WO2007009669A2 - Öleingespritzter verdichter mit mitteln zur öltemperaturregelung - Google Patents

Öleingespritzter verdichter mit mitteln zur öltemperaturregelung Download PDF

Info

Publication number
WO2007009669A2
WO2007009669A2 PCT/EP2006/006903 EP2006006903W WO2007009669A2 WO 2007009669 A2 WO2007009669 A2 WO 2007009669A2 EP 2006006903 W EP2006006903 W EP 2006006903W WO 2007009669 A2 WO2007009669 A2 WO 2007009669A2
Authority
WO
WIPO (PCT)
Prior art keywords
oil
injected
fan wheel
speed
compressor
Prior art date
Application number
PCT/EP2006/006903
Other languages
English (en)
French (fr)
Other versions
WO2007009669A3 (de
Inventor
Nils ZIEGLGÄNSBERGER
Original Assignee
Knorr-Bremse Systeme für Schienenfahrzeuge GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Knorr-Bremse Systeme für Schienenfahrzeuge GmbH filed Critical Knorr-Bremse Systeme für Schienenfahrzeuge GmbH
Priority to AT06754724T priority Critical patent/ATE434133T1/de
Priority to JP2008520807A priority patent/JP2009501290A/ja
Priority to DE502006004009T priority patent/DE502006004009D1/de
Priority to US11/995,581 priority patent/US20080206085A1/en
Priority to EP06754724A priority patent/EP1907704B1/de
Publication of WO2007009669A2 publication Critical patent/WO2007009669A2/de
Publication of WO2007009669A3 publication Critical patent/WO2007009669A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type

