WO2007017406A1 - Method for the operation of a gas turbine, and gas turbine for carrying out said method - Google Patents

Method for the operation of a gas turbine, and gas turbine for carrying out said method Download PDF

Info

Publication number
WO2007017406A1
WO2007017406A1 PCT/EP2006/064790 EP2006064790W WO2007017406A1 WO 2007017406 A1 WO2007017406 A1 WO 2007017406A1 EP 2006064790 W EP2006064790 W EP 2006064790W WO 2007017406 A1 WO2007017406 A1 WO 2007017406A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
syngas
turbine
nitrogen
gas turbine
Prior art date
Application number
PCT/EP2006/064790
Other languages
German (de)
French (fr)
Inventor
Eribert Benz
Peter Flohr
Jaan Hellat
Graham Webb
Original Assignee
Alstom Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology Ltd filed Critical Alstom Technology Ltd
Priority to JP2008525535A priority Critical patent/JP2009504964A/en
Priority to DE112006001991.0T priority patent/DE112006001991B4/en
Priority to CA2617986A priority patent/CA2617986C/en
Publication of WO2007017406A1 publication Critical patent/WO2007017406A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/003Gas-turbine plants with heaters between turbine stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • F25J3/04545Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels for the gasification of solid or heavy liquid fuels, e.g. integrated gasification combined cycle [IGCC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/046Completely integrated air feed compression, i.e. common MAC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/42Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/10Mathematical formulae, modeling, plot or curves; Design methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Definitions

  • the present invention relates to the field of power plant technology. It relates to a method for operating a (stationary) gas turbine according to the preamble of claim 1, as well as a gas turbine for carrying out the method.
  • a reheat gas turbine gas turbine is known (see eg US-A-5,577,378 or "State-of-the-art gas turbines - a letter update", ABB Review 02/1997, Fig. 15, turbine type GT26 ), which combines flexible operation with very low exhaust emissions. 2 B05 / 083-0
  • the principle of the known gas turbine with reheat is shown in Fig. 1.
  • the gas turbine 11, which is part of a combined cycle power plant 10, comprises two compressors connected in series on a common shaft 15, namely a low-pressure compressor 13 and a high-pressure compressor 14, as well as two combustion chambers, namely one
  • the shaft 15 drives a generator 12 at.
  • Air is sucked in via an air inlet 20 from the low-pressure compressor 13 and first compressed to an intermediate pressure level (about 20 bar).
  • the high pressure compressor 14 then further compresses the air to a high pressure level (about 32 bar).
  • OTC Once Through Cooler
  • the remaining air from the high-pressure compressor 14 is guided to the high-pressure combustion chamber 18 and heated there by combustion of a fuel supplied via the fuel supply 21.
  • the resulting exhaust gas is then expanded in the subsequent high-pressure turbine 16 under work to an average pressure level.
  • the exhaust gas in the reheat combustor 19 is reheated by combustion of a fuel supplied via the fuel supply 22 before it is expanded in the subsequent low-pressure turbine 17 under further work.
  • the cooling air flowing through the cooling lines 25, 26 is injected at suitable points of the combustion chambers 18, 19 and turbines 16, 17 in order to limit the material temperatures to an acceptable level. That from the
  • Low-pressure turbine 17 exhaust gas is sent through a heat recovery steam generator 27 (HRSG) to generate steam, 3 B05 / 083-0
  • HRSG heat recovery steam generator 27
  • Gas turbines are known (see, for example, US-A-4,785,622 or US-B2-6,513,317), in which a coal gasification plant is integrated to provide the required fuel for the gas turbine in the form of coal-derived syngas.
  • IGCC systems Integrated Gasification Combined Cycle.
  • the present invention is based on the recognition that the use of gas turbines with reheating in an IGCC plant, the advantages of this type of gas turbine for the system can be made useful in a special way.
  • a gas turbine is used with reheat, comprising two combustion chambers and two turbines, burned in the first combustion chamber syngas using the compressed air and the resulting hot gases are expanded in the first turbine, and wherein in the second combustion chamber, syngas is burned using the exhaust gases coming from the first turbine, and the resulting hot gases in the second turbine are expanded.
  • An embodiment of the method according to the invention is characterized in that at least part of the nitrogen produced during the air separation is used for diluting the syngas burned in the second combustion chamber, wherein in particular 80-100% of the nitrogen produced during the air separation is used for diluting the second combustion chamber burned syngas are used.
  • the nitrogen formed in the air separation is preferably directly, i. without further compression, injected into the second combustion chamber.
  • the remaining part of the nitrogen produced during the air separation is preferably used for diluting the syngas burned in the first combustion chamber, wherein in particular the nitrogen provided for the first combustion chamber is first compressed in a compressor to a higher pressure before being injected into the combustion chamber. 5 B05 / 083-0
  • a portion of the syngas generated in the gasification plant is injected into the second combustion chamber without further compression.
  • a further embodiment is characterized in that a portion of the syngas generated in the gasification plant is first compressed in a compressor to a higher pressure and then injected into the first combustion chamber.
  • the syngas and the nitrogen intended for dilution are preferably injected into the combustion chambers in a concentric arrangement, the nitrogen jet surrounding the syngas jet in the manner of a jacket, and the injection taking place perpendicular to the direction of the compressed air or exhaust air flowing into the combustion chambers from the first turbine.
  • An embodiment of the gas turbine according to the invention is characterized in that a compressor for compressing the nitrogen is arranged in the nitrogen line between the outlet of the air separation plant and the first combustion chamber.
  • a compressor for compressing the syngas is arranged in the Syngaszutechnisch between the output of the plant for generating syngas and the first combustion chamber.
  • fuel nozzles are preferably provided through which the nitrogen and the exhaust gas from the first turbine flow into the combustion chamber transversely to the flow direction of the compressed air or the outside in a concentric arrangement.
  • Fig. 1 shows the simplified diagram of a combined cycle power plant with a
  • FIG. 2 is a simplified schematic of an IGCC plant with a reheat gas turbine or sequential combustor suitable for practicing the invention
  • Fig. 3 is a graph of NOx emission as a function of the nitrogen dilution (SD) of the fuel for a gas turbine with
  • Fig. 5 is a highly simplified scheme of the interaction of a
  • Fig. 6 is a diagrammatic representation of the distribution of
  • Fig. 7 is a simplified representation of the preferred within the scope of the invention injection configuration for the syngas and nitrogen.
  • FIG. 2 shows, in a greatly simplified schematic, an IGCC system with a gas turbine with reheat or sequential combustion, as it may be exemplary in the context of the invention.
  • Combined cycle power plant 30 comprises a gas turbine 11 with a low-pressure compressor 13, a high-pressure compressor 14, a high-pressure combustion chamber 18 with a subsequent high-pressure turbine 16 and a reheat combustion chamber 19 with a downstream low-pressure turbine 17.
  • the compressors 13, 14 and the turbines 16, 17 are seated on a common shaft 15, from which a generator 12 is driven.
  • the combustion chambers 18 and 19 are supplied via a Syngaszutechnisch 31 with syngas (H 2 , CO) as fuel, which is produced by gasification of coal (coal 33) in a coal gasification plant 34 (other fossil fuels can be gasified).
  • the coal gasification plant 34 is a
  • oxygen (O 2 ) is used, which is obtained in an air separation plant 32 and supplied via an oxygen line 32 a.
  • the air separation plant 32 receives compressed air from the outlet of the low-pressure compressor 13.
  • the likewise formed during the decomposition nitrogen (N 2 ) is a nitrogen line 32 b to different parts of the high-pressure combustion chamber 18 and
  • condensed cooling air is tapped at the outputs of the two compressors 13 and 14, cooled in a downstream OTC cooler 23 and 24, and then via corresponding cooling lines 25 and 26 fed to the bodies to be cooled.
  • a heat recovery steam generator 27 is arranged, which is part of a water-steam cycle together with a connected steam turbine 29.
  • the exiting from the heat recovery steam generator 27 exhaust gas is discharged via an exhaust pipe 28 to the outside.
  • an optimized operation of the system results if the mass flows m1 and m2 led to the first combustion chamber 18 and to the second combustion chamber 19 are respectively 40-60% of the syngas and 0-20% of the nitrogen according to the table of FIG. Mass flow m1) or 60-40% of the syngas and 100-80% of the nitrogen (mass flow m2). That has the extra
  • a typical nozzle configuration for the injection of the syngas (H2, CO), and nitrogen (N 2) is shown in simplified form in Figure 7.
  • the two gases are injected concentrically by means of a fuel nozzle 42, the syngas flows through a central nozzle 44, while the nitrogen is injected through an annular nozzle 43 concentrically surrounding the central nozzle 44.
  • the fuel nozzle 42 is oriented perpendicular to the direction of the injected into the combustion chamber compressed air and the exhaust gas from the first turbine.
  • Syngas jet with nitrogen the syngas is shielded and cooled, thus significantly delaying the spontaneous ignition by the hot compressed air and the exhaust gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

