WO2007017464A1 - Lokalisierbarer und energieautarker backscatter-transponder zur erfassung von messgrössen - Google Patents

Lokalisierbarer und energieautarker backscatter-transponder zur erfassung von messgrössen Download PDF

Info

Publication number
WO2007017464A1
WO2007017464A1 PCT/EP2006/065040 EP2006065040W WO2007017464A1 WO 2007017464 A1 WO2007017464 A1 WO 2007017464A1 EP 2006065040 W EP2006065040 W EP 2006065040W WO 2007017464 A1 WO2007017464 A1 WO 2007017464A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio signal
backscatter transponder
transponder
base station
backscatter
Prior art date
Application number
PCT/EP2006/065040
Other languages
English (en)
French (fr)
Inventor
Daniel Evers
Peter Gulden
Claus Seisenberger
Leif Wiebking
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP06792674A priority Critical patent/EP1913417A1/de
Priority to US11/989,822 priority patent/US20090215408A1/en
Publication of WO2007017464A1 publication Critical patent/WO2007017464A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/82Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
    • G01S13/84Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted for distance determination by phase measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/75Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors
    • G01S13/751Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors wherein the responder or reflector radiates a coded signal
    • G01S13/758Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors wherein the responder or reflector radiates a coded signal using a signal generator powered by the interrogation signal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0716Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising a sensor or an interface to a sensor
    • G06K19/0717Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising a sensor or an interface to a sensor the sensor being capable of sensing environmental conditions such as temperature history or pressure

