WO2007026552A1 - Casting method by sublimation pattern casting method and production method of metal mold for molding foamed product pattern - Google Patents

Casting method by sublimation pattern casting method and production method of metal mold for molding foamed product pattern Download PDF

Info

Publication number
WO2007026552A1
WO2007026552A1 PCT/JP2006/316234 JP2006316234W WO2007026552A1 WO 2007026552 A1 WO2007026552 A1 WO 2007026552A1 JP 2006316234 W JP2006316234 W JP 2006316234W WO 2007026552 A1 WO2007026552 A1 WO 2007026552A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
forging
dimensional
product model
product
Prior art date
Application number
PCT/JP2006/316234
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuhiko Kato
Original Assignee
Sintokogio, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio, Ltd. filed Critical Sintokogio, Ltd.
Publication of WO2007026552A1 publication Critical patent/WO2007026552A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/02Lost patterns
    • B22C7/023Patterns made from expanded plastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D46/00Controlling, supervising, not restricted to casting covered by a single main group, e.g. for safety reasons
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/22Moulding

Definitions

  • the present invention relates to a method for forging a forged product by a disappearing model forging method and a method for producing a mold for forming a foamed product model for forming a foamed product model for use in the disappearing model forging method.
  • Foamed product models used in the disappearance model fabrication method are manufactured as follows. First, the granular foam material beads are sealed in a container, and steam is blown into the foam to be pre-foamed (primary foam), and then the pre-foamed beads are then filled into mold cavities for foam product model production. And let it harden.
  • the material beads are mainly composed of PMMA (polymethyl methacrylate), and polystyrene and the like are added thereto.
  • the mixing ratio of these components varies depending on the manufacturer.
  • the material beads are foamed with a foaming ratio of about 40 times.
  • the expansion ratio may be increased to about 45 times.
  • the foaming rate is increased in this way, the foam model hardness decreases, and the foam model tends to be deformed when it is filled with sand. ! /
  • an actual mold cavity is manufactured in consideration of a shrinkage allowance when the poured metal is solidified to become a product porridge (that is, using an extension scale).
  • the shrinkage allowance varies depending on the metal.
  • the scale of the relationship between the object and the model is 5/1000 to 8/1000.
  • there is a shrinkage of the foam product model in the relationship between the foam product model and its mold, and the scale is 3Z 1000 ⁇ 10/1000 force!
  • the invention described in Japanese Patent Laid-Open No. 4-361849 relates to a forged product manufacturing system used in the case of forging a press die or the like by a full mold method, and performs a design that fully considers the forging conditions when creating CAD data.
  • the purpose is to provide a forged product manufacturing system that can manage work in the forged area (forged process)! Speak.
  • a method for manufacturing a mold for a foam product model that can reduce or eliminate the need to remanufacture a mold for a foam product model in the disappearance model forging method, and a forging method using the method The law is desired.
  • the present invention has a problem that a forged product forged by the disappearance model forging method does not fit within the allowable error, or it is necessary to remanufactur a mold for a foam product model without falling within the allowable error.
  • Disappearance model manufacturing method for solving the problem of occurrence and ensuring that the product is within the target dimensions or tolerances thereof, and the foam product model used in the method It aims at providing the method of manufacturing the metal mold
  • the present invention in one embodiment, is a method of forging a article having a target size by a vanishing model forging method using a foamed product model, comprising: The data on the three-dimensional dimensions of the foamed product model corresponding to the target size, the data on the material of the foamed product model, and the data on the pouring plan and pouring methods are input to the computer, and the building is made by the disappearing model forging A simulation of the building fabrication including a simulation of molten metal flow, solidification of the molten metal, and the deformation of the clay caused by the solidification, and (b) the simulation of the building fabrication simulation step.
  • a foamed product model can be produced from a foamed material block cutter, whereby a forged product can be produced by a disappearance model forging method without using a mold for a foamed product model. Is possible.
  • the present invention is a method of manufacturing a mold for molding a foam product model used in a disappearance model forging method for forging a article having a target dimension, comprising: (a) the target dimension; The data on the three-dimensional dimensions of the foamed product model corresponding to the above, data on the raw material of the foamed product, and data on the pouring gate method and the pouring method are input to a computer to simulate the building of the product by the disappearance model forging method.
  • a simulation process including a simulation of molten metal flow, solidification of the molten metal, and deformation of the clay, and (b) the deformation of the clay in the simulation of the clay fabrication process, A process for determining the final three-dimensional dimension of the foam product model in consideration of the scale of the relationship between the model and the foam product model, and (c) a process for producing the foam product model of the final three-dimensional dimension.
  • a process of inputting the data of the final three-dimensional dimension into a controller of an NC machine tool and cutting a mold base by the NC machine tool to manufacture a mold having the final three-dimensional dimension of the mold h) a step of forming a foam product model using the manufactured mold, and (i) a step of forging a porcelain by the disappearing model forging method using the molded foam product model, and (j) A step of measuring the three-dimensional data of the fabricated article, and a step of determining whether the three-dimensional data measured in step (j) is within an allowable error range of the target dimension; (1) In step (k), if the measured three-dimensional data is within the tolerance range of the target dimension, the method is terminated, and if it is not within the tolerance range, it is input to the controller. Correcting the three-dimensional data of the object, based on the corrected three-dimensional data
  • the present invention provides a step of molding a foam product model using the mold manufactured in the above-described mold manufacturing method, and a disappearance model forging using the molded foam product model And a method of forging a forgery by a method.
  • the forgery simulation is performed using a computer and software developed for the present invention.
  • the data related to the three-dimensional dimensions of the foam product model corresponding to the target (design) dimensions of the product the data related to the material of the foam product model, the pouring method and the pouring method Enter data into the computer. Data other than these data can be entered as required.
  • Hot water flow analysis is a process in which molten metal enters the cavity, the time when the molten metal has entered the cavity, The pressure state and temperature distribution at the time of filling the cavity are obtained.
  • the solidification analysis is performed using the temperature distribution at the time of filling the cavity obtained by this molten metal flow analysis.
  • the deformation analysis by thermal stress is performed from the solidification time obtained by the solidification analysis and the product temperature distribution at the time of solidification. Is to do. In other words, the hot water flow is performed to analyze how the filling of the cavity is performed.
  • Shape of forged product Cylindrical (length (height) 80mm, outer diameter 250mm, minimum wall thickness 3.5mm)
  • Product material FCD450
  • the process of molten metal entering the product, the time it took to enter, and the pressure state during filling of the molten metal were obtained.
  • the pouring time was 7.07 seconds and the molten metal pressure (product part) was 0.07-0.lOMPa.
  • the solidification time which is the time until the hot water solidifies (becomes solid), was 120 seconds.
  • Thermal stress is generated in the process of solidifying the product, and the product is deformed by the stress. If the amount of deformation of the product can be grasped in advance by simulation, a foam model mold that anticipates the amount of deformation can be manufactured. Is possible.
  • the data after the deformation analysis is converted into STL data (three-dimensional CAD intermediate file data) by simulation software.
  • the computer simulation may be performed again until the above error falls within the allowable error range.
  • the three-dimensional dimensions of the foam product model are determined so that the amount of variation falls within the allowable error range, and the three-dimensional dimensions of the determined foam product model and the scale of the relationship between the container and the foam product model are considered. Determine the final three-dimensional dimensions of the foam product model.
  • a granular foam material bead is placed in a closed container and steam is blown to form a foam block having an appropriate foaming ratio.
  • the foam block is processed to have a final three-dimensional dimension. Make a foam product model.
  • V Foamed product models can also be molded using molds for foamed product models that have been manufactured in a long time.
  • This embodiment is a method for manufacturing a mold for forming a foamed product model for use in a disappearing model forging method for forging a article having a target dimension.
  • the final three-dimensional data is input to the controller of the NC machine tool, and the mold base is moved by the NC machine tool. Cutting to produce a mold having the final three-dimensional cavity,
  • step (k) determining whether or not the three-dimensional data measured in step (j) is within an allowable error range of the target dimension
  • step (k) if the measured 3D data is within the tolerance range of the target dimension, the method is terminated, and if it is not within the tolerance range, input to the controller. Correcting the final three-dimensional dimension of the mold cavity by the NC machine tool based on the corrected three-dimensional data, and correcting the final three-dimensional dimension of the mold cavity based on the corrected three-dimensional data.
  • step (c) a foamed block is produced by force.
  • step (d) Prototype fabrication by disappearance model fabrication method using the produced foamed product model
  • step (e) Three-dimensional data of prototype fabrication Go to (Measure data).
  • step (e) the three-dimensional data of the object is measured by a three-dimensional measuring device.
  • the three-dimensional data measured by the three-dimensional measuring instrument can be compared with the STL data regarding the amount of mutation for reference.
  • step (f) determine whether measured 3D data is within the tolerance range of the target dimension, and then proceed to (g).
  • step (j) the three-dimensional data of the object is measured with a three-dimensional measuring device.
  • step (k) it is determined whether or not the three-dimensional data measured in step (j) is within the allowable error range of the target dimension.
  • step (k) when the measured three-dimensional data is within the allowable error range of the target dimension, the method ends. On the other hand, if the measured 3D data is not within the tolerance range of the target dimension, the method proceeds to step (1), where the 3D data of the object input to the controller is corrected and the corrected Based on the three-dimensional data, the final machining of the mold is completed by correcting the final three-dimensional dimension of the mold cavity with the NC machine tool.
  • a foamed product model can be formed using the mold described above, which has been subjected to final processing, and the molded foam product model is used in the disappearance model forging method to forge a ware. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Forging (AREA)