The invention relates to a method for operating a gas turbine (11) in a combined power plant (40) as well as a gas turbine for carrying out said method. According to the inventive method, air is sucked in and compressed by the gas turbine, the compressed air is fed to a combustion chamber (18, 19) in order to burn a synthetic gas obtained from a fossil fuel, and the gases produced during the combustion process are expanded in a downstream turbine (16, 17). In order to obtain greater efficiency in such a method, a reheated gas turbine (11) is used which comprises two combustion chambers (18, 19) and two turbines (16, 17). Synthetic gas is burned in the first combustion chamber (18) with the aid of the compressed air, and the hot gases produced are expanded in the first turbine (16) while synthetic gas is burned in the second combustion chamber with the aid of the gases discharged from the first turbine (16), and the hot gases produced are expanded in the second turbine (17).

Description

1 B05/083-0 1 B05 / 083-0
BESCHREIBUNGDESCRIPTION
VERFAHREN ZUM BETRIEB EINER GASTURBINE SOWIE GASTURBINE ZURMETHOD FOR OPERATING A GAS TURBINE AND GAS TURBINE FOR
DURCHFÜHRUNG DES VERFAHRENSIMPLEMENTATION OF THE PROCEDURE
TECHNISCHES GEBIETTECHNICAL AREA
Die vorliegende Erfindung bezieht sich auf das Gebiet der Kraftwerkstechnik. Sie betrifft ein Verfahren zum Betrieb einer (stationären) Gasturbine gemäss dem Oberbegriff des Anspruchs 1 , sowie eine Gasturbine zur Durchführung des Verfahrens.The present invention relates to the field of power plant technology. It relates to a method for operating a (stationary) gas turbine according to the preamble of claim 1, as well as a gas turbine for carrying out the method.
STAND DER TECHNIKSTATE OF THE ART
Es ist eine Gasturbine mit Zwischenüberhitzung (reheat gas turbine) bekannt (siehe z.B. die US-A-5,577,378 oder „State-of-the-art gas turbines - a brief update", ABB Review 02/1997, Fig. 15, Turbinentyp GT26), die einen flexiblen Betrieb mit sehr niedrigen Abgasemissionswerten kombiniert. 2 B05/083-0A reheat gas turbine gas turbine is known (see eg US-A-5,577,378 or "State-of-the-art gas turbines - a letter update", ABB Review 02/1997, Fig. 15, turbine type GT26 ), which combines flexible operation with very low exhaust emissions. 2 B05 / 083-0
Das Prinzip der bekannten Gasturbine mit Zwischenüberhitzung ist in Fig. 1 wiedergegeben. Die Gasturbine 11 , die Teil eines Kombikraftwerkes 10 ist, umfasst auf einer gemeinsamen Welle 15 angeordnet zwei hintereinander geschaltete Verdichter, nämlich einen Niederdruckverdichter 13 und einen Hochdruckverdichter 14, sowie zwei Brennkammern, nämlich eineThe principle of the known gas turbine with reheat is shown in Fig. 1. The gas turbine 11, which is part of a combined cycle power plant 10, comprises two compressors connected in series on a common shaft 15, namely a low-pressure compressor 13 and a high-pressure compressor 14, as well as two combustion chambers, namely one
Hochdruckbrennkammer 18 und eine Zwischenüberhitzungsbrennkammer19, und zugehörige Turbinen, nämlich eine Hochdruckturbine 16 und eine Niederdruckturbine 17. Die Welle 15 treibt einen Generator 12 an.High pressure combustor 18 and a reheat combustor 19, and associated turbines, namely a high pressure turbine 16 and a low pressure turbine 17. The shaft 15 drives a generator 12 at.
Die Arbeitsweise der Anlage ist die folgende: Luft wird über einen Lufteinlass 20 vom Niederdruckverdichter 13 angesaugt und zunächst auf ein Zwischendruckniveau (ca. 20 bar) verdichtet. Der Hochdruckverdichter 14 verdichtet die Luft dann weiter auf ein Hochdruckniveau (ca. 32 bar). Kühlluft wird sowohl auf dem Zwischendruckniveau als auch auf dem Hochdruckniveau abgezweigt und in zugehörigen OTC-Kühlem (OTC = Once Through Cooler) 23 und 24 abgekühlt und über Kühlleitungen 25 und 26 zur Kühlung an die Brennkammern 18, 19 und Turbinen 16, 17 weitergeleitet. Die verbleibende Luft aus dem Hochdruckverdichter 14 wird zur Hochdruckbrennkammer 18 geführt und dort durch Verbrennung eines über die Brennstoffzufuhr 21 zugeführten Brennstoffs aufgeheizt. Das entstehende Abgas wird dann in der nachfolgenden Hochdruckturbine 16 unter Arbeitsleistung auf ein mittleres Druckniveau entspannt. Nach der Entspannung wird das Abgas in der Zwischenüberhitzungsbrennkammer 19 durch Verbrennung eines über die Brennstoffzufuhr 22 zugeführten Brennstoffs wieder erhitzt, bevor es in der nachfolgenden Niederdruckturbine 17 unter weiterer Arbeitsleistung entspannt wird.The operation of the system is the following: Air is sucked in via an air inlet 20 from the low-pressure compressor 13 and first compressed to an intermediate pressure level (about 20 bar). The high pressure compressor 14 then further compresses the air to a high pressure level (about 32 bar). Cooling air is diverted both at the intermediate pressure level and at the high pressure level and cooled in associated OTC coolers (OTC = Once Through Cooler) 23 and 24 and forwarded via cooling lines 25 and 26 for cooling to the combustion chambers 18, 19 and turbines 16, 17. The remaining air from the high-pressure compressor 14 is guided to the high-pressure combustion chamber 18 and heated there by combustion of a fuel supplied via the fuel supply 21. The resulting exhaust gas is then expanded in the subsequent high-pressure turbine 16 under work to an average pressure level. After expansion, the exhaust gas in the reheat combustor 19 is reheated by combustion of a fuel supplied via the fuel supply 22 before it is expanded in the subsequent low-pressure turbine 17 under further work.
Die durch die Kühlleitungen 25, 26 strömende Kühlluft wird an geeigneten Stellen der Brennkammern 18, 19 und Turbinen 16, 17 eingedüst, um die Materialtemperaturen auf ein vertretbares Mass zu begrenzen. Das aus derThe cooling air flowing through the cooling lines 25, 26 is injected at suitable points of the combustion chambers 18, 19 and turbines 16, 17 in order to limit the material temperatures to an acceptable level. That from the
Niederdruckturbine 17 kommende Abgas wird durch einen Abhitzedampferzeuger 27 (HRSG = Heat Recovery Steam Generator) geschickt, um Dampf zu erzeugen, 3 B05/083-0Low-pressure turbine 17 exhaust gas is sent through a heat recovery steam generator 27 (HRSG) to generate steam, 3 B05 / 083-0
der innerhalb eines Wasser-Dampf-Kreislaufs durch eine Dampfturbine 29 strömt und dort weitere Arbeit leistet. Nach dem Durchströmen des Abhitzedampferzeugers 27 wird das Abgas schliesslich durch eine Abgasleitung 28 nach aussen abgegeben. Die OTC-Kühler 23, 24 sind Teil des Wasser-Dampf- Kreislaufs; an ihren Ausgängen wird überhitzter Dampf erzeugt.which flows within a water-steam cycle through a steam turbine 29 and there performs further work. After flowing through the heat recovery steam generator 27, the exhaust gas is finally discharged through an exhaust pipe 28 to the outside. The OTC coolers 23, 24 are part of the water-steam cycle; superheated steam is generated at their outputs.