Definitions

  • the present invention relates to backscatter transponders which are both powered by a base station via the radio network and can be read out.
  • RFID Radio
  • Frequency Identification applications that use passive transponders.
  • passive transponders are advantageous due to the costs, their size, robustness, service life and freedom from maintenance.
  • no additional local power supply for example in the form of a battery or solar cell, is required for passive transponders.
  • the problem of the present invention is to make efficient use of the energy radiated via the radio field and limited by authorization restrictions in order to discharge peripheral sensor technology by means of the passive transponder. and at the same time to enable it to be located by the base station.
  • a backscatter transponder having the following features: a power supply for supplying power to the backscatter transponder such that the backscatter transponder can be powered by an RF field of a base station, a controller energy of the power supply is transferable to sensors and readings of these sensors are readable, and an ability to perform a non-contact distance measurement between the base station and backscatter transponder.
  • the backscatter transponder in combination with a corresponding base station is able to read out additional sensors in an energy-autarkic way, transmit the read-out quantities to the base station, as well as a time-based and thus highly accurate distance measurement between passive transponder and base station with acceptable ranges of several meters perform.
  • a highly accurate location or distance measurement of the passive transponder to the base station is advantageous, for example, to avoid ambiguity in the use of multiple passive transponder.
  • the transponder can also be semi-passive, d. H. the microprocessor is powered by a local power source.
  • the energy supply of the backscatter transponder is carried out according to the invention via a narrowband radio signal while the non-contact distance measurement of the passive backscatter transponder is performed with a broadband radio signal.
  • the passive backscatter transponder communicates with a base station for generating and detecting radio signals, which has the following features: a signal processing and control component, a receiver with which a radio signal emitted by a backscatter transponder can be used. signal is detectable, and a transmitter, with which a narrow-band signal as a first radio signal of a first frequency band for powering the backscatter transponder and a broadband signal as a second radio signal of a second frequency band for locating the backscatter transponder are radiated.
  • the backscatter transponder can be equipped with only one antenna and only one transmitter / receiver. This constructive optimization can be implemented in the same way with the base station. This makes it possible to use a base station and a backscatter transponder with little outlay on circuitry since both the power supply and the location or distance measurement of the backscatter transponder are carried out in the same frequency range.
  • the energy supply of the backscatter transponder is performed by a narrowband radio signal emitted by the base station with a first power, while the location of the backscatter transponder is performed with a broadband radio signal of a second power, wherein the first power due to existing radio Regulations is optimally greater than the second performance.
  • the transmission of the narrowband radio signal to the energy supply and the transmission of the broadband radio signal to locate the backscatter transponder can be done both in parallel and alternately.
  • the first radio signal is radiated by the base station in the range of 2.4 GHz with a width of 8 MHz
  • the second radio signal is in the range of 2.4 GHz and has a width of 80 to 90 MHz.
  • FIG. 2 shows an exemplary block diagram of the energy self-sufficient localizable backscatter transponder
  • 4 shows a circuit example of the base station
  • 5 shows an exemplary block diagram for a passive backscatter transponder and for the modulation of the return cross section of the antenna
  • FIG. 7 shows an embodiment of a rectifier with voltage doubler (left) and a voltage inverter (right) in the backscatter transponder
  • FIG. 8 shows an embodiment of an energy accumulator for temporary supply with higher voltages.
  • a broadband radio signal is transmitted by the base station in order to carry out an FMCW (Frequency Modulated Continuous Wave) distance measurement between base station and backscatter transponder. Due to the approval, this broadband radio signal has a lower power than the narrowband radio signal and is located in the ISM
  • the backscatter transponder 1 is supplied with energy via the HF (radio frequency) field (eg 2.4 GHz) of the base station 40.
  • sensors 90 are fed whose measured variables are detected and transmitted to the base station 40.
  • Exemplary of such sensors are a pressure sensor, a temperature sensor Vibration detector and a brightness sensor.
  • further sensors are conceivable as far as they can be sufficiently supplied with the energy available to the backscatter transponder 1.
  • the backscatter transponder 1 can be localized by the base station 40, ie, a method for a wireless or non-contact distance measurement between the base station 40 and the backscatter transponder 1 is provided.
  • Fig. 2 shows a technical block diagram of an embodiment of the backscatter transponder.
  • the backscatter transponder 1 comprises a power supply 10, a controller 20 for a microcontroller 25, a sensor data acquisition and a backscatter 30 for modulating and backscattering a radio signal component for data transmission and a radio signal component for distance measurement.
  • the backscatter transponder 1 combines a time-based distance measurement with a power supply from the radio field surrounding it or the radio field emitted by the base station 40.
  • it can supply and read out connected sensors 90 with energy and thus forms an identifiable, energy-autonomous and locatable backscatter transponder 1.
  • the power supply of the backscatter transponder 1 should be due to the range requirements at maximum power.
  • the time-based location or the FMCW (Frequency Modulated Continuous Wave) location of the backscatter transponder 1 is dependent on the admission-free ISM bands (for example, 2.4 GHz) in the UHF range because of the bandwidth available there.
  • the ISM bands broadly only allow a maximum power of about 10 mW, which is not sufficient for a power supply of the backscatter transponder 1 via the radio field of the base station 40.
  • the base station 40 is configured to emit in the same frequency range both a high power narrow band radio signal and a low power broad band radio signal.
  • a narrow band radio signal having a width of approximately 8 MHz is transmitted by the base station 40.
  • This narrowband radio signal transmits a power of about 4 W in a frequency range of z. B. 2,446 to 2,454 GHz.
  • the base station 40 transmits a wideband radio signal for locating in the ISM band.
  • This broadband radio signal transmits power of about 10 mW in a frequency range of preferably 2.4 to 2.483 GHz.
  • the transmission and reception of the narrowband and the broadband radio signal by base station 40 and backscatter transponder 1 can take place in parallel and continuously but also alternately. If the power supply of the backscatter transponder 1 is executed parallel to the positioning realized with the broadband radio signal, the area around the high-performance carrier in the radio signal must be hidden by software, which effectively leads to a bandwidth reduction and thus to a deterioration of the resolution.
  • Backscatter transponders 1 as well as its location within the same frequency range are required in the backscatter transponder 1, only one antenna and receiving unit. This reduces the design complexity and also the space requirement of the backscatter transponder 1.
  • Fig. 3 an embodiment of the backscatter transponder 1 is shown schematically.
  • phase Shift Keying Phase Shift Keying
  • AM amplitude modulation
  • the system consisting of base station 40 and backscatter transponders can furthermore be designed to be capable of generating pulp, so that selective activation of the modulator can take place via the received data in order to be able to specifically address individual backscatter transponders 1 within the reading range of the base station 40.
  • this feature makes it possible to save energy.
  • the above-mentioned bulk capability which is also referred to as multi-access, can be described, for example, in US Pat. B. Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA) or code division multiple access (CDMA).
  • FDMA Frequency Division Multiple Access
  • TDMA Time Division Multiple Access
  • CDMA code division multiple access
  • a protocol and operating mode can be agreed on a downlink, ie a data transfer from the base station 40 to the backscatter transponder 1, a multi-tag capability, ie a use of multiple transponders in conjunction with a base station, guaranteed.
  • the combination with the power supply from the radio network is advantageous.
  • the downlink data stream from the base station 40 to the backscatter transponder 1 is impressed on the radio signal for supplying energy to the backscatter transponder 1.
  • the data is transferred from the backscatter transponder 1 to the base station 40 in a multitagbar uplink via the impression in the reflected FMCW interrogation signal.
  • the backscatter system consisting of base station 40 and backscatter transponder 1 is preferably executed in two versions with regard to the frequency bands used: 1) Two separate bands are used for supplying energy and locating the backscatter transponder 1.
  • the power supply preferably takes place at a frequency of 869 MHz and the location in the 2.4 GHz ISM band. This has the advantage that at the low frequency of the power supply, the efficiency of the diode rectifier circuit for using the radio field energy is higher and further in the base station no interference can be caused by the strong CW carrier. Locating at 2.4 GHz can be performed at full ISM bandwidth of 80 MHz.
  • the same frequency range is used for the power supply of the backscatter transponder 1 and its location.
  • This frequency range is preferably in the 2.4 GHz range, with the advantage that the backscatter transponder 1 requires only one antenna and one receiver and can therefore be implemented extremely simply.
  • 4 shows a block diagram of a preferred base station 40 according to the above-mentioned second version.
  • a CW oscillator is used to generate the high-performance monofrequency carrier signal for the energy supply of the backscatter transponder 1.
  • the ramp signal required for the FMCW distance measurement is derived therefrom via an I / Q mixer. Both signals are emitted by a common transmitting antenna.
  • the radiated ramp is mixed with the backscattered and modulated signal received by the backscatter transponder 1.
  • the resulting signal provides a spectrum as exemplified in FIG.
  • the measured distance between base station 40 and backscatter transponder 1 can be derived directly from this spectrum.
  • the modulated spectrum in the backscatter transponder 1 is used to phase-modulate or amplitude-modulate the scattered radio signal. It follows that the backscatter transponder 1 acts as a backscatter and thus can be used for transit time measurement and location of the same. This transit time measurement according to the backscatter principle is based on the disclosure of DE 199 46 161.
  • the backscatter transponder 1 By connecting the power supply of the backscatter transponder 1 from the radio field and the above-described realization of the base station 40, it is possible with a fully passive backscatter transponder with only one receiver unit centimeter-accurate positioning up to a distance of about five meters between Base station 40 and backscatter transponder 1 and the simultaneous data transmission of, for example, an additional sensor or sensor between backscatter transponder and base station 40 to ensure.
  • This combination leads to a low-cost and simple base station 40, which makes it possible to locate fully passive transponders with high accuracy and at the same time energy self-sufficient read out measured variables.
  • the entire backscatter system consisting of base station 40 and backscatter transponder 1 is radio-enabled. In the "semi-passive" version, the backscatter transponder 1 is supplied with energy and achieves ranges of approx. 15 m.
  • a preferred embodiment of the power supply from the radio network in the backscatter transponder 1 consists of the components of a matching circuit, a rectifier, an energy accumulator, a charge pump and a trigger module.
  • Fig. 7 shows the rectifier used which may also be implemented as a voltage multiplier in cascaded form to provide a higher output voltage.
  • the following sizing criteria are important for the selection of the rectifier diodes, especially with regard to the energy to be extracted from the radio network: low junction capacitance of preferably less than 100 fF, low series resistance of possibly less than 10 ohms, low reverse current of the diodes and a low threshold voltage of possibly 350 mV.
  • An optimization could additionally be done by using integrated rectifier packages.
  • an energy accumulator in the backscatter transponder 1 , In this energy accumulator the energy is collected in a condenser. If a certain electrical voltage is reached, closes the switch Sl, which is realized in the form of a low-loss trigger circuit. With this preferred embodiment, you can temporarily supply the backscatter transponder 1 at a greater distance to the base station 40 and thus achieve higher ranges of the backscatter transponder 1, as it would allow the power supply from the radio network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Die vorliegende Erfindung offenbart ein Backscatter-System bestehend aus einer Basisstation (40) und einem voll passiven Transponder (1). Der Transponder (1) ist in der Lage, Sensoren (90) energieautark auszulesen, die ausgelesenen Größen an die Basisstation (40) zu übertragen sowie eine laufzeitbasierte und somit hochgenaue Abstandsmessung zwischen voll passivem Tag (1) und Basisstation (40) durchzuführen. Die Energieversorgung des Transponders (1) erfolgt dabei aus dem von der Basisstation (40) abgestrahlten Funkfeld.