Definitions

  • Oil-injected compressor with means for oil temperature control
  • the present invention relates to an oil-injected compressor, in particular an oil-injected mobile screw compressor, with a motor-driven compressor unit for generating compressed air, which cooperates with an oil circuit for lubrication, the oil reservoir is housed in a downstream ⁇ labscheider founded for separating the oil from the compressed air Means are provided for oil temperature control, which include a cooler with fan.
  • the present invention is useful with other types of oil-injected compressors, such as scroll and vane compressors, in addition to oil-injected screw compressors.
  • oil is injected by means of an oil circuit for lubrication in the field of moving compressor components and at their bearings in order to lubricate the one here existing, rotating at high speed bearings, and on the other also an inadmissible heating to prevent in the field of moving compressor components as a result of friction.
  • the oil also serves to seal the air side against other areas of the compressor.
  • the field of application of such oil-injected compressors extends thanks to the compactness mainly to mobile applications in rail vehicle construction or in the field of commercial vehicle construction.
  • oil-injected compressors are also used in stationary compressed air supply systems.
  • An oil-injected screw compressor essentially consists of a compressor unit with at least one pair of counter-rotating and interlocking cylindrical compressor screws.
  • This compressor screw arrangement serves to generate compressed air in which air drawn in from one side from the atmosphere is converted into compressed air by continuous compression, which leaves the compressor unit via a spring-return outlet valve.
  • the drive of the compressor screw assembly is carried out via a sealed out of the compressor unit to the outside drive shaft by means of a flanged here motor, usually an electric motor.
  • the required high oil temperature is usually achieved quickly by a valve disposed in the oil control valve.
  • the control valve regulates continuously and according to the operating conditions of the compressor divides the oil volume flow required for cooling in such a way between a radiator and bypass line, that always sets the same oil temperature.
  • the fan wheel associated with the compressor and the radiator of the oil circuit is operated according to the prior art with maximum power by a rigid connection to the drive motor of the compressor unit. Only with separately driven radiator fan systems a simple start / stop operation is possible to prevent the cooling of the oil circuit at low oil temperature.
  • the usually permanent and run at rated speed fan is used to maintain the operation of the compressor unit even in the worst case at high ambient temperatures, so that the maximum permissible oil temperature of 120 0 C is not exceeded.
  • a disadvantage of this prior art is that as a result of the design of the fan to maximum requirement and maximum air flow, this is oversized in most of the time proportions of the operation of the compressor unit. This is usually a unnecessarily high Power requirement caused.
  • the permanent fan drive causes a significant noise emission.
  • the above-described control of the oil volume flow between radiator and bypass line causes regardless of the ambient temperature sets a predetermined control temperature in the oil reservoir. Since the maximum amount of water vapor in the ambient air significantly depends on its temperature, in this case, the level of the oil temperature is to be selected so high that even in the worst case, no condensate can fail in the compressor. As a result, the oil is exposed to increased aging. The same applies to all rubber and sealing parts of the compressor unit, which are exposed by the constant high oil temperature of a special load. Furthermore, the oil can not optimally fulfill its function as a gap seal in the actual compressor chamber when it is hot and thus less viscous, i. low viscosity, is. The volumetric efficiency drops with increasing oil temperature due to internal backflow.
  • the invention includes the technical teaching that the means for controlling the oil temperature as adjusting device comprise a variable-speed drive for the fan, wherein a control device adjusts the speed of the fan as a function of the radiator from the ambient heat transferring heat from the cooler.
  • the solution according to the invention is based on the recognition that the heating of the cooling air originating from the environment is approximately constant when passing through the cooler, but the ambient temperature can fluctuate greatly, so that the final temperature of the cooling air used for cooling also depends to a considerable degree on the ambient temperature is.
  • the solution according to the invention thus makes it possible to link two controlled variables for the oil temperature with one another. On the one hand indirectly the oil temperature, which heats the cooling air at the radiator accordingly, taken as a control variable; On the other hand, the ambient temperature, which defines the basic level of the cooling air temperature, also flows in as a controlled variable. By linking these two control variables, the oil temperature can also be adapted to the current ambient temperature level, whereas according to the prior art, the oil temperature always remains at a constantly high level.
  • the solution according to the invention allows a fan wheel operation which is always adapted to the needs. Since so far the fan was operated at maximum power, although considered by time proportion, this would be required only occasionally, resulting in particular in the sound emission significant improvements.
  • the power requirement of the fan wheel is also much lower than in a permanently operated at the maximum point fan.
  • the duty cycle on the speed of the fan wheel has a considerable impact. By dissipating in the stop phase of the compressor heat by cooling the compressor is used after a restart at the lowest possible speed of the fan wheel. As a result, even at low duty cycle, the necessary minimum temperature level is achieved quickly and, at the same time, significantly less sound is emitted than in the case of the solution known from the prior art.