Durch die beiden voneinander unabhängigen, aufeinanderfolgenden Verbrennungen in den Brennkammern 18 und 19 wird eine grosse Flexibilität im Betrieb erreicht; die Brennkammertemperaturen können so eingestellt werden, dass innerhalb der bestehenden Grenzen der maximale Wirkungsrad erreicht wird. Die niedrigen Abgaswerte des sequentiellen Verbrennungssystems sind durch die inhärent niedrigen Emissionswerte gegeben, die bei der Zwischenüberhitzung erreichbar sind.By the two independent, consecutive burns in the combustion chambers 18 and 19 a great flexibility in operation is achieved; the combustion chamber temperatures can be adjusted so that the maximum efficiency is achieved within the existing limits. The low exhaust emissions of the sequential combustion system are due to the inherently low emission levels achievable during reheat.
Es sind andererseits Kombikraftwerke mit einstufiger Verbrennung in denOn the other hand, there are combined cycle power plants with single-stage combustion in the
Gasturbinen bekannt (siehe z.B. die US-A-4,785,622 oder US-B2-6,513,317), in denen eine Kohlevergasungsanlage integriert ist, um den für die Gasturbine benötigten Brennstoff in Form von aus Kohle gewonnenem Syngas bereitzustellen. Solche Kombikraftwerke werden als IGCC-Anlagen (IGCC = Integrated Gasification Combined Cycle) bezeichnet.Gas turbines are known (see, for example, US-A-4,785,622 or US-B2-6,513,317), in which a coal gasification plant is integrated to provide the required fuel for the gas turbine in the form of coal-derived syngas. Such combined cycle power plants are referred to as IGCC systems (IGCC = Integrated Gasification Combined Cycle).
Die vorliegende Erfindung geht nun von der Erkenntnis aus, dass durch den Einsatz von Gasturbinen mit Zwischenüberhitzung in einer IGCC-Anlage die Vorteile dieses Gasturbinentyps für die Anlage in besonderer Weise nutzbar gemacht werden können.The present invention is based on the recognition that the use of gas turbines with reheating in an IGCC plant, the advantages of this type of gas turbine for the system can be made useful in a special way.
DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION
Es ist Aufgabe der Erfindung, ein Verfahren zum Betrieb einer mit einer Vergasungsanlage für fossile Brennstoffe, insbesondere Kohle, zusammenarbeitenden Gasturbine anzugeben, welches sich durch einen 4 B05/083-0It is an object of the invention to provide a method for operating a cooperating with a gasification plant for fossil fuels, especially coal, gas turbine, which is characterized by a 4 B05 / 083-0
verbesserten Wirkungsgrad auszeichnet und sich mit vorhandenen Komponenten besonders günstig realisieren lässt, sowie eine Gasturbine zur Durchführung des Verfahrens zu schaffen.distinguished improved efficiency and can be realized particularly low with existing components, and to provide a gas turbine for carrying out the method.
Die Aufgabe wird durch die Gesamtheit der Merkmale der Ansprüche 1 und 10 gelöst. Wesentlich ist, dass in einer mit Syngas arbeitenden Gasturbinenanlage eine Gasturbine mit Zwischenüberhitzung verwendet wird, welche zwei Brennkammern und zwei Turbinen umfasst, wobei in der ersten Brennkammer Syngas unter Einsatz der verdichteten Luft verbrannt und die entstehenden heissen Gase in der ersten Turbine entspannt werden, und wobei in der zweiten Brennkammer Syngas unter Einsatz der aus der ersten Turbine kommenden Abgase verbrannt und die entstehenden heissen Gase in der zweiten Turbine entspannt werden.The object is solved by the entirety of the features of claims 1 and 10. It is essential that in a working with syngas gas turbine plant, a gas turbine is used with reheat, comprising two combustion chambers and two turbines, burned in the first combustion chamber syngas using the compressed air and the resulting hot gases are expanded in the first turbine, and wherein in the second combustion chamber, syngas is burned using the exhaust gases coming from the first turbine, and the resulting hot gases in the second turbine are expanded.
Eine Ausgestaltung des erfindungsgemässen Verfahrens ist dadurch gekennzeichnet, dass zumindest ein Teil des bei der Luftzerlegung entstehenden Stickstoffs zur Verdünnung des in der zweiten Brennkammer verbrannten Syngases verwendet wird, wobei insbesondere 80-100% des bei der Luftzerlegung entstehenden Stickstoffs zur Verdünnung des in der zweiten Brennkammer verbrannten Syngases verwendet werden.An embodiment of the method according to the invention is characterized in that at least part of the nitrogen produced during the air separation is used for diluting the syngas burned in the second combustion chamber, wherein in particular 80-100% of the nitrogen produced during the air separation is used for diluting the second combustion chamber burned syngas are used.
Der bei der Luftzerlegung entstehende Stickstoff wird dabei vorzugsweise direkt, d.h. ohne weitere Verdichtung, in die zweite Brennkammer eingedüst.The nitrogen formed in the air separation is preferably directly, i. without further compression, injected into the second combustion chamber.
Der verbleibende Teil des bei der Luftzerlegung entstehenden Stickstoffs wird vorzugsweise zur Verdünnung des in der ersten Brennkammer verbrannten Syngases verwendet, wobei insbesondere der für die erste Brennkammer vorgesehene Stickstoff vor dem Eindüsen in die Brennkammer zunächst in einem Verdichter auf einen höheren Druck verdichtet wird. 5 B05/083-0The remaining part of the nitrogen produced during the air separation is preferably used for diluting the syngas burned in the first combustion chamber, wherein in particular the nitrogen provided for the first combustion chamber is first compressed in a compressor to a higher pressure before being injected into the combustion chamber. 5 B05 / 083-0
Gemäss einer anderen Ausgestaltung der Erfindung wird ein Teil des in der Vergasungsanlage erzeugten Syngases ohne weitere Verdichtung in die zweite Brennkammer eingedüst.According to another embodiment of the invention, a portion of the syngas generated in the gasification plant is injected into the second combustion chamber without further compression.
Eine weitere Ausgestaltung zeichnet sich dadurch aus, dass ein Teil des in der Vergasungsanlage erzeugten Syngases zunächst in einem Verdichter auf einen höheren Druck verdichtet und dann in die erste Brennkammer eingedüst wird.A further embodiment is characterized in that a portion of the syngas generated in the gasification plant is first compressed in a compressor to a higher pressure and then injected into the first combustion chamber.