Description

Beschreibung
Lokalisierbarer und energieautarker Backscatter-Transponder zur Erfassung von Messgrößen
Die vorliegende Erfindung betrifft Backscatter-Transponder, die von einer Basisstation über das Funknetz sowohl mit Energie versorgt werden, als auch ausgelesen werden können.
In verschiedenen technischen Bereichen werden RFID (Radio
Frequency Identification) -Anwendungen genutzt, die mit passiven Transpondern arbeiten. Gegenüber aktiven Transpondern sind diese passiven Transponder aufgrund der für sie erforderlichen Kosten, ihrer Größe, Robustheit, Lebensdauer und Wartungsfreiheit von Vorteil. Zudem ist für passive Transponder keine zusätzliche lokale Energieversorgung, beispielsweise in Form einer Batterie oder Solarzelle, erforderlich.
Herkömmliche RFID-Tags bzw. Transponder übertragen für ge- wohnlich nur eine ID (Identification) und sind daher lediglich für einfache Identifikationsaufgaben geeignet. Die für einen passiven Transponder auszuführenden Funktionen sind im Wesentlichen durch die zur Verfügung stehende Energie für diese Funktionen begrenzt. Daher werden voll passive Tags bisher lediglich identifiziert, während Abstandsmessungen zwischen Basisstation und Tag über die Feldstärke im Allgemeinen kaum möglich sind. Die Abstandsmessung wird gerade in metallhaltiger Umgebung durch konstruktive und destruktive Auslöschungen über Mehrwegeausbreitungen behindert, weil die- se den physikalischen Effekt der Feldstärkeabnahme bei zunehmender Entfernung zwischen Basisstation und Transponder teilweise überkompensieren.
Das Problem der vorliegenden Erfindung besteht daher darin, sich die über das Funkfeld abgestrahlte und durch Zulassungsbeschränkungen begrenzte Energie effizient zunutze zu machen, um durch den passiven Transponder periphere Sensorik auszule- sen und gleichzeitig seine Ortung durch die Basisstation zu ermöglichen.
Das obige Problem wird durch einen Backscatter-Transponder gelöst, der die folgenden Merkmale aufweist: eine Energieversorgung zur Speisung des Backscatter-Transponders mit Energie derart, dass der Backscatter-Transponder über ein HF-Feld einer Basisstation mit Energie versorgbar ist, eine Steuerung, mittels derer Energie der Energieversorgung auf Sensoren ü- bertragbar ist und Messwerte dieser Sensoren auslesbar sind, und eine Fähigkeit, eine berührungslose Abstandsmessung zwischen Basisstation und Backscatter-Transponder durchzuführen.
Der Backscatter-Transponder ist in Kombination mit einer ent- sprechenden Basisstation in der Lage, zusätzliche Sensoren energieautark auszulesen, die ausgelesenen Größen an die Basisstation zu übertragen sowie eine laufzeitbasierte und damit hochgenaue Abstandsmessung zwischen passivem Transponder und Basisstation bei akzeptablen Reichweiten von mehreren Me- tern durchzuführen. Eine hochgenaue Ortung bzw. Abstandsmessung des passiven Transponders zur Basisstation ist vorteilhaft, um beispielsweise Mehrdeutigkeiten beim Einsatz mehrerer passiver Transponder zu vermeiden.
Wahlweise kann der Transponder auch semi-passiv ausgeführt sein, d. h. der Mikroprozessor wird über eine lokale Energiequelle gespeist.
Die Energieversorgung des Backscatter-Transponders erfolgt erfindungsgemäß über ein schmalbandiges Funksignal während die berührungslose Abstandsmessung des passiven Backscatter- Transponders mit einem breitbandigen Funksignal durchgeführt wird. Der passive Backscatter-Transponder kommuniziert mit einer Basisstation zum Erzeugen und Erfassen von Funksigna- len, die die folgenden Merkmale aufweist: eine Signalverar- beitungs- und Ansteuerungskomponente, einen Empfänger, mit dem ein von einem Backscatter-Transponder ausgesandtes Funk- signal erfassbar ist, und einen Sender, mit dem ein schmal- bandiges Signal als ein erstes Funksignal eines ersten Frequenzbandes zur Energieversorgung des Backscatter- Transponders und ein breitbandiges Signal als ein zweites Funksignal eines zweiten Frequenzbandes zur Ortung des Backs- catter-Transponders abstrahlbar sind.
Werden die Energieversorgung und die Modulationseinheit des Backscatter-Transponders über denselben Frequenzbereich des Funksignals der Basisstation versorgt, kann der Backscatter- Transponder mit nur einer Antenne und nur einem Sender/Empfänger ausgestattet sein. Diese konstruktive Optimierung lässt sich in gleicher Weise auch bei der Basisstation umsetzen. Dadurch wird der Einsatz einer Basisstation und ei- nes Backscatter-Transponders mit geringem schaltungstechnischen Aufwand möglich, da sowohl die Energieversorgung als auch die Durchführung der Ortung bzw. Abstandsmessung des Backscatter-Transponders im selben Frequenzbereich erfolgt.
Gemäß einer Ausführungsform erfolgt die Energieversorgung des Backscatter-Transponders durch ein von der Basisstation ausgesandtes schmalbandiges Funksignal mit einer ersten Leistung, während die Ortung des Backscatter-Transponders mit einem breitbandigen Funksignal einer zweiten Leistung durchge- führt wird, wobei die erste Leistung aufgrund bestehender Funk-Reglementierungen optimalerweise größer ist als die zweite Leistung.
Die Übertragung des schmalbandigen Funksignals zur Energie- Versorgung und die Übertragung des breitbandigen Funksignals zur Ortung des Backscatter-Transponders kann sowohl parallel als auch abwechselnd erfolgen. Beispielsweise wird das erste Funksignal durch die Basisstation im Bereich von 2,4 GHz mit einer Breite von 8 MHz abgestrahlt, während das zweite Funk- signal im Bereich von 2,4 GHz liegt und eine Breite von 80 bis 90 MHz aufweist. Es ist jedoch ebenfalls möglich, ein erstes Funksignal mit einer Frequenz von 869 MHz zur Energie- Versorgung des Backscatter-Transponders zu nutzen und mit einem zweiten Funksignal im 2,4 GHz-ISM-Band zur Abstandsmessung zu kombinieren.
Basierend auf der oben zusammengefassten Erfindung ist eine genaue Abstandsmessung zwischen Basisstation und passivem o- der semi-passivem (für große Reichweiten) Transponder möglich. Des Weiteren sind Reichweiten des Transponders von ca. 4 m passiv und 15 m semi-passiv realisierbar. Zur weiteren Unterstützung der Leistungsfähigkeit des Backscatter- Transponders können temporär durch Nutzung eines Leistungsakkumulators größere Energiemengen zur Verfügung gestellt werden, als allein bei der Direktspeisung aus dem Funkfeld nutzbar wären. Mit Hilfe der im Backscatter-Transponder reali- sierbaren Modulation ist zudem das gesamte energieautarke lokalisierbare Backscatter-System mehrzielfähig, d. h., mehrere Backscatter-Transponder können durch eine Basisstation mittels dieses Frequenzmultiplexverfahrens kollisionsfrei er- fasst werden. Von praktischer Relevanz ist des Weiteren, dass die von der Basisstation abgestrahlten Funksignale zulassungskonform sind.
Bevorzugte Ausführungsformen der vorliegenden Erfindung gehen aus der folgenden Beschreibung, den Zeichnungen und den an- hängenden Ansprüchen hervor. Es zeigen in den begleitenden Zeichnungen:
Fig. 1 eine Ausführungsform des Systemaufbaus des energieautarken lokalisierbaren Backscatter-Systems,
Fig. 2 ein beispielgebendes Blockschaltbild des energieautarken lokalisierbaren Backscatter-Transponders,
Fig. 3 die Ausführungsform eines Aufbaus des ortbaren Backs- catter-Transponders,
Fig. 4 ein Schaltungsbeispiel der Basisstation, Fig. 5 ein beispielhaftes Blockschaltbild für einen passiven Backscatter-Transponder sowie für die Modulation des Rückstrahlquerschnitts der Antenne,
Fig. 6 eine spektrale Darstellung des EntfernungsSpektrums eines ortbaren RFID-Transponders,
Fig. 7 eine Ausführungsform eines Gleichrichters mit Span- nungsverdoppler (links) und einen Spannungsversechs- facher (rechts) im Backscatter-Transponder, und
Fig. 8 eine Ausführungsform eines Energie-Akkumulators zur temporären Speisung mit höheren Spannungen.
Mit Hilfe der vorliegenden Erfindung ist es möglich, einen Backscatter-Transponder über eine Basisstation und ein schmalbandiges Funksignal hoher Leistung mit Energie zu speisen. Gleichzeitig oder abwechselnd mit dem schmalbandigen Funksignal wird ein breitbandiges Funksignal von der Basisstation ausgesandt, um eine FMCW (Frequency Modulated Conti- nuous Wave) -Abstandsmessung zwischen Basisstation und Backscatter-Transponder durchzuführen. Dieses breitbandige Funksignal weist zulassungsbedingt eine geringere Leistung als das schmalbandige Funksignal auf und befindet sich im ISM
(Industrial-Scientifical-Medical) -Band. Auf dieser vorzugsweise systematischen Grundlage ist es möglich, sowohl eine Energieversorgung bei relativ großem Abstand zwischen Transponder und Basisstation (ca. 5 m) als auch eine Ortung des Transponders nach dem FMCW-Backscatter-Prinzip innerhalb eines Systems zu ermöglichen. Um den Schaltungsaufwand für Basisstation und Backscatter-Transponder gering zu halten, können vorzugsweise für die Ortung und die Energieversorgung des Backscatter-Transponders der selbe Frequenzbereich ge- nutzt werden. Dies hat den Vorteil, dass man auf Seiten des Backscatter-Transponders nur eine Antenne und einen Sender/Empfänger benötigt. In Fig. 1 ist der Aufbau des Backscatter-Systems mit dem e- nergieautarken, lokalisierbaren Backscatter-Transponders 1 schematisch dargestellt. Der Backscatter-Transponder 1 wird über das HF (Hochfrequenz) -Feld (z. B. 2,4 GHz) der Basisstation 40 mit Energie versorgt. Mit Hilfe dieser Energie, die der Backscatter-Transponder 1 aus dem von der Basisstation 40 ausgesandten Funksignal zieht, werden Sensoren 90 gespeist, deren Messgrößen erfasst und an die Basisstation 40 übertra- gen. Beispielgebend für derartige Sensoren sind ein Drucksensor, ein Temperatursensor, ein Erschütterungsdetektor und ein Helligkeitssensor. Es sind jedoch noch weitere Sensoren denkbar, soweit diese mit der dem Backscatter-Transponder 1 zur Verfügung stehenden Energie ausreichend gespeist werden kön- nen . Des Weiteren ist der Backscatter-Transponder 1 durch die Basisstation 40 lokalisierbar, d. h., es wird ein Verfahren zu einer drahtlosen bzw. berührungslosen Abstandsmessung zwischen Basisstation 40 und Backscatter-Transponder 1 bereitgestellt.
Fig. 2 zeigt ein technisches Blockschaltbild einer Ausführungsform des Backscatter-Transponders. Der Backscatter- Transponder 1 besteht aus einer Energieversorgung 10, einer Steuerung 20 für einen MikroController 25, einer Sensordaten- erfassung und aus einem Backscatter 30 zur Modulation und Rückstreuung eines Funksignal-Anteils zur Datenübertragung und eines Funksignal-Anteils zur Entfernungsmessung. Auf dieser konstruktiven Grundlage vereint der Backscatter- Transponder 1 eine laufzeitbasierte Abstandsmessung mit einer Energieversorgung aus dem ihn umgebenden bzw. dem von der Basisstation 40 ausgesandten Funkfeld. Zudem kann er angeschlossene Sensoren 90 mit Energie versorgen und auslesen und bildet auf diese Weise einen identifizierbaren, energieautarken und ortbaren Backscatter-Transponder 1. Das grundlegende Prinzip zur laufzeitbasierten Ortung des Backscatter- Transponders 1 durch die Basisstation 40 ist in der DE 199 46 161 Al beschrieben. Eine technische Anforderung an den beschriebenen Backscatter- Transponder 1 besteht darin, dass die laufzeitbasierte Ortung gemäß der Auflösungsformel
c d„;„ =
2x5
bei möglichst großer Bandbreite B stattfinden muss. dmin bezeichnet in der obigen Formel das Auflösungsvermögen, während c die Lichtgeschwindigkeit symbolisiert. Des Weiteren sollte die Energieversorgung des Backscatter-Transponders 1 aufgrund der Reichweitenanforderungen bei maximaler Leistung erfolgen. Die laufzeitbasierte Ortung bzw. die FMCW (Frequency Modulated Continuous Wave) -Ortung des Backscatter-Transponders 1 ist im UHF-Bereich auf die zulassungsfreien ISM-Bänder (beispielsweise 2,4 GHz) wegen der dort zur Verfügung stehenden Bandbreite angewiesen. Die ISM-Bänder gestatten jedoch breitban- dig nur eine maximale Leistung von ungefähr 10 mW, was für eine Energieversorgung des Backscatter-Transponders 1 über das Funkfeld der Basisstation 40 nicht ausreichend ist.
Daher wird gemäß einer Ausführungsform der vorliegenden Erfindung die Basisstation 40 derart konfiguriert, dass sie im selben Frequenzbereich sowohl ein schmalbandiges Funksignal mit hoher Leistung als auch ein breitbandiges Funksignal mit niedriger Leistung aussendet. Bevorzugt wird im Bereich von 2,4 GHz ein schmalbandiges Funksignal mit einer Breite von ungefähr 8 MHz durch die Basisstation 40 gesendet. Dieses schmalbandige Funksignal überträgt eine Leistung von ca. 4 W in einem Frequenzbereich von z. B. 2,446 bis 2,454 GHz. Des Weiteren überträgt die Basisstation 40 ein breitbandiges Funksignal zur Ortung im ISM-Band. Dieses breitbandige Funksignal überträgt eine Leistung von ungefähr 10 mW in einem Frequenzbereich von vorzugsweise 2,4 bis 2,483 GHz.
Während das von der Basisstation 40 ausgesandte und durch den Backscatter-Transponder 1 erfasste schmalbandige Funksignal nur zur Energieversorgung des Backscatter-Transponders 1 über das Funkfeld dient, wird durch die Basisstation 40 eine Rampe für die FMCW-Radarortung des Backscatter-Transponders 1 erzeugt. Das Aussenden und Empfangen des schmalbandigen und des breitbandigen Funksignals durch Basisstation 40 und Backscat- ter-Transponder 1 kann parallel und kontinuierlich aber auch abwechselnd erfolgen. Wird die Energieversorgung des Backscatter-Transponders 1 parallel zur mit dem breitbandigen Funksignal realisierten Ortung ausgeführt, muss der Bereich um den leistungsstarken Träger im Funksignal softwaremäßig ausgeblendet werden, was effektiv zu einer Bandbreiten- Reduktion und somit zu einer Beeinträchtigung der Auflösung führt.
Durch die Realisierung sowohl der Energieversorgung des
Backscatter-Transponders 1 als auch dessen Ortung innerhalb desselben Frequenzbereichs benötigt man im Backscatter- Transponder 1 nur eine Antenne und Empfangseinheit. Dies verringert den konstruktiven Aufwand und auch den Platzbedarf des Backscatter-Transponders 1.