Abstract

A method for casting a casting having target dimensions by a sublimation pattern casting method employing a foamed product pattern comprising (a) a casting simulation step for performing simulation of casting by a sublimation pattern casting method by inputting data concerning three-dimensional dimensions of a foamed product pattern corresponding to the target dimensions, data concerning the material of the foamed product pattern, and data concerning the gating system plan and pouring method to a computer wherein the simulation includes simulation of molten metal flow, solidification of molten metal and deformation of the casting due to solidification, (b) a step for determining the final three-dimensional dimensions of the foamed product pattern while taking account of deformation of the casting in the casting simulation step and the shrinkage allowance relation between the casting and the foamed product pattern, (c) a step for manufacturing a foamed product pattern having the final three-dimensional dimensions, and (d) a step for casting a casting by a sublimation pattern casting method using the foamed product pattern thus manufactured.

Description

明 細 書  Specification
消失模型铸造法による铸物铸造方法及び発泡製品模型成形用金型の 製造方法  Manufacturing method of mold by mold disappearance model manufacturing method and foam product model molding mold
技術分野  Technical field
[0001] 本発明は、消失模型铸造法による铸物铸造方法と、消失模型铸造法に用いる発泡 製品模型を成形する発泡製品模型成形用金型の製造方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a method for forging a forged product by a disappearing model forging method and a method for producing a mold for forming a foamed product model for forming a foamed product model for use in the disappearing model forging method.
背景技術  Background art
[0002] 消失模型铸造法に用いる発泡製品模型は以下のように製作されている。先ず、粒 状の発泡材料ビーズを容器内に密閉して蒸気を吹き込んで予備発泡 (一次発泡)さ せ、この予備発泡させたビーズを次に発泡製品模型製作用の金型のキヤビティに充 填して硬化させる。  [0002] Foamed product models used in the disappearance model fabrication method are manufactured as follows. First, the granular foam material beads are sealed in a container, and steam is blown into the foam to be pre-foamed (primary foam), and then the pre-foamed beads are then filled into mold cavities for foam product model production. And let it harden.
[0003] 材料ビーズは PMMA (ポリメタクリル酸メチル)を主成分とし、これにポリスチレン等 が加えられており、これらの成分の混合比率は製造者によって異なっている。予備発 泡において材料ビーズは発泡倍率が 40倍程度で発泡されている。発泡倍率を場合 によっては (例えば、薄肉の铸物を製造する場合)、 45倍程度にすることもある。但し 、このように発泡率を高くすると、発泡模型硬度が小さくなるため、砂充填した際に発 泡模型が変形する傾向があるので、厚肉の铸物の製造には適して!/、な!/、。  [0003] The material beads are mainly composed of PMMA (polymethyl methacrylate), and polystyrene and the like are added thereto. The mixing ratio of these components varies depending on the manufacturer. In the preliminary foaming, the material beads are foamed with a foaming ratio of about 40 times. In some cases (for example, when producing thin-walled porridge), the expansion ratio may be increased to about 45 times. However, if the foaming rate is increased in this way, the foam model hardness decreases, and the foam model tends to be deformed when it is filled with sand. ! /
[0004] このように成形された発泡製品模型を使用して消失模型铸造法により铸物を製造し た場合に、発泡材料ビーズの組成と発泡倍率の相異によつて製造された铸物の収縮 率が異なってくる。  [0004] When a foam is manufactured by the vanishing model forging method using the foamed product model formed in this way, the product manufactured based on the difference in the composition of the foam material beads and the expansion ratio of the foam The shrinkage rate is different.
[0005] また、注湯された金属が凝固して製品铸物となる際の縮み代を考慮 (即ち、伸尺を 使用)して実際の金型キヤビティは製作されている。縮み代は金属により異なる。铸物 と模型との関係の伸尺は 5/1000の〜 8/1000である。また、発泡製品模型とその 成形用金型との関係においても発泡製品模型の縮みが存在し、その伸尺として 3Z 1000の〜 10/1000力用!ヽられて!ヽる。  [0005] In addition, an actual mold cavity is manufactured in consideration of a shrinkage allowance when the poured metal is solidified to become a product porridge (that is, using an extension scale). The shrinkage allowance varies depending on the metal. The scale of the relationship between the object and the model is 5/1000 to 8/1000. In addition, there is a shrinkage of the foam product model in the relationship between the foam product model and its mold, and the scale is 3Z 1000 ~ 10/1000 force!
[0006] このように伸尺を用いて铸造された铸物製品が目的とする形状 ·寸法であるカ ある いはその許容誤差範囲内に収まっているかを確認している。しかしながら製品が目 標寸法ではなぐあるいは、許容誤差範囲カゝら外れている場合には、模型寸法を修 正する必要があるため発泡製品模型を成形する金型のキヤビティを広げるか、ある ヽ は、キヤビティを埋めることは困難なため、再度金型を製作する必要性が生じてくる。 [0006] In this way, it is confirmed whether or not a forged product manufactured using the scale has a target shape and size or is within an allowable error range. However, the product is eye If it is not the standard size or is outside the tolerance range, the model size needs to be corrected, so the mold mold for forming the foam product model should be widened, or some ヽ fill the cavity Since this is difficult, it becomes necessary to manufacture the mold again.
[0007] 上記のように一定の伸尺を用いて铸造しても、铸物の部位により縮み代に相異が出 る場合があり、铸物製品が許容誤差内に収まらずに発泡製品模型用金型を再製作 する必要が生じることが多々あった。部位により縮み代に相異が出る場合とは、例え ば、二股に分岐する管であって、分岐した一方の管部分はほぼ直線状であり、もう一 方の管部分は円弧状に湾曲している铸物管製品であり、この場合、円弧状に湾曲し ている管部分の凸側部分と凹側部分の縮み代に相異が出る。  [0007] Even if forging is performed using a certain scale as described above, there is a case where the shrinkage allowance varies depending on the part of the fret, and the foam product does not fall within the allowable error. In many cases, it was necessary to remanufacture molds. For example, when the difference in contraction allowance differs depending on the part, it is a bifurcated pipe, one of the branched pipe parts is almost straight, and the other pipe part is curved in an arc. In this case, there is a difference in the shrinkage allowance between the convex part and the concave part of the pipe part curved in an arc shape.
