example. The storage unit to be stored is provided in the control unit 29, and a control signal based on the related information in the correspondence table read from the storage unit is given to the light source 21. The drive control of the stage 28 may be configured to perform numerical control (abbreviation: NC) based on information given to the control unit 29 in advance, and a position sensor that detects the position of the semiconductor element 27 It may be configured to control in response to the detection output of the position sensor force.
制御部 29からの制御信号に従って光源 21から発せられるレーザ光 31は、図 1に 示すように、可変減衰器 22、可変焦点視野レンズ 24、投影マスク 25を経由し、結像 レンズ 26によって半導体素子 27の厚み方向一表面部に照射される。  As shown in FIG. 1, a laser beam 31 emitted from a light source 21 in accordance with a control signal from a control unit 29 passes through a variable attenuator 22, a variable focus field lens 24, and a projection mask 25, and is formed by a semiconductor element by an imaging lens 26. One surface portion in the thickness direction of 27 is irradiated.
半導体素子 27は、図 2に示すように、光透過性を有する透明基板 35、下地膜 36お よび半導体膜 37を含み、透明基板 35上に下地膜 36および半導体膜 37が順次積層 されて構成される。下地膜 36として用いられる材料は、二酸化珪素(SiO )、酸化窒  As shown in FIG. 2, the semiconductor element 27 includes a transparent substrate 35 having optical transparency, a base film 36, and a semiconductor film 37. The base film 36 and the semiconductor film 37 are sequentially stacked on the transparent substrate 35. Is done. Materials used for the base film 36 are silicon dioxide (SiO 2), nitrous oxide
2 化珪素(SiON)、窒化珪素(SiN)、窒化アルミニウム (A1N)などの誘電体材料であ る。下地膜 36は、蒸着、イオンプレーティング、またはスパッタリングなどによって透明 基板 35上に積層される。下地膜 36上には、半導体膜 37であるアモルファスシリコン 膜が積層される。半導体膜 37は、プラズマェンノヽンスドィ匕学気相堆積 (Plasma Enhan ced Chemical Vapor Deposition;略称: PECVD)、蒸着またはスパッタリングなどによ つて下地膜 36上に積層される。この時点で、半導体膜 37は、アモルファス (非晶質) の状態である。本実施の形態では、下地膜 36の膜厚は lOOnmであり、半導体膜 37 の膜厚は 50nmである。 Dielectric materials such as silicon dioxide (SiON), silicon nitride (SiN), and aluminum nitride (A1N). Underlayer 36 is transparent by vapor deposition, ion plating, sputtering, etc. Laminated on the substrate 35. On the base film 36, an amorphous silicon film which is a semiconductor film 37 is laminated. The semiconductor film 37 is laminated on the base film 36 by plasma enhanced chemical vapor deposition (abbreviation: PECVD), vapor deposition or sputtering. At this point, the semiconductor film 37 is in an amorphous state. In the present embodiment, the film thickness of the base film 36 is lOOnm, and the film thickness of the semiconductor film 37 is 50 nm.
投影マスク 25は、たとえば合成石英基板 (以下、単に「基板」と称する場合がある) にクロム薄膜をパター-ングすることによって形成される。投影マスク 25には、基板の 厚み方向に貫通し、照射対象物である半導体素子 27の半導体膜 37を結晶化させる ための光を透過する複数の第 1光透過パターン 25aおよび第 2光透過パターン 25b が形成されている。投影マスク 25の第 1および第 2光透過パターン 25a, 25b以外の 部分は、光を透過しない非透過部 25cである。本実施の形態の投影マスク 25は、図 3に示すように、その厚み方向に垂直な仮想平面に投影した形状が長方形状である 投影マスク 25は、第 1領域、第 2領域、第 3領域および第 4領域の 4つの領域に分 割されている。換言すると投影マスク 25は、第 1領域に対応する第 1ブロック BA、第 2 領域に対応する第 2ブロック BB、第 3領域に対応する第 3ブロック BCおよび第 4領域 に対応する第 4ブロック BDを含む。以下の説明では、第 1領域を第 1ブロック BA、第 2領域を第 2ブロック BB、第 3領域を第 3ブロック BCおよび第 4領域を第 4ブロック BD と称する場合がある。第 1〜第 4ブロック BA〜BDは、投影マスク 25の厚み方向に垂 直な仮想平面に投影した形状が、投影マスク 25の短手方向に延びる長方形状であ る。第 1ブロック BA、第 2ブロック BB、第 3ブロック BCおよび第 4ブロック BDは、この 順で投影マスク 25の長手方向に一列に並んで設けられる。  The projection mask 25 is formed by, for example, patterning a chromium thin film on a synthetic quartz substrate (hereinafter sometimes simply referred to as “substrate”). The projection mask 25 includes a plurality of first light transmission patterns 25a and second light transmission patterns that penetrate through the substrate in the thickness direction and transmit light for crystallizing the semiconductor film 37 of the semiconductor element 27 that is the irradiation target. 25b is formed. The portions of the projection mask 25 other than the first and second light transmission patterns 25a and 25b are non-transmission portions 25c that do not transmit light. As shown in FIG. 3, the projection mask 25 according to the present embodiment has a rectangular shape projected onto a virtual plane perpendicular to the thickness direction. The projection mask 25 includes a first area, a second area, and a third area. And it is divided into 4 areas, 4th area. In other words, the projection mask 25 includes the first block BA corresponding to the first area, the second block BB corresponding to the second area, the third block BC corresponding to the third area, and the fourth block BD corresponding to the fourth area. including. In the following description, the first area may be referred to as a first block BA, the second area as a second block BB, the third area as a third block BC, and the fourth area as a fourth block BD. In the first to fourth blocks BA to BD, the shape projected onto a virtual plane perpendicular to the thickness direction of the projection mask 25 is a rectangular shape extending in the short direction of the projection mask 25. The first block BA, the second block BB, the third block BC, and the fourth block BD are provided in a line in the longitudinal direction of the projection mask 25 in this order.
第 1ブロック BAおよび第 4ブロック BDには、複数の第 1光透過パターン 25aが形成 されている。図 3には、理解を容易にするために、第 1および第 4ブロック BA, BDに 形成される 3つの第 1光透過パターン 25aを示して 、る。第 1光透過パターン 25aは、 投影マスク 25の長手方向に沿って延びる第 1軸線と、投影マスク 25の短手方向に沿 つて延びる第 2軸線とを含む平面内において、予め定める第 1方向、本実施の形態 では第 2軸線方向に延びている。複数の第 1光透過パターン 25aは、投影マスク 25 の長手方向に間隔をあけて形成されている。本実施の形態において、第 1ブロック B Aの第 1光透過パターン 25aは、第 4ブロック BDの非透過部 25cに対応する位置に 形成され、第 4ブロック BDの第 1光透過パターン 25aは、第 1ブロック BAの非透過部 25cに対応する位置に形成されている。 A plurality of first light transmission patterns 25a are formed on the first block BA and the fourth block BD. FIG. 3 shows three first light transmission patterns 25a formed on the first and fourth blocks BA and BD for easy understanding. The first light transmission pattern 25a has a predetermined first direction in a plane including a first axis extending along the longitudinal direction of the projection mask 25 and a second axis extending along the short direction of the projection mask 25. This embodiment Then, it extends in the second axis direction. The plurality of first light transmission patterns 25 a are formed at intervals in the longitudinal direction of the projection mask 25. In the present embodiment, the first light transmission pattern 25a of the first block BA is formed at a position corresponding to the non-transmission portion 25c of the fourth block BD, and the first light transmission pattern 25a of the fourth block BD is the first light transmission pattern 25a. One block BA is formed at a position corresponding to the non-transmissive portion 25c.
第 3ブロック BCおよび第 4ブロック BDには、複数の第 2光透過パターン 25bが形成 されている。図 3には、理解を容易にするために、第 2および第 3ブロック BB, BCに 形成される 3つの第 2光透過パターン 25bを示して 、る。複数の第 2光透過パターン 2 5bは、前記第 1および第 2軸線を含む平面内において、予め定める第 2方向、本実 施の形態では第 1軸線方向に延びている。複数の第 2光透過パターン 25bは、投影 マスク 25の短手方向に間隔をあけて形成されている。本実施の形態において、第 2 ブロック BBの第 2光透過パターン 25bは、第 3ブロック BCの非透過部 25cに対応す る位置に形成され、第 3ブロック BCの第 2光透過パターン 25bは、第 2ブロック BBの 非透過部 25cに対応する位置に形成されている。  A plurality of second light transmission patterns 25b are formed in the third block BC and the fourth block BD. FIG. 3 shows three second light transmission patterns 25b formed in the second and third blocks BB and BC for easy understanding. The plurality of second light transmission patterns 25b extend in a predetermined second direction, in the present embodiment, in the first axis direction in a plane including the first and second axis lines. The plurality of second light transmission patterns 25b are formed at intervals in the short-side direction of the projection mask 25. In the present embodiment, the second light transmission pattern 25b of the second block BB is formed at a position corresponding to the non-transmission part 25c of the third block BC, and the second light transmission pattern 25b of the third block BC is The second block BB is formed at a position corresponding to the non-transmissive portion 25c.
本実施の形態の第 1および第 2光透過パターン 25a, 25bは、投影マスク 25の厚み 方向に見て六角形状であり、第 1および第 2光透過パターン 25a, 25bの各延び方向 の両端部は、投影マスク 25の厚み方向に見て先細状に形成されて 、る。  The first and second light transmission patterns 25a and 25b of the present embodiment are hexagonal when viewed in the thickness direction of the projection mask 25, and both end portions of the first and second light transmission patterns 25a and 25b in the extending directions. Is formed in a tapered shape when viewed in the thickness direction of the projection mask 25.
次にレーザカ卩ェ装置 20によって、ステージ 28に載置される半導体素子 27の半導 体膜 37を結晶化する工程について、図 1〜図 3を参照して説明する。半導体素子 27 の下地膜 36上の半導体膜 37の延設方向、図 2では矢符 Eで示す方向に沿って結晶 領域を形成するにあたり、まず結晶化工程において、半導体膜 37の矢符 Fで示す領 域 (以下「領域 F」と称する場合がある)以外の領域をマスキングし、エキシマレーザ発 振器 21から発せられるレーザ光 31を半導体膜 37の領域 Fに照射することによって半 導体膜 37に熱を誘導する。  Next, a process of crystallizing the semiconductor film 37 of the semiconductor element 27 placed on the stage 28 by the laser cage apparatus 20 will be described with reference to FIGS. In forming the crystal region along the extending direction of the semiconductor film 37 on the base film 36 of the semiconductor element 27, the direction shown by the arrow E in FIG. 2, first, in the crystallization process, the arrow F of the semiconductor film 37 is used. The semiconductor film 37 is formed by masking areas other than the area shown (hereinafter sometimes referred to as “area F”) and irradiating the area F of the semiconductor film 37 with the laser light 31 emitted from the excimer laser oscillator 21. To induce heat.
換言すると、第 1照射領域を形成する工程において、レーザ光 31が、半導体膜 37 を結晶化させるべき第 1方向に延びるように半導体膜 37に照射される第 1照射領域 を形成する。また第 2照射領域を形成する工程において、レーザ光 31が、半導体膜 37を結晶化させるべき第 1方向に直交する第 2方向に延びるように半導体膜 37に照 射される第 2照射領域を形成する。第 1および第 2照射領域は、前記領域 Fに相当す る。 In other words, in the step of forming the first irradiation region, the first irradiation region in which the semiconductor film 37 is irradiated with the laser light 31 is formed so as to extend in the first direction in which the semiconductor film 37 should be crystallized. In the step of forming the second irradiation region, the laser beam 31 is applied to the semiconductor film 37 so as to extend in the second direction orthogonal to the first direction in which the semiconductor film 37 is to be crystallized. A second irradiated area is formed. The first and second irradiation areas correspond to the area F.
このように半導体膜 37の領域 Fにレーザ光 31を照射し、半導体膜 37に熱を誘導す ることによって、半導体膜 37に照射されたレーザ光 31のエネルギが熱エネルギに変 換されて、半導体膜 37の領域 Fに熱を誘導することができるとともに、半導体膜 37を その厚み方向にわたって溶融することができる。領域 Fが溶融されている半導体膜 3 7を冷却することによって凝固させて結晶化する。さらに述べると、結晶化工程では、 前記第 1および第 2照射領域を、第 1照射領域、第 2照射領域、第 2照射領域および 第 1照射領域の順に並べて、半導体膜 37を結晶化する。  In this way, by irradiating the region F of the semiconductor film 37 with the laser light 31 and inducing heat to the semiconductor film 37, the energy of the laser light 31 irradiated to the semiconductor film 37 is converted into thermal energy, and Heat can be induced in the region F of the semiconductor film 37, and the semiconductor film 37 can be melted in the thickness direction. The semiconductor film 37 in which the region F is melted is solidified by cooling and crystallized. More specifically, in the crystallization step, the first and second irradiation regions are arranged in the order of the first irradiation region, the second irradiation region, the second irradiation region, and the first irradiation region, and the semiconductor film 37 is crystallized.
そして移動工程において、制御部 29がステージ 28を駆動制御することによって、ス テージ 28を第 1移動方向 X—方に所定の距離寸法だけ移動させる。ステージ 28を移 動させることによって、ステージ 28上に載置される半導体素子 27を、第 1移動方向 X 一方に所定の距離寸法だけ移動させることができる。これによつて、投影マスク 25に 形成される複数の第 1および第 2光透過パターン 25a, 25bを透過したレーザ光 31が 半導体素子 27の半導体膜 37の厚み方向一表面部に照射される新たな領域は、第 1 移動方向 X—方に所定の距離寸法だけ移動した領域となる。前記新たな領域は、移 動前の領域と一部分が重複している。ステージ 28を第 1移動方向 X—方に移動させ るときの前記所定の距離寸法は、投影マスク 25の第 1〜第 4ブロック BA〜BDの短手 方向寸法 Wである。  In the moving process, the control unit 29 controls the drive of the stage 28 to move the stage 28 by a predetermined distance dimension in the first moving direction X-direction. By moving the stage 28, the semiconductor element 27 placed on the stage 28 can be moved by a predetermined distance dimension in the first movement direction X. As a result, the laser beam 31 transmitted through the plurality of first and second light transmission patterns 25a and 25b formed on the projection mask 25 is irradiated to one surface portion in the thickness direction of the semiconductor film 37 of the semiconductor element 27. This area is an area moved by a predetermined distance dimension in the first movement direction X- direction. The new area partially overlaps the area before the movement. The predetermined distance dimension when the stage 28 is moved in the first movement direction X-direction is the lateral dimension W of the first to fourth blocks BA to BD of the projection mask 25.
図 4は、半導体膜 37に形成される結晶 42の状態の一部を拡大して示す平面図で ある。以下の実施の形態では、ステージ 28に載置される半導体素子 27の半導体膜 37の長手方向の参照符号として、ステージ 28の第 1移動方向と同一の参照符号「X 」を付し、半導体膜 37の短手方向の参照符号として、ステージ 28の第 2移動方向と 同一の参照符号「Y」を付して説明する。  FIG. 4 is an enlarged plan view showing a part of the state of the crystal 42 formed in the semiconductor film 37. In the following embodiment, as a reference symbol in the longitudinal direction of the semiconductor film 37 of the semiconductor element 27 placed on the stage 28, the same reference symbol “X” as in the first movement direction of the stage 28 is attached, and the semiconductor film Reference numeral “Y”, which is the same as the second moving direction of the stage 28, will be given as a reference numeral 37 in the short direction.
本実施の形態では、繰返し工程において、結晶化工程と移動工程とを交互に行う ことによって、照射対象物である半導体膜 37を結晶化する。具体的に述べると、繰返 し工程では、光源 21から発せられ、投影マスク 25の第 1および第 2光透過パターン 2 5a, 25bを透過したレーザ光 31を半導体膜 37に対して照射し、半導体膜 37の前記 レーザ光 31が照射された領域を結晶化する結晶化工程と、ステージ 28を第 1移動 方向 X—方に、前記第 1〜第 4ブロック BA〜BDの短手方向寸法 Wに相当する距離 寸法だけ移動させる移動工程とを交互に行う。本実施の形態では、結晶化工程を 4 回行い、移動工程を 3回行う。 In the present embodiment, the semiconductor film 37 that is the irradiation object is crystallized by alternately performing the crystallization process and the movement process in the repetition process. Specifically, in the repeating process, the semiconductor film 37 is irradiated with laser light 31 emitted from the light source 21 and transmitted through the first and second light transmission patterns 25a and 25b of the projection mask 25. The semiconductor film 37 A crystallization process for crystallizing the region irradiated with the laser beam 31, and a distance corresponding to the lateral dimension W of the first to fourth blocks BA to BD in the first moving direction X-direction with the stage 28 The movement process of moving only by the distance is performed alternately. In this embodiment, the crystallization process is performed four times and the transfer process is performed three times.
このような繰返し工程を行うことによって、図 4に示すように半導体膜 37には、第 1光 透過パターン 25aを透過したレーザ光が照射されて結晶化された領域 (以下、「第 1 結晶化領域」と称する場合がある) 4 laと、第 2光透過パターン 25bを透過したレーザ 光が照射されて結晶化された領域 (以下、「第 2結晶化領域」と称する場合がある) 41 bとが隣接する結晶化領域 41が形成される。  By repeating such a process, as shown in FIG. 4, the semiconductor film 37 is irradiated with the laser light transmitted through the first light transmission pattern 25a and crystallized (hereinafter referred to as `` first crystallization ''). 4 la and the region crystallized by being irradiated with the laser light transmitted through the second light transmission pattern 25b (hereinafter sometimes referred to as the “second crystallized region”) 41 b Is formed adjacent to each other.
第 1結晶化領域 41aは、光源 21から発せられるレーザ光 31の最終照射によって、 第 3ブロック BCに形成される第 2光透過パターン 25bを透過したレーザ光 31が照射 されて半導体膜 37に形成される結晶化領域である。第 1結晶化領域 41aでは、第 2 光透過パターン 25bの形状のレーザ光が照射された領域のうち、半導体膜 37の短 手方向 Y両端部から短手方向 Y中央部に向力うようにして段階的に結晶 42が成長す る。そして短手方向 Y—方側から成長した結晶 42と短手方向 Y他方側から成長した 結晶 42とが衝突して、半導体膜 37の厚み方向一方に突出する最終突起部 43aが形 成される。レーザ光の最終照射によって第 1結晶化領域 41aに形成される最終突起 部 43aは、半導体膜 37の長手方向 Xに平行に形成される。  The first crystallized region 41a is formed in the semiconductor film 37 by being irradiated with the laser light 31 transmitted through the second light transmission pattern 25b formed in the third block BC by the final irradiation of the laser light 31 emitted from the light source 21. It is a crystallization region. In the first crystallized region 41a, in the region irradiated with the laser light having the shape of the second light transmission pattern 25b, the semiconductor film 37 is directed from both ends in the short direction Y to the short direction Y central portion. As a result, crystal 42 grows step by step. Then, the crystal 42 grown from the short side Y-direction and the crystal 42 grown from the other side of the short direction Y collide with each other to form the final protrusion 43a protruding in one thickness direction of the semiconductor film 37. . The final protrusion 43a formed in the first crystallization region 41a by the final irradiation of the laser light is formed in parallel with the longitudinal direction X of the semiconductor film 37.
第 2結晶化領域 41bは、光源 21から発せられるレーザ光 31の最終照射によって、 第 4ブロック BDに形成される第 1光透過パターン 25aを透過したレーザ光 31が照射 されて半導体膜 37に形成される結晶化領域である。第 2結晶化領域 41bでは、第 1 光透過パターン 25aの形状のレーザ光が照射された領域のうち、半導体膜 37の長 手方向 X両端部力 長手方向 X中央部に向力うようにして段階的に結晶 42が成長す る。そして長手方向 X—方側から成長した結晶 42と長手方向 X他方側から成長した 結晶 42とが衝突して、半導体膜 37の厚み方向一方に突出する最終突起部 43bが形 成される。レーザ光の最終照射によって第 2結晶化領域 41bに形成される最終突起 部 43bは、半導体膜 37の短手方向 Yに平行に形成される。最終突起部 43a, 43bは 、後述する突起部 45a, 45bと区別するために、図 4において実線で示している。 最終照射される前段階でレーザ光が照射された半導体膜 37には、レーザ光が照 射された部分の長手方向 X—方側から成長した結晶 42と長手方向 X他方側から成 長した結晶 42とが衝突して、半導体膜 37の厚み方向一方に突出する突起部 45aが 形成される。この突起部 45aは、図 4の第 1結晶化領域 41aに破線で示している。最 終照射される前段階でレーザ光が照射された半導体膜 37には、レーザ光が照射さ れた部分の短手方向 Y—方側から成長した結晶 42と短手方向 Y他方側から成長し た結晶 42とが衝突して、半導体膜 37の厚み方向一方に突出する突起部 45bが形成 される。この突起部 45bは、図 4の第 2結晶化領域 41bに破線で示している。また図 4 では、前記繰返し工程によって成長した複数の結晶同士の境界部分 46を示して 、る 半導体膜 37において、レーザ光の最終照射によって形成される最終突起部 43a, 43b、最終照射の前段階におけるレーザ光の照射によって形成される突起部 45a, 4 5b、および結晶 42同士の境界部分 46の厚み方向寸法は、それぞれ最終突起部 43 a, 43b、突起部 45a, 45bおよび境界部分 46の順に小さくなつている。 The second crystallized region 41b is formed on the semiconductor film 37 by being irradiated with the laser light 31 transmitted through the first light transmission pattern 25a formed on the fourth block BD by the final irradiation of the laser light 31 emitted from the light source 21. It is a crystallization region. In the second crystallized region 41b, in the region irradiated with the laser beam having the shape of the first light transmission pattern 25a, the longitudinal direction X both end forces of the semiconductor film 37 are applied to the longitudinal direction X toward the central portion. Crystal 42 grows step by step. Then, the crystal 42 grown from the longitudinal direction X-direction and the crystal 42 grown from the other longitudinal direction X collide with each other to form a final protrusion 43b protruding in one thickness direction of the semiconductor film 37. The final protrusion 43b formed in the second crystallization region 41b by the final irradiation of the laser light is formed in parallel to the short direction Y of the semiconductor film 37. The final protrusions 43a and 43b are indicated by solid lines in FIG. 4 in order to distinguish from the protrusions 45a and 45b described later. The semiconductor film 37 irradiated with the laser beam before the final irradiation has a crystal 42 grown from the longitudinal direction X-side of the portion irradiated with the laser beam and a crystal grown from the other side of the longitudinal direction X. As a result of collision with 42, a protrusion 45 a that protrudes in one thickness direction of the semiconductor film 37 is formed. This protrusion 45a is indicated by a broken line in the first crystallization region 41a of FIG. The semiconductor film 37 irradiated with the laser beam in the stage before the final irradiation is irradiated with the crystal 42 grown from the short direction Y-side of the portion irradiated with the laser light and the short direction Y grown from the other side. As a result of the collision with the crystal 42, a protrusion 45 b protruding in one thickness direction of the semiconductor film 37 is formed. This protrusion 45b is indicated by a broken line in the second crystallization region 41b of FIG. Also, FIG. 4 shows a boundary portion 46 between a plurality of crystals grown by the above repeating process. In the semiconductor film 37, the final protrusions 43a and 43b formed by the final irradiation of the laser beam, the stage before the final irradiation. The projections 45a and 45b formed by laser light irradiation and the boundary dimension 46 between the crystals 42 in the thickness direction are the final projections 43a and 43b, the projections 45a and 45b, and the boundary part 46, respectively. It is getting smaller.
次に、従来の技術の投影マスク 6を用いて繰返し工程を行うことによって半導体膜 1 7に形成される結晶 42の状態と、本発明の投影マスク 25を用いて繰返し工程を行う ことによって半導体膜 37に形成される結晶 42の状態とについてそれぞれ説明する。 図 5は、投影マスク 6を模式的に示す平面図である。投影マスク 6は、第 1ブロック B A、第 2ブロック BB、第 3ブロック BCおよび第 4ブロック BDの 4つの領域力 この順に 並んで設けられる。第 2および第 4ブロック BB, BDには、複数の第 1光透過パターン 6aが形成されている。複数の第 1光透過パターン 6aは、投影マスク 6の長手方向に 沿って延びる第 1軸線と、投影マスク 6の短手方向に沿って延びる第 2軸線とを含む 平面内において、予め定める方向、具体的には第 1軸線方向に延びている。複数の 第 1光透過パターン 6aは、投影マスク 6の長手方向に間隔をあけて形成されている。 第 2ブロック BBの第 1光透過パターン 6aは、第 4ブロック BDの非透過部 6cに対応す る位置に形成され、第 4ブロック BDの第 1光透過パターン 6aは、第 2ブロック BBの非 透過部 6cに対応する位置に形成されている。  Next, the state of the crystal 42 formed in the semiconductor film 17 by performing the iterative process using the projection mask 6 of the prior art and the semiconductor film by performing the iterative process using the projection mask 25 of the present invention. Each state of the crystal 42 formed in 37 will be described. FIG. 5 is a plan view schematically showing the projection mask 6. The projection mask 6 is provided in the order of the four area forces of the first block B A, the second block BB, the third block BC, and the fourth block BD. A plurality of first light transmission patterns 6a are formed in the second and fourth blocks BB and BD. The plurality of first light transmission patterns 6a includes a first axis extending along the longitudinal direction of the projection mask 6 and a second axis extending along the short direction of the projection mask 6, in a predetermined direction, Specifically, it extends in the first axis direction. The plurality of first light transmission patterns 6 a are formed at intervals in the longitudinal direction of the projection mask 6. The first light transmission pattern 6a of the second block BB is formed at a position corresponding to the non-transmission portion 6c of the fourth block BD, and the first light transmission pattern 6a of the fourth block BD is non-transmission of the second block BB. It is formed at a position corresponding to the transmission part 6c.
第 1および第 3ブロック BA, BCには、複数の第 2光透過パターン 6bが形成されて いる。複数の第 2光透過パターン 6bは、前記第 1軸線および第 2軸線を含む平面内 において、予め定める方向、具体的には第 2軸線方向に延びている。複数の第 2光 透過パターン 6bは、投影マスク 6の短手方向に間隔をあけて形成されている。第 1ブ ロック BAの第 2光透過パターン 6bは、第 3ブロック BCの非透過部 6cに対応する位置 に形成され、第 3ブロック BCの第 2光透過パターン 6bは、第 1ブロック BAの非透過 部 6cに対応する位置に形成されている。 A plurality of second light transmission patterns 6b are formed on the first and third blocks BA and BC. Yes. The plurality of second light transmission patterns 6b extend in a predetermined direction, specifically in the second axis direction, in a plane including the first axis and the second axis. The plurality of second light transmission patterns 6 b are formed at intervals in the short direction of the projection mask 6. The second light transmission pattern 6b of the first block BA is formed at a position corresponding to the non-transmission part 6c of the third block BC, and the second light transmission pattern 6b of the third block BC is not formed of the first block BA. It is formed at a position corresponding to the transmission part 6c.
次に、図 5に示す投影マスク 6を用いて繰返し工程を行うことによって形成される結 晶 42の成長過程について説明する。ここでは、繰返し工程において、 4回の結晶化 工程および 3回の移動工程を行う場合について説明する。  Next, the growth process of the crystal 42 formed by repeating the process using the projection mask 6 shown in FIG. 5 will be described. Here, the case where four times of crystallization steps and three times of movement steps are performed in the repeated steps will be described.
図 6A〜図 6Dは、図 5に示す投影マスク 6を用いて半導体膜 17を結晶化させるとき の結晶 42の成長過程を段階的に示す図である。図 6Aは、第 1回目の結晶化工程に よって形成される結晶 42の状態を示す図である。図 6Bは、第 1回目の移動工程によ つてステージ 9を予め定める方向に移動した後、第 2回目の結晶化工程によって形成 される結晶 42の状態を示す図である。図 6Cは、第 2回目の移動工程によってステー ジ 9を予め定める方向に移動した後、第 3回目の結晶化工程によって形成される結 晶 42の状態を示す図である。図 6Dは、第 3回目の移動工程によってステージ 9を予 め定める方向に移動した後、第 4回目の結晶化工程によって形成される結晶 42の状 態を示す図である。図 7は、図 6Dのセクション IIを拡大した平面図である。  6A to 6D are diagrams showing the growth process of the crystal 42 stepwise when the semiconductor film 17 is crystallized using the projection mask 6 shown in FIG. FIG. 6A is a diagram showing a state of the crystal 42 formed by the first crystallization process. FIG. 6B is a diagram showing a state of the crystal 42 formed by the second crystallization step after the stage 9 is moved in a predetermined direction by the first movement step. FIG. 6C is a diagram showing a state of the crystal 42 formed by the third crystallization process after the stage 9 has been moved in a predetermined direction by the second movement process. FIG. 6D is a diagram showing a state of the crystal 42 formed by the fourth crystallization step after the stage 9 is moved in the predetermined direction by the third movement step. FIG. 7 is an enlarged plan view of section II of FIG. 6D.
まず第 1回目の結晶化工程において、光源 2から発せられ、投影マスク 6の第 1プロ ック BAの第 2光透過パターン 6bを透過したレーザ光 12を、ステージ 9上に載置され る半導体素子 8の半導体膜 17に照射すると、半導体膜 17の前記レーザ光 12が照射 された領域は結晶化されて、図 6Aに示すように結晶 42が形成される。そして、第 1回 目の移動工程において、ステージ 9を、予め定める方向一方に、投影マスク 6の第 1 〜第 4ブロック BA〜BDの短手方向寸法に相当する距離寸法だけ移動させる。 次に第 2回目の結晶化工程において、第 1回目の結晶化工程によって結晶 42が形 成された半導体膜 17に対して、光源 2から発せられ、投影マスク 6の第 2ブロック BB の第 1光透過パターン 6aを透過したレーザ光 12を照射する。これによつて、前記第 1 回目の結晶化工程によって結晶 42が形成された半導体膜 17のうち、前記レーザ光 12が照射された領域は結晶化されて、図 6Bに示すように、第 1回目の結晶化工程に よって形成された結晶 42の一部に重畳して新たな結晶 42が形成される。そして、第 2回目の移動工程において、ステージ 9を、予め定める方向一方に、投影マスク 6の 第 1〜第 4ブロック BA〜BDの短手方向寸法に相当する距離寸法だけ移動させる。 次に第 3回目の結晶化工程において、第 1回目および第 2回目の結晶化工程によ つて結晶 42が形成された半導体膜 17に対して、光源 2から発せられ、投影マスク 6の 第 3ブロック BCの第 2光透過パターン 6bを透過したレーザ光 12を照射する。これに よって、前記第 1回目および第 2回目の結晶化工程によって結晶 42が形成された半 導体膜 17のうち、前記レーザ光 12が照射された領域は結晶化されて、図 6Cに示す ように、第 1回目および第 2回目の結晶化工程によって形成された結晶 42の一部に 重畳して新たな結晶 42が形成される。そして、第 3回目の移動工程において、ステー ジ 9を、予め定める方向一方に、投影マスク 6の第 1〜第 4ブロック BA〜BDの短手方 向寸法に相当する距離寸法だけ移動させる。 First, in the first crystallization process, a laser beam 12 emitted from the light source 2 and transmitted through the second light transmission pattern 6b of the first block BA of the projection mask 6 is placed on the stage 9 When the semiconductor film 17 of the element 8 is irradiated, the region of the semiconductor film 17 irradiated with the laser light 12 is crystallized to form a crystal 42 as shown in FIG. 6A. Then, in the first moving step, the stage 9 is moved in one predetermined direction by a distance dimension corresponding to the short direction dimension of the first to fourth blocks BA to BD of the projection mask 6. Next, in the second crystallization process, the first film of the second block BB of the second block BB emitted from the light source 2 is emitted from the light source 2 to the semiconductor film 17 in which the crystal 42 is formed by the first crystallization process. The laser beam 12 that has passed through the light transmission pattern 6a is irradiated. As a result, the laser beam in the semiconductor film 17 in which the crystal 42 is formed by the first crystallization process. The region irradiated with 12 is crystallized, and as shown in FIG. 6B, a new crystal 42 is formed so as to overlap with a part of the crystal 42 formed by the first crystallization process. In the second moving step, the stage 9 is moved in one predetermined direction by a distance dimension corresponding to the short-side dimension of the first to fourth blocks BA to BD of the projection mask 6. Next, in the third crystallization process, the light is emitted from the light source 2 to the semiconductor film 17 on which the crystals 42 are formed in the first and second crystallization processes. The laser beam 12 that has passed through the second light transmission pattern 6b of the block BC is irradiated. As a result, in the semiconductor film 17 in which the crystal 42 is formed by the first and second crystallization steps, the region irradiated with the laser beam 12 is crystallized, as shown in FIG. 6C. In addition, a new crystal 42 is formed so as to overlap with a part of the crystal 42 formed by the first and second crystallization steps. Then, in the third moving step, the stage 9 is moved in one predetermined direction by a distance dimension corresponding to the short dimension of the first to fourth blocks BA to BD of the projection mask 6.
次に第 4回目の結晶化工程にぉ 、て、第 1〜第 3回目の結晶化工程によって結晶 4 2が形成された半導体膜 17に対して、光源 2から発せられ、投影マスク 6の第 4ブロッ ク BDの第 1光透過パターン 6aを透過したレーザ光 12を照射する。これによつて、前 記第 1〜第 3回目の結晶化工程によって結晶 42が形成された半導体膜 17のうち、前 記レーザ光 12が照射された領域は結晶化されて、図 6Dに示すように、第 1〜第 3回 目の結晶化工程によって形成された結晶 42の一部に重畳して新たな結晶 42が形成 される。  Next, after the fourth crystallization process, the light emitted from the light source 2 to the semiconductor film 17 on which the crystal 42 has been formed by the first to third crystallization processes, Irradiate the laser beam 12 that has passed through the first light transmission pattern 6a of the 4-block BD. As a result, in the semiconductor film 17 in which the crystal 42 is formed by the first to third crystallization steps, the region irradiated with the laser beam 12 is crystallized as shown in FIG. 6D. As described above, a new crystal 42 is formed so as to overlap with a part of the crystal 42 formed by the first to third crystallization steps.
前述のように、図 5に示す投影マスク 6を用いて 4回の結晶化工程、および 3回の移 動工程を行うことによって、図 7に示すように、半導体膜 17には、第 1光透過パターン 6aを透過したレーザ光 12が照射されて結晶化された第 1結晶化領域 41aと、第 2光 透過パターン 6bを透過したレーザ光 12が照射されて結晶化された第 2結晶化領域 4 lbとを含む結晶化領域 41が形成される。  As described above, by performing the crystallization process 4 times and the transfer process 3 times using the projection mask 6 shown in FIG. 5, the first optical film is formed on the semiconductor film 17 as shown in FIG. The first crystallization region 41a crystallized by being irradiated with the laser beam 12 transmitted through the transmission pattern 6a, and the second crystallization region crystallized by being irradiated with the laser beam 12 transmitted through the second light transmission pattern 6b A crystallization region 41 containing 4 lbs is formed.
半導体膜 17に形成される複数の最終突起部 43a, 43bおよび突起部 45a, 45b〖こ よって包囲される領域 (以下、「包囲領域」と称する場合がある) 47に含まれる第 1結 晶化領域 41aの面積と、前記包囲領域 47に含まれる第 2結晶化領域 41bの面積との 比率は、 25対 75となる。したがって第 1結晶化領域 41aの面積と、第 2結晶化領域 4 lbの面積とが同等にならない。したがって図 5に示すような投影マスク 6を用いて、半 導体膜 17を結晶化させた場合には、半導体膜 17を均一に結晶化させることができ ない。 A first crystallization included in a region 47 (hereinafter sometimes referred to as an “enclosed region”) 47 surrounded by a plurality of final protrusions 43a and 43b and protrusions 45a and 45b formed on the semiconductor film 17. The area of the region 41a and the area of the second crystallization region 41b included in the surrounding region 47 The ratio is 25:75. Therefore, the area of the first crystallization region 41a is not equal to the area of the second crystallization region 4 lb. Therefore, when the semiconductor film 17 is crystallized using the projection mask 6 as shown in FIG. 5, the semiconductor film 17 cannot be crystallized uniformly.
図 8は、投影マスク 6Aを模式的に示す平面図である。図 8に示す投影マスク 6Aの 第 1および第 2ブロック BA, BBには、複数の第 2光透過パターン 6bが形成されてい る。複数の第 2光透過パターン 6bは、前記第 1軸線および第 2軸線を含む平面内に おいて、予め定める第 1方向、具体的には第 2軸線方向に延びている。複数の第 2光 透過パターン 6bは、投影マスク 6Aの短手方向に間隔をあけて形成されている。第 1 ブロック BAの第 2光透過パターン 6bは、第 2ブロック BBの非透過部 6cに対応する位 置に形成され、第 2ブロック BBの第 2光透過パターン 6bは、第 1ブロック BAの非透過 部 6cに対応する位置に形成されている。  FIG. 8 is a plan view schematically showing the projection mask 6A. A plurality of second light transmission patterns 6b are formed on the first and second blocks BA, BB of the projection mask 6A shown in FIG. The plurality of second light transmission patterns 6b extend in a predetermined first direction, specifically in a second axis direction, in a plane including the first axis and the second axis. The plurality of second light transmission patterns 6b are formed at intervals in the short direction of the projection mask 6A. The second light transmission pattern 6b of the first block BA is formed at a position corresponding to the non-transmission portion 6c of the second block BB, and the second light transmission pattern 6b of the second block BB is not a non-transmission of the first block BA. It is formed at a position corresponding to the transmission part 6c.
図 8に示す投影マスク 6Aの第 3および第 4ブロック BC, BDには、複数の第 1光透 過パターン 6aが形成されている。複数の第 1光透過パターン 6aは、前記第 1軸線お よび第 2軸線を含む平面内において、予め定める第 2方向、具体的には第 1軸線方 向に延びている。複数の第 1光透過パターン 6aは、投影マスク 6Aの長手方向に間 隔をあけて形成されている。第 3ブロック BCの第 1光透過パターン 6aは、第 4ブロック BDの非透過部 6cに対応する位置に形成され、第 4ブロック BDの第 1光透過パター ン 6aは、第 3ブロック BCの非透過部 6cに対応する位置に形成されている。  A plurality of first light transmission patterns 6a are formed in the third and fourth blocks BC and BD of the projection mask 6A shown in FIG. The plurality of first light transmission patterns 6a extend in a predetermined second direction, specifically in the first axis direction, within a plane including the first axis and the second axis. The plurality of first light transmission patterns 6a are formed at intervals in the longitudinal direction of the projection mask 6A. The first light transmission pattern 6a of the third block BC is formed at a position corresponding to the non-transmission part 6c of the fourth block BD, and the first light transmission pattern 6a of the fourth block BD is not the non-transmission part of the third block BC. It is formed at a position corresponding to the transmission part 6c.