In Fig. 3 ist eine Ausführungsform des Backscatter- Transponders 1 schematisch dargestellt. Die RFID-Einheit mit MikroController generiert den spezifischen Modulationstakt, der mit einem Phasenmodulator (PM = Phase Modulation, PSK =
Phase Shift Keying) oder einem Amplitudenmodulator (AM = Amplitude Modulation) angesteuert wird. Das System bestehend aus Basisstation 40 und Backscatter-Transpondern kann des Weiteren pulkfähig ausgeführt werden, so dass über die empfangenen Daten ein selektives Einschalten des Modulators erfolgen kann, um einzelne Backscatter-Transponder 1 innerhalb der Lesereichweite der Basisstation 40 gezielt ansprechen zu können. Zudem ist es mit dieser Funktion möglich, Energie zu sparen. Die oben genannte Pulkfähigkeit, die auch als Viel- fachzugriff (multi-access) bezeichnet wird, kann z. B. über Frequenzmultiplex (FDMA = Frequency Division Multiple Access) , Zeitmultiplex (TDMA = Time Division Multiple Access) oder Codemultiplex (CDMA = Code Division Multiple Access) erreicht werden. Insbesondere im intermittierenden bzw. umschaltenden oder abwechselnden Betrieb kann über einen Down- link, d. h. einen Datentransfer von der Basisstation 40 zum Backscatter-Transponder 1, eine Protokoll- und Betriebsart vereinbart werden, die eine Multitagfähigkeit, also eine Nutzung von mehreren Transpondern in Verbindung mit einer Basisstation, garantiert. In diesem Zusammenhang ist die Kombination mit der Energieversorgung aus dem Funknetz von Vorteil. Zu diesem Zweck wird der Downlink-Datenstrom von der Basisstation 40 zum Backscatter-Transponder 1 dem Funksignal zur Energieversorgung des Backscatter-Transponders 1 aufgeprägt. Anschließend erfolgt die Übermittlung der Daten vom Backscatter-Transponder 1 zur Basisstation 40 in einem multitagfähi- gen Uplink über die Einprägung in das reflektierte FMCW- Abfragesignal .
Das Backscatter-System bestehend aus Basisstation 40 und Backscatter-Transponder 1 wird bezüglich der verwendeten Fre- quenzbänder bevorzugt in zwei Versionen ausgeführt: 1) Es werden zwei getrennte Bänder zur Energieversorgung und zur Ortung des Backscatter-Transponders 1 verwendet. Bevorzugt erfolgt die Energieversorgung bei einer Frequenz von 869 MHz und die Ortung im 2,4 GHz-ISM-Band. Dies hat den Vorteil, dass bei der niedrigen Frequenz der Energieversorgung der Wirkungsgrad der Dioden-Gleichrichterschaltung zur Nutzung der Funkfeldenergie höher ist und des Weiteren in der Basisstation keine Störbeeinflussung durch den starken CW-Träger auftreten kann. Die Ortung bei 2,4 GHz kann bei voller ISM- Bandbreite von 80 MHz durchgeführt werden.
In der zweiten Version wird derselbe Frequenzbereich für die Energieversorgung des Backscatter-Transponders 1 und dessen Ortung verwendet. Dieser Frequenzbereich befindet sich bevor- zugt im 2, 4-GHz-Bereich mit dem Vorteil, dass der Backscatter-Transponder 1 nur eine Antenne und einen Empfänger benötigt und daher extrem einfach ausgeführt werden kann. Fig. 4 zeigt ein Blockschaltbild zu einer bevorzugten Basisstation 40 gemäß der oben genannten zweiten Version. In diesem Blockschaltbild bedient man sich eines CW-Oszillators zur Erzeugung des leistungsstarken monofrequenten Trägersignals für die Energieversorgung des Backscatter-Transponders 1. Gleichzeitig wird über einen I/Q-Mischer daraus das für die FMCW-Abstandsmessung benötigte Rampensignal abgeleitet. Beide Signale werden mit einer gemeinsamen Sendeantenne abge- strahlt. Im Empfängerzweig der Basisstation 40 wird die ausgestrahlte Rampe mit dem vom Backscatter-Transponder 1 empfangenen rückgestreuten und modulierten Signal gemischt. Das resultierende Signal liefert ein Spektrum, wie es beispielgebend in Fig. 6 dargestellt ist. Aus diesem Spektrum kann di- rekt der gemessene Abstand zwischen Basisstation 40 und Backscatter-Transponder 1 abgeleitet werden.
Wie man aus dem Blockschaltbild in Fig. 5 erkennen kann, wird durch den Modulator im Backscatter-Transponder 1 das einge- streute Funksignal phasen- oder amplitudenmoduliert. Daraus folgt, dass der Backscatter-Transponder 1 als Backscatter fungiert und somit zur Laufzeitmessung und Ortung desselben verwendet werden kann. Diese Laufzeitmessung nach dem Back- scatterprinzip basiert auf der Offenbarung der DE 199 46 161.
Durch die Verbindung der Energieversorgung des Backscatter- Transponders 1 aus dem Funkfeld und der oben beschriebenen Realisierung der Basisstation 40 ist es möglich, mit einem voll passiven Backscatter-Transponder mit nur einer Empfän- gereinheit eine zentimetergenaue Ortung bis zu einer Entfernung von ungefähr fünf Metern zwischen Basisstation 40 und Backscatter-Transponder 1 sowie die gleichzeitige Datenübertragung von beispielsweise einem zusätzlichen Messfühler oder Sensor zwischen Backscatter-Transponder und Basisstation 40 zu gewährleisten. Diese Kombination führt zu einer kostengünstigen und einfachen Basisstation 40, die es möglich macht, voll passive Transponder hochgenau zu orten und gleichzeitig energieautark Messgrößen auszulesen. Zudem ist das gesamte Backscatter-System bestehend aus Basisstation 40 und Backscatter-Transponder 1 funkzulassungsfähig. In der „semi-passiven" Ausführung wird der Backscatter-Transponder 1 mit Energie versorgt und erzielt Reichweiten von ca. 15 m.
Eine bevorzugte Ausführungsform der Energieversorgung aus dem Funknetz im Backscatter-Transponder 1 besteht aus den Komponenten einer Anpassungsschaltung, einem Gleichrichter, einem Energie-Akkumulator, einer Ladungspumpe und einem Triggerbaustein. Fig. 7 zeigt den verwendeten Gleichrichter, der auch als Spannungs-Vervielfacher in kaskadierter Form ausgeführt werden kann, um eine höhere AusgangsSpannung bereitzustellen. Für die Auswahl der Gleichrichterdioden sind gerade im Hin- blick auf die aus dem Funknetz zu gewinnende Energie folgende Dimensionierungskriterien von Bedeutung: geringe Sperrschichtkapazität von möglichst weniger als 100 fF, geringer Serienwiderstand von möglichst weniger als 10 Ohm, geringer Sperrstrom der Dioden und eine geringe Schwellenspannung von möglichst 350 mV. Eine Optimierung könnte ergänzend dadurch erfolgen, dass integrierte Gleichrichter-Packages eingesetzt werden.
Um die von der Energieversorgung des Backscatter-Transponders 1 erzielten AusgangsSpannungen und somit dessen Reichweite noch zu erhöhen, ist es gemäß einer weiteren Ausführungsform bevorzugt, einen Energie-Akkumulator, wie er beispielgebend in Fig. 8 dargestellt ist, in dem Backscatter-Transponder 1 einzusetzen. In diesem Energie-Akkumulator wird die Energie in einem Kondensator gesammelt. Ist eine bestimmte elektrische Spannung erreicht, schließt der Schalter Sl, der in Form einer verlustarmen Triggerschaltung realisiert ist. Mit dieser bevorzugten Ausgestaltung kann man den Backscatter- Transponder 1 in einer größeren Entfernung zur Basisstation 40 temporär versorgen und somit höhere Reichweiten des Backscatter-Transponders 1 erzielen, als es die Energieversorgung aus dem Funknetz zulassen würde.

