WO2007013339A1 - 光受信装置、試験装置、光受信方法、試験方法、テストモジュール、及び半導体チップ - Google Patents

光受信装置、試験装置、光受信方法、試験方法、テストモジュール、及び半導体チップ Download PDF

Info

Publication number
WO2007013339A1
WO2007013339A1 PCT/JP2006/314303 JP2006314303W WO2007013339A1 WO 2007013339 A1 WO2007013339 A1 WO 2007013339A1 JP 2006314303 W JP2006314303 W JP 2006314303W WO 2007013339 A1 WO2007013339 A1 WO 2007013339A1
Authority
WO
WIPO (PCT)
Prior art keywords
cycle
integrator
current
optical signal
digital data
Prior art date
Application number
PCT/JP2006/314303
Other languages
English (en)
French (fr)
Inventor
Toshiyuki Okayasu
Daisuke Watanabe
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to CN2006800276227A priority Critical patent/CN101233704B/zh
Priority to DE112006001960T priority patent/DE112006001960T5/de
Priority to KR1020087002390A priority patent/KR100932252B1/ko
Priority to JP2007528427A priority patent/JP4772793B2/ja
Publication of WO2007013339A1 publication Critical patent/WO2007013339A1/ja
Priority to US11/963,848 priority patent/US7603241B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/693Arrangements for optimizing the preamplifier in the receiver
    • H04B10/6932Bandwidth control of bit rate adaptation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks

Definitions

  • the present invention relates to an optical receiver that outputs a data value of digital data transmitted by an optical signal, and a test apparatus that tests a device under test such as a semiconductor circuit.
  • This application is related to the following Japanese application. For designated countries where incorporation by reference of documents is allowed, the contents described in the following application are incorporated into this application by reference and made a part of this application.
  • a light-induced weak current generated by a photodiode that receives an optical signal is converted into a voltage signal by an impedance conversion circuit. Since the current value of the current is small, the current path from the photodiode to the impedance conversion circuit is where the SZN ratio of the signal is greatly degraded. In addition, it has low resistance to common mode noise.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-25768, pages 17-18, Fig. 15
  • an object of the present invention is to provide an optical receiver, a test apparatus, an optical receiver method, a test method, a test module, and a semiconductor chip that can solve the above-described problems.
  • This object is achieved by a combination of features described in the independent claims.
  • the dependent claims define further advantageous specific examples of the present invention.
  • an optical receiver that receives an optical signal and outputs a data value of digital data transmitted by the optical signal, A light receiving element that outputs a photocurrent according to the intensity of the optical signal, a current cycle integrator that integrates a photocurrent corresponding to the current cycle of digital data for a predetermined period in the cycle, and a current cycle
  • the photocurrent corresponding to the previous cycle is approximately equal to the predetermined period in that cycle!
  • the previous cycle integrator that integrates the period, the charge amount integrated by the current cycle integrator, and the charge amount integrated by the previous cycle integrator And a data value identification circuit for outputting a data value in the current cycle of the digital data based on the difference between the optical data and the optical receiver.
  • the current cycle integrator may include a capacitor provided between the current cycle transmission line connecting the current output terminal of the light receiving element and the voltage input terminal of the data value identification circuit, and the reference potential.
  • the pre-cycle integrator may include a capacitor provided in parallel with the current cycle transmission line between the current output terminal of the light receiving element and the voltage input terminal of the data value identification circuit.
  • the optical receiver includes a previous cycle control unit that supplies the photocurrent in the previous cycle to the previous cycle integrator, a current cycle control unit that supplies the photocurrent in the current cycle to the current cycle integrator, Connect the terminal where the positive charge of the current cycle integrator is accumulated with the terminal where the negative charge of the previous cycle integrator is accumulated, and the previous cycle integrator accumulates. And a differential control unit for discharging the current cycle integrator according to the amount of charge.
  • the previous cycle control unit includes a first switch for switching whether the light receiving element side terminal of the previous cycle integrator is connected to the light receiving element or the reference potential, and the current cycle control unit is And a second switch for switching whether the terminal on the light receiving element side of the current cycle integrator is connected to either the light receiving element or the reference potential, and the difference control unit is a data value identification circuit of the previous cycle integrator.
  • the data value identification circuit When the charge amount integrated by the current cycle integrator is larger than the charge amount integrated by the previous cycle integrator, the data value identification circuit outputs an H level as the data value in the current cycle, and the current cycle integration If the amount of charge integrated by the integrator is smaller than the amount of charge integrated by the previous cycle integrator, L level is output as the data value in the current cycle, and the amount of charge integrated by the current cycle integrator is If the integrated charge amount is approximately equal, the data value in the previous cycle may be output as the data value in the current cycle.
  • an optical receiver that receives an optical signal and outputs a data value of digital data transmitted by the optical signal.
  • a light-receiving element that outputs a photocurrent according to the degree, a first current-cycle integrator that integrates a photocurrent corresponding to an even number of cycles of digital data for a predetermined period in the cycle, and a first current-cycle integrator The first pre-cycle integrator that integrates the photocurrent corresponding to the previous cycle of the cycle that is integrated in the cycle for a period substantially equal to the predetermined period, and the photocurrent corresponding to the odd cycle of the digital data.
  • a second current cycle integrator that integrates for a period substantially equal to a predetermined period in the cycle, and a photocurrent corresponding to the previous cycle of the second cycle is integrated by the second current cycle integrator.
  • the second previous cycle integrator integrating for a period substantially equal to the predetermined period, the charge amount integrated by the first current cycle integrator, and the charge amount integrated by the first previous cycle integrator Based on the difference between the first data value identification circuit that outputs the data value in the even cycle of the digital data, the amount of charge integrated by the second current cycle integrator, and the second previous cycle integrator integrates
  • An optical receiver comprising a second data value identification circuit that outputs a data value in an odd cycle of digital data based on the difference from the charged amount is provided.
  • a test apparatus for testing a device under test including a test head on which the device under test is placed, and exchange of digital data with the device under test via the test head.
  • the main body section for determining the quality of the device under test, the test head and the main body section, and the optical transmitter for transmitting the digital data to be transmitted as an optical signal, the test head and the main body section,
  • An optical receiver that receives a signal and outputs a data value of digital data transmitted by the optical signal.
  • the optical receiver receives the optical signal and outputs a photocurrent corresponding to the intensity of the optical signal.
  • the current cycle integrator that integrates the device, the photocurrent corresponding to the current cycle of digital data for a predetermined period in the cycle, and the photocurrent corresponding to the previous cycle of the current cycle It is approximately equal to a predetermined period in the vehicle. Based on the difference between the previous cycle integrator that integrates the U ⁇ ⁇ period, the charge amount integrated by the current cycle integrator, and the charge amount integrated by the previous cycle integrator, the digital data A test apparatus having a data value identification circuit for outputting a data value in the current cycle is provided.
  • a test apparatus for testing a device under test which includes a test head on which the device under test is placed, and exchange of digital data with the device under test via the test head.
  • the main body section for determining the quality of the device under test, the test head and the main body section, and the optical transmitter for transmitting the digital data to be transmitted as an optical signal, the test head and the main body section,
  • An optical receiver that receives a signal and outputs a data value of digital data transmitted by the optical signal.
  • the optical receiver receives the optical signal and outputs a photocurrent corresponding to the intensity of the optical signal.
  • the first current cycle integrator that integrates the element and the photocurrent corresponding to an even number of cycles of digital data for a predetermined period in the cycle, and the first current cycle integrator integrate,
  • a first pre-cycle integrator that integrates the photocurrent corresponding to the previous cycle of the cycle in a period substantially equal to the predetermined period in the cycle, and the photocurrent corresponding to the odd cycle of the digital data in the cycle.
  • the second current cycle integrator that integrates for a period substantially equal to the period of time, and the photocurrent corresponding to the previous cycle of the cycle that is integrated by the second current cycle integrator is abbreviated as a predetermined period in the relevant site.
  • a test apparatus having a second data value identification circuit for outputting a data value in an odd-number digital digital data based on a difference from the charge amount integrated by an integrator.
  • an optical reception method for receiving an optical signal and outputting a data value of digital data transmitted by the optical signal, wherein the optical signal is received using a light receiving element.
  • a light-receiving stage that outputs a photocurrent according to the intensity of the optical signal
  • a current cycle integration stage that integrates the photocurrent corresponding to the current digital data cycle for a predetermined period in the cycle, and a previous cycle of the current cycle.
  • the previous cycle integration stage in which the photocurrent corresponding to is integrated for a period substantially equal to the predetermined period in the current cycle, the charge amount integrated in the current cycle integration stage, and the charge quantity integrated in the previous cycle integration stage
  • An optical reception method comprising: a data value identification step for outputting a data value in the current cycle of digital data based on the difference!
  • a test method for testing a device under test the step of placing the device under test on a test head of a test apparatus, and using a main body of the test apparatus, Digital data is exchanged with the device under test via the test head to determine whether the device under test is good or bad, and the digital data to be transmitted is optically transmitted using an optical transmitter provided in the test head and the main unit.
  • the receiving stage includes a light receiving stage that receives an optical signal using a light receiving element of an optical receiver and outputs a photocurrent according to the intensity of the optical signal, and a photoelectric that corresponds to the current cycle of digital data. And a current cycle integrator stage which integrates the predetermined time period in the cycle, the photocurrent corresponding to the previous cycle of the current cycle, and cycle integrals stage before time integral substantially equal to a predetermined time period in the cycle,
  • a test method having a data value identification stage for output is provided.
  • the test module is provided in a test apparatus for testing a device under test and receives an optical signal and outputs a data value of digital data transmitted by the optical signal.
  • a light receiving element that receives an optical signal and outputs a photocurrent according to the intensity of the optical signal, a current cycle integrator that integrates a photocurrent corresponding to the current cycle of digital data for a predetermined period in the cycle, The previous cycle integrator that integrates the photocurrent corresponding to the previous cycle of the current cycle for a period substantially equal to the predetermined period in the cycle, the charge amount integrated by the current cycle integrator, and the previous cycle integrator integrated.
  • a test module comprising a data value identification circuit for outputting a data value in the current cycle of digital data based on a difference from the charge amount.
  • the test module is provided in a test apparatus for testing a device under test and receives an optical signal and outputs a data value of digital data transmitted by the optical signal.
  • a light receiving element that receives an optical signal and outputs a photocurrent according to the intensity of the optical signal, and a first current cycle integration that integrates a photocurrent corresponding to an even number of cycles of digital data for a predetermined period in the cycle.
  • a first current cycle integrator that integrates the photocurrent corresponding to the previous cycle of the cycle that the first current cycle integrator is integrating for a period substantially equal to a predetermined period in the cycle, and a digital data
  • a second current cycle integrator that integrates the photocurrent corresponding to the odd cycle for a period substantially equal to a predetermined period in the cycle and a second current cycle integrator integrate the photocurrent.
  • a second previous cycle integrator that integrates the photocurrent corresponding to the previous cycle of the current cycle for a period approximately equal to a predetermined period in the cycle, a charge amount integrated by the first current cycle integrator, and a first previous cycle integrator.
  • the first data value identification circuit that outputs the data value in the even number cycle of the digital data and the charge amount integrated by the second current cycle integrator
  • a second data value identification circuit that outputs a data value in an odd cycle of the digital data based on a difference between the charge amount integrated by the second previous cycle integrator and a second data value identification circuit.
  • a semiconductor chip comprising an optical receiver on a semiconductor substrate that receives an optical signal and outputs a data value of digital data transmitted by the optical signal
  • a light receiving device that receives an optical signal and outputs a photocurrent according to the intensity of the optical signal, and a photocurrent corresponding to the current cycle of the digital data for a predetermined period in the cycle.
  • a current cycle integrator that integrates, a previous cycle integrator that integrates the photocurrent corresponding to the previous cycle of the current cycle for a period approximately equal to a predetermined period, a charge amount integrated by the current cycle integrator,
  • a semiconductor chip includes a data value identification circuit that outputs a data value in a current cycle of digital data based on a difference from the charge amount integrated by a cycle integrator.
  • a semiconductor chip provided on a semiconductor substrate with an optical receiver that receives an optical signal and outputs a data value of digital data transmitted by the optical signal.
  • a light receiving device that receives an optical signal and outputs a photocurrent according to the intensity of the optical signal, and a first that integrates a photocurrent corresponding to an even cycle of digital data for a predetermined period in the cycle.
  • a first cycle integrator that integrates a photocurrent corresponding to the previous cycle of the cycle that the first current cycle integrator is integrating, for a period substantially equal to a predetermined period in the cycle;
  • a second current cycle integrator that integrates a photocurrent corresponding to an odd number of cycles of digital data for a period substantially equal to a predetermined period in the cycle, and a second current cycle integrator integrate the photocurrent.
  • a second previous cycle integrator that integrates the photocurrent corresponding to the previous cycle of the first cycle for a period substantially equal to a predetermined period in the cycle, a charge amount integrated by the first current cycle integrator, Based on the difference from the charge amount integrated by the previous cycle integrator, the first data value identification circuit that outputs the data value in the even number of cycles of the digital data and the second current cycle integrator integrated.
  • a semiconductor chip comprising a second data value identification circuit that outputs a data value in an odd cycle of digital data based on the difference between the charge amount and the charge amount integrated by the second previous cycle integrator To do.
  • the data value of digital data transmitted by optical transmission can be accurately identified while reducing the influence of intersymbol interference or the like.
  • FIG. 1 is a diagram showing an example of the configuration of a test apparatus 100 according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of functional blocks of the optical receiver 40.
  • FIG. 3 is a diagram illustrating an example of a waveform of a photocurrent output from a light receiving element.
  • FIG. 4 is a diagram illustrating an example of a circuit configuration of the optical receiver 40.
  • FIG. 5 is a timing chart showing an example of the operation of the optical receiver 40 shown in FIG.
  • FIG. 6 is a diagram showing another example of the configuration of the optical receiving device 40.
  • FIG. 6 is a diagram showing another example of the configuration of the optical receiving device 40.
  • FIG. 7 is a timing chart showing an example of the operation of the optical receiver 40 shown in FIG.
  • FIG. 8 is a diagram showing another example of the configuration of the optical receiver 40.
  • FIG. 9 is a diagram showing another example of the configuration of the data value identification circuit 52.
  • FIG. 1 is a diagram showing an example of the configuration of a test apparatus 100 according to an embodiment of the present invention.
  • the test apparatus 100 is an apparatus for testing a device under test 200 such as a semiconductor circuit, and includes a main body 10 and a test head 20.
  • the test head 20 places the device under test 200 and exchanges signals with the device under test 200.
  • the main body unit 10 exchanges signals with the device under test 200 via the test head 20 and determines whether the device under test 200 is good or bad.
  • the main unit 10 supplies a test signal to be input to the device under test 200 to the device under test 200 via the test head 20. Then, the output signal output from the device under test 200 is received via the test head 20. Then, the main body unit 10 determines the quality of the device under test 200 based on the output signal.
  • the main body 10 and the test head 20 include an optical transmitter 30 and an optical receiver 40 for transmitting signals, respectively.
  • the optical transmitter 30 and the optical receiver 40 transmit optical signals through a plurality of optical fibers that connect the main body 10 and the test head 20. Since the distance between the main body 10 and the test head 20 is a short distance of, for example, 10 m or less, a plurality of optical fibers can be provided in parallel at a low cost.
  • the optical transmission device 30 can be a known device.
  • the optical transmission device 30 and the optical reception device 40 that transmit signals between the main body 10 and the test head 20 are provided, respectively.
  • a test module including at least one of the device 30 and the optical receiver 40 may be provided at a desired location. For example, provide the test module at a desired location where signals can be transmitted using optical fiber.
  • FIG. 2 is a diagram illustrating an example of functional blocks of the optical receiver 40.
  • the optical receiver 40 is a device that receives the optical signal transmitted by the optical transmitter 30 and outputs the data value of the digital data transmitted by the optical signal.
  • the optical receiver 40, the one-cycle delay element 44, and the previous cycle integral A current cycle integrator 48, a difference calculator 50, and a data value identification circuit 52.
  • the light receiving element 42 receives an optical signal and outputs a photocurrent according to the intensity of the optical signal.
  • the light receiving element 42 is a photodiode. That is, the photocurrent output from the light receiving element 42 changes according to the transition of the data value in each data cycle of the digital data transmitted by the optical signal.
  • the current cycle integrator 48 integrates the photocurrent corresponding to the current cycle of the digital data for a predetermined period in the cycle.
  • the current cycle integrator 48 has a capacitor that is charged and discharged by the photocurrent, supplies the photocurrent to the capacitor during the entire period of the cycle, and uses the amount of charge accumulated in the capacitor to generate the photocurrent. Integrate the current.
  • the 1-cycle delay element 44 converts the photocurrent output from the light receiving element 42 into 1 of digital data.
  • Data cycle is delayed and supplied to the previous cycle integrator 46.
  • the previous cycle integrator 46 integrates the photocurrent corresponding to the data cycle before the current cycle in which the current cycle integrator 48 integrates the photocurrent for a period substantially equal to the above-described predetermined period in the data cycle.
  • the pre-cycle integrator 46 has a capacitor that is charged / discharged by the photocurrent, supplies the photocurrent to the capacitor during the entire period of the cycle, and uses the photocurrent by the amount of charge accumulated in the capacitor. Integrate the current.
  • the difference calculator 50 calculates the difference between the charge amount obtained by integrating the photocurrent in the current cycle by the current cycle integrator 48 and the charge amount obtained by integrating the photocurrent in the previous cycle by the previous cycle integrator 46. calculate. In this example, the difference calculator 50 subtracts the charge amount integrated by the previous cycle integrator 46 from the charge amount integrated by the current cycle integrator 48.
  • the data value identification circuit 52 outputs the data value in the current cycle of the digital data based on the difference calculated by the difference calculator 50. For example, if the charge amount integrated by the current cycle integrator 48 is larger than the charge amount integrated by the previous cycle integrator 46, the data value identification circuit 52 outputs H level as the data value in the current cycle of digital data. To do. When the charge amount integrated by the current cycle integrator 48 is smaller than the charge amount integrated by the previous cycle integrator 46, the L level is output as the data value in the current cycle. If the charge amount integrated by the current cycle integrator 48 is substantially equal to the charge amount integrated by the previous cycle integrator 46, the data value in the previous cycle is output as the data value in the current cycle.
  • FIG. 3 is a diagram showing an example of the waveform of the photocurrent output from the light receiving element 42.
  • the horizontal axis represents time
  • the vertical axis represents the current value.
  • the digital data transmitted by the optical signal has a predetermined data cycle (t to t, t to t,... If the current data cycle is [t to t], the current cycle integrator 48 is the cycle n n + 1
  • the charge quantity Qn obtained by integrating the photocurrent in the current cycle is indicated by the area of the current waveform in the current cycle.
  • the previous cycle integrator 46 integrates the photocurrent in the previous cycle [t to t].
  • the charge amount Q obtained by integrating the photocurrent in the previous cycle is indicated by the area of the current waveform in the previous cycle.
  • the waveform of the photocurrent generated by the light receiving element 42 such as a photodiode has a predetermined rise time and fall time, if the data cycle is short, the current waveform becomes a predetermined H level as shown in FIG. Or it may not settle to L level. In such a case, if the photocurrent is demodulated with the current value or the voltage value obtained by converting the current value, the data value cannot be accurately demodulated.
  • the data value of the current cycle is accurately determined. Can be identified well. For example, if the integrated value of the photocurrent in the current cycle is larger than the integrated value of the photocurrent in the previous cycle, it indicates that the photocurrent increases, so at least the data value of the current cycle is 1 Can be identified.
  • the integrated value of the photocurrent in the current cycle is smaller than the integrated value of the photocurrent in the previous cycle, it indicates that the photocurrent is decreasing, so at least the data value of the current cycle is It can be identified as 0. Also, if the integrated value of the photocurrent in the current cycle is equal to the integrated value of the photocurrent in the previous cycle, it indicates that the photocurrent current value is saturated. It can be identified that it is identical to the data value.
  • the optical receiver 40 compares the integrated value of the photocurrent of the current cycle with the integrated value of the photoelectric current of the previous cycle, and identifies the data value of the current cycle based on the comparison result. Therefore, even if the photocurrent does not settle, the data value can be accurately identified. Even if a long-cycle drift is superimposed on the photocurrent due to factors such as temperature fluctuation and element deterioration, the integrated value of the photocurrent between successive cycles is compared. The influence of can be made very small.
  • the data value identification circuit 52 determines that the difference between the charge amount integrated by the current cycle integrator 48 and the charge amount integrated by the previous cycle integrator 46 is within a predetermined allowable range. It is preferable to calculate a comparison result that the charge amounts are equal.
  • the permissible range is determined in advance based on the permissible value per data cycle of the drift component superimposed on the photocurrent. May be defined.
  • FIG. 4 is a diagram illustrating an example of a circuit configuration of the optical receiver 40.
  • the optical receiver 40 includes a light receiving element 42, a previous cycle integrator 46, a current cycle integrator 48, a first switch 54, a second switch 56 , a third switch 58, a current cycle transmission line 57, and a previous cycle.
  • a transmission path 59 and a data value identification circuit 52 are provided. 4, components having the same reference numerals as those in FIG. 2 have the same or similar functions and configurations as the components described in FIG.
  • the optical receiver 40 may be formed on a semiconductor chip.
  • the semiconductor chip may include a signal transmission device 40 on a semiconductor substrate.
  • a part of the configuration of the optical receiver 40 may be formed on the semiconductor chip.
  • the current cycle transmission path 57 connects the current output terminal of the light receiving element 42 and the voltage input terminal of the data value identification circuit 52.
  • the current cycle integrator 48 is a capacitor and is provided in parallel with the voltage input terminal of the data value identification circuit 52 between the current cycle transmission path 57 and a predetermined reference potential.
  • the ground potential is used as the reference potential, but the reference potential is not limited to the ground potential.
  • the previous cycle transmission line 59 is provided in parallel with the current cycle transmission line 57, and connects the current output terminal of the light receiving element 42 and the voltage input terminal of the data value identification circuit 52.
  • the pre-cycle integrator 46 is a capacitor and is provided in series with the voltage input terminal of the data value identification circuit 52 on the path of the pre-cycle transmission line 59.
  • the first switch 54 is provided between the light receiving element 42 and the previous cycle integrator 46 on the previous cycle transmission line 59. Further, the first switch 54 switches whether the terminal on the light receiving element 42 side of the pre-cycle integrator 46 is connected to the light receiving element 42 or the ground potential. In other words, the first switch 54 functions as a pre-cycle control unit that switches whether or not the photocurrent in the previous cycle is supplied to the pre-cycle integrator 46.
  • the second switch 56 is provided on the current cycle transmission path 57 between the light receiving element 42 and the current cycle integrator 48. In addition, the second switch 56 switches whether the terminal on the light receiving element 42 side of the current cycle integrator 48 is connected to the light receiving element 42 or the ground potential. That is, the second switch 56 functions as a current cycle control unit that switches between power supply and non-power to supply the photocurrent in the current cycle to the current cycle integrator 48.
  • the third switch 58 is provided between the previous cycle integrator 46 and the current site integrator 48 on the previous cycle transmission line 59. The third switch 58 switches whether the terminal on the data value identification circuit 52 side of the previous cycle integrator 46 is connected to the terminal on the light receiving element 42 side of the current cycle integrator 48 or the ground potential. .
  • the third switch 58 connects the terminal where the positive or negative charge of the current cycle integrator 48 is stored and the terminal of the previous cycle integrator 46 where the negative or positive charge is stored in the current cycle. It functions as a differential control unit that switches whether to discharge the current cycle integrator 48 according to the amount of charge accumulated by the previous cycle integrator. By discharging the current cycle integrator 48, the current cycle integrator 48 ⁇ accumulates a difference charge amount obtained by subtracting the charge amount of the previous cycle from the charge amount of the current cycle.
  • the data value identification circuit 52 includes a logic identifier 60 and a flip-flop 62.
  • the logic identifier 60 has a positive input terminal connected to the current cycle integrator 48 and a negative input terminal connected to the ground potential. That is, the logic discriminator 60 determines whether the voltage corresponding to the charge amount of the difference accumulated in the current cycle integrator 48 is positive or negative.
  • the logic discriminator 60 supplies an H level signal to the flip-flop 62 when the current cycle integrator 48 voltage is positive, and the L level signal when the current cycle integrator 48 voltage is negative. Supply signal to flip-flop 62.
  • the logic discriminator 60 is preferably a simulation trigger type amplifier having hysteresis characteristics.
  • the flip-flop 62 takes in and outputs the signal output from the logic discriminator 60 according to the given clock input.
  • the voltage of the current cycle integrator 48 is substantially zero, the output of the logical discriminator 60 becomes high impedance, and the flip-flop 62 holds and outputs the data value of the previous cycle.
  • the data value of the digital data transmitted by the optical signal can be output.
  • the data value identification circuit 52 and the current cycle integrator 48 are provided in parallel, so that the DC component of the signal can also be transmitted.
  • FIG. 5 is a timing chart showing an example of the operation of the optical receiver 40 shown in FIG.
  • the optical receiver 40 is given an optical signal for transmitting input data having a predetermined data cycle.
  • the optical receiver 40 includes a first switch 54, a second switch 56, and a third switch.
  • Control clocks ⁇ 1, Z ⁇ 1 and ⁇ 2 for controlling the switch 58 are generated.
  • the control clock may be generated based on a source synchronous clock given in synchronization with input data.
  • the optical receiver 40 preferably further includes a clock generation unit that generates a control clock based on the source synchronous clock.
  • the control clock ⁇ 1 and the control clock Z ⁇ 1 are clocks having a period that is twice the data rate of the input data.
  • the control clock / ⁇ 1 is a clock obtained by inverting the control clock ⁇ 1.
  • the control clock ⁇ 2 is a clock obtained by reducing the pulse width of the control clock Z ⁇ 1.
  • the first switch 54 connects the front cycle integrator 46 to the light receiving element 42 when the control clock ⁇ 1 is at the H level, and the front cycle integrator 46 when the control clock ⁇ 1 is at the L level. Connect 46 to ground potential.
  • the second switch 56 connects the current cycle integrator 48 to the light receiving element 42 when the control clock Z ⁇ 1 is at the H level, and when the control clock / ⁇ 1 is at the L level. Connect cycle integrator 48 to ground potential.
  • the third switch 58 connects the previous cycle integrator 46 to the current cycle integrator 48 when the control clock ⁇ 2 is at the H level, and the previous switch 58 is connected to the current cycle integrator 48 when the control clock ⁇ 2 is at the L level. Connect cycle integrator 46 to ground potential.
  • the first switch 54 is turned on, and the second switch 56 and the third switch 58 are turned off. Therefore, both ends of the current cycle integrator 48 are connected to the ground potential, and the accumulated charge amount in the current cycle integrator 48 becomes zero. Further, the terminal on the light receiving element 42 side of the pre-cycle integrator 46 is connected to the light receiving element 42, and the other terminal is connected to the ground potential. Further, immediately before the cycle, since the first switch 54 and the third switch 58 are in the OFF state, the accumulated charge amount of the previous cycle integrator 46 at the start of the cycle is substantially zero. For this reason, the charge amount corresponding to the photocurrent of the cycle is accumulated at the light receiving element 42 side terminal of the previous cycle integrator 46.
  • the current cycle integrator 48 is connected to the light receiving element 42, and the current cycle integrator 48 is charged by the photocurrent of the cycle.
  • the current cycle integrator 48 is connected to the previous cycle integrator 46 through a third switch 58 for a predetermined period.
  • the current cycle integrator 48 is connected to the previous cycle integrator 46. It is discharged according to the amount of stored charge. For this reason, the current cycle integrator 48 accumulates the charge corresponding to the difference between the charge amount obtained by integrating the photocurrent of the current cycle and the charge amount obtained by integrating the photocurrent of the previous cycle.
  • the logic discriminator 60 determines whether the voltage of the current cycle integrator 48 is positive or negative.
  • the flip-flop 62 takes in the comparison result output from the logic discriminator 60 according to the control clock ⁇ 1 in the next cycle (T), and the digital data value (Dn) and n + 1
  • FIG. 6 is a diagram illustrating another example of the configuration of the optical receiver 40.
  • the light receiving device 40 in this example includes a first circuit and a second circuit that are substantially the same as the circuit except for the light receiving element 42 in the configuration of the light receiving device 40 shown in FIG. Two in parallel.
  • the first circuit identifies data values in even cycles of digital data
  • the second circuit identifies data values in odd cycles of digital data.
  • the first circuit and the second circuit include a fourth switch 66 and a fifth switch 68 in place of the third switch 58 in the circuit shown in FIG.
  • the fourth switch 66 and the fifth switch 68 are provided in series between the previous cycle integrator 46 and the current cycle integrator 48, and when both switches are turned on, Connect the current cycle integrator 48 to and connect the previous cycle integrator 46 to the ground potential when at least the switch of the misalignment is turned off.
  • the fourth switch 66 in the first circuit is controlled by the control clock Z ⁇ 1
  • the fifth switch 68 is controlled by the control clock ⁇ 2 ′.
  • the control clock ⁇ 2 ′ is a clock obtained by shifting the control clock ⁇ 1 by approximately a half cycle phase of the data rate.
  • the fourth switch 66 and the fifth switch 68 connect the previous cycle integrator 46 and the current cycle integrator 48 to each other. Connecting force
  • the logical sum of the control clock Z ⁇ 1 and the control clock ⁇ 2 ' is equivalent to the control clock ⁇ 2 described in FIG. 5, and the operation of the fourth switch 66 and the fifth switch 68 is This is equivalent to the operation of the third switch 58 shown in FIG.
  • switches in the first circuit are controlled by the same control clock as the corresponding switch in the optical receiver 40 shown in FIG.
  • each switch in the second circuit is controlled by a control clock obtained by inverting the control clock of the corresponding switch in the first circuit.
  • the current cycle transmission line of each of the first circuit and the second circuit is provided with a diode 64 that prevents current from flowing between the first circuit and the second circuit. Is preferred.
  • the diode 64 may be provided in the previous cycle transmission line of each of the first circuit and the second circuit.
  • FIG. 7 is a timing chart showing an example of the operation of the optical receiver 40 shown in FIG.
  • the operation of the first circuit is the same as that of the optical receiver 40 shown in FIG.
  • the first circuit outputs the data value of the even cycle of digital data as output data 1.
  • the second circuit Since the second circuit is controlled by a control clock obtained by inverting the control clock of the first circuit, the second circuit performs the same operation as the first circuit with a delay of one data cycle. Do. As a result, the second circuit outputs the data value of the odd cycle of the digital data as output data 2. With such a configuration, the optical receiver 40 can accurately identify all data values of the digital data.
  • FIG. 8 is a diagram illustrating another example of the configuration of the optical receiving device 40.
  • the optical receiver 40 in this example is independently provided with a first circuit and a second circuit having substantially the same configuration as the optical receiver 40 shown in FIG.
  • the control clock for controlling the first circuit and the second circuit is the same as that of the first circuit and the second circuit described with reference to FIG.
  • the first circuit identifies the data value of the even number of cycles of the digital data, and the second circuit digitizes. Identify the odd cycle data value of the tall data. For this reason, the optical receiver 40 can accurately identify all data values of the digital data.
  • FIG. 9 is a diagram showing another example of the configuration of the data value identification circuit 52.
  • the optical receiver 40 in this example receives digital data in which data values transition to a plurality of types of values.
  • the data value identification circuit 52 includes a plurality of logic identifiers 60, DACs 61, and decoder circuits 65.
  • the plurality of logic discriminators 60 identify the transition amount of the data value of the digital data.
  • the transition amount of the data value is expressed by the difference between the charge amount obtained by integrating the photocurrent of the previous cycle and the charge amount obtained by integrating the photocurrent of the current cycle. Therefore, each logic discriminator 60 is given a threshold voltage corresponding to each transition amount from the DAC 70, and compares each threshold voltage with the voltage of the current cycle integrator 48.
  • the decoder circuit 65 calculates the transition amount of the data value of the digital data between the previous cycle and the current cycle based on the comparison result in each logic discriminator 60.
  • the decoder circuit 65 preferably holds the data value of the previous cycle.
  • the decoder circuit 65 identifies and outputs the data value of the current cycle based on the calculated transition amount of the data value and the data value in the previous cycle. With such a configuration, multivalued digital data can be accurately identified.
  • the data value of digital data transmitted by optical transmission can be accurately identified while reducing the influence of intersymbol interference or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Power Engineering (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Optical Communication System (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

 光信号を受信し、前記光信号により伝送されるデジタルデータのデータ値を出力する光受信装置であって、光信号を受信し、光信号の強度に応じた光電流を出力する受光素子と、デジタルデータの現サイクルに対応する光電流を、サイクル内の所定の期間積分する現サイクル積分器と、現サイクルの前サイクルに対応する光電流を、当該サイクルにおいて所定の期間と略等しい期間積分する前サイクル積分器と、現サイクル積分器が積分した電荷量と、前サイクル積分器が積分した電荷量との差分に基づいて、デジタルデータの現サイクルにおけるデータ値を出力するデータ値識別回路とを備える光受信装置を提供する。

Description

明 細 書
光受信装置、試験装置、光受信方法、試験方法、テストモジュール、及び 半導体チップ
技術分野
[0001] 本発明は、光信号により伝送されるデジタルデータのデータ値を出力する光受信 装置、及び半導体回路等の被試験デバイスを試験する試験装置に関する。本出願 は、下記の日本国出願に関連する。文献の参照による組み込みが認められる指定国 については、下記の出願に記載された内容を参照により本出願に組み込み、本出願 の一部とする。
特願 2005— 216044 出願曰 2005年 7月 26曰
背景技術
[0002] 従来、光通信における光受信装置では、光信号を受信したフォトダイオードが生成 する光誘起微弱電流を、インピーダンス変換回路によって電圧信号に変換している。 当該電流の電流値が小さ 、ので、フォトダイオードからインピーダンス変換回路まで の電流経路は、信号の SZN比が非常に劣化する箇所である。また、コモンモード雑 音に対する耐性も低い。
[0003] また、光送信装置側のレーザダイオードが出力するパルスは、立ち上がり時間と立 ち下がり時間が非対称であるので、符号間干渉によるタイミングジッタが増加する。更 に、光学系の温度ドリフトは電子回路に比較して大きいので、クロック埋め込み伝送 方式 (CDR方式)を採用することが多ぐ通常は AC結合方式でデータ伝送される。こ のため、伝送系の低域遮断周波数を超えないように符号ィ匕する必要がある。
[0004] これらの問題により、光受信装置の帯域制限、送受信電子回路の増大、複雑化を 招いている。チャネル当たりの信号処理回路規模が大きいと、並列光伝送を行う場合 にコストパフォーマンスが悪化する。
[0005] このような光伝送における問題に対し、電気伝送の場合には、符号間干渉を低減 するベぐ受信回路側で電荷演算を行う回路が知られている(例えば、特許文献 1参 照)。当該回路は、信号波形の前サイクルでチャージされる電荷と、現サイクルでチヤ ージされる電荷との差分を求めることにより、符号間干渉を低減する回路である。
[0006] 特許文献 1 :特開 2005— 25768号公報、第 17— 18頁、第 15図
発明の開示
発明が解決しょうとする課題
[0007] しかし、従来の光伝送においては、上述した符号間干渉の問題、雑音の問題、伝 送系の低域遮断周波数の問題は解決されて 、な 、。
[0008] このため本発明は、上述した課題を解決することのできる光受信装置、試験装置、 光受信方法、試験方法、テストモジュール、及び半導体チップを提供することを目的 とする。この目的は、請求の範囲における独立項に記載の特徴の組み合わせにより 達成される。また従属項は本発明の更なる有利な具体例を規定する。
課題を解決するための手段
[0009] 上記課題を解決するために、本発明の第 1の形態においては、光信号を受信し、 光信号により伝送されるデジタルデータのデータ値を出力する光受信装置であって 、光信号を受信し、光信号の強度に応じた光電流を出力する受光素子と、デジタル データの現サイクルに対応する光電流を、サイクル内の所定の期間積分する現サイ クル積分器と、現サイクルの前サイクルに対応する光電流を、当該サイクルにおいて 所定の期間と略等し!ヽ期間積分する前サイクル積分器と、現サイクル積分器が積分 した電荷量と、前サイクル積分器が積分した電荷量との差分に基づいて、デジタルデ 一タの現サイクルにおけるデータ値を出力するデータ値識別回路とを備える光受信 装置を提供する。
[0010] 現サイクル積分器は、受光素子の電流出力端及びデータ値識別回路の電圧入力 端を接続する現サイクル伝送路と、基準電位との間に設けられたコンデンサを有して よい。前サイクル積分器は、受光素子の電流出力端と、データ値識別回路の電圧入 力端との間に、現サイクル伝送路と並列に設けられたコンデンサを有してよい。
[0011] 光受信装置は、前サイクルにおける光電流を前サイクル積分器に供給する前サイク ル制御部と、現サイクルにおける光電流を現サイクル積分器に供給する現サイクル 制御部と、現サイクルにおいて、現サイクル積分器の正電荷が蓄積された端子と、前 サイクル積分器の負電荷が蓄積された端子とを接続し、前サイクル積分器が蓄積し た電荷量に応じて、現サイクル積分器を放電させる差分制御部とを更に備えてょ 、。
[0012] 前サイクル制御部は、前サイクル積分器の前記受光素子側の端子を、受光素子又 は基準電位のいずれに接続するかを切り替える第 1のスィッチを有し、現サイクル制 御部は、現サイクル積分器の受光素子側の端子を、受光素子又は基準電位のいず れに接続するかを切り替える第 2のスィッチを有し、差分制御部は、前サイクル積分 器のデータ値識別回路側の端子を、現サイクル積分器の受光素子側の端子、又は 基準電位の 、ずれに接続するかを切り替える第 3のスィッチを有してょ 、。
[0013] データ値識別回路は、現サイクル積分器が積分した電荷量が、前サイクル積分器 が積分した電荷量より大き 、場合、現サイクルにおけるデータ値として Hレベルを出 力し、現サイクル積分器が積分した電荷量が、前サイクル積分器が積分した電荷量 より小さい場合、現サイクルにおけるデータ値として Lレベルを出力し、現サイクル積 分器が積分した電荷量が、前サイクル積分器が積分した電荷量と略等しい場合、現 サイクルにおけるデータ値として、前サイクルにおけるデータ値を出力してよい。
[0014] 本発明の第 2の形態においては、光信号を受信し、光信号により伝送されるデジタ ルデータのデータ値を出力する光受信装置であって、光信号を受信し、光信号の強 度に応じた光電流を出力する受光素子と、デジタルデータの偶数サイクルに対応す る光電流を、サイクル内の所定の期間積分する第 1の現サイクル積分器と、第 1の現 サイクル積分器が積分して ヽるサイクルの前サイクルに対応する光電流を、当該サイ クルにおいて所定の期間と略等しい期間積分する第 1の前サイクル積分器と、デジタ ルデータの奇数サイクルに対応する光電流を、当該サイクルにおいて所定の期間と 略等しい期間積分する第 2の現サイクル積分器と、第 2の現サイクル積分器が積分し て 、るサイクルの前サイクルに対応する光電流を、当該サイクルにお 、て所定の期 間と略等しい期間積分する第 2の前サイクル積分器と、第 1の現サイクル積分器が積 分した電荷量と、第 1の前サイクル積分器が積分した電荷量との差分に基づいて、デ ジタルデータの偶数サイクルにおけるデータ値を出力する第 1のデータ値識別回路 と、第 2の現サイクル積分器が積分した電荷量と、第 2の前サイクル積分器が積分し た電荷量との差分に基づ 、て、デジタルデータの奇数サイクルにおけるデータ値を 出力する第 2のデータ値識別回路とを備える光受信装置を提供する。 [0015] 本発明の第 3の形態においては、被試験デバイスを試験する試験装置であって、 被試験デバイスを載置するテストヘッドと、テストヘッドを介して被試験デバイスとデジ タルデータの授受を行い、被試験デバイスの良否を判定する本体部と、テストヘッド 及び本体部に設けられ、伝送すべきデジタルデータを光信号として送信する光送信 装置と、テストヘッド及び本体部に設けられ、光信号を受信し、光信号により伝送され るデジタルデータのデータ値を出力する光受信装置とを備え、光受信装置は、光信 号を受信し、光信号の強度に応じた光電流を出力する受光素子と、デジタルデータ の現サイクルに対応する光電流を、サイクル内の所定の期間積分する現サイクル積 分器と、現サイクルの前サイクルに対応する光電流を、当該サイクルにおいて所定の 期間と略等 Uヽ期間積分する前サイクル積分器と、現サイクル積分器が積分した電 荷量と、前サイクル積分器が積分した電荷量との差分に基づいて、デジタルデータ の現サイクルにおけるデータ値を出力するデータ値識別回路とを有する試験装置を 提供する。
[0016] 本発明の第 4の形態においては、被試験デバイスを試験する試験装置であって、 被試験デバイスを載置するテストヘッドと、テストヘッドを介して被試験デバイスとデジ タルデータの授受を行い、被試験デバイスの良否を判定する本体部と、テストヘッド 及び本体部に設けられ、伝送すべきデジタルデータを光信号として送信する光送信 装置と、テストヘッド及び本体部に設けられ、光信号を受信し、光信号により伝送され るデジタルデータのデータ値を出力する光受信装置とを備え、光受信装置は、光信 号を受信し、光信号の強度に応じた光電流を出力する受光素子と、デジタルデータ の偶数サイクルに対応する光電流を、サイクル内の所定の期間積分する第 1の現サ イタル積分器と、第 1の現サイクル積分器が積分して 、るサイクルの前サイクルに対 応する光電流を、当該サイクルにおいて所定の期間と略等しい期間積分する第 1の 前サイクル積分器と、デジタルデータの奇数サイクルに対応する光電流を、当該サイ クルにおいて所定の期間と略等しい期間積分する第 2の現サイクル積分器と、第 2の 現サイクル積分器が積分して ヽるサイクルの前サイクルに対応する光電流を、当該サ イタルにおいて所定の期間と略等しい期間積分する第 2の前サイクル積分器と、第 1 の現サイクル積分器が積分した電荷量と、第 1の前サイクル積分器が積分した電荷 量との差分に基づ 、て、デジタルデータの偶数サイクルにおけるデータ値を出力す る第 1のデータ値識別回路と、第 2の現サイクル積分器が積分した電荷量と、第 2の 前サイクル積分器が積分した電荷量との差分に基づ ヽて、デジタルデータの奇数サ イタルにおけるデータ値を出力する第 2のデータ値識別回路とを有する試験装置を 提供する。
[0017] 本発明の第 5の形態においては、光信号を受信し、光信号により伝送されるデジタ ルデータのデータ値を出力する光受信方法であって、受光素子を用いて光信号を受 信し、光信号の強度に応じた光電流を出力する受光段階と、デジタルデータの現サ イタルに対応する光電流を、サイクル内の所定の期間積分する現サイクル積分段階 と、現サイクルの前サイクルに対応する光電流を、当該サイクルにおいて所定の期間 と略等しい期間積分する前サイクル積分段階と、現サイクル積分段階において積分 した電荷量と、前サイクル積分段階にぉ 、て積分した電荷量との差分に基づ!、て、 デジタルデータの現サイクルにおけるデータ値を出力するデータ値識別段階とを備 える光受信方法を提供する。
[0018] 本発明の第 6の形態においては、被試験デバイスを試験する試験方法であって、 試験装置のテストヘッドに被試験デバイスを載置する段階と、試験装置の本体部を 用いて、テストヘッドを介して被試験デバイスとデジタルデータの授受を行い、被試験 デバイスの良否を判定する段階と、テストヘッド及び本体部に設けられた光送信装置 を用いて、伝送すべきデジタルデータを光信号として送信する送信段階と、テストへ ッド及び本体部に設けられた光受信装置を用いて、光信号を受信し、光信号により 伝送されるデジタルデータのデータ値を出力する受信段階とを備え、受信段階は、 光受信装置の受光素子を用いて光信号を受信し、光信号の強度に応じた光電流を 出力する受光段階と、デジタルデータの現サイクルに対応する光電流を、サイクル内 の所定の期間積分する現サイクル積分段階と、現サイクルの前サイクルに対応する 光電流を、当該サイクルにおいて所定の期間と略等しい期間積分する前サイクル積 分段階と、
現サイクル積分段階にぉ ヽて積分した電荷量と、前サイクル積分段階にぉ ヽて積 分した電荷量との差分に基づ 、て、デジタルデータの現サイクルにおけるデータ値を 出力するデータ値識別段階とを有する試験方法を提供する。
[0019] 本発明の第 7の形態においては、被試験デバイスを試験する試験装置に設けられ 、光信号を受信し、光信号により伝送されるデジタルデータのデータ値を出力するテ ストモジュールであって、光信号を受信し、光信号の強度に応じた光電流を出力する 受光素子と、デジタルデータの現サイクルに対応する光電流を、サイクル内の所定の 期間積分する現サイクル積分器と、現サイクルの前サイクルに対応する光電流を、当 該サイクルにおいて所定の期間と略等しい期間積分する前サイクル積分器と、現サ イタル積分器が積分した電荷量と、前サイクル積分器が積分した電荷量との差分〖こ 基づ 、て、デジタルデータの現サイクルにおけるデータ値を出力するデータ値識別 回路とを備えるテストモジュールを提供する。
[0020] 本発明の第 8の形態においては、被試験デバイスを試験する試験装置に設けられ 、光信号を受信し、光信号により伝送されるデジタルデータのデータ値を出力するテ ストモジュールであって、光信号を受信し、光信号の強度に応じた光電流を出力する 受光素子と、デジタルデータの偶数サイクルに対応する光電流を、サイクル内の所定 の期間積分する第 1の現サイクル積分器と、第 1の現サイクル積分器が積分している サイクルの前サイクルに対応する光電流を、当該サイクルにおいて所定の期間と略 等しい期間積分する第 1の前サイクル積分器と、デジタルデータの奇数サイクルに対 応する光電流を、当該サイクルにおいて所定の期間と略等しい期間積分する第 2の 現サイクル積分器と、第 2の現サイクル積分器が積分して 、るサイクルの前サイクル に対応する光電流を、当該サイクルにおいて所定の期間と略等しい期間積分する第 2の前サイクル積分器と、第 1の現サイクル積分器が積分した電荷量と、第 1の前サイ クル積分器が積分した電荷量との差分に基づ ヽて、デジタルデータの偶数サイクル におけるデータ値を出力する第 1のデータ値識別回路と、第 2の現サイクル積分器が 積分した電荷量と、第 2の前サイクル積分器が積分した電荷量との差分に基づ 、て、 デジタルデータの奇数サイクルにおけるデータ値を出力する第 2のデータ値識別回 路とを備えるテストモジュールを提供する。
[0021] 本発明の第 9の形態においては、光信号を受信し、光信号により伝送されるデジタ ルデータのデータ値を出力する光受信装置を半導体基板上に備える半導体チップ であって、光受信装置が、光信号を受信し、光信号の強度に応じた光電流を出力す る受光素子と、デジタルデータの現サイクルに対応する光電流を、サイクル内の所定 の期間積分する現サイクル積分器と、現サイクルの前サイクルに対応する光電流を、 当該サイクルにおいて所定の期間と略等しい期間積分する前サイクル積分器と、現 サイクル積分器が積分した電荷量と、前サイクル積分器が積分した電荷量との差分 に基づ!/、て、デジタルデータの現サイクルにおけるデータ値を出力するデータ値識 別回路とを備える半導体チップを提供する。
[0022] 本発明の第 10の形態においては、光信号を受信し、光信号により伝送されるデジ タルデータのデータ値を出力する光受信装置を半導体基板上に備える半導体チッ プであって、光受信装置が、光信号を受信し、光信号の強度に応じた光電流を出力 する受光素子と、デジタルデータの偶数サイクルに対応する光電流を、サイクル内の 所定の期間積分する第 1の現サイクル積分器と、第 1の現サイクル積分器が積分して いるサイクルの前サイクルに対応する光電流を、当該サイクルにおいて所定の期間と 略等しい期間積分する第 1の前サイクル積分器と、デジタルデータの奇数サイクルに 対応する光電流を、当該サイクルにおいて所定の期間と略等しい期間積分する第 2 の現サイクル積分器と、第 2の現サイクル積分器が積分して 、るサイクルの前サイク ルに対応する光電流を、当該サイクルにおいて所定の期間と略等しい期間積分する 第 2の前サイクル積分器と、第 1の現サイクル積分器が積分した電荷量と、第 1の前サ イタル積分器が積分した電荷量との差分に基づ 、て、デジタルデータの偶数サイク ルにおけるデータ値を出力する第 1のデータ値識別回路と、第 2の現サイクル積分器 が積分した電荷量と、第 2の前サイクル積分器が積分した電荷量との差分に基づ ヽ て、デジタルデータの奇数サイクルにおけるデータ値を出力する第 2のデータ値識別 回路とを備える半導体チップを提供する。
[0023] なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなぐ これらの特徴群のサブコンビネーションもまた、発明となりうる。
発明の効果
[0024] 本発明によれば、光伝送によって伝送されるデジタルデータのデータ値を、符号間 干渉等の影響を低減して精度よく識別することができる。 図面の簡単な説明
[0025] [図 1]本発明の実施形態に係る試験装置 100の構成の一例を示す図である。
[図 2]光受信装置 40の機能ブロックの一例を示す図である。
[図 3]受光素子 42が出力する光電流の波形の一例を示す図である。
[図 4]光受信装置 40の回路構成の一例を示す図である。
[図 5]図 4に示した光受信装置 40の動作の一例を示すタイミングチャートである。
[図 6]光受信装置 40の構成の他の例を示す図である。
[図 7]図 6に示した光受信装置 40の動作の一例を示すタイミングチャートである。
[図 8]光受信装置 40の構成の他の例を示す図である。
[図 9]データ値識別回路 52の構成の他の例を示す図である。
符号の説明
[0026] 10 · · '本体部、 20· · 'テストヘッド、 30· · ·光送信装置、 40· · ·光受信装置、 42· · · 受光素子、 44· · · 1サイクル遅延要素、 46 · · '前サイクル積分器、 48 · · '現サイクル 積分器、 50· · '差分算出器、 52· · 'データ値識別回路、 54· · '第 1のスィッチ、 56 · · '第 2のスィッチ、 57· · '現サイクル伝送路、 58 · · '第 3のスィッチ、 59 · · '前サイクル 伝送路、 60· · '論理識別器、 62· · 'フリップフロップ、 64· · 'ダイオード、 66 · · ·第 4 のスィッチ、 68 · · '第 5のスィッチ、 100· · '試験装置、 200· · '被試験デバイス 発明を実施するための最良の形態
[0027] 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の 範隨こかかる発明を限定するものではなぐまた実施形態の中で説明されている特 徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
[0028] 図 1は、本発明の実施形態に係る試験装置 100の構成の一例を示す図である。試 験装置 100は、半導体回路等の被試験デバイス 200を試験する装置であって、本体 部 10及びテストヘッド 20を備える。テストヘッド 20は、被試験デバイス 200を載置し、 被試験デバイス 200と信号の授受を行う。
[0029] また、本体部 10は、テストヘッド 20を介して被試験デバイス 200と信号の授受を行 い、被試験デバイス 200の良否を判定する。例えば、本体部 10は、被試験デバイス 2 00に入力するべき試験信号を、テストヘッド 20を介して被試験デバイス 200に供給 し、被試験デバイス 200が出力する出力信号を、テストヘッド 20を介して受け取る。そ して、本体部 10は、当該出力信号に基づいて、被試験デバイス 200の良否を判定す る。
[0030] また、本体部 10及びテストヘッド 20は、信号を伝送するための光送信装置 30及び 光受信装置 40をそれぞれ備える。光送信装置 30及び光受信装置 40は、本体部 10 とテストヘッド 20とを接続する複数の光ファイバを介して光信号を伝送する。本体部 1 0とテストヘッド 20との間隔は例えば 10m以下の近距離であるので、低コストで複数 の光ファイバを並列に設けることができる。光送信装置 30は、公知の装置を用いるこ とがでさる。
[0031] 尚、本例においては、本体部 10とテストヘッド 20との間で信号を伝送すベぐ光送 信装置 30及び光受信装置 40をそれぞれ備えたが、試験装置 100は、光送信装置 3 0及び光受信装置 40の少なくとも一方を備えるテストモジュールを、所望の箇所に備 えてよい。例えば、光ファイバを用いて信号を伝送できる所望の箇所に、当該テスト モジュールを備えてよ 、。
[0032] 図 2は、光受信装置 40の機能ブロックの一例を示す図である。光受信装置 40は、 光送信装置 30が送信した光信号を受信し、光信号により伝送されるデジタルデータ のデータ値を出力する装置であり、受光素子 42、 1サイクル遅延要素 44、前サイクル 積分器 46、現サイクル積分器 48、差分算出器 50、及びデータ値識別回路 52を備え る。
[0033] 受光素子 42は、光信号を受信し、光信号の強度に応じた光電流を出力する。例え ば、受光素子 42はフォトダイオードである。つまり、受光素子 42が出力する光電流は 、光信号により伝送されるデジタルデータの、各データサイクルにおけるデータ値の 遷移に応じて変化する。
[0034] 現サイクル積分器 48は、デジタルデータの現サイクルに対応する光電流を、サイク ル内の所定の期間積分する。例えば、現サイクル積分器 48は、当該光電流により充 放電されるコンデンサを有し、当該サイクルの全期間において光電流を当該コンデン サに供給し、当該コンデンサに蓄積される電荷量により、当該光電流を積分する。
[0035] 1サイクル遅延要素 44は、受光素子 42が出力する光電流を、デジタルデータの 1 データサイクル遅延させて、前サイクル積分器 46に供給する。前サイクル積分器 46 は、現サイクル積分器 48が光電流を積分する現サイクルの前のデータサイクルに対 応する光電流を、当該データサイクルにおいて前述した所定の期間と略等しい期間 積分する。例えば、前サイクル積分器 46は、当該光電流により充放電されるコンデン サを有し、当該サイクルの全期間において光電流を当該コンデンサに供給し、当該 コンデンサに蓄積される電荷量により、当該光電流を積分する。
[0036] 差分算出器 50は、現サイクル積分器 48が現サイクルにおいて光電流を積分した 電荷量と、前サイクル積分器 46が前サイクルにお ヽて光電流を積分した電荷量との 差分を算出する。本例において、差分算出器 50は、現サイクル積分器 48が積分し た電荷量から、前サイクル積分器 46が積分した電荷量を減算する。
[0037] データ値識別回路 52は、差分算出器 50が算出した差分に基づいて、デジタルデ 一タの現サイクルにおけるデータ値を出力する。例えば、データ値識別回路 52は、 現サイクル積分器 48が積分した電荷量が、前サイクル積分器 46が積分した電荷量 より大き 、場合、デジタルデータの現サイクルにおけるデータ値として Hレベルを出 力する。また、現サイクル積分器 48が積分した電荷量が、前サイクル積分器 46が積 分した電荷量より小さ 、場合、現サイクルにおけるデータ値として Lレベルを出力する 。また、現サイクル積分器 48が積分した電荷量が、前サイクル積分器 46が積分した 電荷量と略等しい場合、現サイクルにおけるデータ値として、前サイクルにおけるデ 一タ値を出力する。
[0038] 図 3は、受光素子 42が出力する光電流の波形の一例を示す図である。図 3におい て横軸は時間を示し、縦軸は電流値を示す。また、本例において光信号により伝送 されるデジタルデータは、所定のデータサイクル (t 〜t、 t〜t 、 · · を有する。 現在のデータサイクルを [t〜t ]とすると、現サイクル積分器 48は、当該サイクル n n+ 1
における光電流を積分する。光電流を現サイクルにおいて積分した電荷量 Qnは、現 サイクルの電流波形の面積で示される。
[0039] また、前サイクル積分器 46は、前サイクル [t 〜t ]における光電流を積分する。
光電流を前サイクルにおいて積分した電荷量 Q は、前サイクルの電流波形の面積 で示される。 [0040] フォトダイオード等の受光素子 42が生成する光電流の波形は、所定の立ち上がり 時間及び立ち下がり時間を有するので、データサイクルが短いと、図 3に示すように 電流波形が所定の Hレベルまたは Lレベルにセトリングしな 、場合がある。このような 場合、電流値、又は電流値を変換した電圧値により光電流を復調すると、データ値が 精度よく復調できない。
[0041] しかし、図 2に示した光受信装置 40のように、前サイクルにおける光電流の積分値 と、現サイクルにおける光電流の積分値とを比較することにより、現サイクルのデータ 値を精度よく識別することができる。例えば、現サイクルにおける光電流の積分値が、 前サイクルにおける光電流の積分値より大き 、場合、光電流が増大して 、ることを示 して 、るので、少なくとも現サイクルのデータ値は 1であることが識別できる。
[0042] 同様に、現サイクルにおける光電流の積分値力 前サイクルにおける光電流の積 分値より小さい場合、光電流が減少していることを示しているので、少なくとも現サイク ルのデータ値は 0であることが識別できる。また、現サイクルにおける光電流の積分 値力 前サイクルにおける光電流の積分値と等しい場合、光電流の電流値が飽和し ていることを示しているので、現サイクルのデータ値は、前サイクルのデータ値と同一 であることが識別できる。
[0043] このように、光受信装置 40は、現サイクルの光電流の積分値を、前サイクルの光電 流の積分値と比較し、比較結果に基づ 、て現サイクルのデータ値を識別するので、 光電流がセトリングしない場合であっても、データ値を精度よく識別することができる。 また、温度変動、素子劣化等の要因で、データレートに対して長周期のドリフトが光 電流に重畳した場合であっても、連続するサイクル間の光電流の積分値を比較する ので、当該ドリフトの影響を非常に小さくすることができる。
[0044] また、例えばデータ値 1が長期間連続する場合、光電流の電流値は飽和する。係る 場合に、電流値を減少させるドリフト成分が生じると、データ値を誤識別してしまう。こ のため、データ値識別回路 52は、現サイクル積分器 48が積分した電荷量と、前サイ クル積分器 46が積分した電荷量との差分が予め定められた許容範囲内である場合 には、電荷量が等しいとする比較結果を算出することが好ましい。当該許容範囲は、 光電流に重畳されるドリフト成分の 1データサイクル当たりの許容値に基づいて予め 定められてよい。
[0045] 図 4は、光受信装置 40の回路構成の一例を示す図である。光受信装置 40は、受 光素子 42、前サイクル積分器 46、現サイクル積分器 48、第 1のスィッチ 54、第 2のス イッチ56、第 3のスィッチ 58、現サイクル伝送路 57、前サイクル伝送路 59、及びデー タ値識別回路 52を備える。図 4において、図 2と同一の符号を付した構成要素は、図 2において説明した構成要素と同一又は同様の機能及び構成を有する。
[0046] 光受信装置 40は、半導体チップに形成されてよい。例えば、当該半導体チップは 、半導体基板上に、信号送信装置 40を備えてよい。また、当該半導体チップには、 光受信装置 40の構成の一部が形成されてよ 、。
[0047] 現サイクル伝送路 57は、受光素子 42の電流出力端と、データ値識別回路 52の電 圧入力端とを接続する。現サイクル積分器 48は、コンデンサであって、現サイクル伝 送路 57と、所定の基準電位との間に、データ値識別回路 52の電圧入力端と並列に 設けられる。以下、当該基準電位として、接地電位を用いて説明するが、当該基準電 位は接地電位には限定されな 、。
[0048] 前サイクル伝送路 59は、現サイクル伝送路 57と並列に設けられ、受光素子 42の電 流出力端と、データ値識別回路 52の電圧入力端とを接続する。前サイクル積分器 4 6は、コンデンサであって、前サイクル伝送路 59の経路上に、データ値識別回路 52 の電圧入力端と直列に設けられる。
[0049] 第 1のスィッチ 54は、前サイクル伝送路 59上において、受光素子 42と前サイクル 積分器 46との間に設けられる。また、第 1のスィッチ 54は、前サイクル積分器 46の受 光素子 42側の端子を、受光素子 42又は接地電位の ヽずれに接続するかを切り替え る。つまり、第 1のスィッチ 54は、前サイクルにおける光電流を前サイクル積分器 46に 供給する力否かを切り替える前サイクル制御部として機能する。
[0050] 第 2のスィッチ 56は、現サイクル伝送路 57上にぉ 、て、受光素子 42と現サイクル 積分器 48との間に設けられる。また、第 2のスィッチ 56は、現サイクル積分器 48の受 光素子 42側の端子を、受光素子 42又は接地電位の ヽずれに接続するかを切り替え る。つまり、第 2のスィッチ 56は、現サイクルにおける光電流を現サイクル積分器 48に 供給する力否かを切り替える現サイクル制御部として機能する。 [0051] 第 3のスィッチ 58は、前サイクル伝送路 59上において、前サイクル積分器 46と現サ イタル積分器 48との間に設けられる。また、第 3のスィッチ 58は、前サイクル積分器 4 6のデータ値識別回路 52側の端子を、現サイクル積分器 48の受光素子 42側の端子 、又は接地電位のいずれに接続するかを切り替える。つまり、第 3のスィッチ 58は、現 サイクルにおいて、現サイクル積分器 48の正又は負電荷が蓄積された端子と、前サ イタル積分器 46の負又は正電荷が蓄積された端子とを接続し、前サイクル積分器が 蓄積した電荷量に応じて、現サイクル積分器 48を放電させるか否かを切り替える差 分制御部として機能する。現サイクル積分器 48を放電させることにより、現サイクル積 分器 48〖こは、現サイクルの電荷量から、前サイクルの電荷量を減じた差分の電荷量 が蓄積される。
[0052] データ値識別回路 52は、論理識別器 60及びフリップフロップ 62を有する。論理識 別器 60は、正入力端子が現サイクル積分器 48に接続され、負入力端子が接地電位 に接続される。つまり、論理識別器 60は、現サイクル積分器 48に蓄積された差分の 電荷量に応じた電圧が、正又は負のいずれであるかを判別する。論理識別器 60は、 現サイクル積分器 48の電圧が正である場合に、 Hレベルの信号をフリップフロップ 6 2に供給し、現サイクル積分器 48の電圧が負である場合に、 Lレベルの信号をフリツ プフロップ 62に供給する。ここで、論理識別器 60は、ヒステリシス特性を有するシユミ ットトリガ型の増幅器であることが好ま 、。
[0053] フリップフロップ 62は、論理識別器 60が出力する信号を、与えられるクロック〖こ応じ て取り込み出力する。また、現サイクル積分器 48の電圧が略ゼロである場合には、論 理識別器 60の出力はハイインピーダンスとなり、フリップフロップ 62は、前サイクルの データ値を保持して出力する。このような構成により、光信号により伝送されるデジタ ルデータのデータ値を出力することができる。また、本例における光受信装置 40によ れば、データ値識別回路 52と現サイクル積分器 48とが並列に設けられるので、信号 の直流成分も伝送することができる。
[0054] 図 5は、図 4に示した光受信装置 40の動作の一例を示すタイミングチャートである。
光受信装置 40には、所定のデータサイクルを有する入力データを伝送する光信号 が与えられる。光受信装置 40は、第 1のスィッチ 54、第 2のスィッチ 56、及び第 3のス イッチ 58を制御する制御クロック φ 1、 Z Φ 1、 Φ 2を生成する。当該制御クロックは、 入力データに同期して与えられるソースシンクロナスクロックに基づいて生成してよい 。光受信装置 40は、当該ソースシンクロナスクロックに基づいて制御クロックを生成す るクロック生成部を更に備えることが好まし 、。
[0055] 制御クロック φ 1及び制御クロック Z Φ 1は、入力データのデータレートの 2倍の周 期を有するクロックである。また、制御クロック/ φ 1は、制御クロック φ 1を反転させた クロックである。また、制御クロック φ 2は、制御クロック Z Φ 1のパルス幅を縮小したク ロックである。
[0056] 係る制御クロックを用いて、図 4に示した光受信装置 40を動作させた場合について 説明する。第 1のスィッチ 54は、制御クロック φ 1が Hレベルである場合に、前サイク ル積分器 46を受光素子 42に接続し、制御クロック φ 1が Lレベルである場合に、前サ イタル積分器 46を接地電位に接続する。また、第 2のスィッチ 56は、制御クロック Z φ 1が Hレベルである場合に、現サイクル積分器 48を受光素子 42に接続し、制御ク ロック/ φ 1が Lレベルである場合に、現サイクル積分器 48を接地電位に接続する。 また、第 3のスィッチ 58は、制御クロック φ 2が Hレベルである場合に、前サイクル積 分器 46を現サイクル積分器 48に接続し、制御クロック φ 2が Lレベルである場合に、 前サイクル積分器 46を接地電位に接続する。
[0057] 例えば、現サイクルが T、前サイクルが T である場合、前サイクルにおいて第 1の スィッチ 54がオン状態となり、第 2のスィッチ 56及び第 3のスィッチ 58はオフ状態とる 。このため、現サイクル積分器 48の両端が接地電位に接続され、現サイクル積分器 4 8における蓄積電荷量はゼロとなる。また、前サイクル積分器 46の受光素子 42側端 子は受光素子 42と接続され、他方の端子は接地電位に接続される。また、当該サイ クルの直前では、第 1のスィッチ 54及び第 3のスィッチ 58はオフ状態であるので、当 該サイクルの開始時における前サイクル積分器 46の蓄積電荷量は略ゼロである。こ のため、前サイクル積分器 46の受光素子 42側端子には、当該サイクルの光電流に 応じた電荷量が蓄積される。
[0058] 次に、現サイクルにおいて第 1のスィッチ 54がオフ状態となり、第 2のスィッチ 56が オン状態となる。また、第 3のスィッチ 58は、当該サイクルの開始時力も所定の期間 オン状態となる。このため、現サイクル積分器 48が受光素子 42に接続され、現サイク ル積分器 48は、当該サイクルの光電流により充電される。また、現サイクル積分器 48 は、第 3のスィッチ 58を介して、前サイクル積分器 46と所定の期間接続される。このと き、接続される現サイクル積分器 48及び前サイクル積分器 46のそれぞれの端子に は、逆符号の電荷量が蓄積されているので、現サイクル積分器 48は、前サイクル積 分器 46の蓄積電荷量に応じて放電される。このため、現サイクル積分器 48には、現 サイクルの光電流を積分した電荷量と、前サイクルの光電流を積分した電荷量との差 分の電荷が蓄積される。
[0059] そして、論理識別器 60は、現サイクル積分器 48の電圧が正又は負の ヽずれかを 判定する。また、フリップフロップ 62は、制御クロック φ 1に応じて論理識別器 60が出 力する比較結果を次サイクル (T )で取り込み、デジタルデータのデータ値 (Dn)と n+ 1
して出力する。
[0060] このような制御により、符号間干渉等の影響を低減し、デジタルデータのデータ値 を精度よく識別することができる。また、本例においては、図 5に示すように、デジタル データの一つおきのデータ値を識別している力 他の例においては、図 4に示した回 路を並列に 2つ設け、デジタルデータの偶数サイクルにおけるデータ値と、奇数サイ クルにおけるデータ値とをそれぞれ識別してよい。
[0061] 図 6は、光受信装置 40の構成の他の例を示す図である。本例における光受信装置 40は、図 4に示した光受信装置 40の構成にぉ 、て受光素子 42を除 、た回路と略等 しい第 1の回路及び第 2の回路を、受光素子 42に対して並列に 2つ備える。第 1の回 路は、デジタルデータの偶数サイクルにおけるデータ値を識別し、第 2の回路は、デ ジタルデータの奇数サイクルにおけるデータ値を識別する。
[0062] 第 1の回路及び第 2の回路は、図 4に示した回路における第 3のスィッチ 58に代え て、第 4のスィッチ 66及び第 5のスィッチ 68を備える。第 4のスィッチ 66及び第 5のス イッチ 68は、前サイクル積分器 46と現サイクル積分器 48との間に直列に設けられ、 両スィッチがオン状態となった場合に前サイクル積分器 46と現サイクル積分器 48と を接続し、少なくとも ヽずれカゝのスィッチがオフ状態となった場合に前サイクル積分器 46を接地電位に接続する。 [0063] また、第 1の回路における第 4のスィッチ 66は、制御クロック Z Φ 1により制御され、 第 5のスィッチ 68は、制御クロック φ 2'により制御される。本例において、制御クロック φ 2'は、制御クロック φ 1を、データレートの略半周期位相シフトしたクロックである。 即ち、第 4のスィッチ 66及び第 5のスィッチ 68は、制御クロック Z Φ 1と制御クロック φ 2'の論理和が Hレベルとなる場合に、前サイクル積分器 46と現サイクル積分器 48と を接続する力 制御クロック Z Φ 1と制御クロック φ 2'との論理和は、図 5において説 明した制御クロック φ 2と等価であり、第 4のスィッチ 66及び第 5のスィッチ 68の動作 は、図 4に示した第 3のスィッチ 58の動作と等価である。
[0064] また、第 1の回路における他のスィッチは、図 4に示した光受信装置 40において対 応するスィッチと同一の制御クロックにより制御される。また、第 2の回路におけるそれ ぞれのスィッチは、第 1の回路にぉ 、て対応するスィッチの制御クロックを反転した制 御クロックにより制御される。また、第 1の回路及び第 2の回路のそれぞれの現サイク ル伝送路には、第 1の回路と第 2の回路との間で電流が流れることを防止するダイォ ード 64が設けられることが好ましい。ダイオード 64は、第 1の回路及び第 2の回路の それぞれの前サイクル伝送路に設けられてもよ ヽ。
[0065] 図 7は、図 6に示した光受信装置 40の動作の一例を示すタイミングチャートである。
第 1の回路の動作は、図 5に示した光受信装置 40の動作と同一である。第 1の回路 は、デジタルデータの偶数サイクルのデータ値を出力データ 1として出力する。
[0066] また、第 2の回路は、第 1の回路の制御クロックを反転した制御クロックにより制御さ れるので、第 2の回路は、第 1の回路と同様の動作を、 1データサイクル遅れて行う。 これにより、第 2の回路は、デジタルデータの奇数サイクルのデータ値を出力データ 2 として出力する。このような構成により、光受信装置 40は、デジタルデータの全ての データ値を精度よく識別することができる。
[0067] 図 8は、光受信装置 40の構成の他の例を示す図である。本例における光受信装置 40は、図 4に示した光受信装置 40と略同一の構成を有する第 1の回路及び第 2の回 路を独立して備える。第 1の回路及び第 2の回路を制御する制御クロックは、図 6にお いて説明した第 1の回路及び第 2の回路と同一である。このような構成によっても、第 1の回路は、デジタルデータの偶数サイクルのデータ値を識別し、第 2の回路はデジ タルデータの奇数サイクルのデータ値を識別する。このため、光受信装置 40は、デ ジタルデータの全てのデータ値を精度よく識別することができる。
[0068] 図 9は、データ値識別回路 52の構成の他の例を示す図である。本例における光受 信装置 40は、データ値が複数種類の値に遷移するデジタルデータを受信する。デ ータ値識別回路 52は、複数の論理識別器 60、 DAC61、及びデコーダ回路 65を有 する。
[0069] 複数の論理識別器 60は、デジタルデータのデータ値の遷移量を識別する。データ 値の遷移量は、前サイクルの光電流を積分した電荷量と、現サイクルの光電流を積 分した電荷量との差分により表される。このため、各論理識別器 60には、各遷移量に 対応する閾電圧が DAC70から与えられ、それぞれの閾電圧と、現サイクル積分器 4 8の電圧とを比較する。
[0070] デコーダ回路 65は、各論理識別器 60における比較結果に基づいて、前サイクルと 現サイクルとの間におけるデジタルデータのデータ値の遷移量を算出する。また、デ コーダ回路 65は、前サイクルのデータ値を保持していることが好ましい。デコーダ回 路 65は、算出したデータ値の遷移量と、前サイクルにおけるデータ値とに基づいて、 現サイクルのデータ値を識別し出力する。このような構成により、多値のデジタルデー タを精度よく識別することができる。
[0071] 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実 施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または 改良を加えることが可能であることが当業者に明らかである。その様な変更または改 良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から 明らかである。
産業上の利用可能性
[0072] 以上から明らかなように、本発明によれば、光伝送によって伝送されるデジタルデ ータのデータ値を、符号間干渉等の影響を低減して精度よく識別することができる。

Claims

請求の範囲
[1] 光信号を受信し、前記光信号により伝送されるデジタルデータのデータ値を出力す る光受信装置であって、
前記光信号を受信し、前記光信号の強度に応じた光電流を出力する受光素子と、 前記デジタルデータの現サイクルに対応する前記光電流を、サイクル内の所定の 期間積分する現サイクル積分器と、
前記現サイクルの前サイクルに対応する前記光電流を、当該サイクルにお 、て前 記所定の期間と略等 ヽ期間積分する前サイクル積分器と、
前記現サイクル積分器が積分した電荷量と、前記前サイクル積分器が積分した電 荷量との差分に基づ 、て、前記デジタルデータの前記現サイクルにおけるデータ値 を出力するデータ値識別回路と
を備える光受信装置。
[2] 前記現サイクル積分器は、前記受光素子の電流出力端及び前記データ値識別回 路の電圧入力端を接続する現サイクル伝送路と、所定の基準電位との間に設けられ たコンデンサを有する
請求項 1に記載の光受信装置。
[3] 前記前サイクル積分器は、前記受光素子の電流出力端と、前記データ値識別回路 の前記電圧入力端との間に、前記現サイクル伝送路と並列に設けられたコンデンサ を有する
請求項 2に記載の光受信装置。
[4] 前記前サイクルにおける前記光電流を前記前サイクル積分器に供給する前サイク ル制御部と、
前記現サイクルにおける前記光電流を前記現サイクル積分器に供給する現サイク ル制御部と、
前記現サイクルにおいて、前記現サイクル積分器の正電荷が蓄積された端子と、前 記前サイクル積分器の負電荷が蓄積された端子とを接続し、前記前サイクル積分器 が蓄積した電荷量に応じて、前記現サイクル積分器を放電させる差分制御部と を更に備える請求項 1に記載の光受信装置。 [5] 前記前サイクル制御部は、前記前サイクル積分器の前記受光素子側の端子を、前 記受光素子又は前記基準電位のいずれに接続するかを切り替える第 1のスィッチを 有し、
前記現サイクル制御部は、前記現サイクル積分器の前記受光素子側の端子を、前 記受光素子又は前記基準電位のいずれに接続するかを切り替える第 2のスィッチを 有し、
前記差分制御部は、前記前サイクル積分器の前記データ値識別回路側の端子を、 前記現サイクル積分器の前記受光素子側の端子、又は前記基準電位の!/、ずれに接 続するかを切り替える第 3のスィッチを有する
請求項 4に記載の光受信装置。
[6] 前記データ値識別回路は、
前記現サイクル積分器が積分した電荷量が、前記前サイクル積分器が積分した電 荷量より大きい場合、前記現サイクルにおけるデータ値として Hレベルを出力し、 前記現サイクル積分器が積分した電荷量が、前記前サイクル積分器が積分した電 荷量より小さい場合、前記現サイクルにおけるデータ値として Lレベルを出力し、 前記現サイクル積分器が積分した電荷量が、前記前サイクル積分器が積分した電 荷量と略等しい場合、前記現サイクルにおけるデータ値として、前記前サイクルにお けるデータ値を出力する
請求項 1に記載の光受信装置。
[7] 光信号を受信し、前記光信号により伝送されるデジタルデータのデータ値を出力す る光受信装置であって、
前記光信号を受信し、前記光信号の強度に応じた光電流を出力する受光素子と、 前記デジタルデータの偶数サイクルに対応する前記光電流を、サイクル内の所定 の期間積分する第 1の現サイクル積分器と、
前記第 1の現サイクル積分器が積分しているサイクルの前サイクルに対応する前記 光電流を、当該サイクルにおいて前記所定の期間と略等しい期間積分する第 1の前 サイクル積分器と、
前記デジタルデータの奇数サイクルに対応する前記光電流を、当該サイクルにお いて前記所定の期間と略等しい期間積分する第 2の現サイクル積分器と、 前記第 2の現サイクル積分器が積分しているサイクルの前サイクルに対応する前記 光電流を、当該サイクルにおいて前記所定の期間と略等しい期間積分する第 2の前 サイクル積分器と、
前記第 1の現サイクル積分器が積分した電荷量と、前記第 1の前サイクル積分器が 積分した電荷量との差分に基づ!/、て、前記デジタルデータの前記偶数サイクルにお けるデータ値を出力する第 1のデータ値識別回路と、
前記第 2の現サイクル積分器が積分した電荷量と、前記第 2の前サイクル積分器が 積分した電荷量との差分に基づ 、て、前記デジタルデータの前記奇数サイクルにお けるデータ値を出力する第 2のデータ値識別回路と
を備える光受信装置。
被試験デバイスを試験する試験装置であって、
前記被試験デバイスを載置するテストヘッドと、
前記テストヘッドを介して前記被試験デバイスとデジタルデータの授受を行 ヽ、前 記被試験デバイスの良否を判定する本体部と、
前記テストヘッド及び前記本体部に設けられ、伝送すべき前記デジタルデータを光 信号として送信する光送信装置と、
前記テストヘッド及び前記本体部に設けられ、前記光信号を受信し、前記光信号に より伝送されるデジタルデータのデータ値を出力する光受信装置と
を備え、
前記光受信装置は、
前記光信号を受信し、前記光信号の強度に応じた光電流を出力する受光素子と、 前記デジタルデータの現サイクルに対応する前記光電流を、サイクル内の所定の 期間積分する現サイクル積分器と、
前記現サイクルの前サイクルに対応する前記光電流を、当該サイクルにお 、て前 記所定の期間と略等 ヽ期間積分する前サイクル積分器と、
前記現サイクル積分器が積分した電荷量と、前記前サイクル積分器が積分した電 荷量との差分に基づ 、て、前記デジタルデータの前記現サイクルにおけるデータ値 を出力するデータ値識別回路と
を有する試験装置。
被試験デバイスを試験する試験装置であって、
前記被試験デバイスを載置するテストヘッドと、
前記テストヘッドを介して前記被試験デバイスとデジタルデータの授受を行 ヽ、前 記被試験デバイスの良否を判定する本体部と、
前記テストヘッド及び前記本体部に設けられ、伝送すべき前記デジタルデータを光 信号として送信する光送信装置と、
前記テストヘッド及び前記本体部に設けられ、前記光信号を受信し、前記光信号に より伝送されるデジタルデータのデータ値を出力する光受信装置と
を備え、
前記光受信装置は、
前記光信号を受信し、前記光信号の強度に応じた光電流を出力する受光素子と、 前記デジタルデータの偶数サイクルに対応する前記光電流を、サイクル内の所定 の期間積分する第 1の現サイクル積分器と、
前記第 1の現サイクル積分器が積分しているサイクルの前サイクルに対応する前記 光電流を、当該サイクルにおいて前記所定の期間と略等しい期間積分する第 1の前 サイクル積分器と、
前記デジタルデータの奇数サイクルに対応する前記光電流を、当該サイクルにお いて前記所定の期間と略等しい期間積分する第 2の現サイクル積分器と、
前記第 2の現サイクル積分器が積分しているサイクルの前サイクルに対応する前記 光電流を、当該サイクルにおいて前記所定の期間と略等しい期間積分する第 2の前 サイクル積分器と、
前記第 1の現サイクル積分器が積分した電荷量と、前記第 1の前サイクル積分器が 積分した電荷量との差分に基づ!/、て、前記デジタルデータの前記偶数サイクルにお けるデータ値を出力する第 1のデータ値識別回路と、
前記第 2の現サイクル積分器が積分した電荷量と、前記第 2の前サイクル積分器が 積分した電荷量との差分に基づ 、て、前記デジタルデータの前記奇数サイクルにお けるデータ値を出力する第 2のデータ値識別回路と
を有する試験装置。
[10] 光信号を受信し、前記光信号により伝送されるデジタルデータのデータ値を出力す る光受信方法であって、
受光素子を用いて前記光信号を受信し、前記光信号の強度に応じた光電流を出 力する受光段階と、
前記デジタルデータの現サイクルに対応する前記光電流を、サイクル内の所定の 期間積分する現サイクル積分段階と、
前記現サイクルの前サイクルに対応する前記光電流を、当該サイクルにお 、て前 記所定の期間と略等しい期間積分する前サイクル積分段階と、
前記現サイクル積分段階にぉ ヽて積分した電荷量と、前記前サイクル積分段階に ぉ 、て積分した電荷量との差分に基づ 、て、前記デジタルデータの前記現サイクル におけるデータ値を出力するデータ値識別段階と
を備える光受信方法。
[11] 被試験デバイスを試験する試験方法であって、
試験装置のテストヘッドに前記被試験デバイスを載置する段階と、
試験装置の本体部を用いて、前記テストヘッドを介して前記被試験デバイスとデジ タルデータの授受を行 ヽ、前記被試験デバイスの良否を判定する段階と、
前記テストヘッド及び前記本体部に設けられた光送信装置を用いて、伝送すべき 前記デジタルデータを光信号として送信する送信段階と、
前記テストヘッド及び前記本体部に設けられた光受信装置を用いて、前記光信号 を受信し、前記光信号により伝送されるデジタルデータのデータ値を出力する受信 段階と
を備え、
前記受信段階は、
前記光受信装置の受光素子を用いて前記光信号を受信し、前記光信号の強度に 応じた光電流を出力する受光段階と、
前記デジタルデータの現サイクルに対応する前記光電流を、サイクル内の所定の 期間積分する現サイクル積分段階と、
前記現サイクルの前サイクルに対応する前記光電流を、当該サイクルにお 、て前 記所定の期間と略等しい期間積分する前サイクル積分段階と、
前記現サイクル積分段階にぉ ヽて積分した電荷量と、前記前サイクル積分段階に ぉ 、て積分した電荷量との差分に基づ 、て、前記デジタルデータの前記現サイクル におけるデータ値を出力するデータ値識別段階と
を有する試験方法。
[12] 被試験デバイスを試験する試験装置に設けられ、光信号を受信し、前記光信号に より伝送されるデジタルデータのデータ値を出力するテストモジュールであって、 前記光信号を受信し、前記光信号の強度に応じた光電流を出力する受光素子と、 前記デジタルデータの現サイクルに対応する前記光電流を、サイクル内の所定の 期間積分する現サイクル積分器と、
前記現サイクルの前サイクルに対応する前記光電流を、当該サイクルにお 、て前 記所定の期間と略等 ヽ期間積分する前サイクル積分器と、
前記現サイクル積分器が積分した電荷量と、前記前サイクル積分器が積分した電 荷量との差分に基づ 、て、前記デジタルデータの前記現サイクルにおけるデータ値 を出力するデータ値識別回路と
を備えるテストモジュール。
[13] 被試験デバイスを試験する試験装置に設けられ、光信号を受信し、前記光信号に より伝送されるデジタルデータのデータ値を出力するテストモジュールであって、 前記光信号を受信し、前記光信号の強度に応じた光電流を出力する受光素子と、 前記デジタルデータの偶数サイクルに対応する前記光電流を、サイクル内の所定 の期間積分する第 1の現サイクル積分器と、
前記第 1の現サイクル積分器が積分しているサイクルの前サイクルに対応する前記 光電流を、当該サイクルにおいて前記所定の期間と略等しい期間積分する第 1の前 サイクル積分器と、
前記デジタルデータの奇数サイクルに対応する前記光電流を、当該サイクルにお いて前記所定の期間と略等しい期間積分する第 2の現サイクル積分器と、 前記第 2の現サイクル積分器が積分しているサイクルの前サイクルに対応する前記 光電流を、当該サイクルにおいて前記所定の期間と略等しい期間積分する第 2の前 サイクル積分器と、
前記第 1の現サイクル積分器が積分した電荷量と、前記第 1の前サイクル積分器が 積分した電荷量との差分に基づ!/、て、前記デジタルデータの前記偶数サイクルにお けるデータ値を出力する第 1のデータ値識別回路と、
前記第 2の現サイクル積分器が積分した電荷量と、前記第 2の前サイクル積分器が 積分した電荷量との差分に基づ 、て、前記デジタルデータの前記奇数サイクルにお けるデータ値を出力する第 2のデータ値識別回路と
を備えるテストモジュール。
[14] 光信号を受信し、前記光信号により伝送されるデジタルデータのデータ値を出力す る光受信装置を半導体基板上に備える半導体チップであって、
前記光受信装置が、
前記光信号を受信し、前記光信号の強度に応じた光電流を出力する受光素子と、 前記デジタルデータの現サイクルに対応する前記光電流を、サイクル内の所定の 期間積分する現サイクル積分器と、
前記現サイクルの前サイクルに対応する前記光電流を、当該サイクルにお 、て前 記所定の期間と略等 ヽ期間積分する前サイクル積分器と、
前記現サイクル積分器が積分した電荷量と、前記前サイクル積分器が積分した電 荷量との差分に基づ 、て、前記デジタルデータの前記現サイクルにおけるデータ値 を出力するデータ値識別回路と
を備える半導体チップ。
[15] 光信号を受信し、前記光信号により伝送されるデジタルデータのデータ値を出力す る光受信装置を半導体基板上に備える半導体チップであって、
前記光受信装置が、
前記光信号を受信し、前記光信号の強度に応じた光電流を出力する受光素子と、 前記デジタルデータの偶数サイクルに対応する前記光電流を、サイクル内の所定 の期間積分する第 1の現サイクル積分器と、 前記第 1の現サイクル積分器が積分しているサイクルの前サイクルに対応する前記 光電流を、当該サイクルにおいて前記所定の期間と略等しい期間積分する第 1の前 サイクル積分器と、
前記デジタルデータの奇数サイクルに対応する前記光電流を、当該サイクルにお いて前記所定の期間と略等しい期間積分する第 2の現サイクル積分器と、
前記第 2の現サイクル積分器が積分しているサイクルの前サイクルに対応する前記 光電流を、当該サイクルにおいて前記所定の期間と略等しい期間積分する第 2の前 サイクル積分器と、
前記第 1の現サイクル積分器が積分した電荷量と、前記第 1の前サイクル積分器が 積分した電荷量との差分に基づ!/、て、前記デジタルデータの前記偶数サイクルにお けるデータ値を出力する第 1のデータ値識別回路と、
前記第 2の現サイクル積分器が積分した電荷量と、前記第 2の前サイクル積分器が 積分した電荷量との差分に基づ 、て、前記デジタルデータの前記奇数サイクルにお けるデータ値を出力する第 2のデータ値識別回路と
を備える半導体チップ。
PCT/JP2006/314303 2005-07-26 2006-07-19 光受信装置、試験装置、光受信方法、試験方法、テストモジュール、及び半導体チップ WO2007013339A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2006800276227A CN101233704B (zh) 2005-07-26 2006-07-19 光信号接收装置、测试装置、光信号接收方法、测试方法、测试模块以及半导体芯片
DE112006001960T DE112006001960T5 (de) 2005-07-26 2006-07-19 Optische Empfangsvorrichtung, Prüfvorrichtung, optisches Empfangsverfahren, Prüfverfahren, Prüfmodul und Halbleiterchip
KR1020087002390A KR100932252B1 (ko) 2005-07-26 2006-07-19 광수신 장치, 시험 장치, 광수신 방법, 시험 방법, 테스트모듈, 및 반도체 칩
JP2007528427A JP4772793B2 (ja) 2005-07-26 2006-07-19 光受信装置、試験装置、光受信方法、試験方法、テストモジュール、及び半導体チップ
US11/963,848 US7603241B2 (en) 2005-07-26 2007-12-24 Light receiving apparatus, testing apparatus, light receiving method, testing method, test module and semiconductor chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-216044 2005-07-26
JP2005216044 2005-07-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/963,848 Continuation US7603241B2 (en) 2005-07-26 2007-12-24 Light receiving apparatus, testing apparatus, light receiving method, testing method, test module and semiconductor chip

Publications (1)

Publication Number Publication Date
WO2007013339A1 true WO2007013339A1 (ja) 2007-02-01

Family

ID=37683240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314303 WO2007013339A1 (ja) 2005-07-26 2006-07-19 光受信装置、試験装置、光受信方法、試験方法、テストモジュール、及び半導体チップ

Country Status (7)

Country Link
US (1) US7603241B2 (ja)
JP (1) JP4772793B2 (ja)
KR (1) KR100932252B1 (ja)
CN (1) CN101233704B (ja)
DE (1) DE112006001960T5 (ja)
TW (1) TWI392250B (ja)
WO (1) WO2007013339A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100932253B1 (ko) * 2005-07-26 2009-12-16 가부시키가이샤 어드밴티스트 신호 송신 장치, 신호 수신 장치, 시험 장치, 테스트 모듈,및 반도체 칩
JP5136132B2 (ja) * 2008-03-17 2013-02-06 日本電気株式会社 光伝送装置、光伝送システム、装置制御方法、および装置のプログラム
JP5804757B2 (ja) * 2010-05-06 2015-11-04 セイコーインスツル株式会社 受光回路および受光回路を用いたシステム
CN102798787B (zh) * 2011-05-24 2014-12-10 宸鸿光电科技股份有限公司 电子设备及其断路检测***与断路检测方法
CN103400031B (zh) * 2013-07-24 2016-08-24 飞天诚信科技股份有限公司 一种识别光信号的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167250A (ja) * 1985-01-21 1986-07-28 Mitsubishi Electric Corp 光キヤリア検出器
JPH07264142A (ja) * 1994-03-18 1995-10-13 Hitachi Ltd 光受信回路
JPH10271064A (ja) * 1997-03-21 1998-10-09 Sharp Corp 遠隔制御装置の光信号復調装置
JP2000201113A (ja) * 1999-01-07 2000-07-18 Nec Corp バ―スト光信号の受信方法及びその装置
JP2001197129A (ja) * 2000-01-07 2001-07-19 Seiko Epson Corp 受信器及び増幅器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153424A (en) * 1991-02-06 1992-10-06 Litton Systems, Inc. Flux monitor high light intensity cut-off circit for night vision devices
JPH08149071A (ja) * 1994-11-22 1996-06-07 Nippon Telegr & Teleph Corp <Ntt> 光受信装置
JP4043459B2 (ja) 1996-10-09 2008-02-06 富士通株式会社 信号伝送システム、該信号伝送システムのレシーバ回路、および、該信号伝送システムが適用される半導体記憶装置
JP4029135B2 (ja) * 1997-09-12 2008-01-09 株式会社ニコン 光電変換素子及び光電変換装置
JP4245436B2 (ja) * 2003-08-08 2009-03-25 パナソニック株式会社 ディフェクト検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167250A (ja) * 1985-01-21 1986-07-28 Mitsubishi Electric Corp 光キヤリア検出器
JPH07264142A (ja) * 1994-03-18 1995-10-13 Hitachi Ltd 光受信回路
JPH10271064A (ja) * 1997-03-21 1998-10-09 Sharp Corp 遠隔制御装置の光信号復調装置
JP2000201113A (ja) * 1999-01-07 2000-07-18 Nec Corp バ―スト光信号の受信方法及びその装置
JP2001197129A (ja) * 2000-01-07 2001-07-19 Seiko Epson Corp 受信器及び増幅器

Also Published As

Publication number Publication date
US20090012729A1 (en) 2009-01-08
TW200705851A (en) 2007-02-01
JPWO2007013339A1 (ja) 2009-02-05
DE112006001960T5 (de) 2008-05-21
US7603241B2 (en) 2009-10-13
KR20080031916A (ko) 2008-04-11
TWI392250B (zh) 2013-04-01
CN101233704A (zh) 2008-07-30
JP4772793B2 (ja) 2011-09-14
KR100932252B1 (ko) 2009-12-16
CN101233704B (zh) 2011-04-20

Similar Documents

Publication Publication Date Title
US8731407B2 (en) Optically coupled insulating device
US8149973B2 (en) Clock recovery circuit
US7538594B2 (en) Method for reducing delay difference of differential transmission and system thereof
JP2010088118A (ja) 供給電圧上に変調された多段信号の受信段および受信方法
CN110333767B (zh) 多相功率变换器
JP4772793B2 (ja) 光受信装置、試験装置、光受信方法、試験方法、テストモジュール、及び半導体チップ
EP3062454B1 (en) Optical link clock receiver
US8169347B2 (en) Parallel-to-serial converter and parallel data output device
US9252984B2 (en) Bus communication transceiver
US7668469B2 (en) Optical receiver applicable to multiple transmission speed
Inoue et al. A burst-mode TIA with adaptive response and stable operation for in-vehicle optical networks
JP3539952B2 (ja) レベル識別回路
JP5321000B2 (ja) レベルシフト回路
KR101058069B1 (ko) 데이터 통신장치, 데이터 통신 시스템 및 데이터 통신방법
US6469823B2 (en) Optical wavelength converter and optical wavelength division multiplexing communication system using the same
KR102650792B1 (ko) 데이터 전송을 위한 양방향 전류 변조를 갖는 네트워크 통신 시스템
CN209184583U (zh) 信号转换电路和电子测量设备
CN109495170B (zh) 用于光模块的接收信号监控方法、光模块及光线路终端
EP4322427A1 (en) Optical receivers
Kim et al. Unified dual mode physical layer for mobile CMOS image sensor interface
TW202425555A (zh) 封裝光接收器、系統、主機設備、光接收器主機設備、主機設備、以及用於在光線路終端中使用之方法
KR20240002179A (ko) 직렬 인터페이스에서의 신호 부스팅
CN114977403A (zh) 电池管理模组、电池管理***及芯片封装结构
WO1988003733A2 (fr) Procede et circuit pour l&#39;ajustement automatique d&#39;impulsions

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680027622.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007528427

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120060019600

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087002390

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 112006001960

Country of ref document: DE

Date of ref document: 20080521

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06781270

Country of ref document: EP

Kind code of ref document: A1