Vorzugsweise werden das Syngas und der zur Verdünnung vorgesehene Stickstoff in konzentrischer Anordnung in die Brennkammern eingedüst, wobei der Stickstoffstrahl den Syngasstrahl mantelförmig umschliesst, und die Eindüsung senkrecht zur Richtung der in die Brennkammern einströmenden verdichteten Luft bzw. Abluft aus der ersten Turbine erfolgt.The syngas and the nitrogen intended for dilution are preferably injected into the combustion chambers in a concentric arrangement, the nitrogen jet surrounding the syngas jet in the manner of a jacket, and the injection taking place perpendicular to the direction of the compressed air or exhaust air flowing into the combustion chambers from the first turbine.
Eine Ausgestaltung der erfindungsgemässen Gasturbine ist dadurch gekennzeichnet, dass in der Stickstoffleitung zwischen dem Ausgang der Luftzerlegungsanlage und der ersten Brennkammer ein Verdichter zur Verdichtung des Stickstoffs angeordnet ist.An embodiment of the gas turbine according to the invention is characterized in that a compressor for compressing the nitrogen is arranged in the nitrogen line between the outlet of the air separation plant and the first combustion chamber.
Gemäss einer anderen Ausgestaltung ist in der Syngaszuleitung zwischen dem Ausgang der Anlage zur Erzeugung von Syngas und der ersten Brennkammer ein Verdichter zur Verdichtung des Syngases angeordnet ist.According to another embodiment, a compressor for compressing the syngas is arranged in the Syngaszuleitung between the output of the plant for generating syngas and the first combustion chamber.
Bevorzugt sind in der ersten und/oder zweiten Brennkammer dabei Brennstoffdüsen vorgesehen, durch welche in konzentrischer Anordnung innen das Syngas und mantelförmig umgebend aussen der Stickstoff quer zur Strömungsrichtung der verdichteten Luft bzw. der Abluft aus der ersten Turbine in die Brennkammer einströmt. 6 B05/083-0In the first and / or second combustion chamber, fuel nozzles are preferably provided through which the nitrogen and the exhaust gas from the first turbine flow into the combustion chamber transversely to the flow direction of the compressed air or the outside in a concentric arrangement. 6 B05 / 083-0
KURZE ERLÄUTERUNG DER FIGURENBRIEF EXPLANATION OF THE FIGURES
Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit der Zeichnung näher erläutert werden. Es zeigenThe invention will be explained in more detail with reference to embodiments in conjunction with the drawings. Show it
Fig. 1 das vereinfachte Schema eines Kombikraftwerks mit einerFig. 1 shows the simplified diagram of a combined cycle power plant with a
Gasturbine mit Zwischenüberhitzung bzw. sequentiellerGas turbine with reheat or sequential
Verbrennung nach dem Stand der Technik;Combustion according to the prior art;
Fig. 2 das vereinfachte Schema einer IGCC-Anlage mit einer Gasturbine mit Zwischenüberhitzung bzw. sequentieller Verbrennung, wie sie zur Verwirklichung der Erfindung geeignet ist;Figure 2 is a simplified schematic of an IGCC plant with a reheat gas turbine or sequential combustor suitable for practicing the invention;
Fig. 3 ein Diagramm der NOx-Emission in Abhängigkeit von der Stickstoffverdünnung (SD) des Brennstoffs für eine Gasturbine mitFig. 3 is a graph of NOx emission as a function of the nitrogen dilution (SD) of the fuel for a gas turbine with
(Kurve C) und ohne (Kurve A) Zwischenüberhitzung;(Curve C) and without (curve A) reheating;
Fig. 4 ein Diagramm des zulässigen Bereiches der Flammentemperatur in Abhängigkeit von der Brennstoffreaktivität (FR) für eine Gasturbine ohne (Kurve F) und mit (Kurve D)4 shows a diagram of the permissible range of the flame temperature as a function of the fuel reactivity (FR) for a gas turbine without (curve F) and with (curve D)
Zwischenüberhitzung bzw. sequentieller Verbrennung;Reheating or sequential combustion;
Fig. 5 ein stark vereinfachtes Schema des Zusammenwirkens einerFig. 5 is a highly simplified scheme of the interaction of a
Gasturbine mit Zwischenüberhitzung mit einer Luftzerleg ungs- und Syngaserzeugungsanlage unter Bezugnahme auf die erforderlichen Druckniveaus;Gas turbine with reheat with an air separation and syngas generation plant with reference to the required pressure levels;
Fig. 6 eine diagrammatische Darstellung der Aufteilung derFig. 6 is a diagrammatic representation of the distribution of
Massenströme von Syngas und verdünnendem Stickstoff auf die beiden Brennkammern der Gasturbine mit Zwischenüberhitzung; und 7 B05/083-0Mass flows of syngas and diluting nitrogen to the two combustors of the gas turbine with reheat; and 7 B05 / 083-0
Fig. 7 eine vereinfachte Darstellung der im Rahmen der Erfindung bevorzugten Eindüsungskonfiguration für das Syngas und den Stickstoff.Fig. 7 is a simplified representation of the preferred within the scope of the invention injection configuration for the syngas and nitrogen.
WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS FOR CARRYING OUT THE INVENTION
In der Fig. 2 ist in einem stark vereinfachten Schema eine IGCC-Anlage mit einer Gasturbine mit Zwischenüberhitzung bzw. sequentieller Verbrennung gezeigt, wie sie im Rahmen der Erfindung beispielhaft ausgebildet sein kann. DasFIG. 2 shows, in a greatly simplified schematic, an IGCC system with a gas turbine with reheat or sequential combustion, as it may be exemplary in the context of the invention. The
Kombikraftwerk 30 umfasst eine Gasturbine 11 mit einem Niederdruckverdichter 13, einem nachfolgenden Hochdruckverdichter 14, einer Hochdruckbrennkammer 18 mit einer nachfolgenden Hochdruckturbine 16 und einer Zwischenüberhitzungsbrennkammer 19 mit einer nachfolgenden Niederdruckturbine 17. Die Verdichter 13, 14 und die Turbinen 16, 17 sitzen auf einer gemeinsamen Welle 15, von der ein Generator 12 angetrieben wird. Die Brennkammern 18 und 19 werden über eine Syngaszuleitung 31 mit Syngas (H2, CO) als Brennstoff versorgt, welches durch Vergasung von Kohle (Kohlezufuhr 33) in einer Kohlevergasungsanlage 34 erzeugt wird (es können auch andere fossile Brennstoffe vergast werden). Der Kohlevergasungsanlage 34 ist eineCombined cycle power plant 30 comprises a gas turbine 11 with a low-pressure compressor 13, a high-pressure compressor 14, a high-pressure combustion chamber 18 with a subsequent high-pressure turbine 16 and a reheat combustion chamber 19 with a downstream low-pressure turbine 17. The compressors 13, 14 and the turbines 16, 17 are seated on a common shaft 15, from which a generator 12 is driven. The combustion chambers 18 and 19 are supplied via a Syngaszuleitung 31 with syngas (H 2 , CO) as fuel, which is produced by gasification of coal (coal 33) in a coal gasification plant 34 (other fossil fuels can be gasified). The coal gasification plant 34 is a
Kühlvorrichtung 35 für das Syngas, eine Reinigungsanlage 36 und ein CO2- Abscheider 37 mit einem CO2-Ausgang 38 zur Abgabe des abgeschiedenen CO2 nachgeschaltet.Cooling device 35 for the syngas, a cleaning system 36 and a CO 2 - separator 37 with a CO 2 outlet 38 for discharging the deposited CO 2 downstream.
