WO2007023542A1 - Radiation imaging device and radiation detection signal processing method - Google Patents

Radiation imaging device and radiation detection signal processing method Download PDF

Info

Publication number
WO2007023542A1
WO2007023542A1 PCT/JP2005/015408 JP2005015408W WO2007023542A1 WO 2007023542 A1 WO2007023542 A1 WO 2007023542A1 JP 2005015408 W JP2005015408 W JP 2005015408W WO 2007023542 A1 WO2007023542 A1 WO 2007023542A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
image processing
output
processing
radiation
Prior art date
Application number
PCT/JP2005/015408
Other languages
French (fr)
Japanese (ja)
Inventor
Shoichi Okamura
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to PCT/JP2005/015408 priority Critical patent/WO2007023542A1/en
Publication of WO2007023542A1 publication Critical patent/WO2007023542A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/006Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods

Definitions

  • the present invention relates to a radiation imaging apparatus and a radiation detection signal processing method for obtaining a radiation image based on a radiation detection signal detected by irradiating a subject, and more particularly to output of an image processed image.
  • an imaging apparatus that detects an X-ray and obtains an X-ray image performs the following processing.
  • the detected signal is subjected to gamma curve conversion, spatial frequency processing according to the imaging region, Processing such as automatic brightness adjustment is performed. After many of these image processing, it is displayed on a monitor and printed on film.
  • Image Intensifier (I. I) has been used as an X-ray detector in the past.
  • flat panel X-ray detectors hereinafter abbreviated as “FPD”.
  • FPD flat panel X-ray detectors
  • correction processing such as offset correction, gain correction, and defect correction is further required before the above-described image processing.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-325494 (Page 5_7, Fig. 1)
  • image processing including correction processing such as the offset / gain Z defect correction described above requires a certain amount of processing time.
  • the ability to reduce the processing time to a level where there is no problem by installing an arithmetic processing circuit with high processing capacity Since the circuit is installed, It is difficult to shorten the management time. As a result, for example, it takes time to confirm the position (confirmation of the body position of the subject and the positional relationship with the FPD). If the position cannot be confirmed immediately, it will take time to re-shoot the image. As a result, improvement in examination efficiency is hindered, and the burden on the subject increases.
  • the present invention has been made in view of such circumstances, and provides a radiation imaging apparatus and a radiation detection signal processing method capable of reducing the time until output of an image for confirmation. For the purpose.
  • the present invention has the following configuration.
  • the radiation imaging apparatus of the present invention is a radiation imaging apparatus that obtains a radiation image based on a radiation detection signal, and detects radiation that has passed through the subject and radiation irradiating means that irradiates the subject with radiation.
  • a radiation detection means for performing the first image processing on the radiation detection signal for outputting the first image based on the radiation detection signal detected from the radiation detection means;
  • the first image pixel for outputting the second image based on the first image processed and output by the image processing means.
  • the first image processing means is detected from the radiation detection means in order to output the first image based on the radiation detection signal detected from the radiation detection means.
  • First image processing is performed on the detected radiation detection signal.
  • the second image processing means reduces the pixel amount of the first image.
  • the second image processing including at least the above processing is performed, and the third image processing means performs the third image processing on the first image, and uses the third image as a finally obtained radiation image.
  • the third image processing on the first image by the third image processing means is performed after the output result of the second image output by the second image processing means by the second image processing means, and the third image processing is performed on the second image.
  • the second image is output first for confirmation of the third image.
  • the second image processing includes at least processing in which the pixel amount of the first image is reduced. Therefore, until the second image is output by at least the reduced pixel amount. Time can be reduced. As a result, the time until the confirmation image is output can be reduced.
  • An example of the radiation imaging apparatus of the present invention is to configure each image processing unit so that the second image processing described above is different from the third image processing.
  • the time until the second image is output can be further reduced by the simple second image processing.
  • Another example of the radiation imaging apparatus of the present invention includes a first image storage unit that stores the first image described above, and the second image processing unit and the third image processing unit are included in the first image storage unit. Each image processing is performed based on the stored first image, and each image is output. Normally, in a series of image processing from obtaining a third image, which is the final radiation image, from the radiation detection signal, the image processed in the middle of the image processing is temporarily stored in the storage means. . In other words, image processing up to the middle stage When image processing is performed and the image stored in the storage means is the first image, the storage means becomes the first image storage means, and the third image is obtained using the first image stored in the first image storage means. Both the second and third images can be output for confirmation.
  • the first image processing unit, the second image processing unit, and the third image processing unit are configured such that the number of processing steps included in each image processing can be increased or decreased.
  • the radiation detection signal processing method of the present invention is a radiation detection signal processing method for performing signal processing for obtaining a radiation image based on a radiation detection signal detected by irradiating a subject, wherein the signal
  • the processing includes a first image processing step for performing a first image processing on the radiation detection signal in order to output a first image based on the radiation detection signal, and a first image processing in the first image processing step for output.
  • a second image processing step for performing a second image processing including at least a process of reducing the pixel amount of the first image in order to output a second image based on the first image, and a second image processing step.
  • the first image is output to output the third image based on the first image processed and output by the first image processing means.
  • the third image processing is performed for the second image output result.
  • a third image processing step for converting the third image into a radiation image finally obtained.
  • the first image processing is performed on the radiation detection signal in the first image processing step.
  • the second image processing step reduces the pixel amount of the first image.
  • the third image processing step the third image processing is performed on the first image, and the third image is finally obtained as a radiation image.
  • the third image processing for the first image in the third image processing step is performed after the output result of the second image output by the second image processing in the second image processing step, and the third image processing is performed. Perform according to the output result of the second image.
  • the third screen Output the second image first to confirm the image.
  • the second image processing includes at least a process in which the pixel amount of the first image is reduced. Therefore, until the second image is output by an amount corresponding to at least the reduced pixel amount. The time required can be reduced. As a result, it is possible to reduce the time until the output of the image for confirmation.
  • One example of the radiation detection signal processing method of the present invention is that the second image processing is different from the third image processing.
  • This example has the same effect as the example of the radiation imaging apparatus constituting each image processing means so that the second image processing is different from the third image processing.
  • Another example of the radiation detection signal processing method of the present invention is a first image storage step of storing the first image after the first image processing step and before the second image processing step.
  • each image processing is performed based on the first image stored in the first image storage step, and each image is output.
  • This example includes first image storage means for storing the first image, and the second image processing means and the third image processing means are configured to perform each image processing based on the first image stored in the first image storage means. The same effect as the other example of the radiation imaging apparatus that outputs each image is performed.
  • the number of steps for setting the number of steps of each process included in the first image processing, the second image processing, and the third image processing is set before the first image processing step. It is preferable to provide a setting step.
  • a preferred example is that the first image processing means, the second image processing means, and the third image processing means are configured such that the number of processes included in each image process can be increased and decreased, and the number of processes is set. The same effect as the preferred example of the radiation detection signal processing method including the number setting means is obtained.
  • the first image processing is performed on the radiation detection signal in order to output the first image based on the radiation detection signal.
  • the second image processing including at least the process of reducing the pixel amount of the first image is performed
  • Third image processing is performed on the first image
  • the third image is used as the final radiation image.
  • the third image processing for the first image is the same as the second image. This is performed after the output result of the processed and output second image, and the third image processing is performed according to the output result of the second image. That is, the second image is output first for confirmation of the third image.
  • the second image processing includes at least a process in which the pixel amount of the first image is reduced. Therefore, until the second image is output by at least the reduced pixel amount. Time can be reduced. As a result, it is possible to reduce the time until the confirmation image is output.
  • FIG. 1 is a block diagram of an X-ray fluoroscopic apparatus according to an embodiment.
  • FIG. 2 is an equivalent circuit of a flat panel X-ray detector used in an X-ray fluoroscopic apparatus and viewed from the side.
  • FIG. 4 is a block diagram showing a specific configuration of each image processing unit and a data flow of each image and the like.
  • FIG. 5 is a flowchart showing an example of a series of signal processing by each image processing unit.
  • FIG. 6 is a flowchart showing an example of a series of signal processing by each image processing unit.
  • FIG. 7 is a flowchart showing an example of a series of signal processing by each image processing unit.
  • FIG. 8 is a flowchart showing a series of signal processing by a conventional image processing unit used for comparison with FIGS.
  • FIG. 9 is an explanatory diagram schematically showing processing time required for the flowcharts of FIGS. 5 to 8.
  • the image processing means is divided into a first image processing means, a second image processing means, and a third image processing means, and the first image is based on the radiation detection signal detected from the radiation detection means.
  • the first image processing means performs first image processing on the radiation detection signal detected from the radiation detection means.
  • the second image processing unit calculates the pixel amount of the first image.
  • the second image processing including at least the reduced processing is performed, and the third image processing means performs the third image processing on the first image, and uses the third image as a finally obtained radiation image. If the second image is output first for confirmation of the third image, the second image processing for outputting the second image includes at least processing for reducing the pixel amount of the first image. The purpose of reducing the time required for image output was realized.
  • FIG. 1 is a block diagram of the X-ray fluoroscopic apparatus according to the embodiment
  • FIG. 2 is an equivalent circuit of the flat panel X-ray detector used in the X-ray fluoroscopic apparatus as viewed from the side.
  • Figure 3 shows the equivalent circuit of a flat panel X-ray detector in plan view.
  • a flat panel X-ray detector (hereinafter referred to as “FPD” as appropriate) is taken as an example of the radiation detection means
  • an X-ray fluoroscopic imaging device is taken as an example of the radiation imaging apparatus.
  • the X-ray fluoroscopic apparatus includes a top plate 1 on which a subject M is placed, and an X-ray tube 2 that emits X-rays toward the subject M. And an FPD 3 that detects X-rays transmitted through the subject M.
  • the X-ray tube 2 corresponds to the radiation irradiation means in this invention
  • the FPD 3 corresponds to the radiation detection means in this invention.
  • the X-ray fluoroscopic apparatus also includes a top panel control unit 4 that controls the elevation and horizontal movement of the top panel 1, an FPD control unit 5 that controls scanning of the FPD 3, and a tube voltage of the X-ray tube 2.
  • X-ray tube controller 7 that has a high voltage generator 6 that generates a tube current and X-ray detection that is an electric charge signal from FPD3
  • the A / D converter 8 that digitally extracts the output signal, the image processor 9 that performs various processing based on the X-ray detection signal output from the A / D converter 8, and each of these components It includes a controller 10 that controls the process, a memory unit 11 that stores processed images, an input unit 12 that allows the operator to make input settings, and a monitor 13 that displays processed images.
  • the top board control unit 4 horizontally moves the top board 1 to accommodate the subject M up to the imaging position, or moves the top board 1 up and down, rotates, and horizontally moves the subject M to a desired position, Take images while moving horizontally, or perform control to move horizontally after taking images and retreat from the imaging position.
  • the FPD control unit 5 performs control related to running by moving the FPD 3 horizontally or rotating around the body axis of the subject M.
  • the high voltage generator 6 generates a tube voltage and a tube current for irradiating X-rays and applies them to the X-ray tube 2.
  • the X-ray tube controller 7 moves the X-ray tube 2 horizontally, Performs control related to scanning by rotating around the body axis of M, and controls the setting of the illumination field of the collimator (not shown) on the X-ray tube 2 side.
  • the X-ray tube 2 and the FPD 3 move while facing each other so that the FPD 3 can detect the X-rays emitted from the X-ray tube 2.
  • the controller 10 is composed of a central processing unit (CPU) and the like, and the memory unit 11 is a storage medium represented by ROM (Read-only Memory), RAM (Random-Access Memory), and the like. It is configured.
  • the input unit 12 includes a pointing device represented by a mouse, a keyboard, a joystick, a trackball, and a touch panel.
  • the FPD 3 detects X-rays that have passed through the subject M, and the image processing unit 9 performs image processing based on the detected X-rays, thereby imaging the subject M.
  • the image processing unit 9 includes a first image processing unit 9a that performs first image processing on the X-ray detection signal to output a first image based on the X-ray detection signal, and a first image processing unit 9a.
  • a second image process that includes at least a process in which the amount of pixels of the first image is reduced to output a second image based on the first image that has been processed and output by the image processing unit 9a.
  • the third image processing unit 9c that performs the third image processing on the first image to output the first image is provided (see FIGS. 1 and 4).
  • the first image processing unit 9a corresponds to the first image processing unit in the present invention
  • the second image processing unit 9b corresponds to the second image processing unit in the present invention
  • the third image processing unit 9c This corresponds to the third image processing means in the invention.
  • the memory unit 11 includes a first image memory unit 11a for writing and storing a first image output by the first image processing by the first image processing unit 9a (FIG. 1, FIG. See 4).
  • the first image memory unit 11a corresponds to the first image storage means in this invention.
  • the FPD 3 includes a glass substrate 31 and a thin film transistor TFT formed on the glass substrate 31.
  • the thin film transistor TFT has a large number of switching elements 32 (for example, 3072 ⁇ 3072) formed in a vertical and horizontal two-dimensional matrix arrangement.
  • the switching elements 32 are formed separately from each other.
  • FPD3 is also a two-dimensional array radiation detector.
  • an X-ray sensitive semiconductor 34 is stacked on the carrier collection electrode 33, and the carrier collection electrode 33 is formed of the switching element 32 as shown in FIGS. Connected to source S.
  • a plurality of gate bus lines 36 are connected from the gate driver 35, and each gate bus line 36 is connected to the gate G of the switching element 32.
  • a multiplexer 37 that collects charge signals and outputs them to one is connected to a plurality of data bus lines 39 via amplifiers 38, as shown in FIGS.
  • each data bus line 39 is connected to the drain D of the switching element 32.
  • the gate of the switching element 32 is turned on by applying the voltage of the gate bus line 36 (or to OV), and the carrier collection electrode 33 is Then, the charge signal (carrier) converted from the X-ray incident on the detection surface side through the X-ray sensitive semiconductor 34 is read out to the data bus line 39 through the source S and drain D of the switching element 32. Until the switching element is turned ON, the charge signal is temporarily stored and stored in a capacitor (not shown).
  • Each data bus line 3 The charge signal read out at 9 is amplified by the amplifier 38 and is output as a single charge signal by the multiplexer 37. The output charge signal is digitized by the A / D converter 8
  • FIG. 4 is a block diagram showing the specific configuration of each image processing unit 9a to 9c and the flow of data such as each image.
  • Figs. 5 to 7 show a series of signal processing by each image processing unit 9a to 9c.
  • FIG. 8 is a flowchart showing a series of signal processing by a conventional image processing unit used for comparison of FIGS. 5 to 7, and
  • FIG. 9 is a flowchart showing FIGS. 5 to 8. It is explanatory drawing which represented typically the processing time concerning the flowchart. This process will be described by taking an example after the X-ray detection signal detected from the FPD 3 is digitized by the AZD converter 8.