図 9は、図 8に示す投影マスク 6Aを用いて繰返し工程を行うことによって、半導体 膜 17に形成される結晶 42の状態を示す平面図である。図 8に示す投影マスク 6Aを 用いて 4回の結晶化工程、および 3回の移動工程を行うことによって、図 9に示すよう に、半導体膜 17には、第 2光透過パターン 6bを透過したレーザ光が照射されて結晶 化された第 2結晶化領域 41bが形成される。  FIG. 9 is a plan view showing a state of the crystal 42 formed in the semiconductor film 17 by repeating the process using the projection mask 6A shown in FIG. By performing the crystallization process 4 times and the movement process 3 times using the projection mask 6A shown in FIG. 8, the second light transmission pattern 6b is transmitted to the semiconductor film 17 as shown in FIG. A second crystallized region 41b crystallized by irradiation with laser light is formed.
半導体膜 17に形成される複数の最終突起部 43bおよび突起部 45bで包囲される 包囲領域 47に含まれる第 1結晶化領域 41aの面積と、前記包囲領域 47に含まれる 第 2結晶化領域 41bの面積との比率は、 0対 100となる。したがって第 1結晶化領域 4 laの面積と、第 2結晶化領域 41bの面積とが同等にならない。したがって図 8に示す ような投影マスク 6Aを用いて、半導体膜 17を結晶化させた場合には、半導体膜 17 を均一に結晶化させることができない。そこで本発明では、以下に述べる投影マスク 25を用いて結晶化工程および移動工程を行うことによって、半導体膜 37を均一に結 晶化させるようにしている。 The area of the first crystallization region 41a included in the surrounding region 47 surrounded by the plurality of final protrusions 43b and the protrusions 45b formed in the semiconductor film 17, and the second crystallization region 41b included in the surrounding region 47 The ratio to the area is 0: 100. Therefore, the area of the first crystallization region 4 la is not equal to the area of the second crystallization region 41b. Figure 8 When the semiconductor film 17 is crystallized using such a projection mask 6A, the semiconductor film 17 cannot be crystallized uniformly. Therefore, in the present invention, the semiconductor film 37 is uniformly crystallized by performing the crystallization process and the movement process using the projection mask 25 described below.
図 10は、投影マスク 25を模式的に示す平面図である。図 10に示す投影マスク 25 は、第 1および第 4ブロック BA, BDに、複数の第 1光透過パターン 25aが形成され、 第 2および第 3ブロック BB, BCに、複数の第 2光透過パターン 25bが形成されている 。投影マスク 25の第 1および第 2光透過パターン 25a, 25b以外の部分は、光を透過 しない非透過部 25cである。図 10には、理解を容易にするために、第 1および第 2光 透過パターン 25a, 25bを長方形状に示している。  FIG. 10 is a plan view schematically showing the projection mask 25. In the projection mask 25 shown in FIG. 10, a plurality of first light transmission patterns 25a are formed in the first and fourth blocks BA and BD, and a plurality of second light transmission patterns are formed in the second and third blocks BB and BC. 25b is formed. The portions other than the first and second light transmission patterns 25a and 25b of the projection mask 25 are non-transmission portions 25c that do not transmit light. FIG. 10 shows the first and second light transmission patterns 25a and 25b in a rectangular shape for easy understanding.
次に、図 10に示す投影マスク 25を用いて繰返し工程を行うことによって形成される 結晶 42の成長過程について説明する。本実施の形態では、繰返し工程において、 4 回の結晶化工程および 3回の移動工程を行う場合について説明する。  Next, the growth process of the crystal 42 formed by repeating the process using the projection mask 25 shown in FIG. 10 will be described. In the present embodiment, a case where the crystallization process is performed four times and the movement process is performed three times in the repetition process will be described.
図 11A〜図 11Dは、図 10に示す投影マスク 25を用いて半導体膜 37を結晶化させ るときの結晶 42の成長過程を段階的に示す図である。図 11Aは、第 1回目の結晶化 工程によって形成される結晶 42の状態を示す図である。図 11Bは、第 1回目の移動 工程によってステージ 28を予め定める第 1移動方向 Xに移動した後、第 2回目の結 晶化工程によって形成される結晶 42の状態を示す図である。図 11Cは、第 2回目の 移動工程によってステージ 28を第 1移動方向 Xに移動した後、第 3回目の結晶化工 程によって形成される結晶 42の状態を示す図である。図 11Dは、第 3回目の移動ェ 程によってステージ 28を第 1移動方向 Xに移動した後、第 4回目の結晶化工程によ つて形成される結晶 42の状態を示す図である。図 12は、図 11Dのセクション IVを拡 大した平面図である。  FIG. 11A to FIG. 11D are diagrams showing the growth process of the crystal 42 stepwise when the semiconductor film 37 is crystallized using the projection mask 25 shown in FIG. FIG. 11A is a diagram showing a state of the crystal 42 formed by the first crystallization process. FIG. 11B is a diagram showing a state of the crystal 42 formed by the second crystallization process after the stage 28 has been moved in the first movement direction X determined in advance by the first movement process. FIG. 11C is a diagram showing a state of the crystal 42 formed by the third crystallization process after the stage 28 is moved in the first movement direction X by the second movement process. FIG. 11D is a diagram showing a state of the crystal 42 formed by the fourth crystallization step after the stage 28 is moved in the first movement direction X by the third movement step. Figure 12 is an enlarged plan view of section IV in Figure 11D.
まず第 1回目の結晶化工程において、光源 21から発せられ、投影マスク 25の第 1 ブロック BAの第 1光透過パターン 25aを透過したレーザ光 31を、ステージ 28上に載 置される半導体素子 27の半導体膜 37に照射すると、半導体膜 37の前記レーザ光 3 1が照射された領域は結晶化されて、図 11Aに示すように結晶 42が形成される。そし て、第 1回目の移動工程において、ステージ 28を、予め定める第 1移動方向 X—方 に、投影マスク 25の第 1〜第 4ブロック BA〜BDの短手方向寸法に相当する距離寸 法だけ移動させる。 First, in the first crystallization process, a laser beam 31 emitted from the light source 21 and transmitted through the first light transmission pattern 25a of the first block BA of the projection mask 25 is a semiconductor element 27 placed on the stage 28. When the semiconductor film 37 is irradiated, the region of the semiconductor film 37 irradiated with the laser light 31 is crystallized to form a crystal 42 as shown in FIG. 11A. Then, in the first movement process, the stage 28 is moved in a predetermined first movement direction X-direction. Next, the projection mask 25 is moved by a distance dimension corresponding to the short dimension of the first to fourth blocks BA to BD.
次に第 2回目の結晶化工程において、第 1回目の結晶化工程によって結晶 42が形 成された半導体膜 37に対して、光源 21から発せられ、投影マスク 25の第 2ブロック B Bの第 2光透過パターン 25bを透過したレーザ光 31を照射する。これによつて、前記 第 1回目の結晶化工程によって結晶 42が形成された半導体膜 37のうち、前記レー ザ光 31が照射された領域は結晶化されて、図 11Bに示すように、第 1回目の結晶化 工程によって形成された結晶 42の一部に重畳して新たな結晶 42が形成される。そし て、第 2回目の移動工程において、ステージ 28を、第 1移動方向 X—方に、投影マス ク 25の第 1〜第 4ブロック BA〜BDの短手方向寸法に相当する距離寸法だけ移動さ せる。  Next, in the second crystallization process, the second light source 21 emits the second block BB of the second block BB of the projection mask 25 to the semiconductor film 37 in which the crystal 42 is formed by the first crystallization process. The laser beam 31 that has passed through the light transmission pattern 25b is irradiated. Accordingly, in the semiconductor film 37 in which the crystal 42 is formed by the first crystallization process, the region irradiated with the laser light 31 is crystallized, and as shown in FIG. A new crystal 42 is formed so as to overlap with a part of the crystal 42 formed by the first crystallization process. In the second movement process, the stage 28 is moved in the first movement direction X by a distance corresponding to the short dimension of the first to fourth blocks BA to BD of the projection mask 25. Let
次に第 3回目の結晶化工程において、第 1回目および第 2回目の結晶化工程によ つて結晶 42が形成された半導体膜 37に対して、光源 21から発せられ、投影マスク 2 5の第 3ブロック BCの第 2光透過パターン 25bを透過したレーザ光 31を照射する。こ れによって、前記第 1回目および第 2回目の結晶化工程によって結晶 42が形成され た半導体膜 37のうち、前記レーザ光 31が照射された領域は結晶化されて、図 11C に示すように、第 1回目および第 2回目の結晶化工程によって形成された結晶 42の 一部に重畳して新たな結晶 42が形成される。そして、第 3回目の移動工程において 、ステージ 28を、第 1移動方向 X—方に、投影マスク 25の第 1〜第 4ブロック BA〜B Dの短手方向寸法に相当する距離寸法だけ移動させる。  Next, in the third crystallization process, the light is emitted from the light source 21 to the semiconductor film 37 on which the crystals 42 are formed in the first and second crystallization processes, and The laser beam 31 that has passed through the second light transmission pattern 25b of the 3-block BC is irradiated. Thus, in the semiconductor film 37 in which the crystal 42 is formed by the first and second crystallization steps, the region irradiated with the laser beam 31 is crystallized, as shown in FIG. 11C. Then, a new crystal 42 is formed so as to overlap with a part of the crystal 42 formed by the first and second crystallization steps. In the third movement step, the stage 28 is moved in the first movement direction X-direction by a distance dimension corresponding to the short-side dimension of the first to fourth blocks BA to BD of the projection mask 25.
次に第 4回目の結晶化工程にぉ 、て、第 1〜第 3回目の結晶化工程によって結晶 4 2が形成された半導体膜 37に対して、光源 21から発せられ、投影マスク 25の第 4ブ ロック BDの第 1光透過パターン 25aを透過したレーザ光 31を照射する。これによつて 、前記第 1〜第 3回目の結晶化工程によって結晶 42が形成された半導体膜 37のうち 、前記レーザ光 31が照射された領域は結晶化されて、図 11Dに示すように、第 1〜 第 3回目の結晶化工程によって形成された結晶 42の一部に重畳して新たな結晶 42 が形成される。  Next, after the fourth crystallization process, the light source 21 emits the semiconductor film 37 on which the crystal 42 has been formed by the first to third crystallization processes. Irradiate the laser beam 31 that has passed through the first light transmission pattern 25a of the 4-block BD. Accordingly, in the semiconductor film 37 in which the crystal 42 is formed by the first to third crystallization steps, the region irradiated with the laser beam 31 is crystallized, as shown in FIG. 11D. A new crystal 42 is formed so as to overlap with a part of the crystal 42 formed by the first to third crystallization steps.
前述のように、図 10に示す投影マスク 25を用いて 4回の結晶化工程、および 3回の 移動工程を行うことによって、図 12に示すように、半導体膜 37には、第 1光透過バタ ーン 25aを透過したレーザ光 31が照射されて結晶化された第 1結晶化領域 41aと、 第 2光透過パターン 25bを透過したレーザ光 31が照射されて結晶化された第 2結晶 化領域 41bとを含む結晶化領域 41が形成される。 As described above, using the projection mask 25 shown in FIG. 10, four crystallization steps and three times By performing the moving step, as shown in FIG. 12, the semiconductor film 37 is irradiated with the laser beam 31 that has passed through the first light transmission pattern 25a and crystallized, and the first crystallization region 41a is crystallized. A crystallization region 41 including a second crystallization region 41b crystallized by irradiation with the laser beam 31 transmitted through the second light transmission pattern 25b is formed.
第 1結晶化領域 41aでは、第 2光透過パターン 25bの形状のレーザ光が照射され た領域のうち、半導体膜 37の短手方向 Y両端部力も短手方向 Y中央部に向力 よう にして段階的に結晶 42が成長する。そして短手方向 Y—方側から成長した結晶 42と 短手方向 Y他方側から成長した結晶 42とが衝突して、半導体膜 37の厚み方向一方 に突出する最終突起部 43aが形成される。レーザ光の最終照射によって第 1結晶化 領域 41aに形成される最終突起部 43aは、半導体膜 37の長手方向 Xに平行に形成 される。  In the first crystallized region 41a, in the region irradiated with the laser light having the shape of the second light transmission pattern 25b, the force in the lateral direction Y both ends of the semiconductor film 37 is also directed toward the central portion in the lateral direction Y. Crystal 42 grows step by step. Then, the crystal 42 grown from the short-side Y-direction side and the crystal 42 grown from the other side of the short-side direction Y collide to form a final protrusion 43a that protrudes in one thickness direction of the semiconductor film 37. The final protrusion 43 a formed in the first crystallized region 41 a by the final irradiation with the laser light is formed in parallel with the longitudinal direction X of the semiconductor film 37.
第 2結晶化領域 41bでは、第 1光透過パターン 25aの形状のレーザ光が照射され た領域のうち、半導体膜 37の長手方向 X両端部から長手方向 X中央部に向力 よう にして段階的に結晶 42が成長する。そして長手方向 X—方側から成長した結晶 42と 長手方向 X他方側から成長した結晶 42とが衝突して、半導体膜 37の厚み方向一方 に突出する最終突起部 43bが形成される。レーザ光の最終照射によって第 2結晶化 領域 41bに形成される最終突起部 43bは、半導体膜 37の短手方向 Yに平行に形成 される。最終突起部 43a, 43bは、後述する突起部 45a, 45bと区別するために、図 1 2にお!/、て実線で示して!/、る。  In the second crystallized region 41b, stepwise in a direction from the both ends of the semiconductor film 37 in the longitudinal direction X to the longitudinal direction X in the region irradiated with the laser light having the shape of the first light transmission pattern 25a. Crystal 42 grows on the surface. Then, the crystal 42 grown from the longitudinal direction X-direction collides with the crystal 42 grown from the other longitudinal direction X to form a final protrusion 43b protruding in one thickness direction of the semiconductor film 37. The final protrusion 43b formed in the second crystallization region 41b by the final irradiation of the laser light is formed in parallel to the short direction Y of the semiconductor film 37. The final protrusions 43a and 43b are shown in FIG. 12 as solid lines! /, To distinguish them from the protrusions 45a and 45b described later.
最終照射される前段階でレーザ光が照射された半導体膜 37には、レーザ光が照 射された部分の長手方向 X—方側から成長した結晶 42と長手方向 X他方側から成 長した結晶 42とが衝突して、半導体膜 37の厚み方向一方に突出する突起部 45aが 形成される。この突起部 45aは、図 12の第 1結晶化領域 41aに破線で示している。最 終照射される前段階でレーザ光が照射された半導体膜 37には、レーザ光が照射さ れた部分の短手方向 Y—方側から成長した結晶 42と短手方向 Y他方側から成長し た結晶 42とが衝突して、半導体膜 37の厚み方向一方に突出する突起部 45bが形成 される。この突起部 45bは、図 12の第 2結晶化領域 4 lbに破線で示している。また図 12では、前記繰返し工程によって成長した複数の結晶同士の境界部分 46を示して いる。 The semiconductor film 37 irradiated with the laser beam before the final irradiation has a crystal 42 grown from the longitudinal direction X-side of the portion irradiated with the laser beam and a crystal grown from the other side of the longitudinal direction X. As a result of collision with 42, a protrusion 45 a that protrudes in one thickness direction of the semiconductor film 37 is formed. This protrusion 45a is indicated by a broken line in the first crystallization region 41a of FIG. The semiconductor film 37 irradiated with the laser beam in the stage before the final irradiation is irradiated with the crystal 42 grown from the short direction Y-side of the portion irradiated with the laser light and the short direction Y grown from the other side. As a result of the collision with the crystal 42, a protrusion 45 b protruding in one thickness direction of the semiconductor film 37 is formed. This protrusion 45b is indicated by a broken line in the second crystallization region 4 lb of FIG. FIG. 12 also shows a boundary portion 46 between a plurality of crystals grown by the above repeating process. Yes.
半導体膜 37において、レーザ光の最終照射によって形成される最終突起部 43a, 43b、最終照射の前段階におけるレーザ光の照射によって形成される突起部 45a, 4 5b、および結晶 42同士の境界部分 46の厚み方向寸法は、それぞれ最終突起部 43 a, 43b、突起部 45a, 45bおよび境界部分 46の順に小さくなつている。  In the semiconductor film 37, the final protrusions 43a and 43b formed by the final irradiation of the laser light, the protrusions 45a and 45b formed by the laser light irradiation before the final irradiation, and the boundary portion 46 between the crystals 42 The dimension in the thickness direction of each of them decreases in the order of the final projecting portions 43a and 43b, the projecting portions 45a and 45b, and the boundary portion 46, respectively.
半導体膜 37に形成される複数の最終突起部 43a, 43bおよび突起部 45a, 45b〖こ よって包囲される包囲領域 47に含まれる第 1結晶化領域 41aの面積と、前記包囲領 域 47に含まれる第 2結晶化領域 41bの面積との比率は、図 12に示すように 50対 50 となる。換言すると、第 1結晶化領域 41aの面積と、第 2結晶化領域 41bの面積とが 同等になる。したがって、図 10に示すような投影マスク 25を用いて繰返し工程を行う ことによって、半導体膜 37を均一に結晶化させることができる。  The plurality of final protrusions 43a, 43b and protrusions 45a, 45b formed on the semiconductor film 37 are included in the surrounding region 47 and the area of the first crystallization region 41a included in the surrounding region 47 surrounded by the surrounding region 47. The ratio with the area of the second crystallization region 41b is 50:50 as shown in FIG. In other words, the area of the first crystallization region 41a is equal to the area of the second crystallization region 41b. Therefore, the semiconductor film 37 can be uniformly crystallized by repeating the process using the projection mask 25 as shown in FIG.
図 13は、投影マスク 25Aを模式的に示す平面図である。投影マスク 25Aは、投影 マスク 25と同様に、その厚み方向に垂直な仮想平面に投影した形状が長方形状で あり、第 1ブロック BA、第 2ブロック BB、第 3ブロック BCおよび第 4ブロック BDを含む 。第 1〜第 4ブロック BA〜BDは、投影マスク 25Aの厚み方向に垂直な仮想平面に 投影した形状が、投影マスク 25Aの短手方向に延びる長方形状である。第 1ブロック BA、第 2ブロック BB、第 3ブロック BCおよび第 4ブロック BDは、この順で投影マスク 2 5の長手方向に一列に並んで設けられる。  FIG. 13 is a plan view schematically showing the projection mask 25A. Similar to the projection mask 25, the projection mask 25A has a rectangular shape projected onto a virtual plane perpendicular to the thickness direction, and includes the first block BA, the second block BB, the third block BC, and the fourth block BD. Including In the first to fourth blocks BA to BD, the shape projected on a virtual plane perpendicular to the thickness direction of the projection mask 25A is a rectangular shape extending in the short direction of the projection mask 25A. The first block BA, the second block BB, the third block BC, and the fourth block BD are provided in a line in the longitudinal direction of the projection mask 25 in this order.
投影マスク 25Aの第 2および第 3ブロック BB, BCには、複数の第 1光透過パターン 25aが形成されている。複数の第 1光透過パターン 25aは、前記第 1軸線および第 2 軸線を含む平面内において、予め定める第 2方向、具体的には第 1軸線方向に延び ている。複数の第 1光透過パターン 25aは、投影マスク 25Aの長手方向に間隔をあ けて形成されている。第 2ブロック BBの第 1光透過パターン 25aは、第 3ブロック BC の非透過部 25cに対応する位置に形成され、第 3ブロック BCの第 1光透過パターン 2 5aは、第 2ブロック BBの非透過部 25cに対応する位置に形成されている。  A plurality of first light transmission patterns 25a are formed in the second and third blocks BB and BC of the projection mask 25A. The plurality of first light transmission patterns 25a extend in a predetermined second direction, specifically in the first axis direction, in a plane including the first axis and the second axis. The plurality of first light transmission patterns 25a are formed at intervals in the longitudinal direction of the projection mask 25A. The first light transmission pattern 25a of the second block BB is formed at a position corresponding to the non-transmission portion 25c of the third block BC, and the first light transmission pattern 25a of the third block BC is non-transmission of the second block BB. It is formed at a position corresponding to the transmission part 25c.
投影マスク 25Aの第 1および第 4ブロック BA, BDには、複数の第 2光透過パターン 25bが形成されている。複数の第 2光透過パターン 25bは、前記第 1軸線および第 2 軸線を含む平面内において、予め定める第 1方向、具体的には第 2軸線方向に延び ている。複数の第 2光透過パターン 25bは、投影マスク 25Aの短手方向に間隔をあ けて形成されている。第 1ブロック BAの第 2光透過パターン 25bは、第 4ブロック BD の非透過部 25cに対応する位置に形成され、第 4ブロック BDの第 2光透過パターン 25bは、第 1ブロック BAの非透過部 25cに対応する位置に形成されている。図 13に は、理解を容易にするために、第 1および第 2光透過パターン 25a, 25bを長方形状 に示している。 A plurality of second light transmission patterns 25b are formed on the first and fourth blocks BA and BD of the projection mask 25A. The plurality of second light transmission patterns 25b extend in a predetermined first direction, specifically the second axis direction, in a plane including the first axis and the second axis. ing. The plurality of second light transmission patterns 25b are formed at intervals in the short direction of the projection mask 25A. The second light transmission pattern 25b of the first block BA is formed at a position corresponding to the non-transmission portion 25c of the fourth block BD, and the second light transmission pattern 25b of the fourth block BD is non-transmission of the first block BA. It is formed at a position corresponding to the portion 25c. In FIG. 13, the first and second light transmission patterns 25a and 25b are shown in a rectangular shape for easy understanding.
図 14は、図 13に示す投影マスク 25Aを用いて繰返し工程を行うことによって、半導 体膜 37に形成される結晶 42の状態を示す平面図である。投影マスク 25Aを用いて 4 回の結晶化工程、および 3回の移動工程を行うことによって、図 14に示すように、半 導体膜 37には、第 1光透過パターン 25aを透過したレーザ光が照射されて結晶化さ れた第 1結晶化領域 41aと、第 2光透過パターン 25bを透過したレーザ光が照射され て結晶化された第 2結晶化領域 41bとを含む結晶化領域 41が形成される。  FIG. 14 is a plan view showing a state of the crystal 42 formed on the semiconductor film 37 by performing the repetition process using the projection mask 25A shown in FIG. By performing the crystallization process 4 times and the movement process 3 times using the projection mask 25A, the laser light transmitted through the first light transmission pattern 25a is applied to the semiconductor film 37 as shown in FIG. A crystallization region 41 is formed that includes a first crystallization region 41a that has been irradiated and crystallized, and a second crystallization region 41b that has been crystallized by being irradiated with laser light that has passed through the second light transmission pattern 25b. Is done.
第 1結晶化領域 41aでは、第 1光透過パターン 25aの形状のレーザ光が照射された 領域のうち、半導体膜 37の長手方向 X両端部力 長手方向 X中央部に向力うように して段階的に結晶 42が成長する。そして長手方向 X—方側から成長した結晶 42と長 手方向 X他方側から成長した結晶 42とが衝突して、半導体膜 37の厚み方向一方に 突出する最終突起部 43aが形成される。レーザ光の最終照射によって第 1結晶化領 域 41aに形成される最終突起部 43aは、半導体膜 37の短手方向 Yに平行に形成さ れる。  In the first crystallized region 41a, the longitudinal direction X both ends force of the semiconductor film 37 in the region irradiated with the laser light having the shape of the first light transmission pattern 25a is directed to the longitudinal direction X central portion. Crystal 42 grows step by step. Then, the crystal 42 grown from the longitudinal direction X-side and the crystal 42 grown from the other side of the longitudinal direction X collide with each other, so that a final protrusion 43a protruding in one thickness direction of the semiconductor film 37 is formed. The final protrusion 43 a formed in the first crystallization region 41 a by the final irradiation of the laser light is formed in parallel with the short direction Y of the semiconductor film 37.
第 2結晶化領域 41bでは、第 2光透過パターン 25bの形状のレーザ光が照射され た領域のうち、半導体膜 37の短手方向 Y両端部力も短手方向 Y中央部に向力 よう にして段階的に結晶 42が成長する。そして短手方向 Y—方側から成長した結晶 42と 短手方向 Y他方側から成長した結晶 42とが衝突して、半導体膜 37の厚み方向一方 に突出する最終突起部 43bが形成される。レーザ光の最終照射によって第 2結晶化 領域 41bに形成される最終突起部 43bは、半導体膜 37の長手方向 Xに平行に形成 される。最終突起部 43a, 43bは、後述する突起部 45a, 45bと区別するために、図 1 4にお!/、て実線で示して!/、る。  In the second crystallization region 41b, in the region irradiated with the laser light having the shape of the second light transmission pattern 25b, the force in both the lateral direction Y ends of the semiconductor film 37 is also directed toward the central portion in the lateral direction Y. Crystal 42 grows step by step. Then, the crystal 42 grown from the short-side Y-direction side and the crystal 42 grown from the other side of the short-side direction Y collide to form a final protrusion 43b protruding in one thickness direction of the semiconductor film 37. The final protrusion 43 b formed in the second crystallization region 41 b by the final irradiation with the laser light is formed in parallel with the longitudinal direction X of the semiconductor film 37. The final protrusions 43a and 43b are indicated by a solid line in FIG. 14 to distinguish them from protrusions 45a and 45b, which will be described later.
最終照射される前段階でレーザ光が照射された半導体膜 37には、レーザ光が照 射された部分の短手方向 Y—方側力 成長した結晶 42と短手方向 Y他方側力 成 長した結晶 42とが衝突して、半導体膜 37の厚み方向一方に突出する突起部 45aが 形成される。この突起部 45aは、図 14の第 1結晶化領域 41aに破線で示している。最 終照射される前段階でレーザ光が照射された半導体膜 37には、レーザ光が照射さ れた部分の長手方向 X—方側から成長した結晶 42と長手方向 X他方側から成長し た結晶 42とが衝突して、半導体膜 37の厚み方向一方に突出する突起部 45bが形成 される。この突起部 45bは、図 14の第 2結晶化領域 41bに破線で示している。また図 14では、前記繰返し工程によって成長した複数の結晶同士の境界部分 46を示して いる。 The semiconductor film 37 that has been irradiated with the laser beam before the final irradiation is irradiated with the laser beam. Short direction Y-side force of the projected part The grown crystal 42 collides with the short direction Y other side force-grown crystal 42, and a protrusion 45a protruding in one thickness direction of the semiconductor film 37 is formed. It is formed. This protrusion 45a is indicated by a broken line in the first crystallization region 41a of FIG. The semiconductor film 37 irradiated with the laser beam before the last irradiation was grown from the crystal 42 grown from the longitudinal direction X-side of the portion irradiated with the laser beam and from the other side of the longitudinal direction X. The crystal 42 collides with each other, and a protrusion 45 b protruding in one thickness direction of the semiconductor film 37 is formed. This protrusion 45b is indicated by a broken line in the second crystallization region 41b of FIG. Further, FIG. 14 shows a boundary portion 46 between a plurality of crystals grown by the above repeating process.
半導体膜 37において、レーザ光の最終照射によって形成される最終突起部 43a, 43b、最終照射の前段階におけるレーザ光の照射によって形成される突起部 45a, 4 5b、および結晶 42同士の境界部分 46の厚み方向寸法は、それぞれ最終突起部 43 a, 43b、突起部 45a, 45bおよび境界部分 46の順に小さくなつている。  In the semiconductor film 37, the final protrusions 43a and 43b formed by the final irradiation of the laser light, the protrusions 45a and 45b formed by the laser light irradiation before the final irradiation, and the boundary portion 46 between the crystals 42 The dimension in the thickness direction of each of them decreases in the order of the final projecting portions 43a and 43b, the projecting portions 45a and 45b, and the boundary portion 46, respectively.
半導体膜 37に形成される複数の最終突起部 43a, 43bおよび突起部 45a, 45b〖こ よって包囲される包囲領域 47に含まれる第 1結晶化領域 41aの面積と、前記包囲領 域 47に含まれる第 2結晶化領域 41bの面積との比率は、図 14に示すように 50対 50 となる。換言すると、第 1結晶化領域 41aの面積と、第 2結晶化領域 41bの面積とが 同等になる。したがって、図 13に示すような投影マスク 25Aを用いて繰返し工程を行 うことによって、半導体膜 37を均一に結晶化させることができる。  The plurality of final protrusions 43a, 43b and protrusions 45a, 45b formed on the semiconductor film 37 are included in the surrounding region 47 and the area of the first crystallization region 41a included in the surrounding region 47 surrounded by the surrounding region 47. The ratio with the area of the second crystallization region 41b is 50:50 as shown in FIG. In other words, the area of the first crystallization region 41a is equal to the area of the second crystallization region 41b. Therefore, the semiconductor film 37 can be uniformly crystallized by repeating the process using the projection mask 25A as shown in FIG.
図 15は、結晶化された半導体膜 37およびその半導体膜 37に形成される薄膜トラ ンジスタ素子 50を示す平面図である。図 16は、結晶化された半導体膜 37およびそ の半導体膜 37に形成される薄膜トランジスタ素子 50を示す平面図である。図 15およ び図 16には、理解を容易にするために半導体膜 37に形成される結晶化領域 41の 一部を示している。本実施の形態では、ステージ 28に載置される半導体素子 27の 半導体膜 37の長手方向の参照符号として、ステージ 28の第 1移動方向と同一の参 照符号「X」を付し、半導体膜 37の短手方向の参照符号として、ステージ 28の第 2移 動方向と同一の参照符号「Y」を付して説明する。  FIG. 15 is a plan view showing the crystallized semiconductor film 37 and the thin film transistor element 50 formed in the semiconductor film 37. FIG. 16 is a plan view showing the crystallized semiconductor film 37 and the thin film transistor element 50 formed in the semiconductor film 37. 15 and 16 show a part of the crystallized region 41 formed in the semiconductor film 37 for easy understanding. In the present embodiment, the reference numeral “X” that is the same as the first moving direction of the stage 28 is attached as the reference numeral in the longitudinal direction of the semiconductor film 37 of the semiconductor element 27 placed on the stage 28, and the semiconductor film The reference numeral “Y”, which is the same as the second moving direction of the stage 28, will be described as a reference numeral 37 in the short direction.
前述の図 10に示す投影マスク 25および図 13に示す投影マスク 25Αを用いて繰返 し工程を行うことによって、半導体膜 37には、図 15および図 16に示すように、正方形 状でかつ第 1結晶化領域 41aおよび第 2結晶化領域 41bを含む結晶化領域 41が、 半導体膜 37の長手方向 Xおよび短手方向 Yに、それぞれ連続的に並んで形成され る。 Repeatedly using the projection mask 25 shown in FIG. 10 and the projection mask 25Α shown in FIG. As shown in FIGS. 15 and 16, the semiconductor film 37 has a crystallization region 41 that is square and includes the first crystallization region 41a and the second crystallization region 41b. They are formed side by side in the longitudinal direction X and the lateral direction Y of 37 respectively.
図 15には、前述の図 10に示す投影マスク 25および図 13に示す投影マスク 25Aを 用いて繰返し工程を行うことによって結晶化領域 41を形成した半導体膜 37の長手 方向 X—方力 他方に向力うにつれて、ソース S、ゲート Gおよびドレイン Dの順に並 ぶように、薄膜トランジスタ素子 (以下、「TFT素子」と称する場合がある) 50を形成し た半導体膜 37を示している。図 16には、前記結晶化領域 41が形成された半導体膜 37の短手方向 Y—方から他方に向力うにつれて、ドレイン D、ゲート Gおよびソース S の順に並ぶように、 TFT素子 50を形成した半導体膜 37を示している。以下の実施の 形態の説明において、半導体膜 37の長手方向 X—方力も他方に向かうにつれて、ソ ース Sヽゲート Gおよびドレイン Dの順に並ぶように、半導体膜 37に形成される TFT 素子 50の形成方向を第 1形成方向と称し、半導体膜 37の短手方向 Y—方から他方 に向かうにつれて、ドレイン D、ゲート Gおよびソース Sの順に並ぶように、半導体膜 3 7に形成される TFT素子 50の形成方向を第 2形成方向と称する。  FIG. 15 shows the longitudinal direction X-direction force of the semiconductor film 37 in which the crystallized region 41 is formed by repeating the process using the projection mask 25 shown in FIG. 10 and the projection mask 25A shown in FIG. A semiconductor film 37 in which a thin film transistor element (hereinafter may be referred to as a “TFT element”) 50 is formed so that the source S, the gate G, and the drain D are arranged in order in the order of power. In FIG. 16, the TFT elements 50 are arranged so that the drain D, the gate G, and the source S are arranged in this order from the short direction Y-direction of the semiconductor film 37 in which the crystallized region 41 is formed to the other side. The formed semiconductor film 37 is shown. In the following description of the embodiment, the TFT element 50 formed in the semiconductor film 37 is arranged so that the source S ヽ gate G and the drain D are arranged in this order as the longitudinal direction X-direction force of the semiconductor film 37 is also directed to the other side. The TFT formed on the semiconductor film 37 so that the drain D, the gate G, and the source S are arranged in this order from the short direction Y- direction of the semiconductor film 37 to the other. The formation direction of the element 50 is referred to as a second formation direction.
前述のように本実施の形態によれば、第 1または第 2光透過パターン 25a, 25bが 形成される第 1〜第 4ブロック BA〜BD力 図 10および図 13に示すように並べて配 設される投影マスク 25, 25Aに対してレーザ光 31を照射し、前記投影マスク 25, 25 Aに形成される第 1および第 2光透過パターン 25a, 25bを透過したレーザ光 31を半 導体膜 37に照射する。これによつて半導体膜 37に形成される結晶化領域 41におい て、第 1光透過パターン 25aを透過したレーザ光 31が照射されて結晶化された第 1 結晶化領域 41aの面積と、第 2光透過パターン 25bを透過したレーザ光 31が照射さ れて結晶化された第 2結晶化領域 41bの面積との比率を同等にすることができる。換 言すると、半導体膜 37を均一に結晶化させることができる。  As described above, according to the present embodiment, the first to fourth blocks in which the first or second light transmission patterns 25a and 25b are formed BA to BD force are arranged side by side as shown in FIGS. The projection masks 25 and 25A are irradiated with laser light 31, and the laser light 31 transmitted through the first and second light transmission patterns 25a and 25b formed on the projection masks 25 and 25A is applied to the semiconductor film 37. Irradiate. Thus, in the crystallization region 41 formed in the semiconductor film 37, the area of the first crystallization region 41a crystallized by being irradiated with the laser beam 31 transmitted through the first light transmission pattern 25a, and the second The ratio with the area of the second crystallization region 41b crystallized by irradiating the laser beam 31 transmitted through the light transmission pattern 25b can be made equal. In other words, the semiconductor film 37 can be uniformly crystallized.
また本実施の形態によれば、移動工程において、半導体素子 27が載置されるステ ージ 28を、レーザ光 31を発する光源 21に対して相対移動させることによって、照射 対象物である半導体膜 37の所望の領域にレーザ光 31を照射させることができ、所望 する形状になるように結晶化させることができる。 Further, according to the present embodiment, in the moving process, the stage 28 on which the semiconductor element 27 is placed is moved relative to the light source 21 that emits the laser beam 31 to thereby move the semiconductor film that is the irradiation object. 37 desired regions can be irradiated with laser light 31 and desired It can be crystallized so as to have a shape.
また本実施の形態によれば、繰返し工程において、非晶質材料力も成る層の半導 体膜 37に、非晶質材料を結晶化させるべき互いに直交する第 1および第 2方向、具 体的には半導体膜 37の長手方向および短手方向に、レーザ光 31を照射して半導 体膜 37を結晶化する結晶化工程と、半導体膜 37を、レーザ光 31を発する光源 21に 対して相対移動させる移動工程とを交互に行うことによって、半導体膜 37の所望の 領域に所望の大きさの結晶粒を確実に形成することができる。  Further, according to the present embodiment, in the repetition process, the first and second directions perpendicular to each other, in which the amorphous material should be crystallized, are specifically formed on the semiconductor film 37 of the layer having the amorphous material force. The semiconductor film 37 is irradiated with a laser beam 31 in the longitudinal and short directions to crystallize the semiconductor film 37, and the semiconductor film 37 is applied to the light source 21 that emits the laser beam 31. By alternately performing the moving process of relative movement, crystal grains having a desired size can be reliably formed in a desired region of the semiconductor film 37.
また本実施の形態によれば、前述のように均一に結晶化された半導体膜 37、具体 的には非晶質材料カゝら成る層に、たとえば複数の TFT素子 50を形成する場合、半 導体膜 37に対する一方の TFT素子 50の形成方向が第 1形成方向、他方の TFT素 子 50の形成方向が第 2形成方向というように、 TFT素子 50の形成方向が異なるとき でも、各形成方向に形成される各 TFT素子 50のチャンネル部分に含まれる第 1結晶 化領域 41aの面積と、第 2結晶化領域 41bの面積との比率を同等にすることができる 。これによつて半導体膜 37に形成する複数の TFT素子 50の電気的特性、具体的に はスイッチング特性を同一にすることができる。換言すれば、複数の TFT素子 50のス イッチング特性を均一にすることができる。  Further, according to the present embodiment, for example, when a plurality of TFT elements 50 are formed in the semiconductor film 37 uniformly crystallized as described above, specifically, a layer made of an amorphous material cover, Even if the formation direction of the TFT element 50 is different such that the formation direction of one TFT element 50 with respect to the conductor film 37 is the first formation direction and the formation direction of the other TFT element 50 is the second formation direction. The ratio of the area of the first crystallization region 41a and the area of the second crystallization region 41b included in the channel portion of each TFT element 50 formed in the above can be made equal. As a result, the electrical characteristics, specifically the switching characteristics, of the plurality of TFT elements 50 formed in the semiconductor film 37 can be made the same. In other words, the switching characteristics of the plurality of TFT elements 50 can be made uniform.
また半導体膜 37に対する TFT素子 50の形成方向に依らず、 TFT素子 50のスイツ チング特性を均一にすることができるので、 TFT素子 50を用いた表示装置などの設 計の自由度を高めることができる。  In addition, since the switching characteristics of the TFT element 50 can be made uniform regardless of the direction in which the TFT element 50 is formed on the semiconductor film 37, the degree of freedom in designing a display device using the TFT element 50 can be increased. it can.
また本実施の形態によれば、第 1および第 2光透過パターン 25a, 25bは、各延び 方向の両端部が、投影マスク 25, 25Aの厚み方向に見て先細状に形成される。した がって長方形状などのように先細状に形成されて 、な 、光透過パターンとは異なり、 第 1および第 2光透過パターン 25a, 25bの形状のレーザ光が照射された半導体膜 3 7の照射領域で、延び方向および半導体膜 37の厚み方向のそれぞれに垂直な方向 の両端部力も成長する結晶が衝突してできる突起部 41が、延び方向の両端部の先 細状の部分にまで形成される。  Further, according to the present embodiment, the first and second light transmission patterns 25a and 25b are formed such that both ends in the extending direction are tapered as viewed in the thickness direction of the projection masks 25 and 25A. Accordingly, the semiconductor film is formed in a tapered shape such as a rectangular shape. Unlike the light transmission pattern, the semiconductor film 37 irradiated with the laser light in the shape of the first and second light transmission patterns 25a and 25b is provided. In the irradiated region, the protrusion 41 formed by the collision of the crystals that also grow in both ends in the extending direction and the direction perpendicular to the thickness direction of the semiconductor film 37 reaches the tapered portions at both ends in the extending direction. It is formed.