Claims

Patentansprüche
1. Backscatter-Transponder (1), der die folgenden Merkmale aufweist : a) eine Energieversorgung (10) zur Speisung des Backscat- ter-Transponders (1) mit Energie derart, dass der Backscatter-Transponder (1) über ein HF-Feld einer Basisstation mit Energie versorgbar ist, b) eine Steuerung (20), mittels derer Energie der Ener- gieversorgung auf Sensoren (90) übertragbar ist und Messwerte dieser Sensoren (90) auslesbar sind, und c) eine Vorrichtung (30) zur Abstandsmessung, mit der eine berührungslose Abstandsmessung zwischen Basisstation
(40) und Backscatter-Transponder (1) durchführbar ist.
2. Backscatter-Transponder (1) gemäß Anspruch 1, dessen E- nergieversorgung (10) durch ein schmalbandiges Funksignal mit Energie versorgbar ist und dessen berührungslose Abstandsmessung mittels der Vorrichtung (30) zur Abstands- messung und einem breitbandigen Funksignal durchführbar ist.
3. Backscatter-Transponder (1) gemäß Anspruch 1 oder 2, der nur eine Antenne und einen Sender/Empfänger aufweist, da die Energieversorgung (10) und Vorrichtung (30) zur Abstandsmessung über den selben Frequenzbereich des Funksignals der Basisstation versorgbar sind.
4. Backscatter-Transponder (1) gemäß Anspruch 3, dessen E- nergieversorgung (10) mit einem schmalbandigen Funksignal einer ersten Leistung und dessen Vorrichtung (30) zur Abstandsmessung mit einem breitbandigen Funksignal einer zweiten Leistung geringer als die erste Leistung versorgbar ist.
5. Backscatter-Transponder (1) gemäß Anspruch 4, dessen schmalbandiges Funksignal im Bereich von 2,4 GHz liegt und eine Breite von 8 MHz, insbesondere zwischen 2,446 GHz und 2,454 GHz, aufweist und dessen breitbandi- ges Funksignal im Bereich von 2,4 GHz liegt und eine Breite von 80-90 MHz, insbesondere zwischen 2,4 GHz und 2,483 GHz, aufweist.
6. Backscatter-Transponder (1) gemäß Anspruch 4 oder 5, dessen schmalbandiges und breitbandiges Funksignal kontinuierlich oder abwechselnd durch den Backscatter- Transponder erfassbar sind.
7. Backscatter-Transponder (1) gemäß einem der vorhergehenden Ansprüche, mit dessen Vorrichtung (30) zur Abstandsmessung eine FMCW-Radarortung des Backscatter- Transponders (1) durchführbar ist.
8. Backscatter-Transponder (1) gemäß Anspruch 1 oder 2, dessen Energieversorgung (10) bei einer Frequenz von 869 MHz versorgbar ist und dessen Abstandsmessung mittels der Vorrichtung (30) zur Abstandsmessung im 2,4 GHz ISM-Band durchführbar ist.
9. Backscatter-Transponder (1) gemäß einem der vorhergehenden Ansprüche, der als „semi-passiver" Transponder (1) aufgebaut ist.
10. Basisstation (40) zum Erzeugen und Erfassen von Funksignalen in Kommunikation mit einem Backscatter-Transponder, die die folgenden Merkmale aufweist: a) einen Empfänger (60) , mit dem ein von einem Backscatter-Transponder ausgesandtes Funksignal erfassbar ist, b) einen Sender (70) , mit dem erste Funksignale eines ersten Frequenzbands zur Energieversorgung des Backscat- ter-Transponders und zweite Funksignale eines zweiten Frequenzbandes zur Ortung des Backscatter-Transponders abstrahlbar sind, und c) eine Signalverarbeitungs- und Ansteuerungskomponente (50) .
11. Basisstation (40) gemäß Anspruch 10, deren erstes Funk- signal ein schmalbandiges Funksignal einer ersten Leistung und deren zweites Funksignal ein breitbandiges Funksignal einer zweiten Leistung aufgrund von Funkreglementierungen geringer als die erste Leistung ist.
12. Basisstation (40) gemäß Anspruch 11, deren erstes Funksignal im Bereich von 2,4 GHz liegt und eine Breite von 8 MHz, insbesondere zwischen 2,446 GHz und 2,454 GHz, aufweist und deren zweites Funksignal im Bereich von 2,4 GHz liegt und eine Breite von 80-90 MHz, insbesondere zwischen 2,4 GHz und 2,483 GHz, aufweist.
13. Basisstation (40) gemäß Anspruch 10 oder 11, deren erstes Funksignal bei einer Frequenz von 869 MHz abstrahlbar ist und deren zweites Funksignal im 2,4 GHz ISM-Band abs- trahlbar ist.
14. Basisstation (40) gemäß einem der Ansprüche 10-13, deren erstes und zweites Funksignal kontinuierlich oder abwechselnd abstrahlbar sind.
15. Basisstation (40) gemäß einem der Ansprüche 10-14, mit deren zweitem Funksignal eine FMCW-Radarortung durchführbar ist.
PCT/EP2006/065040 2005-08-09 2006-08-03 Lokalisierbarer und energieautarker backscatter-transponder zur erfassung von messgrössen WO2007017464A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06792674A EP1913417A1 (de) 2005-08-09 2006-08-03 Lokalisierbarer und energieautarker backscatter-transponder zur erfassung von messgrössen
US11/989,822 US20090215408A1 (en) 2005-08-09 2006-08-03 Locatable and Autonomously Powered Backscatter Transponder for Registering Measured Variables