  • the offset value is superimposed on the image due to the saddle current even though X-rays are not irradiated. Therefore, an offset image when X-rays are not irradiated is obtained in advance. Offset correction is performed to subtract the offset image from the original image based on the X-ray detection signal.
  • the gain of the output side is adjusted by adjusting the gain of the amplifier 38 for each detection element. This gain correction is also called “calibration”. Specifically, the amplified output is obtained in advance, and the gain is adjusted so that the output side is aligned.
  • the signal level of the pixel detected by the detection element may be abnormally high or low compared to the surrounding signal level. Therefore, if it is a force, replace it with the surrounding pixel values.
  • defect correction is performed by interpolating with values calculated based on peripheral pixel values.
  • Various correction processes other than steps S101 to S103 are performed.
  • Specific correction processing includes, for example, leakage current correction that corrects leakage current that occurs along the data bus line 39, correction of signal level difference (luminance difference) that occurs on the top, bottom, left, and right of the entire image, and FPD3 time There are lag corrections, line noise corrections with different values superimposed on each gate bus line 36, and electrostatic noise corrections.
  • the number of correction processes and types of correction processes are as follows. Different. Therefore, the number of correction processes and the types of correction processes are not particularly limited. If the correction process in step S104 is unnecessary, step S104 may be skipped.
  • Steps S10:! To S104 are image processing related to the characteristics of FPD3. Note that the processing after step S105 described later is image processing for facilitating diagnosis.
  • Step S 105 Various image processing
  • step S106 Various image processes other than steps S106 to S108 described later are performed before the gamma conversion in step S106.
  • Specific image processing includes, for example, dual energy subtraction.
  • the number of image processing and the type of image processing differ, including gamma conversion in step S106, frequency processing in step S107, and automatic brightness adjustment in step S108, which will be described later, depending on the imaging region and diagnostic purpose. Therefore, the number of image processing and the type of image processing are not particularly limited. If the image processing in step S105 is unnecessary, step S105 may be skipped.
  • gamma curve conversion Perform gamma curve conversion. Specifically, signal strength conversion processing is performed to correct non-linearity due to the characteristics of image output devices such as monitors and film processors, and to add contrast in a specific luminance range.
  • Spatial frequency processing is performed according to the imaging region. Specifically, without deteriorating the graininess, In order to emphasize the shading and shape shading in a well-balanced manner, processing to emphasize or reduce specific frequency components is performed.
  • the maximum value and the minimum value are set for all the remaining pixels so as to match that pixel. Performs automatic brightness adjustment that performs scaling to determine the range of.
  • the final image processed automatic brightness adjustment is the final image.
  • X-ray image obtained automatically.
  • an image that can be confirmed when the position is confirmed that is, an image that can be output and displayed, is an X-ray image that has been processed in all steps S 10:! To S 108. That is, in order to confirm the position, the image can be confirmed only after all the steps S101 to S108 are completed. Therefore, in this embodiment, a preview image is output and displayed as shown in FIG.
  • the image processing unit 9 is divided into a first image processing unit 9a, a second image processing unit 9b, and a third image processing unit 9c, and the conventional steps S101 to S108 described above are performed.
  • Each image process is also divided into a first image process, a second image process, and a third image process in accordance with the image processing units 9a to 9c. Specific examples of classification are shown in the flowcharts of FIGS.
  • the first image processing unit 9a performs the first image processing on the X-ray detection signal detected from the FPD 3. Do.
  • the first image processed and output by the first image processing unit 9a is sent to the first image memory unit 11a of the memory unit 11 via the controller 10, and the first image memory unit 11a It memorizes once by writing the first image to.
  • the stored first image is read out and sent to the second image processing unit 9b or the third image processing unit 9c via the controller 10.
  • the second image processing unit 9b performs the second image processing including at least the process of reducing the pixel amount of the first image, and
  • the three-image processing unit 9c performs third image processing on the first image.
  • the third image processing unit 9c uses the third image as the finally obtained X-ray image.
  • the output second image and third image are output and displayed on the monitor 13. If necessary, the second image and The third image may also be stored in the memory unit 11 in the same manner as the first image. Further, if necessary, the first image may be displayed on the monitor 13 in the same manner as the second image and the third image.
  • the third image processing on the first image by the third image processing unit 9c is second image processed by the second image processing unit 9b. This is performed after the output result of the second image output, and the third image processing is performed according to the output result of the second image. That is, the second image is output first for confirmation of the third image.
  • a preview is displayed on the monitor 13.
  • steps S1 to S3 are the first image processing by the first image processing unit 9a. Therefore, the image obtained through the offset correction, gain correction, and defect correction becomes the first image.
  • the first image is stored in the first image memory unit 11a. Steps S1 to S3 correspond to the first image processing step in this invention.
  • the second image processing is performed before the third image processing.
  • the entire first image is composed of 3072 x 3072 pixel values arranged vertically and horizontally, and in the process of reducing the pixel amount (hereinafter referred to as “cutout”) The following will be described assuming that an image consisting of an array of 768 x 768 pixel values in the vertical and horizontal directions is cut out.
  • the extracted 768 x 768 image is different from the original 3072 x 3072 image, and only the necessary processing for position confirmation is performed.
  • image processing 1 is performed as the various image processing required.
  • the processes after the various image processes here, as necessary processes, only the gamma conversion in step ⁇ 4 and the automatic brightness adjustment in step ⁇ 5 described later are performed. Therefore, the conventional frequency processing in step S107 is skipped.
  • Steps T1 to T5 correspond to the second image processing step in the present invention.
  • steps U1 to U5 corresponding to the third image processing by the third image processing unit 9c are performed.
  • steps U1 to U5 described later the first image of 3072 ⁇ 3072 will be described as a processing target.
  • Step U1 Various correction processes Since it is similar to the conventional step S104, its description is omitted.
  • Step U2 Various image processing
  • Step U4 frequency processing
  • steps U1 to U5 are the third image processing by the third image processing unit 9c. Therefore, the image obtained through various correction processes, various image processes, gamma conversion, frequency processing, and automatic brightness adjustment is the third image. Steps U1 to U5 correspond to the third image processing step in the present invention.
  • Step SI 1 Offset correction to (Step S14) Various correction processes
  • step S11 to S14 correspond to the first image processing step in the present invention.
  • step T1 in FIG. 5 Since it is the same as step T1 in FIG. 5, its description is omitted.
  • Step T12 Image processing 1 to (Step T14) Automatic brightness adjustment
  • Step T11 to T14 correspond to the second image processing step in the present invention.
  • step Ml Since it is the same as step Ml in FIG. 5, its description is omitted.
  • Step U11 Various image processing (Step U14) Automatic brightness adjustment
  • Step U11 to U14 correspond to the third image processing step in this invention.
  • step S21 to S26 correspond to the first image processing step in the present invention.
  • step T1 in FIG. 5 Since it is the same as step T1 in FIG. 5, its description is omitted.
  • step T21 Since this is the same as step T5 in FIG. 5, its description is omitted. However, in FIG. 7, since various correction processes in step T2 in FIG. 5 to gamma conversion power in step T4 until the first image is output (steps S24 to S26), the process has already been completed. Without performing the various correction processes in step T2 to gamma conversion in step T4, the cutout in step T21 also proceeds to automatic brightness adjustment in step T22. In step T21, ⁇ 22, the second image processing unit 9b The second image processing by Therefore, the image obtained through clipping and automatic brightness adjustment is the second image.
  • the steps T21 and 22 correspond to the second image processing step in the present invention.
  • step Ml Since it is the same as step Ml in FIG. 5, its description is omitted.
  • the processing in steps U21 and U22 is the third image processing by the third image processing unit 9c. Therefore, the image obtained through frequency processing and automatic brightness adjustment is the third image.
  • the steps U21 and U22 correspond to the third image processing step in the present invention.
  • FIGS. 5 to 7 The difference between FIGS. 5 to 7 described above is that the number of processing steps included in each of the image processing units 9a to 9c.
  • Step number is different.
  • the first image processing includes three steps S1 to S3 in FIG. 5, three steps S11 to S14 in FIG. 6 + the number of various correction processes, and step S21 in FIG. ⁇ S26 + various corrections / number of image processing steps are included
  • the second image processing includes steps T1- 4 steps of T5 + the number of processes of various image processing
  • Figure 6 includes 4 processes from Step T11 to ⁇ 14
  • Figure 7 includes 2 processes ⁇ ⁇ ⁇ ⁇ 21 and ⁇ 22.
  • 5 is the process of steps U1 to U5 + the number of various corrections / image processing
  • Figure 6 is the process of steps U11 to U14 + the number of various image processes
  • Figure 7 is the process of steps U21 and U22. Each of the two steps is included.
  • the time point at which the first image is stored in the first image memory unit 11a is also different from each other in FIGS.
  • the first image is stored at the time of step S3
  • the first image is stored at the time of step S14
  • the first image is stored at the time of step S26.
  • FIG. 9 schematically shows the processing time required for the flowcharts of FIGS. 5 to 8 including the conventional FIG.
  • the uppermost level is the processing time required for the conventional case in Fig. 8
  • the second level from the top is the processing time required for the time in Fig. 7,
  • the second level from the bottom is the time required for Fig. 6. This is the processing time required for the processing shown in FIG.
  • a second image is output as shown in FIG. 9 (in this embodiment, a preview display).
  • the number of processes included in the first image processing is 4 + numerical values indicating the number of various correction Z image processing, 3 + the number of various correction processing, “3”, and decreasing in the order of FIG. 7 to FIG.
  • the number of processes included in the second image is “2”, “4”, 4 + a numerical value indicating the number of various image processes and the number of processes increases in the order of Figs.
  • the time until the second image is output is reduced because the image used for the second image processing is a 768 x 768 image in which the amount of pixels of the first image (3072 x 3072 in this example) is reduced. Because there is. In other words, the time spent on the second image by reducing the amount of pixels is not so long in the order shown in Figs. Therefore, the time until the second image is output is reduced in the order of FIGS. Conversely, the time until the third image, which is the finally obtained X-ray image, is output becomes longer in the order of FIGS.
  • the image processing units 9a to 9c may be configured such that the number of processes included in each image process can be increased and decreased, and the number of processes is set.
  • the operator inputs input data such as a numerical value indicating the number of processing steps included in each image processing to the input unit 12.
  • the input data from the input unit 12 (in FIG. 4, setting of the number of processes) is sent to the image processing unit 9 via the controller 11.
  • “3” indicating the number of three processes for the first image processing is input to the input unit 12, and four processes for the second image processing + the number of processes for various image processing.
  • a numerical value indicating the number of processes is input to the input unit 12, and a numerical value indicating the number of steps of 3 for the third image processing + the number of various correction Z image processings is input to the input unit 12.
  • the input unit 12 corresponds to the process number setting means in this invention.
  • the numerical value input to the input unit 12 corresponds to the process number setting process in the present invention.
  • the numerical value input to the input unit 12 is performed before the first image processing step.
  • the process number setting means typified by the input unit 12 is not limited to the one configured by inputting the numerical values as described above, and is classified into, for example, a first image and a second image'third image.
  • the structure is not particularly limited as in the structure in which the number of processes is set by nominating the processes before and after the process.
  • the structure may be such that the number of steps is set in accordance with the processing capability of a device such as the controller 10. For example, when the processing capability is low, the number of processing steps included in each image processing is set so that the time until the second image is output is shortened.
  • the first image is output to output the second image. Since the two-image processing includes at least processing in which the pixel amount of the first image is reduced, it is possible to reduce the time until the second image is output by at least the reduced pixel amount. As a result, it is possible to reduce the time until the image for confirmation is output. Thereby, for example, the time until position confirmation can be reduced. As a result, the examination efficiency can be improved and the burden on the subject M can be reduced.
  • the second image processing is different from the third image processing.
  • various image processes in step U3 included in the third image process are simplified, and in the second image process, only image process 1 is performed in step T3, and step U4 included in the third image process is performed.
  • This frequency processing is skipped in the second image processing so that the second image processing is simpler than the third image processing. In such a case, it is possible to further reduce the time until the second image is output by the amount of simple second image processing.
  • the image processed in the middle of the image processing is stored in the memory unit 11 in the middle of the image processing.
  • the storage medium is the memory unit 11 shown in FIGS.
  • the first image memory unit 11a is used, and the second image and the third image for confirming the third image are both displayed using the first image stored in the first image memory unit 11a. Can be output.
  • each of the image processing units 9a to 9c is configured such that the number of processes included in each image process can be increased or decreased, and includes an input unit 12 that sets the number of processes. .
  • an input unit 12 that sets the number of processes.
  • the X-ray fluoroscopic apparatus as shown in FIG. 1 has been described as an example.
  • the present invention is, for example, an X-ray fluoroscopic apparatus disposed on a C-type arm. It can also be applied to equipment. The present invention may also be applied to an X-ray CT apparatus.
  • the flat panel X-ray detector (FPD) 3 has been described as an example.
  • the present invention can be applied to any X-ray detection means that is normally used. Is possible.
  • an X-ray detector for detecting X-rays has been described as an example.
  • the present invention is not limited to a radioisotope (RI) as in an ECT (Emission Computed Tomography) apparatus.
  • RI radioisotope
  • ECT Electronicd Tomography
  • the present invention is not particularly limited as long as it is an apparatus that detects an image by detecting radiation as exemplified by the ECT apparatus described above.
  • the FPD 3 includes a radiation (X-ray in the embodiment) -sensitive semiconductor, and directly converts the incident radiation into a charge signal using the radiation-sensitive semiconductor.
  • a radiation (X-ray in the embodiment) -sensitive semiconductor was directly converts the incident radiation into a charge signal using the radiation-sensitive semiconductor.
  • it was a conversion-type detector, it was equipped with a light-sensitive semiconductor instead of a radiation-sensitive type and a scintillator, and the incident radiation was converted into light by the scintillator. It may be an indirect conversion type detector that converts a charge signal using a semiconductor.
  • the second image processing is different from the third image processing in force S, and does not necessarily have to be different.
  • the second image processing may be the same as the third image processing.
  • the second image is an image for confirming the third image, there is no problem even if the second image processing is simpler than the third image processing as in the embodiment.
  • (6) in the above-described embodiment, in the middle of image processing, an image processed in the middle is temporarily stored in a storage medium represented by the memory unit 11 or the like, and image processing up to the middle stage is performed. Is the first image processing, but the image processing up to the stage before or after being stored in the storage medium may be the first image processing. In addition, it is not always necessary to store in the storage medium in the middle of image processing.
  • each of the image processing units 9a to 9c is configured so that the number of processes included in each image process can be increased and decreased, and a process number setting unit (set the number of processes) In the embodiment, the number of force processing steps provided with the input unit 12) may be fixed so that only one way is selected.
  • the output of the second image is displayed on the monitor 13 and displayed as a preview.
  • the output form of the second image is limited to the preview display on the monitor 13. Not. For example, it may be output to a printer.
  • the extraction has been described as an example of the process for reducing the pixel amount of the first image.
  • the process is not particularly limited as long as the process reduces the pixel amount, such as reducing the pixel amount.
  • the present invention is suitable for a radiation imaging apparatus equipped with a general-purpose arithmetic processing circuit such as a low-level machine or a general-purpose machine.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Image Processing (AREA)