[0008] 特開平 4— 361849に記載された発明は、フルモールド法によってプレス金型等を 铸造する場合に用いる铸造品製造システムに関し、 CADデータ作成時に、铸造条 件を充分考慮した設計を行 、、铸造区 (铸造工程)での作業管理を行うことのできる 铸造品製造システムを提供することを目的として!ヽる。  [0008] The invention described in Japanese Patent Laid-Open No. 4-361849 relates to a forged product manufacturing system used in the case of forging a press die or the like by a full mold method, and performs a design that fully considers the forging conditions when creating CAD data. The purpose is to provide a forged product manufacturing system that can manage work in the forged area (forged process)! Speak.
[0009] 「ジャタト-ユース第 558号 (平成 15年 6月 20)」(社団法人 日本铸造技術協会)は 、湯口方案、注湯法等に関するデータをコンピュータに入力し市販のコンピュータソ フトウェアを用いて有限要素法等により铸物の湯流れ、凝固、変形シミュレーションを 行い、湯流れの状況、引け巣の発生の有無、铸物凝固時の割れ'変形を観察するこ とを教示している。  [0009] "Jatato Youth No. 558 (June 20, 2003)" (Japan Association of Forging Technology) entered data on the Yuguchi method, pouring method, etc. into a computer and used commercially available computer software. Using the finite element method, etc., it teaches simulating the flow, solidification, and deformation of molten metal, and observing the state of molten metal flow, the presence or absence of shrinkage nests, and cracking deformation during solidification.
[0010] 但し、これらの両文献は、消失模型铸造法を用いる铸造シミュレーションを開示又 は示唆していない。  [0010] However, these two documents do not disclose or suggest a forging simulation using the disappearance model forging method.
[0011] 消失模型铸造法における発泡製品模型用金型を再製作する必要を減少させ、ある いは、なくすことができる発泡製品模型用金型を製造する方法及び該方法を用いた 铸物铸造法が望まれている。  [0011] A method for manufacturing a mold for a foam product model that can reduce or eliminate the need to remanufacture a mold for a foam product model in the disappearance model forging method, and a forging method using the method The law is desired.
発明の開示  Disclosure of the invention
[0012] 本発明は、消失模型铸造法により铸造された铸物製品が許容誤差内に収まらない といった問題、あるいは、許容誤差内に収まらずに発泡製品模型用金型を再製作す る必要が生じるという問題を解決し、铸物製品が目的寸法あるいはその許容誤差範 囲内に収まるようにするための消失模型铸造法及び該方法に用いる発泡製品模型 を成形する金型を製造する方法を提供することを目的とする。 [0012] The present invention has a problem that a forged product forged by the disappearance model forging method does not fit within the allowable error, or it is necessary to remanufactur a mold for a foam product model without falling within the allowable error. Disappearance model manufacturing method for solving the problem of occurrence and ensuring that the product is within the target dimensions or tolerances thereof, and the foam product model used in the method It aims at providing the method of manufacturing the metal mold | die which shape | molds.
[0013] 上記目的を達成するために、本発明は、 1実施態様において、発泡製品模型を用 いる消失模型铸造法により、目標寸法を有する铸物を铸造する方法であって、 (a) 前記目標寸法に相当する前記発泡製品模型の三次元寸法に関するデータと、前記 発泡製品模型の材料に関するデータと、湯口方案及び注湯法に関するデータとをコ ンピュータに入力し消失模型铸造法による铸物铸造のシミュレーションを行う工程で あって、前記シミュレーションは湯流れ、湯の凝固及び該凝固による铸物変形のシミ ユレーシヨンを含む铸物铸造シミュレーション工程と、 (b)前記铸物铸造シミュレーショ ン工程における前記铸物変形と、铸物と発泡製品模型の関係の伸尺を考慮して発 泡製品模型の最終三次元寸法を決定する工程と、 (c)該最終三次元寸法の発泡製 品模型を製作する工程と、 (d)前記製作した発泡製品模型を用いて消失模型铸造 法により铸物を铸造する工程とを含む消失模型铸造法による铸物铸造方法である。  [0013] In order to achieve the above object, the present invention, in one embodiment, is a method of forging a article having a target size by a vanishing model forging method using a foamed product model, comprising: The data on the three-dimensional dimensions of the foamed product model corresponding to the target size, the data on the material of the foamed product model, and the data on the pouring plan and pouring methods are input to the computer, and the building is made by the disappearing model forging A simulation of the building fabrication including a simulation of molten metal flow, solidification of the molten metal, and the deformation of the clay caused by the solidification, and (b) the simulation of the building fabrication simulation step. Determining the final three-dimensional dimensions of the foamed product model in consideration of the deformation of the ceramics and the scale of the relationship between the ceramic product and the foamed product model; and (c) the final three-dimensional dimension. And (d) forging a forged article by the disappearing model forging method, including the step of forging a forged article by the disappearing model forging method using the produced foamed product model.
[0014] 本態様にぉ ヽては、発泡製品模型を発泡材料ブロックカゝら製作することができ、そ れにより、発泡製品模型用金型を使用することなぐ消失模型铸造法による铸物铸造 が可能である。 [0014] For this embodiment, a foamed product model can be produced from a foamed material block cutter, whereby a forged product can be produced by a disappearance model forging method without using a mold for a foamed product model. Is possible.
[0015] 本発明は、 1実施態様において、目標寸法を有する铸物を铸造する消失模型铸造 法に用いる発泡製品模型を成形する金型を製造する方法であって、 (a)前記目標寸 法に相当する前記発泡製品模型の三次元寸法に関するデータと、前記発泡製品の 原料に関するデータと、湯口方案及び注湯法に関するデータとをコンピュータに入 力し消失模型铸造法による铸物铸造のシミュレーションを行う工程であって、前記シ ミュレーシヨンは湯流れ、湯の凝固及び铸物変形のシミュレーションを含む铸物铸造 シミュレーション工程と、 (b)前記铸物铸造シミュレーション工程における前記铸物変 形と、铸物と発泡製品模型の関係の伸尺を考慮して発泡製品模型の最終三次元寸 法を決定する工程と、(c)該最終三次元寸法の発泡製品模型を製作する工程と、 (d )前記製作した発泡製品模型を用いて消失模型铸造法により铸物を試作铸造するェ 程と、(e)前記試作铸造した铸物の三次元データを測定する工程と、(f)前記測定さ れた三次元データが前記目標寸法の許容誤差範囲内であるか否かを決定する工程 と、 (g)前記測定された三次元データが前記目標寸法の許容誤差範囲内であるなら ば、前記最終三次元寸法のデータを NC工作機のコントローラに入力し前記 NC工作 機によって金型基材を切削加工して前記最終三次元寸法のキヤビティを備える金型 を製作する工程と、(h)前記製作された金型を用いて発泡製品模型を成形する工程 と、 (i)前記成形された発泡製品模型を用いて消失模型铸造法により铸物を铸造す る工程と、 (j)前記铸造した铸物の三次元データを測定する工程と、(k)工程 (j)に おいて測定した三次元データが目標寸法の許容誤差範囲内であるか否かを決定す る工程と、(1)工程 (k)にお 、て前記測定した三次元データが目標寸法の許容誤差 範囲内にある場合は方法を終了し、前記許容誤差範囲内にない場合は、コントロー ラに入力する铸物の三次元データを修正し、該修正した三次元データに基づき前記[0015] In one embodiment, the present invention is a method of manufacturing a mold for molding a foam product model used in a disappearance model forging method for forging a article having a target dimension, comprising: (a) the target dimension; The data on the three-dimensional dimensions of the foamed product model corresponding to the