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005037582.0 2005-08-09
DE102005037582A DE102005037582A1 (de) 2005-08-09 2005-08-09 Lokalisierbarer und energieautarker Backscatter-Transponder zur Erfassung von Messgrößen

Publications (1)

Publication Number Publication Date
WO2007017464A1 true WO2007017464A1 (de) 2007-02-15

Family

ID=37395954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/065040 WO2007017464A1 (de) 2005-08-09 2006-08-03 Lokalisierbarer und energieautarker backscatter-transponder zur erfassung von messgrössen

Country Status (4)

Country Link
US (1) US20090215408A1 (de)
EP (1) EP1913417A1 (de)
DE (1) DE102005037582A1 (de)
WO (1) WO2007017464A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008104487A2 (de) 2007-02-27 2008-09-04 Siemens Aktiengesellschaft Drahtlos fernabfragbarer energiesparender sensor
DE102008005672A1 (de) * 2008-01-23 2009-08-13 Eads Deutschland Gmbh Vorrichtung und Verfahren zum Erfassen von Strukturveränderungen eines Bauteils
DE102010045465A1 (de) * 2010-09-14 2011-09-22 Siemens Aktiengesellschaft Verfahren zum Überwachen der strukturellen Integrität eines Bauwerks oder eines Geländes
US8149142B2 (en) * 2007-03-12 2012-04-03 Lojack Operating Company, L.P. Adaptive range vehicle locating unit, vehicle tracking unit and vehicle recovery system including same
US8330578B2 (en) 2007-04-13 2012-12-11 Infineon Technologies Austria Ag Transponder device and method for providing a supply voltage
RU2665034C1 (ru) * 2017-09-27 2018-08-27 ООО "Генезис-Таврида" Способ определения четырех расстояний от каждой из двух измерительных станций до каждого из двух транспондеров

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008026901B4 (de) * 2008-06-05 2010-06-02 Cellpack Gmbh Datenübertragungssystem mit Ortungs-, Identifikations- und Messfunktion sowie ein Verfahren hierzu
EP2300849B1 (de) * 2008-07-02 2012-06-20 Nxp B.V. System zum lesen von transponderübermittelten informationen
DE102008042533A1 (de) 2008-10-01 2010-04-08 Robert Bosch Gmbh Verfahren zur Ermittlung einer Distanz zwischen einem ersten Fahrzeug und einem zweiten Fahrzeug
DE102009008174A1 (de) * 2009-02-10 2010-08-19 Siemens Aktiengesellschaft Verfahren und System zur Bestimmung der Entfernung, der Geschwindigkeit und/oder der Bewegungsrichtung eines RFID-Transponders
FI122310B (fi) 2010-04-09 2011-11-30 Teknologian Tutkimuskeskus Vtt Menetelmä, järjestelmä ja tietokoneohjelmatuote RFID-tunnisteiden etäisyysmittaukseen
DE102011083496A1 (de) * 2011-09-27 2013-03-28 Siemens Aktiengesellschaft Verfahren zum Lokalisieren von beweglichen Objekten und zugehöriges System
DE102012003861A1 (de) * 2012-02-27 2013-08-29 Giesecke & Devrient Gmbh Kontaktlos-Transaktion mit einem Kontaktlos-Kommunikationselement
DE102012202920A1 (de) * 2012-02-27 2013-08-29 Siemens Aktiengesellschaft RFID-Marke mit zusätzlichem Modulator zur Laufzeitmessung
GB2506385A (en) * 2012-09-27 2014-04-02 Realtime Technologies Ltd Inhaler with wireless transmitter
US9818005B2 (en) * 2014-06-13 2017-11-14 Verily Life Sciences Llc Zero-power wireless device programming
US10528722B2 (en) 2017-05-11 2020-01-07 Microsoft Technology Licensing, Llc Enclave pool shared key
US10664591B2 (en) 2017-05-11 2020-05-26 Microsoft Technology Licensing, Llc Enclave pools
US10833858B2 (en) 2017-05-11 2020-11-10 Microsoft Technology Licensing, Llc Secure cryptlet tunnel
US10747905B2 (en) 2017-05-11 2020-08-18 Microsoft Technology Licensing, Llc Enclave ring and pair topologies
US10740455B2 (en) 2017-05-11 2020-08-11 Microsoft Technology Licensing, Llc Encave pool management
US10238288B2 (en) * 2017-06-15 2019-03-26 Microsoft Technology Licensing, Llc Direct frequency modulating radio-frequency sensors
DE102017214889A1 (de) * 2017-08-25 2019-02-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Distanzmessung in Funkidentifikationssystemen
CN113315729A (zh) * 2020-02-27 2021-08-27 华为技术有限公司 一种通信方法及装置
CN118215856A (zh) * 2021-10-25 2024-06-18 Oppo广东移动通信有限公司 无线通信的方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4556883A (en) * 1981-12-21 1985-12-03 Brown, Boveri & Cie Ag Transmitting and receiving circuit for an apparatus for the automatic identification of objects and/or living organisms
DE19946161A1 (de) * 1999-09-27 2001-04-26 Siemens Ag Verfahren zur Abstandsmessung
WO2003085360A1 (en) * 2002-04-03 2003-10-16 Sri International Sensor devices for structural health monitoring
WO2004021509A1 (de) * 2002-08-27 2004-03-11 Siemens Aktiengesellschaft Energieautark modulierter backscatter-transponder