Abstract

A radiation imaging device includes a first image processing unit, a second image processing unit, and a third image processing unit. the first image processing unit outputs a first image according to a radiation detection signal. The second image processing unit performs a second image processing including at least a process in which the first image pixel quantity is reduced and outputs a second image. The third image processing unit outputs a third image as a final radiation image according tot he first image. If the second image is outputted first for checking the third image, the second image processing includes at least a process which has reduced the first image pixel quantity and accordingly, it is possible to reduce the time until output of the second image by the reduced pixel quantity. As a result, it is possible to reduce the time until the output of the image for confirmation.

Description

明 細 書  Specification
放射線撮像装置および放射線検出信号処理方法  Radiation imaging apparatus and radiation detection signal processing method
技術分野  Technical field
[0001] この発明は、被検体を照射して検出された放射線検出信号に基づいて放射線画 像を得る放射線撮像装置および放射線検出信号処理方法に係り、特に、画像処理 された画像の出力に関する。  TECHNICAL FIELD [0001] The present invention relates to a radiation imaging apparatus and a radiation detection signal processing method for obtaining a radiation image based on a radiation detection signal detected by irradiating a subject, and more particularly to output of an image processed image.
背景技術  Background art
[0002] 放射線撮像装置の例として X線を検出して X線画像を得る撮像装置では、以下のよ うな処理が行われる。すなわち、 X線を被検体に向けて照射し、被検体を透過した X 線を検出器で検出した後に、その検出された信号に対してガンマ曲線変換や、撮像 部位に応じた空間周波数処理、 自動輝度調整などの処理が行われる。これらの多く の画像処理を経た後に、モニタに表示されて、フィルムに焼き付けられる。  As an example of a radiation imaging apparatus, an imaging apparatus that detects an X-ray and obtains an X-ray image performs the following processing. In other words, after irradiating the subject with X-rays and detecting the X-rays transmitted through the subject with a detector, the detected signal is subjected to gamma curve conversion, spatial frequency processing according to the imaging region, Processing such as automatic brightness adjustment is performed. After many of these image processing, it is displayed on a monitor and printed on film.
[0003] 従来において X線検出器としてイメージインテンシファイア(I. I)が用いられていた 力 近年において、フラットパネル型 X線検出器 (以下、『FPD』と略記する)が用いら れている。 FPDの場合には、上述した画像処理に前に、オフセット補正、ゲイン補正 、欠損補正などの補正処理がさらに必要となる。  [0003] Image Intensifier (I. I) has been used as an X-ray detector in the past. In recent years, flat panel X-ray detectors (hereinafter abbreviated as “FPD”) have been used. Yes. In the case of FPD, correction processing such as offset correction, gain correction, and defect correction is further required before the above-described image processing.
[0004] ところで、画像を取得した直後では補正処理を施していないプレビュー画像を出力 表示して、そのプレビュー画像を画像の確認のために用いて、さらに補正用画像取 得後では補正処理後の放射線画像を出力する技術がある(例えば、特許文献 1参照 [0004] By the way, a preview image that has not been subjected to correction processing is output and displayed immediately after the image is acquired, and the preview image is used for confirmation of the image. There is a technique for outputting a radiation image (for example, see Patent Document 1)
) o ) o
特許文献 1 :特開 2003— 325494号公報(第 5 _ 7頁、図 1)  Patent Document 1: Japanese Patent Laid-Open No. 2003-325494 (Page 5_7, Fig. 1)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力、しながら、上述したオフセット/ゲイン Z欠損補正といった補正処理を含んだ画 像処理にはある程度の処理時間を要する。高級機の場合には、処理能力の高い演 算処理回路を搭載することで、処理時間を問題ない程度にまで短縮する方法が採ら れる力 低級機や汎用機の場合には、汎用の演算処理回路を搭載しているので、処 理時間を短縮化するのが難しい。それによつて、例えば位置確認 (被検体の***や FPDとの位置関係の確認)までに時間を要してしまうという問題につながる。位置確 認が即座に行えないと、撮像の撮り直しなどが手間取る。その結果、検査効率の向 上を妨げ、被検体への負担が増大してしまう。 However, image processing including correction processing such as the offset / gain Z defect correction described above requires a certain amount of processing time. In the case of high-end machines, the ability to reduce the processing time to a level where there is no problem by installing an arithmetic processing circuit with high processing capacity. Since the circuit is installed, It is difficult to shorten the management time. As a result, for example, it takes time to confirm the position (confirmation of the body position of the subject and the positional relationship with the FPD). If the position cannot be confirmed immediately, it will take time to re-shoot the image. As a result, improvement in examination efficiency is hindered, and the burden on the subject increases.
[0006] そこで、位置確認が行える程度にまで画像処理を施した途中の段階で、画像処理 で得られた画像をプレビュー表示する手法が、一般的に採用されている。しかし、こ の手法では、プレビュー画像は、本来の画像サイズのままで補正処理を含んだ画像 処理が行われている。そして、後段で時間のかかる処理、例えば撮像部位に応じた 空間周波数処理を施す手前の時点の画像をプレビュー画像として用いることが多い 。したがって、処理そのものは、比較的にシンプノレである力 プレビュー画像を出力 するまでに多少の時間がかかってしまう。 [0006] Therefore, a method is generally adopted in which an image obtained by image processing is displayed in a preview in the middle of performing image processing to such an extent that position confirmation can be performed. However, in this method, the preview image is subjected to image processing including correction processing while maintaining the original image size. In many cases, an image at a point in time before performing a time-consuming process, for example, a spatial frequency process corresponding to an imaging region, is used as a preview image. Therefore, the process itself takes some time to output a relatively simple force preview image.
[0007] また、上述した特許文献 1のように、最終的に得られる放射線画像(特許文献 1では 第 2画像)とは別に、補正処理を施していないプレビュー画像(特許文献 1では第 1画 像)を用意する手法があり、この手法ではプレビュー画像を出力するまでの時間を低 減させることができる。さらには、最終的に得られる放射線画像の出力までの時間を 低減させることができる。このような特許文献 1のような手法以外にも、画像の出力ま での時間を低減させることができる別の手法が望まれる。  [0007] In addition to the radiation image finally obtained (second image in Patent Document 1) as in Patent Document 1 described above, a preview image that has not been subjected to correction processing (the first image in Patent Document 1). Image), and this method can reduce the time required to output a preview image. Furthermore, the time until the output of the finally obtained radiographic image can be reduced. In addition to the technique described in Patent Document 1, another technique that can reduce the time until image output is desired.
[0008] この発明は、このような事情に鑑みてなされたものであって、確認のための画像の 出力までの時間を低減させることができる放射線撮像装置および放射線検出信号処 理方法を提供することを目的とする。  [0008] The present invention has been made in view of such circumstances, and provides a radiation imaging apparatus and a radiation detection signal processing method capable of reducing the time until output of an image for confirmation. For the purpose.
課題を解決するための手段  Means for solving the problem
[0009] この発明は、このような目的を達成するために、次のような構成をとる。  In order to achieve such an object, the present invention has the following configuration.
すなわち、この発明の放射線撮像装置は、放射線検出信号に基づいて放射線画 像を得る放射線撮像装置であって、被検体に向けて放射線を照射する放射線照射 手段と、被検体を透過した放射線を検出する放射線検出手段と、放射線検出手段か ら検出された放射線検出信号に基づいて第 1画像を出力するために放射線検出信 号に対して第 1画像処理を行う第 1画像処理手段と、第 1画像処理手段で第 1画像処 理されて出力された第 1画像に基づいて第 2画像を出力するために第 1画像の画素 量を減らした処理を少なくとも含んだ第 2画像処理を行う第 2画像処理手段と、第 1画 像処理手段で第 1画像処理されて出力された第 1画像に基づいて第 3画像を出力す るために第 1画像に対して第 3画像処理を行い、その第 3画像を最終的に得られる放 射線画像とする第 3画像処理手段とを備えていることを特徴とするものである。 That is, the radiation imaging apparatus of the present invention is a radiation imaging apparatus that obtains a radiation image based on a radiation detection signal, and detects radiation that has passed through the subject and radiation irradiating means that irradiates the subject with radiation. A radiation detection means for performing the first image processing on the radiation detection signal for outputting the first image based on the radiation detection signal detected from the radiation detection means; The first image pixel for outputting the second image based on the first image processed and output by the image processing means. A second image processing means for performing a second image processing including at least a process with a reduced amount, and a third image based on the first image processed and output by the first image processing means. Therefore, the image processing apparatus includes a third image processing unit that performs third image processing on the first image and uses the third image as a radiation image that is finally obtained.
[0010] この発明の放射線撮像装置によれば、放射線検出手段から検出された放射線検 出信号に基づいて第 1画像を出力するために、第 1画像処理手段は、放射線検出手 段から検出された放射線検出信号に対して第 1画像処理を行う。その第 1画像処理 手段で第 1画像処理されて出力された第 1画像に基づいて第 2画像および第 3画像 を出力するために、第 2画像処理手段は、第 1画像の画素量を減らした処理を少なく とも含んだ第 2画像処理を行うとともに、第 3画像処理手段は、第 1画像に対して第 3 画像処理を行い、その第 3画像を最終的に得られる放射線画像とする。第 3画像処 理手段による第 1画像に対する第 3画像処理を、第 2画像処理手段によって第 2画像 処理されて出力された第 2画像の出力結果の後に行い、その第 3画像処理を第 2画 像の出力結果に応じて行うとする。すなわち、第 3画像の確認のために第 2画像を先 に出力する。すると、第 2画像を出力するために第 2画像処理は、第 1画像の画素量 を減らした処理を少なくとも含んでレ、るので、少なくとも減らした画素量の分だけ第 2 画像を出力するまでの時間を低減させることができる。その結果、確認のための画像 の出力までの時間を低減させることができる。  According to the radiation imaging apparatus of the present invention, the first image processing means is detected from the radiation detection means in order to output the first image based on the radiation detection signal detected from the radiation detection means. First image processing is performed on the detected radiation detection signal. In order to output the second image and the third image based on the first image processed and output by the first image processing means, the second image processing means reduces the pixel amount of the first image. The second image processing including at least the above processing is performed, and the third image processing means performs the third image processing on the first image, and uses the third image as a finally obtained radiation image. The third image processing on the first image by the third image processing means is performed after the output result of the second image output by the second image processing means by the second image processing means, and the third image processing is performed on the second image. Assume that this is done according to the output result of the image. That is, the second image is output first for confirmation of the third image. Then, in order to output the second image, the second image processing includes at least processing in which the pixel amount of the first image is reduced. Therefore, until the second image is output by at least the reduced pixel amount. Time can be reduced. As a result, the time until the confirmation image is output can be reduced.
[0011] この発明の放射線撮像装置の一例は、上述した第 2画像処理が第 3画像処理と異 なるように、各画像処理手段を構成することである。特に、第 2画像処理が第 3画像処 理よりも簡易な処理の場合には、簡易な第 2画像処理の分だけ、第 2画像を出力する までの時間をより一層低減させることができる。  An example of the radiation imaging apparatus of the present invention is to configure each image processing unit so that the second image processing described above is different from the third image processing. In particular, when the second image processing is simpler than the third image processing, the time until the second image is output can be further reduced by the simple second image processing.
[0012] この発明の放射線撮像装置の他の一例は、上述した第 1画像を記憶する第 1画像 記憶手段を備え、第 2画像処理手段および第 3画像処理手段は、第 1画像記憶手段 に記憶された第 1画像に基づいて各画像処理をそれぞれ行って、各画像をそれぞれ 出力することである。通常、放射線検出信号から最終的な放射線画像である第 3画 像を得るまでの一連の画像処理では、画像処理の途中の段階で、その途中で処理さ れた画像を記憶手段に一旦記憶する。つまり、途中の段階までの画像処理を第 1画 像処理とし、記憶手段に記憶される画像を第 1画像とすると、記憶手段は第 1画像記 憶手段となり、その第 1画像記憶手段に記憶された第 1画像を利用して、第 3画像の 確認のための第 2画像、および第 3画像をともにそれぞれ出力することができる。 Another example of the radiation imaging apparatus of the present invention includes a first image storage unit that stores the first image described above, and the second image processing unit and the third image processing unit are included in the first image storage unit. Each image processing is performed based on the stored first image, and each image is output. Normally, in a series of image processing from obtaining a third image, which is the final radiation image, from the radiation detection signal, the image processed in the middle of the image processing is temporarily stored in the storage means. . In other words, image processing up to the middle stage When image processing is performed and the image stored in the storage means is the first image, the storage means becomes the first image storage means, and the third image is obtained using the first image stored in the first image storage means. Both the second and third images can be output for confirmation.
[0013] また、この発明の放射線撮像装置は、第 1画像処理手段、第 2画像処理手段およ び第 3画像処理手段を、各画像処理に含まれる処理の工程の数が増減可能に構成 し、工程の数を設定する工程数設定手段を備えるのが好ましい。このような工程数設 定手段を備えることで、各々の第 1〜第 3画像処理に含まれる工程の数を自在に設 定すること力 Sできる。 In the radiation imaging apparatus of the present invention, the first image processing unit, the second image processing unit, and the third image processing unit are configured such that the number of processing steps included in each image processing can be increased or decreased. In addition, it is preferable to include a process number setting means for setting the number of processes. By providing such a process number setting means, it is possible to freely set the number of processes included in each of the first to third image processes.
[0014] また、この発明の放射線検出信号処理方法は、被検体を照射して検出された放射 線検出信号に基づいて放射線画像を得る信号処理を行う放射線検出信号処理方法 であって、前記信号処理は、放射線検出信号に基づいて第 1画像を出力するために 放射線検出信号に対して第 1画像処理を行う第 1画像処理工程と、第 1画像処理ェ 程で第 1画像処理されて出力された第 1画像に基づいて第 2画像を出力するために 第 1画像の画素量を減らした処理を少なくとも含んだ第 2画像処理を行う第 2画像処 理工程と、第 2画像処理工程で第 2画像処理されて出力された第 2画像の出力結果 の後に、第 1画像処理手段で第 1画像処理されて出力された第 1画像に基づいて第 3画像を出力するために第 1画像に対して第 3画像処理を第 2画像の出力結果に応 じて行い、その第 3画像を最終的に得られる放射線画像とする第 3画像処理工程とを 備えていることを特徴とするものである。  The radiation detection signal processing method of the present invention is a radiation detection signal processing method for performing signal processing for obtaining a radiation image based on a radiation detection signal detected by irradiating a subject, wherein the signal The processing includes a first image processing step for performing a first image processing on the radiation detection signal in order to output a first image based on the radiation detection signal, and a first image processing in the first image processing step for output. A second image processing step for performing a second image processing including at least a process of reducing the pixel amount of the first image in order to output a second image based on the first image, and a second image processing step. After the output result of the second image processed and output by the second image, the first image is output to output the third image based on the first image processed and output by the first image processing means. The third image processing is performed for the second image output result. And a third image processing step for converting the third image into a radiation image finally obtained.