above, data on the raw material of the foamed product, and data on the pouring gate method and the pouring method are input to a computer to simulate the building of the product by the disappearance model forging method. A simulation process including a simulation of molten metal flow, solidification of the molten metal, and deformation of the clay, and (b) the deformation of the clay in the simulation of the clay fabrication process, A process for determining the final three-dimensional dimension of the foam product model in consideration of the scale of the relationship between the model and the foam product model, and (c) a process for producing the foam product model of the final three-dimensional dimension. (D) a step of making a prototype by evaporative model forging using the produced foamed product model, and (e) a step of measuring three-dimensional data of the prototype forged product, (f ) Determining whether the measured three-dimensional data is within an allowable error range of the target dimension; and (g) the measured three-dimensional data is within an allowable error range of the target dimension. Then For example, a process of inputting the data of the final three-dimensional dimension into a controller of an NC machine tool and cutting a mold base by the NC machine tool to manufacture a mold having the final three-dimensional dimension of the mold; h) a step of forming a foam product model using the manufactured mold, and (i) a step of forging a porcelain by the disappearing model forging method using the molded foam product model, and (j) A step of measuring the three-dimensional data of the fabricated article, and a step of determining whether the three-dimensional data measured in step (j) is within an allowable error range of the target dimension; (1) In step (k), if the measured three-dimensional data is within the tolerance range of the target dimension, the method is terminated, and if it is not within the tolerance range, it is input to the controller. Correcting the three-dimensional data of the object, based on the corrected three-dimensional data
NC工作機により前記金型キヤビティの前記最終三次元寸法を修正加工する工程と を含む金型製造方法である。 And a process of correcting the final three-dimensional dimension of the mold cavity by an NC machine tool.
[0016] 本金型製造方法の態様にお!、ては、何段階かにお 、て、実測された三次元データ が目標寸法の許容誤差範囲内であるかがチェックされるので、金型を再製作する可 能性を極めて低くすることができる。 [0016] In the embodiment of the mold manufacturing method !, it is checked in several stages whether the actually measured three-dimensional data is within the allowable error range of the target dimension. The possibility of remanufacturing is extremely low.
[0017] 本発明は、 1実施態様において、上記金型製造方法の態様において製造された金 型を用いて発泡製品模型を成形する工程と、該成形された発泡製品模型を用いて 消失模型铸造法により铸物を铸造する工程とを含む铸物铸造方法である。 [0017] In one embodiment, the present invention provides a step of molding a foam product model using the mold manufactured in the above-described mold manufacturing method, and a disappearance model forging using the molded foam product model And a method of forging a forgery by a method.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 本発明の主要部であるコンピュータによる铸造シミュレーションについて説明する。 [0018] A computer-aided forgery simulation that is a main part of the present invention will be described.
铸造シミュレーションはコンピュータと、本発明に関して開発されたソフトウェアを用い てなされる。  The forgery simulation is performed using a computer and software developed for the present invention.
[0019] まず、入力パラメータとして、製品铸物の目標 (設計)寸法に相当する発泡製品模 型の三次元寸法に関するデータと、発泡製品模型の材料に関するデータと、湯口方 案及び注湯法に関するデータとをコンピュータに入力する。これらのデータ以外のデ ータを必要に応じて入力することもできる。  [0019] First, as input parameters, the data related to the three-dimensional dimensions of the foam product model corresponding to the target (design) dimensions of the product, the data related to the material of the foam product model, the pouring method and the pouring method Enter data into the computer. Data other than these data can be entered as required.
[0020] シミュレーションは、湯流れ解析、凝固解析、変形解析の順に行われる。湯流れ解 析はキヤビティに溶湯が入っていく過程、キヤビティに溶湯が入りきつた時間、溶湯の キヤビティ充填時の圧力状態及び温度分布を求めるものである。この湯流れ解析に よって得られたキヤビティ充填時の温度分布を使用して凝固解析を行い、次に、凝固 解析によって得られた凝固時間と、凝固時の製品温度分布から熱応力による変形解 析を行うものである。すなわち、湯流れはキヤビティへの充填がどのようになされるの かを解析するために行われ、そのために、(1)充填時間、(2)湯流れが乱流かあるい は整流かどうか、(3)充填位置の順番の 3つの因子を検討する。充填解析がなされた 後、凝固に着目して熱解析を行い、そして熱解析における熱応力による変形解析が なされる。 [0020] The simulation is performed in the order of molten metal flow analysis, solidification analysis, and deformation analysis. Hot water flow analysis is a process in which molten metal enters the cavity, the time when the molten metal has entered the cavity, The pressure state and temperature distribution at the time of filling the cavity are obtained. The solidification analysis is performed using the temperature distribution at the time of filling the cavity obtained by this molten metal flow analysis. Next, the deformation analysis by thermal stress is performed from the solidification time obtained by the solidification analysis and the product temperature distribution at the time of solidification. Is to do. In other words, the hot water flow is performed to analyze how the filling of the cavity is performed. For this purpose, (1) filling time, (2) whether the hot water flow is turbulent or rectified, (3) Examine the three factors of the order of filling positions. After the filling analysis is performed, thermal analysis is performed focusing on solidification, and deformation analysis due to thermal stress in the thermal analysis is performed.
[0021] 上記ソフトウェアを用いて有限要素法により最小メッシュ間隔 4. 5のメッシュモデル により、以下の条件で消失模型铸造法の铸造シミュレーションを行った。  [0021] Using the above software, a forging simulation of the disappearance model forging method was performed under the following conditions using a mesh model with a minimum mesh spacing of 4.5 by the finite element method.