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684929A (en) * 1985-10-17 1987-08-04 Ball Corporation Microwave/seismic security system
NL1001295C2 (nl) * 1995-09-26 1997-03-28 Inst Milieu & Agritech Transponder met meetschakeling.
US6353406B1 (en) * 1996-10-17 2002-03-05 R.F. Technologies, Inc. Dual mode tracking system
US6261247B1 (en) * 1998-12-31 2001-07-17 Ball Semiconductor, Inc. Position sensing system
US6650226B1 (en) * 1999-04-07 2003-11-18 Stmicroelectronics S.A. Detection, by an electromagnetic transponder reader, of the distance separating it from a transponder
US6954614B2 (en) * 2000-12-01 2005-10-11 Lockheed Martin Corporation Wideband transmission through narrowband transponder
US8050625B2 (en) * 2000-12-22 2011-11-01 Terahop Networks, Inc. Wireless reader tags (WRTs) with sensor components in asset monitoring and tracking systems
EP1377946A1 (de) * 2001-03-12 2004-01-07 Eureka Technologies Partners, LLc Objektpositionsbestimmungssystem
DE10158442B4 (de) * 2001-12-01 2004-11-25 Atmel Germany Gmbh Sende- und Empfangseinrichtung für eine kontaktlose Datenübertragung
US7256695B2 (en) * 2002-09-23 2007-08-14 Microstrain, Inc. Remotely powered and remotely interrogated wireless digital sensor telemetry system
US7079020B2 (en) * 2003-02-03 2006-07-18 Ingrid, Inc. Multi-controller security network
DE10310155B4 (de) * 2003-03-07 2008-07-31 Siemens Ag Zugangskontrollsystem für ein Objekt, insbesondere für ein Kraftfahrzeug und Verfahren zum Betreiben eines Zugangskontrollsystems
KR100946935B1 (ko) * 2003-06-02 2010-03-09 삼성전자주식회사 이동체의 위치검출장치
US7142114B2 (en) * 2003-09-30 2006-11-28 General Electric Company Non-contact patient temperature measurement
US7397364B2 (en) * 2003-11-11 2008-07-08 Biosense Webster, Inc. Digital wireless position sensor
US7030761B2 (en) * 2004-03-16 2006-04-18 Symbol Technologies Multi-resolution object location system and method
US8089344B1 (en) * 2004-06-25 2012-01-03 M Afshin Zand Method and system for miniature passive RFID tags and readers
US7089099B2 (en) * 2004-07-30 2006-08-08 Automotive Technologies International, Inc. Sensor assemblies
US7817014B2 (en) * 2004-07-30 2010-10-19 Reva Systems Corporation Scheduling in an RFID system having a coordinated RFID tag reader array
US7212126B2 (en) * 2004-11-19 2007-05-01 Uniden Corporation Location information detecting method and system
US20090045916A1 (en) * 2005-06-30 2009-02-19 Zvi Nitzan Battery-assisted backscatter RFID transponder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4556883A (en) * 1981-12-21 1985-12-03 Brown, Boveri & Cie Ag Transmitting and receiving circuit for an apparatus for the automatic identification of objects and/or living organisms
DE19946161A1 (de) * 1999-09-27 2001-04-26 Siemens Ag Verfahren zur Abstandsmessung
WO2003085360A1 (en) * 2002-04-03 2003-10-16 Sri International Sensor devices for structural health monitoring
WO2004021509A1 (de) * 2002-08-27 2004-03-11 Siemens Aktiengesellschaft Energieautark modulierter backscatter-transponder

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008104487A2 (de) 2007-02-27 2008-09-04 Siemens Aktiengesellschaft Drahtlos fernabfragbarer energiesparender sensor
WO2008104487A3 (de) * 2007-02-27 2008-11-27 Siemens Ag Drahtlos fernabfragbarer energiesparender sensor
US8149142B2 (en) * 2007-03-12 2012-04-03 Lojack Operating Company, L.P. Adaptive range vehicle locating unit, vehicle tracking unit and vehicle recovery system including same
US8330578B2 (en) 2007-04-13 2012-12-11 Infineon Technologies Austria Ag Transponder device and method for providing a supply voltage
DE102008005672A1 (de) * 2008-01-23 2009-08-13 Eads Deutschland Gmbh Vorrichtung und Verfahren zum Erfassen von Strukturveränderungen eines Bauteils
DE102008005672B4 (de) * 2008-01-23 2014-10-30 Airbus Defence and Space GmbH Vorrichtung und Verfahren zum Erfassen von Strukturveränderungen eines Bauteils
DE102010045465A1 (de) * 2010-09-14 2011-09-22 Siemens Aktiengesellschaft Verfahren zum Überwachen der strukturellen Integrität eines Bauwerks oder eines Geländes
RU2665034C1 (ru) * 2017-09-27 2018-08-27 ООО "Генезис-Таврида" Способ определения четырех расстояний от каждой из двух измерительных станций до каждого из двух транспондеров

Also Published As

Publication number Publication date
US20090215408A1 (en) 2009-08-27
DE102005037582A1 (de) 2007-02-22
EP1913417A1 (de) 2008-04-23

Similar Documents

Publication Publication Date Title
WO2007017464A1 (de) Lokalisierbarer und energieautarker backscatter-transponder zur erfassung von messgrössen
DE60118153T2 (de) MULTISTANDARD-SYSTEM FüR RFID-ETIKETTEN
DE69924721T2 (de) Kommunikationsverfahren in einem rückstrahlungssystem abfragegerät und rückstrahlungskommunikationssystem
DE69720170T2 (de) Billiger Reflektor mit modulierter Rückstrahlung
DE60311259T2 (de) Informationsübertragung unter verwendung von hochfrequenz backscatter transpondern
DE602005004605T2 (de) Objektlokalisierungssystem und -verfahren mit mehreren auflösungen
AT511750B1 (de) Verfahren und system zur ortung von objekten
DE69917491T2 (de) Vorrichtung zur identifikation mit radiofrequenzen
DE3854478T2 (de) Vorrichtung und verfahren zur kennzeichnung.
EP0619906B1 (de) Passiver oberflächenwellen-sensor, der drahtlos abfragbar ist
US5525993A (en) Microwave noncontact identification transponder using subharmonic interrogation and method of using the same
EP2845026B1 (de) Verfahren und anordnung zur relativen lageerkennung von stationen mittels funkortung
EP1482647A2 (de) Schaltungsanordnung zur Phasenmodulation für rückstreubasierte Transponder
EP2567254B1 (de) Netzknoten für ein drahtloses sensornetz
DE102009008174A1 (de) Verfahren und System zur Bestimmung der Entfernung, der Geschwindigkeit und/oder der Bewegungsrichtung eines RFID-Transponders
EP1285284A1 (de) Verfahren und vorrichtung zur drahtlosen positions- und/oder lagebestimmung wenigstens eines objektes
EP1481367B1 (de) Vorrichtung und verfahren zum übertragen von daten mit einem aktiven backscatter-transponder
EP0468394A2 (de) Kommunikationseinrichtung
DE60036319T2 (de) Leser mit Einrichtung zur Bestimmung des Abstandes zwischen dem Leser und einem Transponder
WO2008049565A1 (de) Konzept zur positionsbestimmung eines passiven transponders in einem funksystem
EP1735735A1 (de) Verfahren und vorrichtung zum erkennen von funktionszuständen in rfid- oder remote-sensor-systemen
DE102004006446B4 (de) Verfahren und Schaltungsanordnung zur drahtlosen Datenübertragung
WO2008015194A1 (de) Rfid-ablesevorrichtung sowie zugehöriges rfid-system, und verfahren zum betrieb desselben
EP1820139B1 (de) Kommunikationsgerät
WO2008104487A2 (de) Drahtlos fernabfragbarer energiesparender sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006792674

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006792674

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11989822

Country of ref document: US