これによつて光透過パターンの延び方向の両端部が先細状に形成されていない場 合に比べて、半導体膜 37をより均一に結晶化することができる。したがって半導体膜 37に複数の TFT素子 50を形成する場合、半導体膜 37に対する一方の TFT素子 5 0の形成方向と他方の TFT素子 50の形成方向とが異なるときでも、各形成方向に形 成される各 TFT素子 50のチャンネル部分に含まれる第 1結晶化領域 41aの面積と、 第 2結晶化領域 41bの面積との比率を同等にすることができる。これによつて、半導 体膜 37に形成される複数の TFT素子 50の電気的特性、具体的にはスイッチング特 性を確実に同一にすることができる。換言すれば、複数の TFT素子 50のスィッチン グ特性を確実に均一にすることができる。 As a result, the semiconductor film 37 can be crystallized more uniformly as compared with the case where both end portions in the extending direction of the light transmission pattern are not tapered. Therefore semiconductor film In the case where a plurality of TFT elements 50 are formed on 37, each TFT formed in each forming direction even when the forming direction of one TFT element 50 with respect to the semiconductor film 37 is different from the forming direction of the other TFT element 50. The ratio of the area of the first crystallization region 41a included in the channel portion of the element 50 to the area of the second crystallization region 41b can be made equal. As a result, the electrical characteristics, more specifically the switching characteristics, of the plurality of TFT elements 50 formed on the semiconductor film 37 can be reliably made the same. In other words, the switching characteristics of the plurality of TFT elements 50 can be made uniform uniformly.
また本実施の形態によれば、半導体膜 37を結晶化させる場合に、半導体膜 37を 投影マスク 25, 25Aの各領域 BA〜BDの短手方向寸法 Wだけ移動させながら、投 影マスク 25, 25Aに形成される第 1および第 2光透過パターン 25a, 25bを透過した レーザ光を半導体膜 37に照射するので、半導体膜 37の同一の領域に、前記レーザ 光を重畳して照射することができる。したがって、たとえば一方向に延びる光透過パ ターンのみが形成される投影マスクを用いて半導体膜 37を結晶化させる場合に比べ て大きな粒径の結晶粒を形成することができ、半導体膜 37の電子移動度を比較的 高くすることができる。これによつて、たとえば半導体膜 37に TFT素子 50を形成する 場合、 TFT素子 50のスイッチング特性をさらに向上することができる。  Further, according to the present embodiment, when the semiconductor film 37 is crystallized, the projection mask 25, while moving the semiconductor film 37 by the lateral dimension W of each area BA to BD of the projection masks 25, 25A. Since the semiconductor film 37 is irradiated with the laser light that has passed through the first and second light transmission patterns 25a and 25b formed on 25A, the laser light can be superimposed and irradiated on the same region of the semiconductor film 37. it can. Therefore, for example, a crystal grain having a larger grain size can be formed compared to the case where the semiconductor film 37 is crystallized using a projection mask in which only a light transmission pattern extending in one direction is formed. Mobility can be relatively high. Accordingly, for example, when the TFT element 50 is formed in the semiconductor film 37, the switching characteristics of the TFT element 50 can be further improved.
また第 1および第 2光透過パターン 25a, 25bを透過したレーザ光を、半導体膜 37 の同一の領域に重畳して照射することができるので、前記レーザ光が、光源 21の異 常、たとえばレーザ光の発振異常に起因して、複数回の結晶化工程のうちのいずれ か 1つの結晶化工程で、レーザ光が同一領域に重畳して照射されないなどの不具合 が生じた場合でも、半導体膜 37をほぼ均一に結晶化することができる。これによつて 、たとえば半導体膜 37に TFT素子 50を形成する場合に、 TFT素子 50のスィッチン グ特性が極端に劣化することを防ぐことができる。  In addition, since the laser light transmitted through the first and second light transmission patterns 25a and 25b can be applied to the same region of the semiconductor film 37, the laser light can be irradiated with an abnormality in the light source 21, such as a laser. Even if a defect such as laser light not being superimposed on the same region in one of the multiple crystallization processes due to an optical oscillation abnormality occurs, the semiconductor film 37 Can be crystallized almost uniformly. Accordingly, for example, when the TFT element 50 is formed in the semiconductor film 37, it is possible to prevent the switching characteristics of the TFT element 50 from being extremely deteriorated.
次に、本発明の第 2の実施の形態であるレーザカ卩ェ装置およびレーザカ卩ェ方法に ついて説明する。本実施の形態のレーザ加工装置は、前述の第 1の実施の形態のレ 一ザ加工装置 20と構成が類似しており、投影マスク 25に代えて他の投影マスク 25B を備えている点だけが異なるので、投影マスク 25Bについて説明し、同一の構成に ついては同一の参照符を付して説明を省略する。レーザカ卩ェ装置によって、ステー ジ 28に載置される半導体素子 27の半導体膜 37を結晶化する工程は、前述の第 1の 実施の形態と同様であるので説明を省略する。本発明の第 2の実施の形態であるレ 一ザ加工方法は、本実施の形態のレーザ加工装置によって実施される。 Next, a laser carriage apparatus and a laser carriage method according to the second embodiment of the present invention will be described. The laser processing apparatus of the present embodiment is similar in configuration to the laser processing apparatus 20 of the first embodiment described above, and only includes another projection mask 25B instead of the projection mask 25. Therefore, the projection mask 25B will be described, and the same components will be denoted by the same reference numerals and description thereof will be omitted. The laser carriage device is used to The step of crystallizing the semiconductor film 37 of the semiconductor element 27 placed on the die 28 is the same as that in the first embodiment described above, and a description thereof will be omitted. The laser processing method according to the second embodiment of the present invention is performed by the laser processing apparatus according to the present embodiment.
図 17は、投影マスク 25Bを模式的に示す平面図である。投影マスク 25Bは、投影 マスク 25と同様に、その厚み方向に垂直な仮想平面に投影した形状が長方形状で ある。本実施の形態の投影マスク 25Bは、予め定める第 1方向に延びる第 1光透過 パターン 25aが形成される m (mは 2以上の偶数)個の第 1光透過パターン領域、およ び第 1方向に直交する第 2方向に延びる第 2光透過パターン 25bが形成される n (nは 2以上の偶数)個の第 2光透過パターン領域を含む。さらに述べると、本実施の形態 の投影マスク 25Bは、 mZ2個の第 1光透過パターン領域、 n個の第 2光透過パター ン領域、および mZ2個の第 1光透過パターン領域の順に並べて配設される。ここで 、前記予め定める第 1方向とは、投影マスク 25Bの長手方向に沿って延びる第 1軸線 と、投影マスク 25Bの短手方向に沿って延びる第 2軸線とを含む平面内における第 2 軸線方向をいう。  FIG. 17 is a plan view schematically showing the projection mask 25B. Similarly to the projection mask 25, the projection mask 25B has a rectangular shape projected onto a virtual plane perpendicular to the thickness direction. In the projection mask 25B of the present embodiment, m (m is an even number equal to or greater than 2) first light transmission pattern regions and the first light transmission pattern 25a extending in a predetermined first direction are formed. It includes n (n is an even number of 2 or more) second light transmission pattern regions in which second light transmission patterns 25b extending in a second direction orthogonal to the direction are formed. More specifically, the projection mask 25B of the present embodiment is arranged in the order of mZ2 first light transmission pattern regions, n second light transmission pattern regions, and mZ2 first light transmission pattern regions. Is done. Here, the predetermined first direction is a second axis in a plane including a first axis extending along the longitudinal direction of the projection mask 25B and a second axis extending along the short direction of the projection mask 25B. The direction.
図 17には、理解を容易にするために、前記変数 m, nが共に「2」の場合の投影マス ク 25Bを示している。具体的に述べると、図 17には、 2個の第 1光透過パターン領域 および 2個の第 2光透過パターン領域を含み、 1個の第 1光透過パターン領域、 2個 の第 2光透過パターン領域、および 1個の第 1光透過パターン領域の順に並べて配 設される投影マスク 25Bを示している。さらに述べると、投影マスク 25Bは、第 1光透 過パターン領域に対応する第 1ブロック BA、第 2光透過パターン領域に対応する第 2および第 3ブロック BB, BC、ならびに第 1光透過パターン領域に対応する第 4プロ ック BDに分割されている。第 1〜第 4ブロック BA〜BDは、投影マスク 25Bの厚み方 向に垂直な仮想平面に投影した形状が、投影マスク 25Bの短手方向に延びる長方 形状である。  FIG. 17 shows a projection mask 25B when the variables m and n are both “2” for easy understanding. Specifically, FIG. 17 includes two first light transmission pattern regions and two second light transmission pattern regions, one first light transmission pattern region, and two second light transmission patterns. A projection mask 25B is shown, which is arranged in the order of the pattern region and one first light transmission pattern region. More specifically, the projection mask 25B includes the first block BA corresponding to the first light transmission pattern region, the second and third blocks BB and BC corresponding to the second light transmission pattern region, and the first light transmission pattern region. Is divided into 4th block BDs corresponding to. In the first to fourth blocks BA to BD, the shape projected onto a virtual plane perpendicular to the thickness direction of the projection mask 25B is a rectangular shape extending in the short direction of the projection mask 25B.
第 1ブロック BAは、複数の第 1光透過パターン 25aが形成される第 1パターン部分 P1および第 2パターン部分 P2を含む。第 4ブロック BDは、複数の第 1光透過パター ン 25aが形成される第 7パターン部分 P7および第 8パターン部分 P8を含む。第 1,第 2,第 7,第 8パターン部分 PI, P2, P7, P8は、投影マスク 25Bの厚み方向に垂直な 仮想平面に投影した形状が、投影マスク 25Bの短手方向に延びる長方形状である。 複数の第 1光透過パターン 25aは、投影マスク 25Bの長手方向に間隔をあけて形成 されている。第 1および第 4ブロック BA, BDの第 1光透過パターン 25a以外の部分は 、光を透過しない非透過部 25cである。 The first block BA includes a first pattern portion P1 and a second pattern portion P2 where a plurality of first light transmission patterns 25a are formed. The fourth block BD includes a seventh pattern portion P7 and an eighth pattern portion P8 in which a plurality of first light transmission patterns 25a are formed. The first, second, seventh and eighth pattern portions PI, P2, P7 and P8 are perpendicular to the thickness direction of the projection mask 25B. The shape projected on the virtual plane is a rectangular shape extending in the short direction of the projection mask 25B. The plurality of first light transmission patterns 25a are formed at intervals in the longitudinal direction of the projection mask 25B. The portions other than the first light transmission pattern 25a of the first and fourth blocks BA and BD are non-transmission portions 25c that do not transmit light.
本実施の形態において、第 1,第 2,第 7,第 8パターン部分 PI, P2, P7, P8の非 透過部 25cは、第 1,第 2,第 7,第 8パターン部分 PI, P2, P7, P8を重ね合わせた ときに、それぞれが重ならないような位置に設けられる。換言すれば、第 1,第 2,第 7 ,第 8パターン部分 PI, P2, P7, P8の第 1光透過パターン 25aは、前述のように設け られる非透過部 25c以外の領域に形成される。  In the present embodiment, the first, second, seventh, and eighth pattern portions PI, P2, P7, and P8 have non-transmissive portions 25c, which are the first, second, seventh, and eighth pattern portions PI, P2, and P2, respectively. When P7 and P8 are overlapped, they are provided at positions that do not overlap each other. In other words, the first light transmission pattern 25a of the first, second, seventh, and eighth pattern portions PI, P2, P7, and P8 is formed in a region other than the non-transmissive portion 25c provided as described above. .
第 2ブロック BBは、複数の第 2光透過パターン 25bが形成される第 3パターン部分 P3および第 4パターン部分 P4を含む。第 3ブロック BCは、複数の第 2光透過パター ン 25bが形成される第 5パターン部分 P5および第 6パターン部分 P6を含む。第 3,第 4,第 5,第 6パターン部分 P3, P4, P5, P6は、投影マスク 25Bの厚み方向に垂直な 仮想平面に投影した形状が、投影マスク 25Bの短手方向に延びる長方形状である。 複数の第 2光透過パターン 25bは、投影マスク 25Bの短手方向に間隔をあけて形成 されている。第 2および第 3ブロック BB, BCの第 2光透過パターン 25b以外の部分は 、光を透過しない非透過部 25cである。  The second block BB includes a third pattern portion P3 and a fourth pattern portion P4 where a plurality of second light transmission patterns 25b are formed. The third block BC includes a fifth pattern portion P5 and a sixth pattern portion P6 in which a plurality of second light transmission patterns 25b are formed. The third, fourth, fifth, and sixth pattern parts P3, P4, P5, and P6 are rectangular shapes that are projected in a virtual plane perpendicular to the thickness direction of the projection mask 25B and that extend in the short direction of the projection mask 25B. It is. The plurality of second light transmission patterns 25b are formed at intervals in the short direction of the projection mask 25B. The portions other than the second light transmission pattern 25b of the second and third blocks BB and BC are non-transmission portions 25c that do not transmit light.
本実施の形態において、第 3,第 4,第 5,第 6パターン部分 P3, P4, P5, P6の非 透過部 25cは、第 3,第 4,第 5,第 6パターン部分 P3, P4, P5, P6を重ね合わせた ときに、それぞれが重ならないような位置に設けられる。換言すれば、第 3,第 4,第 5 ,第 6パターン部分 P3, P4, P5, P6の第 2光透過パターン 25bは、前述のように設け られる非透過部 25c以外の領域に形成される。  In the present embodiment, the non-transmissive portions 25c of the third, fourth, fifth, and sixth pattern portions P3, P4, P5, and P6 are the third, fourth, fifth, and sixth pattern portions P3, P4, When P5 and P6 are overlapped, they are placed in positions that do not overlap each other. In other words, the second light transmission pattern 25b of the third, fourth, fifth, and sixth pattern portions P3, P4, P5, and P6 is formed in a region other than the non-transmissive portion 25c provided as described above. .
第 1〜第 4ブロック BA〜: BDの短手方向寸法を Wとしたとき、第 1〜第 8パターン部 分 P1〜P8の短手方向寸法は、 WZ2である。本実施の形態の第 1および第 2光透 過パターン 25a, 25bは、第 1の実施の形態と同様に、投影マスク 25Bの厚み方向に 見て六角形状であり、第 1および第 2光透過パターン 25a, 25bの各延び方向の両端 部は、投影マスク 25Bの厚み方向に見て先細状に形成されている。ただし図 17には 、理解を容易にするために、第 1および第 2光透過パターン 25a, 25bを長方形状に 示している。 1st to 4th blocks BA: When the dimension in the short direction of BD is W, the dimension in the short direction of the first to eighth pattern portions P1 to P8 is WZ2. As in the first embodiment, the first and second light transmission patterns 25a and 25b of the present embodiment are hexagonal when viewed in the thickness direction of the projection mask 25B, and the first and second light transmission patterns Both end portions in the extending direction of the patterns 25a and 25b are formed in a tapered shape when viewed in the thickness direction of the projection mask 25B. However, in FIG. 17, the first and second light transmission patterns 25a and 25b are formed in a rectangular shape for easy understanding. Show.
図 18は、図 17に示す投影マスク 25Bを用いて繰返し工程を行うことによって、半導 体膜 37に形成される結晶化領域 41の状態を示す平面図である。本実施の形態では 、図 17に示す投影マスク 25Bを用いて繰返し工程を行うことによって、半導体膜 37 を結晶化させる。図 18のセクション VIは、繰返し工程において、 8回の結晶化工程お よび 7回の移動工程を行うことによって形成される結晶化領域 41である。本実施の形 態では、ステージ 28に載置される半導体素子 27の半導体膜 37の長手方向の参照 符号として、ステージ 28の第 1移動方向と同一の参照符号「X」を付し、半導体膜 37 の短手方向の参照符号として、ステージ 28の第 2移動方向と同一の参照符号「Y」を 付して説明する。  FIG. 18 is a plan view showing a state of the crystallized region 41 formed in the semiconductor film 37 by performing the repetition process using the projection mask 25B shown in FIG. In the present embodiment, the semiconductor film 37 is crystallized by repeating the process using the projection mask 25B shown in FIG. Section VI in FIG. 18 is a crystallization region 41 formed by performing eight crystallization steps and seven transfer steps in a repeated process. In the present embodiment, the same reference symbol “X” as that of the first movement direction of the stage 28 is given as the reference symbol in the longitudinal direction of the semiconductor film 37 of the semiconductor element 27 placed on the stage 28, and the semiconductor film The reference numeral “Y”, which is the same as the second moving direction of the stage 28, will be given as a reference numeral 37 in the short direction.
移動工程では、制御部 29がステージ 28を駆動制御することによって、ステージ 28 を第 1移動方向 X—方に所定の距離寸法だけ移動させる。ステージ 28を第 1移動方 向 X—方に移動させることによって、ステージ 28上に載置される半導体素子 27を、第 1移動方向 X—方に所定の距離寸法だけ移動させることができる。これによつて、投 影マスク 25Βに形成される複数の第 1および第 2光透過パターン 25a, 25bを透過し たレーザ光 31が半導体素子 27の半導体膜 37の厚み方向一表面部に照射される新 たな領域は、第 1移動方向 X—方に所定の距離寸法だけ移動した領域となる。前記 新たな領域は、移動前の領域と一部分が重複している。ステージ 28を第 1移動方向 X—方に移動させるときの前記所定の距離寸法は、投影マスク 25Bの第 1〜第 8バタ ーン部分 P1〜P8の短手方向寸法 WZ2である。  In the moving process, the control unit 29 drives and controls the stage 28, thereby moving the stage 28 by a predetermined distance dimension in the first moving direction X-direction. By moving the stage 28 in the first movement direction X-direction, the semiconductor element 27 placed on the stage 28 can be moved in the first movement direction X-direction by a predetermined distance dimension. As a result, the laser beam 31 transmitted through the plurality of first and second light transmission patterns 25a and 25b formed on the projection mask 25 マ ス ク is irradiated to one surface in the thickness direction of the semiconductor film 37 of the semiconductor element 27. The new area is the area moved by a predetermined distance in the first movement direction X- direction. The new area partially overlaps the area before the movement. The predetermined distance dimension when the stage 28 is moved in the first movement direction X-direction is the lateral dimension WZ2 of the first to eighth pattern portions P1 to P8 of the projection mask 25B.
前述のように繰返し工程を行うことによって、半導体膜 37には、第 1光透過パターン 25aを透過したレーザ光 31が照射されて結晶化された第 1結晶化領域 41aと、第 2光 透過パターン 25bを透過したレーザ光 31が照射されて結晶化された第 2結晶化領域 41bとを含む結晶化領域 41が、半導体膜 37の長手方向 Xまたは短手方向 Yに並ん で形成される。特に、繰返し工程において、 8回の結晶化工程および 7回の移動工程 を行うことによってセクション VIに形成される第 1結晶化領域 41aと第 2結晶化領域 4 lbとは、半導体膜 37の長手方向 Xに交互に形成される。セクション VIに形成される 第 1結晶化領域 41aと第 2結晶化領域 41bとの面積が同等になる。したがって、図 17 に示す投影マスク 25Bを用いて繰返し工程を行うことによって、半導体膜 37を均一 に結晶化させることができる。 By repeating the process as described above, the semiconductor film 37 is irradiated with the laser light 31 transmitted through the first light transmission pattern 25a and crystallized by the first crystallization region 41a and the second light transmission pattern. A crystallization region 41 including the second crystallization region 41b crystallized by irradiation with the laser beam 31 transmitted through 25b is formed side by side in the longitudinal direction X or the lateral direction Y of the semiconductor film 37. In particular, in the repetition process, the first crystallization region 41a and the second crystallization region 4 lb formed in the section VI by performing the crystallization process 8 times and the transfer process 7 times are the length of the semiconductor film 37. Alternating in direction X. The areas of the first crystallization region 41a and the second crystallization region 41b formed in the section VI are equal. Therefore, Figure 17 The semiconductor film 37 can be uniformly crystallized by repeating the steps using the projection mask 25B shown in FIG.
前述のように本実施の形態によれば、半導体膜 37を結晶化させるにあたって、第 1 光透過パターン 25aが形成される m (mは 2以上の偶数)個の第 1光透過パターン領 域と、第 2光透過パターン 25bが形成される n (nは 2以上の偶数)個の第 2光透過パ ターン領域とを含み、 mZ2個の第 1光透過パターン領域、 n個の第 2光透過パター ン領域、および mZ2個の第 1光透過パターン領域の順に並べて配設される投影マ スクが用いられる。たとえば、変数 m, nが共に「2」である場合、図 17に示すように、 2 個の第 1光透過パターン領域および 2個の第 2光透過パターン領域が、 1個の第 1光 透過パターン領域、 2個の第 2光透過パターン領域、および 1個の第 1光透過パター ン領域の順に並べて配設される。  As described above, according to the present embodiment, when the semiconductor film 37 is crystallized, the first light transmission pattern 25a is formed, and m (m is an even number of 2 or more) first light transmission pattern regions and N (where n is an even number of 2 or more) second light transmission pattern regions on which the second light transmission pattern 25b is formed, mZ2 first light transmission pattern regions, n second light transmission patterns A projection mask is used in which a pattern area and mZ2 first light transmission pattern areas are arranged in this order. For example, when the variables m and n are both “2”, as shown in FIG. 17, two first light transmission pattern regions and two second light transmission pattern regions are one first light transmission pattern. A pattern region, two second light transmission pattern regions, and one first light transmission pattern region are arranged in this order.
前述のように複数の第 1および第 2光透過パターン領域が配設される投影マスク 25 Bにレーザ光 31を照射し、投影マスク 25Bの各光透過パターン領域に形成される第 1および第 2光透過パターン 25a, 25bを透過したレーザ光 31を半導体膜 37に照射 する。具体的には、ステージ 28を、各光透過パターン領域の第 1〜第 8パターン部分 P1〜P8の短手方向寸法 WZ2だけ移動させながら、半導体膜 37にレーザ光 31を 照射する。これによつてレーザ光 31の最終照射によって結晶化された半導体膜 37 において、第 1結晶化領域 41aの面積と、第 2結晶化領域 41bの面積との比率を同 等にすることができる。したがって、半導体膜 37を均一に結晶化させることができる。 このように均一に結晶化された半導体膜 37、具体的には非晶質材料力 成る層に 、たとえば複数の TFT素子 50を形成する場合、半導体膜 37に対する一方の TFT素 子 50の形成方向が第 1形成方向、他方の TFT素子 50の形成方向が第 2形成方向 というように、半導体膜 37に対する TFT素子 50の形成方向が異なるときでも、各形 成方向に形成される各 TFT素子 50のチャンネル部分に含まれる第 1結晶化領域 41 aの面積と、第 2結晶化領域 41bの面積との比率を同等にすることができる。これによ つて半導体膜 37に形成する複数の TFT素子 50の電気的特性、具体的にはスィッチ ング特性を同一にすることができる。換言すれば、複数の TFT素子 50のスイッチング 特性を均一にすることができる。 また半導体膜 37に対する TFT素子 50の形成方向に依らず、 TFT素子 50のスイツ チング特性を均一にすることができるので、 TFT素子 50を用いた表示装置などの設 計の自由度を高めることができる。 As described above, the projection mask 25B on which the plurality of first and second light transmission pattern regions are arranged is irradiated with the laser light 31, and the first and second light patterns formed in the light transmission pattern regions of the projection mask 25B. The semiconductor film 37 is irradiated with laser light 31 that has passed through the light transmission patterns 25a and 25b. Specifically, the semiconductor film 37 is irradiated with the laser beam 31 while moving the stage 28 by the short dimension WZ2 of the first to eighth pattern portions P1 to P8 of each light transmission pattern region. As a result, in the semiconductor film 37 crystallized by the final irradiation of the laser beam 31, the ratio of the area of the first crystallization region 41a and the area of the second crystallization region 41b can be made equal. Therefore, the semiconductor film 37 can be uniformly crystallized. For example, when forming a plurality of TFT elements 50 in the uniformly crystallized semiconductor film 37, specifically, a layer having an amorphous material force, the direction in which one TFT element 50 is formed with respect to the semiconductor film 37. Even when the formation direction of the TFT element 50 with respect to the semiconductor film 37 is different, such as the first formation direction and the formation direction of the other TFT element 50 are the second formation direction, each TFT element 50 formed in each formation direction. The ratio of the area of the first crystallization region 41a included in the channel portion to the area of the second crystallization region 41b can be made equal. As a result, the electrical characteristics of the plurality of TFT elements 50 formed in the semiconductor film 37, specifically, the switching characteristics can be made the same. In other words, the switching characteristics of the plurality of TFT elements 50 can be made uniform. In addition, since the switching characteristics of the TFT element 50 can be made uniform regardless of the direction in which the TFT element 50 is formed on the semiconductor film 37, the degree of freedom in designing a display device using the TFT element 50 can be increased. it can.
さらに、投影マスク 25Bに設けられる第 1光透過パターン領域および第 2光透過パ ターン領域の個数を増やすことによって、結晶化工程および移動工程の工程数を増 やして、半導体膜 37をより均一に結晶化させることができ、かつ比較的大きな粒径の 結晶粒を形成することができる。このように比較的大きな結晶粒を形成し、半導体膜 3 7の電子移動度を比較的高くすることによって、たとえば半導体膜 37に複数の TFT 素子 50を形成する場合、各 TFT素子 50の電気的特性、具体的にはスイッチング特 性を格段に向上することができる。  Further, by increasing the number of first light transmission pattern regions and second light transmission pattern regions provided in the projection mask 25B, the number of steps of the crystallization process and the movement process is increased, and the semiconductor film 37 is made more uniform. And crystal grains having a relatively large grain size can be formed. Thus, by forming relatively large crystal grains and relatively increasing the electron mobility of the semiconductor film 37, for example, when a plurality of TFT elements 50 are formed in the semiconductor film 37, the electrical characteristics of each TFT element 50 are The characteristics, specifically the switching characteristics, can be significantly improved.
次に、本発明の第 3の実施の形態であるレーザカ卩ェ装置およびレーザカ卩ェ方法に ついて説明する。本実施の形態のレーザ加工装置は、前述の第 1の実施の形態のレ 一ザ加工装置 20と構成が類似しており、投影マスク 25に代えて他の投影マスク 25C を備えている点だけが異なるので、投影マスク 25Cについて説明し、同一の構成に ついては同一の参照符を付して説明を省略する。投影マスク 25Cは、第 2の実施の 形態の投影マスク 25Bと構成が類似しているので、同一の構成については同一の参 照符を付して説明を省略する。レーザカ卩ェ装置によって、ステージ 28に載置される 半導体素子 27の半導体膜 37を結晶化する工程は、前述の第 1の実施の形態と同様 であるので説明を省略する。本発明の第 3の実施の形態であるレーザ加工方法は、 本実施の形態のレーザカ卩ェ装置によって実施される。  Next, a laser carriage device and a laser carriage method according to a third embodiment of the present invention will be described. The laser processing apparatus of the present embodiment is similar in configuration to the laser processing apparatus 20 of the first embodiment described above, and only includes another projection mask 25C instead of the projection mask 25. Therefore, the projection mask 25C will be described, and the same components will be denoted by the same reference numerals and description thereof will be omitted. Since the projection mask 25C has a configuration similar to that of the projection mask 25B of the second embodiment, the same components are denoted by the same reference numerals and the description thereof is omitted. The process of crystallizing the semiconductor film 37 of the semiconductor element 27 placed on the stage 28 by the laser carriage apparatus is the same as that in the first embodiment described above, and a description thereof will be omitted. The laser processing method according to the third embodiment of the present invention is performed by the laser cache device according to the present embodiment.
図 19は、投影マスク 25Cを模式的に示す平面図である。投影マスク 25Cは、その 厚み方向に垂直な仮想平面に投影した形状が長方形状である。投影マスク 25Cは、 予め定める第 1方向に延びる第 1光透過パターン 25aが形成される m(mは 2以上の 偶数)個の第 1光透過パターン領域、および第 1方向に直交する第 2方向に延びる第 2光透過パターン 25bが形成される n (nは 2以上の偶数)個の第 2光透過パターン領 域を含む。さらに述べると、本実施の形態の投影マスク 25Cは、 nZ2個の第 2光透 過パターン領域、 m個の第 1光透過パターン領域、および nZ2個の第 2光透過バタ ーン領域の順に並べて配設される。ここで、前記予め定める第 1方向とは、投影マス ク 25Cの長手方向に沿って延びる第 1軸線と、投影マスク 25Cの短手方向に沿って 延びる第 2軸線とを含む平面内における第 2軸線方向をいう。 FIG. 19 is a plan view schematically showing the projection mask 25C. The projection mask 25C has a rectangular shape projected onto a virtual plane perpendicular to its thickness direction. The projection mask 25C includes m (m is an even number of 2 or more) first light transmission pattern regions in which a first light transmission pattern 25a extending in a predetermined first direction is formed, and a second direction orthogonal to the first direction The second light transmission pattern 25b extending in the region is formed, and n (n is an even number of 2 or more) second light transmission pattern regions. More specifically, the projection mask 25C of the present embodiment is arranged in the order of nZ2 second light transmission pattern regions, m first light transmission pattern regions, and nZ2 second light transmission pattern regions. Arranged. Here, the predetermined first direction is the projection mass. The second axial direction in a plane including the first axis extending along the longitudinal direction of the projection 25C and the second axis extending along the lateral direction of the projection mask 25C.
図 19には、理解を容易にするために、前記変数 m, nが共に「2」の場合の投影マス ク 25Cを示している。具体的に述べると、図 19には、 2個の第 1光透過パターン領域 および 2個の第 2光透過パターン領域を含み、 1個の第 2光透過パターン領域、 2個 の第 1光透過パターン領域、および 1個の第 2光透過パターン領域の順に並べて配 設される投影マスク 25Cを示している。さらに述べると、投影マスク 25Cは、第 2光透 過パターン領域に対応する第 1ブロック BA、第 1光透過パターン領域に対応する第 2および第 3ブロック BB, BC、ならびに第 2光透過パターン領域に対応する第 4ブロ ック BDに分割されている。第 1〜第 4ブロック BA〜BDは、投影マスク 25Cの厚み方 向に垂直な仮想平面に投影した形状が、投影マスク 25Cの短手方向に延びる長方 形状である。  FIG. 19 shows a projection mask 25C when the variables m and n are both “2” for easy understanding. Specifically, FIG. 19 includes two first light transmission pattern regions and two second light transmission pattern regions, one second light transmission pattern region, and two first light transmission patterns. A projection mask 25C is shown that is arranged in the order of the pattern region and one second light transmission pattern region. More specifically, the projection mask 25C includes the first block BA corresponding to the second light transmission pattern region, the second and third blocks BB and BC corresponding to the first light transmission pattern region, and the second light transmission pattern region. Is divided into 4th block BDs corresponding to. In the first to fourth blocks BA to BD, the shape projected on a virtual plane perpendicular to the thickness direction of the projection mask 25C is a rectangular shape extending in the short direction of the projection mask 25C.
第 1ブロック BAは、複数の第 2光透過パターン 25bが形成される第 1パターン部分 P1および第 2パターン部分 P2を含む。第 4ブロック BDは、複数の第 2光透過パター ン 25bが形成される第 7パターン部分 P7および第 8パターン部分 P8を含む。第 1,第 2,第 7,第 8パターン部分 PI, P2, P7, P8は、投影マスク 25Cの厚み方向に垂直な 仮想平面に投影した形状が、投影マスク 25Cの短手方向に延びる長方形状である。 複数の第 2光透過パターン 25bは、投影マスク 25Cの短手方向に間隔をあけて形成 されている。第 1および第 4ブロック BA, BDの第 2光透過パターン 25b以外の部分は 、光を透過しない非透過部 25cである。  The first block BA includes a first pattern portion P1 and a second pattern portion P2 where a plurality of second light transmission patterns 25b are formed. The fourth block BD includes a seventh pattern portion P7 and an eighth pattern portion P8 in which a plurality of second light transmission patterns 25b are formed. The first, second, seventh, and eighth pattern portions PI, P2, P7, and P8 are rectangular shapes that are projected on a virtual plane perpendicular to the thickness direction of the projection mask 25C and that extend in the short direction of the projection mask 25C. It is. The plurality of second light transmission patterns 25b are formed at intervals in the short direction of the projection mask 25C. The portions other than the second light transmission pattern 25b of the first and fourth blocks BA and BD are non-transmission portions 25c that do not transmit light.
本実施の形態において、第 1,第 2,第 7,第 8パターン部分 PI, P2, P7, P8の非 透過部 25cは、第 1,第 2,第 7,第 8パターン部分 PI, P2, P7, P8を重ね合わせた ときに、それぞれが重ならないような位置に設けられる。換言すれば、第 1,第 2,第 7 ,第 8パターン部分 PI, P2, P7, P8の第 2光透過パターン 25bは、前述のように設け られる非透過部 25c以外の領域に形成される。  In the present embodiment, the first, second, seventh, and eighth pattern portions PI, P2, P7, and P8 have non-transmissive portions 25c, which are the first, second, seventh, and eighth pattern portions PI, P2, and P2, respectively. When P7 and P8 are overlapped, they are provided at positions that do not overlap each other. In other words, the second light transmission pattern 25b of the first, second, seventh, and eighth pattern portions PI, P2, P7, and P8 is formed in a region other than the non-transmissive portion 25c provided as described above. .
第 2ブロック BBは、複数の第 1光透過パターン 25aが形成される第 3パターン部分 P 3および第 4パターン部分 P4を含む。第 3ブロック BCは、複数の第 1光透過パターン 25aが形成される第 5パターン部分 P5および第 6パターン部分 P6を含む。第 3,第 4 ,第 5,第 6パターン部分 Ρ3, Ρ4, Ρ5, Ρ6は、投影マスク 25Cの厚み方向に垂直な 仮想平面に投影した形状が、投影マスク 25Cの短手方向に延びる長方形状である。 複数の第 1光透過パターン 25aは、投影マスク 25Cの長手方向に間隔をあけて形成 されている。第 2および第 3ブロック BB, BCの第 1光透過パターン 25a以外の部分は 、光を透過しない非透過部 25cである。 The second block BB includes a third pattern portion P3 and a fourth pattern portion P4 in which a plurality of first light transmission patterns 25a are formed. The third block BC includes a fifth pattern portion P5 and a sixth pattern portion P6 in which a plurality of first light transmission patterns 25a are formed. 3rd and 4th The fifth and sixth pattern portions Ρ3, Ρ4, Ρ5, and Ρ6 are rectangular shapes in which the shape projected on a virtual plane perpendicular to the thickness direction of the projection mask 25C extends in the short direction of the projection mask 25C. The plurality of first light transmission patterns 25a are formed at intervals in the longitudinal direction of the projection mask 25C. The portions of the second and third blocks BB and BC other than the first light transmission pattern 25a are non-transmission portions 25c that do not transmit light.
本実施の形態において、第 3,第 4,第 5,第 6パターン部分 P3, P4, P5, P6の非 透過部 25cは、第 3,第 4,第 5,第 6パターン部分 P3, P4, P5, P6を重ね合わせた ときに、それぞれが重ならないような位置に設けられる。換言すれば、第 3,第 4,第 5 ,第 6パターン部分 P3, P4, P5, P6の第 1光透過パターン 25aは、前述のように設け られる非透過部 25c以外の領域に形成される。  In the present embodiment, the non-transmissive portions 25c of the third, fourth, fifth, and sixth pattern portions P3, P4, P5, and P6 are the third, fourth, fifth, and sixth pattern portions P3, P4, When P5 and P6 are overlapped, they are placed in positions that do not overlap each other. In other words, the first light transmission pattern 25a of the third, fourth, fifth, and sixth pattern portions P3, P4, P5, and P6 is formed in a region other than the non-transmissive portion 25c provided as described above. .
第 1〜第 4ブロック BA〜: BDの短手方向寸法を Wとしたとき、第 1〜第 8パターン部 分 P1〜P8の短手方向寸法は、 WZ2である。本実施の形態の第 1および第 2光透 過パターン 25a, 25bは、第 1の実施の形態と同様に、投影マスク 25Cの厚み方向に 見て六角形状であり、第 1および第 2光透過パターン 25a, 25bの各延び方向の両端 部は、投影マスク 25Cの厚み方向に見て先細状に形成されている。ただし図 19には 、理解を容易にするために、第 1および第 2光透過パターン 25a, 25bを長方形状に 示している。  1st to 4th blocks BA: When the dimension in the short direction of BD is W, the dimension in the short direction of the first to eighth pattern portions P1 to P8 is WZ2. As in the first embodiment, the first and second light transmission patterns 25a and 25b of the present embodiment are hexagonal when viewed in the thickness direction of the projection mask 25C, and the first and second light transmission patterns Both ends in the extending direction of the patterns 25a and 25b are formed in a tapered shape when viewed in the thickness direction of the projection mask 25C. However, in FIG. 19, the first and second light transmission patterns 25a and 25b are shown in a rectangular shape for easy understanding.
図 20は、図 19に示す投影マスク 25Cを用いて繰返し工程を行うことによって、半導 体膜 37に形成される結晶化領域 41の状態を示す平面図である。本実施の形態では 、図 19に示す投影マスク 25Cを用いて繰返し工程を行うことによって、半導体膜 37 を結晶化させる。図 20のセクション VIIは、繰返し工程において、 8回の結晶化工程 および 7回の移動工程を行うことによって形成される結晶化領域 41である。本実施の 形態では、ステージ 28に載置される半導体素子 27の半導体膜 37の長手方向の参 照符号として、ステージ 28の第 1移動方向と同一の参照符号「X」を付し、半導体膜 3 7の短手方向の参照符号として、ステージ 28の第 2移動方向と同一の参照符号「Y」 を付して説明する。  FIG. 20 is a plan view showing a state of the crystallization region 41 formed in the semiconductor film 37 by performing the repetition process using the projection mask 25C shown in FIG. In the present embodiment, the semiconductor film 37 is crystallized by repeating the process using the projection mask 25C shown in FIG. Section VII in FIG. 20 is a crystallization region 41 formed by performing eight crystallization steps and seven transfer steps in a repeated process. In the present embodiment, the same reference symbol “X” as that of the first movement direction of the stage 28 is given as the reference symbol in the longitudinal direction of the semiconductor film 37 of the semiconductor element 27 placed on the stage 28, and the semiconductor film The reference numeral “Y”, which is the same as the second moving direction of the stage 28, will be given as a reference numeral in the short direction of 37.