[0022] [0022]
铸造製品の形状:円筒(長さ(高さ) 80mm,外径 250mm、最小肉厚 3. 5mm) 製品材質: FCD450  Shape of forged product: Cylindrical (length (height) 80mm, outer diameter 250mm, minimum wall thickness 3.5mm) Product material: FCD450
 Thigh
铸造シミュレーションの結果は以下の通りであった。  The results of the forging simulation were as follows.
[0023] 1.湯流れ解析 [0023] 1. Hot water flow analysis
溶湯が製品に入っていく過程、入りきつた時間、溶湯のキヤビティ充填時の圧力状態 が得られた。注湯時間は 7. 07秒、溶湯圧 (製品部)は 0. 07-0. lOMPaであった。  The process of molten metal entering the product, the time it took to enter, and the pressure state during filling of the molten metal were obtained. The pouring time was 7.07 seconds and the molten metal pressure (product part) was 0.07-0.lOMPa.
[0024] (注湯時間が長すぎると、キヤビティに完全に湯が入りきらないといった欠陥の発生が 考えられる。シミュレーションの結果を基に、溶湯が入りやすい铸造方案を立てること も可能である)。 [0024] (If the pouring time is too long, there may be a defect that the hot water does not completely enter the cavity. Based on the simulation results, it is possible to make a forging plan that makes it easy for molten metal to enter.) .
[0025] 2.凝固解析 [0025] 2. Solidification analysis
キヤビティに湯が入りきつた状態 (液体状態)力 湯が凝固する(固体状態になる)ま での時間である凝固時間は 120秒であった。  Force with hot water in the cavity (liquid state) The solidification time, which is the time until the hot water solidifies (becomes solid), was 120 seconds.
[0026] ポロシティ量 0. 2%以上存在する箇所が湯道部に少し見られた。 [0026] A portion where the amount of porosity was 0.2% or more was slightly observed in the runway.
[0027] (製品が最後に凝固する部分には引け巣等の欠陥が発生し易すくなり、また、ポロシ ティが存在すると製品強度に大きな影響を及ぼすので、それらの位置をシミュレーシ ヨンにより特定する。また、欠陥が発生しにくい铸造方案を立てることも可能である)。 [0028] 3.変形解析 [0027] (Defects such as shrinkage cavities are more likely to occur in the part where the product solidifies last, and the presence of porosity greatly affects product strength. It is also possible to make a forging plan that is less prone to defects). [0028] 3. Deformation analysis
製品外周部の変異量が最も大きぐ 0. 021mm歪んだ。  Distortion at the outer periphery of the product is the largest 0.02mm
[0029] 製品が凝固する過程で熱応力が発生し、製品が応力によって変形するが、シミュレ ーシヨンにより製品がどの程度変形するか事前に把握できれば、変形量を見越した 発泡模型成形金型を製作することが可能である。 [0029] Thermal stress is generated in the process of solidifying the product, and the product is deformed by the stress. If the amount of deformation of the product can be grasped in advance by simulation, a foam model mold that anticipates the amount of deformation can be manufactured. Is possible.
[0030] 変形解析後のデータはシミュレーションソフトウェアにより STLデータ(3次元 CAD 中間ファイルデータ)に変換される。 [0030] The data after the deformation analysis is converted into STL data (three-dimensional CAD intermediate file data) by simulation software.
[0031] 上記変異量 0. 021mmは許容誤差の 0. 015mmを超えており、このことを考慮し、 この誤差を小さくする (許容誤差範囲内に入る)ことができるような発泡製品模型の寸 法を考える。そういった寸法は経験的に決定可能である。あるいは、発泡製品模型の 寸法を変更し、及び Z又は、コンピュータに入力するその他のパラメータを変更して[0031] The above-mentioned variation of 0.021 mm exceeds the allowable error of 0.015 mm. Taking this into account, the size of the foam product model can be reduced (within the allowable error range). Think of the law. Such dimensions can be determined empirically. Alternatively, change the dimensions of the foam product model and change Z or other parameters entered into the computer.
、上記誤差が許容誤差範囲内に入るまで再度コンピュータシミュレーションを行うこと としても良い。このように、変異量が許容誤差範囲内に入るような発泡製品模型の三 次元寸法を決め、決めた発泡製品模型の三次元寸法更に铸物と発泡製品模型の関 係の縮尺を考量して発泡製品模型の最終三次元寸法を決定する。 The computer simulation may be performed again until the above error falls within the allowable error range. In this way, the three-dimensional dimensions of the foam product model are determined so that the amount of variation falls within the allowable error range, and the three-dimensional dimensions of the determined foam product model and the scale of the relationship between the container and the foam product model are considered. Determine the final three-dimensional dimensions of the foam product model.
[0032] 次に、最終三次元寸法を有する発泡製品模型の製作方法について説明する。  [0032] Next, a method for producing a foamed product model having the final three-dimensional dimensions will be described.
[0033] その 1つの方法として、粒状の発泡材料ビーズを密閉容器内に入れ蒸気を吹き込 んで適当な発泡倍率の発泡ブロックを成形し、この発泡ブロックを加工して、最終三 次元寸法を有する発泡製品模型を製作する。 [0033] As one of the methods, a granular foam material bead is placed in a closed container and steam is blown to form a foam block having an appropriate foaming ratio. The foam block is processed to have a final three-dimensional dimension. Make a foam product model.
[0034] 他の方法として、後に説明する発泡製品模型を成形する金型を製造する方法を用[0034] As another method, a method of manufacturing a mold for forming a foam product model, which will be described later, is used.
Vヽて製造した発泡製品模型成形用金型を用いて発泡製品模型を成形することもでき る。 V Foamed product models can also be molded using molds for foamed product models that have been manufactured in a long time.
[0035] 次に、製作した発泡製品模型を使用して消失模型铸造法により铸物を製造するこ とがでさる。  [0035] Next, using the produced foamed product model, it is possible to manufacture a porridge by the disappearing model forging method.
[0036] ここで、本発明に従った発泡製品模型を成形する金型を製造する方法の態様につ いて説明する。この態様は、目標寸法を有する铸物を铸造する消失模型铸造法に用 Vヽる発泡製品模型を成形する金型を製造する方法であって、  [0036] Here, an embodiment of a method for producing a mold for molding a foam product model according to the present invention will be described. This embodiment is a method for manufacturing a mold for forming a foamed product model for use in a disappearing model forging method for forging a article having a target dimension.
(a)前記目標寸法に相当する前記発泡製品模型の三次元寸法に関するデータと、 前記発泡製品の原料に関するデータと、湯口方案及び注湯法に関するデータとをコ ンピュータに入力し消失模型铸造法による铸物铸造のシミュレーションを行う工程で あって、前記シミュレーションは湯流れ、湯の凝固及び铸物変形のシミュレーションを 含む铸物铸造シミュレーション工程と、 (a) data relating to the three-dimensional dimensions of the foamed product model corresponding to the target dimensions; The process of inputting the data on the raw material of the foamed product and the data on the pouring gate method and the pouring method into a computer and simulating the ware making by the disappearance model forging method. And a forgery manufacturing simulation process including a simulation of the deformation of the building,