[0015] また、この発明の放射線検出信号処理方法によれば、放射線検出信号に基づいて 第 1画像を出力するために、第 1画像処理工程では、放射線検出信号に対して第 1 画像処理を行う。その第 1画像処理工程で第 1画像処理されて出力された第 1画像 に基づいて第 2画像および第 3画像を出力するために、第 2画像処理工程では、第 1 画像の画素量を減らした処理を少なくとも含んだ第 2画像処理を行うとともに、第 3画 像処理工程では、第 1画像に対して第 3画像処理を行い、その第 3画像を最終的に 得られる放射線画像とする。なお、第 3画像処理工程での第 1画像に対する第 3画像 処理を、第 2画像処理工程で第 2画像処理されて出力された第 2画像の出力結果の 後に行い、その第 3画像処理を第 2画像の出力結果に応じて行う。すなわち、第 3画 像の確認のために第 2画像を先に出力する。すると、第 2画像を出力するために第 2 画像処理は、第 1画像の画素量を減らした処理を少なくとも含んでいるので、少なくと も減らした画素量の分だけ第 2画像を出力するまでの時間を低減させることができる 。その結果、確認のための画像の出力までの時間を低減させることができる。 [0015] According to the radiation detection signal processing method of the present invention, in order to output the first image based on the radiation detection signal, the first image processing is performed on the radiation detection signal in the first image processing step. Do. In order to output the second image and the third image based on the first image processed and output in the first image processing step, the second image processing step reduces the pixel amount of the first image. In the third image processing step, the third image processing is performed on the first image, and the third image is finally obtained as a radiation image. The third image processing for the first image in the third image processing step is performed after the output result of the second image output by the second image processing in the second image processing step, and the third image processing is performed. Perform according to the output result of the second image. That is, the third screen Output the second image first to confirm the image. Then, in order to output the second image, the second image processing includes at least a process in which the pixel amount of the first image is reduced. Therefore, until the second image is output by an amount corresponding to at least the reduced pixel amount. The time required can be reduced. As a result, it is possible to reduce the time until the output of the image for confirmation.
[0016] この発明の放射線検出信号処理方法の一例は、第 2画像処理が第 3画像処理と異 なることである。この一例は、第 2画像処理が第 3画像処理と異なるように、各画像処 理手段を構成する放射線撮像装置の一例と同様の作用'効果を奏する。  [0016] One example of the radiation detection signal processing method of the present invention is that the second image processing is different from the third image processing. This example has the same effect as the example of the radiation imaging apparatus constituting each image processing means so that the second image processing is different from the third image processing.
[0017] また、この発明の放射線検出信号処理方法の他の一例は、第 1画像処理工程の後 で、かつ第 2画像処理工程よりも前に、第 1画像を記憶する第 1画像記憶工程を備え 、第 2画像処理工程および第 3画像処理工程では、第 1画像記憶工程で記憶された 第 1画像に基づいて各画像処理をそれぞれ行って、各画像をそれぞれ出力すること である。この一例は、第 1画像を記憶する第 1画像記憶手段を備え、第 2画像処理手 段および第 3画像処理手段は、第 1画像記憶手段に記憶された第 1画像に基づいて 各画像処理をそれぞれ行って、各画像をそれぞれ出力する放射線撮像装置の他の 一例と同様の作用'効果を奏する。  [0017] Another example of the radiation detection signal processing method of the present invention is a first image storage step of storing the first image after the first image processing step and before the second image processing step. In the second image processing step and the third image processing step, each image processing is performed based on the first image stored in the first image storage step, and each image is output. This example includes first image storage means for storing the first image, and the second image processing means and the third image processing means are configured to perform each image processing based on the first image stored in the first image storage means. The same effect as the other example of the radiation imaging apparatus that outputs each image is performed.
[0018] また、この放射線検出信号処理方法は、第 1画像処理工程の前に、第 1画像処理、 第 2画像処理および第 3画像処理に含まれる各処理の工程の数を設定する工程数 設定工程を備えるのが好ましい。この好ましい一例は、第 1画像処理手段、第 2画像 処理手段および第 3画像処理手段を、各画像処理に含まれる処理の工程の数が増 減可能に構成し、工程の数を設定する工程数設定手段を備える放射線検出信号処 理方法の好ましい一例と同様の作用'効果を奏する。  [0018] Further, in this radiation detection signal processing method, the number of steps for setting the number of steps of each process included in the first image processing, the second image processing, and the third image processing is set before the first image processing step. It is preferable to provide a setting step. A preferred example is that the first image processing means, the second image processing means, and the third image processing means are configured such that the number of processes included in each image process can be increased and decreased, and the number of processes is set. The same effect as the preferred example of the radiation detection signal processing method including the number setting means is obtained.
発明の効果  The invention's effect
[0019] この発明に係る放射線撮像装置および放射線検出信号処理方法によれば、放射 線検出信号に基づいて第 1画像を出力するために放射線検出信号に対して第 1画 像処理を行う。第 1画像処理されて出力された第 1画像に基づいて第 2画像および第 3画像を出力するために、第 1画像の画素量を減らした処理を少なくとも含んだ第 2 画像処理を行うとともに、第 1画像に対して第 3画像処理を行い、その第 3画像を最終 的に得られる放射線画像とする。なお、第 1画像に対する第 3画像処理を、第 2画像 処理されて出力された第 2画像の出力結果の後に行い、その第 3画像処理を第 2画 像の出力結果に応じて行う。すなわち、第 3画像の確認のために第 2画像を先に出 力する。すると、第 2画像を出力するために第 2画像処理は、第 1画像の画素量を減 らした処理を少なくとも含んでいるので、少なくとも減らした画素量の分だけ第 2画像 を出力するまでの時間を低減させることができる。その結果、確認のための画像の出 力までの時間を低減させることができる。 According to the radiation imaging apparatus and the radiation detection signal processing method according to the present invention, the first image processing is performed on the radiation detection signal in order to output the first image based on the radiation detection signal. In order to output the second image and the third image based on the first image processed and output from the first image, the second image processing including at least the process of reducing the pixel amount of the first image is performed, Third image processing is performed on the first image, and the third image is used as the final radiation image. Note that the third image processing for the first image is the same as the second image. This is performed after the output result of the processed and output second image, and the third image processing is performed according to the output result of the second image. That is, the second image is output first for confirmation of the third image. Then, in order to output the second image, the second image processing includes at least a process in which the pixel amount of the first image is reduced. Therefore, until the second image is output by at least the reduced pixel amount. Time can be reduced. As a result, it is possible to reduce the time until the confirmation image is output.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]実施例に係る X線透視撮影装置のブロック図である。  FIG. 1 is a block diagram of an X-ray fluoroscopic apparatus according to an embodiment.
[図 2]X線透視撮影装置に用いられてレ、る側面視したフラットパネル型 X線検出器の 等価回路である。  FIG. 2 is an equivalent circuit of a flat panel X-ray detector used in an X-ray fluoroscopic apparatus and viewed from the side.
[図 3]平面視したフラットパネル型 X線検出器の等価回路である。  [Fig. 3] Equivalent circuit of flat panel X-ray detector in plan view.
[図 4]各画像処理部の具体的な構成および各画像等のデータの流れを示したブロッ ク図である。  FIG. 4 is a block diagram showing a specific configuration of each image processing unit and a data flow of each image and the like.
[図 5]各画像処理部による一連の信号処理の一例を示すフローチャートである。  FIG. 5 is a flowchart showing an example of a series of signal processing by each image processing unit.
[図 6]各画像処理部による一連の信号処理の一例を示すフローチャートである。  FIG. 6 is a flowchart showing an example of a series of signal processing by each image processing unit.
[図 7]各画像処理部による一連の信号処理の一例を示すフローチャートである。  FIG. 7 is a flowchart showing an example of a series of signal processing by each image processing unit.
[図 8]図 5〜図 7の比較のために用いられる従来の画像処理部による一連の信号処 理を示すフローチャートである。  FIG. 8 is a flowchart showing a series of signal processing by a conventional image processing unit used for comparison with FIGS.
[図 9]図 5〜図 8のフローチャートのときにかかる処理時間を模式的に表した説明図で ある。  FIG. 9 is an explanatory diagram schematically showing processing time required for the flowcharts of FIGS. 5 to 8.
符号の説明  Explanation of symbols
[0021] 2 · · · X線管 [0021] 2 · · · X-ray tube
3 · · · フラットパネル型 X線検出器 (FPD)  3 · · · Flat panel X-ray detector (FPD)
9 … 画像処理部  9… Image processing section
9a … 第 1画像処理部  9a… 1st image processing section
9b … 第 2画像処理部  9b Second image processing unit
9c … 第 3画像処理部  9c 3rd image processing unit
11a … 第 1画像用メモリ部 12 … 入力部 11a… 1st image memory 12… Input section
M … 被検体  M… Subject
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 放射線撮像装置において画像処理手段を、第 1画像処理手段と第 2画像処理手段 と第 3画像処理手段とに分けて、放射線検出手段から検出された放射線検出信号に 基づいて第 1画像を出力するために、第 1画像処理手段は、放射線検出手段から検 出された放射線検出信号に対して第 1画像処理を行う。その第 1画像処理手段で第 1画像処理されて出力された第 1画像に基づいて第 2画像および第 3画像を出力す るために、第 2画像処理手段は、第 1画像の画素量を減らした処理を少なくとも含ん だ第 2画像処理を行うとともに、第 3画像処理手段は、第 1画像に対して第 3画像処理 を行い、その第 3画像を最終的に得られる放射線画像とする。第 3画像の確認のため に第 2画像を先に出力すると、第 2画像を出力するために第 2画像処理は、第 1画像 の画素量を減らした処理を少なくとも含んでいるので、確認のための画像の出力まで の時間を低減させるという目的を実現した。 In the radiation imaging apparatus, the image processing means is divided into a first image processing means, a second image processing means, and a third image processing means, and the first image is based on the radiation detection signal detected from the radiation detection means. The first image processing means performs first image processing on the radiation detection signal detected from the radiation detection means. In order to output the second image and the third image based on the first image processed and output by the first image processing unit, the second image processing unit calculates the pixel amount of the first image. The second image processing including at least the reduced processing is performed, and the third image processing means performs the third image processing on the first image, and uses the third image as a finally obtained radiation image. If the second image is output first for confirmation of the third image, the second image processing for outputting the second image includes at least processing for reducing the pixel amount of the first image. The purpose of reducing the time required for image output was realized.
実施例  Example
[0023] 以下、図面を参照してこの発明の実施例を説明する。図 1は、実施例に係る X線透 視撮影装置のブロック図であり、図 2は、 X線透視撮影装置に用いられている側面視 したフラットパネル型 X線検出器の等価回路であり、図 3は、平面視したフラットパネ ル型 X線検出器の等価回路である。本実施例では放射線検出手段としてフラットパ ネル型 X線検出器 (以下、適宜「FPD」という)を例に採るとともに、放射線撮像装置と して X線透視撮影装置を例に採つて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of the X-ray fluoroscopic apparatus according to the embodiment, and FIG. 2 is an equivalent circuit of the flat panel X-ray detector used in the X-ray fluoroscopic apparatus as viewed from the side. Figure 3 shows the equivalent circuit of a flat panel X-ray detector in plan view. In this embodiment, a flat panel X-ray detector (hereinafter referred to as “FPD” as appropriate) is taken as an example of the radiation detection means, and an X-ray fluoroscopic imaging device is taken as an example of the radiation imaging apparatus.
[0024] 本実施例に係る X線透視撮影装置は、図 1に示すように、被検体 Mを載置する天 板 1と、その被検体 Mに向けて X線を照射する X線管 2と、被検体 Mを透過した X線を 検出する FPD3とを備えている。 X線管 2は、この発明における放射線照射手段に相 当し、 FPD3はこの発明における放射線検出手段に相当する。  As shown in FIG. 1, the X-ray fluoroscopic apparatus according to the present embodiment includes a top plate 1 on which a subject M is placed, and an X-ray tube 2 that emits X-rays toward the subject M. And an FPD 3 that detects X-rays transmitted through the subject M. The X-ray tube 2 corresponds to the radiation irradiation means in this invention, and the FPD 3 corresponds to the radiation detection means in this invention.
[0025] X線透視撮影装置は、他に、天板 1の昇降および水平移動を制御する天板制御部 4や、 FPD3の走査を制御する FPD制御部 5や、 X線管 2の管電圧や管電流を発生 させる高電圧発生部 6を有する X線管制御部 7や、 FPD3から電荷信号である X線検 出信号をディジタルィ匕して取り出す A/D変換器 8や、 A/D変換器 8から出力され た X線検出信号に基づいて種々の処理を行う画像処理部 9や、これらの各構成部を 統括するコントローラ 10や、処理された画像などを記憶するメモリ部 11や、オペレー タが入力設定を行う入力部 12や、処理された画像などを表示するモニタ 13などを備 えている。 [0025] The X-ray fluoroscopic apparatus also includes a top panel control unit 4 that controls the elevation and horizontal movement of the top panel 1, an FPD control unit 5 that controls scanning of the FPD 3, and a tube voltage of the X-ray tube 2. X-ray tube controller 7 that has a high voltage generator 6 that generates a tube current and X-ray detection that is an electric charge signal from FPD3 The A / D converter 8 that digitally extracts the output signal, the image processor 9 that performs various processing based on the X-ray detection signal output from the A / D converter 8, and each of these components It includes a controller 10 that controls the process, a memory unit 11 that stores processed images, an input unit 12 that allows the operator to make input settings, and a monitor 13 that displays processed images.
[0026] 天板制御部 4は、天板 1を水平移動させて被検体 Mを撮像位置にまで収容したり、 昇降、回転および水平移動させて被検体 Mを所望の位置に設定したり、水平移動さ せながら撮像を行ったり、撮像終了後に水平移動させて撮像位置から退避させる制 御などを行う。 FPD制御部 5は、 FPD3を水平移動させたり、被検体 Mの体軸の軸心 周りに回転移動させることによる走查に関する制御などを行う。高電圧発生部 6は、 X 線を照射させるための管電圧や管電流を発生して X線管 2に与え、 X線管制御部 7は 、 X線管 2を水平移動させたり、被検体 Mの体軸の軸心周りに回転移動させることに よる走査に関する制御や、 X線管 2側のコリメータ(図示省略)の照視野の設定の制 御などを行う。なお、 X線管 2や FPD3の走査の際には、 X線管 2から照射された X線 を FPD3が検出できるように X線管 2および FPD3が互いに対向しながらそれぞれの 移動を行う。  [0026] The top board control unit 4 horizontally moves the top board 1 to accommodate the subject M up to the imaging position, or moves the top board 1 up and down, rotates, and horizontally moves the subject M to a desired position, Take images while moving horizontally, or perform control to move horizontally after taking images and retreat from the imaging position. The FPD control unit 5 performs control related to running by moving the FPD 3 horizontally or rotating around the body axis of the subject M. The high voltage generator 6 generates a tube voltage and a tube current for irradiating X-rays and applies them to the X-ray tube 2. The X-ray tube controller 7 moves the X-ray tube 2 horizontally, Performs control related to scanning by rotating around the body axis of M, and controls the setting of the illumination field of the collimator (not shown) on the X-ray tube 2 side. When scanning the X-ray tube 2 or the FPD 3, the X-ray tube 2 and the FPD 3 move while facing each other so that the FPD 3 can detect the X-rays emitted from the X-ray tube 2.
[0027] コントローラ 10は、中央演算処理装置(CPU)などで構成されており、メモリ部 11は 、 ROM (Read-only Memory)や RAM (Random- Access Memory)などに代表される 記憶媒体などで構成されている。また、入力部 12は、マウスやキーボードやジョイス ティックゃトラックボールゃタツチパネルなどに代表されるポインティングデバイスで構 成されている。 X線透視撮影装置では、被検体 Mを透過した X線を FPD3が検出して 、検出された X線に基づいて画像処理部 9で画像処理を行うことで被検体 Mの撮像 を行う。  The controller 10 is composed of a central processing unit (CPU) and the like, and the memory unit 11 is a storage medium represented by ROM (Read-only Memory), RAM (Random-Access Memory), and the like. It is configured. The input unit 12 includes a pointing device represented by a mouse, a keyboard, a joystick, a trackball, and a touch panel. In the fluoroscopic imaging apparatus, the FPD 3 detects X-rays that have passed through the subject M, and the image processing unit 9 performs image processing based on the detected X-rays, thereby imaging the subject M.
[0028] なお、画像処理部 9は、 X線検出信号に基づいて第 1画像を出力するために X線検 出信号に対して第 1画像処理を行う第 1画像処理部 9aと、第 1画像処理部 9aで第 1 画像処理されて出力された第 1画像に基づいて第 2画像を出力するために第 1画像 の画素量を減らした処理を少なくとも含んだ第 2画像処理を行う第 2画像処理部 9bと 、第 1画像処理部 9aで第 1画像処理されて出力された第 1画像に基づいて第 3画像 を出力するために第 1画像に対して第 3画像処理を行う第 3画像処理部 9cとを備えて いる(図 1、図 4を参照)。なお、各画像処理部 9a〜9cの具体的な信号処理について は、図 4〜図 9で後述する。第 1画像処理部 9aは、この発明における第 1画像処理手 段に相当し、第 2画像処理部 9bは、この発明における第 2画像処理手段に相当し、 第 3画像処理部 9cは、この発明における第 3画像処理手段に相当する。 [0028] Note that the image processing unit 9 includes a first image processing unit 9a that performs first image processing on the X-ray detection signal to output a first image based on the X-ray detection signal, and a first image processing unit 9a. A second image process that includes at least a process in which the amount of pixels of the first image is reduced to output a second image based on the first image that has been processed and output by the image processing unit 9a. An image processing unit 9b and a third image based on the first image processed and output by the first image processing unit 9a The third image processing unit 9c that performs the third image processing on the first image to output the first image is provided (see FIGS. 1 and 4). Specific signal processing of each of the image processing units 9a to 9c will be described later with reference to FIGS. The first image processing unit 9a corresponds to the first image processing unit in the present invention, the second image processing unit 9b corresponds to the second image processing unit in the present invention, and the third image processing unit 9c This corresponds to the third image processing means in the invention.