移動工程では、制御部 29がステージ 28を駆動制御することによって、ステージ 28 を第 1移動方向 X—方に所定の距離寸法だけ移動させる。ステージ 28を第 1移動方 向 X—方に移動させることによって、ステージ 28上に載置される半導体素子 27を、第 1移動方向 X—方に所定の距離寸法だけ移動させることができる。これによつて、投 影マスク 25Cに形成される複数の第 1および第 2光透過パターン 25a, 25bを透過し たレーザ光 31が半導体素子 27の半導体膜 37の厚み方向一表面部に照射される新 たな領域は、第 1移動方向 X—方に所定の距離寸法だけ移動した領域となる。前記 新たな領域は、移動前の領域と一部分が重複している。ステージ 28を第 1移動方向 X—方に移動させるときの前記所定の距離寸法は、投影マスク 25Cの第 1〜第 8バタ ーン部分 P1〜P8の短手方向寸法 WZ2である。 In the moving process, the control unit 29 drives and controls the stage 28, thereby moving the stage 28 by a predetermined distance dimension in the first moving direction X-direction. Stage 28 first move By moving in the X direction, the semiconductor element 27 placed on the stage 28 can be moved by a predetermined distance in the first moving direction X. As a result, the laser beam 31 transmitted through the plurality of first and second light transmission patterns 25a, 25b formed on the projection mask 25C is irradiated to one surface portion in the thickness direction of the semiconductor film 37 of the semiconductor element 27. The new area is the area moved by a predetermined distance in the first movement direction X- direction. The new area partially overlaps the area before the movement. The predetermined distance dimension when the stage 28 is moved in the first movement direction X-direction is the lateral dimension WZ2 of the first to eighth pattern portions P1 to P8 of the projection mask 25C.
前述のように繰返し工程を行うことによって、半導体膜 37には、第 1光透過パターン 25aを透過したレーザ光 31が照射されて結晶化された第 1結晶化領域 41aと、第 2光 透過パターン 25bを透過したレーザ光 31が照射されて結晶化された第 2結晶化領域 41bとを含む結晶化領域 41が、半導体膜 37の長手方向 Xまたは短手方向 Yに並ん で形成される。特に、繰返し工程において、 8回の結晶化工程および 7回の移動工程 を行うことによってセクション VII〖こ形成される第 1結晶化領域 41aと第 2結晶化領域 4 lbとは、半導体膜 37の長手方向 Xに交互に形成される。セクション VIIに形成される 第 1結晶化領域 41aと第 2結晶化領域 41bとの面積が同等になる。したがって、図 19 に示す投影マスク 25Cを用いて繰返し工程を行うことによって、半導体膜 37を均一 に結晶化させることができる。  By repeating the process as described above, the semiconductor film 37 is irradiated with the laser light 31 transmitted through the first light transmission pattern 25a and crystallized by the first crystallization region 41a and the second light transmission pattern. A crystallization region 41 including the second crystallization region 41b crystallized by irradiation with the laser beam 31 transmitted through 25b is formed side by side in the longitudinal direction X or the lateral direction Y of the semiconductor film 37. In particular, in the repetition process, the first crystallization region 41a and the second crystallization region 4 lb formed by performing the crystallization process of 8 times and the transfer process of 7 times are used for the semiconductor film 37. They are formed alternately in the longitudinal direction X. The areas of the first crystallization region 41a and the second crystallization region 41b formed in the section VII are equal. Therefore, the semiconductor film 37 can be uniformly crystallized by repeating the process using the projection mask 25C shown in FIG.
nZ2個の第 2光透過パターン領域、 m個の第 1光透過パターン領域および nZ2個 の第 2光透過パターン領域の順に並べて配設される投影マスク、本実施の形態では 、 1個の第 2光透過パターン領域、 2個の第 1光透過パターン領域および 1個の第 2光 透過パターン領域の順に並べて配設される投影マスク 25Cを用いて半導体膜 37を 結晶化する場合でも、前述の第 2の実施の形態の投影マスク 25Bを用いて半導体膜 37を結晶化する場合と同様の効果を得ることができる。  nZ2 second light transmission pattern regions, m first light transmission pattern regions, and nZ2 second light transmission pattern regions arranged in this order, one second mask in this embodiment Even when the semiconductor film 37 is crystallized using the projection mask 25C arranged in the order of the light transmissive pattern region, the two first light transmissive pattern regions, and the one second light transmissive pattern region, the above-mentioned first The same effect as in the case of crystallizing the semiconductor film 37 using the projection mask 25B of the second embodiment can be obtained.
次に本発明の第 4の実施の形態であるレーザカ卩ェ装置およびレーザカ卩ェ方法に ついて説明する。本実施の形態のレーザ加工装置は、前述の第 1の実施の形態のレ 一ザカ卩ェ装置 20と構成が類似しており、投影マスク 25に代えて他の投影マスク 100 を備えている点だけが異なるので、投影マスク 100について説明し、同一の構成に ついては同一の参照符を付して説明を省略する。レーザカ卩ェ装置によって、ステー ジ 28に載置される半導体素子 27の半導体膜 37を結晶化する工程は、前述の第 1の 実施の形態と同様であるので説明を省略する。本発明の第 4の実施の形態であるレ 一ザ加工方法は、本実施の形態のレーザ加工装置によって実施される。 Next, a laser carriage device and a laser carriage method according to a fourth embodiment of the present invention will be described. The laser processing apparatus of the present embodiment is similar in configuration to the laser cache apparatus 20 of the first embodiment described above, and includes another projection mask 100 instead of the projection mask 25. The only difference is that the projection mask 100 will be described in the same configuration. The same reference numerals are assigned and explanations are omitted. The process of crystallizing the semiconductor film 37 of the semiconductor element 27 placed on the stage 28 by the laser carriage device is the same as in the first embodiment described above, and thus the description thereof is omitted. The laser processing method according to the fourth embodiment of the present invention is performed by the laser processing apparatus according to the present embodiment.
図 21は、投影マスク 100を示す平面図である。本実施の形態の投影マスク 100に は、基板の厚み方向に貫通し、照射対象物である半導体素子 27の半導体膜 37を結 晶化させるための光を透過する複数の第 1光透過パターン 100aおよび第 2光透過 パターン 100bが形成されている。投影マスク 100の第 1および第 2光透過パターン 1 00a, 100b以外の部分は、光を透過しない非透過部 100cである。本実施の形態の 投影マスク 100は、図 21に示すように、その厚み方向に垂直な仮想平面に投影した 形状が長方形状である。  FIG. 21 is a plan view showing the projection mask 100. The projection mask 100 according to the present embodiment includes a plurality of first light transmission patterns 100a that penetrate in the thickness direction of the substrate and transmit light for crystallizing the semiconductor film 37 of the semiconductor element 27 that is the irradiation target. And the second light transmission pattern 100b is formed. Portions other than the first and second light transmission patterns 100a and 100b of the projection mask 100 are non-transmission portions 100c that do not transmit light. As shown in FIG. 21, projection mask 100 according to the present embodiment has a rectangular shape projected onto a virtual plane perpendicular to the thickness direction.
投影マスク 100は、第 1の実施の形態の投影マスク 25, 25Aと同様に、第 1領域に 対応する第 1ブロック BA、第 2領域に対応する第 2ブロック BB、第 3領域に対応する 第 3ブロック BCおよび第 4領域に対応する第 4ブロック BDを含む。第 1ブロック BA、 第 2ブロック BB、第 3ブロック BCおよび第 4ブロック BDは、投影マスク 100の厚み方 向に垂直な仮想平面に投影した形状が、投影マスク 100の短手方向に延びる長方 开状である。第 1ブロック BA、第 2ブロック BB、第 3ブロック BCおよび第 4ブロック BD は、この順で投影マスク 100の長手方向に相当する並び方向に一列に並んで設けら れる。  Similar to the projection masks 25 and 25A of the first embodiment, the projection mask 100 corresponds to the first block BA corresponding to the first area, the second block BB corresponding to the second area, and the third area corresponding to the third area. 3 blocks BC and 4th block BD corresponding to 4th area are included. The first block BA, the second block BB, the third block BC, and the fourth block BD are long sides in which the shape projected on a virtual plane perpendicular to the thickness direction of the projection mask 100 extends in the short direction of the projection mask 100. Open letter. The first block BA, the second block BB, the third block BC, and the fourth block BD are arranged in a line in the order corresponding to the longitudinal direction of the projection mask 100 in this order.
第 1および第 2ブロック BA, BBには、複数の第 1光透過パターン 100aが形成され ている。図 21には、理解を容易にするために、 11個の第 1光透過パターン 100aを示 している。第 1光透過パターン 100aは、投影マスク 100の長手方向に沿って延びる 第 1軸線と、投影マスク 100の短手方向に沿って延びる第 2軸線とを含む平面内にお いて、予め定める第 1方向、本実施の形態では第 1軸線と第 2軸線との交点を中心と して第 2軸線から予め定める周方向一方に 45度傾斜した方向に延びている。ここで、 前記周方向一方とは、投影マスク 100のレーザ光の入射側平面において、第 1軸線 と第 2軸線との交点を中心として時計まわりに角変位する方向をいう。複数の第 1光 透過パターン 100aは、前記平面内において、前記第 1方向に直交する方向、換言 すると後述する第 2方向に間隔をあけて形成されている。 A plurality of first light transmission patterns 100a are formed in the first and second blocks BA and BB. FIG. 21 shows eleven first light transmission patterns 100a for easy understanding. The first light transmission pattern 100a is a first predetermined in a plane including a first axis extending along the longitudinal direction of the projection mask 100 and a second axis extending along the short direction of the projection mask 100. The direction extends in the direction inclined 45 degrees from the second axis to one of the predetermined circumferential directions around the intersection of the first axis and the second axis in the present embodiment. Here, the one circumferential direction refers to a direction in which the laser beam incident side plane of the projection mask 100 is angularly displaced clockwise around the intersection of the first axis and the second axis. The plurality of first light transmission patterns 100a is a direction orthogonal to the first direction in the plane, in other words, Then, it forms in the 2nd direction mentioned later at intervals.
本実施の形態において、第 1ブロック BAの第 1光透過パターン 100aは、第 2ブロッ ク BBの非透過部 100cに対応する位置に形成され、第 2ブロック BBの第 1光透過パ ターン 100aは、第 1ブロック BAの非透過部 100cに対応する位置に形成されている 第 3および第 4ブロック BC, BDには、複数の第 2光透過パターン 100bが形成され ている。図 21に示す第 3および第 4ブロック BC, BDには、理解を容易にするために 、 11個の第 2光透過パターン 100bを示している。第 2光透過パターン 100bは、前記 第 1軸線および第 2軸線を含む平面内において、予め定める第 2方向、本実施の形 態では第 1軸線と第 2軸線との交点を中心として第 2軸線力 予め定める周方向他方 に 45度傾斜した方向、換言すると前記第 1方向に直交する方向に延びている。ここ で、前記周方向他方とは、投影マスク 100のレーザ光の入射側平面において、第 1 軸線と第 2軸線との交点を中心として反時計まわりに角変位する方向をいう。複数の 第 2光透過パターン 100bは、前記平面内において、前記第 2方向に直交する方向、 換言すると前記第 1方向に間隔をあけて形成されて 、る。  In the present embodiment, the first light transmission pattern 100a of the first block BA is formed at a position corresponding to the non-transmission part 100c of the second block BB, and the first light transmission pattern 100a of the second block BB is A plurality of second light transmission patterns 100b are formed in the third and fourth blocks BC and BD formed at positions corresponding to the non-transmission part 100c of the first block BA. In the third and fourth blocks BC and BD shown in FIG. 21, eleven second light transmission patterns 100b are shown for easy understanding. The second light transmission pattern 100b has a second axis line centered on the intersection of the first axis line and the second axis line in the second direction defined in the present embodiment in the plane including the first axis line and the second axis line. The force extends in a direction inclined 45 degrees to the other circumferential direction in other words, in other words, in a direction perpendicular to the first direction. Here, the other circumferential direction refers to a direction in which an angular displacement is made counterclockwise about the intersection of the first axis and the second axis on the laser beam incident side plane of the projection mask 100. The plurality of second light transmission patterns 100b are formed in the plane at intervals in the direction orthogonal to the second direction, in other words, in the first direction.
本実施の形態において、第 3ブロック BCの第 2光透過パターン 100bは、第 4ブロッ ク BDの非透過部 100cに対応する位置に形成され、第 4ブロック BDの第 2光透過パ ターン 100bは、第 3ブロック BCの非透過部 100cに対応する位置に形成されている 本実施の形態の第 1および第 2光透過パターン 100a, 100bは、投影マスク 100の 厚み方向に見て六角形状であり、第 1および第 2光透過パターン 100a, 100bの各 延び方向の両端部は、投影マスク 100の厚み方向に見て先細状に形成されている。 図 22は、投影マスク 100を模式的に示す平面図である。図 22に示す投影マスク 10 0は、第 1および第 2ブロック BA, BBに、複数の第 1光透過パターン 100aが形成さ れ、第 3および第 4ブロック BC, BDに、複数の第 2光透過パターン 100bが形成され ている。投影マスク 100の第 1および第 2光透過パターン 100a, 100b以外の部分は 、光を透過しない非透過部 100cである。図 22には、理解を容易にするために、第 1 および第 2光透過パターン 100a, 100bを略長方形状に示して 、る。 次に図 22に示す投影マスク 100を用 、て繰返し工程を行うことによって形成される 結晶 42の成長過程について説明する。本実施の形態では、繰返し工程において、 4 回の結晶化工程および 3回の移動工程を行う場合について説明する。 In the present embodiment, the second light transmission pattern 100b of the third block BC is formed at a position corresponding to the non-transmission part 100c of the fourth block BD, and the second light transmission pattern 100b of the fourth block BD is The first and second light transmission patterns 100a and 100b of the present embodiment, which are formed at positions corresponding to the non-transmission portion 100c of the third block BC, are hexagonal when viewed in the thickness direction of the projection mask 100. Both end portions in the extending direction of the first and second light transmission patterns 100a and 100b are formed in a tapered shape when viewed in the thickness direction of the projection mask 100. FIG. 22 is a plan view schematically showing the projection mask 100. In the projection mask 100 shown in FIG. 22, a plurality of first light transmission patterns 100a are formed in the first and second blocks BA, BB, and a plurality of second lights are formed in the third and fourth blocks BC, BD. A transmissive pattern 100b is formed. The portions other than the first and second light transmission patterns 100a and 100b of the projection mask 100 are non-transmission portions 100c that do not transmit light. In FIG. 22, the first and second light transmission patterns 100a and 100b are shown in a substantially rectangular shape for easy understanding. Next, the growth process of the crystal 42 formed by repeating the process using the projection mask 100 shown in FIG. 22 will be described. In the present embodiment, a case where the crystallization process is performed four times and the movement process is performed three times in the repetition process will be described.
図 23A〜図 23Dは、図 22に示す投影マスク 100を用いて半導体膜 37を結晶化さ せるときの結晶 42の成長過程を段階的に示す図である。図 23Aは、第 1回目の結晶 化工程によって形成される結晶 42の状態を示す図である。図 23Bは、第 1回目の移 動工程によってステージ 28を予め定める第 1移動方向 Xに移動した後、第 2回目の 結晶化工程によって形成される結晶 42の状態を示す図である。図 23Cは、第 2回目 の移動工程によってステージ 28を第 1移動方向 Xに移動した後、第 3回目の結晶化 工程によって形成される結晶 42の状態を示す図である。図 23Dは、第 3回目の移動 工程によってステージ 28を第 1移動方向 Xに移動した後、第 4回目の結晶化工程に よって形成される結晶 42の状態を示す図である。図 24は、図 23Dのセクション VIII を拡大した平面図である。  FIG. 23A to FIG. 23D are diagrams showing the growth process of the crystal 42 when the semiconductor film 37 is crystallized using the projection mask 100 shown in FIG. FIG. 23A is a diagram showing a state of the crystal 42 formed by the first crystallization process. FIG. 23B is a diagram showing a state of the crystal 42 formed by the second crystallization step after the stage 28 is moved in the first movement direction X determined in advance by the first movement step. FIG. 23C is a diagram showing a state of the crystal 42 formed by the third crystallization process after the stage 28 is moved in the first movement direction X by the second movement process. FIG. 23D is a diagram showing a state of the crystal 42 formed by the fourth crystallization step after the stage 28 is moved in the first movement direction X by the third movement step. FIG. 24 is an enlarged plan view of section VIII of FIG. 23D.
まず第 1回目の結晶化工程において、光源 21から発せられ、投影マスク 100の第 1 ブロック BAの第 1光透過パターン 100aを透過したレーザ光 31を、ステージ 28上に 載置される半導体素子 27の半導体膜 37に照射すると、半導体膜 37の前記レーザ 光 31が照射された領域は結晶化されて、図 23Aに示すように結晶 42が形成される。 そして、第 1回目の移動工程において、ステージ 28を、予め定める第 1移動方向 X— 方に、投影マスク 100の第 1〜第 4ブロック BA〜BDの短手方向寸法に相当する距 離寸法だけ移動させる。  First, in the first crystallization step, the laser light 31 emitted from the light source 21 and transmitted through the first light transmission pattern 100a of the first block BA of the projection mask 100 is a semiconductor element 27 placed on the stage 28. When the semiconductor film 37 is irradiated, the region of the semiconductor film 37 irradiated with the laser beam 31 is crystallized, and a crystal 42 is formed as shown in FIG. 23A. Then, in the first movement process, the stage 28 is moved in the first movement direction X--by a predetermined distance dimension corresponding to the lateral dimension of the first to fourth blocks BA to BD of the projection mask 100. Move.
次に第 2回目の結晶化工程において、第 1回目の結晶化工程によって結晶 42が形 成された半導体膜 37に対して、光源 21から発せられ、投影マスク 100の第 2ブロック BBの第 2光透過パターン 100bを透過したレーザ光 31を照射する。これによつて、前 記第 1回目の結晶化工程によって結晶 42が形成された半導体膜 37のうち、前記レ 一ザ光 31が照射された領域は結晶化されて、図 23Bに示すように、第 1回目の結晶 化工程によって形成された結晶 42の一部に重畳して新たな結晶 42が形成される。 そして、第 2回目の移動工程において、ステージ 28を、第 1移動方向 X—方に、投影 マスク 100の第 1〜第 4ブロック BA〜BDの短手方向寸法に相当する距離寸法だけ 移動させる。 Next, in the second crystallization process, the second light source 21 emits the second block BB of the second block BB of the projection mask 100 to the semiconductor film 37 in which the crystal 42 is formed in the first crystallization process. The laser beam 31 that has passed through the light transmission pattern 100b is irradiated. As a result, in the semiconductor film 37 in which the crystal 42 is formed by the first crystallization process, the region irradiated with the laser light 31 is crystallized, as shown in FIG. 23B. A new crystal 42 is formed so as to overlap with a part of the crystal 42 formed by the first crystallization process. In the second movement step, the stage 28 is moved in the first movement direction X-direction by a distance dimension corresponding to the short-side dimension of the first to fourth blocks BA to BD of the projection mask 100. Move.
次に第 3回目の結晶化工程において、第 1回目および第 2回目の結晶化工程によ つて結晶 42が形成された半導体膜 37に対して、光源 21から発せられ、投影マスク 1 00の第 3ブロック BCの第 2光透過パターン 100bを透過したレーザ光 31を照射する 。これによつて、前記第 1回目および第 2回目の結晶化工程によって結晶 42が形成 された半導体膜 37のうち、前記レーザ光 31が照射された領域は結晶化されて、図 2 3Cに示すように、第 1回目および第 2回目の結晶化工程によって形成された結晶 42 の一部に重畳して新たな結晶 42が形成される。そして、第 3回目の移動工程におい て、ステージ 28を、第 1移動方向 X—方に、投影マスク 100の第 1〜第 4ブロック BA 〜BDの短手方向寸法に相当する距離寸法だけ移動させる。  Next, in the third crystallization process, the light is emitted from the light source 21 to the semiconductor film 37 on which the crystal 42 is formed in the first and second crystallization processes. Irradiate the laser beam 31 that has passed through the second light transmission pattern 100b of the 3-block BC. As a result, in the semiconductor film 37 in which the crystal 42 is formed by the first and second crystallization steps, the region irradiated with the laser beam 31 is crystallized, as shown in FIG. 23C. As described above, a new crystal 42 is formed so as to overlap with a part of the crystal 42 formed by the first and second crystallization steps. Then, in the third movement step, the stage 28 is moved in the first movement direction X by a distance dimension corresponding to the lateral dimension of the first to fourth blocks BA to BD of the projection mask 100. .
次に第 4回目の結晶化工程にぉ 、て、第 1〜第 3回目の結晶化工程によって結晶 4 2が形成された半導体膜 37に対して、光源 21から発せられ、投影マスク 100の第 4 ブロック BDの第 1光透過パターン 100aを透過したレーザ光 31を照射する。これによ つて、前記第 1〜第 3回目の結晶化工程によって結晶 42が形成された半導体膜 37 のうち、前記レーザ光 31が照射された領域は結晶化されて、図 23Dに示すように、 第 1〜第 3回目の結晶化工程によって形成された結晶 42の一部に重畳して新たな結 晶 42が形成される。  Next, after the fourth crystallization process, the light source 21 emits the semiconductor film 37 on which the crystal 42 has been formed by the first to third crystallization processes. 4 Laser light 31 that has passed through the first light transmission pattern 100a of the block BD is irradiated. Thereby, in the semiconductor film 37 in which the crystal 42 is formed by the first to third crystallization steps, the region irradiated with the laser beam 31 is crystallized, as shown in FIG. 23D. A new crystal 42 is formed so as to overlap with a part of the crystal 42 formed by the first to third crystallization steps.
前述のように、図 22に示す投影マスク 100を用いて 4回の結晶化工程、および 3回 の移動工程を行うことによって、図 24に示すように、半導体膜 37には、第 2光透過パ ターン 100bを透過したレーザ光が照射されて結晶化された第 2結晶化領域 41bが 形成される。  As described above, by performing the crystallization process 4 times and the movement process 3 times using the projection mask 100 shown in FIG. 22, the semiconductor film 37 has the second light transmission as shown in FIG. A second crystallized region 41b crystallized by irradiating the laser beam transmitted through the pattern 100b is formed.
第 2結晶化領域 41bでは、第 2光透過パターン 100bの形状のレーザ光が照射され た領域のうち、半導体膜 37の長手方向 Xに延びる第 1軸線および短手方向 Yに延び る第 2軸線を含む平面内において、第 1軸線と第 2軸線との交点を中心として第 2軸 線から時計まわりに角変位する方向に 45度傾斜した方向(以下、本実施の形態にお いて「第 1傾斜方向」と称する場合がある) K1両端部力も第 1傾斜方向 K1中央部に 向力 ようにして段階的に結晶 42が成長する。そして第 1傾斜方向 K1一方側から成 長した結晶 42と第 1傾斜方向 K1他方側力も成長した結晶 42とが衝突して、半導体 膜 37の厚み方向一方に突出する最終突起部 43bが形成される。レーザ光の最終照 射によって第 2結晶化領域 41bに形成される最終突起部 43bは、半導体膜 37の厚 み方向に見て、第 1傾斜方向 K1に直交する方向(以下、本実施の形態において「第 2傾斜方向」と称する場合がある) K2に平行に形成される。最終突起部 43bは、後述 する突起部 45bと区別するために、図 24にお 、て実線で示して 、る。 In the second crystallization region 41b, the first axis extending in the longitudinal direction X of the semiconductor film 37 and the second axis extending in the short direction Y of the region irradiated with the laser light having the shape of the second light transmission pattern 100b In a plane including the first axis and the second axis, the direction inclined 45 degrees clockwise from the second axis in a direction angularly displaced from the second axis (hereinafter referred to as “first The crystal 42 grows stepwise in such a way that the force at both ends of K1 is also directed toward the center of the first tilt direction K1. Then, the crystal 42 grown from one side of the first tilt direction K1 collides with the crystal 42 where the force on the other side of the first tilt direction K1 has grown, and the semiconductor A final protrusion 43b protruding in one thickness direction of the film 37 is formed. The final protrusion 43b formed in the second crystallization region 41b by the final irradiation of the laser light is a direction perpendicular to the first inclined direction K1 when viewed in the thickness direction of the semiconductor film 37 (hereinafter referred to as the present embodiment). (Which may be referred to as a “second tilt direction”). The final protrusion 43b is indicated by a solid line in FIG. 24 in order to distinguish it from the protrusion 45b described later.
最終照射される前段階でレーザ光が照射された半導体膜 37には、レーザ光が照 射された部分の第 2傾斜方向 K2—方側から成長した結晶 42と第 2傾斜方向 K2他 方側から成長した結晶 42とが衝突して、半導体膜 37の厚み方向一方に突出する突 起部 45bが形成される。この突起部 45bは、図 24の第 2結晶化領域 4 lbに破線で示 している。また図 24では、前記繰返し工程によって成長した複数の結晶同士の境界 部分 46を示している。半導体膜 37において、レーザ光の最終照射によって形成され る最終突起部 43b、最終照射の前段階におけるレーザ光の照射によって形成される 突起部 45b、および結晶 42同士の境界部分 46の厚み方向寸法は、それぞれ最終 突起部 43b、突起部 45bおよび境界部分 46の順に小さくなつて 、る。  The semiconductor film 37 irradiated with the laser beam in the stage before the final irradiation has the crystal 42 grown from the second tilt direction K2-side of the portion irradiated with the laser beam and the second tilt direction K2 on the other side. The protrusions 45b projecting in one direction in the thickness direction of the semiconductor film 37 are formed by collision with the crystal 42 grown from above. The protrusion 45b is indicated by a broken line in the second crystallization region 4 lb of FIG. FIG. 24 shows a boundary portion 46 between a plurality of crystals grown by the above repeating process. In the semiconductor film 37, the final protrusion 43b formed by the final irradiation of the laser light, the protrusion 45b formed by the laser light irradiation at the stage before the final irradiation, and the thickness direction dimension of the boundary portion 46 between the crystals 42 are The final protrusion 43b, the protrusion 45b, and the boundary portion 46 are reduced in this order.
図 25は、結晶化された半導体膜 37およびその半導体膜 37に形成される薄膜トラ ンジスタ素子 50を示す平面図である。図 25には、理解を容易にするために半導体 膜 37に形成される第 2結晶化領域 41bの一部を示している。本実施の形態では、ス テージ 28に載置される半導体素子 27の半導体膜 37の長手方向の参照符号として、 ステージ 28の第 1移動方向と同一の参照符号「X」を付し、半導体膜 37の短手方向 の参照符号として、ステージ 28の第 2移動方向と同一の参照符号「Y」を付して説明 する。  FIG. 25 is a plan view showing the crystallized semiconductor film 37 and the thin film transistor element 50 formed in the semiconductor film 37. FIG. 25 shows a part of the second crystallization region 41b formed in the semiconductor film 37 for easy understanding. In the present embodiment, the same reference symbol “X” as that of the first movement direction of the stage 28 is given as the reference symbol in the longitudinal direction of the semiconductor film 37 of the semiconductor element 27 placed on the stage 28, and the semiconductor film The reference numeral “Y”, which is the same as the second moving direction of the stage 28, will be given as a reference numeral in the short direction of 37.
前述の図 22に示す投影マスク 100を用 、て繰返し工程を行うことによって、半導体 膜 37には、図 25に示すように、正方形状の第 2結晶化領域 41bが、半導体膜 37の 第 1傾斜方向 K1および第 2傾斜方向 K2に、それぞれ連続的に並んで形成される。 図 25には、前述の投影マスク 100を用いて繰返し工程を行うことによって第 1結晶 化領域 41aを形成した半導体膜 37の長手方向 X—方力も他方に向かうにつれて、ソ 一ス3、ゲート Gおよびドレイン Dの順に並ぶように、半導体膜 37に形成される薄膜ト ランジスタ素子 (以下、「TFT素子」と称する場合がある) 50、ならびに第 1結晶化領 域 41aを形成した半導体膜 37の短手方向 Y—方力も他方に向かうにつれて、ドレイ ン0、ゲート Gおよびソース Sの順に並ぶように、半導体膜 37に形成される TFT素子 50を示している。 22 is repeated using the projection mask 100 shown in FIG. 22 described above, the second crystallization region 41b having a square shape is formed in the semiconductor film 37 as shown in FIG. They are formed continuously in the tilt direction K1 and the second tilt direction K2, respectively. In FIG. 25, as the longitudinal direction X-direction force of the semiconductor film 37 in which the first crystallized region 41a is formed by repeating the process using the projection mask 100 described above, the source 3 and the gate G And a thin film transistor element (hereinafter sometimes referred to as a “TFT element”) 50 formed in the semiconductor film 37 so as to be arranged in the order of the drain D and the first crystallization region. The TFT element 50 formed in the semiconductor film 37 is shown so that the drain direction 0, the gate G, and the source S are arranged in this order as the lateral direction Y-direction of the semiconductor film 37 in which the region 41a is formed is also directed to the other side. .
前述のように本実施の形態によれば、投影マスク 100に対してレーザ光 31を照射し 、前記投影マスク 100に形成される第 1および第 2光透過パターン 100a, 100bを透 過したレーザ光 31を半導体膜 37に照射する。これによつて第 1および第 2光透過パ ターン 100a, 100bの形状のレーザ光が照射された半導体膜 37を溶融し、均一に結 晶ィ匕させることができる。  As described above, according to the present embodiment, the laser light 31 is applied to the projection mask 100 and the first and second light transmission patterns 100a and 100b formed on the projection mask 100 are transmitted. The semiconductor film 37 is irradiated with 31. As a result, the semiconductor film 37 irradiated with the laser light having the shapes of the first and second light transmission patterns 100a and 100b can be melted and uniformly crystallized.
また本実施の形態によれば、移動工程において、半導体素子 27が載置されるステ ージ 28を、レーザ光 31を発する光源 21に対して相対移動させることによって、照射 対象物である半導体膜 37の所望の領域にレーザ光 31を照射させることができ、所望 する形状になるように結晶化させることができる。  Further, according to the present embodiment, in the moving process, the stage 28 on which the semiconductor element 27 is placed is moved relative to the light source 21 that emits the laser beam 31 to thereby move the semiconductor film that is the irradiation object. The desired region 37 can be irradiated with the laser beam 31 and can be crystallized into a desired shape.
また本実施の形態によれば、繰返し工程において、非晶質材料力も成る層の半導 体膜 37に、非晶質材料を結晶化させるべき互いに直交する第 1および第 2方向、具 体的には半導体膜 37の長手方向および短手方向に、レーザ光 31を照射して半導 体膜 37を結晶化する結晶化工程と、半導体膜 37を、レーザ光 31を発する光源 21に 対して相対移動させる移動工程とを交互に行うことによって、半導体膜 37の所望の 領域に所望の大きさの結晶粒を確実に形成することができる。  Further, according to the present embodiment, in the repetition process, the first and second directions perpendicular to each other, in which the amorphous material should be crystallized, are specifically formed on the semiconductor film 37 of the layer having the amorphous material force. The semiconductor film 37 is irradiated with a laser beam 31 in the longitudinal and short directions to crystallize the semiconductor film 37, and the semiconductor film 37 is applied to the light source 21 that emits the laser beam 31. By alternately performing the moving process of relative movement, crystal grains having a desired size can be reliably formed in a desired region of the semiconductor film 37.
また本実施の形態によれば、前述のように均一に結晶化された半導体膜 37、具体 的には非晶質材料カゝら成る層に、たとえば複数の TFT素子 50を形成する場合、半 導体膜 37に対する一方の TFT素子 50の形成方向が第 1形成方向、他方の TFT素 子 50の形成方向が第 2形成方向というように、 TFT素子 50の形成方向が異なるとき でも、各形成方向に形成される各 TFT素子 50のチャンネル部分に含まれる結晶化 領域の形状を同一にすることができる。換言すると、結晶化領域が形成される半導体 膜 37に対する複数の TFT素子 50の形成方向が第 1形成方向および第 2形成方向 のうち、いずれの方向であっても、結晶の成長方向に対する複数の TFT素子 50のソ ース S力 ドレイン Dに流れる電流の方向を同一にすることができる。これによつて、 半導体膜 37に形成する複数の TFT素子 50の電気的特性、具体的にはスイッチング 特性を同一にすることができる。換言すれば、複数の TFT素子 50のスイッチング特 性を均一にすることができる。 Further, according to the present embodiment, for example, when a plurality of TFT elements 50 are formed in the semiconductor film 37 uniformly crystallized as described above, specifically, a layer made of an amorphous material cover, Even if the formation direction of the TFT element 50 is different such that the formation direction of one TFT element 50 with respect to the conductor film 37 is the first formation direction and the formation direction of the other TFT element 50 is the second formation direction. The shape of the crystallization region included in the channel portion of each TFT element 50 formed in the same can be made the same. In other words, regardless of the direction in which the plurality of TFT elements 50 are formed on the semiconductor film 37 where the crystallized region is formed, the first formation direction and the second formation direction, a plurality of TFT elements 50 are formed in a plurality of directions relative to the crystal growth direction. The source S force of the TFT element 50 The direction of the current flowing through the drain D can be made the same. As a result, the electrical characteristics of the plurality of TFT elements 50 formed on the semiconductor film 37, specifically, switching. The characteristics can be the same. In other words, the switching characteristics of the plurality of TFT elements 50 can be made uniform.
また本実施の形態によれば、半導体膜 37を結晶化させる場合に、半導体膜 37を 投影マスク 100の各領域 BA〜BDの短手方向寸法 Wだけ移動させながら、投影マス ク 100に形成される第 1および第 2光透過パターン 100a, 100bを透過したレーザ光 を半導体膜 37に照射するので、半導体膜 37の同一の領域に、前記レーザ光を重畳 して照射することができる。したがって本実施の形態では、たとえば一方向に延びる 光透過パターンのみが形成される投影マスクを用いて半導体膜 37を結晶化させる場 合に比べて大きな粒径の結晶粒を形成することができ、半導体膜 37の電子移動度 を比較的高くすることができる。これによつて、たとえば半導体膜 37に TFT素子 50を 形成する場合、 TFT素子 50のスイッチング特性をさらに向上することができる。 また第 1および第 2光透過パターン 100a, 100bを透過したレーザ光を、半導体膜 37の同一の領域に重畳して照射することができるので、前記レーザ光が、光源 21の 異常、たとえばレーザ光の発振異常に起因して、複数回の結晶化工程のうちのいず れか 1つの結晶化工程で、レーザ光が同一領域に重畳して照射されないなどの不具 合が生じた場合でも、半導体膜 37をほぼ均一に結晶化することができる。これによつ て、たとえば半導体膜 37に TFT素子 50を形成する場合に、 TFT素子 50のスィッチ ング特性が極端に劣化することを防ぐことができる。  Further, according to the present embodiment, when the semiconductor film 37 is crystallized, the semiconductor film 37 is formed on the projection mask 100 while being moved by the lateral dimension W of each area BA to BD of the projection mask 100. Since the semiconductor film 37 is irradiated with the laser light transmitted through the first and second light transmission patterns 100a and 100b, the laser light can be applied to the same region of the semiconductor film 37 in an overlapping manner. Therefore, in the present embodiment, for example, a crystal grain having a large grain size can be formed as compared with the case where the semiconductor film 37 is crystallized using a projection mask in which only a light transmission pattern extending in one direction is formed. The electron mobility of the semiconductor film 37 can be made relatively high. Accordingly, for example, when the TFT element 50 is formed in the semiconductor film 37, the switching characteristics of the TFT element 50 can be further improved. In addition, since the laser light transmitted through the first and second light transmission patterns 100a and 100b can be irradiated with being superimposed on the same region of the semiconductor film 37, the laser light is abnormal in the light source 21, for example, laser light. Even if there is a problem such as laser light not being superimposed on the same region in one of the multiple crystallization processes due to an abnormal oscillation of the semiconductor, The film 37 can be crystallized almost uniformly. Accordingly, for example, when the TFT element 50 is formed in the semiconductor film 37, it is possible to prevent the switching characteristics of the TFT element 50 from being extremely deteriorated.
また本実施の形態によれば、半導体膜 37に対する TFT素子 50の形成方向に依ら ず、 TFT素子 50のスイッチング特性を均一にすることができるので、 TFT素子 50を 用いた表示装置などの設計の自由度を高めることができる。  In addition, according to the present embodiment, the switching characteristics of the TFT element 50 can be made uniform regardless of the direction in which the TFT element 50 is formed on the semiconductor film 37, so that the design of a display device using the TFT element 50 can be made. The degree of freedom can be increased.
また本実施の形態によれば、第 1および第 2光透過パターン 100a, 100bは、各延 び方向の両端部が、投影マスク 100の厚み方向に見て先細状に形成される。したが つて長方形状などのように先細状に形成されて ヽな 、光透過パターンとは異なり、第 1および第 2光透過パターン 100a, 100bの形状のレーザ光が照射された半導体膜 37の照射領域で、延び方向および半導体膜 37の厚み方向のそれぞれに垂直な方 向の両端部力も成長する結晶が衝突してできる突起部 41が、延び方向の両端部の 先細状の部分にまで形成される。 これによつて光透過パターンの延び方向の両端部が先細状に形成されていない場 合に比べて、半導体膜 37をより均一に結晶化することができる。したがって半導体膜 37に TFT素子 50を形成する場合、半導体膜 37に対する一方の TFT素子 50の形 成方向と他方の TFT素子 50の形成方向とが異なるときでも、半導体膜 37に形成さ れる複数の TFT素子 50の電気的特性、具体的にはスイッチング特性を確実に同一 にすることができる。換言すれば、複数の TFT素子 50のスイッチング特性を確実に 均一にすることができる。 Further, according to the present embodiment, the first and second light transmission patterns 100a and 100b are formed such that both end portions in each extending direction are tapered as viewed in the thickness direction of the projection mask 100. Therefore, unlike the light transmission pattern, which is formed in a tapered shape such as a rectangular shape, the irradiation of the semiconductor film 37 irradiated with the laser light in the shape of the first and second light transmission patterns 100a and 100b is performed. In the region, projections 41 formed by the collision of crystals that also grow in both ends in the direction perpendicular to the extending direction and the thickness direction of the semiconductor film 37 are formed to taper portions at both ends in the extending direction. The As a result, the semiconductor film 37 can be crystallized more uniformly as compared with the case where both end portions in the extending direction of the light transmission pattern are not tapered. Therefore, when the TFT element 50 is formed on the semiconductor film 37, even when the formation direction of one TFT element 50 with respect to the semiconductor film 37 is different from the formation direction of the other TFT element 50, a plurality of TFT elements 50 formed on the semiconductor film 37 are formed. The electrical characteristics of the TFT element 50, specifically, the switching characteristics can be reliably made the same. In other words, the switching characteristics of the plurality of TFT elements 50 can be made uniform uniformly.
次に本発明の第 5の実施の形態であるレーザカ卩ェ装置およびレーザカ卩ェ方法に ついて説明する。本実施の形態のレーザ加工装置は、前述の第 1の実施の形態のレ 一ザ加工装置 20と構成が類似しており、投影マスク 25に代えて他の投影マスク 110 を備えている点だけが異なるので、投影マスク 110について説明し、同一の構成に ついては同一の参照符を付して説明を省略する。レーザカ卩ェ装置によって、ステー ジ 28に載置される半導体素子 27の半導体膜 37を結晶化する工程は、前述の第 1の 実施の形態と同様であるので説明を省略する。本発明の第 5の実施の形態であるレ 一ザ加工方法は、本実施の形態のレーザ加工装置によって実施される。  Next, a laser carriage device and a laser carriage method according to a fifth embodiment of the present invention will be described. The laser processing apparatus of the present embodiment is similar in configuration to the laser processing apparatus 20 of the first embodiment described above, and only includes another projection mask 110 instead of the projection mask 25. Therefore, the projection mask 110 will be described, and the same components will be denoted by the same reference numerals and description thereof will be omitted. The process of crystallizing the semiconductor film 37 of the semiconductor element 27 placed on the stage 28 by the laser carriage device is the same as in the first embodiment described above, and thus the description thereof is omitted. The laser processing method according to the fifth embodiment of the present invention is performed by the laser processing apparatus according to the present embodiment.