(b)前記铸物铸造シミュレーション工程における前記铸物変形と、铸物と発泡製品模 型の関係の伸尺を考慮して発泡製品模型の最終三次元寸法を決定する工程と、 (b) determining the final three-dimensional dimension of the foam product model in consideration of the deformation of the product in the product forging simulation process and the scale of the relationship between the product and the model of the foam product;
(c)該最終三次元寸法の発泡製品模型を製作する工程と、 (c) producing the final three-dimensional foam product model;
(d)前記製作した発泡製品模型を用いて消失模型铸造法により铸物を試作铸造す る工程と、  (d) a step of making a prototype by forging the lost product using the produced foamed product model,
(e)前記試作铸造した铸物の三次元データを測定する工程と、  (e) a step of measuring three-dimensional data of the prototype manufactured article;
(f)前記測定された三次元データが前記目標寸法の許容誤差範囲内であるか否か を決定する工程と、  (f) determining whether the measured three-dimensional data is within an allowable error range of the target dimension;
(g)前記測定された三次元データが前記目標寸法の許容誤差範囲内であるならば、 前記最終三次元寸法のデータを NC工作機のコントローラに入力し前記 NC工作機 によって金型基材を切削加工して前記最終三次元寸法のキヤビティを備える金型を 製作する工程と、  (g) If the measured three-dimensional data is within the tolerance range of the target dimension, the final three-dimensional data is input to the controller of the NC machine tool, and the mold base is moved by the NC machine tool. Cutting to produce a mold having the final three-dimensional cavity,
(h)前記製作された金型を用いて発泡製品模型を成形する工程と、  (h) forming a foam product model using the manufactured mold;
(i)前記成形された発泡製品模型を用いて消失模型铸造法により铸物を铸造するェ 程と、  (i) the process of forging a freight by the vanishing model forging method using the molded foam product model;
(j)前記铸造した铸物の三次元データを測定する工程と、  (j) measuring the three-dimensional data of the fabricated article;
(k)工程 (j)にお 、て測定した三次元データが目標寸法の許容誤差範囲内であるか 否かを決定する工程と、  (k) determining whether or not the three-dimensional data measured in step (j) is within an allowable error range of the target dimension;
(1)工程 (k)にお 、て前記測定した三次元データが目標寸法の許容誤差範囲内にあ る場合は方法を終了し、前記許容誤差範囲内にない場合は、コントローラに入力す る铸物の三次元データを修正し、該修正した三次元データに基づき前記 NC工作機 により前記金型キヤビティの前記最終三次元寸法を修正加工する工程と、 を含む金型製造方法である。  (1) In step (k), if the measured 3D data is within the tolerance range of the target dimension, the method is terminated, and if it is not within the tolerance range, input to the controller. Correcting the final three-dimensional dimension of the mold cavity by the NC machine tool based on the corrected three-dimensional data, and correcting the final three-dimensional dimension of the mold cavity based on the corrected three-dimensional data.
上記工程 (a)及び (b)については、最初の実施の形態と同じであるので説明を省略 する。 The above steps (a) and (b) are the same as those in the first embodiment, and thus the description thereof is omitted. To do.
[0038] 上記工程 (c)は、最初の実施の形態にお!、て説明したように発泡ブロックを力卩ェし て製作する。工程 (c)の後に工程 (d) (製作した発泡製品模型を用いて消失模型铸 造法により铸物を試作铸造)へ進み、更に工程 (e) (試作铸造した铸物の三次元デ ータを測定)へ進む。  [0038] In the step (c), as described in the first embodiment, a foamed block is produced by force. After step (c), proceed to step (d) (Prototype fabrication by disappearance model fabrication method using the produced foamed product model), and then proceed to step (e) (Three-dimensional data of prototype fabrication Go to (Measure data).
[0039] 上記工程 (e)にお 、て、铸物の三次元データを三次元測定器により測定する。三 次元測定器により測定した三次元データを前記変異量に関する STLデータと参考の ために比較することができる。工程 (e)の後に工程 (f) (測定された三次元データが前 記目標寸法の許容誤差範囲内であるか否かを決定)に進み、さらに (g)へと進む。  [0039] In the step (e), the three-dimensional data of the object is measured by a three-dimensional measuring device. The three-dimensional data measured by the three-dimensional measuring instrument can be compared with the STL data regarding the amount of mutation for reference. After step (e), proceed to step (f) (determine whether measured 3D data is within the tolerance range of the target dimension), and then proceed to (g).
[0040] X@ (g)において、測定した三次元データが目標寸法の許容誤差範囲内にない場 合は、何らかの欠陥があると思われ、その欠陥を調査し修正して、再度湯流れ、凝固 及び変形のシミュレーションを行う。即ち、工程 (a)に戻る。  [0040] In X @ (g), if the measured three-dimensional data is not within the tolerance range of the target dimension, it is assumed that there is some defect. Simulation of solidification and deformation. That is, the process returns to step (a).
[0041] 工程 (j)において、铸物の三次元データを三次元測定器により測定する。次に工程  [0041] In step (j), the three-dimensional data of the object is measured with a three-dimensional measuring device. Next process
(k)に進む。ここでは、工程 (j)において測定された三次元データが目標寸法の許容 誤差範囲内であるか否かが決定される。  Go to (k). Here, it is determined whether or not the three-dimensional data measured in step (j) is within the allowable error range of the target dimension.
[0042] 工程 (k)において、測定した三次元データが目標寸法の許容誤差範囲内にある場 合は、方法を終了する。一方、測定した三次元データが目標寸法の許容誤差範囲 内にない場合は、方法は、工程 (1)に進み、ここでは、コントローラに入力する铸物の 三次元データを修正し、該修正した三次元データに基づき前記 NC工作機により前 記金型キヤビティの前記最終三次元寸法を修正加工して金型の最終加工を終えるこ とになる。  In step (k), when the measured three-dimensional data is within the allowable error range of the target dimension, the method ends. On the other hand, if the measured 3D data is not within the tolerance range of the target dimension, the method proceeds to step (1), where the 3D data of the object input to the controller is corrected and the corrected Based on the three-dimensional data, the final machining of the mold is completed by correcting the final three-dimensional dimension of the mold cavity with the NC machine tool.
[0043] 上で説明した、最終加工を終えた金型を用いて発泡製品模型を成形することがで き、その成形された発泡製品模型を消失模型铸造法に使用して铸物を铸造すること ができる。  [0043] A foamed product model can be formed using the mold described above, which has been subjected to final processing, and the molded foam product model is used in the disappearance model forging method to forge a ware. be able to.