  • the solution according to the invention extends the maintenance intervals for oil and seals. In addition, the life of the compressor bearing is extended, resulting from the adjusted oil temperature.
  • variable-speed drive of the fan wheel connected to the drive shaft constant speed viscous coupling is provided, which varies due to the prevailing during operation of the viscous coupling the slip accordingly.
  • the drive shaft of the viscous coupling can be coupled in an advantageous manner with the shaft of the drive motor of the compressor unit.
  • a viscous coupling in this case a conventional viscous coupling can be used, which noticeably reduces the slip with a simple bimetal from a certain temperature and also allows a soft adaptation of the slip to the temperature conditions due to the oil in the slippage space.
  • control device adjusts the speed of the fan wheel in response to the determined by means of a temperature measuring device from the radiator to the heat coming from the environment cooling air heat.
  • a temperature measuring device from the radiator to the heat coming from the environment cooling air heat.
  • an electrical temperature sensor with appropriate electronics is required here.
  • the measuring technology records the current ambient temperature at a suitable location.
  • the control and regulation of the Lüfterradwindiere by means of inverter and drive the fan wheel which may for example be designed as a three-phase motor.
  • the speed motor it is also conceivable to use a hydraulic motor for the variable-speed drive of the fan wheel, which can be acted upon with variable speed by an upstream hydraulic pump with pressure medium. In both cases eliminates the usual in the prior art control valve for controlling the oil temperature.
  • the temperature measuring device or the viscous coupling is preferably to be arranged in the flow of the cooling air heated by the radiator between the latter and the fan wheel. At this point, a space-optimal accommodation can be realized. At the same time indirectly at this point the oil temperature, which heats the cooling air at the radiator, and on the other hand, the influence of the ambient temperature detectable and directly by a temperature sensor or indirectly by a corresponding temperature influence of the viscous coupling in a demand-driven speed control for the fan can be implemented.
  • the cooler in addition to the above-described cooling of the oil circuit, can also be used for aftercooling of the compressed air leaving the oil separator device of the compressor. Thus eliminates a possibly separately provided for this cooler.
  • the figure shows a schematic representation of an oil-injected compressor with means for controlling the oil temperature, here including a viscous coupling.
  • an oil-injected compressor (screw compressor) essentially consists of a compressor unit 1, which is driven by an electric motor 2.
  • an oil circuit Run 3 oil injected for lubrication In the area of the compressor screw assembly forming the compressor unit 1, an oil circuit Run 3 oil injected for lubrication. The oil required for lubrication, cooling and sealing purposes passes partially into the compressed air leaving the compressor unit 1 on the output side.
  • the compressor unit 1 For separating the oil and the compressed air, the compressor unit 1 is followed by an oil separator 4.
  • the oil reservoir 5 passes from the ⁇ labscheider issued 4 from the incoming oily compressed air by gravity separated oil, so that the output side of the oil separator 4 via the compressed air line 6 effluent compressed air is substantially free of oil.
  • the compressed air line 6 is guided via a cooler 7 for further cooling of the compressed air.
  • the cooler 7 also serves to cool the oil circulating in the oil circuit 3.
  • the radiator 7 is supplied with the heated oil originating from the oil reservoir 5, which is again injected into the compressor unit 1 in a cooled manner by the radiator 7.
  • Cooling air is drawn from the environment through the radiator 7 via a fan wheel 9 arranged adjacent to the radiator 7.
  • the fan 9 is driven via the electric motor 2 with interposed viscous coupling 10.
  • This arrangement forms in the oil temperature control a variable-speed drive for the fan 9, which represents the adjusting device insofar.
  • the control device of the oil temperature control is embodied by the viscous coupling 10, which adjusts the rotational speed of the fan wheel 9 as a function of the heat transferred from the cooler 7 to the cooling air originating from the environment.
  • the viscous coupling 10 is arranged in the range 1 1, which is suitable for detecting the ambient air heated by the oil temperature.
  • the viscous coupling 10 varies due to the prevailing in this area 11 temperatures, the slip and thus the speed of the impeller 9, which thus ensures a demand-based oil temperature control.
  • the invention is not limited to the preferred embodiment described above.
  • the viscous coupling can also be replaced by a different type of control device, preferably by an electronic control device which detects the heat transferred from the environment with the help of a temperature sensor heat transferred and processed according to an electronic device at a predetermined set temperature control technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Compressor (AREA)

Abstract

Öleingespritzter Verdichter, insbesondere öleingespritzter mobiler Schraubenverdichter, mit einer motorbetriebenen Verdichtereinheit (1) zur Erzeugung von Druckluft, die mit einem Ölkreislauf (3) zur Schmierung zusammenwirkt, dessen Ölvorrat (5) in einer nachgeschalteten Ölabscheidereinrichtung (4) zum Trennen des Öls von der Druckluft untergebracht ist, wobei Mittel zur Öltemperaturregelung vorgesehen sind, die einen Kühler (7) mit Lüfterrad (9) umfassen, wobei die Mittel zur Öltemperaturregelung als Stelleinrichtung einen drehzahlvariablen Antrieb für das Lüfterrad (9) umfassen, wobei eine Regeleinrichtung die Drehzahl des Lüfterrades (9) in Abhängigkeit der vom Kühler (7) an die aus der Umgebung stammenden Kühlluft übertragenen Wärme anpasst.