図 26は、投影マスク 110を示す平面図である。本実施の形態の投影マスク 110は、 第 4の実施の形態の投影マスク 100と構成が類似しているので、異なる点についての み説明し、同一の構成については同一の参照符を付して説明を省略する。投影マス ク 110は、その厚み方向に垂直な仮想平面に投影した形状が長方形状であり、第 1 ブロック BA、第 2ブロック BB、第 3ブロック BCおよび第 4ブロック BDを含む。第 1〜第 4ブロック BA〜BDは、投影マスク 110の厚み方向に垂直な仮想平面に投影した形 状力 投影マスク 110の短手方向に延びる長方形状である。第 1ブロック BA、第 2ブ ロック BB、第 3ブロック BCおよび第 4ブロック BDは、この順で投影マスク 110の長手 方向に相当する並び方向に一列に並んで設けられる。  FIG. 26 is a plan view showing the projection mask 110. Since the projection mask 110 of the present embodiment is similar in configuration to the projection mask 100 of the fourth embodiment, only the different points will be described, and the same configuration is denoted by the same reference numeral. Description is omitted. Projection mask 110 has a rectangular shape projected onto a virtual plane perpendicular to its thickness direction, and includes a first block BA, a second block BB, a third block BC, and a fourth block BD. The first to fourth blocks BA to BD have a rectangular shape that extends in the short direction of the projection mask 110 and is shaped on a virtual plane perpendicular to the thickness direction of the projection mask 110. The first block BA, the second block BB, the third block BC, and the fourth block BD are provided in a line in this order in the arrangement direction corresponding to the longitudinal direction of the projection mask 110.
投影マスク 110の第 1および第 4ブロック BA, BDには、複数の第 1光透過パターン 100aが形成されている。第 1ブロック BAの第 1光透過パターン 100aは、第 4ブロック BDの非透過部 100cに対応する位置に形成され、第 4ブロック BDの第 1光透過パタ ーン 100aは、第 1ブロック BAの非透過部 100cに対応する位置に形成されている。 図 26に示す第 1および第 4ブロック BA, BDには、理解を容易にするために、 11個 の第 1光透過パターン 100aを示して!/、る。 In the first and fourth blocks BA and BD of the projection mask 110, a plurality of first light transmission patterns 100a are formed. The first light transmission pattern 100a of the first block BA is formed at a position corresponding to the non-transmission part 100c of the fourth block BD, and the first light transmission pattern 100a of the fourth block BD is the same as that of the first block BA. It is formed at a position corresponding to the non-transmissive portion 100c. In the first and fourth blocks BA and BD shown in FIG. 26, eleven first light transmission patterns 100a are shown for easy understanding!
投影マスク 110の第 2および第 3ブロック BB, BCには、複数の第 2光透過パターン 100bが形成されている。第 2ブロック BBの第 2光透過パターン 100bは、第 3ブロック BCの非透過部 100cに対応する位置に形成され、第 3ブロック BCの第 2光透過パタ ーン 100bは、第 2ブロック BBの非透過部 100cに対応する位置に形成されている。 図 26に示す第 2および第 3ブロック BB, BCには、理解を容易にするために、 11個の 第 2光透過パターン 100bを示して!/、る。  In the second and third blocks BB and BC of the projection mask 110, a plurality of second light transmission patterns 100b are formed. The second light transmission pattern 100b of the second block BB is formed at a position corresponding to the non-transmission part 100c of the third block BC, and the second light transmission pattern 100b of the third block BC is the same as that of the second block BB. It is formed at a position corresponding to the non-transmissive portion 100c. In the second and third blocks BB and BC shown in FIG. 26, eleven second light transmission patterns 100b are shown for easy understanding!
図 27は、投影マスク 110を模式的に示す平面図である。図 27に示す投影マスク 11 0は、第 1および第 4ブロック BA, BDに、複数の第 1光透過パターン 100aが形成さ れ、第 2および第 3ブロック BB, BCに、複数の第 2光透過パターン 100bが形成され ている。投影マスク 110の第 1および第 2光透過パターン 100a, 100b以外の部分は 、光を透過しない非透過部 100cである。図 27には、理解を容易にするために、第 1 および第 2光透過パターン 100a, 100bを略長方形状に示して 、る。  FIG. 27 is a plan view schematically showing the projection mask 110. In the projection mask 110 shown in FIG. 27, a plurality of first light transmission patterns 100a are formed in the first and fourth blocks BA, BD, and a plurality of second lights are formed in the second and third blocks BB, BC. A transmissive pattern 100b is formed. The portions other than the first and second light transmission patterns 100a and 100b of the projection mask 110 are non-transmission portions 100c that do not transmit light. In FIG. 27, for easy understanding, the first and second light transmission patterns 100a and 100b are shown in a substantially rectangular shape.
次に図 27に示す投影マスク 110を用 、て繰返し工程を行うことによって形成される 結晶 42の成長過程について説明する。本実施の形態では、繰返し工程において、 4 回の結晶化工程および 3回の移動工程を行う場合について説明する。  Next, the growth process of the crystal 42 formed by repeating the process using the projection mask 110 shown in FIG. 27 will be described. In the present embodiment, a case where the crystallization process is performed four times and the movement process is performed three times in the repetition process will be described.
図 28A〜図 28Dは、図 27に示す投影マスク 110を用いて半導体膜 37を結晶化さ せるときの結晶 42の成長過程を段階的に示す図である。図 28Aは、第 1回目の結晶 化工程によって形成される結晶 42の状態を示す図である。図 28Bは、第 1回目の移 動工程によってステージ 28を予め定める第 1移動方向 Xに移動した後、第 2回目の 結晶化工程によって形成される結晶 42の状態を示す図である図 28Cは、第 2回目の 移動工程によってステージ 28を第 1移動方向 Xに移動した後、第 3回目の結晶化工 程によって形成される結晶 42の状態を示す図である。図 28Dは、第 3回目の移動ェ 程によってステージ 28を第 1移動方向 Xに移動した後、第 4回目の結晶化工程によ つて形成される結晶 42の状態を示す図である。図 29は、図 28Dのセクション IXを拡 大した平面図である。  FIG. 28A to FIG. 28D are diagrams showing the growth process of the crystal 42 when the semiconductor film 37 is crystallized using the projection mask 110 shown in FIG. FIG. 28A is a diagram showing a state of the crystal 42 formed by the first crystallization process. FIG. 28B is a diagram showing a state of the crystal 42 formed by the second crystallization process after the stage 28 is moved in the first moving direction X determined in advance by the first movement process. FIG. 4 is a diagram showing a state of a crystal 42 formed by a third crystallization process after the stage 28 is moved in the first movement direction X by the second movement process. FIG. 28D is a diagram showing a state of the crystal 42 formed by the fourth crystallization step after the stage 28 is moved in the first movement direction X by the third movement step. FIG. 29 is an enlarged plan view of section IX of FIG. 28D.
まず第 1回目の結晶化工程において、光源 21から発せられ、投影マスク 110の第 1 ブロック BAの第 1光透過パターン 100aを透過したレーザ光 31を、ステージ 28上に 載置される半導体素子 27の半導体膜 37に照射すると、半導体膜 37の前記レーザ 光 31が照射された領域は結晶化されて、図 28Aに示すように結晶 42が形成される。 そして、第 1回目の移動工程において、ステージ 28を、予め定める第 1移動方向 X— 方に、投影マスク 110の第 1〜第 4ブロック BA〜BDの短手方向寸法 Wに相当する 距離寸法だけ移動させる。 First, in the first crystallization process, the first light emitted from the light source 21 and projected from the projection mask 110. When the semiconductor film 37 of the semiconductor element 27 placed on the stage 28 is irradiated with the laser light 31 transmitted through the first light transmission pattern 100a of the block BA, the region of the semiconductor film 37 irradiated with the laser light 31 is Crystallization forms crystals 42 as shown in FIG. 28A. Then, in the first movement process, the stage 28 is moved in the first movement direction X in the predetermined distance dimension corresponding to the transverse dimension W of the first to fourth blocks BA to BD of the projection mask 110. Move.
次に第 2回目の結晶化工程において、第 1回目の結晶化工程によって結晶 42が形 成された半導体膜 37に対して、光源 21から発せられ、投影マスク 110の第 2ブロック BBの第 2光透過パターン 100bを透過したレーザ光 31を照射する。これによつて、前 記第 1回目の結晶化工程によって結晶 42が形成された半導体膜 37のうち、前記レ 一ザ光 31が照射された領域は結晶化されて、図 28Bに示すように、第 1回目の結晶 化工程によって形成された結晶 42の一部に重畳して新たな結晶 42が形成される。 そして、第 2回目の移動工程において、ステージ 28を、第 1移動方向 X—方に、投影 マスク 110の第 1〜第 4ブロック BA〜BDの短手方向寸法 Wに相当する距離寸法だ け移動させる。  Next, in the second crystallization process, the second light source 21 emits the second block BB of the second block BB of the projection mask 110 to the semiconductor film 37 in which the crystal 42 is formed by the first crystallization process. The laser beam 31 that has passed through the light transmission pattern 100b is irradiated. As a result, in the semiconductor film 37 in which the crystal 42 is formed by the first crystallization process, the region irradiated with the laser light 31 is crystallized, as shown in FIG. 28B. A new crystal 42 is formed so as to overlap with a part of the crystal 42 formed by the first crystallization process. Then, in the second movement process, the stage 28 is moved in the first movement direction X-direction by a distance dimension corresponding to the lateral dimension W of the first to fourth blocks BA to BD of the projection mask 110. Let
次に第 3回目の結晶化工程において、第 1回目および第 2回目の結晶化工程によ つて結晶 42が形成された半導体膜 37に対して、光源 21から発せられ、投影マスク 1 10の第 3ブロック BCの第 2光透過パターン 100bを透過したレーザ光 31を照射する 。これによつて、前記第 1回目および第 2回目の結晶化工程によって結晶 42が形成 された半導体膜 37のうち、前記レーザ光 31が照射された領域は結晶化されて、図 2 8Cに示すように、第 1回目および第 2回目の結晶化工程によって形成された結晶 42 の一部に重畳して新たな結晶 42が形成される。そして、第 3回目の移動工程におい て、ステージ 28を、第 1移動方向 X—方に、投影マスク 110の第 1〜第 4ブロック BA 〜BDの短手方向寸法 Wに相当する距離寸法だけ移動させる。  Next, in the third crystallization process, the light is emitted from the light source 21 to the semiconductor film 37 on which the crystals 42 are formed in the first and second crystallization processes, and the projection mask 110 Irradiate the laser beam 31 that has passed through the second light transmission pattern 100b of the 3-block BC. Thus, in the semiconductor film 37 in which the crystal 42 is formed by the first and second crystallization steps, the region irradiated with the laser beam 31 is crystallized, as shown in FIG. 28C. As described above, a new crystal 42 is formed so as to overlap with a part of the crystal 42 formed by the first and second crystallization steps. In the third movement step, the stage 28 is moved in the first movement direction X by a distance dimension corresponding to the lateral dimension W of the first to fourth blocks BA to BD of the projection mask 110. Let
次に第 4回目の結晶化工程にぉ 、て、第 1〜第 3回目の結晶化工程によって結晶 4 2が形成された半導体膜 37に対して、光源 21から発せられ、投影マスク 110の第 4 ブロック BDの第 1光透過パターン 100aを透過したレーザ光 31を照射する。これによ つて、前記第 1〜第 3回目の結晶化工程によって結晶 42が形成された半導体膜 37 のうち、前記レーザ光 31が照射された領域は結晶化されて、図 28Dに示すように、 第 1〜第 3回目の結晶化工程によって形成された結晶 42の一部に重畳して新たな結 晶 42が形成される。 Next, after the fourth crystallization process, the light source 21 emits the semiconductor film 37 on which the crystal 42 has been formed by the first to third crystallization processes. 4 Laser light 31 that has passed through the first light transmission pattern 100a of the block BD is irradiated. Accordingly, the semiconductor film 37 in which the crystal 42 is formed by the first to third crystallization steps. Of these, the region irradiated with the laser beam 31 is crystallized and, as shown in FIG. 28D, overlaps with a part of the crystal 42 formed by the first to third crystallization steps, and is newly added. Crystal 42 is formed.
前述のように、図 27に示す投影マスク 110を用いて 4回の結晶化工程、および 3回 の移動工程を行うことによって、図 29に示すように、半導体膜 37には、第 1光透過パ ターン 100aを透過したレーザ光が照射されて結晶化された第 1結晶化領域 41a、お よび第 2光透過パターン 100bを透過したレーザ光が照射されて結晶化された第 2結 晶化領域 41bとを含む結晶化領域 41が形成される。  As described above, by performing the crystallization process four times and the movement process three times using the projection mask 110 shown in FIG. 27, the first light transmission is made in the semiconductor film 37 as shown in FIG. The first crystallization region 41a crystallized by being irradiated with the laser light transmitted through the pattern 100a, and the second crystallized region crystallized by being irradiated with the laser light transmitted through the second light transmission pattern 100b A crystallization region 41 including 41b is formed.
第 1結晶化領域 41aでは、第 1光透過パターン 100aの形状のレーザ光が照射され た領域のうち、半導体膜 37の長手方向 Xに延びる第 1軸線および短手方向 Yに延び る第 2軸線を含む平面内において、第 1軸線と第 2軸線との交点を中心として第 1軸 線から時計まわりに角変位する方向に 45度傾斜した方向(以下、本実施の形態にお いて「第 1傾斜方向」と称する場合がある) K1に直交する方向(以下、本実施の形態 において「第 2傾斜方向」と称する場合がある) K2両端部から、第 2傾斜方向 K2中央 部に向力 ようにして段階的に結晶 42が成長する。  In the first crystallization region 41a, the first axis extending in the longitudinal direction X of the semiconductor film 37 and the second axis extending in the lateral direction Y of the region irradiated with the laser light having the shape of the first light transmission pattern 100a In a plane including the first axis and the second axis, the direction inclined 45 degrees clockwise from the first axis in the direction of angular displacement (hereinafter referred to as “first (It may be referred to as “inclination direction”) A direction perpendicular to K1 (hereinafter, this may be referred to as “second inclination direction” in the present embodiment) From both ends of K2 to the center of the second inclination direction K2 Thus, the crystal 42 grows step by step.
そして第 2傾斜方向 K2—方側から成長した結晶 42と第 2傾斜方向 K2他方側から 成長した結晶 42とが衝突して、半導体膜 37の厚み方向一方に突出する最終突起部 43aが形成される。レーザ光の最終照射によって第 1結晶化領域 41aに形成される 最終突起部 43aは、半導体膜 37の第 1傾斜方向 K1に平行に形成される。  Then, the crystal 42 grown from the second tilt direction K2—side and the crystal 42 grown from the other side of the second tilt direction K2 collide to form a final protrusion 43a projecting in one thickness direction of the semiconductor film 37. The The final protrusion 43a formed in the first crystallization region 41a by the final irradiation of the laser light is formed in parallel with the first tilt direction K1 of the semiconductor film 37.
第 2結晶化領域 41bでは、第 2光透過パターン 100bの形状のレーザ光が照射され た領域のうち、半導体膜 37の第 1傾斜方向 K1両端部から第 1傾斜方向 K1中央部 に向力 ようにして段階的に結晶 42が成長する。そして第 1傾斜方向 K1一方側から 成長した結晶 42と第 1傾斜方向 K1他方側力も成長した結晶 42とが衝突して、半導 体膜 37の厚み方向一方に突出する最終突起部 43bが形成される。レーザ光の最終 照射によって第 2結晶化領域 41bに形成される最終突起部 43bは、半導体膜 37の 第 2傾斜方向 K1に平行に形成される。最終突起部 43a, 43bは、後述する突起部 4 5a, 45bと区別するために、図 29において実線で示している。  In the second crystallization region 41b, out of the region irradiated with the laser light having the shape of the second light transmission pattern 100b, the semiconductor film 37 is directed from both ends of the first inclined direction K1 to the central portion of the first inclined direction K1. Thus, the crystal 42 grows step by step. Then, the crystal 42 grown from one side of the first tilt direction K1 collides with the crystal 42 grown from the first tilt direction K1 on the other side, and a final projection 43b protruding in one thickness direction of the semiconductor film 37 is formed. Is done. The final protrusion 43b formed in the second crystallization region 41b by the final irradiation of the laser light is formed in parallel with the second tilt direction K1 of the semiconductor film 37. The final protrusions 43a and 43b are indicated by solid lines in FIG. 29 in order to distinguish from the protrusions 45a and 45b described later.
最終照射される前段階でレーザ光が照射された半導体膜 37には、レーザ光が照 射された部分の第 1傾斜方向 Kl一方側から成長した結晶 42と第 1傾斜方向 Kl他 方側から成長した結晶 42とが衝突して、半導体膜 37の厚み方向一方に突出する突 起部 45aが形成される。この突起部 45aは、図 29の第 1結晶化領域 41aに破線で示 している。最終照射される前段階でレーザ光が照射された半導体膜 37には、レーザ 光が照射された部分の第 2傾斜方向 K2—方側から成長した結晶 42と第 2傾斜方向 K2他方側から成長した結晶 42とが衝突して、半導体膜 37の厚み方向一方に突出 する突起部 45bが形成される。この突起部 45bは、図 29の第 2結晶化領域 41bに破 線で示している。また図 29では、前記繰返し工程によって成長した複数の結晶同士 の境界部分 46を示して 、る。 The semiconductor film 37 that has been irradiated with the laser beam before the final irradiation is irradiated with the laser beam. Projected portion protruding in one thickness direction of the semiconductor film 37 when the crystal 42 grown from one side of the first inclined direction Kl of the projected portion collides with the crystal 42 grown from the other side of the first inclined direction Kl. 45a is formed. The protrusion 45a is indicated by a broken line in the first crystallization region 41a of FIG. The semiconductor film 37 irradiated with the laser beam before the final irradiation is grown on the crystal 42 grown from the second inclined direction K2-side of the portion irradiated with the laser beam and the second inclined direction K2 grown from the other side. As a result of the collision with the crystal 42, a protrusion 45 b protruding in one thickness direction of the semiconductor film 37 is formed. This protrusion 45b is indicated by a broken line in the second crystallization region 41b of FIG. FIG. 29 shows a boundary portion 46 between a plurality of crystals grown by the above repeating process.
半導体膜 37において、レーザ光の最終照射によって形成される最終突起部 43a, 43b、最終照射の前段階におけるレーザ光の照射によって形成される突起部 45a, 4 5b、および結晶 42同士の境界部分 46の厚み方向寸法は、それぞれ最終突起部 43 a, 43b、突起部 45a, 45bおよび境界部分 46の順に小さくなつている。  In the semiconductor film 37, the final protrusions 43a and 43b formed by the final irradiation of the laser light, the protrusions 45a and 45b formed by the laser light irradiation before the final irradiation, and the boundary portion 46 between the crystals 42 The dimension in the thickness direction of each of them decreases in the order of the final projecting portions 43a and 43b, the projecting portions 45a and 45b, and the boundary portion 46, respectively.
半導体膜 37に形成される複数の最終突起部 43a, 43bおよび突起部 45a, 45b〖こ よって包囲される包囲領域 47に含まれる第 1結晶化領域 41aの面積と、前記包囲領 域 47に含まれる第 2結晶化領域 41bの面積との比率は、図 29に示すように 50対 50 となる。換言すると、第 1結晶化領域 41aの面積と、第 2結晶化領域 41bの面積とが 同等になる。したがって、図 27に示す投影マスク 110を用いて繰返し工程を行うこと によって、半導体膜 37を均一に結晶化させることができる。  The plurality of final protrusions 43a, 43b and protrusions 45a, 45b formed on the semiconductor film 37 are included in the surrounding region 47 and the area of the first crystallization region 41a included in the surrounding region 47 surrounded by the surrounding region 47. The ratio with the area of the second crystallization region 41b is 50:50 as shown in FIG. In other words, the area of the first crystallization region 41a is equal to the area of the second crystallization region 41b. Therefore, the semiconductor film 37 can be uniformly crystallized by repeating the process using the projection mask 110 shown in FIG.
図 30は、結晶化された半導体膜 37およびその半導体膜 37に形成される薄膜トラ ンジスタ素子 50を示す平面図である。図 30には、理解を容易にするために、半導体 膜 37に形成される結晶化領域 41の一部を示している。本実施の形態では、ステー ジ 28に載置される半導体素子 27の半導体膜 37の長手方向の参照符号として、ステ ージ 28の第 1移動方向と同一の参照符号「X」を付し、半導体膜 37の短手方向の参 照符号として、ステージ 28の第 2移動方向と同一の参照符号「Y」を付して説明する。 前述の図 27に示す投影マスク 110を用 、て繰返し工程を行うことによって、半導体 膜 37には、図 30に示すように、正方形状でかつ第 1結晶化領域 41aおよび第 2結晶 化領域 41bを含む結晶化領域 41が、半導体膜 37の第 1傾斜方向 K1および第 2傾 斜方向 K2に、それぞれ連続的に並んで形成される。 FIG. 30 is a plan view showing the crystallized semiconductor film 37 and the thin film transistor element 50 formed in the semiconductor film 37. FIG. FIG. 30 shows a part of the crystallization region 41 formed in the semiconductor film 37 for easy understanding. In the present embodiment, as the reference symbol in the longitudinal direction of the semiconductor film 37 of the semiconductor element 27 placed on the stage 28, the same reference symbol “X” as in the first movement direction of the stage 28 is attached, As a reference symbol in the short direction of the semiconductor film 37, the same reference symbol “Y” as that in the second movement direction of the stage 28 is used for description. By repeating the projection process using the projection mask 110 shown in FIG. 27, the semiconductor film 37 has a square shape as shown in FIG. 30 and has the first crystallization region 41a and the second crystallization region 41b. The crystallization region 41 including the first tilt direction K1 and the second tilt direction of the semiconductor film 37. They are formed side by side in the oblique direction K2.
図 30には、前述の投影マスク 110を用いて繰返し工程を行うことによって結晶化領 域 41を形成した半導体膜 37の長手方向 X—方力も他方に向力 につれて、ソース S 、ゲート Gおよびドレイン Dの順に並ぶように、半導体膜 37に形成される TFT素子 50 、ならびに結晶化領域 41を形成した半導体膜 37の短手方向 Υ—方力 他方に向か うにつれて、ドレイン D、ゲート Gおよびソース Sの順に並ぶように、半導体膜 37に形 成される TFT素子 50を示して!/、る。  In FIG. 30, the longitudinal direction X—direction force of the semiconductor film 37 in which the crystallization region 41 is formed by repeating the process using the projection mask 110 described above is also directed toward the other side, and the source S, the gate G, and the drain The TFT element 50 formed in the semiconductor film 37 and the semiconductor film 37 in which the crystallized region 41 is formed are arranged in the order of D in the short direction Υ—direction force. The TFT elements 50 formed in the semiconductor film 37 are shown in order of the source S!
前述のように本実施の形態によれば、投影マスク 110に対してレーザ光 31を照射し 、前記投影マスク 110に形成される第 1および第 2光透過パターン 100a, 100bを透 過したレーザ光 31を半導体膜 37に照射する。これによつて半導体膜 37に形成され る結晶化領域 41において、第 1光透過パターン 100aを透過したレーザ光 31が照射 されて結晶化された第 1結晶化領域 41aの面積と、第 2光透過パターン 100bを透過 したレーザ光 31が照射されて結晶化された第 2結晶化領域 41bの面積との比率を同 等にすることができる。換言すると、半導体膜 37を均一に結晶化することができる。 また本実施の形態によれば、移動工程において、半導体素子 27が載置されるステ ージ 28を、レーザ光 31を発する光源 21に対して相対移動させることによって、照射 対象物である半導体膜 37の所望の領域にレーザ光 31を照射させることができ、所望 する形状になるように結晶化させることができる。  As described above, according to the present embodiment, the laser light 31 is applied to the projection mask 110 and the first and second light transmission patterns 100a and 100b formed on the projection mask 110 are transmitted. The semiconductor film 37 is irradiated with 31. Thereby, in the crystallization region 41 formed in the semiconductor film 37, the area of the first crystallization region 41a crystallized by being irradiated with the laser light 31 transmitted through the first light transmission pattern 100a, and the second light The ratio with the area of the second crystallization region 41b crystallized by irradiating the laser beam 31 transmitted through the transmission pattern 100b can be made equal. In other words, the semiconductor film 37 can be uniformly crystallized. Further, according to the present embodiment, in the moving process, the stage 28 on which the semiconductor element 27 is placed is moved relative to the light source 21 that emits the laser beam 31 to thereby move the semiconductor film that is the irradiation object. The desired region 37 can be irradiated with the laser beam 31 and can be crystallized into a desired shape.
また本実施の形態によれば、繰返し工程において、非晶質材料力も成る層の半導 体膜 37に、非晶質材料を結晶化させるべき互いに直交する第 1および第 2方向、具 体的には半導体膜 37の長手方向および短手方向に、レーザ光 31を照射して半導 体膜 37を結晶化する結晶化工程と、半導体膜 37を、レーザ光 31を発する光源 21に 対して相対移動させる移動工程とを交互に行うことによって、半導体膜 37の所望の 領域に所望の粒径の結晶粒を確実に形成することができる。  Further, according to the present embodiment, in the repetition process, the first and second directions perpendicular to each other, in which the amorphous material should be crystallized, are specifically formed on the semiconductor film 37 of the layer having the amorphous material force. The semiconductor film 37 is irradiated with a laser beam 31 in the longitudinal and short directions to crystallize the semiconductor film 37, and the semiconductor film 37 is applied to the light source 21 that emits the laser beam 31. By alternately performing the moving process of relative movement, crystal grains having a desired grain size can be reliably formed in a desired region of the semiconductor film 37.
また本実施の形態によれば、前述のように均一に結晶化された半導体膜 37、具体 的には非晶質材料カゝら成る層に、たとえば複数の TFT素子 50を形成する場合、半 導体膜 37に対する一方の TFT素子 50の形成方向が第 1形成方向、他方の TFT素 子 50の形成方向が第 2形成方向というように、半導体膜 37に対する TFT素子 50の 形成方向が異なるときでも、各形成方向に形成される各 TFT素子 50のチャンネル部 分に含まれる第 1結晶化領域 41aの面積と、第 2結晶化領域 41bの面積との比率を 同等にすることができる。これによつて半導体膜 37に形成する複数の TFT素子 50の 電気的特性、具体的にはスイッチング特性を同一にすることができる。換言すれば、 複数の TFT素子 50のスイッチング特性を均一にすることができる。 Further, according to the present embodiment, for example, when a plurality of TFT elements 50 are formed in the semiconductor film 37 uniformly crystallized as described above, specifically, a layer made of an amorphous material cover, The direction of formation of one TFT element 50 with respect to the conductor film 37 is the first formation direction, and the direction of formation of the other TFT element 50 is the second formation direction. Even when the formation directions are different, the ratio of the area of the first crystallization region 41a and the area of the second crystallization region 41b included in the channel portion of each TFT element 50 formed in each formation direction is made equal. be able to. As a result, the electrical characteristics, specifically the switching characteristics, of the plurality of TFT elements 50 formed in the semiconductor film 37 can be made the same. In other words, the switching characteristics of the plurality of TFT elements 50 can be made uniform.
また本実施の形態によれば、半導体膜 37を結晶化させる場合に、半導体膜 37を 投影マスク 110の各領域 BA〜BDの短手方向寸法 Wだけ移動させながら、投影マス ク 110に形成される第 1および第 2光透過パターン 100a, 100bを透過したレーザ光 を半導体膜 37に照射するので、半導体膜 37の同一の領域に、前記レーザ光を重畳 して照射することができる。したがって本実施の形態では、たとえば一方向に延びる 光透過パターンのみが形成される投影マスクを用いて半導体膜 37を結晶化させる場 合に比べて大きな粒径の結晶粒を形成することができ、半導体膜 37の電子移動度 を比較的高くすることができる。これによつて、たとえば半導体膜 37に TFT素子 50を 形成する場合、 TFT素子 50のスイッチング特性をさらに向上することができる。 また第 1および第 2光透過パターン 100a, 100bを透過したレーザ光を、半導体膜 37の同一の領域に重畳して照射することができるので、前記レーザ光が、光源 21の 異常、たとえばレーザ光の発振異常に起因して、複数回の結晶化工程のうちのいず れか 1つの結晶化工程で、レーザ光が同一領域に重畳して照射されないなどの不具 合が生じた場合でも、半導体膜 37をほぼ均一に結晶化することができる。これによつ て、たとえば半導体膜 37に TFT素子 50を形成する場合に、 TFT素子 50のスィッチ ング特性が極端に劣化することを防ぐことができる。  Further, according to the present embodiment, when the semiconductor film 37 is crystallized, the semiconductor film 37 is formed on the projection mask 110 while being moved by the lateral dimension W of each region BA to BD of the projection mask 110. Since the semiconductor film 37 is irradiated with the laser light transmitted through the first and second light transmission patterns 100a and 100b, the laser light can be applied to the same region of the semiconductor film 37 in an overlapping manner. Therefore, in the present embodiment, for example, a crystal grain having a large grain size can be formed as compared with the case where the semiconductor film 37 is crystallized using a projection mask in which only a light transmission pattern extending in one direction is formed. The electron mobility of the semiconductor film 37 can be made relatively high. Accordingly, for example, when the TFT element 50 is formed in the semiconductor film 37, the switching characteristics of the TFT element 50 can be further improved. In addition, since the laser light transmitted through the first and second light transmission patterns 100a and 100b can be irradiated with being superimposed on the same region of the semiconductor film 37, the laser light is abnormal in the light source 21, for example, laser light. Even if there is a problem such as laser light not being superimposed on the same region in one of the multiple crystallization processes due to an abnormal oscillation of the semiconductor, The film 37 can be crystallized almost uniformly. Accordingly, for example, when the TFT element 50 is formed in the semiconductor film 37, it is possible to prevent the switching characteristics of the TFT element 50 from being extremely deteriorated.
また本実施の形態によれば、半導体膜 37に対する TFT素子 50の形成方向に依ら ず、 TFT素子 50のスイッチング特性を均一にすることができるので、 TFT素子 50を 用いた表示装置などの設計の自由度を高めることができる。  In addition, according to the present embodiment, the switching characteristics of the TFT element 50 can be made uniform regardless of the direction in which the TFT element 50 is formed on the semiconductor film 37, so that the design of a display device using the TFT element 50 can be made. The degree of freedom can be increased.
また本実施の形態によれば、第 1および第 2光透過パターン 100a, 100bは、各延 び方向の両端部が、投影マスク 110の厚み方向に見て先細状に形成される。したが つて長方形状などのように先細状に形成されて ヽな 、光透過パターンとは異なり、第 1および第 2光透過パターン 100a, 100bの形状のレーザ光が照射された半導体膜 37の照射領域で、延び方向および半導体膜 37の厚み方向のそれぞれに垂直な方 向の両端部力も成長する結晶が衝突してできる突起部 41が、延び方向の両端部の 先細状の部分にまで形成される。これによつて光透過パターンの延び方向の両端部 が先細状に形成されていない場合に比べて、半導体膜 37をより均一に結晶化するこ とがでさる。 Further, according to the present embodiment, the first and second light transmission patterns 100a and 100b are formed such that both end portions in each extending direction are tapered as viewed in the thickness direction of the projection mask 110. Therefore, unlike a light transmission pattern, a semiconductor film irradiated with laser light in the shape of the first and second light transmission patterns 100a and 100b, which is formed in a tapered shape such as a rectangular shape. In the irradiation region 37, protrusions 41 formed by the collision of crystals that grow both ends in the direction perpendicular to the extending direction and the thickness direction of the semiconductor film 37 are formed on the tapered portions at both ends in the extending direction. Is formed. As a result, the semiconductor film 37 can be crystallized more uniformly as compared with the case where both end portions in the extending direction of the light transmission pattern are not tapered.
したがって半導体膜 37に TFT素子 50を形成する場合、半導体膜 37に対する一方 の TFT素子 50の形成方向と他方の TFT素子 50の形成方向とが異なるときでも、半 導体膜 37に形成される複数の TFT素子 50の電気的特性、具体的にはスイッチング 特性を確実に同一にすることができる。換言すれば、複数の TFT素子 50のスィッチ ング特性を確実に均一にすることができる。  Therefore, when the TFT element 50 is formed on the semiconductor film 37, even when the formation direction of one TFT element 50 with respect to the semiconductor film 37 is different from the formation direction of the other TFT element 50, a plurality of TFT elements 50 are formed on the semiconductor film 37. The electrical characteristics of the TFT element 50, specifically, the switching characteristics can be reliably made the same. In other words, the switching characteristics of the plurality of TFT elements 50 can be made uniform uniformly.
図 31は、本発明の第 6の実施の形態であるレーザ加工装置 60の構成を示す図で ある。本発明の第 6の実施の形態であるレーザカ卩ェ方法は、レーザ加工装置 60によ つて実施される。レーザカ卩ェ装置 60は、第 1の実施の形態のレーザカ卩ェ装置 20と構 成が類似しているので、同一の構成については同一の参照符を付して説明を省略 する。レーザ加工装置 60は、第 1光源 61、可変減衰器 22、ミラー 23、可変焦点視野 レンズ 24、投影マスク 25、結像レンズ 26、第 2光源 62、均一照射光学系 63、ステー ジ 28および制御部 29を含んで構成される。  FIG. 31 is a diagram showing a configuration of a laser processing apparatus 60 according to the sixth embodiment of the present invention. The laser cleaning method according to the sixth embodiment of the present invention is performed by a laser processing apparatus 60. Since the configuration of the laser carriage device 60 is similar to that of the laser carriage device 20 of the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted. The laser processing device 60 includes a first light source 61, a variable attenuator 22, a mirror 23, a variable focus field lens 24, a projection mask 25, an imaging lens 26, a second light source 62, a uniform illumination optical system 63, a stage 28, and a control. Part 29 is included.
第 1光源 61は、紫外域の波長、具体的には 308nmの第 1レーザ光 65を発すること が可能なエキシマレーザ発振器によって実現される。第 2光源 62は、可視域から赤 外域までの波長の第 2レーザ光 66を発することが可能なレーザ発振器によって実現 される。具体的に述べると、第 2光源 62は、波長が 534nmの第 2レーザ光 66を発す ることが可能な YAG高調波レーザ発振器、波長が 1064nmの第 2レーザ光 66を発 することが可能な YAGレーザ発振器および波長が 10. 6 mの第 2レーザ光 66を発 することが可能な炭酸ガスレーザ発振器によって実現される。  The first light source 61 is realized by an excimer laser oscillator capable of emitting a first laser beam 65 having a wavelength in the ultraviolet region, specifically, 308 nm. The second light source 62 is realized by a laser oscillator capable of emitting the second laser light 66 having a wavelength from the visible range to the infrared range. More specifically, the second light source 62 can emit a second laser beam 66 having a wavelength of 534 nm, a YAG harmonic laser oscillator capable of emitting a second laser beam 66 having a wavelength of 534 nm, and a second laser beam 66 having a wavelength of 1064 nm. This is realized by a YAG laser oscillator and a carbon dioxide laser oscillator capable of emitting the second laser light 66 having a wavelength of 10.6 m.
第 1レーザ光 65は、第 2レーザ光 66に比べて、溶融状態よりも固体状態にある半導 体膜 37への吸収率が高い。また第 1レーザ光 65は、固体状態にある半導体膜 37で あるアモルファスシリコン膜を溶融させるに足るエネルギ量を有する。このエネルギ量 は、半導体膜 37の材質の種類、膜厚および結晶化領域の面積などの各条件によつ て変化し、一義的に定めることはできない。したがって半導体膜 37の前記各条件に 応じて適当なエネルギ量を有する第 1レーザ光 65を用いることが望ましい。具体的に は、半導体膜 37であるアモルファスシリコン膜を、全膜厚において融点以上の温度 に加熱することができるエネルギ量を有する第 1レーザ光 65を用いることが推奨され る。このことは、アモルファスシリコン膜に代えて他の種類の半導体膜 37を結晶化す る場合も同様である。 Compared with the second laser beam 66, the first laser beam 65 has a higher absorption rate into the semiconductor film 37 in the solid state than in the molten state. The first laser beam 65 has an energy amount sufficient to melt the amorphous silicon film that is the semiconductor film 37 in the solid state. This amount of energy depends on various conditions such as the type of material of the semiconductor film 37, the film thickness, and the area of the crystallization region. Changes and cannot be defined uniquely. Therefore, it is desirable to use the first laser beam 65 having an appropriate amount of energy according to each condition of the semiconductor film 37. Specifically, it is recommended to use the first laser beam 65 having an energy amount capable of heating the amorphous silicon film as the semiconductor film 37 to a temperature equal to or higher than the melting point in the entire film thickness. The same applies to the case where another type of semiconductor film 37 is crystallized instead of the amorphous silicon film.
第 2レーザ光 66は、第 1レーザ光 65に比べて、固体状態よりも溶融状態にある半導 体膜 37への吸収率が高い。第 2レーザ光 66は、固体状態にある半導体膜 37を溶融 させるに足るエネルギ量未満である。このエネルギ量は、半導体膜 37の材質の種類 、膜厚および結晶化領域の面積などの各条件によって変化し、一義的に定めること はできな 、。したがって半導体膜 37の前記条件に応じて適当なエネルギ量を有する 第 2レーザ光 66を用いることが望ましい。具体的には、半導体膜 37を融点以上の温 度に加熱するに足るエネルギ量未満である第 2レーザ光 66を用いることが推奨され る。このことは、アモルファスシリコン膜に代えて他の種類の半導体膜 37に適用する 場合も同様である。  Compared with the first laser beam 65, the second laser beam 66 has a higher absorption rate into the semiconductor film 37 in the molten state than in the solid state. The second laser beam 66 is less than the amount of energy sufficient to melt the semiconductor film 37 in the solid state. This amount of energy varies depending on the conditions such as the type of material of the semiconductor film 37, the film thickness, and the area of the crystallized region, and cannot be uniquely determined. Therefore, it is desirable to use the second laser light 66 having an appropriate energy amount according to the above conditions of the semiconductor film 37. Specifically, it is recommended to use the second laser beam 66 having an energy amount less than that sufficient to heat the semiconductor film 37 to a temperature equal to or higher than the melting point. This is the same when applied to other types of semiconductor films 37 instead of amorphous silicon films.