Claims

請求の範囲 The scope of the claims
[1] 発泡製品模型を用いる消失模型铸造法により、目標寸法を有する铸物を铸造する 方法であって、  [1] A method of forging a article having a target size by a disappearance model forging method using a foam product model,
(a)前記目標寸法に相当する前記発泡製品模型の三次元寸法に関するデータと、 前記発泡製品模型の材料に関するデータと、湯口方案及び注湯法に関するデータ とをコンピュータに入力し消失模型铸造法による铸物铸造のシミュレーションを行うェ 程であって、前記シミュレーションは湯流れ、湯の凝固及び該凝固による铸物変形の シミュレーションを含む铸物铸造シミュレーション工程と、  (a) Data relating to the three-dimensional dimensions of the foamed product model corresponding to the target size, data relating to the material of the foamed product model, and data relating to the pouring gate method and pouring method are input to a computer, and the disappearance model forging method is used. A process for simulating a ware forgery, wherein the simulation includes a process for simulating a ware forgery including a simulation of a hot water flow, solidification of the hot water and a deformation of the ware due to the solidification;
(b)前記铸物铸造シミュレーション工程における前記铸物変形と、铸物と発泡製品 模型の関係の伸尺を考慮して発泡製品模型の最終三次元寸法を決定する工程と、 (b) determining the final three-dimensional dimensions of the foam product model in consideration of the deformation of the product and the scale of the relationship between the product and the foam product model in the product forging simulation process;
(c)該最終三次元寸法の発泡製品模型を製作する工程と、 (c) producing the final three-dimensional foam product model;
(d)前記製作した発泡製品模型を用いて消失模型铸造法により铸物を铸造するェ 程と、  (d) forging a freight by the vanishing model forging method using the produced foamed product model;
を含む消失模型铸造法による铸物铸造方法。  Method of forging by disappearance model forging including
[2] 目標寸法を有する铸物を铸造する消失模型铸造法に用いる発泡製品模型を成形 する金型を製造する方法であって、 [2] A method for producing a mold for molding a foam product model used in a disappearing model forging method for forging a article having a target size,
(a)前記目標寸法に相当する前記発泡製品模型の三次元寸法に関するデータと、 前記発泡製品の原料に関するデータと、湯口方案及び注湯法に関するデータとをコ ンピュータに入力し消失模型铸造法による铸物铸造のシミュレーションを行う工程で あって、前記シミュレーションは湯流れ、湯の凝固及び铸物変形のシミュレーションを 含む铸物铸造シミュレーション工程と、  (a) Data relating to the three-dimensional dimensions of the foamed product model corresponding to the target size, data relating to the raw material of the foamed product, and data relating to the pouring gate method and the pouring method are input to a computer and the disappearance model forging method is used. A process for simulating a ware forgery, wherein the simulation includes a process for simulating a sardine ware including a simulation of hot water flow, solidification of the hot water and sag deformation;
(b)前記铸物铸造シミュレーション工程における前記铸物変形と、铸物と発泡製品 模型の関係の伸尺を考慮して発泡製品模型の最終三次元寸法を決定する工程と、 (b) determining the final three-dimensional dimensions of the foam product model in consideration of the deformation of the product and the scale of the relationship between the product and the foam product model in the product forging simulation process;
(c)該最終三次元寸法の発泡製品模型を製作する工程と、 (c) producing the final three-dimensional foam product model;
(d)前記製作した発泡製品模型を用いて消失模型铸造法により铸物を試作铸造す る工程と、  (d) a step of making a prototype by forging the lost product using the produced foamed product model,
(e)前記試作铸造した铸物の三次元データを測定する工程と、  (e) a step of measuring three-dimensional data of the prototype manufactured article;
(f)前記測定された三次元データが前記目標寸法の許容誤差範囲内であるか否か を決定する工程と、 (f) Whether the measured three-dimensional data is within an allowable error range of the target dimension A step of determining
(g)前記測定された三次元データが前記目標寸法の許容誤差範囲内であるならば 、前記最終三次元寸法のデータを NC工作機のコントローラに入力し前記 NC工作機 によって金型基材を切削加工して前記最終三次元寸法のキヤビティを備える金型を 製作する工程と、  (g) If the measured three-dimensional data is within the tolerance range of the target dimension, the final three-dimensional data is input to the controller of the NC machine tool, and the mold base is moved by the NC machine tool. Cutting to produce a mold having the final three-dimensional cavity,
(h)前記製作された金型を用いて発泡製品模型を成形する工程と、  (h) forming a foam product model using the manufactured mold;
(i)前記成形された発泡製品模型を用いて消失模型铸造法により铸物を铸造する 工程と、  (i) forging a porcelain by the vanishing model forging method using the molded foam product model;
(j)前記铸造した铸物の三次元データを測定する工程と、  (j) measuring the three-dimensional data of the fabricated article;
(k)工程 (j)にお 、て測定した三次元データが目標寸法の許容誤差範囲内である か否かを決定する工程と、  (k) In step (j), determining whether or not the three-dimensional data measured in the target dimension is within an allowable error range;
(1)工程 (k)にお 、て前記測定した三次元データが目標寸法の許容誤差範囲内に ある場合は方法を終了し、前記許容誤差範囲内にない場合は、コントローラに入力 する铸物の三次元データを修正し、該修正した三次元データに基づき前記 NC工作 機により前記金型キヤビティの前記最終三次元寸法を修正加工する工程と、 を含む金型製造方法。  (1) In step (k), if the measured three-dimensional data is within the tolerance range of the target dimension, the method is terminated, and if it is not within the tolerance range, the input to the controller And correcting the final three-dimensional dimension of the mold cavity by the NC machine tool based on the corrected three-dimensional data.
請求項 2の方法により製造された金型を用いて発泡製品模型を成形する工程と、 前記成形された発泡製品模型を用いて消失模型铸造法により铸物を铸造するェ 程と、  A step of molding a foam product model using a mold manufactured by the method of claim 2, a step of forging a porcelain by a vanishing model forging method using the molded foam product model,
を含む铸物铸造方法。 A method for producing fried foods.
PCT/JP2006/316234 2005-08-29 2006-08-18 Casting method by sublimation pattern casting method and production method of metal mold for molding foamed product pattern WO2007026552A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005247371A JP2007061826A (en) 2005-08-29 2005-08-29 Method for casting cast product by evaporative pattern casting method, and method for manufacturing metallic mold for forming foamed product pattern
JP2005-247371 2005-08-29