Description

Öleingespritzter Verdichter mit Mitteln zur Öltemperaturregelung
Die vorliegende Erfindung betrifft einen öleingespritzten Verdichter, insbesondere einen öl- eingespritzten mobilen Schraubenverdichter, mit einer motorbetriebenen Verdichtereinheit zur Erzeugung von Druckluft, die mit einem Ölkreislauf zur Schmierung zusammenwirkt, dessen Ölvorrat in einer nachgeschalteten Ölabscheidereinrichtung zum Trennen des Öls von der Druckluft untergebracht ist, wobei Mittel zur Öltemperaturregelung vorgesehen sind, die einen Kühler mit Lüfterrad umfassen.
Die vorliegende Erfindung ist neben öleingespritzten Schraubenverdichtern auch bei anderen Arten von öleingespritzten Verdichtem, wie Spiral- und Flügelzellenverdichter, verwendbar. Bei den Verdichtern der hier interessierenden Art wird mittels eines Ölkreislaufs Öl zur Schmierung in den Bereich der bewegten Verdichterbauteile sowie an deren Lagerstellen eingespritzt, um zum Einen die hier vorhandenen, sich mit hoher Geschwindigkeit drehenden Wälzlager zu schmieren, und um zum Anderen auch ein unzulässiges Aufheizen im Bereich der bewegten Verdichterbauteile in Folge von Reibung zu verhindern. Des Weiteren dient das Öl auch zum Abdichten der Luftseite gegenüber anderen Bereichen des Verdichters. Das Einsatzgebiet derartiger öleingespritzter Verdichter erstreckt sich dank der Kompaktheit vornehmlich auf mobile Anwendungen im Schienenfahrzeugbau oder auch im Bereich des Nutzfahrzeugbaus. Daneben werden öleingespritzte Verdichter auch im Rahmen stationärer Druckluftversorgungsanlagen eingesetzt.
Aus dem allgemeinen Stand der Technik gehen öleingespritzte Verdichter, wie öleingespritzte Schraubenverdichter, in verschiedenen Varianten hervor. Ein öleingespritzter Schraubenverdichter besteht im Wesentlichen aus einer Verdichtereinheit mit mindestens einem Paar von gegenläufig zueinander sich drehenden und ineinander verzahnten, walzenförmigen Verdichterschrauben. Diese Verdichterschraubenanordnung dient der Erzeugung von Druckluft, in dem von einer Seite her von der Atmosphäre angesaugte Luft durch kontinuierliche Verdichtung in Druckluft umgewandelt wird, welche die Verdichtereinheit über ein federrückgestell- tes Auslassventil verlässt. Der Antrieb der Verdichterschraubenanordnung erfolgt dabei über eine abgedichtet aus der Verdichtereinheit nach außen geführte Antriebswelle mittels eines hier angeflanschten Motors, meist eines Elektromotors. Zum Schmieren, Abdichten und Kühlen der durch den Kompressionsprozess thermisch stark beanspruchten Verdichtereinheit ist diese mit einem Ölkreislauf verbunden, welcher ausgehend von einem Ölvorrat das Öl an die Verdichterschraubenanordnung sowie auch an die zugeordneten Wälzlager liefert. Das hier eingespritzte Öl verlässt diesen Wirkbereich in Richtung des Ölvorrats, der sich innerhalb der dem Ölkreislauf nachgeschalteten Ölabscheidereinrichtung befindet. Die Ölabscheidereinrich- tung ist erforderlich, um die öldurchsetzte Druckluft wieder von dem Öl zu befreien, so dass ölfreie Druckluft ausgangsseitig zur Verfügung steht. Die Ölabscheidereinrichtung besteht gewöhnlich im Wesentlichen aus einem Ölabscheider, der in an sich bekannter Weise nach dem Schwerkraftprinzip arbeitet. Das Öl, welches sich von der im Ölabscheider aufsteigenden ölhaltigen Druckluft trennt, wird im Ölvorrat gesammelt. Die im Ölabscheider aufgestiegene, bereits teilweise ölfreie Druckluft wird nachfolgend meist einem patronenartigen Feinabscheider zugeführt und verlässt anschließend die Ölabscheidereinrichtung über ein ausgangsseitig angeordnetes Druckhalteventil.
Für einen sicheren Betrieb von öleingespritzten Verdichtern ist insbesondere bei hoher und feuchter Umgebungstemperatur eine entsprechend hohe Öltemperatur erforderlich, um Kondensatausfall mit dessen schädigenden Auswirkungen im Inneren des Verdichters zu unterbinden. Die erforderlich hohe Öltemperatur wird üblicherweise durch ein im Ölkreislauf angeordnetes Regelventil rasch erreicht. Das Regelventil regelt stufenlos und teilt entsprechend den Betriebsbedingungen des Verdichters den zur Kühlung benötigten Ölvolumenstrom derart zwischen einer Kühler- und Bypassleitung auf, dass sich stets die gleiche Öltemperatur einstellt. Das dem Verdichter sowie dem Kühler des Ölkreislaufs zugehörige Lüfterrad wird nach dem Stand der Technik mit maximaler Leistung betrieben, indem eine starre Verbindung zum Antriebsmotor der Verdichtereinheit besteht. Lediglich bei gesondert angetriebenen Kühler- Lüfter-Systemen ist ein einfacher Start-/Stop-Betrieb möglich, um bei niedriger Öltemperatur die Kühlung des Ölkreislaufs zu unterbinden. Der in der Regel permanente und mit Nenndrehzahl betriebene Lüfter dient dazu, den Betrieb der Verdichtereinheit auch im ungünstigsten Fall bei hohen Umgebungstemperaturen aufrecht zu erhalten, so dass die maximal zulässige Öltemperatur von 120 0C nicht überschritten wird.
Nachteilig bei diesem Stand der Technik ist, dass das in Folge der Auslegung des Lüfters auf Maximalanforderung und maximalen Luftstrom, dieser in den meisten Zeitanteilen des Betriebs der Verdichtereinheit überdimensioniert ist. Hierdurch wird ein meist unnötig hoher Leistungsbedarf verursacht. Darüber hinaus verursacht der permanente Lüfterantrieb eine erhebliche Schallemission.