制御部 10からの制御信号に従って第 1光源 61から発せられる第 1レーザ光 65は、 可変減衰器 22、ミラー 23、可変焦点視野レンズ 24、投影マスク 25、結像レンズ 26を 経由して、ステージ 28上に載置される半導体素子 27の半導体膜 37の厚み方向一 表面部に照射される。第 2光源 62から発せられる第 2レーザ光 66は、第 2レーザ光を 照射対象物である半導体膜 37に均一に照射させるための均一照射光学系 63およ びミラー 23を経由して、ステージ 28に載置される半導体素子 27の半導体膜 37の厚 み方向一表面部に照射される。レーザ加工装置 60では、第 1レーザ光 65を、半導体 膜 37の厚み方向一表面部に対して垂直な方向力も入射させることができるとともに、 第 2レーザ光 66を、半導体膜 37の厚み方向一表面部に対して斜め方向から入射さ せることができる。  The first laser light 65 emitted from the first light source 61 in accordance with the control signal from the control unit 10 passes through the variable attenuator 22, the mirror 23, the variable focus field lens 24, the projection mask 25, and the imaging lens 26, and then on the stage. The surface of the semiconductor film 37 of the semiconductor element 27 placed on 28 is irradiated to one surface in the thickness direction. The second laser light 66 emitted from the second light source 62 passes through the uniform irradiation optical system 63 and the mirror 23 for uniformly irradiating the semiconductor film 37 as the irradiation target with the second laser light, and the stage 23. Irradiated to one surface portion in the thickness direction of the semiconductor film 37 of the semiconductor element 27 placed on 28. In the laser processing apparatus 60, the first laser beam 65 can also be made to enter a directional force perpendicular to the one surface portion in the thickness direction of the semiconductor film 37, and the second laser beam 66 can be applied in the thickness direction of the semiconductor film 37. It can be incident on the surface from an oblique direction.
第 1光源 61は、第 1レーザ光 65を発することが可能で、かつ半導体膜 37を溶融す ることが可能であるレーザ発振器であればよぐパルス状のレーザ光を発することが 可能で、波長が 308nmの第 1レーザ光 65を発することが可能なエキシマレーザ発振 器に限定されない。第 1光源 61は、紫外域の波長のレーザ光を発することが可能な レーザ発振器、たとえばエキシマレーザ発振器および YAGレーザ発振器に代表さ れる固体レーザ発振器であってもよい。第 2光源を構成する発振器は、溶融状態の 半導体膜 37に吸収される波長の第 2レーザ光 66を発することができるレーザ発振器 である。 The first light source 61 can emit a pulsed laser beam as long as it can emit the first laser beam 65 and can melt the semiconductor film 37. Excimer laser oscillation capable of emitting the first laser beam 65 with a wavelength of 308 nm It is not limited to a vessel. The first light source 61 may be a laser oscillator capable of emitting laser light having a wavelength in the ultraviolet region, for example, a solid-state laser oscillator typified by an excimer laser oscillator and a YAG laser oscillator. The oscillator constituting the second light source is a laser oscillator capable of emitting the second laser light 66 having a wavelength that is absorbed by the molten semiconductor film 37.
図 32は、第 1レーザ光 65および第 2レーザ光 66を発する時間と出力との関係を示 すグラフである。グラフの横軸は時間を表し、グラフの縦軸は第 1および第 2レーザ光 65, 66の出力、具体的には第 1および第 2レーザ光 65, 66の単位面積あたりのエネ ルギ量を表す。図 32に破線で示す曲線 VIは、エキシマレーザ発振器などの第 1光 源 61から発せられる第 1レーザ光 65の出力特性を表している。図 32に実線で示す 曲線 V2は、炭酸ガスレーザ発振器などの第 2光源 62から発せられる第 2レーザ光 6 6の出力特性を表している。第 1レーザ光 65の出力、換言すれば単位面積あたりの エネルギ量は、たとえば 200mjZcm2以上 lOOOmjZcm2未満である。第 2レーザ光 66の出力、換言すれば単位面積あたりのエネルギ量は、たとえば lOOmjZcm2以 上 lOOOiujZcm2未満である。 FIG. 32 is a graph showing the relationship between the output time of the first laser beam 65 and the second laser beam 66 and the output. The horizontal axis of the graph represents time, and the vertical axis of the graph represents the output of the first and second laser beams 65 and 66, specifically the amount of energy per unit area of the first and second laser beams 65 and 66. To express. A curve VI indicated by a broken line in FIG. 32 represents an output characteristic of the first laser light 65 emitted from the first light source 61 such as an excimer laser oscillator. A curve V2 indicated by a solid line in FIG. 32 represents an output characteristic of the second laser light 66 emitted from the second light source 62 such as a carbon dioxide laser oscillator. The output of the first laser beam 65, in other words, the amount of energy per unit area is, for example, 200 mjZcm 2 or more and less than lOOOmjZcm 2 . Amount of energy output per unit area in other words of the second laser beam 66 is, for example LOOmjZcm 2 than on lOOOiujZcm less than 2.
本実施の形態では、図 32に示すように、第 2レーザ光 66は、時刻 tOから時刻 t3に わたって第 2光源 62から発せられ、第 1レーザ光 65は、時刻 tOの後の時刻 tlから時 刻 t3より前の時刻 t2にわたつて第 1光源 61から発せられる。第 1レーザ光 65が発せ られている時間は、第 2レーザ光 66が発せられている時間に比べて短ぐ第 2レーザ 光 66が発せられている時間の 1Z100以下、具体的には第 2レーザ光 66が発せられ ている時間の 1Z1000程度である。さらに具体的に述べると、時刻 tOから時刻 t3ま での時間は、たとえば 100 sであり、時刻 tlから時刻 t2までの時間は、たとえば 10 0nsである。  In the present embodiment, as shown in FIG. 32, the second laser beam 66 is emitted from the second light source 62 from time tO to time t3, and the first laser beam 65 is transmitted at time tl after time tO. From the first light source 61 for time t2 before time t3. The time during which the first laser beam 65 is emitted is 1Z100 or less of the time during which the second laser beam 66 is emitted, which is shorter than the time during which the second laser beam 66 is emitted. It is about 1Z1000 when the laser beam 66 is emitted. More specifically, the time from time tO to time t3 is, for example, 100 s, and the time from time tl to time t2 is, for example, 100 ns.
本実施の形態では、曲線 VIに示すように、第 1レーザ光 65の出力の立上がりおよ び立下りは比較的急峻であり、時刻 tlの経過後に比較的短時間で出力が最大値に 到達し、その後に比較的短時間で出力を低下させるようにしている。また曲線 V2に 示すように、時刻 tOの経過後に比較的短時間で出力が最大値に到達し、時刻 t2が 経過するまで出力を最大値に保持する。時刻 t2の経過後の第 2レーザ光 66の出力 の立下りは、立上がりに比べて緩やかであり、時刻 t3が経過するまで徐々に出力を 低下させるようにしている。第 1レーザ光 65および第 2レーザ光 66を発する時間と出 力との関係は、図 32のグラフに示す関係に限定されないが、図 32のグラフに示す関 係と同様の関係にあることが好ましい。時刻 tlから時刻 t3までの間において、半導体 膜 37であるアモルファスシリコン膜は溶融状態にある。 In the present embodiment, as shown by the curve VI, the rise and fall of the output of the first laser beam 65 are relatively steep, and the output reaches the maximum value in a relatively short time after the time tl has elapsed. After that, the output is reduced in a relatively short time. Also, as shown by curve V2, the output reaches the maximum value in a relatively short time after the elapse of time tO, and the output is held at the maximum value until time t2 elapses. Output of second laser beam 66 after time t2 has elapsed The fall of the output is more gradual than the rise, and the output is gradually reduced until time t3 elapses. The relationship between the output time of the first laser beam 65 and the second laser beam 66 and the output is not limited to the relationship shown in the graph of FIG. 32, but may be similar to the relationship shown in the graph of FIG. preferable. Between the time tl and the time t3, the amorphous silicon film as the semiconductor film 37 is in a molten state.
本実施の形態において、照射対象物である半導体膜 37に対して時刻 tOから時刻 t 1までの間、および時刻 t2から時刻 t3までの間に第 2レーザ光 66を照射する段階は 、結晶化工程における第 1照射段階に相当する。また照射対象物である半導体膜 37 に対して時刻 tlから時刻 t2までの間に、第 1レーザ光 65および第 2レーザ光 66を照 射する段階は、結晶化工程における第 2照射段階に相当する。  In the present embodiment, the step of irradiating the semiconductor film 37, which is an irradiation object, with the second laser light 66 from time tO to time t1 and from time t2 to time t3 is performed by crystallization. This corresponds to the first irradiation stage in the process. In addition, the stage of irradiating the first laser beam 65 and the second laser beam 66 on the semiconductor film 37, which is an irradiation object, between the time tl and the time t2 corresponds to the second irradiation stage in the crystallization process. To do.
次にレーザカ卩ェ装置 60によって、ステージ 28に載置される半導体素子 27の半導 体膜 37を結晶化する工程について説明する。まず結晶化工程において、図 32の曲 線 VIに示すようなタイミングで、具体的には時刻 tlから時刻 t2までの間に第 1光源 6 1から発せられる第 1レーザ光 65を、投影マスク 25に形成される第 1および第 2光透 過パターン 25a, 25bを透過して、ステージ 28に載置される半導体素子 27の半導体 膜 37の厚み方向一表面部に画される第 1領域に照射する。また図 32の曲線 V2に示 すようなタイミングで、具体的には時刻 tOから時刻 t3までの間に第 2光源 62から発せ られる第 2レーザ光 66を、前記半導体膜 37の厚み方向一表面部に照射する。第 1お よび第 2レーザ光 65, 66の照射によって、前記第 1領域の半導体膜 37を溶融し、溶 融した第 1領域の半導体膜 37を凝固させて結晶化する。  Next, a process of crystallizing the semiconductor film 37 of the semiconductor element 27 placed on the stage 28 by the laser cage device 60 will be described. First, in the crystallization process, the first laser beam 65 emitted from the first light source 61 is emitted from the projection mask 25 at the timing shown by the curve VI in FIG. 32, specifically, from time tl to time t2. The first and second light transmission patterns 25a and 25b formed on the semiconductor element 27 are transmitted through the first and second light transmission patterns 25a and 25b to irradiate the first region defined on one surface in the thickness direction of the semiconductor film 37 of the semiconductor element 27. To do. In addition, the second laser light 66 emitted from the second light source 62 at the timing as shown by the curve V2 in FIG. 32, specifically, from the time tO to the time t3, is applied to one surface in the thickness direction of the semiconductor film 37. Irradiate the part. By irradiation with the first and second laser beams 65 and 66, the semiconductor film 37 in the first region is melted, and the melted first region semiconductor film 37 is solidified and crystallized.
次に移動工程において、制御部 29がステージ 28を駆動制御することによって、ス テージ 28を第 1移動方向 X—方に所定の距離寸法だけ移動させる。ステージ 28を第 1移動方向 X—方に移動させることによって、ステージ 28上に載置される半導体素子 27を、第 1移動方向 X—方に所定の距離寸法だけ移動させることができる。これによ つて、投影マスク 25に形成される複数の第 1および第 2光透過パターン 25a, 25bを 透過した第 1レーザ光 65が半導体素子 27の半導体膜 37の厚み方向一表面部に照 射される新たな領域は、第 1移動方向 X—方に所定の距離寸法だけ移動した領域と なる。前記新たな領域は、移動前の領域と一部分が重畳している。ステージ 28を第 1 移動方向 X—方に移動させるときの前記所定の距離寸法は、たとえば投影マスク 25 の第 1〜第 4ブロック BA〜: BDの短手方向寸法 Wである。 Next, in the moving step, the control unit 29 drives and controls the stage 28 to move the stage 28 by a predetermined distance dimension in the first moving direction X-direction. By moving the stage 28 in the first movement direction X-direction, the semiconductor element 27 placed on the stage 28 can be moved in the first movement direction X-direction by a predetermined distance dimension. As a result, the first laser light 65 transmitted through the plurality of first and second light transmission patterns 25a and 25b formed on the projection mask 25 is irradiated onto one surface in the thickness direction of the semiconductor film 37 of the semiconductor element 27. The new area to be created is an area moved by a predetermined distance dimension in the first movement direction X-direction. The new area partially overlaps the area before the movement. Stage 28 1st The predetermined distance dimension when moving in the movement direction X-direction is, for example, the first to fourth blocks BA of the projection mask 25: the dimension W in the short direction of the BD.
移動工程において所定の距離寸法だけ移動した後は再度、結晶化工程において 、図 32の曲線 VIに示すようなタイミングで第 1光源 61から発せられる第 1レーザ光 6 5を、投影マスク 25に形成される第 1および第 2光透過パターン 25a, 25bを透過して 、ステージ 28に載置される半導体素子 27の半導体膜 37の厚み方向一表面部に画 される第 2領域に照射する。第 2領域は、前記第 1領域と一部分が重畳している。また 第 1回目の結晶化工程と同様に、図 32の曲線 V2に示すようなタイミングで第 2光源 6 2から発せられる第 2レーザ光 66も、前記半導体膜 37の厚み方向一表面部に照射 する。第 1および第 2レーザ光 65, 66の照射によって、前記第 2領域の半導体膜 37 を溶融し、溶融した第 2領域の半導体膜 37を凝固させて結晶化する。さらに繰返し 工程において、前記半導体膜 37の結晶化される領域が所定の大きさに達するまで、 前述の結晶化工程と移動工程とを交互に行う。これによつて、たとえば前述の実施の 形態と同様に、半導体膜 37を均一に結晶化させることができる。  After moving by a predetermined distance in the moving process, the first laser beam 65 emitted from the first light source 61 is formed on the projection mask 25 again at the timing shown by the curve VI in FIG. 32 in the crystallization process. The first and second light transmission patterns 25a and 25b are transmitted to irradiate the second region defined on one surface in the thickness direction of the semiconductor film 37 of the semiconductor element 27 placed on the stage 28. The second region partially overlaps the first region. Similarly to the first crystallization process, the second laser beam 66 emitted from the second light source 62 at the timing shown by the curve V2 in FIG. To do. By irradiation with the first and second laser beams 65 and 66, the semiconductor film 37 in the second region is melted, and the melted second region semiconductor film 37 is solidified and crystallized. Further, in the repetitive process, the crystallization process and the transfer process are alternately performed until the crystallized region of the semiconductor film 37 reaches a predetermined size. Thereby, the semiconductor film 37 can be uniformly crystallized, for example, as in the above-described embodiment.
前述のように本実施の形態によれば、レーザカ卩ェ装置 60を用いて、照射対象物で ある半導体膜 37に第 1および第 2レーザ光 65, 66を照射することによって、半導体 膜 37を均一に結晶化し、その均一に結晶化した半導体膜 37に TFT素子 50が形成 される。したがって均一に結晶化された半導体膜 37に複数の TFT素子 50を形成す る場合、半導体膜 37に対する一方の TFT素子 50の形成方向と他方の TFT素子 50 の形成方向とが異なるときでも、各形成方向に形成される各 TFT素子 50のチャンネ ル部分に含まれる第 1結晶化領域 41aの面積と、第 2結晶化領域 41bの面積との比 率を同等にすることができる。  As described above, according to the present embodiment, the laser film 60 is used to irradiate the semiconductor film 37 that is the object to be irradiated with the first and second laser beams 65 and 66, thereby forming the semiconductor film 37. The TFT element 50 is formed in the uniformly crystallized semiconductor film 37 which is uniformly crystallized. Therefore, when a plurality of TFT elements 50 are formed in the uniformly crystallized semiconductor film 37, each TFT element 50 is formed on the semiconductor film 37 even when the forming direction of one TFT element 50 is different from the forming direction of the other TFT element 50. The ratio of the area of the first crystallization region 41a included in the channel portion of each TFT element 50 formed in the formation direction can be made equal to the area of the second crystallization region 41b.
これによつて半導体膜 37に形成する複数の TFT素子 50の電気的特性、具体的に はスイッチング特性を同一にすることができる。換言すれば、複数の TFT素子 50のス イッチング特性を均一にすることができる。また半導体膜 37に対する TFT素子 50の 形成方向に依らず、 TFT素子 50のスイッチング特性を均一にすることができるので、 TFT素子 50を用いた表示装置などの設計の自由度を高めることができる。  As a result, the electrical characteristics, specifically the switching characteristics, of the plurality of TFT elements 50 formed in the semiconductor film 37 can be made the same. In other words, the switching characteristics of the plurality of TFT elements 50 can be made uniform. In addition, since the switching characteristics of the TFT element 50 can be made uniform regardless of the direction in which the TFT element 50 is formed on the semiconductor film 37, the degree of freedom in designing a display device using the TFT element 50 can be increased.
また本実施の形態によれば、溶融状態にある半導体膜 37に対して、結晶化工程に おける第 2照射段階において、第 1レーザ光 65に加えて第 2レーザ光 66を照射する ことによって、前記溶融状態の半導体膜 37の冷却速度を低下させることができる。こ れによって溶融状態の半導体膜 37が凝固するまでの時間を延長することができる。 したがって溶融状態にある半導体膜 37であるアモルファスシリコン膜が凝固すること によって形成される半導体多結晶のラテラル成長の距離寸法を大幅に延ばすことが できる。 Further, according to the present embodiment, the semiconductor film 37 in the molten state is subjected to the crystallization process. In the second irradiation step, the cooling rate of the molten semiconductor film 37 can be reduced by irradiating the second laser beam 66 in addition to the first laser beam 65. As a result, the time until the molten semiconductor film 37 is solidified can be extended. Accordingly, the lateral dimension of the lateral growth of the polycrystalline semiconductor formed by solidifying the amorphous silicon film, which is the semiconductor film 37 in the molten state, can be greatly extended.
それ故、半導体膜 37を結晶化するにあたり、比較的大きな結晶粒に成長させること ができる。比較的大きな結晶粒に成長させることによって、結晶化された半導体膜 37 の電子移動度を比較的高くすることができ、電子移動度の比較的高 、半導体膜 37 に TFT素子 50を形成することによって、 TFT素子 50の電気的特性、具体的にはス イッチング特性を向上することができる。  Therefore, when the semiconductor film 37 is crystallized, it can be grown into relatively large crystal grains. By growing to relatively large crystal grains, the electron mobility of the crystallized semiconductor film 37 can be made relatively high, and the TFT element 50 can be formed in the semiconductor film 37 with relatively high electron mobility. As a result, the electrical characteristics of the TFT element 50, specifically, the switching characteristics can be improved.
図 33は、本発明の第 7の実施の形態であるレーザ加工装置 70の構成を示す図で ある。図 34A〜図 34Dは、回動駆動部 72によって回動される投影マスク 71の回動 過程を段階的に示す図である。本発明の第 7の実施の形態であるレーザ加工方法は 、レーザカ卩ェ装置 70によって実施される。レーザカ卩ェ装置 70は、第 1の実施の形態 のレーザカ卩ェ装置 20と構成が類似しているので、同一の構成については同一の参 照符を付して説明を省略する。レーザ加工装置 70は、光源 21、可変減衰器 22、ミラ 一、可変焦点視野レンズ 24、投影マスク 71、結像レンズ 26、ステージ 28、制御部 29 、回動駆動部 72および直線駆動部 73を含んで構成される。本実施の形態では、ス テージ 28の第 1移動方向 Xおよび第 2移動方向 Yに互いに直交する方向を「Z軸方 向」と称する場合がある。  FIG. 33 is a diagram showing a configuration of a laser processing apparatus 70 according to the seventh embodiment of the present invention. FIG. 34A to FIG. 34D are diagrams showing the rotation process of the projection mask 71 rotated by the rotation drive unit 72 step by step. The laser processing method according to the seventh embodiment of the present invention is performed by a laser carriage device 70. Since the laser carriage device 70 is similar in configuration to the laser carriage device 20 of the first embodiment, the same reference numerals are given to the same configuration, and description thereof is omitted. The laser processing device 70 includes a light source 21, a variable attenuator 22, a mirror, a variable focus field lens 24, a projection mask 71, an imaging lens 26, a stage 28, a control unit 29, a rotation drive unit 72, and a linear drive unit 73. Consists of including. In the present embodiment, the direction perpendicular to the first movement direction X and the second movement direction Y of the stage 28 may be referred to as the “Z-axis direction”.
本実施の形態の投影マスク 71には、複数の光透過パターン 71aが形成されている 。投影マスク 71の光透過パターン 71a以外の部分は、光を透過しない非透過部 7 lb である。投影マスク 71は、図 34A〜図 34Dに示すように、その厚み方向に垂直な仮 想平面に投影した形状が長方形状である。光透過パターン 71aは、投影マスク 71の 長手方向に沿って延びる第 1軸線と、投影マスク 71の短手方向に沿って延びる第 2 軸線とを含む平面内において、予め定める方向、本実施の形態では第 2軸線方向に 延びている。複数の光透過パターン 71aは、投影マスク 71の長手方向に間隔をあけ て形成されている。光透過パターン 71aは、投影マスク 71の厚み方向に見て六角形 状であり、光透過パターン 71aの延び方向である長手方向の両端部は、投影マスク 7 1の厚み方向に見て先細状に形成されている。図 34A〜図 34Dには、理解を容易に するために、光透過パターン 71aを長方形状に示して 、る。 The projection mask 71 of the present embodiment is formed with a plurality of light transmission patterns 71a. The portion other than the light transmission pattern 71a of the projection mask 71 is a non-transmission portion 7 lb that does not transmit light. As shown in FIGS. 34A to 34D, the projection mask 71 has a rectangular shape projected onto a virtual plane perpendicular to the thickness direction thereof. The light transmission pattern 71a is a predetermined direction in a plane including a first axis extending along the longitudinal direction of the projection mask 71 and a second axis extending along the short direction of the projection mask 71. In, it extends in the second axis direction. The plurality of light transmission patterns 71a are spaced apart in the longitudinal direction of the projection mask 71. Is formed. The light transmission pattern 71a has a hexagonal shape when viewed in the thickness direction of the projection mask 71, and both end portions in the longitudinal direction, which is the extending direction of the light transmission pattern 71a, taper when viewed in the thickness direction of the projection mask 71. Is formed. In FIG. 34A to FIG. 34D, the light transmission pattern 71a is shown in a rectangular shape for easy understanding.
回動駆動部 72は、投影マスク 71を照射対象物である半導体膜 37に対して相対的 に回動駆動するための回動駆動機構と、回動駆動機構を駆動するための回動駆動 源とを有する。回動駆動源は、たとえばモータによって実現される。本実施の形態で は、投影マスク 71は、第 1軸線および第 2軸線を含む平面の中心を通り、投影マスク 71の厚み方向に延びる第 3軸線であって、第 1および第 2軸線に直交する第 3軸線 まわりに、回動駆動部 72によって回動駆動可能に構成される。  The rotation drive unit 72 includes a rotation drive mechanism for driving the projection mask 71 to rotate relative to the semiconductor film 37 as an irradiation target, and a rotation drive source for driving the rotation drive mechanism. And have. The rotation drive source is realized by a motor, for example. In the present embodiment, the projection mask 71 is a third axis that extends in the thickness direction of the projection mask 71 through the center of the plane including the first axis and the second axis, and is orthogonal to the first and second axes. A rotation drive unit 72 is configured to be able to be rotated around the third axis.
直線駆動部 73は、投影マスク 71を照射対象物である半導体膜 37に対して、投影 マスク 71に形成される光透過パターン 71aの長手方向または短手方向に相対的に 直線駆動するための直線駆動機構と、直線駆動機構を駆動するための直線駆動源 とを有する。直線駆動源は、たとえばモータによって実現される。本実施の形態では 、投影マスク 71は、第 1軸線方向または第 2軸線方向、換言すればステージ 28の第 2移動方向 Yまたは Z軸方向に、直線駆動部 73によって直線駆動可能に構成される 制御部 29は、回動駆動部 72および直線駆動部 73と電気的に接続されている。制 御部 29は、回動駆動部 72および直線駆動部 73を同期駆動させるための制御信号 を、回動駆動部 72および直線駆動部 73に与える。回動駆動部 72および直線駆動 部 73は、制御部 29から与えられる制御信号に基づいて、投影マスク 71を前述のよう に回動駆動および直線駆動させる。本実施の形態において、回動駆動手段は回動 駆動部 72によって構成され、直線駆動手段は直線駆動部 73によって構成される。 制御手段は、制御部 29によって構成される。  The linear drive unit 73 is a straight line for driving the projection mask 71 relatively linearly in the longitudinal direction or the short direction of the light transmission pattern 71a formed on the projection mask 71 with respect to the semiconductor film 37 that is the irradiation target. A driving mechanism; and a linear driving source for driving the linear driving mechanism. The linear drive source is realized by a motor, for example. In the present embodiment, the projection mask 71 is configured to be linearly driven by the linear drive unit 73 in the first axis direction or the second axis direction, in other words, in the second movement direction Y or Z axis direction of the stage 28. The control unit 29 is electrically connected to the rotation drive unit 72 and the linear drive unit 73. The control unit 29 gives a control signal for synchronously driving the rotation drive unit 72 and the linear drive unit 73 to the rotation drive unit 72 and the linear drive unit 73. Based on the control signal supplied from the control unit 29, the rotation drive unit 72 and the linear drive unit 73 rotate the projection mask 71 and drive it linearly as described above. In the present embodiment, the rotation driving means is constituted by the rotation driving section 72, and the linear driving means is constituted by the linear driving section 73. The control means is configured by the control unit 29.
制御部 29からの制御信号に従って光源 21から発せられるレーザ光 31は、図 33に 示すように、可変減衰器 22、ミラー 23、可変焦点視野レンズ 24、投影マスク 71を経 由し、結像レンズ 26によって半導体素子 27に設けられる半導体膜 37の厚み方向一 表面部に照射される。 本実施の形態では、光源 21から発せられ、投影マスク 71の光透過パターン 71aを 透過したレーザ光 31を半導体膜 37に対して照射し、半導体膜 37の前記レーザ光 3 1が照射された領域を結晶化する結晶化工程を 4回行うとともに、回動駆動部 72によ つて投影マスク 71を第 3軸線まわりに回動させる工程を 3回行う。具体的には、投影 マスク 71が、図 34Aに示すように、光透過パターン 71aの長手方向と Z軸方向とがー 致し、かつ光透過パターン 71aの並び方向とステージ 28の第 2移動方向 Yとが一致 するように配設されているとき、光源 21から発せられるレーザ光 31を、投影マスク 71 を介して半導体膜 37に照射する。 The laser beam 31 emitted from the light source 21 according to the control signal from the control unit 29 passes through the variable attenuator 22, the mirror 23, the variable focus field lens 24, and the projection mask 71 as shown in FIG. 26 irradiates one surface portion in the thickness direction of the semiconductor film 37 provided on the semiconductor element 27. In the present embodiment, the semiconductor film 37 is irradiated with the laser light 31 emitted from the light source 21 and transmitted through the light transmission pattern 71a of the projection mask 71, and the region of the semiconductor film 37 irradiated with the laser light 31. A crystallization process for crystallizing the projection mask 71 is performed four times, and a process of rotating the projection mask 71 around the third axis by the rotation driving unit 72 is performed three times. Specifically, as shown in FIG. 34A, the projection mask 71 is aligned with the longitudinal direction of the light transmission pattern 71a and the Z-axis direction, and the arrangement direction of the light transmission pattern 71a and the second moving direction Y of the stage 28 Are arranged so as to coincide with each other, the semiconductor film 37 is irradiated with a laser beam 31 emitted from the light source 21 through the projection mask 71.
次に、回動駆動部 73によって、図 34Aに示す投影マスク 71を第 3軸線まわりでか つ時計まわりに 90度回動させて、図 34Bに示すように、光透過パターン 71aの長手 方向とステージ 28の第 2移動方向 Yとが一致し、かつ光透過パターン 71aの並び方 向と Z軸方向とがー致するように、投影マスク 71を配設する。投影マスク 71が、図 34 Bに示すように配設されているとき、光源 21から発せられるレーザ光 31を、投影マス ク 71を介して半導体膜 37に照射する。  Next, the rotation driving unit 73 rotates the projection mask 71 shown in FIG. 34A by 90 degrees clockwise around the third axis, and as shown in FIG. 34B, the longitudinal direction of the light transmission pattern 71a The projection mask 71 is arranged so that the second moving direction Y of the stage 28 coincides with the alignment direction of the light transmission pattern 71a and the Z-axis direction. When the projection mask 71 is arranged as shown in FIG. 34B, the semiconductor film 37 is irradiated with the laser light 31 emitted from the light source 21 via the projection mask 71.
次に、回動駆動部 73によって、図 34Bに示す投影マスク 71を第 3軸線まわりでか つ時計まわりに 180度回動させて、図 34Cに示すように、光透過パターン 71aの長手 方向とステージ 28の第 2移動方向 Yとが一致し、かつ光透過パターン 71aの並び方 向と Z軸方向とがー致するように、投影マスク 71を配設する。投影マスク 71が、図 34 Cに示すように配設されているとき、光源 21から発せられるレーザ光 31を、投影マス ク 71を介して半導体膜 37に照射する。  Next, the rotation driving unit 73 rotates the projection mask 71 shown in FIG. 34B 180 degrees around the third axis and clockwise, and as shown in FIG. 34C, the longitudinal direction of the light transmission pattern 71a The projection mask 71 is arranged so that the second moving direction Y of the stage 28 coincides with the alignment direction of the light transmission pattern 71a and the Z-axis direction. When the projection mask 71 is disposed as shown in FIG. 34C, the semiconductor film 37 is irradiated with the laser light 31 emitted from the light source 21 via the projection mask 71.
次に、回動駆動部 73によって、図 34Cに示す投影マスク 71を第 3軸線まわりでか つ反時計まわりに 90度回動させて、図 34Dに示すように、光透過パターン 71aの長 手方向と Z軸方向とがー致し、かつ光透過パターン 71aの並び方向とステージ 28の 第 2移動方向 Yとが一致するように、投影マスク 71を配設する。投影マスク 71が、図 3 4Dに示すように配設されているとき、光源 21から発せられるレーザ光 31を、投影マ スク 71を介して半導体膜 37に照射して、結晶化工程を終了する。  Next, the rotation driving unit 73 rotates the projection mask 71 shown in FIG. 34C by 90 degrees about the third axis and counterclockwise, and as shown in FIG. 34D, the light transmission pattern 71a is long. The projection mask 71 is arranged so that the direction and the Z-axis direction coincide with each other, and the arrangement direction of the light transmission patterns 71a coincides with the second movement direction Y of the stage 28. When the projection mask 71 is disposed as shown in FIG. 34D, the semiconductor film 37 is irradiated with the laser light 31 emitted from the light source 21 via the projection mask 71, and the crystallization process is completed. .
前述のように結晶化工程と、回動駆動部 72によって投影マスク 71を第 3軸線まわり に回動させる工程とを行うことによって、前述の第 1〜第 6の実施形態のようにステー ジ 28を光源 21に対して相対移動、具体的にはステージ 28を第 1移動方向 Xおよび 第 2移動方向 Yに移動させる場合と同様に、半導体膜 37を均一に結晶化させること ができる。 As described above, the crystallization process and the process of rotating the projection mask 71 around the third axis by the rotation driving unit 72 are performed, as in the first to sixth embodiments described above. The semiconductor film 37 can be uniformly crystallized in the same manner as when the stage 28 is moved relative to the light source 21, specifically, the stage 28 is moved in the first movement direction X and the second movement direction Y.
前述のように本実施の形態によれば、複数の光透過パターン 71aが形成される投 影マスク 71は、回動駆動部 72によって前記第 3軸線まわりに回動駆動される。また 投影マスク 71は、直線駆動部 73によって、第 1軸線方向または第 2軸線方向、換言 すればステージ 28の第 2移動方向 Yまたは Z軸方向に直線駆動される。回動駆動部 72および直線駆動部 73は、制御部 29によって同期駆動され、投影マスク 71の光透 過パターン 71aの長手方向が順次、 Z軸方向、ステージ 28の第 2移動方向 Y、 Ζ軸方 向および前記第 2移動方向 Υとなるように段階的に制御される。  As described above, according to the present embodiment, the projection mask 71 on which the plurality of light transmission patterns 71a are formed is rotationally driven around the third axis by the rotational drive unit 72. Further, the projection mask 71 is linearly driven by the linear drive unit 73 in the first axis direction or the second axis direction, in other words, in the second movement direction Y or Z axis direction of the stage 28. The rotation drive unit 72 and the linear drive unit 73 are synchronously driven by the control unit 29, and the longitudinal direction of the light transmission pattern 71a of the projection mask 71 is sequentially Z-axis direction, the second movement direction Y of the stage 28, and the vertical axis. The direction and the second movement direction are controlled stepwise.
したがって、 Ζ軸方向に延びる光透過パターン 71aが形成される投影マスク 71を用 いて半導体膜 37を結晶化させる場合でも、回動駆動部 72および直線駆動部 73によ つて、前記投影マスク 71を半導体膜 37に対して相対的に回動駆動および直線駆動 させることができる。これによつて光源 21から発せられるレーザ光は、回動駆動部 72 による回動駆動によって延び方向が Z軸方向および前記第 2移動方向 Yに変化する 光透過パターン 71aを透過することができる。したがって、 Z軸方向および第 2移動方 向 Yに延びる光透過パターン 71aの形状のレーザ光を半導体膜 37に対して照射す ることがでさる。  Therefore, even when the semiconductor film 37 is crystallized using the projection mask 71 on which the light transmission pattern 71a extending in the axial direction is formed, the projection mask 71 is formed by the rotation driving unit 72 and the linear driving unit 73. The semiconductor film 37 can be rotated and driven linearly. As a result, the laser light emitted from the light source 21 can pass through the light transmission pattern 71a whose extending direction changes in the Z-axis direction and the second movement direction Y by the rotation drive by the rotation drive unit 72. Therefore, it is possible to irradiate the semiconductor film 37 with a laser beam having the shape of the light transmission pattern 71a extending in the Z-axis direction and the second movement direction Y.
これによつて Z軸方向に延びる光透過パターン 71aが形成される投影マスク 71を用 いた場合でも、前述の第 1〜第 3の実施の形態のように、延び方向が互いに直交する 第 1光透過パターン 25aおよび第 2光透過パターン 25bが形成される投影マスク 25を 用いる場合と同様に、レーザ光の最終照射によって結晶化された半導体膜 37にお いて、第 1結晶化領域 41aの面積と、第 2結晶化領域 41bの面積との比率を同等に することができる。したがって、照射対象物である半導体膜 37を均一に結晶化させる ことができる。  Thus, even when the projection mask 71 in which the light transmission pattern 71a extending in the Z-axis direction is formed is used, the first light whose extending directions are orthogonal to each other as in the first to third embodiments described above. As in the case of using the projection mask 25 on which the transmission pattern 25a and the second light transmission pattern 25b are formed, the area of the first crystallized region 41a in the semiconductor film 37 crystallized by the final irradiation of the laser light The ratio with the area of the second crystallization region 41b can be made equal. Therefore, the semiconductor film 37 that is an irradiation object can be uniformly crystallized.
このように均一に結晶化された半導体膜 37、具体的には非晶質材料力 成る層に 、たとえば複数の TFT素子 50を形成する場合、半導体膜 37に対する一方の TFT素 子 50の形成方向が第 1形成方向、他方の TFT素子 50の形成方向が第 2形成方向 というように、 TFT素子 50の形成方向が異なるときでも、各形成方向に形成される各 TFT素子 50のチャンネル部分に含まれる第 1結晶化領域 41aの面積と、第 2結晶化 領域 41bの面積との比率を同等にすることができる。これによつて半導体膜 37に形 成する複数の TFT素子 50の電気的特性、具体的にはスイッチング特性を同一にす ることができる。換言すれば、複数の TFT素子 50のスイッチング特性を均一にするこ とがでさる。 For example, when forming a plurality of TFT elements 50 in the uniformly crystallized semiconductor film 37, specifically, a layer having an amorphous material force, the direction in which one TFT element 50 is formed with respect to the semiconductor film 37. Is the first formation direction, and the other TFT element 50 is the second formation direction. Thus, even when the formation direction of the TFT element 50 is different, the area of the first crystallization region 41a and the area of the second crystallization region 41b included in the channel portion of each TFT element 50 formed in each formation direction. The ratio can be made equal. As a result, the electrical characteristics, more specifically the switching characteristics, of the plurality of TFT elements 50 formed in the semiconductor film 37 can be made the same. In other words, the switching characteristics of the plurality of TFT elements 50 can be made uniform.
また本実施の形態によれば、半導体膜 37に対する TFT素子 50の形成方向に依ら ず、 TFT素子 50のスイッチング特性を均一にすることができるので、 TFT素子 50を 用いた表示装置などの設計の自由度を高めることができる。  In addition, according to the present embodiment, the switching characteristics of the TFT element 50 can be made uniform regardless of the direction in which the TFT element 50 is formed on the semiconductor film 37, so that the design of a display device using the TFT element 50 can be made. The degree of freedom can be increased.
次に、本発明の第 8の実施の形態であるレーザカ卩ェ装置およびレーザカ卩ェ方法に ついて説明する。本実施の形態のレーザ加工装置は、前述の第 7の実施の形態のレ 一ザ加工装置 70と構成が類似しており、投影マスク 71に代えて他の投影マスク 200 を備えている点だけが異なるので、投影マスク 200について説明し、同一の構成に ついては同一の参照符を付して説明を省略する。本発明の第 8の実施の形態である レーザ加工方法は、本実施の形態のレーザカ卩ェ装置によって実施される。図 35A〜 図 35Dは、回動駆動部 72によって回動される投影マスク 200の回動過程を段階的 に示す図である。本実施の形態では、ステージ 28の第 1移動方向 Xおよび第 2移動 方向 Yに互いに直交する方向を「Z軸方向」と称する場合がある。  Next, a laser cage apparatus and a laser cage method according to an eighth embodiment of the present invention will be described. The laser processing apparatus of the present embodiment is similar in configuration to the laser processing apparatus 70 of the seventh embodiment described above, and is only provided with another projection mask 200 in place of the projection mask 71. Therefore, the projection mask 200 will be described, and the same components will be denoted by the same reference numerals and description thereof will be omitted. The laser processing method according to the eighth embodiment of the present invention is carried out by the laser cache device according to the present embodiment. FIG. 35A to FIG. 35D are diagrams showing the rotation process of the projection mask 200 rotated by the rotation drive unit 72 step by step. In the present embodiment, the direction perpendicular to the first movement direction X and the second movement direction Y of the stage 28 may be referred to as the “Z-axis direction”.