[0029] なお、メモリ部 11は、第 1画像処理部 9aで第 1画像処理されて出力された第 1画像 を書き込んで記憶する第 1画像用メモリ部 11aを備えている(図 1、図 4を参照)。第 1 画像用メモリ部 11aは、この発明における第 1画像記憶手段に相当する。  The memory unit 11 includes a first image memory unit 11a for writing and storing a first image output by the first image processing by the first image processing unit 9a (FIG. 1, FIG. See 4). The first image memory unit 11a corresponds to the first image storage means in this invention.
[0030] FPD3は、図 2に示すように、ガラス基板 31と、ガラス基板 31上に形成された薄膜ト ランジスタ TFTとから構成されている。薄膜トランジスタ TFTについては、図 2、図 3に 示すように、縦'横式 2次元マトリクス状配列でスイッチング素子 32が多数個(例えば 、 3072個 X 3072個)形成されており、キャリア収集電極 33ごとにスイッチング素子 32 が互いに分離形成されている。すなわち、 FPD3は、 2次元アレイ放射線検出器でも ある。  As shown in FIG. 2, the FPD 3 includes a glass substrate 31 and a thin film transistor TFT formed on the glass substrate 31. As shown in FIG. 2 and FIG. 3, the thin film transistor TFT has a large number of switching elements 32 (for example, 3072 × 3072) formed in a vertical and horizontal two-dimensional matrix arrangement. The switching elements 32 are formed separately from each other. In other words, FPD3 is also a two-dimensional array radiation detector.
[0031] 図 2に示すようにキャリア収集電極 33の上には X線感応型半導体 34が積層形成さ れており、図 2、図 3に示すようにキャリア収集電極 33は、スイッチング素子 32のソー ス Sに接続されている。ゲートドライバ 35からは複数本のゲートバスライン 36が接続さ れているとともに、各ゲートバスライン 36はスイッチング素子 32のゲート Gに接続され ている。一方、図 3に示すように、電荷信号を収集して 1つに出力するマルチプレクサ 37には増幅器 38を介して複数本のデータバスライン 39が接続されているとともに、 図 2、図 3に示すように各データバスライン 39はスイッチング素子 32のドレイン Dに接 続されている。  As shown in FIG. 2, an X-ray sensitive semiconductor 34 is stacked on the carrier collection electrode 33, and the carrier collection electrode 33 is formed of the switching element 32 as shown in FIGS. Connected to source S. A plurality of gate bus lines 36 are connected from the gate driver 35, and each gate bus line 36 is connected to the gate G of the switching element 32. On the other hand, as shown in FIG. 3, a multiplexer 37 that collects charge signals and outputs them to one is connected to a plurality of data bus lines 39 via amplifiers 38, as shown in FIGS. Thus, each data bus line 39 is connected to the drain D of the switching element 32.
[0032] 図示を省略する共通電極にバイアス電圧を印加した状態で、ゲートバスライン 36の 電圧を印加(または OVに)することでスイッチング素子 32のゲートが ONされて、キヤ リア収集電極 33は、検出面側で入射した X線から X線感応型半導体 34を介して変換 された電荷信号 (キャリア)を、スイッチング素子 32のソース Sとドレイン Dとを介してデ ータバスライン 39に読み出す。なお、スイッチング素子が〇Nされるまでは、電荷信 号はキャパシタ(図示省略)で暫定的に蓄積されて記憶される。各データバスライン 3 9に読み出された電荷信号を増幅器 38で増幅して、マルチプレクサ 37で 1つの電荷 信号にまとめて出力する。出力された電荷信号を A/D変換器 8でディジタルィ匕して[0032] With the bias voltage applied to the common electrode (not shown), the gate of the switching element 32 is turned on by applying the voltage of the gate bus line 36 (or to OV), and the carrier collection electrode 33 is Then, the charge signal (carrier) converted from the X-ray incident on the detection surface side through the X-ray sensitive semiconductor 34 is read out to the data bus line 39 through the source S and drain D of the switching element 32. Until the switching element is turned ON, the charge signal is temporarily stored and stored in a capacitor (not shown). Each data bus line 3 The charge signal read out at 9 is amplified by the amplifier 38 and is output as a single charge signal by the multiplexer 37. The output charge signal is digitized by the A / D converter 8
X線検出信号として出力する。 Output as X-ray detection signal.
[0033] 次に、本実施例に係る各画像処理部 9a〜9cの一連の信号処理について、図 4の ブロック図、図 5〜図 8のフローチャートおよび図 9の説明図を参照して説明する。図 Next, a series of signal processing of the image processing units 9a to 9c according to the present embodiment will be described with reference to the block diagram of FIG. 4, the flowcharts of FIGS. 5 to 8, and the explanatory diagram of FIG. . Figure
4は、各画像処理部 9a〜9cの具体的な構成および各画像等のデータの流れを示し たブロック図であり、図 5〜図 7は、各画像処理部 9a〜9cによる一連の信号処理の一 例を示すフローチャートであり、図 8は、図 5〜図 7の比較のために用いられる従来の 画像処理部による一連の信号処理を示すフローチャートであり、図 9は、図 5〜図 8の フローチャートのときにかかる処理時間を模式的に表した説明図である。なお、この 処理では、 FPD3から検出された X線検出信号を AZD変換器 8でディジタル化した 後からを例に採って説明する。 Fig. 4 is a block diagram showing the specific configuration of each image processing unit 9a to 9c and the flow of data such as each image. Figs. 5 to 7 show a series of signal processing by each image processing unit 9a to 9c. FIG. 8 is a flowchart showing a series of signal processing by a conventional image processing unit used for comparison of FIGS. 5 to 7, and FIG. 9 is a flowchart showing FIGS. 5 to 8. It is explanatory drawing which represented typically the processing time concerning the flowchart. This process will be described by taking an example after the X-ray detection signal detected from the FPD 3 is digitized by the AZD converter 8.
[0034] 先ず、従来の画像処理部による一連の信号処理(図 8を参照)について説明する。 First, a series of signal processing (see FIG. 8) by a conventional image processing unit will be described.
[0035] (ステップ S 101)オフセット補正 [0035] (Step S 101) Offset correction
X線を照射していないのにも関わらず喑電流によってオフセット値が画像に重畳さ れる場合がある。そこで、 X線が非照射時のオフセット画像を予め求める。 X線検出信 号に基づく原画像から上述したオフセット画像を減算するオフセット補正を行う。  In some cases, the offset value is superimposed on the image due to the saddle current even though X-rays are not irradiated. Therefore, an offset image when X-rays are not irradiated is obtained in advance. Offset correction is performed to subtract the offset image from the original image based on the X-ray detection signal.
[0036] (ステップ S 102)ゲイン補正  [0036] (Step S 102) Gain Correction
キャパシタ(図示省略)やスイッチング素子 32を構成する検出素子ごとに蓄積され る電荷の量にバラツキがあり、それによつて検出素子ごとの X線検出信号に基づく画 素の信号レベル(画素値)についてもバラツキがある。力かるバラツキを低減させるた めに、例えば検出素子ごとの増幅器 (アンプ) 38のゲインをそれぞれ調節して出力側 をそろえるゲイン補正を行う。このゲイン補正は『キャリブレーション (校正)』とも呼ば れている。具体的には、増幅後の出力を予め求めて、その出力側がそろうようにゲイ ンを調整する。  There is variation in the amount of charge accumulated for each detection element that constitutes the capacitor (not shown) and the switching element 32, so that the signal level (pixel value) of the pixel based on the X-ray detection signal for each detection element. There are also variations. In order to reduce the applied variation, for example, the gain of the output side is adjusted by adjusting the gain of the amplifier 38 for each detection element. This gain correction is also called “calibration”. Specifically, the amplified output is obtained in advance, and the gain is adjusted so that the output side is aligned.
[0037] (ステップ S 103)欠損補正  [0037] (Step S 103) Missing correction
検出素子で検出された画素の信号レベルが周辺の信号レベルと比較して異常に 高いあるいは低い場合がある。そこで、力、かる場合には周辺の画素値で置換する、あ るいは周辺の画素値に基づレ、て演算された値で補間する欠損補正を行う。 The signal level of the pixel detected by the detection element may be abnormally high or low compared to the surrounding signal level. Therefore, if it is a force, replace it with the surrounding pixel values. Alternatively, defect correction is performed by interpolating with values calculated based on peripheral pixel values.
[0038] (ステップ S104)各種の補正処理  [0038] (Step S104) Various correction processes
ステップ S101〜S103以外の各種の補正処理を行う。具体的な補正処理としては 、例えば、データバスライン 39に沿って生じる漏れ電流を補正するリーク電流補正や 、画像全体の上下 Z左右で生じる信号レベル差 (輝度差)の補正や、 FPD3の時間 遅れによるラグの補正や、ゲートバスライン 36ごとに異なる値が重畳されるラインノィ ズの補正や、静電気ノイズの補正などがある。 X線感応型半導体 34や FPD3の個体 差などに応じて、上述したステップ S101のオフセット補正、ステップ S102のゲイン補 正、ステップ S103の欠損補正を含めて、補正処理の数や補正処理の種類は異なる 。したがって、補正処理の数や補正処理の種類については特に限定されなレ、。また 、ステップ S104の補正処理が不要であれば、ステップ S104をスキップしてもよレ、。ス テツプ S10:!〜 S104の補正処理は、 FPD3の特性に関する画像処理である。なお、 後述するステップ S105以降の処理は、診断を行いやすくするための画像処理であ る。  Various correction processes other than steps S101 to S103 are performed. Specific correction processing includes, for example, leakage current correction that corrects leakage current that occurs along the data bus line 39, correction of signal level difference (luminance difference) that occurs on the top, bottom, left, and right of the entire image, and FPD3 time There are lag corrections, line noise corrections with different values superimposed on each gate bus line 36, and electrostatic noise corrections. Depending on the individual differences of the X-ray sensitive semiconductor 34 and FPD3, including the offset correction in step S101, the gain correction in step S102, and the defect correction in step S103, the number of correction processes and types of correction processes are as follows. Different. Therefore, the number of correction processes and the types of correction processes are not particularly limited. If the correction process in step S104 is unnecessary, step S104 may be skipped. Steps S10:! To S104 are image processing related to the characteristics of FPD3. Note that the processing after step S105 described later is image processing for facilitating diagnosis.
[0039] (ステップ S 105)各種の画像処理  [0039] (Step S 105) Various image processing
後述するステップ S106〜S108以外の各種の画像処理をステップ S106のガンマ 変換の前に行う。具体的な画像処理としては、例えば、デュアルエナジーサブトラク シヨンなどがある。撮像部位や診断目的に応じて、後述するステップ S106のガンマ 変換、ステップ S107の周波数処理、ステップ S108の自動輝度調整を含めて、画像 処理の数や画像処理の種類は異なる。したがって、画像処理の数や画像処理の種 類についても特に限定されない。また、ステップ S105の画像処理が不要であれば、 ステップ S 105をスキップしてもよい。  Various image processes other than steps S106 to S108 described later are performed before the gamma conversion in step S106. Specific image processing includes, for example, dual energy subtraction. The number of image processing and the type of image processing differ, including gamma conversion in step S106, frequency processing in step S107, and automatic brightness adjustment in step S108, which will be described later, depending on the imaging region and diagnostic purpose. Therefore, the number of image processing and the type of image processing are not particularly limited. If the image processing in step S105 is unnecessary, step S105 may be skipped.
[0040] (ステップ S 106)ガンマ変換 [0040] (Step S 106) Gamma conversion
ガンマ曲線変換を行う。具体的には、モニタやフィルム現像機などの画像出力機器 の特性による非直線性を補正したり、特定の輝度範囲のコントラストをつけたりするた めに信号強度の変換処理を行う。  Perform gamma curve conversion. Specifically, signal strength conversion processing is performed to correct non-linearity due to the characteristics of image output devices such as monitors and film processors, and to add contrast in a specific luminance range.
[0041] (ステップ S107)周波数処理 [0041] (Step S107) frequency processing
撮像部位に応じた空間周波数処理を行う。具体的には、粒状性を悪化させずに、 濃淡陰影や形状陰影をバランスよく強調するために、特定の周波数成分を強調した り低下させたりする処理を行う。 Spatial frequency processing is performed according to the imaging region. Specifically, without deteriorating the graininess, In order to emphasize the shading and shape shading in a well-balanced manner, processing to emphasize or reduce specific frequency components is performed.
[0042] (ステップ S108)自動輝度調整  [0042] (Step S108) Automatic brightness adjustment
欠損画素でなく正常な画素であって、極端に大きな画素値あるいは極端に小さな 画素値が存在する場合には、その画素に一致するように、残りの全ての画素につい て最大値から最小値までの範囲を確定するスケーリングを行う自動輝度調整を行う。  If it is a normal pixel, not a missing pixel, and there is an extremely large pixel value or an extremely small pixel value, the maximum value and the minimum value are set for all the remaining pixels so as to match that pixel. Performs automatic brightness adjustment that performs scaling to determine the range of.
[0043] 上述したステップ S10:!〜 S108に代表される従来の画像処理部による一連の信号 処理(図 8を参照)では、最後の画像処理である自動輝度調整が行われた画像が、 最終的に得られる X線画像となる。ここで、位置確認を行おうとすると確認可能な画 像、すなわち出力表示可能な画像は、全てのステップ S 10:!〜 S 108で処理が行わ れた X線画像となる。つまり、位置確認のためには、全てのステップ S101〜S108力 S 終了して初めて画像の確認が可能になる。そこで、本実施例では、図 4に示すように プレビュー画像を出力表示する。  [0043] In a series of signal processing (see FIG. 8) by the conventional image processing unit typified by steps S10:! To S108 described above, the final image processed automatic brightness adjustment is the final image. X-ray image obtained automatically. Here, an image that can be confirmed when the position is confirmed, that is, an image that can be output and displayed, is an X-ray image that has been processed in all steps S 10:! To S 108. That is, in order to confirm the position, the image can be confirmed only after all the steps S101 to S108 are completed. Therefore, in this embodiment, a preview image is output and displayed as shown in FIG.
[0044] 図 4に示すように、画像処理部 9を第 1画像処理部 9aと第 2画像処理部 9bと第 3画 像処理部 9cとに分けて、上述した従来のステップ S101〜S108の各画像処理も、各 画像処理部 9a〜9cに合わせて第 1画像処理と第 2画像処理と第 3画像処理とに分け る。具体的な分け方の例については、図 5〜図 7のフローチャートに示す。  As shown in FIG. 4, the image processing unit 9 is divided into a first image processing unit 9a, a second image processing unit 9b, and a third image processing unit 9c, and the conventional steps S101 to S108 described above are performed. Each image process is also divided into a first image process, a second image process, and a third image process in accordance with the image processing units 9a to 9c. Specific examples of classification are shown in the flowcharts of FIGS.
[0045] FPD3から検出された X線検出信号に基づいて第 1画像を出力するために、第 1画 像処理部 9aは、 FPD3から検出された X線検出信号に対して第 1画像処理を行う。 その第 1画像処理部 9aで第 1画像処理されて出力された第 1画像を、コントローラ 10 を介してメモリ部 11の第 1画像用メモリ部 11aに送り込んで、その第 1画像用メモリ部 11aに第 1画像を書き込むことで一旦記憶する。記憶された第 1画像を読み出してコ ントローラ 10を介して、第 2画像処理部 9bまたは第 3画像処理部 9cに送り込む。第 1 画像に基づいて第 2画像および第 3画像を出力するために、第 2画像処理部 9bは、 第 1画像の画素量を減らした処理を少なくとも含んだ第 2画像処理を行うとともに、第 3画像処理部 9cは、第 1画像に対して第 3画像処理を行う。第 3画像処理部 9cは、そ の第 3画像を最終的に得られる X線画像とする。これらの出力された第 2画像および 第 3画像についてはモニタ 13に出力表示する。なお、必要に応じて第 2画像および 第 3画像についても、第 1画像と同様にメモリ部 11にー且記憶してもよい。また、必要 に応じて第 1画像についても、第 2画像および第 3画像と同様にモニタ 13に出力表 示してもよい。 [0045] In order to output the first image based on the X-ray detection signal detected from the FPD 3, the first image processing unit 9a performs the first image processing on the X-ray detection signal detected from the FPD 3. Do. The first image processed and output by the first image processing unit 9a is sent to the first image memory unit 11a of the memory unit 11 via the controller 10, and the first image memory unit 11a It memorizes once by writing the first image to. The stored first image is read out and sent to the second image processing unit 9b or the third image processing unit 9c via the controller 10. In order to output the second image and the third image based on the first image, the second image processing unit 9b performs the second image processing including at least the process of reducing the pixel amount of the first image, and The three-image processing unit 9c performs third image processing on the first image. The third image processing unit 9c uses the third image as the finally obtained X-ray image. The output second image and third image are output and displayed on the monitor 13. If necessary, the second image and The third image may also be stored in the memory unit 11 in the same manner as the first image. Further, if necessary, the first image may be displayed on the monitor 13 in the same manner as the second image and the third image.