Zur Kohlevergasung in der Kohlevergasungsanlage 34 wird Sauerstoff (O2) verwendet, welcher in einer Luftzerlegungsanlage 32 gewonnen und über eine Sauerstoffleitung 32a zugeführt wird. Die Luftzerlegungsanlage 32 erhält verdichtete Luft vom Ausgang des Niederdruckverdichters 13. Der bei der Zerlegung ebenfalls entstehende Stickstoff (N2) wird über eine Stickstoffleitung 32b zu unterschiedlichen Teilen der Hochdruckbrennkammer 18 und derFor coal gasification in the coal gasification plant 34 oxygen (O 2 ) is used, which is obtained in an air separation plant 32 and supplied via an oxygen line 32 a. The air separation plant 32 receives compressed air from the outlet of the low-pressure compressor 13. The likewise formed during the decomposition nitrogen (N 2 ) is a nitrogen line 32 b to different parts of the high-pressure combustion chamber 18 and
Niederdruckbrennkammer 19 zugeführt (siehe auch das Diagramm in Fig. 6). 8 B05/083-0Low pressure combustion chamber 19 supplied (see also the diagram in Fig. 6). 8 B05 / 083-0
Zur Kühlung der vom Heissgas belasteten Komponenten der Brennkammern 18, 19 und Turbinen 16, 17 wird verdichtete Kühlluft an den Ausgängen der beiden Verdichter 13 und 14 abgezapft, in einem nachgeschalteten OTC-Kühler 23 bzw. 24 abgekühlt, und dann über entsprechende Kühlleitungen 25 und 26 den zu kühlenden Stellen zugeführt.For cooling the hot gas loaded components of the combustion chambers 18, 19 and turbines 16, 17 condensed cooling air is tapped at the outputs of the two compressors 13 and 14, cooled in a downstream OTC cooler 23 and 24, and then via corresponding cooling lines 25 and 26 fed to the bodies to be cooled.
Am Ausgang der Niederdruckturbine 17 ist ein Abhitzedampferzeuger 27 angeordnet, der zusammen mit einer angeschlossenen Dampfturbine 29 Teil eines Wasser-Dampf-Kreislaufs ist. Das aus dem Abhitzedampferzeuger 27 austretende Abgas wird über eine Abgasleitung 28 nach aussen abgegeben.At the output of the low-pressure turbine 17, a heat recovery steam generator 27 is arranged, which is part of a water-steam cycle together with a connected steam turbine 29. The exiting from the heat recovery steam generator 27 exhaust gas is discharged via an exhaust pipe 28 to the outside.
Die hauptsächlichen technischen Herausforderungen bei der Verbrennung von Syngas in der Brennkammer einer Gasturbine sind:The main technical challenges in the combustion of syngas in the combustion chamber of a gas turbine are:
- das Minimieren der Anforderungen an Gasdrücken oberhalb der bei der Vergasung und Luftzerlegung vorhandenen Gasdrücke,minimizing the requirements of gas pressures above the gas pressures present in the gasification and air separation,
- das Erreichen niedriger Emissionswerte,- the achievement of low emission levels,
- ein ausreichender Abstand zu den Grenzen von Flammenrückschlägen und Pulsationen, und- a sufficient distance to the limits of flashbacks and pulsations, and
- die Aufrechterhaltung der Flexibilität im Betrieb bei Änderungen in der Qualität des Kohlegases, sowie die Möglichkeit der Unterstützung mit anderen Brennstoffen (Erdgas oder Öl).- Maintaining flexibility in operation in the event of changes in the quality of coal gas, as well as the possibility of support with other fuels (natural gas or oil).
Diese Herausforderungen können bei IGCC-Anlagen von der Konzeption her aus folgenden Gründen besonders gut durch eine Gasturbine mit Zwischenüberhitzung bewältigt werden:For IGCC plants, these challenges can be overcome particularly well by a gas turbine with reheat for the following reasons:
1. Der bei der Zwischenüberhitzung inhärente Vorteil bezüglich NOx kann auch auf das Syngas übertragen werden, wenn die Verbrennungstemperaturen in den beiden Brennkammern optimal ausgewählt werden. Wie aus Fig. 3 ersichtlich ist, lässt sich - ausgehend von der NOx-Kurve A für einstufige Verbrennung - durch1. The advantage of NOx inherent in reheating can also be transferred to the syngas as the combustion temperatures in the two combustion chambers are optimally selected. As can be seen from FIG. 3, it is possible to start from the NOx curve A for single-stage combustion
Reduzierung der Verbrennungstemperatur in der ersten Brennkammer bei zweistufiger Verbrennung (Kurve B) in 9 B05/083-0Reduction of the combustion temperature in the first combustion chamber with two-stage combustion (curve B) in 9 B05 / 083-0
Abhängigkeit von der Verdünnung des Syngases SD mit Stickstoff eine erhebliche Reduzierung E1 der NOx-Emission erreichen, die sich dann mit der höheren Emission in der zweiten Stufe (E2) zu einer Gesamtemission bei zweistufiger Verbrennung addiert (Kurve C), die gegenüber der einstufigen Verbrennung immer noch um die erhebliche Differenz E3 reduziert ist.Depending on the dilution of the syngas SD with nitrogen reach a significant reduction E1 of the NOx emission, which then adds to the higher emission in the second stage (E2) to a total emission in two-stage combustion (curve C) compared to the single-stage combustion is still reduced by the significant difference E3.
2. Die Stabilität der Verbrennung und die Flexibilität beim Betrieb der Gasturbine mit Zwischenüberhitzung sind grösser als bei einer vergleichbaren Gasturbine mit einstufiger Verbrennung. Die Betriebsgrenzen werden gemäss Fig. 4 typischerweise durch die2. The stability of the combustion and the flexibility in the operation of the gas turbine with reheat are greater than in a comparable gas turbine with single-stage combustion. The operating limits are shown in FIG. 4 typically by the
Flammenauslöschung (Grenzgebiet L2) und den Flammenrückschlag und/oder Emissionsniveaus (Grenzgebiet L1) in Abhängigkeit von der Brennstoffreaktivität FR für eine vorgegebene Flammentemperatur (TF) gegeben, was zu einem erlaubten Bereich von Brennstoffqualitäten und Brennstoffreaktivitäten führt. In derFlame extinction (boundary area L2) and the flashback and / or emission levels (boundary area L1) depending on the fuel reactivity FR given for a given flame temperature (T F ), resulting in an allowable range of fuel qualities and fuel reactivities. In the
Gasturbine mit einstufiger Verbrennung (Kurve F in Fig. 4) werden die Grenzen auf beiden Seiten schnell erreicht. In der Gasturbine mit Zwischenüberhitzung (Kurve D in Fig. 4) ist diese Betriebsgrenze deutlich erhöht, weil zwei Verbrennungssysteme den Betrieb bei zwei unabhängigen Flammentemperaturen ermöglichen, z.B. mit einer niedrigeren Temperatur in der ersten Stufe und einer höheren Temperatur in der zweiten Stufe, mit geringen Nachteilen bezüglich des NOx.Gas turbine with single-stage combustion (curve F in Fig. 4), the limits are reached quickly on both sides. In the superheated gas turbine (curve D in Figure 4), this operating limit is significantly increased because two combustion systems allow operation at two independent flame temperatures, e.g. with a lower temperature in the first stage and a higher temperature in the second stage, with minor disadvantages with respect to the NOx.
3. Die Anforderungen für den Gasdruck können minimiert werden, wenn der grösste Anteil des verdünnenden Stickstoffs (N2) in das zweite Verbrennungssystem (Brennkammer 19) injiziert wird, das typischerweise mit Drücken zwischen 15 und 20 bar arbeitet. Die optimale Auswahl von Vergasungsanlage, Luftzerlegungsanlage und Gasturbine hängt von der Auswahl der verschiedenen Technologien ab. Eine Konfiguration, die sich durch minimierte Gasverdichtung und damit minimierten Leistungsverlust auszeichnet, ist in den Fig. 5 und 6 schematisch dargestellt. Sie nutzt die inhärenten Vorteile der 10 B05/083-03. The requirements for gas pressure can be minimized by injecting most of the diluting nitrogen (N 2 ) into the second combustion system (combustion chamber 19), which typically operates at pressures between 15 and 20 bar. The optimum selection of gasification plant, air separation plant and gas turbine depends on the choice of different technologies. A configuration which is characterized by minimized gas compression and thus minimized power loss is shown schematically in FIGS. 5 and 6. She uses the inherent advantages of 10 B05 / 083-0
sequentiellen Verbrennung. Gemäss Fig. 5 wird der bei der Zerlegung der Luft 39 in der Luftzerlegungsanlage 32 Stickstoff über die Stickstoffleitung 32b einerseits direkt (ohne zusätzliche Verdichtung durch einen Verdichter V1 ) zur zweiten Brennkammer der Gasturbine 11 geleitet, während der zur ersten Brennkammer geführte Stickstoff im Verdichter V2 verdichtet wird. Entsprechend wird das aus Kohle 40 in der Kohlevergasungsanlage 34 erzeugte und in der Reinigungsanlage 36 gereinigte Syngas über die Syngaszuleitung 31 einerseits direkt (ohne zusätzliche Verdichtung durch einen Verdichter V3) zur zweiten Brennkammer geleitet, während der zur ersten Brennkammer geführte Stickstoff im Verdichter V4 verdichtet wird. Die Einsparung der beiden Verdichter V1 und V3 ist durch das Ausstreichen in Fig. 5 symbolisiert.sequential combustion. According to FIG. 5, during the decomposition of the air 39 in the air separation plant 32, nitrogen is conducted via the nitrogen line 32b, on the one hand directly (without additional compression by a compressor V1) to the second combustion chamber of the gas turbine 11, while the nitrogen fed to the first combustion chamber in the compressor V2 is compressed. Correspondingly, the syngas generated from coal 40 in the coal gasification plant 34 and purified in the purification plant 36 is passed directly via the syngas feed line 31 (without additional compression by a compressor V3) to the second combustion chamber, while the nitrogen fed to the first combustion chamber is compressed in the compressor V4 , The saving of the two compressors V1 and V3 is symbolized by the streaking in Fig. 5.
Gemäss Fig. 6 ergibt sich ein optimierter Betrieb der Anlage, wenn die zur ersten Brennkammer 18 und zur zweiten Brennkammer 19 geführten Massenströme m1 und m2 gemäss der Tabelle aus Fig. 6 jeweils 40-60% des Syngases und 0-20% des Stickstoffs (Massenstrom m1 ) bzw. 60-40% des Syngases und 100-80% des Stickstoffs (Massenstrom m2) haben. Das hat den zusätzlichenAccording to FIG. 6, an optimized operation of the system results if the mass flows m1 and m2 led to the first combustion chamber 18 and to the second combustion chamber 19 are respectively 40-60% of the syngas and 0-20% of the nitrogen according to the table of FIG. Mass flow m1) or 60-40% of the syngas and 100-80% of the nitrogen (mass flow m2). That has the extra
Vorteil einer verbesserten Verbrennungsstabilität und Mischungsqualität im Mischer der zweiten Verbrennungsstufe.Advantage of improved combustion stability and mixing quality in the mixer of the second combustion stage.
Eine typische Düsenkonfiguration für die Eindüsung des Syngases (H2, CO) und Stickstoffs (N2) ist in Fig. 7 vereinfacht dargestellt: Die beiden Gase werden mittels einer Brennstoffdüse 42 konzentrisch eingedüst, wobei das Syngas durch eine Zentraldüse 44 einströmt, während der Stickstoff durch eine die Zentraldüse 44 konzentrisch umgebende Ringdüse 43 eingedüst wird. Die Brennstoffdüse 42 ist dabei senkrecht zur Richtung der in die Brennkammer einströmenden verdichteten Luft bzw. des Abgases aus der ersten Turbine orientiert. Durch die mantelförmig Umhüllung des 11 B05/083-0A typical nozzle configuration for the injection of the syngas (H2, CO), and nitrogen (N 2) is shown in simplified form in Figure 7. The two gases are injected concentrically by means of a fuel nozzle 42, the syngas flows through a central nozzle 44, while the nitrogen is injected through an annular nozzle 43 concentrically surrounding the central nozzle 44. The fuel nozzle 42 is oriented perpendicular to the direction of the injected into the combustion chamber compressed air and the exhaust gas from the first turbine. By the jacket-shaped wrapping of the 11 B05 / 083-0
Syngasstrahls mit Stickstoff wird das Syngas abgeschirmt und gekühlt und so die spontane Zündung durch die heisse verdichtete Luft bzw. das Abgas deutlich verzögert.Syngas jet with nitrogen, the syngas is shielded and cooled, thus significantly delaying the spontaneous ignition by the hot compressed air and the exhaust gas.
BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS
10,30,40 Kombikraftwerk10,30,40 combined cycle power plant
11 Gasturbine11 gas turbine
12 Generator12 generator
13 Niederdruckverdichter13 low-pressure compressor
14 Hochdruckverdichter14 high pressure compressor
15 Welle (Gasturbine)15 shaft (gas turbine)
16 Hochdruckturbine16 high-pressure turbine
17 Niederdruckturbine17 low-pressure turbine
18 Hochdruckbrennkammer18 high pressure combustion chamber
19 Zwischenüberhitzungsbrennkammer19 reheat combustion chamber
20 Lufteinlass20 air intake
21 ,22 Brennstoffzufuhr21, 22 Fuel supply
23,24 OTC-Kühler23.24 OTC cooler
25,26 Kühlleitung25.26 cooling line
27 Abhitzedampferzeuger27 heat recovery steam generator
28 Abgasleitung28 exhaust pipe
29 Dampfturbine (Dampfkreislauf)29 steam turbine (steam cycle)
31 Syngaszuleitung31 Syngas supply line
32 Luftzerlegungsanlage32 air separation plant
32a Sauerstoffleitung32a oxygen line
32b Stickstoffleitung32b nitrogen line
33 Kohlezufuhr33 coal feed
34 Kohlevergasungsanlage34 coal gasification plant
35 Kühlvorrichtung35 cooling device
36 Reinigungsanlage36 cleaning system
37 CO2-Abscheider 12 B05/083-037 CO 2 separator 12 B05 / 083-0
38 CO2-Ausgang38 CO 2 exit
39 Luft39 air
40 Kohle40 coal
41 verdichtete Luft41 compressed air
42 Brennstoffdüse42 fuel nozzle
43 Ringdüse43 ring nozzle
44 Zentraldüse44 central nozzle
A1B1C1D1F KurveA 1 B 1 C 1 D 1 F Curve
E1 ,E2,E3 Emissionsdifferenz (NOx)E1, E2, E3 Emission difference (NOx)
FR BrennstoffreaktivitätFR fuel reactivity
L1.L2 Grenzgebiet m1 ,m2 MassenstromL1.L2 border area m1, m2 mass flow
SD SyngasverdünnungSD syngas dilution
Tn Flammentemperatur (1. Brennkammer)Tn flame temperature (1st combustion chamber)
V1....V4 Verdichter V1 .... V4 compressor

Claims

13 B05/083-0PATENTANSPRÜCHE 13 B05 / 083-0PATENT CLAIMS
1. Verfahren zum Betrieb einer Gasturbine (11 ), welche insbesondere in einem Kombikraftwerk (30, 40) eingesetzt ist, bei welchem Verfahren durch die1. A method for operating a gas turbine (11), which in particular in a combined cycle power plant (30, 40) is used, in which method by the
Gasturbine (11 ) Luft angesaugt und verdichtet wird, die verdichtete Luft zur Verbrennung eines aus fossilem Brennstoff, insbesondere Kohle, gewonnenen Syngases einer Brennkammer (18, 19) zugeführt wird, und die bei der Verbrennung entstehenden heissen Gase in einer nachfolgenden Turbine (16, 17) unter Verrichtung von Arbeit entspannt werden, wobei ein Teil der verdichteten Luft in Sauerstoff und Stickstoff zerlegt wird, und der Sauerstoff in einer Vergasungsanlage (34) zur Erzeugung des Syngases eingesetzt wird, und wobei ein Teil der verdichteten Luft zur Kühlung der von den heissen Gasen belasteten Teile der Gasturbine (11 ) verwendet wird, dadurch gekennzeichnet, dass eine Gasturbine (11 ) mit Zwischenüberhitzung verwendet wird, welche zweiGas turbine (11) Air is sucked and compressed, the compressed air for combustion of a fossil fuel, in particular coal, obtained Syngas of a combustion chamber (18, 19) is supplied, and the resulting during combustion of hot gases in a subsequent turbine (16, 17) are relaxed by performing work, wherein a part of the compressed air is decomposed into oxygen and nitrogen, and the oxygen is used in a gasification plant (34) for generating the syngas, and wherein a part of the compressed air for cooling of the hot gas loaded parts of the gas turbine (11) is used, characterized in that a gas turbine (11) is used with reheat, which two
Brennkammern (18, 19) und zwei Turbinen (16, 17) umfasst, wobei in der ersten Brennkammer (18) Syngas unter Einsatz der verdichteten Luft verbrannt und die entstehenden heissen Gase in der ersten Turbine (16) entspannt werden, und wobei in der zweiten Brennkammer Syngas unter Einsatz der aus der ersten Turbine (16) kommenden Gase verbrannt und die entstehenden heissen Gase in der zweiten Turbine (17) entspannt werden.Combustion chambers (18, 19) and two turbines (16, 17), wherein burned in the first combustion chamber (18) syngas using the compressed air and the resulting hot gases in the first turbine (16) are relaxed, and wherein in second combustion chamber syngas are burned using the gases coming from the first turbine (16) and the resulting hot gases are expanded in the second turbine (17).
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass zumindest ein Teil des bei der Luftzerlegung entstehenden Stickstoffs zur Verdünnung des in der zweiten Brennkammer (19) verbrannten Syngases verwendet wird. 14 B05/083-02. The method according to claim 1, characterized in that at least a portion of the resulting nitrogen in the air separation for dilution of the burned in the second combustion chamber (19) syngas is used. 14 B05 / 083-0
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass 80-100% des bei der Luftzerlegung entstehenden Stickstoffs zur Verdünnung des in der zweiten Brennkammer (19) verbrannten Syngases verwendet werden.3. The method according to claim 2, characterized in that 80-100% of the resulting nitrogen in the air separation for dilution of the burned in the second combustion chamber (19) syngas are used.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der bei der Luftzerlegung entstehende Stickstoff direkt in die zweite Brennkammer (19) eingedüst wird.4. The method according to claim 2 or 3, characterized in that the resulting in the air separation nitrogen is injected directly into the second combustion chamber (19).
5. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass der verbleibende Teil des bei der Luftzerlegung entstehenden Stickstoffs zur5. The method according to any one of claims 2 to 4, characterized in that the remaining part of the resulting in the air separation nitrogen for
Verdünnung des in der ersten Brennkammer (18) verbrannten Syngases verwendet wird.Dilution of the burnt in the first combustion chamber (18) syngas is used.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der für die erste Brennkammer (18) vorgesehene Stickstoff vor dem Eindüsen in die6. The method according to claim 5, characterized in that for the first combustion chamber (18) provided nitrogen before the injection into the
Brennkammer zunächst in einem Verdichter (V2) auf einen höheren Druck verdichtet wird.Combustion chamber is first compressed in a compressor (V2) to a higher pressure.
7. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass ein Teil des in der Vergasungsanlage (34) erzeugten Syngases ohne weitere Verdichtung in die zweite Brennkammer (19) eingedüst wird.7. The method according to claim 1, characterized in that a part of the in the gasification plant (34) generated syngas is injected without further compression in the second combustion chamber (19).
8. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass ein Teil des in der Vergasungsanlage (34) erzeugten Syngases zunächst in einem Verdichter (V4) auf einen höheren Druck verdichtet und dann in die erste Brennkammer (18) eingedüst wird.8. The method according to claim 1, characterized in that a part of the gasification plant (34) generated syngas is first compressed in a compressor (V4) to a higher pressure and then injected into the first combustion chamber (18).
9. Verfahren nach Anspruch 2 oder 5, dadurch gekennzeichnet, dass das Syngas und der zur Verdünnung vorgesehene Stickstoff in konzentrischer Anordnung in die Brennkammern (18, 19) eingedüst wird, wobei der9. The method according to claim 2 or 5, characterized in that the syngas and provided for dilution nitrogen in a concentric arrangement in the combustion chambers (18, 19) is injected, wherein the
Stickstoffstrahl den Syngasstrahl mantelförmig umschliesst, und dass die 15 B05/083-0Nitrogen jet encloses the syngas jet like a shell, and that the 15 B05 / 083-0
Eindüsung senkrecht zur Richtung der in die Brennkammern (18, 19) einströmenden verdichteten Luft bzw. Abluft aus der ersten Turbine (16) erfolgt.Injection takes place perpendicular to the direction of the compressed air or exhaust air flowing into the combustion chambers (18, 19) from the first turbine (16).
10. Gasturbine (11 ) zur Durchführung des Verfahrens nach Anspruch 1 , welche Gasturbine (11 ) als Gasturbine mit Zwischenüberhitzung ausgelegt ist und Verdichter (13, 14) zur Verdichtung von angesaugter Luft sowie zwei Brennkammern (18, 19) und zwei Turbinen (16, 17) umfasst, wobei in der ersten Brennkammer (18) ein Brennstoff unter Einsatz der verdichteten Luft verbrannt und die entstehenden heissen Gase in der ersten Turbine (16) entspannt werden, und wobei in der zweiten Brennkammer (19) der Brennstoff unter Einsatz der aus der ersten Turbine (16) kommenden Gase verbrannt und die entstehenden heissen Gase in der zweiten Turbine (17) entspannt werden, dadurch gekennzeichnet, dass eine Luftzerlegungsanlage (32) vorgesehen ist, welche eingangsseitig an die Verdichter (13, 14) angeschlossen ist und ausgangsseitig eine Stickstoffleitung (32b) zur Abgabe des bei der Zerlegung entstehenden Stickstoffs sowie eine Sauerstoffleitung (32a) zur Abgabe des bei der Zerlegung entstehenden Sauerstoffs aufweist, dass die Sauerstoffleitung (32a) zu einer Anlage (33,.., 38) zur Erzeugung von Syngas geführt ist, dass eine Syngaszuleitung (31 ) das erzeugte Syngas von der Anlage (33, ..,38) zur Erzeugung von Syngas zu den Brennkammern (18, 19) transportiert, und dass die Stickstoffleitung (32b) mit den Brennkammern (18, 19) in Verbindung steht.10. Gas turbine (11) for carrying out the method according to claim 1, which gas turbine (11) is designed as a gas turbine with reheat and compressor (13, 14) for the compression of sucked air and two combustion chambers (18, 19) and two turbines (16 , 17), wherein in the first combustion chamber (18) burned a fuel using the compressed air and the resulting hot gases in the first turbine (16) are relaxed, and wherein in the second combustion chamber (19) the fuel using the from the first turbine (16) coming gases are burned and the resulting hot gases in the second turbine (17) are relaxed, characterized in that an air separation plant (32) is provided, which on the input side to the compressor (13, 14) is connected and On the output side, a nitrogen line (32b) for discharging the nitrogen produced during the decomposition, and an oxygen line (32a) for discharging the acid produced during the decomposition stoffs that the oxygen line (32 a) is guided to a system (33, .., 38) for generating syngas, that a Syngaszuleitung (31) the syngas generated by the system (33, .., 38) for generating Syngas to the combustion chambers (18, 19) transported, and that the nitrogen line (32b) with the combustion chambers (18, 19) is in communication.
11. Gasturbine nach Anspruch 10, dadurch gekennzeichnet, dass in der Stickstoffleitung (32b) zwischen dem Ausgang der Luftzerlegungsanlage (32) und der ersten Brennkammer (18) ein Verdichter (V2) zur Verdichtung des Stickstoffs angeordnet ist.11. Gas turbine according to claim 10, characterized in that in the nitrogen line (32b) between the output of the air separation plant (32) and the first combustion chamber (18) a compressor (V2) is arranged for compressing the nitrogen.
12. Gasturbine nach Anspruch 10, dadurch gekennzeichnet, dass in der Syngaszuleitung (31 ) zwischen dem Ausgang der Anlage (33, ..,38) zur Erzeugung von Syngas und der ersten Brennkammer (18) ein Verdichter (V4) zur Verdichtung des Syngases angeordnet ist. 16 B05/083-012. Gas turbine according to claim 10, characterized in that in the Syngaszuleitung (31) between the output of the system (33, .., 38) for generating syngas and the first combustion chamber (18) a compressor (V4) for compressing the syngas is arranged. 16 B05 / 083-0
13. Gasturbine nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass in der ersten und/oder zweiten Brennkammer (18 bzw. 19) Brennstoffdüsen (42) vorgesehen sind, durch welche in konzentrischer Anordnung innen das Syngas und mantelförmig umgebend aussen der Stickstoff quer zur Strömungsrichtung der verdichteten Luft bzw. der Abluft aus der ersten Turbine (16) in die Brennkammer einströmt. 13. Gas turbine according to one of claims 10 to 12, characterized in that in the first and / or second combustion chamber (18 or 19) fuel nozzles (42) are provided, through which in concentric arrangement inside the syngas and shell surrounding outside the nitrogen flows transversely to the flow direction of the compressed air or the exhaust air from the first turbine (16) into the combustion chamber.
PCT/EP2006/064790 2005-08-10 2006-07-28 Method for the operation of a gas turbine, and gas turbine for carrying out said method WO2007017406A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008525535A JP2009504964A (en) 2005-08-10 2006-07-28 Method for operating a gas turbine and gas turbine implementing this method
DE112006001991.0T DE112006001991B4 (en) 2005-08-10 2006-07-28 Process for operating a gas turbine
CA2617986A CA2617986C (en) 2005-08-10 2006-07-28 Method for operating a gas turbine and a gas turbine for implementing the method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US70677805P 2005-08-10 2005-08-10
US60/706,778 2005-08-10
CH20202005 2005-12-20
CH02020/05 2005-12-20

Publications (1)

Publication Number Publication Date
WO2007017406A1 true WO2007017406A1 (en) 2007-02-15

Family

ID=37310776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/064790 WO2007017406A1 (en) 2005-08-10 2006-07-28 Method for the operation of a gas turbine, and gas turbine for carrying out said method

Country Status (4)

Country Link
JP (1) JP2009504964A (en)
CA (1) CA2617986C (en)
DE (1) DE112006001991B4 (en)
WO (1) WO2007017406A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2107227A1 (en) * 2008-04-03 2009-10-07 ALSTOM Technology Ltd Operation of a gas turbine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9863284B2 (en) * 2015-03-19 2018-01-09 General Electric Company Power generation system having compressor creating excess air flow and cooling fluid injection therefor
GB2539667B (en) 2015-06-23 2018-04-04 Siemens Ag Method and equipment for combustion of ammonia

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE947843C (en) * 1954-09-11 1956-08-23 Henschel & Sohn G M B H Method for using the lock gas produced by pressurized gasifiers in gas turbine operation
DE2503193A1 (en) * 1975-01-27 1976-07-29 Linde Ag PROCESS FOR PRODUCING A HEATING GAS BY PRESSURE GASIFICATION OF CARBON FUELS
US4488398A (en) * 1981-11-09 1984-12-18 Hitachi, Ltd. Power plant integrated with coal gasification
EP0773416A2 (en) * 1995-11-07 1997-05-14 Air Products And Chemicals, Inc. Operation of integrated gasification combined cycle power generation systems at part load
JPH1130131A (en) * 1997-07-09 1999-02-02 Hitachi Ltd Gasification compound electric power plant and method for operating it
GB2335953A (en) * 1998-03-30 1999-10-06 Magnox Electric Plc Air extraction from a power generation turbine
EP1098077A2 (en) * 1999-11-03 2001-05-09 ALSTOM POWER (Schweiz) AG Operating method for a power plant
US6513317B2 (en) * 2001-01-11 2003-02-04 General Electric Company Apparatus for controlling nitrogen injection into gas turbine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4785622A (en) 1984-12-03 1988-11-22 General Electric Company Integrated coal gasification plant and combined cycle system with air bleed and steam injection
CH687269A5 (en) 1993-04-08 1996-10-31 Abb Management Ag Gas turbine group.
US5406786A (en) 1993-07-16 1995-04-18 Air Products And Chemicals, Inc. Integrated air separation - gas turbine electrical generation process
JPH07305607A (en) * 1994-05-10 1995-11-21 Hitachi Ltd Coal gasification power plant
DE19508018A1 (en) 1995-03-07 1996-09-12 Abb Management Ag Process for operating a power plant
JP3709669B2 (en) * 1997-09-11 2005-10-26 株式会社日立製作所 Gasification integrated combined power plant
GB2346177B (en) * 1999-02-01 2003-03-19 Alstom Gas Turbines Ltd Gas turbine engine
JP2000240467A (en) * 1999-02-22 2000-09-05 Ishikawajima Harima Heavy Ind Co Ltd Gasification cogeneration power system having syn form gas holder for emergency use
JP2000345856A (en) * 1999-06-07 2000-12-12 Hitachi Ltd Gasifying power plant and its operating method
JP2002221047A (en) * 2001-01-22 2002-08-09 Kawasaki Heavy Ind Ltd Gas turbine
GB2373299B (en) * 2001-03-12 2004-10-27 Alstom Power Nv Re-fired gas turbine engine
JP2004028352A (en) * 2002-06-21 2004-01-29 Ishikawajima Harima Heavy Ind Co Ltd LOW NOx COMBUSTOR COMPRISING FUEL INJECTION VALVE FOR PREVENTING BACKFIRE AND SELF-IGNITION

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE947843C (en) * 1954-09-11 1956-08-23 Henschel & Sohn G M B H Method for using the lock gas produced by pressurized gasifiers in gas turbine operation
DE2503193A1 (en) * 1975-01-27 1976-07-29 Linde Ag PROCESS FOR PRODUCING A HEATING GAS BY PRESSURE GASIFICATION OF CARBON FUELS
US4488398A (en) * 1981-11-09 1984-12-18 Hitachi, Ltd. Power plant integrated with coal gasification
EP0773416A2 (en) * 1995-11-07 1997-05-14 Air Products And Chemicals, Inc. Operation of integrated gasification combined cycle power generation systems at part load
JPH1130131A (en) * 1997-07-09 1999-02-02 Hitachi Ltd Gasification compound electric power plant and method for operating it
GB2335953A (en) * 1998-03-30 1999-10-06 Magnox Electric Plc Air extraction from a power generation turbine
EP1098077A2 (en) * 1999-11-03 2001-05-09 ALSTOM POWER (Schweiz) AG Operating method for a power plant
US6513317B2 (en) * 2001-01-11 2003-02-04 General Electric Company Apparatus for controlling nitrogen injection into gas turbine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 05 31 May 1999 (1999-05-31) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2107227A1 (en) * 2008-04-03 2009-10-07 ALSTOM Technology Ltd Operation of a gas turbine
US9170023B2 (en) 2008-04-03 2015-10-27 Alstom Technology Ltd. Operation of a gas turbine

Also Published As

Publication number Publication date
DE112006001991B4 (en) 2022-07-14
JP2009504964A (en) 2009-02-05
CA2617986A1 (en) 2007-02-15
CA2617986C (en) 2014-07-22
DE112006001991A5 (en) 2008-09-11

Similar Documents

Publication Publication Date Title
WO2008065156A1 (en) Method for operating a gas turbine
EP2002185B1 (en) Fuel lance for a gas turbine plant and a method of operating a fuel lance
DE69533558T2 (en) GAS MANAGER FOR A LOW ENVIRONMENTAL ENERGY GENERATION SYSTEM
EP2024620B1 (en) Method of operating a gas turbine and combined cycle power plant for carrying out the method
DE69918492T2 (en) Turbine à gaz à chauffage indirect integree à une une un separation of the gaz de l'air
EP2382029B1 (en) Gas turbine with direct and recirculated flows
DE102009003406A1 (en) Method and system for supporting a modification of a combined cycle working fluid and its combustion
EP0643207B1 (en) Gasturbine with pressure wave combustor, reheating and gas recirculation
DE102007050783A1 (en) Systems and methods for energy production with carbon dioxide isolation
EP2220438B1 (en) Method for operating a combined cycle power plant having a gas turbine installation using a second, hydrogen-rich fuel
DE102004039164A1 (en) Method for generating energy in a gas turbine comprehensive power generation plant and power generation plant for performing the method
EP0731255A1 (en) Powerplant system
DE19609912A1 (en) Process for operating a power plant
DE112009001834T5 (en) A system and method for operating a power generation system with an alternative working fluid
DE102005042889A1 (en) Gas turbine group
CH698638B1 (en) A method of operating a gas turbine assembly comprising the injection of a diluent in the gas turbine arrangement.
DE102009003702A1 (en) Reheating combustion chamber for a gas turbine
DE112010003300T5 (en) Gas turbine and method for operating a gas turbine
DE112018000670T5 (en) STOCHIOMETRIC HYDROGEN / OXYGEN COMBUSTION TURBINE SYSTEM
DE112006002028B4 (en) Process for operating a gas turbine and gas turbine for carrying out the process
WO2007017406A1 (en) Method for the operation of a gas turbine, and gas turbine for carrying out said method
EP0924412B1 (en) Method of operating a gas turbo group
DE19900026B4 (en) Gas turbine with steam injection
DE60034529T2 (en) FUEL GAS EXTENSION TURBINE FOR AN OXYGEN FUEL CARBURETTOR AND ASSOCIATED METHOD
CH665452A5 (en) COMBINED GAS / STEAM TURBINE POWER PLANT WITH CO COMBUSTION.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120060019910

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2617986

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008525535

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06792603

Country of ref document: EP

Kind code of ref document: A1

REF Corresponds to

Ref document number: 112006001991

Country of ref document: DE

Date of ref document: 20080911

Kind code of ref document: P