本実施の形態の投影マスク 200には、複数の光透過パターン 200aが形成されて いる。投影マスク 200の光透過パターン 200a以外の部分は、光を透過しない非透過 部 200bである。投影マスク 200は、図 35A〜図 35Dに示すように、その厚み方向に 垂直な仮想平面に投影した形状が長方形状である。光透過パターン 200aは、投影 マスク 200の長手方向に沿って延びる第 1軸線と、投影マスク 200の短手方向に沿つ て延びる第 2軸線とを含む平面内において、第 1軸線と第 2軸線との交点を中心とし て第 2軸線力 時計回りに角変位する方向に 45度傾斜した方向(以下、「傾斜方向」 と称する場合がある)に延びている。複数の光透過パターン 200aは、投影マスク 200 の厚み方向に見て、前記傾斜方向に直交する方向に間隔をあけて形成されて 、る。 光透過パターン 200aは、投影マスク 200の厚み方向に見て六角形状であり、光透過 パターン 200aの延び方向である傾斜方向の両端部は、投影マスク 200の厚み方向 に見て先細状に形成されている。図 35A〜図 35Dには、理解を容易にするために、 光透過パターン 200aを略長方形状に示して 、る。 In the projection mask 200 of the present embodiment, a plurality of light transmission patterns 200a are formed. The portions other than the light transmission pattern 200a of the projection mask 200 are non-transmission portions 200b that do not transmit light. As shown in FIGS. 35A to 35D, the projection mask 200 has a rectangular shape projected onto a virtual plane perpendicular to the thickness direction thereof. The light transmission pattern 200a has a first axis and a second axis in a plane including a first axis extending along the longitudinal direction of the projection mask 200 and a second axis extending along the short direction of the projection mask 200. Centering on the intersection with the second axis force extends in a direction inclined 45 degrees in a clockwise angular displacement direction (hereinafter sometimes referred to as “inclination direction”). The plurality of light transmission patterns 200a are formed at intervals in a direction perpendicular to the inclination direction when viewed in the thickness direction of the projection mask 200. The light transmission pattern 200a has a hexagonal shape when viewed in the thickness direction of the projection mask 200, and light transmission Both end portions in the inclination direction, which is the extending direction of the pattern 200a, are formed in a tapered shape when viewed in the thickness direction of the projection mask 200. In FIG. 35A to FIG. 35D, the light transmission pattern 200a is shown in a substantially rectangular shape for easy understanding.
本実施の形態では、光源 21から発せられ、投影マスク 200の光透過パターン 200a を透過したレーザ光 31を半導体膜 37に対して照射し、半導体膜 37の前記レーザ光 31が照射された領域を結晶化する結晶化工程を 4回行うとともに、回動駆動部 72に よって投影マスク 200を、投影マスク 200の厚み方向に延びる第 3軸線まわりに回動 させる工程を 3回行う。具体的には、投影マスク 200が、図 35Aに示すように、投影マ スク 200の長手方向と Z軸方向とがー致し、かつ投影マスク 200の短手方向とステー ジ 28の第 2移動方向 Yとが一致するように配設されているとき、光源 21から発せられ るレーザ光 31を、投影マスク 200を介して半導体膜 37に照射する。  In the present embodiment, the semiconductor film 37 is irradiated with the laser beam 31 emitted from the light source 21 and transmitted through the light transmission pattern 200a of the projection mask 200, and the region of the semiconductor film 37 irradiated with the laser beam 31 is irradiated. A crystallization process for crystallization is performed four times, and a process of rotating the projection mask 200 about the third axis extending in the thickness direction of the projection mask 200 by the rotation driving unit 72 is performed three times. Specifically, as shown in FIG. 35A, the projection mask 200 is aligned with the longitudinal direction of the projection mask 200 and the Z-axis direction, and the short side direction of the projection mask 200 and the second moving direction of the stage 28 are aligned. When they are arranged so as to coincide with Y, the semiconductor film 37 is irradiated with the laser beam 31 emitted from the light source 21 through the projection mask 200.
次に、回動駆動部 73によって、図 35Aに示す投影マスク 200を第 3軸線まわりでか つ時計まわりに 180度回動させて、図 35Bに示すように、投影マスク 200の長手方向 と Z軸方向とがー致し、かつ投影マスク 200の短手方向とステージ 28の第 2移動方向 Yとが一致するように、投影マスク 200を配設する。投影マスク 200が、図 35Bに示す ように配設されているとき、光源 21から発せられるレーザ光 31を、投影マスク 200を 介して半導体膜 37に照射する。  Next, the rotation driving unit 73 rotates the projection mask 200 shown in FIG. 35A 180 degrees around the third axis and clockwise, and as shown in FIG. 35B, the longitudinal direction of the projection mask 200 and Z The projection mask 200 is arranged so that the axial direction matches and the short side direction of the projection mask 200 coincides with the second movement direction Y of the stage 28. When the projection mask 200 is arranged as shown in FIG. 35B, the semiconductor film 37 is irradiated with the laser light 31 emitted from the light source 21 through the projection mask 200.
次に、回動駆動部 73によって、図 35Bに示す投影マスク 200を第 3軸線まわりでか つ反時計まわりに 90度回動させて、図 35Cに示すように、投影マスク 200の長手方 向とステージ 28の第 2移動方向 Yとが一致し、かつ投影マスク 200の短手方向と Z軸 方向とがー致するように、投影マスク 200を配設する。投影マスク 200が、図 35Cに 示すように配設されているとき、光源 21から発せられるレーザ光 31を、投影マスク 20 0を介して半導体膜 37に照射する。  Next, the rotation driving unit 73 rotates the projection mask 200 shown in FIG. 35B by 90 degrees about the third axis and counterclockwise, and as shown in FIG. 35C, the projection mask 200 is moved in the longitudinal direction. And the second movement direction Y of the stage 28 coincide with each other, and the projection mask 200 is arranged so that the short side direction of the projection mask 200 and the Z-axis direction coincide. When the projection mask 200 is disposed as shown in FIG. 35C, the semiconductor film 37 is irradiated with the laser light 31 emitted from the light source 21 through the projection mask 200.
次に、回動駆動部 73によって、図 35Cに示す投影マスク 200を第 3軸線まわりでか つ時計まわりに 180度回動させて、図 35Dに示すように、投影マスク 200の長手方向 とステージ 28の第 2移動方向 Yとが一致し、かつ投影マスク 200の短手方向と Z軸方 向とがー致するように、投影マスク 200を配設する。投影マスク 200が、図 35Dに示 すように配設されているとき、光源 21から発せられるレーザ光 31を、投影マスク 200 を介して半導体膜 37に照射して、結晶化工程を終了する。 Next, the rotation driving unit 73 rotates the projection mask 200 shown in FIG. 35C 180 degrees around the third axis and clockwise, and as shown in FIG. 35D, the longitudinal direction of the projection mask 200 and the stage The projection mask 200 is arranged so that the second movement direction Y of 28 coincides with the short direction of the projection mask 200 and the Z-axis direction. When the projection mask 200 is arranged as shown in FIG. 35D, the laser light 31 emitted from the light source 21 is emitted from the projection mask 200. Then, the semiconductor film 37 is irradiated to complete the crystallization process.
前述のように結晶化工程と、回動駆動部 72によって投影マスク 200を第 3軸線まわ りに回動させる工程とを行うことによって、前述の第 1〜第 6の実施形態のようにステ ージ 28を光源 21に対して相対移動、具体的にはステージ 28を第 1移動方向 Xおよ び第 2移動方向 Yに移動させる場合と同様に、半導体膜 37を均一に結晶化させるこ とがでさる。  As described above, by performing the crystallization process and the process of rotating the projection mask 200 around the third axis by the rotation driving unit 72, the stage as in the first to sixth embodiments described above is performed. The semiconductor film 37 is uniformly crystallized in the same manner as when the stage 28 is moved relative to the light source 21, specifically, the stage 28 is moved in the first movement direction X and the second movement direction Y. It is out.
前述のように本実施の形態によれば、傾斜方向に延びる光透過パターン 200aが 形成される投影マスク 200を用いて半導体膜 37を結晶化させる場合でも、回動駆動 部 72および直線駆動部 73によって、前記投影マスク 200を半導体膜 37に対して相 対的に回動駆動および直線駆動させることができる。これによつて光源 21から発せら れるレーザ光は、回動駆動部 72による回動駆動によって延び方向が、傾斜方向およ び投影マスク 200の厚み方向に見て傾斜方向に直交する方向に変化する光透過パ ターン 200aを透過することができる。したがって、傾斜方向および前記傾斜方向に 直交する方向に延びる光透過パターン 200aの形状のレーザ光を半導体膜 37に対 して照射することができる。  As described above, according to the present embodiment, even when the semiconductor film 37 is crystallized using the projection mask 200 on which the light transmission pattern 200a extending in the tilt direction is formed, the rotation driving unit 72 and the linear driving unit 73 are used. Thus, the projection mask 200 can be rotationally driven and linearly driven relative to the semiconductor film 37. As a result, the laser light emitted from the light source 21 is changed in the extending direction by the rotation driving by the rotation driving unit 72 in a direction orthogonal to the inclination direction when viewed in the inclination direction and the thickness direction of the projection mask 200. The light transmitting pattern 200a can be transmitted. Therefore, it is possible to irradiate the semiconductor film 37 with laser light having the shape of the light transmission pattern 200a extending in the tilt direction and the direction orthogonal to the tilt direction.
これによつて傾斜方向に延びる光透過パターン 200aが形成される投影マスク 200 を用いた場合でも、前述の第 4および第 5の実施の形態のように、延び方向が互いに 直交する第 1光透過パターン 100aおよび第 2光透過パターン 100bが形成される投 影マスク 100, 110を用いる場合と同様に、光透過パターン 200aの形状のレーザ光 が照射された半導体膜 37を溶融し、均一に結晶化させることができる。  Thus, even when the projection mask 200 having the light transmission pattern 200a extending in the inclined direction is used, the first light transmission whose extending directions are orthogonal to each other as in the fourth and fifth embodiments described above. Similar to the case of using the projection masks 100 and 110 on which the pattern 100a and the second light transmission pattern 100b are formed, the semiconductor film 37 irradiated with the laser light having the shape of the light transmission pattern 200a is melted and uniformly crystallized. Can be made.
このように均一に結晶化された半導体膜 37、具体的には非晶質材料力 成る層に 、たとえば複数の TFT素子 50を形成する場合、半導体膜 37に対する一方の TFT素 子 50の形成方向が第 1形成方向、他方の TFT素子 50の形成方向が第 2形成方向 というように、 TFT素子 50の形成方向が異なるときでも、各形成方向に形成される各 TFT素子 50のチャンネル部分に含まれる結晶化領域の形状を同一にすることがで きる。換言すると、結晶化領域が形成される半導体膜 37に対する複数の TFT素子 5 0の形成方向が第 1形成方向および第 2形成方向のうち、いずれの方向であっても、 結晶の成長方向に対する複数の TFT素子 50のソース Sからドレイン Dに流れる電流 の方向を同一にすることができる。これによつて半導体膜 37に形成する複数の TFT 素子 50の電気的特性、具体的にはスイッチング特性を同一にすることができる。換 言すれば、複数の TFT素子 50のスイッチング特性を均一にすることができる。 For example, when forming a plurality of TFT elements 50 in the uniformly crystallized semiconductor film 37, specifically, a layer having an amorphous material force, the direction in which one TFT element 50 is formed with respect to the semiconductor film 37. Even when the formation direction of the TFT element 50 is different, such as the first formation direction and the formation direction of the other TFT element 50 are the second formation direction, it is included in the channel portion of each TFT element 50 formed in each formation direction. The shape of the crystallized regions can be made the same. In other words, a plurality of TFT elements 50 with respect to the crystal growth direction are formed in any direction of the first formation direction and the second formation direction with respect to the semiconductor film 37 where the crystallized region is formed. TFT element 50 Current flowing from source S to drain D Can be made the same direction. As a result, the electrical characteristics, specifically the switching characteristics, of the plurality of TFT elements 50 formed in the semiconductor film 37 can be made the same. In other words, the switching characteristics of the plurality of TFT elements 50 can be made uniform.
また本実施の形態によれば、半導体膜 37に対する TFT素子 50の形成方向に依ら ず、 TFT素子 50のスイッチング特性を均一にすることができるので、 TFT素子 50を 用いた表示装置などの設計の自由度を高めることができる。  In addition, according to the present embodiment, the switching characteristics of the TFT element 50 can be made uniform regardless of the direction in which the TFT element 50 is formed on the semiconductor film 37, so that the design of a display device using the TFT element 50 can be made. The degree of freedom can be increased.
前述の各実施の形態は、本発明の例示に過ぎず、発明の範囲内において構成を 変更することができる。前述の第 1〜第 3の実施の形態では、第 1および第 2光透過 パターン 25a, 25bが形成される一の投影マスク 25を備えるレーザカ卩ェ装置 20, 60 を用いて照射対象物である半導体膜 37を結晶化する場合の構成について述べたが 、複数のマスク部を含む投影マスクを備えるレーザ加工装置を用いてもよい。たとえ ば、第 1光透過パターン 25aが形成される一方のマスク部を透過したレーザ光を半導 体膜 37に照射するとともに、第 2光透過パターン 25bが形成される他方のマスク部を 透過したレーザ光を半導体膜 37に照射することによって、半導体膜 37を結晶化する ようにしてもよい。この場合でも、一の投影マスク 25を用いた場合と同様に、半導体 膜 37を均一に結晶化することができ、半導体膜 37に形成される複数の TFT素子 50 のスイッチング特性を均一にすることができる。  Each of the above-described embodiments is merely an example of the present invention, and the configuration can be changed within the scope of the invention. In the above-described first to third embodiments, the irradiation object is an object to be irradiated using the laser carriage devices 20 and 60 including one projection mask 25 on which the first and second light transmission patterns 25a and 25b are formed. Although the configuration in the case of crystallizing the semiconductor film 37 has been described, a laser processing apparatus including a projection mask including a plurality of mask portions may be used. For example, the semiconductor film 37 is irradiated with laser light transmitted through one mask portion where the first light transmission pattern 25a is formed and transmitted through the other mask portion where the second light transmission pattern 25b is formed. The semiconductor film 37 may be crystallized by irradiating the semiconductor film 37 with laser light. Even in this case, the semiconductor film 37 can be uniformly crystallized as in the case of using the single projection mask 25, and the switching characteristics of the plurality of TFT elements 50 formed on the semiconductor film 37 can be made uniform. Can do.
半導体膜 37を結晶化させるにあたって、前述の第 4の実施の形態では、第 1および 第 2ブロック BA, BBに複数の第 1光透過パターン 100aが形成され、第 3および第 4 ブロック BC, BDに複数の第 2光透過パターン 100bが形成される投影マスク 100を 用い、前述の第 5の実施の形態では、第 1および第 4ブロック BA, BDに複数の第 1 光透過パターン 100aが形成され、第 2および第 3ブロック BB, BCに複数の第 2光透 過パターン 100bが形成される投影マスク 110を用いた場合について述べた力 投影 マスクはこれらに限らず、以下の (A)〜(D)の投影マスクを用いてもよ!、。  In crystallizing the semiconductor film 37, in the above-described fourth embodiment, a plurality of first light transmission patterns 100a are formed in the first and second blocks BA and BB, and the third and fourth blocks BC and BD are formed. In the fifth embodiment described above, a plurality of first light transmission patterns 100a are formed in the first and fourth blocks BA, BD using the projection mask 100 on which a plurality of second light transmission patterns 100b are formed. The force projection masks described in the case of using the projection mask 110 in which a plurality of second light transmission patterns 100b are formed in the second and third blocks BB and BC are not limited to these, and the following (A) to ( You can use the projection mask of D)!
(A)第 1および第 2ブロック BA, BBに複数の第 2光透過パターン 100bが形成され 、第 3および第 4ブロック BC, BDに複数の第 1光透過パターン 100aが形成される投 影マスク。  (A) A projection mask in which a plurality of second light transmission patterns 100b are formed in the first and second blocks BA, BB, and a plurality of first light transmission patterns 100a are formed in the third and fourth blocks BC, BD. .
(B)第 1および第 4ブロック BA, BDに複数の第 2光透過パターン 100bが形成され 、第 2および第 3ブロック BB, BCに複数の第 1光透過パターン 100aが形成される投 影マスク。 (B) A plurality of second light transmission patterns 100b are formed on the first and fourth blocks BA and BD. A projection mask in which a plurality of first light transmission patterns 100a are formed on the second and third blocks BB and BC.
(C)第 1および第 3ブロック BA, BCに複数の第 1光透過パターン 100aが形成され 、第 2および第 4ブロック BB, BDに複数の第 2光透過パターン 100bが形成される投 影マスク。  (C) A projection mask in which a plurality of first light transmission patterns 100a are formed in the first and third blocks BA, BC, and a plurality of second light transmission patterns 100b are formed in the second and fourth blocks BB, BD. .
(D)第 1および第 3ブロック BA, BCに複数の第 2光透過パターン 100bが形成され 、第 2および第 4ブロック BB, BDに複数の第 1光透過パターン 100aが形成される投 影マスク。  (D) A projection mask in which a plurality of second light transmission patterns 100b are formed in the first and third blocks BA, BC, and a plurality of first light transmission patterns 100a are formed in the second and fourth blocks BB, BD. .
前記 (A)〜(D)の投影マスクを用いた場合でも、前述の第 4および第 5の実施の形 態と同様に、半導体膜 37を均一に結晶化させることができ、半導体膜 37に形成され る複数の TFT素子 50のスイッチング特性を均一にすることができる。前記 (A)〜(D) の投影マスクのうち、(B)の投影マスクを用いると、半導体膜 37をより均一に結晶化さ せることが可能となり、半導体膜 37に形成される複数の TFT素子 50のスイッチング 特性を向上することができる。  Even when the projection masks (A) to (D) are used, the semiconductor film 37 can be uniformly crystallized as in the fourth and fifth embodiments described above. The switching characteristics of the plurality of formed TFT elements 50 can be made uniform. Of the projection masks (A) to (D), the projection mask (B) can be used to crystallize the semiconductor film 37 more uniformly, and a plurality of TFTs formed on the semiconductor film 37 can be obtained. The switching characteristics of the element 50 can be improved.
前述の各実施の形態では、投景マスク 25, 25A, 25B, 25C, 71, 100, 110, 20 0を用いて照射対象物である半導体膜 37を結晶化する場合について述べたが、この ような構成に限らない。本発明の他の実施の形態では、照射領域形成手段である光 源 21および制御部 29によって、光源 21から発せられるレーザ光が、半導体膜 37を 結晶化させるべき第 1方向に延びるように、半導体膜 37に照射される第 1照射領域を 形成する。また光源 21および制御部 29によって、光源 21から発せられるレーザ光が 、第 1方向に直交する第 2方向に延びるように、半導体膜 37に照射される第 2照射領 域を形成する。  In each of the above-described embodiments, the case where the semiconductor film 37 as the irradiation object is crystallized using the projection masks 25, 25A, 25B, 25C, 71, 100, 110, and 200 has been described. It is not restricted to a simple configuration. In another embodiment of the present invention, the laser light emitted from the light source 21 by the light source 21 and the control unit 29, which are irradiation region forming means, extends in the first direction in which the semiconductor film 37 should be crystallized. A first irradiation region irradiated to the semiconductor film 37 is formed. Further, the light source 21 and the control unit 29 form a second irradiation region in which the semiconductor film 37 is irradiated so that the laser light emitted from the light source 21 extends in the second direction orthogonal to the first direction.
第 1および第 2照射領域は、配設手段である制御部 29によって、第 1照射領域、第 2照射領域、第 2照射領域および第 1照射領域の順に並べて配設される。これによつ てレーザ光の最終照射によって結晶化された半導体膜 37の第 1照射領域および第 2照射領域において、レーザ光が第 1方向に延びるように照射されて結晶化された部 分の面積と、レーザ光が第 2方向に延びるように照射されて結晶化された部分の面 積とを同等にすることができる。したがって、照射対象物である半導体膜 37を均一に 結晶ィ匕させることができる。 The first and second irradiation areas are arranged in the order of the first irradiation area, the second irradiation area, the second irradiation area, and the first irradiation area by the control unit 29 as an arrangement unit. As a result, in the first irradiation region and the second irradiation region of the semiconductor film 37 crystallized by the final irradiation of the laser beam, the laser beam is irradiated so as to extend in the first direction, and the portion crystallized. The area can be made equal to the area of the crystallized portion irradiated with laser light so as to extend in the second direction. Therefore, the semiconductor film 37 that is the object to be irradiated is uniformly formed. It can be crystallized.
照射領域形成手段によって第 1および第 2照射領域を形成し、配設手段によって 第 1および第 2照射領域を前述のような順に配設することによって、前述の各実施の 形態のレーザカ卩ェ装置 20, 60, 70に設けられる投影マスク 25, 25A, 25B, 25C, 71, 100, 110, 200を用いることなぐ照射対象物である半導体膜 37を均一に結晶 化させることができる。したがってレーザカ卩ェ装置 20, 60, 70の部品点数を削減す ることができる。これによつてレーザカ卩ェ装置 20, 60, 70の構造を簡単化して小型化 を図ることができるとともに、レーザ加工装置 20, 60, 70の製造コストの低減ィ匕を図る ことができる。  The first and second irradiation areas are formed by the irradiation area forming means, and the first and second irradiation areas are arranged in the order as described above by the arranging means, whereby the laser carriage device of each of the above-described embodiments. The semiconductor film 37 that is an irradiation object can be uniformly crystallized without using the projection masks 25, 25A, 25B, 25C, 71, 100, 110, and 200 provided on 20, 20, and 70. Therefore, the number of parts of the laser carriage devices 20, 60, 70 can be reduced. As a result, the structure of the laser carriage devices 20, 60, 70 can be simplified and reduced in size, and the manufacturing cost of the laser processing devices 20, 60, 70 can be reduced.
また前述の第 7の実施の形態では、回動駆動部 72および直線駆動部 73によって、 投影マスク 71を回動駆動および直線駆動するように構成されているが、このような構 成に限定されない。本発明の他の実施の形態では、回動駆動部 72によってステー ジ 28を、投影マスク 71に対して相対的に回動駆動可能、具体的にはステージ 28を、 ステージ 28の厚み方向である Z軸方向に延びる軸線まわりに回動駆動可能に構成し てもよい。また、直線駆動部 73によってステージ 28を、投影マスク 71に対して相対的 に直線駆動可能、具体的にはステージ 28を、第 1移動方向 Xおよび第 2移動方向 Y に直線駆動可能に構成してもよい。本発明の他の実施の形態における回動駆動部 7 2および直線駆動部 73は、制御部 29から与えられる制御信号に基づいて、ステージ 28を前述のように回動駆動および直線駆動させるようにする。このような構成であつ ても、前述の第 7の実施の形態と同様の効果を得ることができる。  Further, in the seventh embodiment described above, the projection mask 71 is rotationally driven and linearly driven by the rotational drive unit 72 and the linear drive unit 73. However, the present invention is not limited to such a configuration. . In another embodiment of the present invention, the stage 28 can be driven to rotate relative to the projection mask 71 by the rotation driving unit 72. Specifically, the stage 28 is in the thickness direction of the stage 28. You may comprise so that rotation drive is possible around the axis line extended in a Z-axis direction. In addition, the stage 28 can be linearly driven relative to the projection mask 71 by the linear drive unit 73.Specifically, the stage 28 can be linearly driven in the first movement direction X and the second movement direction Y. May be. The rotation drive unit 72 and the linear drive unit 73 according to another embodiment of the present invention are configured to drive the stage 28 to rotate and linearly drive as described above based on the control signal given from the control unit 29. To do. Even with such a configuration, it is possible to obtain the same effects as those of the seventh embodiment described above.
前述の各実施の形態では、半導体膜 37としてアモルファスシリコン膜を適用した場 合について説明したが、これに限定されることなぐ非晶質のゲルマニウムおよびそ れらの合金でもよい。  In each of the above-described embodiments, the case where an amorphous silicon film is applied as the semiconductor film 37 has been described. However, amorphous germanium and alloys thereof may be used without being limited thereto.
本発明は、その精神または主要な特徴力 逸脱することなぐ他のいろいろな形態 で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本 発明の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束され ない。さらに、特許請求の範囲に属する変形や変更は全て本発明の範囲内のもので ある。 産業上の利用可能性 The present invention can be implemented in various other forms without departing from the spirit or main characteristic power thereof. Therefore, the above-described embodiment is merely an example in all respects, and the scope of the present invention is shown in the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the scope of claims are within the scope of the present invention. Industrial applicability
本発明によれば、投影マスクは、照射対象物を結晶化させるための光を透過する 第 1光透過パターンであって、予め定める第 1方向に延びる第 1光透過パターンが形 成される第 1領域と、照射対象物を結晶化させるための光を透過する第 2光透過バタ ーンであって、第 1方向に直交する第 2方向に延びる第 2光透過パターンが形成され る第 2領域と、前記第 2光透過パターンが形成される第 3領域と、前記第 1光透過バタ ーンが形成される第 4領域とを含む。第 1〜第 4領域は、投影マスクに、第 1領域、第 2領域、第 3領域および第 4領域の順に並べて配設される。  According to the present invention, the projection mask is a first light transmission pattern that transmits light for crystallizing the irradiation object, and a first light transmission pattern extending in a predetermined first direction is formed. 2nd light transmission pattern which transmits the light for crystallizing 1 area | region and an irradiation target object, Comprising: 2nd light transmission pattern extended in the 2nd direction orthogonal to a 1st direction is formed 2nd A region, a third region where the second light transmission pattern is formed, and a fourth region where the first light transmission pattern is formed. The first to fourth regions are arranged on the projection mask in the order of the first region, the second region, the third region, and the fourth region.
第 1〜第 4領域が、前述のような順に並べて配設される投影マスクに光を照射し、投 影マスクに形成される第 1および第 2光透過パターンを透過した光を照射対象物に 照射する。具体的には、照射対象物を投影マスクの各領域の予め定める方向の寸法 だけ移動させながら光を照射する。これによつてレーザ光の最終照射によって結晶 ィ匕された照射対象物において、第 1光透過パターンの形状の光が照射されて結晶化 された領域の面積と、第 2光透過パターンの形状の光が照射されて結晶化された領 域の面積とを同等にすることができる。したがって、照射対象物を均一に結晶化させ ることがでさる。  The first to fourth regions irradiate light onto the projection masks arranged in the order as described above, and the light that has passed through the first and second light transmission patterns formed on the projection mask is applied to the irradiation object. Irradiate. Specifically, light is irradiated while moving the irradiation object by a dimension in a predetermined direction of each region of the projection mask. As a result, in the object to be crystallized by the final irradiation of the laser light, the area of the crystallized region irradiated with the light having the shape of the first light transmission pattern and the shape of the second light transmission pattern are obtained. The area of the crystallized region irradiated with light can be made equal. Therefore, the irradiation object can be crystallized uniformly.
このように均一に結晶化された照射対象物に、たとえば複数の薄膜トランジスタ素 子 (略称: TFT素子)を形成する場合、照射対象物に対する一方の TFT素子の形成 方向と他方の TFT素子の形成方向とが異なるときでも、各 TFT素子の電気的特性、 具体的にはスイッチング特性を同一にすることができる。換言すれば、各 TFT素子の スイッチング特性を均一にすることができる。  When, for example, a plurality of thin film transistor elements (abbreviated as TFT elements) are formed on an irradiation object uniformly crystallized in this way, the formation direction of one TFT element and the formation direction of the other TFT element with respect to the irradiation object Even when is different, the electrical characteristics of each TFT element, specifically, the switching characteristics can be made the same. In other words, the switching characteristics of each TFT element can be made uniform.
また照射対象物を結晶化させる場合に、照射対象物を投影マスクの各領域の予め 定める方向の寸法だけ移動させながら、投影マスクに形成される第 1および第 2光透 過パターンを透過した光を照射対象物に照射することによって、照射対象物の同一 の領域に、前記光を重畳して照射することができるので、たとえば一方向に延びる光 透過パターンのみが形成される投影マスクを用いて照射対象物を結晶化させる場合 に比べて、結晶粒の粒径を大きくすることができ、照射対象物の電子移動度を比較 的高くすることができる。これによつて、たとえば照射対象物に TFT素子を形成する 場合、 TFT素子のスイッチング特性をさらに向上することができる。 Further, when the irradiation object is crystallized, the light transmitted through the first and second light transmission patterns formed on the projection mask while moving the irradiation object by a dimension in a predetermined direction of each region of the projection mask. By irradiating the irradiation object with the light, it is possible to irradiate the light on the same region of the irradiation object, so that, for example, using a projection mask in which only a light transmission pattern extending in one direction is formed. Compared to the case of crystallizing the irradiation object, the crystal grain size can be increased, and the electron mobility of the irradiation object can be relatively increased. With this, for example, TFT elements are formed on the object to be irradiated In this case, the switching characteristics of the TFT element can be further improved.
また第 1および第 2光透過パターンを透過した光を、照射対象物の同一の領域に重 畳して照射することができるので、前記光が同一領域に重畳して照射されないなどの 不具合が生じた場合でも、照射対象物をほぼ均一に結晶化することができ、たとえば 照射対象物に TFT素子を形成する場合に、 TFT素子のスイッチング特性が極端に 劣化することを防ぐことができる。  In addition, since the light that has passed through the first and second light transmission patterns can be superimposed on the same area of the irradiation object, there is a problem that the light is not superimposed on the same area. Even in this case, the object to be irradiated can be crystallized almost uniformly. For example, when the TFT element is formed on the object to be irradiated, it is possible to prevent the switching characteristics of the TFT element from being extremely deteriorated.
本発明によれば、投影マスクは、照射対象物を結晶化させるための光を透過する 第 1光透過パターンが形成される。投影マスクは、これら第 1および第 2光透過パター ンが形成される複数の領域を並べて配設する。投影マスクは、複数の領域が並べら れる並び方向に対して傾斜する第 1傾斜方向に延びる第 1光透過パターンが形成さ れる第 1領域と、前記第 1光透過パターンが形成される第 2領域と、第 1傾斜方向に 直交する第 2傾斜方向に延びる第 2光透過パターンが形成される第 3領域と、前記第 2光透過パターンが形成される第 4領域とを含む。第 1〜第 4領域は、投影マスクに、 第 1領域、第 2領域、第 3領域および第 4領域の順に並べて配設される。  According to the present invention, the projection mask is formed with the first light transmission pattern that transmits light for crystallizing the irradiation object. In the projection mask, a plurality of regions where the first and second light transmission patterns are formed are arranged side by side. The projection mask includes a first region in which a first light transmission pattern extending in a first inclination direction that is inclined with respect to an arrangement direction in which a plurality of regions are arranged, and a second region in which the first light transmission pattern is formed. A region, a third region in which a second light transmission pattern extending in a second inclination direction orthogonal to the first inclination direction is formed, and a fourth region in which the second light transmission pattern is formed. The first to fourth areas are arranged on the projection mask in the order of the first area, the second area, the third area, and the fourth area.
第 1〜第 4領域が、前述のような順に並べて配設される投影マスクに光を照射し、投 影マスクに形成される第 1および第 2光透過パターンを透過した光を照射対象物に 照射する。具体的には、照射対象物を投影マスクの各領域の並び方向の寸法だけ 移動させながら光を照射する。これによつて照射対象物における第 1光透過パターン および第 2光透過パターンの形状の光が照射された部分を溶融し、照射対象物を均 一に結晶化させることができる。このように均一に結晶化された照射対象物に、たとえ ば複数の薄膜トランジスタ素子 (略称: TFT素子)を形成する場合、照射対象物に対 する一方の TFT素子の形成方向と他方の TFT素子の形成方向とが異なるときでも、 各 TFT素子の電気的特性、具体的にはスイッチング特性を同一にすることができる。 換言すれば、各 TFT素子のスイッチング特性を均一にすることができる。  The first to fourth regions irradiate light onto the projection masks arranged in the order as described above, and the light that has passed through the first and second light transmission patterns formed on the projection mask is applied to the irradiation object. Irradiate. Specifically, light is irradiated while moving the irradiation object by the dimension in the alignment direction of each area of the projection mask. As a result, the portion irradiated with the light having the shape of the first light transmission pattern and the second light transmission pattern in the irradiation object can be melted, and the irradiation object can be uniformly crystallized. For example, when a plurality of thin film transistor elements (abbreviation: TFT elements) are formed on an irradiation object uniformly crystallized in this way, the formation direction of one TFT element and the other TFT element with respect to the irradiation object are formed. Even when the formation direction is different, the electrical characteristics of each TFT element, specifically, the switching characteristics can be made the same. In other words, the switching characteristics of each TFT element can be made uniform.
また照射対象物を結晶化させる場合に、照射対象物を投影マスクの各領域の並び 方向の寸法だけ移動させながら、投影マスクに形成される第 1および第 2光透過バタ ーンを透過した光を照射対象物に照射することによって、照射対象物の同一の領域 に、前記光を重畳して照射することができるので、たとえば一方向に延びる光透過パ ターンのみが形成される投影マスクを用いて照射対象物を結晶化させる場合に比べ て、結晶粒の粒径を大きくすることができ、照射対象物の電子移動度を比較的高くす ることができる。これによつて、たとえば照射対象物に TFT素子を形成する場合、 TF T素子のスイッチング特性をさらに向上することができる。 In addition, when crystallizing the irradiation object, the light transmitted through the first and second light transmission patterns formed on the projection mask while moving the irradiation object by the dimension in the alignment direction of each region of the projection mask. By irradiating the irradiation object with the light, it is possible to irradiate the light on the same region of the irradiation object. Compared with the case where the irradiation object is crystallized using a projection mask in which only the turn is formed, the crystal grain size can be increased, and the electron mobility of the irradiation object can be made relatively high. it can. Thereby, for example, when a TFT element is formed on an irradiation object, the switching characteristics of the TFT element can be further improved.
また第 1および第 2光透過パターンを透過した光を、照射対象物の同一の領域に重 畳して照射することができるので、前記光が同一領域に重畳して照射されないなどの 不具合が生じた場合でも、照射対象物をほぼ均一に結晶化することができ、たとえば 照射対象物に TFT素子を形成する場合に、 TFT素子のスイッチング特性が極端に 劣化することを防ぐことができる。  In addition, since the light that has passed through the first and second light transmission patterns can be superimposed on the same area of the irradiation object, there is a problem that the light is not superimposed on the same area. Even in this case, the object to be irradiated can be crystallized almost uniformly. For example, when the TFT element is formed on the object to be irradiated, it is possible to prevent the switching characteristics of the TFT element from being extremely deteriorated.
本発明によれば、第 1〜第 4領域は、投影マスクに、第 1領域、第 3領域、第 4領域 および第 2領域の順に並べて配設される。第 1〜第 4領域が、前述のような順に並べ て配設される投影マスクに光を照射し、投影マスクに形成される第 1および第 2光透 過パターンを透過した光を照射対象物に照射する。具体的には、照射対象物を投影 マスクの各領域の並び方向の寸法だけ移動させながら光を照射する。これによつて 照射対象物における第 1光透過パターンおよび第 2光透過パターンの形状の光が照 射された部分を溶融し、照射対象物を均一に結晶化させることができる。  According to the present invention, the first to fourth regions are arranged on the projection mask in the order of the first region, the third region, the fourth region, and the second region. The first to fourth regions irradiate the projection mask arranged in the order as described above with light, and irradiate the light transmitted through the first and second light transmission patterns formed on the projection mask. Irradiate. Specifically, light is irradiated while moving the irradiation object by the dimension in the alignment direction of each region of the projection mask. As a result, the portion of the irradiation object irradiated with the light having the shape of the first light transmission pattern and the second light transmission pattern can be melted to uniformly crystallize the irradiation object.
このように均一に結晶化された照射対象物に、たとえば複数の薄膜トランジスタ素 子 (略称: TFT素子)を形成する場合、照射対象物に対する一方の TFT素子の形成 方向と他方の TFT素子の形成方向とが異なるときでも、各 TFT素子の電気的特性、 具体的にはスイッチング特性を同一にすることができる。換言すれば、各 TFT素子の スイッチング特性を均一にすることができる。  When, for example, a plurality of thin film transistor elements (abbreviated as TFT elements) are formed on an irradiation object uniformly crystallized in this way, the formation direction of one TFT element and the formation direction of the other TFT element with respect to the irradiation object Even when is different, the electrical characteristics of each TFT element, specifically, the switching characteristics can be made the same. In other words, the switching characteristics of each TFT element can be made uniform.
また照射対象物を結晶化させる場合に、照射対象物を投影マスクの各領域の並び 方向の寸法だけ移動させながら、投影マスクに形成される第 1および第 2光透過バタ ーンを透過した光を照射対象物に照射することによって、照射対象物の同一の領域 に、前記光を重畳して照射することができるので、たとえば一方向に延びる光透過パ ターンのみが形成される投影マスクを用いて照射対象物を結晶化させる場合に比べ て、結晶粒の粒径を大きくすることができ、照射対象物の電子移動度を比較的高くす ることができる。これによつて、たとえば照射対象物に TFT素子を形成する場合、 TF T素子のスイッチング特性をさらに向上することができる。 In addition, when crystallizing the irradiation object, the light transmitted through the first and second light transmission patterns formed on the projection mask while moving the irradiation object by the dimension in the alignment direction of each region of the projection mask. By irradiating the irradiation object with the light, it is possible to irradiate the light on the same region of the irradiation object, so that, for example, a projection mask in which only a light transmission pattern extending in one direction is formed is used. Thus, the crystal grain size can be increased and the electron mobility of the irradiation object can be made relatively high as compared with the case where the irradiation object is crystallized. Thus, for example, when forming a TFT element on the irradiation object, TF The switching characteristics of the T element can be further improved.
また第 1および第 2光透過パターンを透過した光を、照射対象物の同一の領域に重 畳して照射することができるので、前記光が同一領域に重畳して照射されないなどの 不具合が生じた場合でも、照射対象物をほぼ均一に結晶化することができ、たとえば 照射対象物に TFT素子を形成する場合に、 TFT素子のスイッチング特性が極端に 劣化することを防ぐことができる。  In addition, since the light that has passed through the first and second light transmission patterns can be superimposed on the same area of the irradiation object, there is a problem that the light is not superimposed on the same area. Even in this case, the object to be irradiated can be crystallized almost uniformly. For example, when the TFT element is formed on the object to be irradiated, it is possible to prevent the switching characteristics of the TFT element from being extremely deteriorated.
本発明によれば、投影マスクは、照射対象物を結晶化させるための光を透過する 第 1光透過パターンであって、予め定める第 1方向に延びる第 1光透過パターンが形 成される m (mは 2以上の偶数)個の第 1光透過パターン領域と、照射対象物を結晶 化させるための光を透過する第 2光透過パターンが形成される n (nは 2以上の偶数) 個の第 2光透過パターン領域とを含む。第 1光透過パターン領域および第 2光透過 パターン領域は、投影マスクに、 mZ2個の第 1光透過パターン領域、 n個の第 2光透 過パターン領域、および mZ2個の第 1光透過パターン領域の順に並べて配設され る。  According to the present invention, the projection mask is a first light transmission pattern that transmits light for crystallizing the irradiation object, and a first light transmission pattern extending in a predetermined first direction is formed. (m is an even number of 2 or more) first light transmission pattern regions and n (n is an even number of 2 or more) number of second light transmission patterns that transmit light for crystallizing the irradiation object The second light transmission pattern region. The first light transmissive pattern region and the second light transmissive pattern region are provided on the projection mask with mZ2 first light transmissive pattern regions, n second light transmissive pattern regions, and mZ2 first light transmissive pattern regions. Arranged in this order.
m個の第 1光透過パターン領域および n個の第 2光透過パターン領域が、前述のよ うな順に並べて配設される投影マスクに光を照射し、投影マスクの各領域に形成され る第 1および第 2光透過パターンを透過した光を照射対象物に照射する。具体的に は、照射対象物を投影マスクの各領域の予め定める方向の寸法だけ移動させながら 、照射対象物に光を照射する。これによつてレーザ光の最終照射によって結晶化さ れた照射対象物において、第 1光透過パターンの形状の光が照射されて結晶化され た領域の面積と、第 2光透過パターンの形状の光が照射されて結晶化された領域の 面積とを同等にすることができる。したがって、照射対象物を均一に結晶化させること ができる。  The m first light transmission pattern regions and the n second light transmission pattern regions are irradiated with light onto the projection masks arranged in the order as described above, and the first masks formed in the respective regions of the projection masks. And the light which permeate | transmitted the 2nd light transmissive pattern is irradiated to an irradiation target object. Specifically, the irradiation object is irradiated with light while moving the irradiation object by a dimension in a predetermined direction of each region of the projection mask. As a result, in the object to be crystallized by the final irradiation of the laser light, the area of the crystallized region irradiated with the light having the shape of the first light transmission pattern and the shape of the second light transmission pattern The area of the crystallized region irradiated with light can be made equal. Therefore, the irradiation object can be crystallized uniformly.