[0046] また、後述する図 5〜図 7のフローチャートでも明らかなように、第 3画像処理部 9c による第 1画像に対する第 3画像処理を、第 2画像処理部 9bによって第 2画像処理さ れて出力された第 2画像の出力結果の後に行い、その第 3画像処理を第 2画像の出 力結果に応じて行うとする。すなわち、第 3画像の確認のために第 2画像を先に出力 する。本実施例では、この第 2画像の出力形態の一例として、モニタ 13にプレビュー 表示する。  Further, as is apparent from the flowcharts of FIGS. 5 to 7 described later, the third image processing on the first image by the third image processing unit 9c is second image processed by the second image processing unit 9b. This is performed after the output result of the second image output, and the third image processing is performed according to the output result of the second image. That is, the second image is output first for confirmation of the third image. In this embodiment, as an example of the output form of the second image, a preview is displayed on the monitor 13.
[0047] 先ず、図 5の一連の信号処理について説明する。  First, the series of signal processing of FIG. 5 will be described.
[0048] (ステップ S1)オフセット補正 [0048] (Step S1) Offset correction
従来のステップ S 101と同様なので、その説明を省略する。  Since it is the same as the conventional step S 101, its description is omitted.
[0049] (ステップ S2)ゲイン補正 [0049] (Step S2) Gain correction
従来のステップ S102と同様なので、その説明を省略する。  Since it is the same as the conventional step S102, its description is omitted.
[0050] (ステップ S3)欠損補正 [0050] (Step S3) Missing correction
従来のステップ S103と同様なので、その説明を省略する。ただし、ステップ S1〜S 3までの処理を第 1画像処理部 9aによる第 1画像処理とする。したがって、オフセット 補正、ゲイン補正、欠損補正を経て得られた画像が第 1画像となる。この第 1画像を 第 1画像用メモリ部 11aにー且記憶する。このステップ S1〜S3までの工程は、この発 明における第 1画像処理工程に相当する。  Since it is the same as the conventional step S103, its description is omitted. However, the processing from steps S1 to S3 is the first image processing by the first image processing unit 9a. Therefore, the image obtained through the offset correction, gain correction, and defect correction becomes the first image. The first image is stored in the first image memory unit 11a. Steps S1 to S3 correspond to the first image processing step in this invention.
[0051] 上述したように第 3画像処理よりも第 2画像処理を先に行う。この図 5も含めて、後述 する図 6および図 7では、全体の第 1画像は縦横で 3072 X 3072の画素値の並びから なり、画素量を減らす処理(以下、『切り出し』と呼ぶ)では縦横で 768 X 768の画素値 の並びからなる画像を切り出すものとして、以下を説明する。 [0051] As described above, the second image processing is performed before the third image processing. In FIG. 6 and FIG. 7, which will be described later, including FIG. 5, the entire first image is composed of 3072 x 3072 pixel values arranged vertically and horizontally, and in the process of reducing the pixel amount (hereinafter referred to as “cutout”) The following will be described assuming that an image consisting of an array of 768 x 768 pixel values in the vertical and horizontal directions is cut out.
[0052] (ステップ T1)切り出し [0052] (Step T1) Cutout
このように切り出すには、縦横ともに 4画素ごとに引き出して作成する。その結果、画 像の視野サイズは元の 3072 X 3072の画像と同じで、分解能が低い画像が切り出され る。なお、複数画素ごとに引き出すだけでなぐ 4 X 4の画素値からの統計量 (例えば 平均値や中間値など)を演算して、 768 X 768の画像を作成してもよい。このように切り 出された画像に対して、以下のステップ T2〜T5の処理を行う。 To cut out in this way, draw out every 4 pixels both vertically and horizontally. As a result, the field size of the image is the same as the original 3072 x 3072 image, and an image with low resolution is cut out. It should be noted that a statistic from 4 x 4 pixel values (e.g. just extracting for each pixel) 768 x 768 images may be created by calculating average values and intermediate values. The following steps T2 to T5 are performed on the image cut out in this way.
[0053] (ステップ Τ2)各種の補正処理  [0053] (Step Τ2) Various correction processes
処理の対象が元の 3072 X 3072の画像でなぐ切り出された 768 X 768の画像である ことを除けば、従来のステップ S104と同様なので、その説明を省略する。  Except for the fact that the processing target is a 768 × 768 image cut out from the original 3072 × 3072 image, the description is omitted because it is the same as the conventional step S104.
[0054] (ステップ Τ3)画像処理 1  [0054] (Step Τ3) Image processing 1
この切り出された 768 X 768の画像については、元の 3072 X 3072の画像と相違し、 位置確認として必要な処理のみを行えばょレ、。ここでは必要な各種の画像処理とし て、画像処理 1のみを行う。また、各種の画像処理以降の処理について、ここでは必 要な処理として、後述するステップ Τ4のガンマ変換およびステップ Τ5の自動輝度調 整のみを行う。したがって、従来のステップ S 107の周波数処理についてはスキップ する。  The extracted 768 x 768 image is different from the original 3072 x 3072 image, and only the necessary processing for position confirmation is performed. Here, only image processing 1 is performed as the various image processing required. As for the processes after the various image processes, here, as necessary processes, only the gamma conversion in step Τ4 and the automatic brightness adjustment in step Τ5 described later are performed. Therefore, the conventional frequency processing in step S107 is skipped.
[0055] (ステップ Τ4)ガンマ変換  [0055] (Step Τ4) Gamma conversion
処理の対象が元の 3072 X 3072の画像でなぐ切り出された 768 X 768の画像である ことを除けば、従来のステップ S106と同様なので、その説明を省略する。  Except for the fact that the processing target is a 768 × 768 image cut out from the original 3072 × 3072 image, the description is omitted because it is the same as the conventional step S106.
[0056] (ステップ Τ5)自動輝度調整  [0056] (Step Τ5) Automatic brightness adjustment
処理の対象が元の 3072 X 3072の画像でなぐ切り出された 768 X 768の画像である ことを除けば、従来のステップ S108と同様なので、その説明を省略する。ただし、ス テツプ Τ1〜Τ5までの処理を第 2画像処理部 9bによる第 2画像処理とする。したがつ て、切り出し、各種の補正処理、画像処理 1、ガンマ変換、自動輝度調整を経て得ら れた画像が第 2画像となる。このステップ T1〜T5までの工程は、この発明における 第 2画像処理工程に相当する。  Except for the fact that the target of processing is a 768 × 768 image cut out from the original 3072 × 3072 image, the description is omitted because it is the same as the conventional step S108. However, the processes from steps Τ1 to Τ5 are the second image processing by the second image processing unit 9b. Therefore, the image obtained through clipping, various correction processes, image processing 1, gamma conversion, and automatic brightness adjustment is the second image. Steps T1 to T5 correspond to the second image processing step in the present invention.
[0057] (ステップ Ml)プレビュー表示  [0057] (Step Ml) Preview display
この第 2画像をモニタ 13に出力表示することで、第 3画像の確認のためのプレビュ 一表示を行う。この第 2画像の出力結果の後に、第 3画像処理部 9cによる第 3画像処 理に相当するステップ U1〜U5を行う。なお、後述するステップ U1〜U5では、 3072 X 3072の第 1画像を処理の対象として説明する。  By outputting and displaying the second image on the monitor 13, a preview display for confirming the third image is performed. After the output result of the second image, steps U1 to U5 corresponding to the third image processing by the third image processing unit 9c are performed. In steps U1 to U5 described later, the first image of 3072 × 3072 will be described as a processing target.
[0058] (ステップ U1)各種の補正処理 従来のステップ S104と同様なので、その説明を省略する。 [0058] (Step U1) Various correction processes Since it is similar to the conventional step S104, its description is omitted.
[0059] (ステップ U2)各種の画像処理 [0059] (Step U2) Various image processing
従来のステップ S105と同様なので、その説明を省略する。  Since it is the same as the conventional step S105, its description is omitted.
[0060] (ステップ U3)ガンマ変換 [0060] (Step U3) Gamma conversion
従来のステップ S106と同様なので、その説明を省略する。  Since it is the same as the conventional step S106, its description is omitted.
[0061] (ステップ U4)周波数処理 [0061] (Step U4) frequency processing
従来のステップ S107と同様なので、その説明を省略する。  Since it is the same as the conventional step S107, its description is omitted.
[0062] (ステップ U5)自動輝度調整 [0062] (Step U5) Automatic brightness adjustment
従来のステップ S108と同様なので、その説明を省略する。ただし、ステップ U1〜U 5までの処理を第 3画像処理部 9cによる第 3画像処理とする。したがって、各種の補 正処理、各種の画像処理、ガンマ変換、周波数処理、 自動輝度調整を経て得られた 画像が第 3画像となる。このステップ U1〜U5までの工程は、この発明における第 3 画像処理工程に相当する。  Since it is the same as the conventional step S108, its description is omitted. However, the processing from steps U1 to U5 is the third image processing by the third image processing unit 9c. Therefore, the image obtained through various correction processes, various image processes, gamma conversion, frequency processing, and automatic brightness adjustment is the third image. Steps U1 to U5 correspond to the third image processing step in the present invention.
[0063] 次に、図 6の一連の信号処理について説明する。 Next, a series of signal processing of FIG. 6 will be described.
[0064] (ステップ SI 1)オフセット補正〜(ステップ S 14)各種の補正処理 [0064] (Step SI 1) Offset correction to (Step S14) Various correction processes
従来のステップ S101のオフセット補正〜ステップ S104の各種の補正処理と同様 なので、その説明を省略する。ただし、図 6では、ステップ S11〜S14までの処理を第 1画像処理部 9aによる第 1画像処理とする。したがって、オフセット補正〜各種の補 正処理を経て得られた画像が第 1画像となる。この第 1画像を第 1画像用メモリ部 11a にー且記憶する。このステップ S11〜S14までの工程は、この発明における第 1画像 処理工程に相当する。  Since this is the same as the conventional offset correction in step S101 to various correction processes in step S104, a description thereof will be omitted. However, in FIG. 6, the processing from step S11 to S14 is the first image processing by the first image processing unit 9a. Therefore, an image obtained through the offset correction and various correction processes becomes the first image. The first image is stored in the first image memory unit 11a. Steps S11 to S14 correspond to the first image processing step in the present invention.
[0065] (ステップ T11)切り出し [0065] (Step T11) Cutout
図 5のステップ T1と同様なので、その説明を省略する。  Since it is the same as step T1 in FIG. 5, its description is omitted.
[0066] (ステップ T12)画像処理 1〜(ステップ T14)自動輝度調整 [0066] (Step T12) Image processing 1 to (Step T14) Automatic brightness adjustment
図 5のステップ T3の画像処理 1〜ステップ T5の自動輝度調整と同様なので、その 説明を省略する。ただし、図 6では、図 5のステップ T2の各種の補正処理力 第 1画 像を出力するまでの時点(ステップ S14)で既に終了しているので、図 5のステップ T2 の各種の補正処理を行わずに、ステップ T11の切り出し力もステップ T12の画像処 理 1に進む。ステップ T11〜T14までの処理を第 2画像処理部 9bによる第 2画像処 理とする。したがって、切り出し〜自動輝度調整を経て得られた画像が第 2画像とな る。このステップ T11〜T14までの工程は、この発明における第 2画像処理工程に相 当する。 Since this is the same as the automatic brightness adjustment in Step T3 to Step T3 in FIG. 5, its description is omitted. However, in FIG. 6, the various correction processing powers in step T2 in FIG. 5 have already been completed (step S14) until the first image is output (step S14), so the various correction processes in step T2 in FIG. Without doing so, the clipping force of step T11 is also the same as the image processing of step T12. Go to Reason 1. The processing from step T11 to T14 is the second image processing by the second image processing unit 9b. Therefore, an image obtained through clipping and automatic brightness adjustment becomes the second image. Steps T11 to T14 correspond to the second image processing step in the present invention.
[0067] (ステップ Mi l)プレビュー表示  [0067] (Step Mi l) Preview display
図 5のステップ Mlと同様なので、その説明を省略する。  Since it is the same as step Ml in FIG. 5, its description is omitted.
[0068] (ステップ U11)各種の画像処理〜(ステップ U14)自動輝度調整 [0068] (Step U11) Various image processing (Step U14) Automatic brightness adjustment
図 5のステップ U2の各種の画像処理〜ステップ U5の自動輝度調整と同様なので 、その説明を省略する。ただし、図 6では、ステップ U11〜U14までの処理を第 3画 像処理部 9cによる第 3画像処理とする。したがって、各種の補正処理〜自動輝度調 整を経て得られた画像が第 3画像となる。このステップ U11〜U14までの工程は、こ の発明における第 3画像処理工程に相当する。  Since this is the same as the various image processing in Step U2 in FIG. However, in FIG. 6, the processing from step U11 to U14 is the third image processing by the third image processing unit 9c. Therefore, an image obtained through various correction processes to automatic brightness adjustment is the third image. Steps U11 to U14 correspond to the third image processing step in this invention.
[0069] 続いて、図 7の一連の信号処理について説明する。 Subsequently, a series of signal processing of FIG. 7 will be described.
[0070] (ステップ S21)オフセット補正〜(ステップ S26)ガンマ変換 [0070] (Step S21) Offset correction to (Step S26) Gamma conversion
従来のステップ S101のオフセット補正〜ステップ S106のガンマ変換と同様なので 、その説明を省略する。ただし、図 7では、ステップ S21〜S26までの処理を第 1画像 処理部 9aによる第 1画像処理とする。したがって、オフセット補正〜ガンマ変換を経 て得られた画像が第 1画像となる。この第 1画像を第 1画像用メモリ部 11aに一旦記憶 する。このステップ S21〜S26までの工程は、この発明における第 1画像処理工程に 相当する。  Since this is the same as the conventional offset correction in step S101 to gamma conversion in step S106, description thereof is omitted. However, in FIG. 7, the processing from step S21 to S26 is the first image processing by the first image processing unit 9a. Therefore, an image obtained through offset correction to gamma conversion becomes the first image. The first image is temporarily stored in the first image memory unit 11a. Steps S21 to S26 correspond to the first image processing step in the present invention.
[0071] (ステップ T21)切り出し [0071] (Step T21) Cutout
図 5のステップ T1と同様なので、その説明を省略する。  Since it is the same as step T1 in FIG. 5, its description is omitted.
[0072] (ステップ T22)自動輝度調整 [0072] (Step T22) Automatic brightness adjustment
図 5のステップ T5と同様なので、その説明を省略する。ただし、図 7では、図 5のス テツプ T2の各種の補正処理〜ステップ T4のガンマ変換力 第 1画像を出力するまで の時点(ステップ S24〜S26)で既に終了しているので、図 5のステップ T2の各種の 補正処理〜ステップ T4のガンマ変換を行わずに、ステップ T21の切り出しカもステツ プ T22の自動輝度調整に進む。ステップ T21、 Τ22での処理を第 2画像処理部 9b による第 2画像処理とする。したがって、切り出し、 自動輝度調整を経て得られた画像 が第 2画像となる。このステップ T21、 Τ22での工程は、この発明における第 2画像処 理工程に相当する。 Since this is the same as step T5 in FIG. 5, its description is omitted. However, in FIG. 7, since various correction processes in step T2 in FIG. 5 to gamma conversion power in step T4 until the first image is output (steps S24 to S26), the process has already been completed. Without performing the various correction processes in step T2 to gamma conversion in step T4, the cutout in step T21 also proceeds to automatic brightness adjustment in step T22. In step T21, 、 22, the second image processing unit 9b The second image processing by Therefore, the image obtained through clipping and automatic brightness adjustment is the second image. The steps T21 and 22 correspond to the second image processing step in the present invention.
[0073] (ステップ M21)プレビュー表示  [0073] (Step M21) Preview display
図 5のステップ Mlと同様なので、その説明を省略する。  Since it is the same as step Ml in FIG. 5, its description is omitted.
[0074] (ステップ U21)周波数処理、(ステップ U22)自動輝度調整  [0074] (Step U21) Frequency processing, (Step U22) Automatic brightness adjustment
図 5のステップ U4の周波数処理、ステップ U5の自動輝度調整と同様なので、その 説明を省略する。ただし、図 7では、ステップ U21、 U22での処理を第 3画像処理部 9cによる第 3画像処理とする。したがって、周波数処理、 自動輝度調整を経て得られ た画像が第 3画像となる。このステップ U21、 U22での工程は、この発明における第 3画像処理工程に相当する。  Since it is the same as the frequency processing in step U4 in FIG. 5 and the automatic brightness adjustment in step U5, the description thereof is omitted. However, in FIG. 7, the processing in steps U21 and U22 is the third image processing by the third image processing unit 9c. Therefore, the image obtained through frequency processing and automatic brightness adjustment is the third image. The steps U21 and U22 correspond to the third image processing step in the present invention.
[0075] 上述した図 5〜図 7の相違点は、各画像処理部 9a〜9cに含まれる処理の工程の数  The difference between FIGS. 5 to 7 described above is that the number of processing steps included in each of the image processing units 9a to 9c.
(ステップ数)が異なる点である。具体的には、第 1画像処理には、図 5ではステップ S 1〜S3の 3つの工程、図 6ではステップ S11〜S14の 3つ +各種の補正処理の数の 工程、図 7ではステップ S21〜S26の 4つ +各種の補正/画像処理の数の工程がそ れぞれ含まれ、第 1画像の画素量を減らした切り出しを含むと第 2画像処理には、図 5ではステップ T1〜T5の 4つ +各種の画像処理の数の工程、図 6ではステップ T11 〜Τ14の 4つの工程、図 7ではステップ Τ21、 Τ22の 2つの工程がそれぞれ含まれ、 第 3画像処理には、図 5ではステップ U1〜U5の 3つ +各種の補正/画像処理の数 の工程、図 6ではステップ U11〜U14の 3つ +各種の画像処理の数の工程、図 7で はステップ U21 , U22の 2つの工程がそれぞれ含まれる。  (Step number) is different. Specifically, the first image processing includes three steps S1 to S3 in FIG. 5, three steps S11 to S14 in FIG. 6 + the number of various correction processes, and step S21 in FIG. ~ S26 + various corrections / number of image processing steps are included, and the second image processing includes steps T1- 4 steps of T5 + the number of processes of various image processing, Figure 6 includes 4 processes from Step T11 to Τ14, and Figure 7 includes 2 processes ス テ ッ プ 21 and Τ22. 5 is the process of steps U1 to U5 + the number of various corrections / image processing, Figure 6 is the process of steps U11 to U14 + the number of various image processes, and Figure 7 is the process of steps U21 and U22. Each of the two steps is included.