Publications (1)

Publication Number Publication Date
WO2007026552A1 true WO2007026552A1 (en) 2007-03-08

Family

ID=37808651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316234 WO2007026552A1 (en) 2005-08-29 2006-08-18 Casting method by sublimation pattern casting method and production method of metal mold for molding foamed product pattern

Country Status (2)

Country Link
JP (1) JP2007061826A (en)
WO (1) WO2007026552A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103801654A (en) * 2012-11-06 2014-05-21 北汽福田汽车股份有限公司 Method used for manufacturing die foam full model
CN105069246A (en) * 2015-08-21 2015-11-18 广东富华铸锻有限公司 Method for rapidly improving primary development success rate of production line castings
US20210001399A1 (en) * 2019-07-05 2021-01-07 Raytheon Technologies Corporation Commercial Scale Casting Process including Optimization via Multi-Fidelity Optimization
CN116638061A (en) * 2023-06-14 2023-08-25 广州市型腔模具制造有限公司 Die casting size deformation control method for new energy automobile

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011000506A2 (en) * 2009-07-03 2011-01-06 Magma Giessereitechnologie Gmbh Simulation of a process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318450A (en) * 1989-06-15 1991-01-28 Honda Motor Co Ltd Manufacture of ceramic mold
JPH0327842A (en) * 1989-06-21 1991-02-06 Hitachi Metals Ltd Method for making casting plan in lost foam pattern casting
JPH0489154A (en) * 1990-07-31 1992-03-23 Nippon Piston Ring Co Ltd Method for forming lost foam pattern for hollow cam shaft
JPH08257683A (en) * 1995-03-22 1996-10-08 Ahresty Corp Manufacture of metallic mold for casting and forming
JPH10328781A (en) * 1997-06-04 1998-12-15 Sakurai Bijutsu Chuzo:Kk Precision casting method and trial manufacture of metallic product
JP2002373187A (en) * 2001-03-23 2002-12-26 Honda Motor Co Ltd Product designing device by computer support

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318450A (en) * 1989-06-15 1991-01-28 Honda Motor Co Ltd Manufacture of ceramic mold
JPH0327842A (en) * 1989-06-21 1991-02-06 Hitachi Metals Ltd Method for making casting plan in lost foam pattern casting
JPH0489154A (en) * 1990-07-31 1992-03-23 Nippon Piston Ring Co Ltd Method for forming lost foam pattern for hollow cam shaft
JPH08257683A (en) * 1995-03-22 1996-10-08 Ahresty Corp Manufacture of metallic mold for casting and forming
JPH10328781A (en) * 1997-06-04 1998-12-15 Sakurai Bijutsu Chuzo:Kk Precision casting method and trial manufacture of metallic product
JP2002373187A (en) * 2001-03-23 2002-12-26 Honda Motor Co Ltd Product designing device by computer support

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103801654A (en) * 2012-11-06 2014-05-21 北汽福田汽车股份有限公司 Method used for manufacturing die foam full model
CN105069246A (en) * 2015-08-21 2015-11-18 广东富华铸锻有限公司 Method for rapidly improving primary development success rate of production line castings
US20210001399A1 (en) * 2019-07-05 2021-01-07 Raytheon Technologies Corporation Commercial Scale Casting Process including Optimization via Multi-Fidelity Optimization
CN116638061A (en) * 2023-06-14 2023-08-25 广州市型腔模具制造有限公司 Die casting size deformation control method for new energy automobile
CN116638061B (en) * 2023-06-14 2023-11-21 广州市型腔模具制造有限公司 Die casting size deformation control method for new energy automobile

Also Published As

Publication number Publication date
JP2007061826A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
Jain et al. Feasibility study of manufacturing using rapid prototyping: FDM approach
Liu et al. Influence of complex structure on the shrinkage of part in investment casting process
Campbell The concept of net shape for castings
Hodbe et al. Design and simulation of LM 25 sand casting for defect minimization
WO2007026552A1 (en) Casting method by sublimation pattern casting method and production method of metal mold for molding foamed product pattern
Agapovichev et al. Application of additive technologies in the production of aircraft engine parts
Ferreira Manufacturing core-boxes for foundry with rapid tooling technology
Rodríguez-González et al. Comparative study of aluminum alloy casting obtained by sand casting method and additive manufacturing technology
JP2010052019A (en) Simulation method for sand mold casting
Kumar et al. A framework for developing a hybrid investment casting process
Nyembwe et al. Assessment of surface finish and dimensional accuracy of tools manufactured by metal casting in rapid prototyping sand moulds: general article
Harun et al. Characteristic studies of collapsibility of ABS patterns produced from FDM for investment casting
WO2007023738A1 (en) Production method of metal mold for molding foamed product pattern for use in sublimation pattern casting method
Singh et al. Investigations for statistically controlled rapid casting solution of low brass alloys using three dimensional printing
JP2004174512A (en) Casting method
Panchal et al. Design and analysis of gating and Risering system for casting of ball valves
Peters et al. Effect of mould expansion on pattern allowances in sand casting of steel
Nor et al. The effect of dewaxing and burnout temperature in block mold process for copper alloy casting
Omar et al. Differential ceramic shell thickness evaluation for direct rapid investment casting
Hock et al. Experimental studies on the accuracy of wax patterns used in investment casting
GORSKI et al. APPLICATION OF POLYSTYRENE PROTOTYPES MANUFACTURED BY FDM TECHNOLOGY FOR EVAPORATIVE CASTING METHOD.
Bihari et al. Effect of process parameters on roughness and hardness of surface and dimensional accuracy of lost wax process casting
Kamble et al. Optimized Design of Risering System for Casted Component by Using Web Based Online Simulation E-Tool
Maguire et al. Fastcast: Integration and application of rapid prototyping and computational simulation to investment casting
Reddy Casting Simulation of Automotive Wheel Rim Using Procast

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796545

Country of ref document: EP

Kind code of ref document: A1