このように均一に結晶化された照射対象物に、たとえば複数の薄膜トランジスタ素 子 (略称: TFT素子)を形成する場合、照射対象物に対する一方の TFT素子の形成 方向と他方の TFT素子の形成方向とが異なるときでも、各 TFT素子の電気的特性、 具体的にはスイッチング特性を同一にすることができる。換言すれば、各 TFT素子の スイッチング特性を均一にすることができる。 さらに、前記の変数 mおよび変数 nの数を大きくする、換言すると投影マスクに設け られる第 1光透過パターン領域および第 2光透過パターン領域の個数を増やすこと によって、照射対象物をより均一に結晶化させることができるとともに、比較的大きな 結晶粒を形成することができる。このように比較的大きな結晶粒を形成し、照射対象 物の電子移動度を比較的高くすることによって、たとえば照射対象物に複数の TFT 素子を形成する場合、各 TFT素子の電気的特性、具体的にはスイッチング特性を格 段に向上することができる。 When, for example, a plurality of thin film transistor elements (abbreviated as TFT elements) are formed on an irradiation object uniformly crystallized in this way, the formation direction of one TFT element and the formation direction of the other TFT element with respect to the irradiation object Even when is different, the electrical characteristics of each TFT element, specifically, the switching characteristics can be made the same. In other words, the switching characteristics of each TFT element can be made uniform. Further, by increasing the number of the variable m and the variable n, in other words, by increasing the number of the first light transmission pattern regions and the second light transmission pattern regions provided in the projection mask, the irradiation object can be crystallized more uniformly. And relatively large crystal grains can be formed. Thus, by forming relatively large crystal grains and relatively increasing the electron mobility of the irradiation object, for example, when forming multiple TFT elements on the irradiation object, the electrical characteristics of each TFT element, In particular, the switching characteristics can be significantly improved.
本発明によれば、第 1光透過パターン領域および第 2光透過パターン領域は、投影 マスクに、 nZ2個の第 2光透過パターン領域、 m個の第 1光透過パターン領域、およ び nZ2個の第 2光透過パターン領域の順に並べて配設される。 m個の第 1光透過パ ターン領域および n個の第 2光透過パターン領域が、前述のような順に並べて配設さ れる投影マスクに光を照射し、投影マスクの各領域に形成される第 1および第 2光透 過パターンを透過した光を照射対象物に照射する。具体的には、照射対象物を投影 マスクの各領域の予め定める方向の寸法だけ移動させながら、照射対象物に光を照 射する。これによつてレーザ光の最終照射によって結晶化された照射対象物におい て、第 1光透過パターンの形状の光が照射されて結晶化された領域の面積と、第 2光 透過パターンの形状の光が照射されて結晶化された領域の面積とを同等にすること ができる。したがって、照射対象物を均一に結晶化させることができる。  According to the present invention, the first light transmissive pattern region and the second light transmissive pattern region have nZ2 second light transmissive pattern regions, m first light transmissive pattern regions, and nZ2 pieces on the projection mask. The second light transmission pattern regions are arranged in order. The m first light transmission pattern regions and the n second light transmission pattern regions irradiate light onto the projection masks arranged in the order as described above, and the first light transmission pattern regions are formed in the respective regions of the projection mask. The object to be irradiated is irradiated with light transmitted through the first and second light transmission patterns. Specifically, the irradiation object is irradiated with light while moving the irradiation object by a dimension in a predetermined direction of each region of the projection mask. As a result, in the irradiation object crystallized by the final irradiation of the laser beam, the area of the crystallized region irradiated with the light having the shape of the first light transmission pattern and the shape of the second light transmission pattern The area of the crystallized region irradiated with light can be made equal. Therefore, the irradiation object can be crystallized uniformly.
このように均一に結晶化された照射対象物に、たとえば複数の薄膜トランジスタ素 子 (略称: TFT素子)を形成する場合、照射対象物に対する一方の TFT素子の形成 方向と他方の TFT素子の形成方向とが異なるときでも、各 TFT素子の電気的特性、 具体的にはスイッチング特性を同一にすることができる。換言すれば、各 TFT素子の スイッチング特性を均一にすることができる。  When, for example, a plurality of thin film transistor elements (abbreviated as TFT elements) are formed on an irradiation object uniformly crystallized in this way, the formation direction of one TFT element and the formation direction of the other TFT element with respect to the irradiation object Even when is different, the electrical characteristics of each TFT element, specifically, the switching characteristics can be made the same. In other words, the switching characteristics of each TFT element can be made uniform.
さらに、前記の変数 mおよび変数 nの数を大きくする、換言すると投影マスクに設け られる第 1光透過パターン領域および第 2光透過パターン領域の個数を増やすこと によって、照射対象物をより均一に結晶化させることができるとともに、比較的大きな 結晶粒を形成することができる。このように比較的大きな結晶粒を形成し、照射対象 物の電子移動度を比較的高くすることによって、たとえば照射対象物に複数の TFT 素子を形成する場合、各 TFT素子の電気的特性、具体的にはスイッチング特性を格 段に向上することができる。 Further, by increasing the number of the variable m and the variable n, in other words, by increasing the number of the first light transmission pattern regions and the second light transmission pattern regions provided in the projection mask, the irradiation object can be crystallized more uniformly. And relatively large crystal grains can be formed. By forming relatively large crystal grains in this way and making the electron mobility of the irradiation object relatively high, for example, a plurality of TFTs can be formed on the irradiation object. In the case of forming an element, the electrical characteristics of each TFT element, specifically, the switching characteristics can be significantly improved.
本発明によれば、第 1および第 2光透過パターンは、各延び方向の両端部が、投影 マスクの厚み方向に見て先細状に形成される。したがって長方形状などのように先細 状に形成されていない光透過パターンとは異なり、第 1および第 2光透過パターンの 形状の光が照射された照射対象物の照射領域で、延び方向および照射対象物の厚 み方向に垂直な方向の両端部から成長する結晶が衝突してできる突起部が、前記 照射領域の延び方向の両端部にまで形成される。これによつて第 1および第 2光透 過パターンの各延び方向の両端部が先細状に形成されていない場合に比べて、照 射対象物をより均一に結晶化することができる。  According to the present invention, the first and second light transmission patterns are formed such that both end portions in the extending direction are tapered as viewed in the thickness direction of the projection mask. Therefore, unlike a light transmission pattern that is not tapered, such as a rectangular shape, the extension direction and irradiation target in the irradiation area of the irradiation target irradiated with the light in the shape of the first and second light transmission patterns Protrusions formed by collision of crystals growing from both ends in a direction perpendicular to the thickness direction of the object are formed up to both ends in the extending direction of the irradiation region. As a result, the object to be irradiated can be crystallized more uniformly as compared with the case where both ends in the extending direction of the first and second light transmission patterns are not tapered.
したがって照射対象物に、たとえば複数の TFT素子を形成する場合、照射対象物 に対する一方の TFT素子の形成方向と他方の TFT素子の形成方向とが異なるとき でも、各 TFT素子の電気的特性、具体的にはスイッチング特性を確実に同一にする ことができる。換言すれば、複数の TFT素子のスイッチング特性を確実に均一にする ことができる。  Therefore, for example, when a plurality of TFT elements are formed on an irradiation object, even if the formation direction of one TFT element with respect to the irradiation object is different from the formation direction of the other TFT element, As a result, the switching characteristics can be ensured to be the same. In other words, the switching characteristics of a plurality of TFT elements can be made uniform uniformly.
本発明によれば、レーザ光が、照射対象物を結晶化させるべき第 1方向に延びるよ うに照射対象物に照射される第 1照射領域を形成し、レーザ光が第 1方向に直交す る第 2方向に延びるように照射対象物に照射される第 2照射領域を形成する。結晶化 工程では、第 1および第 2照射領域を、第 1照射領域、第 2照射領域、第 2照射領域 および第 1照射領域の順に並べて、非晶質材料を結晶化する。これによつてレーザ 光の最終照射によって結晶化された照射対象物において、レーザ光が第 1方向に延 びるように照射されて結晶化された部分の面積と、レーザ光が第 2方向に延びるよう に照射されて結晶化された部分の面積とを同等にすることができる。したがって、照 射対象物である非晶質材料を均一に結晶化させることができる。  According to the present invention, the first irradiation region is formed so that the laser beam is irradiated to the irradiation target so as to extend in the first direction in which the irradiation target is crystallized, and the laser beam is orthogonal to the first direction. A second irradiation region irradiated on the irradiation object is formed so as to extend in the second direction. In the crystallization step, the first and second irradiation regions are arranged in the order of the first irradiation region, the second irradiation region, the second irradiation region, and the first irradiation region to crystallize the amorphous material. Thus, in the irradiation object crystallized by the final irradiation of the laser beam, the area of the crystallized portion irradiated with the laser beam extending in the first direction and the laser beam extending in the second direction. Thus, the area of the portion crystallized by irradiation can be made equal. Therefore, the amorphous material that is the object to be irradiated can be uniformly crystallized.
このように均一に結晶化された非晶質材料カゝら成る層(以下、「非晶質材料層」と称 する場合がある)に、たとえば複数の薄膜トランジスタ素子 (略称: TFT素子)を形成 する場合、非晶質材料層に対する一方の TFT素子の形成方向と他方の TFT素子の 形成方向とが異なるときでも、各 TFT素子の電気的特性、具体的にはスイッチング特 性を同一にすることができる。換言すれば、各 TFT素子のスイッチング特性を均一に することができる。 For example, a plurality of thin film transistor elements (abbreviation: TFT elements) are formed in the layer of amorphous material that is uniformly crystallized in this way (hereinafter, sometimes referred to as “amorphous material layer”). In this case, even when the formation direction of one TFT element with respect to the amorphous material layer is different from the formation direction of the other TFT element, the electrical characteristics of each TFT element, specifically, the switching characteristics. Gender can be the same. In other words, the switching characteristics of each TFT element can be made uniform.
本発明によれば、移動工程において、照射対象物を、レーザ光を発する光源に対 して相対移動させることによって、照射対象物の所望の領域にレーザ光を照射させる ことができ、所望する形状になるように結晶化させることができる。  According to the present invention, in the moving step, the target object can be irradiated with the laser beam by moving the target object relative to the light source that emits the laser beam. It can be crystallized to
本発明によれば、繰返し工程において、非晶質材料カゝら成る層に、非晶質材料を 結晶化させるべき互いに直交する第 1および第 2方向に、レーザ光を照射して前記 非晶質材料を結晶化する結晶化工程と、非晶質材料を、レーザ光を発する光源に対 して相対移動させる移動工程とを繰返すことによって、照射対象物の所望の領域に 所望の大きさの結晶粒を確実に形成することができる。  According to the present invention, in the repetition process, the amorphous material layer is irradiated with laser light in the first and second directions orthogonal to each other to crystallize the amorphous material. By repeating the crystallization process of crystallizing the material and the moving process of moving the amorphous material relative to the light source that emits the laser light, a desired size of the irradiation object is obtained. Crystal grains can be reliably formed.
本発明によれば、結晶化工程の第 1照射段階において、一の発振波長のレーザ光 を照射対象物に照射し、結晶化工程の第 2照射段階において、前記一の発振波長と は異なる他の発振波長のレーザ光を照射対象物に照射する。前述のように第 1照射 段階で一の発振波長のレーザ光が照射され、溶融状態である照射対象物に対して、 他の発振波長のレーザ光を照射するので、溶融状態の照射対象物の冷却速度を低 下させることができる。  According to the present invention, in the first irradiation stage of the crystallization process, the irradiation target is irradiated with laser light having one oscillation wavelength, and in the second irradiation stage of the crystallization process, the other oscillation wavelength is different from the one oscillation wavelength. An irradiation target is irradiated with laser light having an oscillation wavelength of. As described above, the laser beam having one oscillation wavelength is irradiated in the first irradiation stage, and the irradiation target in the molten state is irradiated with the laser beam having the other oscillation wavelength. The cooling rate can be reduced.
これによつて照射対象物を結晶化するにあたり、比較的大きな結晶粒に成長させる ことができる。比較的大きな結晶粒に成長させることによって、照射対象物の電子移 動度を比較的高くすることができ、電子移動度の比較的高い照射対象物に薄膜トラ ンジスタ(略称: TFT素子)を形成することによって、 TFT素子の電気的特性、具体 的にはスイッチング特性を向上することができる。  As a result, when the irradiation object is crystallized, it can be grown into relatively large crystal grains. By growing to relatively large crystal grains, the electron mobility of the irradiated object can be made relatively high, and a thin film transistor (abbreviation: TFT element) is formed on the irradiated object having a relatively high electron mobility. As a result, the electrical characteristics of the TFT element, specifically, the switching characteristics can be improved.
本発明によれば、照射領域形成手段によって、レーザ光が、照射対象物を結晶化 させるべき第 1方向に延びるように照射対象物に照射される第 1照射領域が形成され 、レーザ光が第 1方向に直交する第 2方向に延びるように照射対象物に照射される第 2照射領域が形成される。第 1および第 2照射領域は、第 1照射領域、第 2照射領域 、第 2照射領域および第 1照射領域の順に、配設手段によって並べて配設される。こ れによってレーザ光の最終照射によって結晶化された照射対象物の第 1照射領域お よび第 2照射領域において、レーザ光が第 1方向に延びるように照射されて結晶化さ れた部分の面積と、レーザ光が第 2方向に延びるように照射されて結晶化された部分 の面積とを同等にすることができる。したがって、照射対象物である非晶質材料を均 一に結晶化させることができる。 According to the present invention, the irradiation region forming means forms the first irradiation region where the irradiation target is irradiated so that the laser beam extends in the first direction in which the irradiation target should be crystallized. A second irradiation region is formed on the irradiation target so as to extend in a second direction orthogonal to the one direction. The first and second irradiation areas are arranged by the arrangement means in the order of the first irradiation area, the second irradiation area, the second irradiation area, and the first irradiation area. As a result, the first irradiation region and the second irradiation region of the object to be crystallized by the final irradiation of the laser beam are irradiated with the laser beam so as to extend in the first direction and are crystallized. The area of the portion that has been crystallized by irradiating the laser beam so as to extend in the second direction can be made equal. Therefore, it is possible to uniformly crystallize the amorphous material that is the irradiation object.
また、照射領域形成手段によって第 1および第 2照射領域を形成し、配設手段によ つて第 1および第 2照射領域を前述のように配設することによって、投影マスクを用い ることなく照射対象物である非晶質材料を均一に結晶化させることができる。したがつ てレーザカ卩ェ装置の部品点数を削減することができる。これによつてレーザカ卩ェ装置 の構造を簡単ィ匕して小型化を図ることができるとともに、レーザ加工装置の製造コスト の低減ィ匕を図ることができる。  Further, the first and second irradiation areas are formed by the irradiation area forming means, and the first and second irradiation areas are arranged as described above by the arranging means, so that the irradiation can be performed without using the projection mask. The amorphous material as the object can be crystallized uniformly. As a result, the number of parts of the laser carriage device can be reduced. As a result, the structure of the laser carriage apparatus can be simplified and the size can be reduced, and the manufacturing cost of the laser processing apparatus can be reduced.
本発明によれば、投影マスクには、光源カゝら発せられるレーザ光を透過する光透過 パターンであって、予め定める第 1方向またはこの第 1方向に直交する第 2方向に延 びる光透過パターンが形成される。投影マスクは、回動駆動手段によって、照射対象 物に対して相対的に回動駆動される。また前記投影マスクは、直線駆動手段によつ て、照射対象物に対して第 1または第 2方向に相対的に直線駆動される。回動駆動 手段および直線駆動手段は、制御手段によって同期駆動され、投影マスクの光透過 パターンが順次、第 1方向、第 2方向、第 2方向および第 1方向となるように段階的に 制御される。  According to the present invention, the projection mask is a light transmission pattern that transmits the laser light emitted from the light source cover, and the light transmission extends in a predetermined first direction or a second direction orthogonal to the first direction. A pattern is formed. The projection mask is rotationally driven relative to the irradiation object by the rotational driving means. The projection mask is linearly driven relative to the irradiation object in the first or second direction by the linear driving means. The rotation driving means and the linear driving means are synchronously driven by the control means, and are controlled stepwise so that the light transmission pattern of the projection mask is sequentially in the first direction, the second direction, the second direction, and the first direction. The
したがって、第 1方向または第 2方向に延びる光透過パターンが形成される投影マ スクを用いて照射対象物を結晶化させる場合でも、回動駆動手段および直線駆動手 段によって、前記投影マスクを照射対象物に対して相対的に回動駆動および直線駆 動させることができる。これによつて光源力 発せられる光は、回動駆動手段による回 動駆動によって延び方向が第 1方向および第 2方向のいずれかの方向に変化する 光透過パターンを透過させることができる。したがって、第 1および第 2方向に延びる 各光透過パターンの形状のレーザ光を照射対象物に対して照射することができる。 これによつて第 1方向または第 2方向に延びる光透過パターンが形成される投影マ スクを用いた場合でも、第 1方向および第 2方向に延びる光透過パターンがそれぞれ 形成される投影マスクを用いる場合と同様に、レーザ光の最終照射によって結晶化さ れた照射対象物において、レーザ光が第 1方向に延びるように照射されて結晶化さ れた部分の面積と、レーザ光が第 2方向に延びるように照射されて結晶化された部分 の面積とを同等にすることができる。したがって、照射対象物である非晶質材料を均 一に結晶化させることができる。 Therefore, even when the object to be irradiated is crystallized using a projection mask in which a light transmission pattern extending in the first direction or the second direction is formed, the projection mask is irradiated by the rotation drive means and the linear drive means. It can be rotated and driven linearly relative to the object. As a result, the light emitted from the light source can be transmitted through the light transmission pattern whose extending direction changes in either the first direction or the second direction by the rotational drive by the rotational drive means. Therefore, it is possible to irradiate the irradiation target with laser light having the shape of each light transmission pattern extending in the first and second directions. As a result, even when a projection mask in which a light transmission pattern extending in the first direction or the second direction is formed is used, a projection mask in which a light transmission pattern extending in the first direction and the second direction is formed is used. Similarly to the case, the object to be crystallized by the final irradiation of the laser beam is crystallized by being irradiated so that the laser beam extends in the first direction. The area of the portion that has been crystallized by irradiating the laser beam so as to extend in the second direction can be made equal. Therefore, it is possible to uniformly crystallize the amorphous material that is the irradiation object.
このように均一に結晶化された非晶質材料カゝら成る層(以下、「非晶質材料層」と称 する場合がある)に、たとえば複数の薄膜トランジスタ素子 (略称: TFT素子)を形成 する場合、非晶質材料層に対する一方の TFT素子の形成方向と他方の TFT素子の 形成方向とが異なるときでも、各 TFT素子の電気的特性、具体的にはスイッチング特 性を同一にすることができる。換言すれば、各 TFT素子のスイッチング特性を均一に することができる。  For example, a plurality of thin film transistor elements (abbreviation: TFT elements) are formed in the layer of amorphous material that is uniformly crystallized in this way (hereinafter, sometimes referred to as “amorphous material layer”). In this case, even when the formation direction of one TFT element and the formation direction of the other TFT element with respect to the amorphous material layer are different, the electrical characteristics of each TFT element, specifically, the switching characteristics should be the same. Can do. In other words, the switching characteristics of each TFT element can be made uniform.
本発明によれば、レーザ加工装置を用いて、照射対象物にレーザ光を照射するこ とによって照射対象物を均一に結晶化し、その均一に結晶化した照射対象物に薄膜 トランジスタ素子 (略称: TFT素子)が形成される。したがって均一に結晶化された照 射対象物に複数の TFT素子を形成する場合、照射対象物に対する一方の TFT素 子の形成方向と他方の TFT素子の形成方向とが異なるときでも、各 TFT素子の電気 的特性、具体的にはスイッチング特性を同一にすることができる。換言すれば、各 TF T素子のスイッチング特性を均一にすることができる。前述のように照射対象物に対 する TFT素子の形成方向に依らず、 TFT素子のスイッチング特性を均一にすること ができるので、 TFT素子を用いた表示装置などの設計の自由度を高めることができ る。  According to the present invention, a laser processing apparatus is used to uniformly crystallize an irradiation object by irradiating the irradiation object with laser light, and a thin film transistor element (abbreviation: abbreviation: TFT element) is formed. Therefore, when a plurality of TFT elements are formed on a uniformly crystallized irradiation target, each TFT element is formed even when the direction of formation of one TFT element relative to the irradiation target is different from the direction of formation of the other TFT element. The electrical characteristics, specifically the switching characteristics, can be made the same. In other words, the switching characteristics of each TFT element can be made uniform. As described above, the switching characteristics of the TFT element can be made uniform regardless of the direction in which the TFT element is formed with respect to the irradiation object, so that the degree of freedom in designing a display device using the TFT element can be increased. it can.

Claims

請求の範囲 The scope of the claims
[1] 照射対象物を結晶化させるための光を透過する第 1光透過パターンおよび第 2光 透過パターンが形成される投影マスクであって、  [1] A projection mask on which a first light transmission pattern and a second light transmission pattern that transmit light for crystallizing an irradiation object are formed,
予め定める第 1方向に延びる第 1光透過パターンが形成される第 1領域と、 第 1方向に直交する第 2方向に延びる第 2光透過パターンが形成される第 2領域と 前記第 2光透過パターンが形成される第 3領域と、  A first region in which a first light transmission pattern extending in a first direction is formed, a second region in which a second light transmission pattern extending in a second direction orthogonal to the first direction is formed, and the second light transmission A third region where a pattern is formed;
前記第 1光透過パターンが形成される第 4領域とを含み、  A fourth region where the first light transmission pattern is formed,
前記第 1〜第 4領域は、第 1領域、第 2領域、第 3領域および第 4領域の順に並べて 配設されることを特徴とする投影マスク。  The projection mask, wherein the first to fourth regions are arranged in the order of a first region, a second region, a third region, and a fourth region.
[2] 照射対象物を結晶化させるための光を透過する第 1光透過パターンおよび第 2光 透過パターンが形成され、これら第 1および第 2光透過パターンが形成される複数の 領域を並べて配設する投影マスクであって、 [2] A first light transmission pattern and a second light transmission pattern that transmit light for crystallizing the irradiation object are formed, and a plurality of regions in which the first and second light transmission patterns are formed are arranged side by side. A projection mask to be installed,
前記複数の領域が並べられる並び方向に対して傾斜する第 1傾斜方向に延びる第 1光透過パターンが形成される第 1領域と、  A first region in which a first light transmission pattern extending in a first inclined direction inclined with respect to an arrangement direction in which the plurality of regions are arranged is formed;
前記第 1光透過パターンが形成される第 2領域と、  A second region where the first light transmission pattern is formed;
第 1傾斜方向に直交する第 2傾斜方向に延びる第 2光透過パターンが形成される 第 3領域と、  A third region in which a second light transmission pattern extending in a second inclination direction orthogonal to the first inclination direction is formed; and
前記第 2光透過パターンが形成される第 4領域とを含み、  A fourth region where the second light transmission pattern is formed,
前記第 1〜第 4領域は、第 1領域、第 2領域、第 3領域および第 4領域の順に並べて 配設されることを特徴とする投影マスク。  The projection mask, wherein the first to fourth regions are arranged in the order of a first region, a second region, a third region, and a fourth region.
[3] 前記第 1〜第 4領域は、第 1領域、第 3領域、第 4領域および第 2領域の順に並べて 配設されることを特徴とする請求項 2記載の投影マスク。 [3] The projection mask according to claim 2, wherein the first to fourth regions are arranged in the order of a first region, a third region, a fourth region, and a second region.
[4] 照射対象物を結晶化させるための光を透過する第 1光透過パターンおよび第 2光 透過パターンが形成される投影マスクであって、 [4] A projection mask on which a first light transmission pattern and a second light transmission pattern that transmit light for crystallizing an irradiation object are formed,
予め定める第 1方向に延びる第 1光透過パターンが形成される m (mは 2以上の偶 数)個の第 1光透過パターン領域と、  M (where m is an even number of 2 or more) first light transmission pattern regions in which a first light transmission pattern extending in a predetermined first direction is formed, and
第 1方向に直交する第 2方向に延びる第 2光透過パターンが形成される n (nは 2以 上の偶数)個の第 2光透過パターン領域とを含み、 A second light transmission pattern extending in the second direction orthogonal to the first direction is formed.n (n is 2 or less) (Even number above) second light transmission pattern regions,
mZ2個の第 1光透過パターン領域、 n個の第 2光透過パターン領域、および mZ2 個の第 1光透過パターン領域の順に並べて配設されることを特徴とする投影マスク。  A projection mask, wherein mZ2 first light transmission pattern regions, n second light transmission pattern regions, and mZ2 first light transmission pattern regions are arranged in this order.
[5] 前記第 1光透過パターン領域および第 2光透過パターン領域は、 nZ2個の第 2光 透過パターン領域、 m個の第 1光透過パターン領域、および nZ2個の第 2光透過パ ターン領域の順に並べて配設されることを特徴とする請求項 4記載の投影マスク。 [5] The first light transmissive pattern region and the second light transmissive pattern region include nZ2 second light transmissive pattern regions, m first light transmissive pattern regions, and nZ2 second light transmissive pattern regions. 5. The projection mask according to claim 4, wherein the projection masks are arranged in the following order.
[6] 前記第 1および第 2光透過パターンは、各延び方向の両端部が、投影マスクの厚み 方向に見て先細状に形成されることを特徴とする請求項 1〜5のいずれか 1つに記載 の投影マスク。 6. The first and second light transmission patterns, wherein both ends in each extending direction are formed in a tapered shape when viewed in the thickness direction of the projection mask. The projection mask described in 1.
[7] 照射対象物である非晶質材料力も成る層に、照射対象物を結晶化させるべき互 、 に直交する第 1および第 2方向に、レーザ光を照射して結晶化させるレーザ加工方 法であって、  [7] A laser processing method of irradiating a laser beam in the first and second directions perpendicular to each other to crystallize the irradiation object on the layer that also has an amorphous material force as the irradiation object. Law,
レーザ光が前記第 1方向に延びるように照射対象物に照射される第 1照射領域を 形成する工程と、  Forming a first irradiation region in which the irradiation target is irradiated so that the laser light extends in the first direction;
レーザ光が前記第 2方向に延びるように照射対象物に照射される第 2照射領域を 形成する工程と、  Forming a second irradiation region in which the irradiation object is irradiated so that the laser light extends in the second direction;
第 1および第 2照射領域を、第 1照射領域、第 2照射領域、第 2照射領域および第 1 照射領域の順に並べて、前記非晶質材料を結晶化する結晶化工程とを含むことを 特徴とするレーザ加工方法。  A crystallization step of crystallizing the amorphous material by arranging the first and second irradiation regions in the order of the first irradiation region, the second irradiation region, the second irradiation region, and the first irradiation region. A laser processing method.
[8] 照射対象物を、レーザ光を発する光源に対して相対移動させる移動工程をさらに 含むことを特徴とする請求項 7記載のレーザ加工方法。 8. The laser processing method according to claim 7, further comprising a moving step of moving the irradiation object relative to a light source that emits laser light.
[9] 結晶化工程と移動工程とを繰返す繰返し工程をさらに含むことを特徴とする請求項[9] The method according to claim 9, further comprising a repeating step of repeating the crystallization step and the moving step.
8記載のレーザ加工方法。 8. The laser processing method according to 8.
[10] 結晶化工程は、 [10] The crystallization process is
一の発振波長のレーザ光を照射対象物に照射する第 1照射段階と、  A first irradiation step of irradiating an irradiation object with a laser beam having one oscillation wavelength;
前記一の発振波長のレーザ光を照射するとともに、前記一の発振波長とは異なる 他の発振波長のレーザ光を照射対象物に照射する第 2照射段階とを含むことを特徴 とする請求項 7〜9のいずれ力 1つに記載のレーザ加工方法。 8. A second irradiation step of irradiating the irradiation target with laser light having another oscillation wavelength different from the one oscillation wavelength while irradiating the laser light with the one oscillation wavelength. The laser processing method according to any one of? 9.
[11] 照射対象物である非晶質材料力も成る層に、照射対象物を結晶化させるべき互 、 に直交する第 1および第 2方向に、レーザ光を照射して結晶化させるレーザ加工装 置であって、 [11] A laser processing apparatus that irradiates a laser beam in the first and second directions orthogonal to each other to crystallize the irradiation object on the layer having an amorphous material force that is the irradiation object. Where
レーザ光が前記第 1方向に延びるように照射対象物に照射される第 1照射領域を 形成し、レーザ光が前記第 2方向に延びるように照射対象物に照射される第 2照射 領域を形成する照射領域形成手段と、  A first irradiation region is formed on the irradiation target so that the laser light extends in the first direction, and a second irradiation region is formed on the irradiation target so that the laser light extends in the second direction. Irradiation region forming means for
第 1および第 2照射領域を、第 1照射領域、第 2照射領域、第 2照射領域および第 1 照射領域の順に並べて配設する配設手段とを含むことを特徴とするレーザ加工装置  A laser processing apparatus comprising: a first irradiation region; a second irradiation region; a second irradiation region; and a disposing means for arranging the first irradiation region in order of the first irradiation region.
[12] 照射対象物である非晶質材料力 成る層にレーザ光を照射して結晶化させるレー ザ加工装置であって、 [12] A laser processing apparatus for crystallization by irradiating an amorphous material force layer to be irradiated with laser light,
レーザ光を発する光源と、  A light source that emits laser light;
前記光源から発せられるレーザ光を透過する光透過パターンであって、予め定める 第 1方向またはこの第 1方向に直交する第 2方向に延びる光透過パターンが形成さ れる投影マスクと、  A projection mask formed with a light transmission pattern that transmits laser light emitted from the light source and extending in a predetermined first direction or a second direction orthogonal to the first direction;
投影マスクを照射対象物に対して相対的に回動駆動可能な回動駆動手段と、 投影マスクを照射対象物に対して第 1または第 2方向に相対的に直線駆動可能な 直線駆動手段と、  A rotation driving means capable of rotationally driving the projection mask relative to the irradiation object; and a linear driving means capable of linearly driving the projection mask relative to the irradiation object in the first or second direction. ,
回動駆動手段および直線駆動手段を同期駆動させる制御手段とを含み、 前記制御手段は、投影マスクの光透過パターンが順次、第 1方向、第 2方向、第 2 方向および第 1方向となるように段階的に制御することを特徴とするレーザ加工装置  A rotation drive means and a control means for synchronously driving the linear drive means, wherein the control means sequentially sets the light transmission pattern of the projection mask in the first direction, the second direction, the second direction, and the first direction. Laser processing apparatus characterized by performing stepwise control
[13] 請求項 11または 12記載のレーザ加工装置を用いて結晶化された照射対象物に形 成されることを特徴とする薄膜トランジスタ素子。 [13] A thin film transistor element formed on an irradiation object crystallized using the laser processing apparatus according to claim 11 or 12.
PCT/JP2006/317019 2005-08-29 2006-08-29 Projection mask, laser machining method, laser machining device, and thin film transistor element WO2007026723A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-248456 2005-08-29
JP2005248456 2005-08-29
JP2005334880A JP2007096244A (en) 2005-08-29 2005-11-18 Projection mask, laser machining method, laser machining device, and thin-film transistor element
JP2005-334880 2005-11-18

Publications (1)

Publication Number Publication Date
WO2007026723A1 true WO2007026723A1 (en) 2007-03-08

Family

ID=37808810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317019 WO2007026723A1 (en) 2005-08-29 2006-08-29 Projection mask, laser machining method, laser machining device, and thin film transistor element

Country Status (3)

Country Link
JP (1) JP2007096244A (en)
TW (1) TW200725699A (en)
WO (1) WO2007026723A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101191404B1 (en) * 2006-01-12 2012-10-16 삼성디스플레이 주식회사 Mask for silicone crystallization, method for crystallizing silicone using the same and display device
JP2009289922A (en) * 2008-05-28 2009-12-10 Sharp Corp Mask, laser crystallization apparatus, laser crystallization method, crystal material, and semiconductor device
JP2009302251A (en) * 2008-06-12 2009-12-24 Sharp Corp Laser crystallization device, mask, laser crystallization method, crystal material, and semiconductor element
JP5093815B2 (en) * 2009-02-13 2012-12-12 株式会社日本製鋼所 Method and apparatus for crystallizing amorphous film
US11004682B2 (en) * 2016-12-15 2021-05-11 Sakai Display Products Corporation Laser annealing apparatus, laser annealing method, and mask
JP2019036636A (en) * 2017-08-15 2019-03-07 株式会社ブイ・テクノロジー Laser irradiation device, thin film transistor manufacturing method and projection mask
EP3844535A2 (en) 2018-08-27 2021-07-07 Materion Corporation Uv reflective mirrors for display fabrication

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028346A (en) * 1999-07-14 2001-01-30 Sumitomo Heavy Ind Ltd Shutter mechanism for precise irradiation and control method
US20020177259A1 (en) * 1999-10-29 2002-11-28 Yun-Ho Jung Method of fabricating a liquid crystal display
JP2003022969A (en) * 2001-05-30 2003-01-24 Lg Philips Lcd Co Ltd Silicon crystallization method utilizing mask
JP2003273018A (en) * 2002-03-13 2003-09-26 Sharp Corp Method of manufacturing semiconductor crystal layer, laser irradiation method, multi-pattern mask, and laser irradiation system
JP2003282442A (en) * 2002-03-11 2003-10-03 Sharp Corp Manufacturing method of semiconductor layer, and semiconductor layer manufacturing system
JP2004119971A (en) * 2002-09-04 2004-04-15 Sharp Corp Laser processing method and laser processing device
JP2004207691A (en) * 2002-12-11 2004-07-22 Sharp Corp Semiconductor thin film manufacturing method and apparatus, semiconductor thin film manufactured by method, and semiconductor element using thin film
JP2004214614A (en) * 2002-12-31 2004-07-29 Lg Philips Lcd Co Ltd Method for forming polycrystalline silicon, and mask for laser device for forming polycrystalline silicon

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3945805B2 (en) * 2001-02-08 2007-07-18 株式会社東芝 Laser processing method, liquid crystal display device manufacturing method, laser processing device, and semiconductor device manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028346A (en) * 1999-07-14 2001-01-30 Sumitomo Heavy Ind Ltd Shutter mechanism for precise irradiation and control method
US20020177259A1 (en) * 1999-10-29 2002-11-28 Yun-Ho Jung Method of fabricating a liquid crystal display
JP2003022969A (en) * 2001-05-30 2003-01-24 Lg Philips Lcd Co Ltd Silicon crystallization method utilizing mask
JP2003282442A (en) * 2002-03-11 2003-10-03 Sharp Corp Manufacturing method of semiconductor layer, and semiconductor layer manufacturing system
JP2003273018A (en) * 2002-03-13 2003-09-26 Sharp Corp Method of manufacturing semiconductor crystal layer, laser irradiation method, multi-pattern mask, and laser irradiation system
JP2004119971A (en) * 2002-09-04 2004-04-15 Sharp Corp Laser processing method and laser processing device
JP2004207691A (en) * 2002-12-11 2004-07-22 Sharp Corp Semiconductor thin film manufacturing method and apparatus, semiconductor thin film manufactured by method, and semiconductor element using thin film
JP2004214614A (en) * 2002-12-31 2004-07-29 Lg Philips Lcd Co Ltd Method for forming polycrystalline silicon, and mask for laser device for forming polycrystalline silicon

Also Published As

Publication number Publication date
TW200725699A (en) 2007-07-01
JP2007096244A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4021135B2 (en) Laser irradiation apparatus and method for manufacturing semiconductor device
JP5789011B2 (en) Linear scanning continuous transverse solidification of thin films.
US7537660B2 (en) Crystallization apparatus, optical member for use in crystallization apparatus, crystallization method, manufacturing method of thin film transistor, and manufacturing method of matrix circuit substrate of display
US7135390B2 (en) Method of fabricating a semiconductor device incorporating crystallizing by laser irradiation
JP4838982B2 (en) Laser annealing method and laser annealing apparatus
WO2007026723A1 (en) Projection mask, laser machining method, laser machining device, and thin film transistor element
US20090218577A1 (en) High throughput crystallization of thin films
US7172841B2 (en) Crystallization apparatus, crystallization method, and phase shift mask
JP2002246312A (en) Method for optimizing channel characteristics using multiple masks for forming laterally crystallized ela polycrystalline si film
JP2004311906A (en) Laser processing device and laser processing method
KR100698436B1 (en) Laser beam projection mask, and laser beam machining method and laser beam machine using same
US20060166469A1 (en) Method of laser beam maching and laser beam machining apparatus
JP5800292B2 (en) Laser processing equipment
WO2006075568A1 (en) Production method and production device for polycrystalline semiconductor thin film
JP2008227077A (en) Masking structure for laser light, laser processing method, tft element, and laser processing apparatus
US7450307B2 (en) Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device
JP4190901B2 (en) Laser irradiation apparatus and method for manufacturing semiconductor device
JP4769491B2 (en) Crystallization method, thin film transistor manufacturing method, thin film transistor, and display device
US9293332B2 (en) Selective crystallization method and laser crystallization apparatus used in the selective crystallization method
JP2008227445A (en) Thin-film transistor and display device
JP2002057105A (en) Method and device for manufacturing semiconductor thin film, and matrix circuit-driving device
WO2007026722A1 (en) Projection mask, laser machining method, laser machining device, and thin film transistor element
JP4763983B2 (en) Light modulation element, crystallization apparatus, crystallization method, thin film semiconductor substrate manufacturing apparatus, thin film semiconductor substrate manufacturing method, thin film semiconductor device, thin film semiconductor device manufacturing method, display device, and phase shifter
JP2004281771A (en) Crystal growth method and crystal growth device for semiconductor thin film and manufacturing method for thin film transistor
JP2007207896A (en) Laser beam projection mask, laser processing method using same, laser processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796996

Country of ref document: EP

Kind code of ref document: A1