[0076] そして、第 1画像が第 1画像用メモリ部 11aに記憶される時点も、図 5〜図 7では互 レ、に異なる。図 5では、ステップ S3の時点で第 1画像が記憶され、図 6では、ステップ S14の時点で第 1画像が記憶され、図 7では、ステップ S26の時点で第 1画像が記憶 される。  [0076] The time point at which the first image is stored in the first image memory unit 11a is also different from each other in FIGS. In FIG. 5, the first image is stored at the time of step S3, in FIG. 6, the first image is stored at the time of step S14, and in FIG. 7, the first image is stored at the time of step S26.
[0077] 従来の図 8を含めて図 5〜図 8のフローチャートのときにかかる処理時間を模式的 に表すと、図 9のようになる。最上段が従来の図 8のときにかかる処理時間であって、 上から 2段目が図 7のときにかかる処理時間であって、下から 2段目が図 6のときにか 力る処理時間であって、最下段が図 5のときにかかる処理時間である。 FIG. 9 schematically shows the processing time required for the flowcharts of FIGS. 5 to 8 including the conventional FIG. The uppermost level is the processing time required for the conventional case in Fig. 8, the second level from the top is the processing time required for the time in Fig. 7, and the second level from the bottom is the time required for Fig. 6. This is the processing time required for the processing shown in FIG.
[0078] 共通の処理でもある第 1画像処理に含まれる工程の数を、図 7〜図 5の順に少なく すると、図 9に示すように、第 2画像を出力(本実施例ではプレビュー表示)するまで の時間が低減する。第 1画像処理に含まれる工程の数は、 4つ +各種の補正 Z画像 処理の数を示す数値, 3つ +各種の補正処理の数,『3』と図 7〜図 5の順に少なくな るものの、第 2画像に含まれる工程の数は、『2』,『4』, 4つ +各種の画像処理の数を 示す数値と図 7〜図 5の順に多くなるのにも関わらず、第 2画像を出力するまでの時 間が低減するのは、第 2画像処理に用いられる画像が第 1画像 (本実施例では 3072 X 3072)の画素の量を減らした 768 X 768の画像であるからである。つまり、画素の量 を減らした分だけ第 2画像に力かる時間は、図 7〜図 5の順でもそれほど多くかからな レ、。したがって、第 2画像を出力するまでの時間であれば、図 7〜図 5の順に低減す る。逆に、最終的に得られる X線画像である第 3画像を出力するまでの時間は、図 7 〜図 5の順に長くなる。 [0078] When the number of steps included in the first image processing, which is also a common processing, is reduced in the order of FIGS. 7 to 5, a second image is output as shown in FIG. 9 (in this embodiment, a preview display). The time until it is reduced. The number of processes included in the first image processing is 4 + numerical values indicating the number of various correction Z image processing, 3 + the number of various correction processing, “3”, and decreasing in the order of FIG. 7 to FIG. However, the number of processes included in the second image is “2”, “4”, 4 + a numerical value indicating the number of various image processes and the number of processes increases in the order of Figs. The time until the second image is output is reduced because the image used for the second image processing is a 768 x 768 image in which the amount of pixels of the first image (3072 x 3072 in this example) is reduced. Because there is. In other words, the time spent on the second image by reducing the amount of pixels is not so long in the order shown in Figs. Therefore, the time until the second image is output is reduced in the order of FIGS. Conversely, the time until the third image, which is the finally obtained X-ray image, is output becomes longer in the order of FIGS.
[0079] 図 9で述べたように、上述した FPD3の特性や撮像部位や診断目的の他に、コント ローラ 10などの装置の処理能力に応じて、例えば図 5、図 6または図 7のように変わる 。そこで、各画像処理部 9a〜9cを、各画像処理に含まれる処理の工程の数が増減 可能に構成し、工程の数を設定するように構成すればよい。  [0079] As described in FIG. 9, in addition to the above-described characteristics of FPD3, imaging region, and diagnostic purpose, depending on the processing capability of the device such as controller 10, for example, as shown in FIG. 5, FIG. 6, or FIG. Change to. Therefore, the image processing units 9a to 9c may be configured such that the number of processes included in each image process can be increased and decreased, and the number of processes is set.
[0080] 例えば、各画像処理に含まれる処理の工程の数を示す数値などの入力データを、 オペレータが入力部 12に入力する。そして、図 4に示すように、入力部 12からの入力 データ(図 4では工程数設定)を、コントローラ 1 1を介して画像処理部 9に送り込む。 図 5のフローを行う場合には、第 1画像処理について 3つの工程の数を示す『3』を入 力部 12に入力し、第 2画像処理について 4つ +各種の画像処理の数の工程の数を 示す数値を入力部 12に入力し、第 3画像処理ついて 3つ +各種の補正 Z画像処理 の数の工程を示す数値を入力部 12に入力する。図 6または図 7のフローを行う場合 も、図 5と同じように入力する。この入力によって、工程の数を変更設定する。入力部 12は、この発明における工程数設定手段に相当する。  For example, the operator inputs input data such as a numerical value indicating the number of processing steps included in each image processing to the input unit 12. Then, as shown in FIG. 4, the input data from the input unit 12 (in FIG. 4, setting of the number of processes) is sent to the image processing unit 9 via the controller 11. In the case of performing the flow of FIG. 5, “3” indicating the number of three processes for the first image processing is input to the input unit 12, and four processes for the second image processing + the number of processes for various image processing. A numerical value indicating the number of processes is input to the input unit 12, and a numerical value indicating the number of steps of 3 for the third image processing + the number of various correction Z image processings is input to the input unit 12. When performing the flow in Fig. 6 or Fig. 7, input the same as in Fig. 5. By this input, the number of processes is changed and set. The input unit 12 corresponds to the process number setting means in this invention.
[0081] また、入力部 12への数値入力は、この発明における工程数設定工程に相当する。  Further, the numerical value input to the input unit 12 corresponds to the process number setting process in the present invention.
力、かる入力部 12への数値入力については、第 1画像処理工程よりも前に行う。なお、 入力部 12に代表される工程数設定手段については、上述したような数値を入力する ことで構成されるものに限定されず、例えば、第 1画像と第 2画像'第 3画像とに区分 される前後の工程を指名することで工程の数を設定するような構造のように、特に限 定されない。 The numerical value input to the input unit 12 is performed before the first image processing step. In addition, The process number setting means typified by the input unit 12 is not limited to the one configured by inputting the numerical values as described above, and is classified into, for example, a first image and a second image'third image. The structure is not particularly limited as in the structure in which the number of processes is set by nominating the processes before and after the process.
[0082] その他にも、コントローラ 10などの装置の処理能力に応じて工程の数を設定するよ うな構造であってもよい。例えば処理能力が低い場合には、第 2画像を出力するまで の時間が短くなるように各画像処理に含まれる処理の工程の数を設定する。  In addition, the structure may be such that the number of steps is set in accordance with the processing capability of a device such as the controller 10. For example, when the processing capability is low, the number of processing steps included in each image processing is set so that the time until the second image is output is shortened.
[0083] 以上のように構成された本実施例によれば、低級機や汎用機のように汎用の演算 処理回路を搭載している場合であっても、第 2画像を出力するために第 2画像処理は 、第 1画像の画素量を減らした処理を少なくとも含んでいるので、少なくとも減らした 画素量の分だけ第 2画像を出力するまでの時間を低減させることができる。その結果 、確認のための画像の出力までの時間を低減させることができる。それによつて、例 えば位置確認までの時間を低減させることもできる。その結果、検査効率の向上を図 り、被検体 Mへの負担を低減させることもできる。  According to the present embodiment configured as described above, even when a general-purpose arithmetic processing circuit is mounted like a low-order machine or a general-purpose machine, the first image is output to output the second image. Since the two-image processing includes at least processing in which the pixel amount of the first image is reduced, it is possible to reduce the time until the second image is output by at least the reduced pixel amount. As a result, it is possible to reduce the time until the image for confirmation is output. Thereby, for example, the time until position confirmation can be reduced. As a result, the examination efficiency can be improved and the burden on the subject M can be reduced.
[0084] 本実施例では、図 5〜図 7に示すように、第 2画像処理が第 3画像処理と異なるよう になっている。例えば、図 5では、第 3画像処理に含まれるステップ U3の各種の画像 処理を簡易化して、第 2画像処理では画像処理 1のみをステップ T3で行い、第 3画 像処理に含まれるステップ U4の周波数処理を第 2画像処理ではスキップして、第 2 画像処理が第 3画像処理よりも簡易な処理になるようにしている。このような場合には 、簡易な第 2画像処理の分だけ、第 2画像を出力するまでの時間をより一層低減させ ること力 Sできる。  In the present embodiment, as shown in FIGS. 5 to 7, the second image processing is different from the third image processing. For example, in FIG. 5, various image processes in step U3 included in the third image process are simplified, and in the second image process, only image process 1 is performed in step T3, and step U4 included in the third image process is performed. This frequency processing is skipped in the second image processing so that the second image processing is simpler than the third image processing. In such a case, it is possible to further reduce the time until the second image is output by the amount of simple second image processing.
[0085] 通常、 X線検出信号から最終的な X線画像である第 3画像を得るまでの一連の画像 処理では、画像処理の途中の段階で、その途中で処理された画像をメモリ部 11など の記憶媒体に一旦記憶する。つまり、本実施例のように途中の段階までの画像処理 を第 1画像処理とし、記憶媒体に記憶される画像を第 1画像とすると、記憶媒体は図 1、図 4に示すメモリ部 11の第 1画像用メモリ部 11aとなり、その第 1画像用メモリ部 11 aに記憶された第 1画像を利用して、第 3画像の確認のための第 2画像、および第 3画 像をともにそれぞれ出力することができる。 [0086] また、本実施例では、各画像処理部 9a〜9cを、各画像処理に含まれる処理の工程 の数が増減可能に構成し、工程の数を設定する入力部 12を備えている。このような 入力部 12を備えることで、各々の第 1〜第 3画像処理に含まれる工程の数をォペレ ータは自在に設定することができる。 [0085] Usually, in a series of image processing from obtaining an X-ray detection signal to obtaining a third image that is a final X-ray image, the image processed in the middle of the image processing is stored in the memory unit 11 in the middle of the image processing. Once stored in the storage medium. That is, if the image processing up to the middle stage as in the present embodiment is the first image processing and the image stored in the storage medium is the first image, the storage medium is the memory unit 11 shown in FIGS. The first image memory unit 11a is used, and the second image and the third image for confirming the third image are both displayed using the first image stored in the first image memory unit 11a. Can be output. In the present embodiment, each of the image processing units 9a to 9c is configured such that the number of processes included in each image process can be increased or decreased, and includes an input unit 12 that sets the number of processes. . By providing such an input unit 12, the operator can freely set the number of steps included in each of the first to third image processes.
[0087] この発明は、上記実施形態に限られることはなぐ下記のように変形実施することが できる。  [0087] The present invention is not limited to the above embodiment, and can be modified as follows.
[0088] (1)上述した実施例では、図 1に示すような X線透視撮影装置を例に採って説明し たが、この発明は、例えば C型アームに配設された X線透視撮影装置にも適用しても よレ、。また、この発明は、 X線 CT装置にも適用してもよい。  (1) In the above-described embodiment, the X-ray fluoroscopic apparatus as shown in FIG. 1 has been described as an example. However, the present invention is, for example, an X-ray fluoroscopic apparatus disposed on a C-type arm. It can also be applied to equipment. The present invention may also be applied to an X-ray CT apparatus.
[0089] (2)上述した実施例では、フラットパネル型 X線検出器 (FPD) 3を例に採って説明 したが、通常において用いられる X線検出手段であれば、この発明は適用することが できる。 (2) In the above-described embodiments, the flat panel X-ray detector (FPD) 3 has been described as an example. However, the present invention can be applied to any X-ray detection means that is normally used. Is possible.
[0090] (3)上述した実施例では、 X線を検出する X線検出器を例に採って説明したが、こ の発明は、 ECT (Emission Computed Tomography)装置のように放射性同位元素(R I)を投与された被検体から放射される γ線を検出する γ線検出器に例示されるよう に、放射線を検出する放射線検出器であれば特に限定されない。同様に、この発明 は、上述した ECT装置に例示されるように、放射線を検出して撮像を行う装置であれ ば特に限定されない。  [0090] (3) In the above-described embodiments, an X-ray detector for detecting X-rays has been described as an example. However, the present invention is not limited to a radioisotope (RI) as in an ECT (Emission Computed Tomography) apparatus. As long as it is a radiation detector that detects radiation, as exemplified by a γ-ray detector that detects γ-rays emitted from a subject administered with). Similarly, the present invention is not particularly limited as long as it is an apparatus that detects an image by detecting radiation as exemplified by the ECT apparatus described above.
[0091] (4)上述した実施例では、 FPD3は、放射線(実施例では X線)感応型の半導体を 備え、入射した放射線を放射線感応型の半導体で直接的に電荷信号に変換する直 接変換型の検出器であつたが、放射線感応型の替わりに光感応型の半導体を備え るとともにシンチレータを備え、入射した放射線をシンチレータで光に変換し、変換さ れた光を光感応型の半導体で電荷信号に変換する間接変換型の検出器であっても よい。  [0091] (4) In the above-described embodiments, the FPD 3 includes a radiation (X-ray in the embodiment) -sensitive semiconductor, and directly converts the incident radiation into a charge signal using the radiation-sensitive semiconductor. Although it was a conversion-type detector, it was equipped with a light-sensitive semiconductor instead of a radiation-sensitive type and a scintillator, and the incident radiation was converted into light by the scintillator. It may be an indirect conversion type detector that converts a charge signal using a semiconductor.
[0092] (5)上述した実施例では、第 2画像処理が第 3画像処理と異なっていた力 S、必ずし も異なる必要はない。第 2画像処理が第 3画像処理と同じ処理であってもよレ、。ただ、 第 2画像は第 3画像の確認のための画像であるので、実施例のように、第 2画像処理 を第 3画像処理よりも簡易な処理にしても問題はない。 [0093] (6)上述した実施例では、画像処理の途中の段階で、その途中で処理された画像 をメモリ部 11などに代表される記憶媒体に一旦記憶し、途中の段階までの画像処理 を第 1画像処理としたが、記憶媒体に記憶されるよりも前あるいは後の段階までの画 像処理を第 1画像処理としてもよい。また、必ずしも画像処理の途中の段階で記憶媒 体にー且記憶する必要はなレ、。 (5) In the above-described embodiments, the second image processing is different from the third image processing in force S, and does not necessarily have to be different. The second image processing may be the same as the third image processing. However, since the second image is an image for confirming the third image, there is no problem even if the second image processing is simpler than the third image processing as in the embodiment. (6) In the above-described embodiment, in the middle of image processing, an image processed in the middle is temporarily stored in a storage medium represented by the memory unit 11 or the like, and image processing up to the middle stage is performed. Is the first image processing, but the image processing up to the stage before or after being stored in the storage medium may be the first image processing. In addition, it is not always necessary to store in the storage medium in the middle of image processing.
[0094] (7)上述した実施例では、各画像処理部 9a〜9cを、各画像処理に含まれる処理の 工程の数が増減可能に構成し、工程の数を設定する工程数設定手段(実施例では 入力部 12)を備えた力 処理の工程の数を固定して、一通りのみしか選択しないよう にしてもよい。  (7) In the above-described embodiment, each of the image processing units 9a to 9c is configured so that the number of processes included in each image process can be increased and decreased, and a process number setting unit (set the number of processes) In the embodiment, the number of force processing steps provided with the input unit 12) may be fixed so that only one way is selected.
[0095] (8)上述した実施例では、第 2画像の出力をモニタ 13に出力表示してプレビュー表 示を行った力 第 2画像の出力形態については、モニタ 13でのプレビュー表示に限 定されない。例えば、プリンタに出力してもよい。  (8) In the embodiment described above, the output of the second image is displayed on the monitor 13 and displayed as a preview. The output form of the second image is limited to the preview display on the monitor 13. Not. For example, it may be output to a printer.
[0096] (9)上述した実施例では、第 1画像の画素量を減らした処理として、切り出しを例に 採って説明したが、例えばキャリアを同時に読み出す、あるいは限られた領域を指定 することで画素量を減らすなどのように、画素量を減らす処理であれば、特に限定さ れない。  [0096] (9) In the above-described embodiment, the extraction has been described as an example of the process for reducing the pixel amount of the first image. However, for example, by simultaneously reading out carriers or designating a limited area, The process is not particularly limited as long as the process reduces the pixel amount, such as reducing the pixel amount.
産業上の利用可能性  Industrial applicability
[0097] 以上のように、この発明は、低級機や汎用機のように汎用の演算処理回路を搭載し ている放射線撮像装置に適している。 As described above, the present invention is suitable for a radiation imaging apparatus equipped with a general-purpose arithmetic processing circuit such as a low-level machine or a general-purpose machine.