Weiterhin führt die vorstehend beschriebene Regelung des Ölvolumenstroms zwischen Kühler und Bypass-Leitung dazu, dass sich unabhängig von der Umgebungstemperatur eine festgelegte Regeltemperatur im Ölvorrat einstellt. Da die maximale Menge von Wasserdampf in der Umgebungsluft maßgeblich von dessen Temperatur abhängt, ist in diesem Fall das Niveau der Öltemperatur so hoch zu wählen, dass auch im ungünstigen Fall kein Kondensat im Verdichter ausfallen kann. Dadurch ist das Öl einer erhöhten Alterung ausgesetzt. Gleiches gilt auch für sämtliche Gummi- und Dichtteile der Verdichtereinheit, welche durch die konstant hohe Öltemperatur einer besonderen Belastung ausgesetzt sind. Des Weiteren kann das Öl seine Funktion als Spaltabdichtung im eigentlichen Verdichterraum nicht optimal erfüllen, wenn dieses heiß und damit niederviskoser, d.h. dünnflüssiger, ist. Der volumetrische Wirkungsgrad fällt mit steigender Öltemperatur aufgrund von internen Rückströmungen ab.
Durch den in mobilen Anwendungen des öleingespritzten Verdichters auftretenden Start- /Stop-Betrieb und der oftmals niederen Einschaltdauer wird der Nachteil einer Maximalauslegung der Kühlung des Ölkreislaufs mit den vorstehend genannten Nachteilen nochmals verstärkt, da durch zwischenzeitliche Abkühleffekte in den Stopphasen die Kühlluft im Betrieb dann oft gar nicht oder nur wenig benötigt wird und teilweise sogar kontraproduktiv ist. Bei extrem kalten Umgebungstemperaturen verhindert die komplette Lüfterleistung vom Start weg ein geeignetes Anwärmen des Ölkreislaufs. Das führt zu einem recht hohen hydraulischen Widerstand im Kühler, so dass beim Umschalten des herkömmlichen Regelventils von der Bypassleitung auf die Kühlerleitung der Ölvolumenstrom zusammenbrechen und der Verdichter Schaden nehmen kann.
Es ist daher die Aufgabe der vorliegenden Erfindung, einen öleingespritzten Verdichter der vorstehend beschriebenen Art dahingehend weiter zu verbessern, dass dessen Mittel zur Öl- temperaturregelung eine bedarfsgerechte, effiziente Kühlung bei vertretbarem gerätetechnischen Aufwand sicherstellen.
Die Aufgabe wird ausgehend von einem öleingespritzten Verdichter gemäß dem Oberbegriff von Anspruch 1 in Verbindung mit dessen kennzeichnenden Merkmalen gelöst. Die nachfolgenden abhängigen Ansprüche geben vorteilhafte Weiterbildungen der Erfindung wieder.
Die Erfindung schließt die technische Lehre ein, dass die Mittel zur Öltemperaturregelung als Stelleinrichtung einen drehzahlvariablen Antrieb für das Lüfterrad umfassen, wobei eine Regeleinrichtung die Drehzahl des Lüfterrades in Abhängigkeit der vom Kühler an die aus der Umgebung stammenden Kühlluft übertragenden Wärme anpasst.
Die erfindungsgemäße Lösung geht von der Erkenntnis aus, dass die Erwärmung der von der Umgebung stammenden Kühlluft beim Passieren des Kühlers zwar in etwa konstant ist, die Umgebungstemperatur jedoch stark schwanken kann, so dass die Endtemperatur der zur Kühlung verwendeten Kühlluft auch in erheblichem Maße abhängig von der Umgebungstemperatur ist. Die erfindungsgemäße Lösung gestattet es also, zwei Regelgrößen für die Öltempera- tur miteinander zu verknüpfen. Zum Einen wird indirekt die Öltemperatur, welche die Kühlluft am Kühler entsprechend erwärmt, als Regelgröße hergenommen; zum Anderen fließt auch die Umgebungstemperatur, welche das Grundniveau der Kühllufttemperatur festlegt, als Regelgröße mit ein. Durch diese Verknüpfung beider Regelgrößen lässt sich die Öltemperatur auch an das aktuelle Umgebungstemperaturniveau anpassen, während nach dem Stand der Technik die Öltemperatur stets auf einem konstant hohen Niveau verbleibt. So ermöglicht die erfindungsgemäße Lösung einen stets bedarfsgerecht angepassten Lüfterradbetrieb. Da bisher das Lüfterrad mit maximaler Leistung betrieben wurde, obwohl nach Zeitanteil betrachtet diese nur gelegentlich erforderlich wäre, ergeben sich insbesondere bei der Schallemission erhebliche Verbesserungen. Auch der Leistungsbedarf des Lüfterrades ist insgesamt weit geringer als bei einem dauerhaft am Maximalpunkt betriebenen Lüfterrad. Insbesondere im mo- bilen Einsatz hat auch die Einschaltdauer auf die Drehzahl des Lüfterrades einen erheblichen Einfluss. Durch die in der Stopphase des Verdichters abgeführte Wärme durch Auskühlung wird der Verdichter nach einem Neustart bei möglichst geringer Drehzahl des Lüfterrades eingesetzt. Dadurch wird auch bei niedriger Einschaltdauer das notwendige Mindesttempera- turniveau zügig erreicht und dabei deutlich weniger Schall emittiert als bei der aus dem Stand der Technik bekannten Lösung. Des Weiteren verlängert die erfindungsgemäße Lösung die Wartungsintervalle für Öl und Dichtungen. Darüber hinaus verlängert sich auch die Lebensdauer der Verdichterlager, was aus der angepassten Öltemperatur resultiert.
Vorzugsweise ist zum drehzahlvariablen Antrieb des Lüfterrades eine mit der Antriebswelle konstanter Drehzahl verbundene Viskokupplung vorgesehen, welche aufgrund der im Betrieb der Viskokupplung vorherrschenden Temperaturen den Schlupf entsprechend variiert. Die Antriebswelle der Viskokupplung kann in vorteilhafter Weise mit der Welle des Antriebsmotors der Verdichtereinheit gekoppelt sein. Somit wird ein weiterer Antrieb hierfür eingespart. Als Viskokupplung kann hierbei eine herkömmliche Viskokupplung eingesetzt werden, welche mit einem einfachen Bimetall ab einer bestimmten Temperatur den Schlupf spürbar verringert und zudem durch das im Schlupfraum befindliche Öl eine weiche Anpassung des Schlupfes an die Temperaturgegebenheiten zulässt.
Alternativ hierzu ist es jedoch auch möglich, dass die Regeleinrichtung die Drehzahl des Lüfterrades in Abhängigkeit der mittels einer Temperaturmesseinrichtung ermittelten vom Kühler an die aus der Umgebung stammenden Kühlluft übertragenen Wärme anpasst. In Abweichung von der vorstehend beschriebenen Variante ist hier ein elektrischer Temperatursensor mit entsprechender Elektronik erforderlich. Durch die Messtechnik wird die aktuelle Umgebungstemperatur an geeigneter Stelle erfasst. Die Steuerung und Regelung der Lüfterraddrehzahl erfolgt mittels Umrichter und Antrieb des Lüfterrades, der beispielsweise als Drehstrommotor ausgeführt sein kann. Anstelle des Drehzahlmotors ist es jedoch auch denkbar, für den drehzahlvariablen Antrieb des Lüfterrades einen Hydromotor einzusetzen, welcher von einer vorgeschalteten Hydro- pumpe mit Druckmittel drehzahlvariabel beaufschlagbar ist. In beiden Fällen entfallt das beim Stand der Technik gebräuchliche Regelventil zur Regelung der Öltemperatur.
Die Temperaturmesseinrichtung bzw. die Viskokupplung ist vorzugsweise im Strom der durch den Kühler aufgeheizten Kühlluft zwischen diesem und dem Lüfterrad anzuordnen. An dieser Stelle ist eine bauraumoptimale Unterbringung realisierbar. Gleichzeitig ist an dieser Stelle indirekt die Öltemperatur, welche die Kühlluft am Kühler entsprechend erwärmt, und zum Anderen die Beeinflussung durch die Umgebungstemperatur erfassbar und direkt durch einen Temperatursensor oder indirekt durch eine entsprechende Temperaturbeeinflussung der Viskokupplung in eine bedarfsgerechte Drehzahlregelung für das Lüfterrad umsetzbar.
Gemäß einer weiteren, die Erfindung verbessernden Maßnahme ist vorgesehen, dass der Kühler neben der vorstehend beschriebenen Kühlung des Ölkreislaufs auch für eine Nachkühlung der die Olabscheidereinrichtung des Verdichters verlassenden Druckluft nutzbar ist. Somit entfallt ein hierfür ggf. separat vorzusehender Kühler.
Weitere die Erfindung verbessernde Maßnahmen werden nachstehend gemeinsam mit der Beschreibung eines bevorzugten Ausführungsbeispiels der Erfindung anhand der einzigen Figur näher dargestellt.
Die Figur zeigt eine schematische Darstellung eines öleingespritzten Verdichters mit Mitteln zur Öltemperaturregelung, hier unter Einbeziehung einer Viskokupplung.
Gemäß Figur besteht ein öleingespritzter Verdichter (Schraubenverdichter) im Wesentlichen aus einer Verdichtereinheit 1, welche mit einem Elektromotor 2 angetrieben wird. Im Bereich der die Verdichtereinheit 1 bildenden Verdichterschraubenanordnung wird aus einem Ölkreis- lauf 3 Öl zur Schmierung eingespritzt. Das zu Schmierungs-, Kühlungs- und Dichtungszwecken erforderliche Öl gelangt dabei teilweise in die die Verdichtereinheit 1 ausgangsseitig verlassende Druckluft. Zum Trennen des Öls und der Druckluft ist der Verdichtereinheit 1 eine Ölabscheidereinrichtung 4 nachgeschaltet.
Die Ölabscheidereinrichtung 4 enthält einen Ölvorrat 5 für den Ölkreislauf 3. In den Ölvorrat 5 gelangt das von der Ölabscheidereinrichtung 4 aus der einströmenden ölhaltigen Druckluft per Schwerkraft abgesonderte Öl, so dass die ausgangsseitig der Ölabscheidereinrichtung 4 über die Druckluftleitung 6 abströmende Druckluft im Wesentlichen ölfrei ist. Die Druckluftleitung 6 ist über einen Kühler 7 zum weiteren Abkühlen der Druckluft geführt. Gleichzeitig dient der Kühler 7 auch der Kühlung des im Ölkreislauf 3 zirkulierenden Öls. Über eine Ölleitung 8 wird dem Kühler 7 das aus dem Ölvorrat 5 stammende aufgeheizte Öl zugeführt, welches durch den Kühler 7 entsprechend gekühlt wieder in die Verdichtereinheit 1 eingespritzt wird.
Über ein benachbart zum Kühler 7 angeordnetes Lüfterrad 9 wird Kühlluft aus der Umgebung durch den Kühler 7 gesaugt. Das Lüfterrad 9 wird über den Elektromotor 2 mit zwischengeschalteter Viskokupplung 10 angetrieben.
Diese Anordnung bildet bei der Öltemperaturregelung einen drehzahlvariablen Antrieb für das Lüfterrad 9, welche insoweit die Stelleinrichtung darstellt. Die Regeleinrichtung der Öltemperaturregelung wird durch die Viskokupplung 10 verkörpert, welche die Drehzahl des Lüfterrades 9 in Abhängigkeit der vom Kühler 7 an die aus der Umgebung stammenden Kühlluft übertragenen Wärme anpasst. Zu diesem Zwecke ist die Viskokupplung 10 im Bereich 1 1 angeordnet, der geeignet ist zur Erfassung der von der Öltemperatur erhitzten Umgebungsluft. Die Viskokupplung 10 variiert aufgrund der in diesem Bereich 11 vorherrschenden Temperaturen, den Schlupf und damit die Drehzahl des Lüfterrades 9, welche somit eine bedarfsgerechte Öltemperaturregelung gewährleistet. Die Erfindung ist nicht beschränkt auf das vorstehend beschriebene bevorzugte Ausführungsbeispiel. So sind auch Abweichungen hiervon denkbar, die dem Schutzbereich der nachfolgenden Ansprüche unterfallen. So kann die Viskokupplung auch durch eine anders geartete Regeleinrichtung ersetzt werden, vorzugsweise durch eine elektronische Regeleinrichtung, welche mit Hilfe eines Temperatursensors die aus der Umgebung stammende Kühlluft übertragene Wärme erfasst und nach Maßgabe einer Elektronik bei vorgegebener Solltemperatur regelungstechnisch verarbeitet.
Bezugszeichenliste
Verdichtereinheit
Elektromotor
Ölkreislauf
Öl abscheidereinrichtung
Ölvorrat
Druckluftleitung
Kühler
Ölleitung
Lüfterτad
Viskokupplung
Bereich (an der Viskokupplung)

Claims

A n s p r ü c h e
1. Öleingespritzter Verdichter, insbesondere öleingespritzter mobiler Schraubenverdichter, mit einer motorbetriebenen Verdichtereinheit (1) zur Erzeugung von Druckluft, die mit einem Ölkreislauf (3) zur Schmierung zusammenwirkt, dessen Ölvorrat (5) in einer nachgeschalteten Ölabscheidereinrichtung (4) zum Trennen des Öls von der Druckluft untergebracht ist, wobei Mittel zur Öltemperaturregelung vorgesehen sind, die einen Kühler (7) mit Lüfterrad (9) umfassen, dadurch gekennzeichnet, dass die Mittel zur Öltemperaturregelung als Stelleinrichtung einen drehzahlvariablen Antrieb für das Lüfterrad (9) umfassen, wobei eine Regeleinrichtung die Drehzahl des Lüfterrades (9) in Abhängigkeit der vom Kühler (7) an die aus der Umgebung stammenden Kühlluft übertragenen Wärme anpasst.
2. Öleingespritzter Verdichter nach Anspruch 1 , dadurch gekennzeichnet, dass die Regeleinrichtung die Drehzahl des Lüfterrades (9) in Abhängigkeit der mittels Temperaturmesseinrichtung ermittelten vom Kühler (7) an die aus der Umgebung stammenden Kühlluft übertragenen Wärme nach Maßgabe einer vorgegebenen Solltemperatur anpasst.
3. Öleingespritzter Verdichter nach Anspruch 2, dadurch gekennzeichnet, dass der drehzahlvariable Antrieb für das Lüfterrad (9) nach Art eines Elektromotors (2) ausgebildet ist.
4. Öleingespritzter Verdichter nach Anspruch 2, dadurch gekennzeichnet, dass der drehzahlvariable Antrieb für das Lüfterrad (9) nach Art eines Hydromotors ausgebildet ist, der von einer vorgeschalteten Hydropumpe drehzahlvariabel beaufschlagbar ist.
5. Öleingespritzter Verdichter nach Anspruch 1 , dadurch gekennzeichnet, dass zum drehzahlvariablen Antrieb des Lüfterrades (9) eine mit dem Antrieb konstanter Drehzahl verbundene Viskokupplung (10) vorgesehen ist, welche aufgrund der im Bereich (11) der Viskokupplung (10) vorherrschenden Temperaturen den Schlupf variiert.
6. Öleingespritzter Verdichter nach Anspruch 3 und 5, dadurch gekennzeichnet, dass der Antrieb der Viskokupplung (10) über die Welle des Elektromotors (2) der Verdichtereinheit (1) erfolgt.
7. Öleingespritzter Verdichter nach einem der vorstehenden Ansprüche 2 bis 6, dadurch gekennzeichnet, dass die Temperaturmesseinrichtung bzw. die Viskokupplung (10) im Strom der durch den Kühler (7) aufgeheizten Kühlluft zwischen diesem und dem Lüfterrad (9) angeordnet ist.
8. Öleingespritzter Verdichter nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Kühler (7) neben der Kühlung im Ölkreislauf (3) auch eine Nachkühlung der die Ölabscheidereinrichtung (4) verlassenden Druckluft durchführt.
PCT/EP2006/006903 2005-07-15 2006-07-14 Öleingespritzter verdichter mit mitteln zur öltemperaturregelung WO2007009669A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT06754724T ATE434133T1 (de) 2005-07-15 2006-07-14 Öleingespritzter verdichter mit mitteln zur öltemperaturregelung
JP2008520807A JP2009501290A (ja) 2005-07-15 2006-07-14 油温度調整手段を備えた給油式圧縮機
DE502006004009T DE502006004009D1 (de) 2005-07-15 2006-07-14 Öleingespritzter verdichter mit mitteln zur öltemperaturregelung
US11/995,581 US20080206085A1 (en) 2005-07-15 2006-07-14 Oil-Injected Compressor with Means for Oil Temperature Regulation
EP06754724A EP1907704B1 (de) 2005-07-15 2006-07-14 Öleingespritzter verdichter mit mitteln zur öltemperaturregelung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005033084.3 2005-07-15
DE102005033084A DE102005033084B4 (de) 2005-07-15 2005-07-15 Öleingespritzter Verdichter mit Mitteln zur Öltemperaturregelung

Publications (2)

Publication Number Publication Date
WO2007009669A2 true WO2007009669A2 (de) 2007-01-25
WO2007009669A3 WO2007009669A3 (de) 2007-04-19

Family

ID=37508278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/006903 WO2007009669A2 (de) 2005-07-15 2006-07-14 Öleingespritzter verdichter mit mitteln zur öltemperaturregelung

Country Status (6)

Country Link
US (1) US20080206085A1 (de)
EP (1) EP1907704B1 (de)
JP (1) JP2009501290A (de)
AT (1) ATE434133T1 (de)
DE (2) DE102005033084B4 (de)
WO (1) WO2007009669A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090308471A1 (en) * 2008-06-16 2009-12-17 Timothy Keene Heimonen Startup bypass system for a screw compressor
US8425198B2 (en) 2009-03-13 2013-04-23 Hitachi Industrial Equipment Systems Co., Ltd. Air compressor

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4885077B2 (ja) 2007-07-03 2012-02-29 株式会社日立産機システム 無給油式スクリュー圧縮機
DE202008012380U1 (de) * 2008-09-18 2010-02-11 Oerlikon Leybold Vacuum Gmbh Vakuumpumpe
DE102011014961A1 (de) * 2011-03-24 2012-09-27 Rotorcomp Verdichter Gmbh Schraubenverdichteranlage
DE102013113555A1 (de) * 2013-12-05 2015-06-11 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Kompressorsystem und Verfahren zum Betrieb des Kompressorsystems in Abhängigkeit vom Betriebszustand des Schienenfahrzeugs
DE102013020533A1 (de) * 2013-12-12 2015-07-02 Gea Refrigeration Germany Gmbh Verdichter
DE102014101113A1 (de) * 2014-01-30 2015-07-30 Pfeiffer Vacuum Gmbh Vakuumpumpe
JP6325336B2 (ja) * 2014-05-15 2018-05-16 ナブテスコ株式会社 車両用空気圧縮機ユニット
DE102016011431A1 (de) 2016-09-21 2018-03-22 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Schraubenkompressor für ein Nutzfahrzeug
DE102016011439A1 (de) * 2016-09-21 2018-03-22 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Schraubenkompressorsystem für ein Nutzfahrzeug
DE102017107933A1 (de) * 2017-04-12 2018-10-18 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Kompressorsystem mit regelbarer und/oder steuerbarer Temperaturüberwachungs-einrichtung
CA3016521A1 (en) * 2017-09-06 2019-03-06 Joy Global Surface Mining Inc Lubrication system for a compressor
CN107947469A (zh) * 2017-12-21 2018-04-20 盐城中德劲博机电有限责任公司 螺杆空压机冷却结构
AU2021202410A1 (en) 2020-04-21 2021-11-11 Joy Global Surface Mining Inc Lubrication system for a compressor
CN113833660B (zh) * 2021-10-18 2023-04-25 珠海凌达压缩机有限公司 供油组件、压缩机及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB867965A (en) * 1959-07-31 1961-05-10 Schwitzer Corp A fluid coupling
GB2017216A (en) * 1978-03-13 1979-10-03 Imi Fluidair Ltd Rotary Positive-Displacement Fluid-Machines
JPH06213186A (ja) * 1993-01-14 1994-08-02 Hitachi Ltd 油冷式回転圧縮機の油温調整装置
WO2002046617A1 (en) * 2000-12-06 2002-06-13 Atlas Copco Airpower, Naamloze Vennootschap Method for regulating a compressor installation
US20050089432A1 (en) * 2002-02-08 2005-04-28 Truyens Francois L.J. Method for controlling the oil recirculation in an oil-injected screw-type compressor and compressor using this method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4868437A (en) * 1988-07-15 1989-09-19 Siemens Energy & Automation, Inc. Temperature activated cooling fan assembly
GB2266950B (en) * 1992-04-24 1995-11-08 Ingersoll Rand Co Apparatus for and method of inhibiting formation of frozen condensate in a fluid system
GB2367333B (en) * 2000-09-25 2002-12-11 Compair Uk Ltd Improvements in variable speed oil-injected screw compressors
US6725812B1 (en) * 2000-12-01 2004-04-27 Borgwarner, Inc. Water pump driven by viscous coupling
EP1379786B1 (de) * 2001-04-17 2005-03-16 TM.C. S.P.A. Termomeccanica Compressori Schraubenverdichtereinheit mit eingebauter ölkühlung
DE10156179A1 (de) * 2001-11-15 2003-05-28 Leybold Vakuum Gmbh Kühlung einer Schraubenvakuumpumpe
DE10156180B4 (de) * 2001-11-15 2015-10-15 Oerlikon Leybold Vacuum Gmbh Gekühlte Schraubenvakuumpumpe
US20040244393A1 (en) * 2003-04-18 2004-12-09 Ingersoll-Rand Company Variable speed compressor cooling system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB867965A (en) * 1959-07-31 1961-05-10 Schwitzer Corp A fluid coupling
GB2017216A (en) * 1978-03-13 1979-10-03 Imi Fluidair Ltd Rotary Positive-Displacement Fluid-Machines
JPH06213186A (ja) * 1993-01-14 1994-08-02 Hitachi Ltd 油冷式回転圧縮機の油温調整装置
WO2002046617A1 (en) * 2000-12-06 2002-06-13 Atlas Copco Airpower, Naamloze Vennootschap Method for regulating a compressor installation
US20050089432A1 (en) * 2002-02-08 2005-04-28 Truyens Francois L.J. Method for controlling the oil recirculation in an oil-injected screw-type compressor and compressor using this method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090308471A1 (en) * 2008-06-16 2009-12-17 Timothy Keene Heimonen Startup bypass system for a screw compressor
US8801395B2 (en) * 2008-06-16 2014-08-12 Gardner Denver, Inc. Startup bypass system for a screw compressor
US8425198B2 (en) 2009-03-13 2013-04-23 Hitachi Industrial Equipment Systems Co., Ltd. Air compressor

Also Published As

Publication number Publication date
US20080206085A1 (en) 2008-08-28
WO2007009669A3 (de) 2007-04-19
JP2009501290A (ja) 2009-01-15
DE102005033084A1 (de) 2007-01-18
ATE434133T1 (de) 2009-07-15
DE502006004009D1 (de) 2009-07-30
EP1907704A2 (de) 2008-04-09
EP1907704B1 (de) 2009-06-17
DE102005033084B4 (de) 2007-10-11

Similar Documents

Publication Publication Date Title
EP1907704B1 (de) Öleingespritzter verdichter mit mitteln zur öltemperaturregelung
DE102016218396B4 (de) Kältemittelverdichter
DE102004029505B4 (de) Fluidmaschine zum Umsetzen von Wärmeenergie in mechanische Drehkraft
WO2003042542A1 (de) Temperierugsverfahren einer schraubenvakuumpumpe
WO2012069122A2 (de) Abwärmenutzungsvorrichtung
EP3601797B1 (de) Kolbenkompressor mit erweitertem regelbereich
EP3362652B1 (de) Fördereinrichtung für ein kraftfahrzeug
DE69723060T2 (de) Kühlmittelpumpe zur kraftfahrzeugverwendung
DE69514936T2 (de) Kühlsystem und verfahren
DE102015213338B4 (de) Aktuatoreinheit
EP1945955B1 (de) Fluidpumpe
EP2002123B1 (de) Fluidpumpe
DE102005056199A1 (de) Pumpe für ein flüssiges Medium, insbesondere Kühlmittelpumpe, sowie Stellelement für eine solche Pumpe
EP0347706A1 (de) Mehrstufiges Vakuumpumpenaggregat
DE19817351A1 (de) Schraubenspindel-Vakuumpumpe mit Gaskühlung
WO2019092024A1 (de) Spiralverdichter mit optimiertem anpressdruck
WO2018054868A1 (de) System für ein nutzfahrzeug umfassend einen schraubenkompressor sowie einen elektromotor mit gemeinsamer kühlung
DE10142263C1 (de) Regelbare Kühlmittelpumpe
DE102018108827B3 (de) Verfahren zur Steuerung von zumindest einem Radialgebläse in einer Kälteanlage sowie Radialgebläse
DE60101375T2 (de) Klimaanlage und verfahren zum betrieb einer klimaanlage, beide insbesondere für kraftfahrzeuge
DE10207113A1 (de) Klimaanlagen, geeignet für die Verwendung in Fahrzeugen und Verfahren für den Betrieb solcher Klimaanlagen
DE102012207019B4 (de) Strömungsmaschine sowie Verfahren zur Kühlen einer solchen
EP2321536A1 (de) Pumpe
DE102020200256B4 (de) Scrollverdichter
DE102012211138B4 (de) Brennkraftmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006754724

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008520807

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11995581

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2006754724

Country of ref document: EP