Claims

請求の範囲 The scope of the claims
[1] 放射線検出信号に基づレ、て放射線画像を得る放射線撮像装置であって、被検体 に向けて放射線を照射する放射線照射手段と、被検体を透過した放射線を検出す る放射線検出手段と、放射線検出手段から検出された放射線検出信号に基づいて 第 1画像を出力するために放射線検出信号に対して第 1画像処理を行う第 1画像処 理手段と、第 1画像処理手段で第 1画像処理されて出力された第 1画像に基づいて 第 2画像を出力するために第 1画像の画素量を減らした処理を少なくとも含んだ第 2 画像処理を行う第 2画像処理手段と、第 1画像処理手段で第 1画像処理されて出力 された第 1画像に基づいて第 3画像を出力するために第 1画像に対して第 3画像処 理を行い、その第 3画像を最終的に得られる放射線画像とする第 3画像処理手段と を備えてレ、ることを特徴とする放射線撮像装置。  [1] A radiation imaging apparatus that obtains a radiation image based on a radiation detection signal, the radiation irradiating means for irradiating the subject with radiation, and the radiation detecting means for detecting the radiation transmitted through the subject A first image processing means for performing first image processing on the radiation detection signal to output a first image based on the radiation detection signal detected from the radiation detection means, and a first image processing means Second image processing means for performing second image processing including at least processing in which the amount of pixels of the first image is reduced in order to output the second image based on the first image processed and output; In order to output the third image based on the first image processed and output by the first image processing means, the third image processing is performed on the first image, and the third image is finally output. A third image processing means for obtaining a radiographic image to be obtained A radiation imaging apparatus characterized by that.
[2] 請求項 1に記載の放射線撮像装置において、前記第 2画像処理が前記第 3画像処 理と異なるように、各画像処理手段を構成することを特徴とする放射線撮像装置。  2. The radiation imaging apparatus according to claim 1, wherein each image processing means is configured such that the second image processing is different from the third image processing.
[3] 請求項 1に記載の放射線撮像装置において、前記第 1画像を記憶する第 1画像記 憶手段を備え、前記第 2画像処理手段および第 3画像処理手段は、第 1画像記憶手 段に記憶された第 1画像に基づいて各画像処理をそれぞれ行って、各画像をそれぞ れ出力することを特徴とする放射線撮像装置。  [3] The radiation imaging apparatus according to claim 1, further comprising first image storage means for storing the first image, wherein the second image processing means and the third image processing means are the first image storage means. A radiation imaging apparatus, wherein each image processing is performed based on the first image stored in the image and each image is output.
[4] 請求項 1に記載の放射線撮像装置において、前記第 1画像処理手段、第 2画像処 理手段および第 3画像処理手段を、各画像処理に含まれる処理の工程の数が増減 可能に構成し、工程の数を設定する工程数設定手段を備えることを特徴とする放射 線撮像装置。  [4] In the radiation imaging apparatus according to claim 1, the first image processing unit, the second image processing unit, and the third image processing unit can be increased or decreased in the number of processing steps included in each image processing. A radiation imaging apparatus comprising: a process number setting unit configured to set the number of processes.
[5] 被検体を照射して検出された放射線検出信号に基づいて放射線画像を得る信号 処理を行う放射線検出信号処理方法であって、前記信号処理は、放射線検出信号 に基づいて第 1画像を出力するために放射線検出信号に対して第 1画像処理を行う 第 1画像処理工程と、第 1画像処理工程で第 1画像処理されて出力された第 1画像 に基づいて第 2画像を出力するために第 1画像の画素量を減らした処理を少なくとも 含んだ第 2画像処理を行う第 2画像処理工程と、第 2画像処理工程で第 2画像処理さ れて出力された第 2画像の出力結果の後に、第 1画像処理手段で第 1画像処理され て出力された第 1画像に基づいて第 3画像を出力するために第 1画像に対して第 3画 像処理を第 2画像の出力結果に応じて行い、その第 3画像を最終的に得られる放射 線画像とする第 3画像処理工程とを備えていることを特徴とする放射線検出信号処 理方法。 [5] A radiation detection signal processing method for performing signal processing for obtaining a radiation image based on a radiation detection signal detected by irradiating a subject, wherein the signal processing is performed on the first image based on the radiation detection signal. First image processing is performed on the radiation detection signal for output, and a second image is output based on the first image processing step and the first image processed and output in the first image processing step. Therefore, a second image processing step for performing a second image processing including at least a process for reducing the pixel amount of the first image, and an output of the second image output by the second image processing in the second image processing step After the result, the first image is processed by the first image processing means. In order to output the third image based on the output first image, the third image processing is performed on the first image according to the output result of the second image, and the third image is finally obtained. A radiation detection signal processing method comprising: a third image processing step for generating a radiation image to be obtained.
[6] 請求項 5に記載の放射線検出信号処理方法において、前記第 2画像処理が前記 第 3画像処理と異なることを特徴とする放射線検出信号処理方法。  6. The radiation detection signal processing method according to claim 5, wherein the second image processing is different from the third image processing.
[7] 請求項 5に記載の放射線検出信号処理方法において、前記第 1画像処理工程の 後で、かつ前記第 2画像処理工程よりも前に、前記第 1画像を記憶する第 1画像記憶 工程を備え、前記第 2画像処理工程および第 3画像処理工程では、第 1画像記憶ェ 程で記憶された第 1画像に基づレ、て各画像処理をそれぞれ行って、各画像をそれぞ れ出力することを特徴とする放射線検出信号処理方法。  [7] The radiation detection signal processing method according to claim 5, wherein the first image storage step stores the first image after the first image processing step and before the second image processing step. In the second image processing step and the third image processing step, each image processing is performed on the basis of the first image stored in the first image storing step, and each image is processed. A radiation detection signal processing method, comprising: outputting a radiation detection signal.
[8] 請求項 5に記載の放射線検出信号処理方法において、前記第 1画像処理工程の 前に、前記第 1画像処理、第 2画像処理および第 3画像処理に含まれる各処理のェ 程の数を設定する工程数設定工程を備えることを特徴とする放射線検出信号処理方 法。  [8] In the radiation detection signal processing method according to claim 5, before the first image processing step, the process of each process included in the first image processing, the second image processing, and the third image processing is performed. A radiation detection signal processing method comprising a step number setting step for setting a number.
PCT/JP2005/015408 2005-08-25 2005-08-25 Radiation imaging device and radiation detection signal processing method WO2007023542A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/015408 WO2007023542A1 (en) 2005-08-25 2005-08-25 Radiation imaging device and radiation detection signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/015408 WO2007023542A1 (en) 2005-08-25 2005-08-25 Radiation imaging device and radiation detection signal processing method

Publications (1)

Publication Number Publication Date
WO2007023542A1 true WO2007023542A1 (en) 2007-03-01

Family

ID=37771300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015408 WO2007023542A1 (en) 2005-08-25 2005-08-25 Radiation imaging device and radiation detection signal processing method

Country Status (1)

Country Link
WO (1) WO2007023542A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186606A (en) * 2000-09-15 2002-07-02 Siemens Ag Operating method of x-ray diagnostic apparatus for preparing instant image
JP2005006887A (en) * 2003-06-19 2005-01-13 Canon Inc X-ray digital photographing system
JP2005211488A (en) * 2004-01-30 2005-08-11 Canon Inc Image processing method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186606A (en) * 2000-09-15 2002-07-02 Siemens Ag Operating method of x-ray diagnostic apparatus for preparing instant image
JP2005006887A (en) * 2003-06-19 2005-01-13 Canon Inc X-ray digital photographing system
JP2005211488A (en) * 2004-01-30 2005-08-11 Canon Inc Image processing method and device

Similar Documents

Publication Publication Date Title
US7203279B2 (en) Radiographic apparatus, and radiation detection signal processing method
WO2003057039A1 (en) X-ray diagnosis apparatus
US20050238249A1 (en) Radiographic apparatus and radiation detection signal processing method
JP7308609B2 (en) RADIATION IMAGING APPARATUS, RADIATION IMAGING SYSTEM, CONTROL METHOD OF RADIATION IMAGING APPARATUS, AND PROGRAM
JP4739060B2 (en) Radiation imaging apparatus, radiation imaging system, and control method thereof
JP2008246022A (en) Radiographic equipment
JP4497615B2 (en) Image processing apparatus, correction method, and recording medium
US7729475B2 (en) Radiation image capturing apparatus
JP4640136B2 (en) X-ray diagnostic equipment
US6879660B2 (en) Method and apparatus for reducing spectrally-sensitive artifacts
JP2018114122A (en) Radiographic system and radiographic method
JP4924717B2 (en) Radiation imaging device
WO2007049348A1 (en) Radiographic imaging device and radiation detection signal processing method
JP2017189240A (en) X-ray detector and X-ray diagnostic apparatus
US7949174B2 (en) System and method for calibrating an X-ray detector
US20100020930A1 (en) Radiographic apparatus and radiation detection signal processing method
US11178346B2 (en) Charge sharing calibration method and system
WO2007023542A1 (en) Radiation imaging device and radiation detection signal processing method
JP2008245999A (en) Radiographic equipment
KR101129369B1 (en) Tomograph
JP2005204983A (en) Radiographic system
JP2005245507A (en) X-ray ct apparatus
JP4501489B2 (en) Radiation imaging device
JP2013128698A (en) Gain correction method in two-dimensional array x-ray detector, and x-ray radiographing apparatus
US8742355B2 (en) Radiation image capturing system and method of adjusting same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05780932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP