WO2007007616A1 - Direct driven polymer actuator - Google Patents

Direct driven polymer actuator Download PDF

Info

Publication number
WO2007007616A1
WO2007007616A1 PCT/JP2006/313418 JP2006313418W WO2007007616A1 WO 2007007616 A1 WO2007007616 A1 WO 2007007616A1 JP 2006313418 W JP2006313418 W JP 2006313418W WO 2007007616 A1 WO2007007616 A1 WO 2007007616A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
drive unit
electrode layer
drive
polymer
Prior art date
Application number
PCT/JP2006/313418
Other languages
French (fr)
Japanese (ja)
Inventor
Ryo Yoshitomi
Original Assignee
Eamex Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eamex Corporation filed Critical Eamex Corporation
Publication of WO2007007616A1 publication Critical patent/WO2007007616A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/005Electro-chemical actuators; Actuators having a material for absorbing or desorbing gas, e.g. a metal hydride; Actuators using the difference in osmotic pressure between fluids; Actuators with elements stretchable when contacted with liquid rich in ions, with UV light, with a salt solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0021Transducers for transforming electrical into mechanical energy or vice versa

Definitions

  • the present invention relates to an improvement of a linear motion type polymer actuator device that can be applied to the fields of robots, medical equipment, micromachines, and the like.
  • Patent Documents 1 and 2 disclose polymer actuators using an ion conductive polymer / noble metal joined body (IPMC film).
  • Patent Document 1 Japanese Patent Laid-Open No. 7-4075
  • Patent Document 2 JP-A-11 235064
  • the driving of the polymer actuator is realized by the movement of water together with the ions in the ion conductive polymer membrane. Specifically, when a voltage is applied to the ion conductive resin membrane sandwiched between the electrodes, the negative electrode side swells due to the movement of water held in the polymer together with the positive ions. On the other hand, the positive pole side facing it is due to the phenomenon of shrinking by losing water. Therefore, the primitive movement of the polymer actuator is a bending motion in which the negative pole side extends and the positive pole side contracts. Therefore, if you want to drive the actuator linearly, use some method to make the bending movement. Need to convert to linear motion.
  • Non-Patent Document 1 As a mechanism of a polymer actuator that moves linearly, for example, Non-Patent Document 1, FIG.
  • a mechanism consisting of a basic unit in which four rod-shaped IPMC films 1, 1, 2, 2, and 2 are connected in a horizontally long rhombus shape has been proposed.
  • 3 is a moving part
  • 5 is a fixed part.
  • Non-Patent Document 1 M. Yamakita et al: "Control of Mechanical Impedance of IPMC Linear Actuator with Antagonism Structure, Proc. Of the 2nd Conference on Artificial Muscles, 2004
  • the mechanism has the following problems.
  • Another problem with this mechanism is that during linear motion, the diamond shape extends vertically in the direction perpendicular to the motion axis, as shown in Fig. 5-2.
  • the length of the actuator is adjusted depending on the number of basic units to be connected.
  • the diamond-shaped basic unit has a certain width, it is difficult to fine-tune the length. It also has a point.
  • the present invention eliminates the need for a rotation support means for the connection portion between the polymer actuator elements, reduces the dead space of the entire mechanism, and reduces the weight, size, and linear motion of the actuator.
  • the purpose is to stabilize the shaft and speed.
  • the inventors of the present invention have a rectangular parallelepiped solid electrolyte layer (ionic conductive polymer film layer) and a surface opposite to each other across the solid electrolyte layer.
  • Two or more actuator elements such as electrode layers formed in an insulated state, are connected to each other.
  • a pair of the actuator elements arranged in parallel in a direction substantially perpendicular to the linear drive direction is configured as a drive unit that provides the linear drive, and the actuator element Are connected to each other on the opposite surfaces, and are electrically connected to each other at the same end. It is characterized by that.
  • the electrode layer force on the same surface of each of the respective actuator elements is composed of different electrode layer elements through an electrical insulating portion over a range from the one end to the other end, and the solid electrolyte.
  • Different electrode layer elements are provided on opposite surfaces across the layers, and the electrode layer elements on the same surface and the electrode layer elements on the opposite surface constitute the same electrode layer.
  • the other end of the one actuator element is fixed to a fixed part, and the other end of the other actuator element constitutes a moving end, and a voltage is applied to each electrode layer of the actuator element.
  • a pair of terminal portions are provided on the fixed portion.
  • the present invention connects a plurality of rectangular parallelepiped solid electrolyte layers and a plurality of activator elements each having an electrode layer force formed in an insulated state on opposite surfaces across the solid electrolyte layers.
  • a pair of the actuator elements arranged in parallel in a direction substantially perpendicular to the linear motion drive direction is configured as a drive unit for providing linear motion drive.
  • the same edge force of the actuator element The electrode layers formed on the opposing surfaces are connected in a planar shape, and the electrode layers at the same edge formed on the opposite surfaces are electrically connected to each other. It is a linear motion type polymer actuator device characterized in that it is connected to.
  • the present invention provides a linear motion drive type polymer actuator device in which the other end portion of the one actuator element is fixed to a fixed portion and the other end portion of the other actuator element constitutes a moving end portion. It is.
  • the present invention also provides an electrode layer on the same surface of each of the actuator elements. Force The force of the one end portion is composed of different electrode layer elements through an electrically insulating portion over the range of the other end portion, and has different electrode layer elements on the opposite surfaces across the solid electrolyte layer.
  • the present invention is a linear motion drive type polymer actuator device in which a pair of terminal portions to which a voltage is applied to each electrode layer of the actuator element is provided in the fixed portion.
  • the linear-actuated polymer actuator device of the present invention realizes a linearly-actuated actuator using an ion conductive polymer membrane, and the possibility of application to a control system is widened.
  • the fact that the actuator elements are connected in a planar shape eliminates the need for a rotation support means that can cause motion axis and speed instability, contributing to stabilization of the axis and speed during linear motion. be able to.
  • FIG. 1-1 is a schematic side view of a linear drive actuator device according to an embodiment of the present invention when stationary.
  • FIG. 1-2 is a schematic side view of the actuator device at the time of linear motion driving.
  • FIG. 2 is a schematic perspective view of a polymer actuator element used in the apparatus.
  • FIG. 3 is a schematic view of the polymer actuator element.
  • FIG. 3 (a) is a plan view
  • FIG. 3 (b) is a side view
  • FIG. 3 (c) is a rear view.
  • Fig. 4 is a schematic view of the polymer actuator element of the other example, and Fig. 4 (a) is a plan view.
  • FIG. 4 (b) is a cross-sectional view taken along the line Y—Y, and FIG. 4 (c) is a rear view.
  • FIG. 5-1 is a conceptual diagram of a conventional linear motion type actuator device when stationary.
  • FIG. 5-2 is a conceptual diagram at the time of driving of the linear drive actuator device. Explanation of symbols
  • FIG. 11 is a schematic side view of a linear motion type actuator device according to an embodiment of the present invention at rest.
  • FIG. 12 is a schematic side view of the actuator device during linear motion driving.
  • reference numeral 100 denotes a polymer activator element constituting the apparatus of the present invention.
  • this polymer actuator element 100 is composed of a rectangular parallelepiped solid electrolyte layer 101 and electrode layers 102 and 103 formed on the surfaces facing each other with the solid electrolyte layer 101 sandwiched therebetween.
  • the four polymer actuator elements 100a, 100b, 100c, and 100d are sequentially connected.
  • These polymer actuator elements 100a, 100b, 100c, and 100d are arranged in parallel in a direction substantially perpendicular to the linear motion driving direction X, and the polymer actuator element 100a and the polymer actuator element 100b, The polymer actuator element 100b, the polymer actuator element 100c, and the polymer actuator element 100c and the polymer actuator element d constitute a pair of drive units for the actuator elements.
  • each polymer actuator element is formed on the opposing surfaces of the electrode layer 103a and the electrode layer 103b, and the electrode layer 103a and the electrode.
  • the layers 103b and the electrode layers 103c and 103d are connected to each other in a planar shape.
  • Layers 102d are electrically connected to each other!
  • the polymer actuator element 100a includes electrode layers 102a, 103a 'on the same surface from the one end A.
  • the other end portion D is divided through the electrically insulating portion 104 to be configured as different electrode layer elements, and also on the surface facing the solid electrolyte layer 101 as different electrode layer elements.
  • This polymer actuator element 100a has the same configuration as the other polymer actuator elements 100b, 100c, and 100d.
  • the end portion D of the polymer actuator element 101 is fixed to the fixed portion 10, and the other open end portion E constitutes the moving end portion and is connected to the moving portion 11. Yes.
  • the voltage application to the polymer actuator is electrically connected to the electrode layers 103 'and 102' of the polymer actuator 100a through an electric terminal (not shown) provided in the fixed portion 10. Has been.
  • the other linear polymer actuator elements connected to the polymer actuator element 101 cause 100b, 100c, 100d and the same forward and reverse bending motions to cause linear motion in the X direction as shown in Fig. 12. Driving is realized, and the moving unit 11 can move in the linear direction.
  • Reference numeral 12 denotes a fastener for electrically connecting the electrode layer 102a and the electrode layer 102b, the electrode layer 102 and the electrode layer 102, and the electrode layer 102c and the electrode layer 102d. is there . 13 is an insulating part.
  • the fastener 12 may be a metal clip, a resin clip coated with metal, or the like, which can be fixed by connecting the same end portions of the polymer actuator element to each other and having conductivity.
  • FIG. 4 is a schematic view showing another example of a polymer actuator element.
  • FIG. 4 (a) is a plan view.
  • Fig. 4 (b) is a cross-sectional view along line Y-Y, and
  • Fig. 4 (c) is a rear view.
  • the electrode layers 112a and 112a at the intersecting positions across the solid electrolyte layer 111 are electrically connected to each other, and the connecting means is formed by perforating the solid electrolyte layer 111.
  • the electrode layers 112a and 112a and the electrode layers 113a and 113a ′ constitute the same electrode by forming the electrode layer in the hole at the same time.
  • the ion exchange resin that can be used for the solid electrolyte layer of the polymer actuator element used in the present invention is not particularly limited, and a known ion exchange resin can be used. Regardless of whether the ion exchange resin is a cation type or an anion type, the same effect can be obtained by changing the way the potential difference is applied.
  • cation exchange resin it is possible to use polyethylene, polystyrene, fluorine resin or the like into which a hydrophilic functional group such as sulfonic acid group or carboxyl group is introduced.
  • resins examples include perfluorosulfonic acid resin (trade name “Nafion” manufactured by DuPont), perfluorocarboxylic acid resin (trade name “Flemion” manufactured by Asahi Glass Co., Ltd.), ACIPLEX (Asahi Kasei Kogyo).
  • NEOSEPTA manufactured by Toyama Corporation
  • the ion exchange resin preferably has flexibility.
  • the ion exchange resin is swollen by the liquid organic compound.
  • the ion exchange resin can become a gel electrolyte by becoming a swollen state.
  • the degree of swelling is not particularly limited, but the degree of swelling of the polymer activator, that is, the swollen state of the polymer activator with respect to the thickness of the polymer electrolyte in a dry state.
  • the rate of increase in thickness at 3 to 200% is preferred, and 5 to 60% is more preferred.
  • the displacement bending performance is inferior, and when the degree of swelling is greater than 200%, the displacement bending performance is also inferior and the tensile strength is greatly reduced.
  • the said organic compound is contained in an ion exchange resin, when a metal electrode is porous, a part of said solvent may be contained in the said metal electrode with a salt.
  • liquid organic compound As the liquid organic compound used in the present invention, a polar organic solvent containing a salt or an ion liquid is used. In the case of a force-polarized organic solvent that can be used alone, a salt containing ions that serve as charge carriers is required. However, the ionic liquid may be used as the salt. This is because these liquid organic compounds easily move in the ion exchange resin when a potential difference is given to the ion exchange resin.
  • the liquid organic compound is an organic compound that is liquid at normal temperature and pressure, and particularly preferably has a boiling point of 180 ° C. or higher or a decomposition temperature. This is because solvent evaporation is likely to occur, which can contribute to long-term stability.
  • the polarizable organic solvent is preferably an organic compound having a boiling point or decomposition temperature of 180 ° C. or higher, but is particularly preferably a polarizable organic solvent having a boiling point of 245 ° C. or higher.
  • Specific examples of preferred polarizable organic solvents include diethylene glycol, glycerin, sulfolane, propylene carbonate, butyrolatatatone, or a mixture thereof. Of these, diethylene glycol, glycerin, sulfolane or a mixture thereof is particularly preferred.
  • the salt contained in the polarizable organic solvent is not particularly limited as long as it is a salt that can be dissolved in the polarizable organic solvent.
  • the ion exchange resin forms counter ions with force thiones.
  • a salt of a monovalent to trivalent cation can be used, and the use of a monovalent cation such as Na +, K +, or Li + can bend or displace with a large ionic radius. It is even more preferable to use a large alkylammonium ion because it allows greater bending or displacement.
  • Examples of the alkyl ammonia include CH N + H, C H N + H, (CH) N + H, (C H) N + H, (CH) N + H, (C H)
  • H N + H H N + (CH) OH ⁇ HN + CH (CH OH), (HOCH) C (CH N + H), CHO
  • Ammonium ions having alicyclic hydrocarbons in addition to hydrocarbons as functional groups can be used.
  • the concentration of the salt is a functional group of the ion exchange resin. In order to obtain sufficient bending or displacement, it is preferably 0.01-1 OmolZl, more preferably 0.1-1.OmolZl, .
  • Preferred examples of the ionic liquid include tetraalkyl ammonium ion, imidazolium ion, alkyl pyridinium ion, virazolium ion, pyrrolium ion, pyrrolium ion, pyrrolidinium ion, and piberidinium ion. At least one cation selected from the group;
  • n and m are arbitrary integers.
  • the tetraalkylammonium cation is not particularly limited.
  • Trimethylpropyl ammonium, trimethylhexyl ammonium and tetrapentyl ammonium can be used.
  • the imidazolium cation a dialkyl imidazolium ion and Z or a trialkyl imidazolium ion can be used.
  • the imidazolium cation is
  • 1-ethyl 3-methylimidazolium ion, 1-hexyl 3 methyl imidazolium ion, 1-butyl 3-methyl imidazolium ion, 1,3-dimethyl imidazolium ion, 1-methyl 3-ethyl Illustrates imidazolium ion, 1, 2, 3 trimethylimidazolium ion, 1,2 dimethyl-3-ethyl imidazolium ion, 1,2 dimethyl-3-propylimidazolium ion, 1-butyl-2,3 dimethyl imidazolium ion be able to.
  • the alkylpyridinium cation is not particularly limited, but N butyl pyridinium ion, N methyl pyridinium ion, N ethyl pyridinium ion, N-propyl pyridinium ion, 1-ethyl-2— Examples include methylpyridium, 1-butyl-4 methylpyridium, 1-butyl-2,4 dimethylpyridium.
  • the pyrazolium cation is not particularly limited. Examples include Zorium ion, 1-Ethyl-2-methylvirazolium ion, 1-Propyl 2-methylvirazolium ion, 1-Butyl2-methylvirazolium ion.
  • the pyrrolium cation is not particularly limited, and examples thereof include 1,1-dimethylpyrrolium ion, 1-ethyl-1 methylpyrrolium ion, 1-methyl-1 propylpyrrolium ion, and 1-butyl-1 methylpyrrolium ion. can do.
  • the pyrrolinium cation is not particularly limited, but 1, 2 dimethylpyrrolium ion, 1-ethyl-2-methylpyrrolium ion, 1-propyl 2-methylpyrrolium ion, 1-butyl-2-methylpyrrole Rium ion can be exemplified
  • the pyrrolidinium cation is not particularly limited. Can be illustrated.
  • the piperidinium cation is not particularly limited. It is possible to illustrate this.
  • the ionic liquid is not particularly limited in the combination of the cation and the cation.
  • EMITFSI 1-methyl-3-ethylimidazoletrifluoromethane sulfoimide
  • EM IBF 1-methyl- 3 imidazolium tetrafluoroborate
  • EMIPF 1-methyl- 3 imidazolium hexafluorophosphate
  • a potential difference is applied to the surface of the ion exchange resin.
  • a pair of electrodes are provided at positions facing each other across the ion exchange resin.
  • the metal used for the electrode can be used without limitation as long as it is a solid metal (including noble metal) with good conductivity except for a liquid metal such as mercury, and may be an alloy.
  • An appropriate metal can be selected depending on the type of ion-exchange resin liquid organic compound used.
  • facing metal electrodes means that a pair of metal electrodes exist in parallel. However, the two electrodes need not be completely parallel, but may be slightly deviated from parallel as long as the actuator element can be displaced by applying a voltage to the metal electrodes. However, as the parallel force shifts, the bending and deformation efficiency per Coulomb amount changes.
  • the shape of the ion exchange resin is made into a parallel flat plate shape, and a pair of metal electrodes is formed on the surface of the plane side wall facing in parallel with the Met method, Among these, it is preferable to provide by an electroless plating method.
  • an electroless plating method As described later, when a metal film that can be used as a metal electrode is formed on the surface of the ion exchange resin by an electroless plating method, the contact area between the ion exchange resin and the metal electrode is increased, and this causes bending as an actuator. This is because the amount of displacement can be increased.
  • the polymer activator used in the present invention can be driven for a long time without being coated, but may be further coated with a flexible resin.
  • the resin is not particularly limited, and polyurethane resin and Z or silicon resin can be used.
  • the polyurethane resin is not particularly limited, but it is particularly preferable to use a flexible thermoplastic polyurethane because of its high flexibility and good adhesion.
  • the product name “Asaflex 825” (flexibility 200%, manufactured by Asahi Kasei), product name “Pelecene 2363—80A” (flexibility 550%), “Pelecene 2363 — 80AEJ (flexibility) 650%), “Pelecene 2363-90A” (flexibility: 500%), “Pelecene 2363-90AE” (flexibility: 550%), (manufactured by Dow Chemical Co., Ltd.).
  • the silicone resin is not particularly limited, but a resin having a flexibility of 50% or more is particularly preferable because of its high flexibility and good adhesion.
  • the Siri As the resin for example, “Silaseal 3FW”, “Silaseal DC738RTV”, “DC3145”, and “DC3140” (above, manufactured by Dow Co., Ltd.) can be used.
  • the flexibility refers to the tensile elongation at break (Ultimate Elongation%) in accordance with ASTM D412.
  • the actuator element of the embodiment is basically manufactured by the following technique in order to increase the bending rate and the amount of displacement.
  • the actuator element used in the present invention is not limited to the one manufactured by the following manufacturing method.
  • An example of a preferable manufacturing method of the actuator element used in the present invention is to manufacture a laminated body in which a metal film is provided on the surface of a rectangular parallelepiped ion exchange resin, and use the metal film as a metal electrode. That is.
  • This laminate can be produced by adsorbing a metal complex to an ion exchange resin and then immersing the ion exchange resin in an aqueous reducing agent solution to reduce the metal complex.
  • the electrode forming process includes a process including an adsorption process and a reduction process.
  • the electrode forming step is a step of forming a metal electrode by an electroless plating method, an adsorption step for adsorbing a metal complex on an ion exchange resin, and a reduction in which a reducing agent solution is brought into contact with the ion exchange resin on which the metal complex is adsorbed. The process is included.
  • the ion exchange resin Before the adsorption-reduction step, the ion exchange resin is swelled by immersing the ion exchange resin in a good solvent such as water or methanol or a mixed solvent containing a good solvent.
  • a swelling step may be provided. This is because more metal complexes can be adsorbed to the ion exchange resin by making the ion exchange resin swell.
  • the ratio of swelling the ion exchange resin is not less than 110%, preferably 110% to 300% of the thickness of the ion exchange resin in the dry state, so that more metal complexes can be adsorbed. preferable.
  • a good solvent a basic salt mixed in an amount of 1 to 30 wt%, preferably 1 to LO wt% can be used.
  • a preliminary treatment such as a roughening treatment may be performed prior to the swelling step.
  • the adsorption step is not particularly limited as long as the metal complex is adsorbed on the ion exchange resin. It is not specified.
  • a metal complex solution may be applied to the polymer electrolyte, but it is preferable to perform the adsorption step by immersing the ion exchange resin membrane in the metal complex solution because the operation is easy.
  • the metal complex that can be used in the adsorption step is not particularly limited as long as the metal film formed on the surface of the laminate by reduction can function as an electrode.
  • the metal complex is preferably a complex having a central metal of an electrochemically stable metal having a low ionization tendency such as a gold complex, a platinum complex, a noradium complex, a rhodium complex, and a ruthenium complex.
  • a metal complex having a metal as a central metal such as a noble metal having good electrical conductivity and high electrochemical stability, is preferable.
  • a complex having a metal such as gold, which is relatively difficult to electrolyze, as a central metal is preferable.
  • a gold complex having gold as a central metal is particularly preferable.
  • the ligand of the metal complex is not particularly limited, and examples thereof include ethylenediamine and phenantorin phosphorus derivatives.
  • the metal salt solution used in the adsorption step is not limited to a solvent, and water or a non-aqueous polar organic compound can be used.
  • the solvent is water as the main component because the metal salt can be easily dissolved and handled.
  • the metal salt solution is preferably an aqueous metal salt solution.
  • the metal complex solution is preferably an aqueous metal complex solution, particularly preferably an aqueous gold complex solution or an aqueous platinum complex solution, and more preferably an aqueous gold complex solution.
  • the adsorption step is a step of adsorbing the metal complex to the cation exchange resin
  • conditions such as temperature and immersion time are not particularly limited, but the temperature may be 20 ° C or higher. It is preferable for efficient swelling.
  • the metal complex solution may contain a good solvent for the polymer electrolyte so that the metal complex is easily adsorbed to the cation-exchanged resin.
  • the reducing agent used in the electroless plating reduction step can be used by appropriately selecting the type according to the type of the metal complex used in the metal complex solution adsorbed on the ion exchange resin.
  • E.g. sodium sulfite, hydrazine, sodium borohydride, phosphorous An acid, sodium hypophosphite, etc. can be used.
  • the reducing agent may be appropriately selected depending on the metal species to be deposited.
  • the metal to be precipitated by reduction is nickel or cobalt
  • sodium phosphinate, dimethylaminoborane, hydrazine, or potassium tetrahydroborate can be used as the reducing agent.
  • the metal deposited by reduction is palladium
  • sodium phosphinate, sodium phosphonate, or potassium tetrahydroborate can be used as the reducing agent.
  • the metal to be deposited by reduction is copper, formalin, sodium phosphonate, or potassium tetrahydroborate can be used as the reducing agent.
  • the metal deposited by reduction is silver or gold
  • dimethylaminoborane or potassium tetrahydroborate can be used as the reducing agent.
  • the metal deposited by reduction is platinum
  • hydrazine or sodium tetrahydroborate can be used as the reducing agent.
  • the metal deposited by reduction is tin
  • trisalt-titanium can be used as the reducing agent.
  • the reducing agent is not limited to the above types, but is used with catalysts such as platinum black, non-metallic acids or ions such as Hg S, HI and I—, Na (H 3 PO 4) and Na 2 SO Lower acid
  • Ionization trends such as silicates, lower oxides such as CO and S02, Li, Na, Cu, Mg, Zn, Fe, Fe (II), Sn (II), Ti (m), Cr (II) Large metals or their amalgams and low-valent metal salts, hydrides such as A1H [(CH3) 2CHCH2] 2 and lithium aluminum hydride, diimides, formic acid, aldehydes, saccharides and L-scorbic acid are used as appropriate. I'll do it.
  • the reducing agent can be selected as appropriate according to the metal species to be reduced.
  • the growth rate of the metal, the particle size of the deposited metal, the contact area between the metal electrode of the fractal structure and the ion exchange resin, In order to change the electrode structure and the flexibility of the grease after plating, the optimum type of reducing agent can be selected and used.
  • the kind of the reducing agent can be appropriately selected so that the reducing bath in the reduction step has a desired pH.
  • the concentration of the reducing agent solution is not particularly limited as long as it contains an amount of reducing agent sufficient to obtain the amount of metal to be precipitated by reduction of the metal complex. Concentration equivalent to the metal salt solution used when forming electrodes by plating It is also possible to use degrees. Further, the reducing agent solution can contain a good solvent for the ion exchange resin.
  • a laminate having a metal film on the surface of the ion exchange resin can be obtained by performing the adsorption step and the reduction step once, but the adsorption step and the reduction step are performed.
  • the displacement performance (flexibility) when driven as an actuator and the electric double layer capacity at the interface between the metal film and the ion-exchange resin are compared with the conventional values. Can be larger. If the adsorption process and the reduction process are repeated, attach them in the previous reduction process!
  • a washing step is not particularly limited, and the reduction may be removed by washing with water.
  • the solvent contained in the laminate is replaced with a desired liquid organic compound as a polymer activator used in the present invention.
  • the solvent can be exchanged by immersing the laminate obtained above in a desired liquid organic compound at room temperature and pressure for about 30 minutes.
  • a desired metal electrode is manufactured by scraping off a part of the metal film from the laminated body in which the entire surface obtained by the above method is covered with the metal film!
  • a metal film By cutting out a metal film at a predetermined site, two metal electrodes are provided on one surface on the opposite side surface, and the electrodes at positions intersecting each other with an ion exchange resin interposed therebetween are connected to each other. In the cross state, the same electrode layer can be obtained.
  • membrane cation exchange resin (fluorine resin-based ion exchange resin: perfluorocarboxylic acid resin, trade name "Flemion", manufactured by Asahi Glass Co., Ltd., ion exchange capacity 1. 4 meq / g) was cut into a flat plate shape measuring 1 mm in length, 3 mm in width, and 5 mm in length. This cation exchange resin was immersed in methanol as a good solvent at 20 ° C for 1 hour or longer. At the time of this immersion, the film thickness of the swollen membrane cation exchange resin was measured, and the ratio of the increase in the film thickness after swelling to the dry film thickness [the degree of swelling (%)] was calculated. And swelling degree is 50 The cation exchange resin was soaked in a good solvent so as to be%.
  • the temperature of the aqueous solution was set to 60 to 80 ° C., and the dichlorophenanthrine gold complex was reduced for 6 hours while gradually adding sodium sulfite.
  • (3) washing step the membranous polymer electrolyte having a gold electrode formed on the surface was taken out and washed with water at 70 ° C. for 1 hour.
  • the cation exchange resin (laminated body) on which the cleaned metal electrode was formed was taken out.
  • the thickness of the laminate at this stage was lmm due to swelling of the cation exchange resin.
  • the gold electrode is present on the entire bottom and side surfaces, the gold on the bottom surface of the laminate and the wide side of the side surface! Deleted.
  • the gold on the narrow side surface was deleted leaving the gold at the connecting portion connecting the two divided gold in an intersecting state to obtain an actuator element.
  • the obtained actuator elements were wide and arranged in parallel so that the side surfaces were in contact, and connected and fixed with metal clips alternately in the order of the upper end and the lower end to obtain a drive unit.
  • one end of the drive unit was fixed to the fixed part, and the electric terminal provided on the fixed part was connected to each of the positive electrode and the negative electrode of the metal electrode of the actuator element.
  • the other end was connected to the moving part to obtain an actuator device used in the examples.
  • the actuator device of the present invention can be used in various applications that require a linear drive mechanism.
  • a linear actuator that is lightweight and silent when driven such as a positioning device, posture control device, lifting device, transport device, moving device, adjusting device, adjusting device, guiding device, or joint It can be suitably used as a drive unit of the apparatus.
  • office equipment, antennas, equipment for placing people such as beds and chairs, medical equipment, engines, optical equipment, fixtures, side trimmers, vehicles, lifting equipment, food processing equipment, cleaning equipment, measurement Equipment, inspection equipment, control equipment, machine tools, processing machines, electronic equipment, electron microscopes, electric razors, electric toothbrushes, manipulators, masts, amusement equipment, amusement equipment, vehicle simulation equipment, vehicle occupant restraining devices, and aircraft
  • a driving unit that generates a driving force for moving a track-type orbit which is a driving unit force that generates a linear driving force, or a pressing unit that performs a linear operation Can be used.
  • the actuator device is, for example, a track-type track that is a driving unit force that generates a linear driving force in a valve, a brake, and a locking device used in all machines including the above-mentioned devices such as OA devices and measuring devices. It can be used as a driving unit that generates a driving force for movement or a pressing unit that performs a linear operation.
  • the positioning device drive unit, the attitude control device drive unit, the lifting device drive unit, the transport device drive unit, and the mobile device drive In addition to the above-described devices, equipment, machines, etc., in general mechanical equipment, the positioning device drive unit, the attitude control device drive unit, the lifting device drive unit, the transport device drive unit, and the mobile device drive.
  • the actuator device can be suitably used as a drive unit for an adjustment device such as a part, an amount and a direction, a drive unit for an adjustment device such as a shaft, a drive unit for a guidance device, and a pressing unit for a pressing device.
  • the actuator device can be suitably used as a drive unit in a joint device, such as a joint unit that can be directly driven, such as a joint intermediate member, or a drive unit that gives a rotational motion to the joint.
  • the actuator device includes, for example, a drive unit for an inkjet part in an inkjet printer such as a CAD printer, a drive unit for changing the optical axis direction of the light beam of the printer, and a disk drive device such as an external storage device It can be suitably used as a head drive unit for the paper and a drive unit for paper pressing contact force adjusting means in a paper feeding device of an image forming apparatus including a printer, a copying machine, and a fax machine.
  • the actuator device includes, for example, a driving unit of a driving mechanism that moves and installs a measuring unit and a feeding unit such as a high-frequency feeding unit such as a frequency sharing antenna for radio astronomy, and the like, and It can be suitably used for a drive part of a lift mechanism in a mast such as a vehicle-mounted pneumatic operation telescopic mast (telescoping mast) or an antenna.
  • a driving unit of a driving mechanism that moves and installs a measuring unit and a feeding unit such as a high-frequency feeding unit such as a frequency sharing antenna for radio astronomy, and the like, and It can be suitably used for a drive part of a lift mechanism in a mast such as a vehicle-mounted pneumatic operation telescopic mast (telescoping mast) or an antenna.
  • the actuator device is, for example, a driving unit of a massage unit of a chair-shaped massage machine, a driving unit of a nursing care or medical bed, a driving unit of a posture control device of an electric reclining chair, a massage machine, an easy chair, or the like.
  • Recliner backrest used • Extension rod drive that allows the ottoman to move up and down, chairs, nursing beds, etc. If the backrest of a retractable chair in furniture that carries a person such as a backrest or redderrest is placed, the drive unit used for the direct drive of the legrest or the bed of the nursing bed and the drive unit for controlling the posture of the standing chair Can be suitably used.
  • the actuator device includes, for example, a driving unit of a testing device, a driving unit of a pressure measuring device such as a blood pressure used in an extracorporeal blood treatment device, a driving unit of a catheter, an endoscope device, a forceps, etc.
  • Drive unit of cataract surgery device using sound wave drive unit of exercise device such as jaw movement device, drive unit of means for relatively expanding and contracting chassis member of sick hoist, raising and lowering and moving of care bed It can be used suitably for a drive unit for posture control and the like.
  • the actuator device includes, for example, a drive unit for a vibration isolator that attenuates vibration transmitted from a vibration generating unit such as an engine to a vibration receiving unit such as a frame, and a valve operating valve for an intake and exhaust valve of an internal combustion engine. It can be suitably used as a drive unit for an apparatus, a drive unit for an engine fuel control device, and a drive unit for an engine fuel supply device such as a diesel engine.
  • the actuator device includes, for example, a driving unit of a calibration device of an imaging device with a camera shake correction function, a driving unit of a lens driving mechanism such as a home video camera lens, and a moving lens group of an optical device such as a still camera or a video camera.
  • the actuator device can be suitably used for, for example, a pressing portion of a fixture such as a caulking fixing of a hose fitting to a hose body.
  • the actuator device includes, for example, a drive unit such as a suspension spring of an automobile suspension, a drive unit of a fuel filler opener for unlocking a fuel filler lid of a vehicle, and an extension and a retraction of a bulldozer blade.
  • Drive unit drive device for automatically changing the gear ratio of a transmission for an automobile and for automatically connecting and disconnecting a clutch It can use suitably for the drive part.
  • the actuator device includes, for example, a driving unit for a lifting device for a wheelchair with a seat plate lifting device, a driving unit for a step-lifting elevator, a driving unit for a lifting transfer device, a medical bed, an electric bed, an electric table, an electric table Suitable for chairs, nursing beds, lifting tables, CT scanners, truck cabin tilting devices, lifters for lifters and other lifting machines, and drive units for heavy vehicle unloading devices Can be used.
  • the actuator device can be suitably used for, for example, a drive unit of a discharge amount adjusting mechanism such as a food discharge nozzle device of a food processing apparatus.
  • the actuator device can be suitably used, for example, for a driving unit such as a carriage or a cleaning unit of a cleaning device for raising and lowering.
  • the actuator device includes, for example, a driving unit of a measuring unit of a three-dimensional measuring device that measures the shape of a surface, a driving unit of a stage device, a sensor such as a detection system for operating characteristics of a tire, a driving unit of a part, a force sensor
  • the drive unit of the device that gives the initial speed of the impact response evaluation device, the drive unit of the piston drive device of the piston cylinder of the device including the in-hole water permeability test device, the drive unit for moving in the elevation angle direction in the light collecting and tracking power generator, Alignment is required in the drive unit of the tuning mirror of the sapphire laser oscillation wavelength switching mechanism of the measurement device including the gas concentration measurement device, the inspection device of the printed circuit board, and the flat panel display inspection device such as liquid crystal and PDP.
  • Adjustable aperture device drive unit used for charged particle beam systems such as system, drive device for support device or detection unit of measurement object in flatness measuring instrument, and assembly of fine devices, semiconductors It can be suitably used for the drive part of precision positioning devices such as exposure equipment, semiconductor inspection equipment, and 3D shape measurement equipment.
  • the actuator device can be suitably used for, for example, an electric razor drive unit and an electric toothbrush drive unit.
  • the actuator device is, for example, an imaging device for a three-dimensional object or a drive unit of a focus depth adjustment device for a readout optical system shared by CD and DVD, and a drive target surface by a plurality of actuator elements. Desired by deforming its shape as an active curved surface
  • the drive unit of the variable mirror that can form the curved surface approximately and easily change the focal position
  • the drive unit of the disk device that can linearly move the moving unit having at least one of the magnetic heads such as an optical pickup , Magnetic tape for linear tape storage systems, etc.
  • Drive unit of head actuator element assembly drive unit of image forming apparatus applied to electrophotographic copying machine, printer, facsimile, etc.
  • magnetic head unit A drive unit of a mounting member such as a material, a drive unit of an optical disc master exposure apparatus that drives and controls a focusing lens group in the optical axis direction, a drive unit of a head drive unit that drives an optical head, or recording information on a recording medium
  • Information recording / reproducing device drive unit that reproduces information recorded on the recording medium
  • circuit / breaker distributed circuit / breaker
  • the actuator device is, for example, a drive unit of a rubber composition press molding vulcanizing device, a drive unit of a component aligning device that aligns a component to be transferred into a single row / single layer or a predetermined posture.
  • Compression molding device drive unit welding device holding mechanism drive unit, bag making filling and packaging machine drive unit, machining center and other machine tools, injection molding machine and press machine drive units, and printing device Drive units for fluid application devices such as painting devices and lacquer spraying devices, drive units for manufacturing devices that manufacture camshafts, drive units for lifting devices for covering materials, and drive devices such as tuft ear regulators in non-woven looms , Needle drive systems for tufting machines, looper drive systems, knife drive systems, etc., drive units for polishing equipment that polishes parts such as cam grinders and ultra-precision machined parts, Movement
  • annealing window drive Drive unit for the horizontal movement mechanism of the device, drive unit for the support arm of the glass melting furnace for Haas, drive unit for advancing and retreating the rack of the exposure device such as the method of forming the fluorescent screen of the color picture tube, and driving the torch arm of the ball bonding device Parts mounting process and measurement inspection, such as driving parts in the XY direction of the head, bonding head, mounting of chip parts and measurement using probes Drive unit for the process, drive unit for raising and lowering the cleaning tool support of the substrate cleaning device, drive unit for moving the detection head that scans the glass substrate forward and backward, drive unit for the exposure device that transfers the pattern onto the substrate, precision unit Sub-micron micro-positioning device drive unit, chemical mechanical force polishing tool measurement device positioning device drive unit, circuit device such as conductor circuit element and liquid crystal display element, etc.
  • Is used for manufacturing in the lithographic process a stage drive suitable for the exposure apparatus and scanning exposure apparatus used for positioning, a drive section for means for transporting or positioning workpieces, a reticle stage, a wafer stage, etc.
  • Drive unit for positioning and transporting, etc. drive unit for precision positioning stage device in chamber, chemical mechanical force polishing system Machine parts or semiconductor wafer positioning device drive units, semiconductor stepper device drive units, drive units for precise positioning in the processing machine introduction station, NC machine machining center, etc.
  • the drive unit of passive vibration isolator and active vibration isolator for various devices typified by machines and IC industry steppers, exposure equipment used in the lithographic process of manufacturing semiconductor elements and liquid crystal display elements, etc.
  • a drive unit that displaces a reference grating plate of the light beam scanning device in the optical axis direction of the light beam, and a drive unit of a transfer device that transfers the reference grating plate into the article processing unit in the transverse direction of the competitor.
  • the above-mentioned actuator device can be suitably used for, for example, a drive unit for a probe positioning device of a scanning probe microscope such as an electron microscope and a drive unit for positioning an electron microscope sample micro-motion device.
  • the actuator device is, for example, a driving unit of a joint mechanism typified by a wrist of a robot arm in an automatic welding robot, a robot including an industrial robot, a nursing mouth bot, or a manipulator, and a joint other than the direct drive type.
  • a drive unit of an artificial limb such as an electric prosthesis having a plurality of openable and closable fingers, a drive unit of a handling robot, a drive unit of a prosthesis, and a power suitably for a drive part.
  • the actuator device can be suitably used, for example, as a pressing portion of a device that presses the upper rotary blade or the lower rotary blade of the side trimmer.
  • the above-mentioned actuator device is, for example, a driving unit for an accessory in a game device such as a pachinko machine, a driving unit for an amusement device such as a doll or a pet robot, and a driving unit for a simulation device for a simulation device for riding. It can be used suitably.
  • the actuator device can be used, for example, in a valve drive unit used in all machines including the above-described devices.
  • the valve drive unit of the evaporative helium gas re-liquid apparatus a bellows type Drive unit for pressure-sensitive control valve, drive unit for opening device that drives rod frame, drive unit for vacuum gate valve, drive unit for solenoid operation type control valve for hydraulic system, and motion transmission device using pivot lever It can be suitably used for a built-in valve drive unit, a rocket movable nozzle valve drive unit, a suck back valve drive unit, and a pressure regulating valve unit drive unit.
  • the actuator device can be used as, for example, a brake pressing unit used in machines including the above-described devices.
  • brakes for elevators, brakes for elevators, etc. It can be suitably used for a pressing portion of a braking device suitable for use in a brake, and a pressing portion of a brake structure or a brake system.

Abstract

A direct driven polymer actuator in which dead space of the entire mechanism is reduced by eliminating the need for a rotary supporting means of the joint of polymer actuator elements, and axial speed is stabilized during linear motion while reducing the weight and size of the actuator. A plurality of actuator elements each comprising a planar rectangular parallelepiped solid electrolytic layer, and electrode layers formed on the opposing surfaces sandwiching the solid electrolytic layer under mutually insulated state are driven directly by a polymer actuator, wherein a pair of actuator elements arranged in parallel and in a direction substantially perpendicular to the direct drive direction are constituted as a direct drive unit, identical end portions of the actuator elements are coupled planarly on the electrode layers formed on the opposing surfaces, and the electrode layers at the identical end portions formed on respective surfaces on the opposite side are connected electrically.

Description

明 細 書  Specification
直動駆動型高分子ァクチユエータ装置  Linear motion type polymer actuator device
技術分野  Technical field
[0001] 本発明は、ロボットや医療機器、マイクロマシンなどの分野に応用できる直動駆動 型高分子ァクチユエータ装置の改良に関する。  TECHNICAL FIELD [0001] The present invention relates to an improvement of a linear motion type polymer actuator device that can be applied to the fields of robots, medical equipment, micromachines, and the like.
背景技術  Background art
[0002] 従来、イオン導電性榭脂膜 (固体高分子電解質層)の表面に貴金属等の電極層を 接合した高分子ァクチユエータが提供されている。特許文献 1、特許文献 2は、イオン 導電性高分子 ·貴金属接合体 (IPMC膜)を用いた高分子ァクチユエータを開示して いる。  Conventionally, there has been provided a polymer actuator in which an electrode layer made of a noble metal or the like is bonded to the surface of an ion conductive resin membrane (solid polymer electrolyte layer). Patent Documents 1 and 2 disclose polymer actuators using an ion conductive polymer / noble metal joined body (IPMC film).
[0003] 特許文献 1 :特開平 7— 4075  Patent Document 1: Japanese Patent Laid-Open No. 7-4075
特許文献 2:特開平 11 235064  Patent Document 2: JP-A-11 235064
[0004] 高分子ァクチユエータの駆動は、イオン導電性高分子膜内においてイオンと共に 水が移動することにより実現するものである。具体的には、電極に挟まれたイオン導 電性榭脂膜に電圧を加えると、マイナス極側は、プラスイオンと共に高分子内に保持 されている水が移動してくることによって膨潤して伸び、一方、対畤するプラス極側は 水を失うことによって縮むという現象によるものである。従って、高分子ァクチユエータ の原始的な動きは、マイナス極側が伸び、プラス極側が縮むという屈曲運動であるた め、ァクチユエータの駆動を直線的な動きとしたい場合は、屈曲運動を何等かの方法 で、直線運動に変換する必要がある。  [0004] The driving of the polymer actuator is realized by the movement of water together with the ions in the ion conductive polymer membrane. Specifically, when a voltage is applied to the ion conductive resin membrane sandwiched between the electrodes, the negative electrode side swells due to the movement of water held in the polymer together with the positive ions. On the other hand, the positive pole side facing it is due to the phenomenon of shrinking by losing water. Therefore, the primitive movement of the polymer actuator is a bending motion in which the negative pole side extends and the positive pole side contracts. Therefore, if you want to drive the actuator linearly, use some method to make the bending movement. Need to convert to linear motion.
[0005] 直線運動する高分子ァクチユエータの機構としては、例えば非特許文献 1に、図 5 [0005] As a mechanism of a polymer actuator that moves linearly, for example, Non-Patent Document 1, FIG.
1に示すような 4本の棒形状の IPMC膜 1、 1,、 2、 2,を横長菱型に接続した基本 ユニットからなる機構が提案されている。 3は移動部、 5は固定部である。  As shown in Fig. 1, a mechanism consisting of a basic unit in which four rod-shaped IPMC films 1, 1, 2, 2, and 2 are connected in a horizontally long rhombus shape has been proposed. 3 is a moving part, and 5 is a fixed part.
[0006] この機構の駆動は、図 5— 1のァクチユエータに電圧を印加すると、菱型の上部の 辺を形成する 2本の IPMC膜 1、 1 'が上向きに屈曲し、同時に菱型の下部の辺を形 成する 2本の IPMC膜 2、 2'が下向きに屈曲し、その結果、図 5— 2に示すように菱型 の垂直方向の対角線は上下方向に伸び、水平方向の対角線は左右に縮むことによ り、菱型の水平方向の対角線の頂点に設置した移動部 3が直線に動くというものであ る。 [0006] When a voltage is applied to the actuator shown in Fig. 5-1, the two IPMC films 1 and 1 'forming the upper side of the rhombus bend upward, and at the same time the lower side of the rhombus is driven. The two IPMC membranes 2 and 2 'that form the sides are bent downward. As a result, as shown in Fig. 5-2, the rhombus vertical diagonal extends vertically and the horizontal diagonal is By shrinking left and right In other words, the moving part 3 installed at the apex of the diamond diagonal in the horizontal direction moves in a straight line.
[0007] 非特許文献 1: M.Yamakita et al:" Control of Mechanical Impedance of IPMC Linear Actuator with Antagonism Structure, Proc.Of the 2nd Conference on Artificial Mus cles,2004  [0007] Non-Patent Document 1: M. Yamakita et al: "Control of Mechanical Impedance of IPMC Linear Actuator with Antagonism Structure, Proc. Of the 2nd Conference on Artificial Muscles, 2004
[0008] しかし、当該機構は、以下の問題点を有する。ひとつは、駆動時の屈曲運動におけ る IPMC膜同士の接続部の角度変化のために、接続部には薄フィルム等の回動支 持手段 4、 4'が必要となる力 動きの負荷によって IPMC膜に徐々に変形が生じ、直 線運動の軸や速度が不安定になる恐れがあると 、う点である。他の回動支持手段と して、蝶番などの部品の使用も考えられるが、変形の問題は防げるものの、コストの増 大、重量ィ匕という不利益が生じる。また当該機構のもうひとつの問題点は、直線運動 時においては、図 5— 2に示すように運動軸の垂直方向に菱型が上下に伸びた形態 となるため、伸びた部分を収納するスペースが必要となる力 静止時には使用されな い収納スペースの確保は、スペース面での無駄を生じ、ァクチユエータの小型化の 障害となる点である。更に、ァクチユエータの長さは、接続する基本ユニットの数によ り調節されるが、菱型の形状の基本ユニットは一定の幅があることから、長さの微調整 が難 、と 、う問題点も有する。  However, the mechanism has the following problems. First, due to the change in the angle of the joint between the IPMC films during the bending movement during driving, it is necessary to have rotational support means 4, 4 'such as a thin film at the joint due to the load of force movement. The point is that the IPMC film is gradually deformed and the axis and speed of the linear motion may become unstable. Although other parts such as hinges can be used as the rotation support means, the problem of deformation can be prevented, but the disadvantages of increased cost and weight. Another problem with this mechanism is that during linear motion, the diamond shape extends vertically in the direction perpendicular to the motion axis, as shown in Fig. 5-2. Securing a storage space that is not used when stationary is a waste of space and is an obstacle to downsizing of the actuator. Furthermore, the length of the actuator is adjusted depending on the number of basic units to be connected. However, since the diamond-shaped basic unit has a certain width, it is difficult to fine-tune the length. It also has a point.
[0009] これらの欠点は、ァクチユエータ機構を制御システムの中に配置する際に、様々な 設計上の制約を与えることが懸念される。  [0009] These shortcomings are likely to cause various design constraints when placing the actuator mechanism in the control system.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 以上の現状を鑑み、本発明は、高分子ァクチユエータ素子同士の接続部の回転支 持手段を不要とし、機構全体のデッドスペースを低減させ、ァクチユエータの軽量、 小型化及び、直線運動時における軸、速度の安定化の実現を目的としている。 [0010] In view of the above situation, the present invention eliminates the need for a rotation support means for the connection portion between the polymer actuator elements, reduces the dead space of the entire mechanism, and reduces the weight, size, and linear motion of the actuator. The purpose is to stabilize the shaft and speed.
課題を解決するための手段  Means for solving the problem
[0011] 本発明者らは、上記課題を解決する主要な手段として、直方体の平板形状の固体 電解質層 (イオン導電性高分子膜層)と、該固体電解質層を挟んで対向する表面に 相互に絶縁状態で形成された電極層カゝらなるァクチユエータ素子を、複数枚連結さ せて直動駆動を与える高分子ァクチユエータ装置を採用した。 [0011] As a main means for solving the above-mentioned problems, the inventors of the present invention have a rectangular parallelepiped solid electrolyte layer (ionic conductive polymer film layer) and a surface opposite to each other across the solid electrolyte layer. Two or more actuator elements, such as electrode layers formed in an insulated state, are connected to each other. We adopted a polymer actuator device that gives direct drive.
[0012] 前記ァクチユエータ装置においては、直動駆動方向に対してほぼ直角方向に並行 に配設された一対の前記ァクチユエータ素子が、直動駆動を与える駆動ユニットとし て構成されており、当該ァクチユエータ素子の同一端部が、その対向する表面に形 成された電極層同士において面状に連結され、かつ反対側の各表面に形成された 前記同一端部におけるそれぞれの電極層同士が電気的に接続されていることを特 徴とする。  [0012] In the actuator device, a pair of the actuator elements arranged in parallel in a direction substantially perpendicular to the linear drive direction is configured as a drive unit that provides the linear drive, and the actuator element Are connected to each other on the opposite surfaces, and are electrically connected to each other at the same end. It is characterized by that.
[0013] また、前記各ァクチユエータ素子のそれぞれの同一表面における電極層力 前記 一端部から前記他端部の範囲にわたって、電気的絶縁部を介して異なる電極層要 素から構成され、かつ前記固体電解質層を挟んで対向する表面に異なる電極層要 素を備えており、前記同一表面における電極層要素と、反対側の表面における電極 層要素が交差状態において同一電極層を構成する。  [0013] In addition, the electrode layer force on the same surface of each of the respective actuator elements, the electrode layer element is composed of different electrode layer elements through an electrical insulating portion over a range from the one end to the other end, and the solid electrolyte. Different electrode layer elements are provided on opposite surfaces across the layers, and the electrode layer elements on the same surface and the electrode layer elements on the opposite surface constitute the same electrode layer.
[0014] 更に、前記一方のァクチユエータ素子の他端部が固定部に固定され、他のァクチュ エータ素子の他端部が移動端部を構成しており、ァクチユエータ素子の各電極層に 電圧を印加する一対の端子部が前記固定部に設けられているものである。  [0014] Furthermore, the other end of the one actuator element is fixed to a fixed part, and the other end of the other actuator element constitutes a moving end, and a voltage is applied to each electrode layer of the actuator element. A pair of terminal portions are provided on the fixed portion.
[0015] すなわち、本発明は、直方体の平板形状の固体電解質層と、該固体電解質層を挟 んで対向する表面に相互に絶縁状態で形成された電極層力 なるァクチユエータ素 子を、複数枚連結させて直動駆動を与える高分子ァクチユエータ装置において、 直動駆動方向に対してほぼ直角方向に並行に配設された一対の前記ァクチユエ ータ素子が、直動駆動を与える駆動ユニットとして構成されており、  [0015] That is, the present invention connects a plurality of rectangular parallelepiped solid electrolyte layers and a plurality of activator elements each having an electrode layer force formed in an insulated state on opposite surfaces across the solid electrolyte layers. In the polymer actuator device for providing linear motion drive, a pair of the actuator elements arranged in parallel in a direction substantially perpendicular to the linear motion drive direction is configured as a drive unit for providing linear motion drive. And
前記ァクチユエータ素子の同一端部力 その対向する表面に形成された電極層 同士において面状に連結され、かつ反対側の各表面に形成された前記同一端部に おけるそれぞれの電極層同士が電気的に接続されていることを特徴とする直動駆動 型高分子ァクチユエータ装置である。  The same edge force of the actuator element The electrode layers formed on the opposing surfaces are connected in a planar shape, and the electrode layers at the same edge formed on the opposite surfaces are electrically connected to each other. It is a linear motion type polymer actuator device characterized in that it is connected to.
[0016] また本発明は、前記一方のァクチユエータ素子の他端部が固定部に固定され、他 のァクチユエータ素子の他端部が移動端部を構成している直動駆動型高分子ァクチ ユエータ装置である。  [0016] Further, the present invention provides a linear motion drive type polymer actuator device in which the other end portion of the one actuator element is fixed to a fixed portion and the other end portion of the other actuator element constitutes a moving end portion. It is.
[0017] また本発明は、前記各ァクチユエータ素子のそれぞれの同一表面における電極層 力 前記一端部力 前記他端部の範囲にわたって、電気的絶縁部を介して異なる電 極層要素から構成され、かつ前記固体電解質層を挟んで対向する表面に異なる電 極層要素を備えており、 [0017] The present invention also provides an electrode layer on the same surface of each of the actuator elements. Force The force of the one end portion is composed of different electrode layer elements through an electrically insulating portion over the range of the other end portion, and has different electrode layer elements on the opposite surfaces across the solid electrolyte layer. ,
前記同一表面における電極層要素と、反対側の表面における電極層要素が交差 状態において同一電極層を構成する請求項 1又は 2記載の直動駆動型高分子ァク チユエータ装置である。  3. The linear motion drive polymer actuator device according to claim 1, wherein the electrode layer element on the same surface and the electrode layer element on the opposite surface constitute the same electrode layer in an intersecting state.
[0018] また本発明は、ァクチユエータ素子の各電極層に電圧が印加される一対の端子部 が前記固定部に設けられている直動駆動型高分子ァクチユエータ装置である。  [0018] Further, the present invention is a linear motion drive type polymer actuator device in which a pair of terminal portions to which a voltage is applied to each electrode layer of the actuator element is provided in the fixed portion.
発明の効果  The invention's effect
[0019] 本発明の直動駆動型高分子ァクチユエータ装置によって、イオン導電性高分子膜 を用いた直線駆動ァクチユエータが実現し、制御システムへの応用の可能性が広が つた o  [0019] The linear-actuated polymer actuator device of the present invention realizes a linearly-actuated actuator using an ion conductive polymer membrane, and the possibility of application to a control system is widened.
[0020] またァクチユエータ素子間を面状の連結としたことで、運動軸や、速度の不安定ィ匕 の原因となりうる回転支持手段が不要となり、直線運動時における軸、速度の安定化 に資することができる。  [0020] In addition, the fact that the actuator elements are connected in a planar shape eliminates the need for a rotation support means that can cause motion axis and speed instability, contributing to stabilization of the axis and speed during linear motion. be able to.
[0021] 更に移動軸方向以外の軸方向にはイオン導電性榭脂膜を収容するスペースを必 要としないので、装置の軽量、小型化及び、省スペース化に寄与する。  [0021] Further, since no space for accommodating the ion conductive resin film is required in the axial direction other than the moving axis direction, it contributes to lightening, downsizing, and space saving of the apparatus.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1-1]本発明の一実施形態に係る直動駆動型ァクチユエータ装置の静止時の概略 側面図である。  [0022] FIG. 1-1 is a schematic side view of a linear drive actuator device according to an embodiment of the present invention when stationary.
[図 1-2]同ァクチユエータ装置における直動駆動時の概略側面図である。  FIG. 1-2 is a schematic side view of the actuator device at the time of linear motion driving.
[図 2]同装置に用いられる高分子ァクチユエータ素子の概要斜視図である。  FIG. 2 is a schematic perspective view of a polymer actuator element used in the apparatus.
[図 3]図 3は同高分子ァクチユエータ素子の概略図であり、図 3 (a)は平面図、図 3 (b) は側面図、図 3 (c)は背面図である。  [FIG. 3] FIG. 3 is a schematic view of the polymer actuator element. FIG. 3 (a) is a plan view, FIG. 3 (b) is a side view, and FIG. 3 (c) is a rear view.
[図 4]図 4は、同他例の高分子ァクチユエータ素子の概略図であり、図 4 (a)は平面図 [Fig. 4] Fig. 4 is a schematic view of the polymer actuator element of the other example, and Fig. 4 (a) is a plan view.
、図 4 (b)は Y— Y線断面図、図 4 (c)は背面図である。 4 (b) is a cross-sectional view taken along the line Y—Y, and FIG. 4 (c) is a rear view.
[図 5-1]従来の直動駆動型ァクチユエータ装置の静止時の概念図である。  FIG. 5-1 is a conceptual diagram of a conventional linear motion type actuator device when stationary.
[図 5-2]同直動駆動型ァクチユエータ装置の駆動時の概念図である。 符号の説明 FIG. 5-2 is a conceptual diagram at the time of driving of the linear drive actuator device. Explanation of symbols
[0023] 100 高分子ァクチユエータ素子  [0023] 100 polymer actuator element
101 固体電解質層  101 Solid electrolyte layer
102 電極層  102 Electrode layer
103 電極層  103 Electrode layer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] (直動駆動型高分子ァクチユエータ装置) [0024] (Direct acting drive polymer actuator device)
図 1 1は、本発明の一実施形態に係る直動駆動型ァクチユエータ装置を示す静 止時の概略側面図である。図 1 2は、同ァクチユエータ装置を示す直動駆動時の 概略側面図である。  FIG. 11 is a schematic side view of a linear motion type actuator device according to an embodiment of the present invention at rest. FIG. 12 is a schematic side view of the actuator device during linear motion driving.
[0025] 図 1—1及び図 1—2において、 100は本発明の装置を構成する高分子ァクチユエ ータ素子である。この高分子ァクチユエータ素子 100は、図示のように、直方体の平 板形状の固体電解質層 101と、該固体電解質層 101を挟んで対向する表面に相互 に絶縁状態で形成された電極層 102、 103とから構成され、この例では 4枚の高分子 ァクチユエータ素子 100a、 100b, 100c, 100dを順次連結させて構成している。  In FIGS. 1-1 and 1-2, reference numeral 100 denotes a polymer activator element constituting the apparatus of the present invention. As shown in the figure, this polymer actuator element 100 is composed of a rectangular parallelepiped solid electrolyte layer 101 and electrode layers 102 and 103 formed on the surfaces facing each other with the solid electrolyte layer 101 sandwiched therebetween. In this example, the four polymer actuator elements 100a, 100b, 100c, and 100d are sequentially connected.
[0026] これらの高分子ァクチユエータ素子 100a、 100b, 100c, 100dは、直動駆動方向 Xに対してほぼ直角方向に並行に配設されており、高分子ァクチユエータ素子 100a と高分子ァクチユエータ素子 100b、高分子ァクチユエータ素子 100bと高分子ァクチ ユエータ素子 100c、高分子ァクチユエータ素子 100cと高分子ァクチユエータ素子 d がそれぞれ一対の前記ァクチユエータ素子の駆動ユニットを構成している。  [0026] These polymer actuator elements 100a, 100b, 100c, and 100d are arranged in parallel in a direction substantially perpendicular to the linear motion driving direction X, and the polymer actuator element 100a and the polymer actuator element 100b, The polymer actuator element 100b, the polymer actuator element 100c, and the polymer actuator element 100c and the polymer actuator element d constitute a pair of drive units for the actuator elements.
[0027] 図に示すように、各高分子ァクチユエータ素子のそれぞれの同一端部 A、 B、 Cが、 その対向する表面に形成された電極層 103aと電極層 103b同士、電極層 103aと電 極層 103b同士、電極層 103cと電極層 103d同士にお!、てそれぞれ面状に連結さ れている。そして、反対側の各表面に形成された前記同一端部 A、 B、 Cにおけるそ れぞれの電極層 102aと電極層 102b同士、電極層 102 と電極層 102 同士、電 極層 102cと電極層 102d同士が電気的に接続されて!、る。  [0027] As shown in the figure, the same end portions A, B, and C of each polymer actuator element are formed on the opposing surfaces of the electrode layer 103a and the electrode layer 103b, and the electrode layer 103a and the electrode. The layers 103b and the electrode layers 103c and 103d are connected to each other in a planar shape. The electrode layers 102a and 102b, the electrode layers 102 and 102b, and the electrode layer 102c and electrodes at the same end A, B, and C formed on the opposite surfaces, respectively. Layers 102d are electrically connected to each other!
[0028] 上記高分子ァクチユエータ素子 100aは、図 1— 1、図 1— 2、図 2及び図 3に示すよ うに、それぞれの同一表面における電極層 102a、 103a'が、前記一端部 Aから前記 他端部 Dの範囲にわたって、電気的絶縁部 104を介して分断されて異なる電極層要 素として構成されており、また前記固体電解質層 101を挟んで対向する表面にも異 なる電極層要素として備えられていて、前記同一表面における電極層 102aとその反 対側の表面における電極層 102a'、電極層 103a'とその反対側の表面における電 極層 103aとが交差状態においてそれぞれ接続部 106、 105を通じて同一電極層を 構成している。この高分子ァクチユエータ素子 100aの構成は、他の高分子ァクチュ エータ素子 100b、 100c, 100dも同様である。 [0028] As shown in Fig. 1-1, Fig. 1-2, Fig. 2 and Fig. 3, the polymer actuator element 100a includes electrode layers 102a, 103a 'on the same surface from the one end A. The other end portion D is divided through the electrically insulating portion 104 to be configured as different electrode layer elements, and also on the surface facing the solid electrolyte layer 101 as different electrode layer elements. The electrode layer 102a on the same surface and the electrode layer 102a 'on the opposite surface, and the electrode layer 103a' and the electrode layer 103a on the opposite surface in a crossing state, The same electrode layer is formed through 105. This polymer actuator element 100a has the same configuration as the other polymer actuator elements 100b, 100c, and 100d.
[0029] またこの実施形態の装置では、高分子ァクチユエータ素子 101の端部 Dが固定部 1 0に固定され、他の開放端部 Eが移動端部を構成し、移動部 11に連結している。  In the apparatus of this embodiment, the end portion D of the polymer actuator element 101 is fixed to the fixed portion 10, and the other open end portion E constitutes the moving end portion and is connected to the moving portion 11. Yes.
[0030] なお、この高分子ァクチユエータへの電圧印加は、固定部 10に設けられている電 気端子(図示せず)を通して高分子ァクチユエータ 100aの電極層 103'、 102'に電 気的に接続されている。  [0030] It should be noted that the voltage application to the polymer actuator is electrically connected to the electrode layers 103 'and 102' of the polymer actuator 100a through an electric terminal (not shown) provided in the fixed portion 10. Has been.
[0031] 従って、本装置の電極層 103a 102a'間に電位差をかけることにより、図 1—2に 示すように、固体電解質層 101a内において、マイナス極側は、水分子とともにプラス イオンが移動して伸び、プラス極側は縮む屈曲運動を起こす。そして、この電極層 10 3a\ 102a,とは反対側の表面において電気的に接続された電極層 103、 102でも マイナス極側は水分子とともにプラスイオンが移動して伸び、プラス極側は縮む屈曲 運動を起こす。これにより、電極層 103a 102a'領域の動きと、電極層 103、 102と が逆の屈曲運動が起こることになる。高分子ァクチユエータ素子 101に連続して連結 された他の高分子ァクチユエータ素子でも 100b、 100c, 100dこれらと同様の正逆 異なる屈曲運動を起こすことによって、図 1 2に示すところの X方向の直動駆動が 実現され、移動部 11が直線方向に移動することが可能となる。  [0031] Therefore, by applying a potential difference between the electrode layers 103a and 102a 'of this apparatus, as shown in Fig. 1-2, positive ions move with water molecules on the negative electrode side in the solid electrolyte layer 101a. It causes a bending movement that stretches and shrinks on the positive pole side. And even in the electrode layers 103 and 102 electrically connected on the surface opposite to the electrode layer 103a \ 102a, the negative electrode side is bent so that the positive ions move along with water molecules and expand, and the positive electrode side contracts Cause exercise. As a result, the movement of the electrode layer 103a 102a ′ region and the bending motion of the electrode layers 103 and 102 opposite to each other occur. The other linear polymer actuator elements connected to the polymer actuator element 101 cause 100b, 100c, 100d and the same forward and reverse bending motions to cause linear motion in the X direction as shown in Fig. 12. Driving is realized, and the moving unit 11 can move in the linear direction.
[0032] なお、 12は、電極層 102aと電極層 102bとの間、電極層 102 と電極層 102 と の間、電極層 102cと電極層 102dとの間をそれぞれ電気的に接続する留め具である 。 13は絶縁部である。この留め具 12は、金属クリップや、金属コーティングされた榭 脂クリップ等、高分子ァクチユエータ素子の同一端部同士の連結して固定でき、導電 性を有するものであればょ 、。  [0032] Reference numeral 12 denotes a fastener for electrically connecting the electrode layer 102a and the electrode layer 102b, the electrode layer 102 and the electrode layer 102, and the electrode layer 102c and the electrode layer 102d. is there . 13 is an insulating part. The fastener 12 may be a metal clip, a resin clip coated with metal, or the like, which can be fixed by connecting the same end portions of the polymer actuator element to each other and having conductivity.
[0033] 図 4は他例の高分子ァクチユエータ素子を示す概略図であり、図 4 (a)は平面図、 図 4 (b)は Y— Y線断面図、図 4 (c)は背面図である。この素子は、固体電解質層 11 1を挟んで交差位置にある電極層 112aと 112a 電極層 113aと 113a'が電気的に 接続されており、その接続手段は固体電解質層 111に穿孔を空けておき、電極層を この穿穴の中にも同時に形成することによって、電極層 112aと 112a 電極層 113a と 113a'が同一電極を構成して 、る。 [0033] FIG. 4 is a schematic view showing another example of a polymer actuator element. FIG. 4 (a) is a plan view. Fig. 4 (b) is a cross-sectional view along line Y-Y, and Fig. 4 (c) is a rear view. In this element, the electrode layers 112a and 112a at the intersecting positions across the solid electrolyte layer 111 are electrically connected to each other, and the connecting means is formed by perforating the solid electrolyte layer 111. The electrode layers 112a and 112a and the electrode layers 113a and 113a ′ constitute the same electrode by forming the electrode layer in the hole at the same time.
[0034] (イオン交換榭脂)  [0034] (Ion exchange resin)
本発明に用いる高分子ァクチユエータ素子の固体電解質層に用いることができるィ オン交換榭脂は、特に限定されるものではなぐ公知のイオン交換榭脂を用いること ができる。イオン交換樹脂が陽イオン型でも陰イオン型でも電位差の与え方を変更す ることで同様の効果が得られる。陽イオン交換榭脂を用いる場合には、ポリエチレン、 ポリスチレン、フッ素榭脂などにスルホン酸基、カルボキシル基などの親水性官能基 を導入したものを用いることができる。このような榭脂としては、例えばパーフルォロス ルホン酸榭脂(商品名「Nafion」、 DuPont社製)、パーフルォロカルボン酸榭脂(商 品名「フレミオン」、旭硝子社製)、 ACIPLEX (旭化成工業社製)、 NEOSEPTA (ト タヤマ社製)を用いることができる。  The ion exchange resin that can be used for the solid electrolyte layer of the polymer actuator element used in the present invention is not particularly limited, and a known ion exchange resin can be used. Regardless of whether the ion exchange resin is a cation type or an anion type, the same effect can be obtained by changing the way the potential difference is applied. When cation exchange resin is used, it is possible to use polyethylene, polystyrene, fluorine resin or the like into which a hydrophilic functional group such as sulfonic acid group or carboxyl group is introduced. Examples of such resins include perfluorosulfonic acid resin (trade name “Nafion” manufactured by DuPont), perfluorocarboxylic acid resin (trade name “Flemion” manufactured by Asahi Glass Co., Ltd.), ACIPLEX (Asahi Kasei Kogyo). NEOSEPTA (manufactured by Toyama Corporation) can be used.
[0035] 本発明に用いる高分子ァクチユエータの屈曲 ·変位量を大きくするために、前記ィ オン交換樹脂には柔軟性を有していることが好ましい。イオン交換樹脂に柔軟性を 付与するため、液状有機化合物によってイオン交換榭脂を膨潤させる。前記イオン 交換榭脂は、膨潤した状態となることで、ゲル電解質となることができる。前記膨潤の 度合いは、特に限定されるものではないが、前記高分子ァクチユエ一タの膨潤度、つ まり、前記高分子電解質が乾燥した状態での厚さに対して高分子ァクチユエータの 膨潤した状態での厚さの増加率力 3〜200%であることが好ましぐ 5〜60%である ことがより好ましい。前記膨潤度が 3%未満である場合には、変位屈曲性能が劣り、 前記膨潤度が 200%よりも大きい場合にも、変位屈曲性能が劣り、さらに大きく引張り 強度が低下することとなってしまう。なお、前記有機化合物は、イオン交換榭脂中に 含まれるが、金属電極が多孔性である場合には、前記溶媒の一部が、塩とともに前 記金属電極に含まれても良い。  [0035] In order to increase the bending / displacement amount of the polymer actuator used in the present invention, the ion exchange resin preferably has flexibility. In order to give flexibility to the ion exchange resin, the ion exchange resin is swollen by the liquid organic compound. The ion exchange resin can become a gel electrolyte by becoming a swollen state. The degree of swelling is not particularly limited, but the degree of swelling of the polymer activator, that is, the swollen state of the polymer activator with respect to the thickness of the polymer electrolyte in a dry state. The rate of increase in thickness at 3 to 200% is preferred, and 5 to 60% is more preferred. When the degree of swelling is less than 3%, the displacement bending performance is inferior, and when the degree of swelling is greater than 200%, the displacement bending performance is also inferior and the tensile strength is greatly reduced. . In addition, although the said organic compound is contained in an ion exchange resin, when a metal electrode is porous, a part of said solvent may be contained in the said metal electrode with a salt.
[0036] (液状有機化合物) 本発明に用いられる液状有機化合物には、塩を含有する分極性有機溶媒か、ィォ ン性液体を用いる。イオン性液体は単独で用いることができる力 分極性有機溶媒の 場合には、電荷のキャリアとなるイオンを含む塩が必要とされる。ただし塩として前記 イオン性液体を用いてもよい。これらの液状有機化合物であれば、イオン交換樹脂に 電位差が与えられた場合、容易に当該イオン交換榭脂内での移動が生じるからであ る。液状有機化合物は、常温常圧において液状の有機化合物であり、特に、 180°C 以上の沸点または分解温度を有するものが好ましい。溶媒の気化が起こりに《なる ので、長期安定性に資することができるからである。 [0036] (Liquid organic compound) As the liquid organic compound used in the present invention, a polar organic solvent containing a salt or an ion liquid is used. In the case of a force-polarized organic solvent that can be used alone, a salt containing ions that serve as charge carriers is required. However, the ionic liquid may be used as the salt. This is because these liquid organic compounds easily move in the ion exchange resin when a potential difference is given to the ion exchange resin. The liquid organic compound is an organic compound that is liquid at normal temperature and pressure, and particularly preferably has a boiling point of 180 ° C. or higher or a decomposition temperature. This is because solvent evaporation is likely to occur, which can contribute to long-term stability.
[0037] (分極性有機溶媒)  [0037] (Polarizable organic solvent)
前記分極性有機溶媒は、 180°C以上の沸点または分解温度を有する有機化合物 であることが好ましいが、特に 245°C以上の沸点を有する分極性有機溶媒であること 力 り好ましい。好ましい分極性有機溶媒の具体例として、ジエチレングリコール、グ リセリン、スルホラン、プロピレンカーボネート、ブチロラタトン又はこれらの混合物を挙 げることができる。中でもジエチレングリコール、グリセリン、スルホラン又はこれらの混 合物であることが特に好ま 、。  The polarizable organic solvent is preferably an organic compound having a boiling point or decomposition temperature of 180 ° C. or higher, but is particularly preferably a polarizable organic solvent having a boiling point of 245 ° C. or higher. Specific examples of preferred polarizable organic solvents include diethylene glycol, glycerin, sulfolane, propylene carbonate, butyrolatatatone, or a mixture thereof. Of these, diethylene glycol, glycerin, sulfolane or a mixture thereof is particularly preferred.
[0038] 前記分極性有機溶媒に含まれる塩は、当該分極性有機溶媒に溶解しうる塩であれ ば特に制限されるものではないが、特に前記イオン交換樹脂が力チオンと対イオンを 形成する場合には、 1〜3価のカチオンの塩を用いることができ、 Na+、 K+、 Li+等の 1価のカチオンを用いることが大きな屈曲若しくは変位をすることができるために好ま しぐイオン半径の大きなアルキルアンモニゥムイオンを用いることがより大きな屈曲 若しくは変位をすることができるために更に好ま 、。前記アルキルアンモ-ゥムィォ ンとしては、 CH N+H、 C H N+H、 (CH ) N+H、(C H ) N+H、 (CH ) N+H、 (C H )  [0038] The salt contained in the polarizable organic solvent is not particularly limited as long as it is a salt that can be dissolved in the polarizable organic solvent. In particular, the ion exchange resin forms counter ions with force thiones. In some cases, a salt of a monovalent to trivalent cation can be used, and the use of a monovalent cation such as Na +, K +, or Li + can bend or displace with a large ionic radius. It is even more preferable to use a large alkylammonium ion because it allows greater bending or displacement. Examples of the alkyl ammonia include CH N + H, C H N + H, (CH) N + H, (C H) N + H, (CH) N + H, (C H)
3 3 2 5 3 3 2 2 2 5 2 2 3 3 2 5 3 3 2 5 3 3 2 2 2 5 2 2 3 3 2 5
N+H、 (CH ) N+、 (C H ) N+、(C H ) N+、 (C H ) N+、 H N+(CH ) N+H、 H C = CHN + H, (CH) N +, (C H) N +, (C H) N +, (C H) N +, H N + (CH) N + H, H C = CH
3 3 4 2 5 4 3 7 4 4 9 4 3 2 4 3 23 3 4 2 5 4 3 7 4 4 9 4 3 2 4 3 2
CH N+HCH、 H N+(CH ) N+H (CH ) N+H、 HC≡CCH N+H、 CH CH(OH)CCH N + HCH, H N + (CH) N + H (CH) N + H, HC≡CCH N + H, CH CH (OH) C
2 3 3 2 4 2 2 4 3 2 2 32 3 3 2 4 2 2 4 3 2 2 3
H N+H、 H N+(CH ) OHゝ H N+CH(CH OH)、 (HOCH ) C(CH N+H ) , C H OH N + H, H N + (CH) OH ゝ HN + CH (CH OH), (HOCH) C (CH N + H), CHO
2 3 3 2 5 3 2 2 2 2 2 3 2 2 52 3 3 2 5 3 2 2 2 2 2 3 2 2 5
CH CH N+Hや脂肪族炭化水素を置換基として備えるアンモ-ゥムイオン、またはAmmonium ion with CH CH N + H or aliphatic hydrocarbon as a substituent, or
2 2 3 2 2 3
官能基として炭化水素の他に脂環式の環状炭化水素をも有するアンモニゥムイオン を用いることができる。このとき、前記の塩の濃度としては、イオン交換樹脂の官能基 と等量以上の濃度として含まれて!/、ればよぐ十分な屈曲乃至変位を得るために 0.0 1〜 1 OmolZlであることが好ましく、 0.1〜 1.OmolZlであることがより好まし 、。 Ammonium ions having alicyclic hydrocarbons in addition to hydrocarbons as functional groups can be used. At this time, the concentration of the salt is a functional group of the ion exchange resin. In order to obtain sufficient bending or displacement, it is preferably 0.01-1 OmolZl, more preferably 0.1-1.OmolZl, .
[0039] (イオン性液体) [0039] (Ionic liquid)
前記イオン性液体の好ま 、具体例としては、テトラアルキルアンモ-ゥムイオン、 イミダゾリゥムイオン、アルキルピリジニゥムイオン、ビラゾリゥムイオン、ピロリウムィォ ン、ピロリュウムイオン、ピロリジ -ゥムイオン、及びピベリジ-ゥムイオンからなる群より 少なくとも一種選ばれたカチオンと、  Preferred examples of the ionic liquid include tetraalkyl ammonium ion, imidazolium ion, alkyl pyridinium ion, virazolium ion, pyrrolium ion, pyrrolium ion, pyrrolidinium ion, and piberidinium ion. At least one cation selected from the group;
PF―、 BF―、 A1C1―、 CIO―、及び下式(1)で表されるスルホ -ゥムイミドア-オン PF-, BF-, A1C1-, CIO-, and sulfo-umimide-one represented by the following formula (1)
6 4 4 4 6 4 4 4
力もなる群より少なくとも一種選ばれたァ-オンとの組み合わせ力もなる塩を挙げるこ とができる。下式(1)中、 n及び mは任意の整数である。  Mention may be made of salts that can also be combined with at least one selected from the group of forces. In the following formula (1), n and m are arbitrary integers.
(C F SO ) (C F SO ) N" (1)  (C F SO) (C F SO) N "(1)
n (2n+ l) 2 m (2m+ l) 2  n (2n + l) 2 m (2m + l) 2
前記テトラアルキルアンモ-ゥムカチオンとしては、特に限定されるものではないが The tetraalkylammonium cation is not particularly limited.
、トリメチルプロピルアンモ-ゥム、トリメチルへキシルアンモ-ゥム、テトラペンチルァ ンモニゥムを用いることができる。 Trimethylpropyl ammonium, trimethylhexyl ammonium and tetrapentyl ammonium can be used.
前記イミダゾリウムカチオンは、ジアルキルイミダゾリゥムイオン及び Zまたはトリアル キルイミダゾリゥムイオンを用いることができる。例えば、前記イミダゾリウムカチオンは As the imidazolium cation, a dialkyl imidazolium ion and Z or a trialkyl imidazolium ion can be used. For example, the imidazolium cation is
、特に限定されるものではないが、 1ーェチルー 3—メチルイミダゾリゥムイオン、 1 へキシルー 3メチルイミダゾリゥムイオン、 1ーブチルー 3—メチルイミダゾリゥムイオン 、 1, 3 ジメチルイミダゾリゥムイオン、 1ーメチルー 3 ェチルイミダゾリゥムイオン、 1 , 2, 3 トリメチルイミダゾリゥムイオン、 1, 2 ジメチル一 3 ェチルイミダゾリゥムィ オン、 1, 2 ジメチルー 3 プロピルイミダゾリゥムイオン、 1ーブチルー 2, 3 ジメチ ルイミダゾリゥムイオンを例示することができる。 1-ethyl 3-methylimidazolium ion, 1-hexyl 3 methyl imidazolium ion, 1-butyl 3-methyl imidazolium ion, 1,3-dimethyl imidazolium ion, 1-methyl 3-ethyl Illustrates imidazolium ion, 1, 2, 3 trimethylimidazolium ion, 1,2 dimethyl-3-ethyl imidazolium ion, 1,2 dimethyl-3-propylimidazolium ion, 1-butyl-2,3 dimethyl imidazolium ion be able to.
[0040] 前記アルキルピリジニゥムカチオンは、特に限定されるものではな 、が、 N ブチル ピリジ-ゥムイオン、 N メチルピリジ-ゥムイオン、 N ェチルピリジ-ゥムイオン、 N —プロピルピリジ -ゥムイオン、 1—ェチル—2—メチルピリジ-ゥム、 1—ブチル— 4 メチルピリジ-ゥム、 1ーブチルー 2, 4 ジメチルピリジ-ゥムを例示することができ る。 [0040] The alkylpyridinium cation is not particularly limited, but N butyl pyridinium ion, N methyl pyridinium ion, N ethyl pyridinium ion, N-propyl pyridinium ion, 1-ethyl-2— Examples include methylpyridium, 1-butyl-4 methylpyridium, 1-butyl-2,4 dimethylpyridium.
[0041] 前記ピラゾリウムカチオンは、特に限定されるものではないが、 1, 2 ジメチルピラ ゾリゥムイオン、 1ーェチルー 2—メチルビラゾリゥムイオン、 1 プロピル 2—メチル ビラゾリゥムイオン、 1—ブチル 2—メチルビラゾリゥムイオンを例示することができる [0041] The pyrazolium cation is not particularly limited. Examples include Zorium ion, 1-Ethyl-2-methylvirazolium ion, 1-Propyl 2-methylvirazolium ion, 1-Butyl2-methylvirazolium ion.
[0042] 前記ピロリウムカチオンは、特に限定されるものではないが、 1, 1ージメチルピロリウ ムイオン、 1ーェチルー 1 メチルピロリウムイオン、 1ーメチルー 1 プロピルピロリウ ムイオン、 1ーブチルー 1 メチルピロリウムイオンを例示することができる。 [0042] The pyrrolium cation is not particularly limited, and examples thereof include 1,1-dimethylpyrrolium ion, 1-ethyl-1 methylpyrrolium ion, 1-methyl-1 propylpyrrolium ion, and 1-butyl-1 methylpyrrolium ion. can do.
[0043] 前記ピロリニゥムカチオンは、特に限定されるものではないが、 1, 2 ジメチルピロ リュウムイオン、 1ーェチルー 2—メチルピロリュウムイオン、 1 プロピル 2—メチル ピロリュウムイオン、 1ーブチルー 2—メチルピロリュウムイオンを例示することができる  [0043] The pyrrolinium cation is not particularly limited, but 1, 2 dimethylpyrrolium ion, 1-ethyl-2-methylpyrrolium ion, 1-propyl 2-methylpyrrolium ion, 1-butyl-2-methylpyrrole Rium ion can be exemplified
[0044] 前記ピロリジユウムカチオンは、特に限定されるものではないが、 1, 1 ジメチルビ ロリジ -ゥムイオン、 1ーェチルー 1 メチルピロリジ-ゥムイオン、 1ーメチルー 1ープ 口ピルピロリジ -ゥムイオン、 1ーブチルー 1 メチルピロリジ -ゥムイオンを例示する ことができる。 [0044] The pyrrolidinium cation is not particularly limited. Can be illustrated.
[0045] 前記ピペリジニゥムカチオンは、特に限定されるものではないが、 1, 1 ジメチルビ ペリジ-ゥムイオン、 1ーェチルー 1ーメチルピペリジ-ゥムイオン、 1ーメチルー 1 プロピルピペリジ -ゥムイオン、 1ーブチルー 1ーメチルビペリジ-ゥムイオンを例示す ることがでさる。  [0045] The piperidinium cation is not particularly limited. It is possible to illustrate this.
[0046] 前記イオン性液体は、上記ァ-オンと上記カチオンとの組み合わせが特に限定さ れるものではないが、例えば、 1—メチル 3 ェチルイミダゾリゥムトリフルォロメタン スルホイミド(EMITFSI)、 1ーメチルー 3 イミダゾリゥムテトラフルォロボレート(EM IBF ) , 1ーメチルー 3 イミダゾリゥムへキサフルォロリン酸(EMIPF ) ,トリメチルプ [0046] The ionic liquid is not particularly limited in the combination of the cation and the cation. For example, 1-methyl-3-ethylimidazoletrifluoromethane sulfoimide (EMITFSI), 1-methyl- 3 imidazolium tetrafluoroborate (EM IBF), 1-methyl- 3 imidazolium hexafluorophosphate (EMIPF), trimethyl
4 6 口ピルアンモ-ゥムトリフルォロメタンスルホイミド、 1—へキシル 3—メチルイミダゾリ ゥムテトラフルォロボレート、 1一へキシルー 3—メチルイミダゾリゥムへキサフルォロリ ン酸、 1―へキシル 3 メチルイミダゾリゥムトリフルォロメタンスルホイミドを用いるこ とがでさる。 4 6-neck pyrammo-trifluoromethanesulfoimide, 1-hexyl 3-methylimidazole tetrafluoroborate, 1-hexylol 3-methylimidazole hexafluorophosphate, 1-hexyl 3 It is possible to use methylimidazolium trifluoromethanesulfimide.
[0047] (電極層) [0047] (Electrode layer)
本発明において、イオン交換樹脂の表面には、当該イオン交換樹脂に電位差を与 えることができるように、イオン交換榭脂を挟んで対向する位置に一組の電極が設け られている。電極に用いられる金属は、水銀のような液体金属を除き、導電性のよい 固体金属(貴金属を含む)であれば制限なく用いることができ、また合金であってもよ い。用いるイオン交換榭脂ゃ液状有機化合物など種類によって、それぞれ適当な金 属を選ぶことができる。 In the present invention, a potential difference is applied to the surface of the ion exchange resin. A pair of electrodes are provided at positions facing each other across the ion exchange resin. The metal used for the electrode can be used without limitation as long as it is a solid metal (including noble metal) with good conductivity except for a liquid metal such as mercury, and may be an alloy. An appropriate metal can be selected depending on the type of ion-exchange resin liquid organic compound used.
金属電極が対向するとは、一組の金属電極が平行を保って存在する状態を理想と するものである。ただし、両電極は完全に平行である必要はなぐ当該両金属電極に 電圧を与えることでァクチユエータ素子が変位できる限りにおいて、平行から多少ず れていてもよい。ただし、平行力もずれるに従って、クーロン量あたりの屈曲や変形の 効率に変化が生じる。  The term “facing metal electrodes” means that a pair of metal electrodes exist in parallel. However, the two electrodes need not be completely parallel, but may be slightly deviated from parallel as long as the actuator element can be displaced by applying a voltage to the metal electrodes. However, as the parallel force shifts, the bending and deformation efficiency per Coulomb amount changes.
一組の金属電極が平行を保って存在する状態にするには、イオン交換樹脂の形状 を平行な平板形状として、この平行に対向する前記平面側壁表面に、対となる金属 電極をメツキ法、中でも無電解メツキ法で設けることが好ましい。後述のように、イオン 交換樹脂の表面に無電解メツキ法で金属電極になりうる金属膜を形成した場合、ィォ ン交換樹脂と金属電極の接触面積が大きくなり、このためァクチユエータとしての屈 曲や変位の量も大きくできるからである。  In order to keep a pair of metal electrodes in parallel, the shape of the ion exchange resin is made into a parallel flat plate shape, and a pair of metal electrodes is formed on the surface of the plane side wall facing in parallel with the Met method, Among these, it is preferable to provide by an electroless plating method. As described later, when a metal film that can be used as a metal electrode is formed on the surface of the ion exchange resin by an electroless plating method, the contact area between the ion exchange resin and the metal electrode is increased, and this causes bending as an actuator. This is because the amount of displacement can be increased.
(被覆榭脂)  (Coated resin)
本発明に用いる高分子ァクチユエータは、被覆をせずに長時間駆動することができ るが、更に、可撓性を有する榭脂で被覆されてもよい。前記榭脂としては、特に限定 されるものではないが、ポリウレタン榭脂及び Z又はシリコン榭脂を用いることができ る。前記ポリウレタン榭脂は、特に限定されるものではないが、柔軟な熱可塑性ポリウ レタンを用いることが、柔軟度が大きく密着性が良好であるために特に好ましい。柔 軟な熱可塑性ポリウレタンとしては、商品名「アサフレックス 825」(柔軟度 200%、 旭化成社製)、商品名「ペレセン 2363— 80A」(柔軟度 550%)、「ペレセン 2363 — 80AEJ (柔軟度 650%)、「ペレセン 2363— 90A」(柔軟度 500%)、「ペレセン 2363— 90AE」(柔軟度 550%)、(以上、ダウ'ケミカル社製)を用いることができる。 また、前記シリコン榭脂は、特に限定されるものではないが、柔軟度が 50%以上であ る榭脂が、柔軟度が大きいので密着性が良好であるために、特に好ましい。前記シリ コン榭脂としては、例えば、「シラシール 3FW」、「シラシール DC738RTV」、「DC31 45」、及び「DC3140」(以上、ダウコーユング社製)を用いることができる。なお、本 願において、柔軟度とは、 ASTM D412に準拠する引張破断伸び (Ultimate El ongation%)を 、うものである。 The polymer activator used in the present invention can be driven for a long time without being coated, but may be further coated with a flexible resin. The resin is not particularly limited, and polyurethane resin and Z or silicon resin can be used. The polyurethane resin is not particularly limited, but it is particularly preferable to use a flexible thermoplastic polyurethane because of its high flexibility and good adhesion. As flexible thermoplastic polyurethane, the product name “Asaflex 825” (flexibility 200%, manufactured by Asahi Kasei), product name “Pelecene 2363—80A” (flexibility 550%), “Pelecene 2363 — 80AEJ (flexibility) 650%), “Pelecene 2363-90A” (flexibility: 500%), “Pelecene 2363-90AE” (flexibility: 550%), (manufactured by Dow Chemical Co., Ltd.). The silicone resin is not particularly limited, but a resin having a flexibility of 50% or more is particularly preferable because of its high flexibility and good adhesion. The Siri As the resin, for example, “Silaseal 3FW”, “Silaseal DC738RTV”, “DC3145”, and “DC3140” (above, manufactured by Dow Co., Ltd.) can be used. In this application, the flexibility refers to the tensile elongation at break (Ultimate Elongation%) in accordance with ASTM D412.
[0049] (製造方法) [0049] (Production method)
本発明の直動駆動型ァクチユエータ装置に用いられるァクチユエータ素子の製造 方法の一例を示す。実施例のァクチユエータ素子は、屈曲率や変位量を大きくする ために、基本的に以下の技術により製造したが、本発明に用いられるァクチユエータ 素子は下記製造方法により製造されたものに限られない。  1 shows an example of a method for manufacturing an actuator element used in the direct acting actuator device of the present invention. The actuator element of the embodiment is basically manufactured by the following technique in order to increase the bending rate and the amount of displacement. However, the actuator element used in the present invention is not limited to the one manufactured by the following manufacturing method.
本発明に用いるァクチユエータ素子の好ましい製造方法の一例は、直方体平板形 状のイオン交換樹脂の表面に、金属の膜を設けた積層体を製造し、当該金属膜を金 属電極とする素子とすることである。この積層体は、イオン交換樹脂に金属錯体を吸 着させた後に、該イオン交換榭脂を還元剤水溶液に浸漬し該金属錯体を還元する 電極形成工程を経ることにより製造することができる。このように電極形成工程は、吸 着工程と還元工程とを含む工程カゝらなる。前記電極形成工程は、無電解メツキ法に より金属電極を形成する工程であり、イオン交換樹脂に金属錯体を吸着させる吸着 工程、及び金属錯体が吸着したイオン交換樹脂に還元剤溶液を接触させる還元ェ 程が含まれる。  An example of a preferable manufacturing method of the actuator element used in the present invention is to manufacture a laminated body in which a metal film is provided on the surface of a rectangular parallelepiped ion exchange resin, and use the metal film as a metal electrode. That is. This laminate can be produced by adsorbing a metal complex to an ion exchange resin and then immersing the ion exchange resin in an aqueous reducing agent solution to reduce the metal complex. As described above, the electrode forming process includes a process including an adsorption process and a reduction process. The electrode forming step is a step of forming a metal electrode by an electroless plating method, an adsorption step for adsorbing a metal complex on an ion exchange resin, and a reduction in which a reducing agent solution is brought into contact with the ion exchange resin on which the metal complex is adsorbed. The process is included.
[0050] 前記吸着-還元工程を行う前に、イオン交換榭脂を、水やメタノールのような良溶媒 または良溶媒を含む混合溶媒に浸漬等を行うことで、イオン交換榭脂を膨潤状態に する膨潤工程を設けてもよい。イオン交換榭脂を膨潤状態とすることで、より多くの金 属錯体をイオン交換樹脂に吸着させることができるからである。イオン交換榭脂を膨 潤させる比率は、乾燥した状態におけるイオン交換樹脂の厚さに対して 110%以上、 好ましくは 110%〜300%に膨潤させることが、より多くの金属錯体を吸着できるので 好ましい。このとき、良溶媒として、塩基性塩を 1〜30重量%、好ましくは 1〜: LO重量 %混合したものを用いることもできる。なお、膨潤工程に先立って、粗面化処理等の ような事前の処理を行っても良い。  [0050] Before the adsorption-reduction step, the ion exchange resin is swelled by immersing the ion exchange resin in a good solvent such as water or methanol or a mixed solvent containing a good solvent. A swelling step may be provided. This is because more metal complexes can be adsorbed to the ion exchange resin by making the ion exchange resin swell. The ratio of swelling the ion exchange resin is not less than 110%, preferably 110% to 300% of the thickness of the ion exchange resin in the dry state, so that more metal complexes can be adsorbed. preferable. At this time, as a good solvent, a basic salt mixed in an amount of 1 to 30 wt%, preferably 1 to LO wt% can be used. Prior to the swelling step, a preliminary treatment such as a roughening treatment may be performed.
[0051] 前記吸着工程は、イオン交換樹脂に金属錯体を吸着させる工程であれば特に限 定されるものではない。前記吸着工程は、金属錯体溶液を高分子電解質に塗布して もよいが、イオン交換榭脂膜を金属錯体溶液に浸潰させることにより行うと作業が容 易であるので好ましい。 [0051] The adsorption step is not particularly limited as long as the metal complex is adsorbed on the ion exchange resin. It is not specified. In the adsorption step, a metal complex solution may be applied to the polymer electrolyte, but it is preferable to perform the adsorption step by immersing the ion exchange resin membrane in the metal complex solution because the operation is easy.
[0052] 前記吸着工程において用いることができる金属錯体は、還元されることにより積層 体表面に形成される金属膜が電極として機能することができる金属であれば、特に限 定されるものではない。ただし前記金属錯体は、金錯体、白金錯体、ノラジウム錯体 、ロジウム錯体、ルテニウム錯体等のような電気化学的に安定なイオン化傾向の小さ い金属を中心金属とする錯体とすることが好ましい。また析出した金属が電極として 使用されるため、通電性が良好で電気化学的な安定性に富んだ貴金属のような金属 を中心金属とする金属錯体が好ましい。さらに電気分解が比較的起こり難い金のよう な金属を中心金属とする錯体が好ましい。以上の点を考慮すれば、金を中心金属と する金錯体が特に好ましい。また、前記金属錯体の配位子としては、特に限定される ものではないが、例として、エチレンジァミンやフエナント口リン誘導体等を挙げること ができる。  [0052] The metal complex that can be used in the adsorption step is not particularly limited as long as the metal film formed on the surface of the laminate by reduction can function as an electrode. . However, the metal complex is preferably a complex having a central metal of an electrochemically stable metal having a low ionization tendency such as a gold complex, a platinum complex, a noradium complex, a rhodium complex, and a ruthenium complex. In addition, since the deposited metal is used as an electrode, a metal complex having a metal as a central metal, such as a noble metal having good electrical conductivity and high electrochemical stability, is preferable. Furthermore, a complex having a metal such as gold, which is relatively difficult to electrolyze, as a central metal is preferable. Considering the above points, a gold complex having gold as a central metal is particularly preferable. Moreover, the ligand of the metal complex is not particularly limited, and examples thereof include ethylenediamine and phenantorin phosphorus derivatives.
[0053] 前記吸着工程において用いられる金属塩溶液は、溶媒が特に限定されるものでは なぐ水の他、非水の極性有機化合物も用いることができる。中でも金属塩の溶解が 容易であって取り扱 、が容易であることから溶媒が水を主成分とすることが好ま U、。 また前記金属塩溶液が金属塩水溶液であることが好ましい。したがって、前記金属 錯体溶液としては、金属錯体水溶液であることが好ましぐ特に金錯体水溶液または 白金錯体水溶液であることが好ましぐさらに金錯体水溶液が好まし ヽ。  [0053] The metal salt solution used in the adsorption step is not limited to a solvent, and water or a non-aqueous polar organic compound can be used. In particular, it is preferred that the solvent is water as the main component because the metal salt can be easily dissolved and handled. The metal salt solution is preferably an aqueous metal salt solution. Accordingly, the metal complex solution is preferably an aqueous metal complex solution, particularly preferably an aqueous gold complex solution or an aqueous platinum complex solution, and more preferably an aqueous gold complex solution.
[0054] 前記吸着工程は、陽イオン交換樹脂に金属錯体を吸着させる工程であれば、温度 及び浸漬時間等の条件が特に限定されるものではな 、が、温度 20°C以上であること が効率よく膨潤するために好ましい。また、前記吸着工程は、金属錯体が陽イオン交 換榭脂へ容易に吸着させるために、金属錯体溶液中に高分子電解質の良溶媒を含 んでいても良い。  [0054] If the adsorption step is a step of adsorbing the metal complex to the cation exchange resin, conditions such as temperature and immersion time are not particularly limited, but the temperature may be 20 ° C or higher. It is preferable for efficient swelling. In the adsorption step, the metal complex solution may contain a good solvent for the polymer electrolyte so that the metal complex is easily adsorbed to the cation-exchanged resin.
[0055] 無電解メツキの還元工程に用いられる還元剤としては、イオン交換樹脂に吸着され る金属錯体溶液に使用される金属錯体の種類に応じて、種類を適宜選択して使用 することができ、例えば亜硫酸ナトリウム、ヒドラジン、水素化ホウ素ナトリウム、亜リン 酸、次亜リン酸ナトリウム等を用いることができる。 [0055] The reducing agent used in the electroless plating reduction step can be used by appropriately selecting the type according to the type of the metal complex used in the metal complex solution adsorbed on the ion exchange resin. E.g. sodium sulfite, hydrazine, sodium borohydride, phosphorous An acid, sodium hypophosphite, etc. can be used.
[0056] 前記還元剤は析出させる金属種によって、適宜選択することもできる。還元により析 出させる金属がニッケルまたはコバルトの場合には、還元剤として、ホスフィン酸ナトリ ゥム、ジメチルァミノボラン、ヒドラジン、テトラヒドロホウ酸カリウムを用いることができる 。還元により析出させる金属がパラジウムの場合には、還元剤として、ホスフィン酸ナ トリウム、ホスホン酸ナトリウム、テトラヒドロホウ酸カリウムを用いることができる。還元に より析出させる金属が銅の場合には、還元剤として、ホルマリン、ホスホン酸ナトリウム 、テトラヒドロホウ酸カリウムを用いることができる。還元により析出させる金属が銀また は金の場合には、還元剤として、ジメチルァミノボラン、テトラヒドロホウ酸カリウムを用 いることができる。還元により析出させる金属が白金の場合には、還元剤として、ヒドラ ジン、テトラヒドロホウ酸ナトリウムを用いることができる。還元により析出させる金属が 錫の場合には、還元剤として、三塩ィ匕チタンを用いることができる。さらに、還元剤は 、上記の種類に限られるものではなぐ白金黒などの触媒と共に用いられる水素、 Hg S、 HIや I—などの非金属の酸またはイオン、 Na (H PO )や Na S Oなどの低級酸  [0056] The reducing agent may be appropriately selected depending on the metal species to be deposited. When the metal to be precipitated by reduction is nickel or cobalt, sodium phosphinate, dimethylaminoborane, hydrazine, or potassium tetrahydroborate can be used as the reducing agent. When the metal deposited by reduction is palladium, sodium phosphinate, sodium phosphonate, or potassium tetrahydroborate can be used as the reducing agent. When the metal to be deposited by reduction is copper, formalin, sodium phosphonate, or potassium tetrahydroborate can be used as the reducing agent. When the metal deposited by reduction is silver or gold, dimethylaminoborane or potassium tetrahydroborate can be used as the reducing agent. When the metal deposited by reduction is platinum, hydrazine or sodium tetrahydroborate can be used as the reducing agent. When the metal deposited by reduction is tin, trisalt-titanium can be used as the reducing agent. Further, the reducing agent is not limited to the above types, but is used with catalysts such as platinum black, non-metallic acids or ions such as Hg S, HI and I—, Na (H 3 PO 4) and Na 2 SO Lower acid
2 2 2 2 3  2 2 2 2 3
素酸塩、 COや S02などの低級酸化物、 Li、 Na, Cu、 Mg、 Zn、 Fe、 Fe (II)、 Sn (II ;)、 Ti(m)、 Cr (II)などのイオン化傾向の大きい金属またはそれらのアマルガム及び 低原子価金属塩、 A1H〔(CH3) 2CHCH2] 2や水素化リチウムアルミニウムなどの水 素化物、ジイミド、ギ酸、アルデヒド、糖類及び Lーァスコルビン酸などを、適宜用いる ことちでさる。  Ionization trends such as silicates, lower oxides such as CO and S02, Li, Na, Cu, Mg, Zn, Fe, Fe (II), Sn (II), Ti (m), Cr (II) Large metals or their amalgams and low-valent metal salts, hydrides such as A1H [(CH3) 2CHCH2] 2 and lithium aluminum hydride, diimides, formic acid, aldehydes, saccharides and L-scorbic acid are used as appropriate. I'll do it.
[0057] 前記還元剤は、還元される金属種に応じて、適宜選択することもできる力 メツキの 成長速度、析出した金属の粒子サイズ、フラクタル構造の金属電極とイオン交換榭脂 の接触面積、電極構造並びにメツキ後の榭脂の可撓性を変えるために、最適な還元 剤の種類を選択して用いることができる。また、還元工程における還元浴を所望の p Hとするために、前記還元剤の種類を適宜選択することもできる。  [0057] The reducing agent can be selected as appropriate according to the metal species to be reduced. The growth rate of the metal, the particle size of the deposited metal, the contact area between the metal electrode of the fractal structure and the ion exchange resin, In order to change the electrode structure and the flexibility of the grease after plating, the optimum type of reducing agent can be selected and used. In addition, the kind of the reducing agent can be appropriately selected so that the reducing bath in the reduction step has a desired pH.
[0058] なお、金属錯体を還元する際に、必要に応じて、酸またはアルカリを添加してもよい 。前記還元剤溶液の濃度は、金属錯体の還元により析出させる金属量を得ることが できるのに十分な量の還元剤を含んでいればよぐ特に限定されるものではないが、 通常の無電解メツキにより電極を形成する場合に用いられる金属塩溶液と同等の濃 度を用いることも可能である。また、還元剤溶液中には、イオン交換樹脂の良溶媒を 含むことができる。 [0058] When reducing the metal complex, an acid or an alkali may be added as necessary. The concentration of the reducing agent solution is not particularly limited as long as it contains an amount of reducing agent sufficient to obtain the amount of metal to be precipitated by reduction of the metal complex. Concentration equivalent to the metal salt solution used when forming electrodes by plating It is also possible to use degrees. Further, the reducing agent solution can contain a good solvent for the ion exchange resin.
[0059] また、本製造方法においては、吸着工程と還元工程とを 1回ずつ行うことによりィォ ン交換樹脂の表面に金属膜を備えた積層体を得ることができるが、吸着工程と還元 工程とを、この順で、更に繰り返し行うことにより、ァクチユエータとして駆動させた場 合の変位性能 (屈曲率)、並びに金属膜とイオン交換樹脂との界面の電気二重層容 量を、従来の値よりも大きくすることができる。吸着工程と還元工程とを繰り返して行う 場合には、前還元工程で付着して!/ヽる還元剤をイオン交換樹脂から十分除去して再 度の吸着工程を行うために、還元工程の後に洗浄工程を行うことが好ましい。前記洗 浄工程としては、特に限定されるものではなぐ水洗して還元をも除去してもよい。  [0059] Further, in this production method, a laminate having a metal film on the surface of the ion exchange resin can be obtained by performing the adsorption step and the reduction step once, but the adsorption step and the reduction step are performed. By repeating this process in this order, the displacement performance (flexibility) when driven as an actuator and the electric double layer capacity at the interface between the metal film and the ion-exchange resin are compared with the conventional values. Can be larger. If the adsorption process and the reduction process are repeated, attach them in the previous reduction process! In order to remove the reducing agent sufficiently from the ion exchange resin and perform the adsorption step again, it is preferable to perform a washing step after the reduction step. The washing step is not particularly limited, and the reduction may be removed by washing with water.
[0060] 最後に、上記積層体に含まれている溶媒を、本発明で用いる高分子ァクチユエ一 タとして所望の液状有機化合物に交換する。溶媒の交換方法としては、上記で得ら れた積層体を所望の液状有機化合物中に常温常圧で 30分程度浸漬することにより 行うことができる。  [0060] Finally, the solvent contained in the laminate is replaced with a desired liquid organic compound as a polymer activator used in the present invention. The solvent can be exchanged by immersing the laminate obtained above in a desired liquid organic compound at room temperature and pressure for about 30 minutes.
[0061] 以上の方法で得られた表面全体が金属膜で覆われて!/ヽる積層体から、金属膜の 一部を削り取ることで、所望の金属電極を作製する。所定の部位の金属膜を切り取る ことで、対向する側面のひとつの表面に 2つの金属電極を設け、さらにイオン交換榭 脂を挟んで交差する位置にある電極同士を接続させた形状とすることにより、交差状 態において同一電極層を得ることができる。  [0061] A desired metal electrode is manufactured by scraping off a part of the metal film from the laminated body in which the entire surface obtained by the above method is covered with the metal film! By cutting out a metal film at a predetermined site, two metal electrodes are provided on one surface on the opposite side surface, and the electrodes at positions intersecting each other with an ion exchange resin interposed therebetween are connected to each other. In the cross state, the same electrode layer can be obtained.
実施例  Example
[0062] 以下、本発明の実施例を示すが、本発明は本実施例に限定されるものではない。  Examples of the present invention will be shown below, but the present invention is not limited to the examples.
(ァクチユエータ素子の製造)  (Manufacture of actuator elements)
乾燥時の膜厚 700 μ mの膜状陽イオン交換榭脂 (フッ素榭脂系イオン交換榭脂: パーフルォロカルボン酸榭脂、商品名「フレミオン」、旭硝子社製、イオン交換容量 1. 4meq/g)を縦 lmm X横 3mm X長さ 5mmの大きさの平板形状に 4本切り取った。こ の陽イオン交換榭脂を良溶媒であるメタノール中に 20°Cで 1時間以上浸漬した。この 浸漬を行う際において、膨潤した前記膜状陽イオン交換樹脂の膜厚を測定して、乾 燥膜厚に対して膨潤後の膜厚の増力 tlした割合〔膨潤度 (%)〕を算出し、膨潤度が 50 %となるように前記陽イオン交換榭脂を良溶媒に浸漬した。 700 µm thick membrane cation exchange resin (fluorine resin-based ion exchange resin: perfluorocarboxylic acid resin, trade name "Flemion", manufactured by Asahi Glass Co., Ltd., ion exchange capacity 1. 4 meq / g) was cut into a flat plate shape measuring 1 mm in length, 3 mm in width, and 5 mm in length. This cation exchange resin was immersed in methanol as a good solvent at 20 ° C for 1 hour or longer. At the time of this immersion, the film thickness of the swollen membrane cation exchange resin was measured, and the ratio of the increase in the film thickness after swelling to the dry film thickness [the degree of swelling (%)] was calculated. And swelling degree is 50 The cation exchange resin was soaked in a good solvent so as to be%.
良溶媒で膨潤させた膜状陽イオン交換榭脂を、下記(1)〜 (3)の工程を 3サイクル 繰り返して実施し、金属電極が両側に形成された陽イオン交換榭脂 (積層体)を得た 。(1)吸着工程:ジクロロフエナント口リン金塩ィ匕物水溶液に 12時間浸漬し、成形品内 にジクロ口フエナント口リン金錯体を吸着させ、(2)還元工程:亜硫酸ナトリウムを含む 水溶液中で、吸着したジクロロフエナント口リン金錯体を還元して、前記膜状高分子 電解質に金電極を形成させた。このとき、水溶液の温度を 60〜80°Cとし、亜硫酸ナ トリウムを徐々に添カロしながら、 6時間ジクロロフエナントリン金錯体の還元を行った。 次いで、(3)洗浄工程:表面に金電極が形成した膜状高分子電解質を取り出し、 70°C の水で 1時間洗浄した。  Cation exchange resin that has been swelled with a good solvent and repeated the following steps (1) to (3) for 3 cycles, and the metal electrode is formed on both sides (laminate) Got. (1) Adsorption process: Immerse in dichlorophenant mouth phosphorus gold salt aqueous solution for 12 hours to adsorb the dichroic mouth mouth phosphorus gold complex in the molded product, (2) Reduction step: In aqueous solution containing sodium sulfite Then, the adsorbed dichlorophenantine phosphorus complex was reduced to form a gold electrode on the membrane polymer electrolyte. At this time, the temperature of the aqueous solution was set to 60 to 80 ° C., and the dichlorophenanthrine gold complex was reduced for 6 hours while gradually adding sodium sulfite. Next, (3) washing step: the membranous polymer electrolyte having a gold electrode formed on the surface was taken out and washed with water at 70 ° C. for 1 hour.
[0063] 洗浄後の金属電極が形成された陽イオン交換榭脂 (積層体)を取り出た。この段階 における前記積層体の厚みは、陽イオン交換樹脂が膨潤して lmmになっていた。ま たこの段階では、底面及び側面の全体に金の電極が存在している状態なので、積層 体底面の金、および側面のうち広!、側面の金を二分割するよう中心線部分の金を削 除した。また狭 ヽ側面の金は前記二分割された金を交差状態で接続する接続部の 金を残し削除し、ァクチユエータ素子を得た。  [0063] The cation exchange resin (laminated body) on which the cleaned metal electrode was formed was taken out. The thickness of the laminate at this stage was lmm due to swelling of the cation exchange resin. At this stage, since the gold electrode is present on the entire bottom and side surfaces, the gold on the bottom surface of the laminate and the wide side of the side surface! Deleted. In addition, the gold on the narrow side surface was deleted leaving the gold at the connecting portion connecting the two divided gold in an intersecting state to obtain an actuator element.
[0064] 得られたァクチユエータ素子を広!、側面が接する形で平行に並べ、上端部、下端 部の順に交互に金属クリップにて接続固定し、駆動ユニットを得た。  [0064] The obtained actuator elements were wide and arranged in parallel so that the side surfaces were in contact, and connected and fixed with metal clips alternately in the order of the upper end and the lower end to obtain a drive unit.
次に駆動ユニットの一端を固定部に固定し、固定部に設けた電気端子をァクチユエ ータ素子の金属電極の正極、負極各々に接続した。また、他の一端を移動部に接続 し、実施例に用いるァクチユエータ装置とした。  Next, one end of the drive unit was fixed to the fixed part, and the electric terminal provided on the fixed part was connected to each of the positive electrode and the negative electrode of the metal electrode of the actuator element. In addition, the other end was connected to the moving part to obtain an actuator device used in the examples.
産業上の利用可能性  Industrial applicability
[0065] 本発明のァクチユエータ装置は、直動駆動機構を必要とする各種用途に利用する ことができる。例えば、軽量で、し力も駆動の際に無音であるリニアァクチユエータとし て、位置決め装置、姿勢制御装置、昇降装置、搬送装置、移動装置、調節装置、調 整装置、誘導装置、または関節装置の駆動部として好適に用いることができる。  The actuator device of the present invention can be used in various applications that require a linear drive mechanism. For example, a linear actuator that is lightweight and silent when driven, such as a positioning device, posture control device, lifting device, transport device, moving device, adjusting device, adjusting device, guiding device, or joint It can be suitably used as a drive unit of the apparatus.
[0066] また、 OA機器、アンテナ、ベッドや椅子等の人を乗せる装置、医療機器、エンジン 、光学機器、固定具、サイドトリマ、車両、昇降器械、食品加工装置、清掃装置、測定 機器、検査機器、制御機器、工作機械、加工機械、電子機器、電子顕微鏡、電気か みそり、電動歯ブラシ、マニピュレータ、マスト、遊戯装置、アミューズメント機器、乗車 用シミュレーション装置、車両乗員の押さえ装置及び航空機用付属装備展張装置に おいて、直線的な駆動力を発生する駆動部力 なるトラック型の軌道を移動するため の駆動力を発生する駆動部、または直線的な動作をする押圧部として好適に用いる ことができる。前記ァクチユエータ装置は、例えば、 OA機器や測定機器等の上記機 器等を含む機械全般に用いられる弁、ブレーキ及びロック装置において、直線的な 駆動力を発生する駆動部力 なるトラック型の軌道を移動するための駆動力を発生 する駆動部、または直線的な動作をする押圧部として用いることができる。また、前記 の装置、機器、機械等以外においても、機械機器類全般において、位置決め装置の 駆動部、姿勢制御装置の駆動部、昇降装置の駆動部、搬送装置の駆動部、移動装 置の駆動部、量や方向等の調節装置の駆動部、軸等の調整装置の駆動部、誘導装 置の駆動部、及び押圧装置の押圧部として好適に用いることができる。また、前記ァ クチユエータ装置は、関節装置における駆動部として、関節中間部材等の直接駆動 可能な関節部または関節に回転運動を与える駆動部に好適に用いることができる。 [0066] Also, office equipment, antennas, equipment for placing people such as beds and chairs, medical equipment, engines, optical equipment, fixtures, side trimmers, vehicles, lifting equipment, food processing equipment, cleaning equipment, measurement Equipment, inspection equipment, control equipment, machine tools, processing machines, electronic equipment, electron microscopes, electric razors, electric toothbrushes, manipulators, masts, amusement equipment, amusement equipment, vehicle simulation equipment, vehicle occupant restraining devices, and aircraft Suitable as a driving unit that generates a driving force for moving a track-type orbit, which is a driving unit force that generates a linear driving force, or a pressing unit that performs a linear operation Can be used. The actuator device is, for example, a track-type track that is a driving unit force that generates a linear driving force in a valve, a brake, and a locking device used in all machines including the above-mentioned devices such as OA devices and measuring devices. It can be used as a driving unit that generates a driving force for movement or a pressing unit that performs a linear operation. In addition to the above-described devices, equipment, machines, etc., in general mechanical equipment, the positioning device drive unit, the attitude control device drive unit, the lifting device drive unit, the transport device drive unit, and the mobile device drive. It can be suitably used as a drive unit for an adjustment device such as a part, an amount and a direction, a drive unit for an adjustment device such as a shaft, a drive unit for a guidance device, and a pressing unit for a pressing device. In addition, the actuator device can be suitably used as a drive unit in a joint device, such as a joint unit that can be directly driven, such as a joint intermediate member, or a drive unit that gives a rotational motion to the joint.
[0067] 前記ァクチユエータ装置は、例えば、 CAD用プリンタ一等のインクジェットプリンタ 一におけるインクジェット部分の駆動部、プリンターの前記光ビームの光軸方向を変 位させる駆動部、外部記憶装置等のディスクドライブ装置のヘッド駆動部、並びに、 プリンタ、複写機及びファックスを含む画像形成装置の給紙装置における紙の押圧 接触力調整手段の駆動部として好適に用いることができる。  The actuator device includes, for example, a drive unit for an inkjet part in an inkjet printer such as a CAD printer, a drive unit for changing the optical axis direction of the light beam of the printer, and a disk drive device such as an external storage device It can be suitably used as a head drive unit for the paper and a drive unit for paper pressing contact force adjusting means in a paper feeding device of an image forming apparatus including a printer, a copying machine, and a fax machine.
[0068] 前記ァクチユエータ装置は、例えば、電波天文用の周波数共用アンテナ等の高周 波数給電部を第 2焦点へ移動させるなどの測定部や給電部の移動設置させる駆動 機構の駆動部、並びに、車両搭載圧空作動伸縮マスト (テレスコービングマスト)等の マストやアンテナにおけるリフト機構の駆動部に好適に用いることができる。  [0068] The actuator device includes, for example, a driving unit of a driving mechanism that moves and installs a measuring unit and a feeding unit such as a high-frequency feeding unit such as a frequency sharing antenna for radio astronomy, and the like, and It can be suitably used for a drive part of a lift mechanism in a mast such as a vehicle-mounted pneumatic operation telescopic mast (telescoping mast) or an antenna.
[0069] 前記ァクチユエータ装置は、例えば、椅子状のマッサージ機のマッサージ部の駆動 部、介護用又は医療用ベッドの駆動部、電動リクライニング椅子の姿勢制御装置の 駆動部、マッサージ機や安楽椅子等に用いられるリクライニングチェアのバックレスト •オットマンの起倒動自在にする伸縮ロッドの駆動部、椅子や介護用ベッド等におけ る背もたれやレッダレスト等の人を乗せる家具における可倒式の椅子の背もたれゃレ ッグレスト或いは介護用ベッドの寝台の直動駆動等に用いられる駆動部、並びに、起 立椅子の姿勢制御のため駆動部に好適に用いることができる。 [0069] The actuator device is, for example, a driving unit of a massage unit of a chair-shaped massage machine, a driving unit of a nursing care or medical bed, a driving unit of a posture control device of an electric reclining chair, a massage machine, an easy chair, or the like. Recliner backrest used • Extension rod drive that allows the ottoman to move up and down, chairs, nursing beds, etc. If the backrest of a retractable chair in furniture that carries a person such as a backrest or redderrest is placed, the drive unit used for the direct drive of the legrest or the bed of the nursing bed and the drive unit for controlling the posture of the standing chair Can be suitably used.
[0070] 前記ァクチユエータ装置は、例えば、検査装置の駆動部、体外血液治療装置等に 用いられている血圧等の圧力測定装置の駆動部、カテーテル、内視鏡装置や鉗子 等の駆動部、超音波を用いた白内障手術装置の駆動部、顎運動装置等の運動装置 の駆動部、病弱者用ホイストのシャシの部材を相対的に伸縮させる手段の駆動部、 並びに、介護用ベッドの昇降、移動や姿勢制御等のための駆動部に好適に用いるこ とがでさる。  [0070] The actuator device includes, for example, a driving unit of a testing device, a driving unit of a pressure measuring device such as a blood pressure used in an extracorporeal blood treatment device, a driving unit of a catheter, an endoscope device, a forceps, etc. Drive unit of cataract surgery device using sound wave, drive unit of exercise device such as jaw movement device, drive unit of means for relatively expanding and contracting chassis member of sick hoist, raising and lowering and moving of care bed It can be used suitably for a drive unit for posture control and the like.
[0071] 前記ァクチユエータ装置は、例えば、エンジン等の振動発生部からフレーム等の振 動受部へ伝達される振動を減衰させる防振装置の駆動部、内燃機関の吸排気弁の ための動弁装置の駆動部、エンジンの燃料制御装置の駆動部、並びにディーゼル エンジン等のエンジンの燃料供給装置の駆動部として好適に用いることができる。  The actuator device includes, for example, a drive unit for a vibration isolator that attenuates vibration transmitted from a vibration generating unit such as an engine to a vibration receiving unit such as a frame, and a valve operating valve for an intake and exhaust valve of an internal combustion engine. It can be suitably used as a drive unit for an apparatus, a drive unit for an engine fuel control device, and a drive unit for an engine fuel supply device such as a diesel engine.
[0072] 前記ァクチユエータ装置は、例えば、手振れ補正機能付き撮像装置の校正装置の 駆動部、家庭用ビデオカメラレンズ等のレンズ駆動機構の駆動部、スチルカメラゃビ デォカメラ等の光学機器の移動レンズ群を駆動する機構の駆動部、カメラのオートフ オーカス部の駆動部、カメラ、ビデオカメラ等の撮像装置に用いられるレンズ鏡筒の 駆動部、光学望遠鏡の光を取り込むオートガイダの駆動部、立体視力メラや双眼鏡 等の 2光学系を有する光学装置のレンズ駆動機構または鏡筒の駆動部、光通信、光 情報処理や光計測等に用いられるファイバ型波長可変フィルタの波長変換のフアイ バに圧縮力を与える駆動部若しくは押圧部、光軸合せ装置の駆動部、並びに、カメ ラのシャツタ機構の駆動部に好適に用いることができる。  [0072] The actuator device includes, for example, a driving unit of a calibration device of an imaging device with a camera shake correction function, a driving unit of a lens driving mechanism such as a home video camera lens, and a moving lens group of an optical device such as a still camera or a video camera. The drive unit of the mechanism that drives the camera, the drive unit of the autofocus unit of the camera, the drive unit of the lens barrel used in the imaging device such as the camera and the video camera, the drive unit of the auto guider that captures the light of the optical telescope, Compressive force is applied to the wavelength conversion fiber of the fiber tunable filter used in the lens drive mechanism of the optical device having two optical systems such as binoculars or the drive unit of the lens barrel, optical communication, optical information processing or optical measurement It can be suitably used for a drive unit or a pressing unit, a drive unit of an optical axis alignment device, and a drive unit of a camera shatter mechanism.
[0073] 前記ァクチユエータ装置は、例えば、ホース金具をホース本体にカシメ固定する等 の固定具の押圧部に好適に用いることができる。  [0073] The actuator device can be suitably used for, for example, a pressing portion of a fixture such as a caulking fixing of a hose fitting to a hose body.
[0074] 前記ァクチユエータ装置は、例えば、自動車のサスペンションの卷ばね等の駆動部 、車両のフューエルフイラ一リツドを解錠するフューエルフイラ一リツドオープナーの駆 動部、ブルドーザーブレードの伸張及び引っ込みの駆動の駆動部、自動車用変速 機の変速比を自動的に切り替える為やクラッチを自動的に断接させる為の駆動装置 の駆動部に好適に用いることができる。 [0074] The actuator device includes, for example, a drive unit such as a suspension spring of an automobile suspension, a drive unit of a fuel filler opener for unlocking a fuel filler lid of a vehicle, and an extension and a retraction of a bulldozer blade. Drive unit, drive device for automatically changing the gear ratio of a transmission for an automobile and for automatically connecting and disconnecting a clutch It can use suitably for the drive part.
[0075] 前記ァクチユエータ装置は、例えば、座板昇降装置付車椅子の昇降装置の駆動部 、段差解消用昇降機の駆動部、昇降移載装置の駆動部、医療用ベッド、電動ベッド 、電動テーブル、電動椅子、介護用ベッド、昇降テーブル、 CTスキャナ、トラックのキ ャビンチルト装置、リフタ一等や各種昇降機械装置の昇降用の駆動部、並びに重量 物搬送用特殊車両の積み卸し装置の駆動部に好適に用いることができる。  The actuator device includes, for example, a driving unit for a lifting device for a wheelchair with a seat plate lifting device, a driving unit for a step-lifting elevator, a driving unit for a lifting transfer device, a medical bed, an electric bed, an electric table, an electric table Suitable for chairs, nursing beds, lifting tables, CT scanners, truck cabin tilting devices, lifters for lifters and other lifting machines, and drive units for heavy vehicle unloading devices Can be used.
[0076] 前記ァクチユエータ装置は、例えば、食品加工装置の食材吐出用ノズル装置等の 吐出量調整機構の駆動部に好適に用いることができる。  The actuator device can be suitably used for, for example, a drive unit of a discharge amount adjusting mechanism such as a food discharge nozzle device of a food processing apparatus.
[0077] 前記ァクチユエータ装置は、例えば、清掃装置の台車や清掃部等の昇降等の駆動 部に好適に用いることができる。  The actuator device can be suitably used, for example, for a driving unit such as a carriage or a cleaning unit of a cleaning device for raising and lowering.
[0078] 前記ァクチユエータ装置は、例えば、面の形状を測定する 3次元測定装置の測定 部の駆動部、ステージ装置の駆動部、タイヤの動作特性を検知システム等のセンサ 一部分の駆動部、力センサーの衝撃応答の評価装置の初速を与える装置の駆動部 、孔内透水試験装置を含む装置のピストンシリンダのピストン駆動装置の駆動部、集 光追尾式発電装置における仰角方向へ動かすための駆動部、気体の濃度測定装 置を含む測定装置のサファイアレーザー発振波長切替機構のチューニングミラーの 振動装置の駆動部、プリント基板の検査装置や液晶、 PDPなどのフラットパネルディ スプレイの検査装置においてァライメントを必要とする場合に ΧΥ Θテーブルの駆動 部、電子ビーム(Eビーム)システム又はフォーカストイオンビーム(FIB)システムなど の荷電粒子ビームシステム等にぉ 、て用いる調節可能なアパーチャ一装置の駆動 部、平面度測定器における測定対象の支持装置若しくは検出部の駆動部、並びに、 微細デバイスの組立をはじめ、半導体露光装置や半導体検査装置、 3次元形状測 定装置などの精密位置決め装置の駆動部に好適に使用できる。  The actuator device includes, for example, a driving unit of a measuring unit of a three-dimensional measuring device that measures the shape of a surface, a driving unit of a stage device, a sensor such as a detection system for operating characteristics of a tire, a driving unit of a part, a force sensor The drive unit of the device that gives the initial speed of the impact response evaluation device, the drive unit of the piston drive device of the piston cylinder of the device including the in-hole water permeability test device, the drive unit for moving in the elevation angle direction in the light collecting and tracking power generator, Alignment is required in the drive unit of the tuning mirror of the sapphire laser oscillation wavelength switching mechanism of the measurement device including the gas concentration measurement device, the inspection device of the printed circuit board, and the flat panel display inspection device such as liquid crystal and PDP. ΧΥ Θ table drive, electron beam (E-beam) system or focused ion beam (FIB) system Adjustable aperture device drive unit used for charged particle beam systems such as system, drive device for support device or detection unit of measurement object in flatness measuring instrument, and assembly of fine devices, semiconductors It can be suitably used for the drive part of precision positioning devices such as exposure equipment, semiconductor inspection equipment, and 3D shape measurement equipment.
[0079] 前記ァクチユエータ装置は、例えば、電気かみそりの駆動部、並びに、電動歯ブラ シの駆動部に好適に用いることができる。  The actuator device can be suitably used for, for example, an electric razor drive unit and an electric toothbrush drive unit.
[0080] 前記ァクチユエータ装置は、例えば、三次元物体の撮像デバイス或!、は CD、 DV D共用の読み出し光学系の焦点深度調整用デバイスの駆動部、複数のァクチユエ一 タ素子によって駆動対象面を能動曲面としてその形状を変形させることによって所望 の曲面を近似的に形成して焦点位置を容易に可変できる可変ミラーの駆動部、光ピ ックアップ等の磁気ヘッドの少なくとも一方を有する移動ユニットを直線移動させるこ とが可能なディスク装置の駆動部、リニアテープストレージシステム等の磁気テープ ヘッドァクチユエータ素子アセンブリのヘッド送り機構の駆動部、電子写真方式の複 写機、プリンタ、ファクシミリなどに適用される画像形成装置の駆動部、磁気ヘッド部 材等の搭載部材の駆動部、集束レンズ群を光軸方向に駆動制御する光ディスク原 盤露光装置の駆動部、光ヘッドを駆動するヘッド駆動手段の駆動部、記録媒体に対 する情報の記録又は記録媒体に記録された情報の再生を行う情報記録再生装置の 駆動部、並びに、回路しや断器 (配電用回路しや断器)の開閉操作の駆動部に好適 に用いることができる。 The actuator device is, for example, an imaging device for a three-dimensional object or a drive unit of a focus depth adjustment device for a readout optical system shared by CD and DVD, and a drive target surface by a plurality of actuator elements. Desired by deforming its shape as an active curved surface The drive unit of the variable mirror that can form the curved surface approximately and easily change the focal position, and the drive unit of the disk device that can linearly move the moving unit having at least one of the magnetic heads such as an optical pickup , Magnetic tape for linear tape storage systems, etc. Drive unit of head actuator element assembly, drive unit of image forming apparatus applied to electrophotographic copying machine, printer, facsimile, etc., magnetic head unit A drive unit of a mounting member such as a material, a drive unit of an optical disc master exposure apparatus that drives and controls a focusing lens group in the optical axis direction, a drive unit of a head drive unit that drives an optical head, or recording information on a recording medium Information recording / reproducing device drive unit that reproduces information recorded on the recording medium, and circuit / breaker (distribution circuit / breaker) switching operation It can be suitably used for moving parts.
前記ァクチユエータ装置は、例えば、ゴム組成物のプレス成形加硫装置の駆動部、 移送される部品につ 、て単列 ·単層化や所定の姿勢への整列をさせる部品整列装 置の駆動部、圧縮成形装置の駆動部、溶着装置の保持機構の駆動部、製袋充填包 装機の駆動部、マシニングセンタ等の工作機械や射出成形機やプレス機等の成形 機械等の駆動部、印刷装置、塗装装置やラッカ吹き付け装置等の流体塗布装置の 駆動部、カムシャフト等を製造する製造装置の駆動部、覆ェ材の吊上げ装置の駆動 部、無杼織機における房耳規制体等の駆動装置、タフティング機の針駆動システム 、ルーパー駆動システム、およびナイフ駆動システム等の駆動部、カム研削盤や超 精密加工部品等の部品の研磨を行う研磨装置の駆動部、織機における綜銑枠の制 動装置の駆動部、織機における緯糸挿通のための経糸の開口部を形成する開口装 置の駆動部、半導体基板等の保護シート剥離装置の駆動部、通糸装置の駆動部、 CRT用電子銃の組立装置の駆動部、衣料用縁飾り、テーブルクロスやシートカバー 等に用途をもつトーシヨンレースを製造するためのトーシヨンレース機におけるシフタ 一フォーク駆動選択リニア制御装置の駆動部、ァニールウィンドウ駆動装置の水平 移動機構の駆動部、ガラス溶融窯フォアハースの支持アームの駆動部、カラー受像 管の蛍光面形成方法等の露光装置のラックを進退動させる駆動部、ボールボンディ ング装置のトーチアームの駆動部、ボンディングヘッドの XY方向への駆動部、チッ プ部品のマウントやプローブを使った測定などにおける部品の実装工程や測定検査 工程の駆動部、基板洗浄装置の洗浄具支持体の昇降駆動部、ガラス基板を走査さ れる検出ヘッドを進退させる駆動部、パターンを基板上に転写する露光装置の位置 決め装置の駆動部、精密加工などの分野にぉ 、けるサブミクロンのオーダで微小位 置決め装置の駆動部、ケミカルメカ-力ルポリシングツールの計測装置の位置決め 装置の駆動部、導体回路素子や液晶表示素子等の回路デバイスをリソグラフイエ程 で製造する際に用 、られる露光装置及び走査露光露光装置に好適なステージ装置 の位置決めのための駆動部、ワーク等の搬送あるいは位置決め等の手段の駆動部、 レチクルステージやウェハステージ等の位置決めや搬送のための駆動部、チャンバ 内の精密位置決めステージ装置の駆動部、ケミカルメカ-力ルポリシングシステムで のワークピースまたは半導体ゥ ーハの位置決め装置の駆動部、半導体のステツパ 一装置の駆動部、加工機械の導入ステーション内に正確に位置決めする装置の駆 動部、 NC機械ゃマシユングセンター等の工作機械等または IC業界のステッパーに 代表される各種機器用のパッシブ除振及びアクティブ除振の除振装置の駆動部、半 導体素子や液晶表示素子製造のリソグラフイエ程に使用される露光装置等において 光ビーム走査装置の基準格子板を前記光ビームの光軸方向に変位させる駆動部、 並びに、コンペャの横断方向に物品処理ユニット内へ移送する移送装置の駆動部に 好適に使用できる。 The actuator device is, for example, a drive unit of a rubber composition press molding vulcanizing device, a drive unit of a component aligning device that aligns a component to be transferred into a single row / single layer or a predetermined posture. , Compression molding device drive unit, welding device holding mechanism drive unit, bag making filling and packaging machine drive unit, machining center and other machine tools, injection molding machine and press machine drive units, and printing device Drive units for fluid application devices such as painting devices and lacquer spraying devices, drive units for manufacturing devices that manufacture camshafts, drive units for lifting devices for covering materials, and drive devices such as tuft ear regulators in non-woven looms , Needle drive systems for tufting machines, looper drive systems, knife drive systems, etc., drive units for polishing equipment that polishes parts such as cam grinders and ultra-precision machined parts, Movement The drive unit of the device, the drive unit of the opening device that forms the opening of the warp for the weft insertion in the loom, the drive unit of the protective sheet peeling device such as a semiconductor substrate, the drive unit of the threading device, the CRT electron gun Shifter in torsion lace machine for manufacturing torsion laces for applications such as assembly equipment, clothing trims, tablecloths and seat covers, etc. Drive for single fork drive selection linear controller, annealing window drive Drive unit for the horizontal movement mechanism of the device, drive unit for the support arm of the glass melting furnace for Haas, drive unit for advancing and retreating the rack of the exposure device such as the method of forming the fluorescent screen of the color picture tube, and driving the torch arm of the ball bonding device Parts mounting process and measurement inspection, such as driving parts in the XY direction of the head, bonding head, mounting of chip parts and measurement using probes Drive unit for the process, drive unit for raising and lowering the cleaning tool support of the substrate cleaning device, drive unit for moving the detection head that scans the glass substrate forward and backward, drive unit for the exposure device that transfers the pattern onto the substrate, precision unit Sub-micron micro-positioning device drive unit, chemical mechanical force polishing tool measurement device positioning device drive unit, circuit device such as conductor circuit element and liquid crystal display element, etc. Is used for manufacturing in the lithographic process, a stage drive suitable for the exposure apparatus and scanning exposure apparatus used for positioning, a drive section for means for transporting or positioning workpieces, a reticle stage, a wafer stage, etc. Drive unit for positioning and transporting, etc., drive unit for precision positioning stage device in chamber, chemical mechanical force polishing system Machine parts or semiconductor wafer positioning device drive units, semiconductor stepper device drive units, drive units for precise positioning in the processing machine introduction station, NC machine machining center, etc. In the drive unit of passive vibration isolator and active vibration isolator for various devices typified by machines and IC industry steppers, exposure equipment used in the lithographic process of manufacturing semiconductor elements and liquid crystal display elements, etc. It can be suitably used for a drive unit that displaces a reference grating plate of the light beam scanning device in the optical axis direction of the light beam, and a drive unit of a transfer device that transfers the reference grating plate into the article processing unit in the transverse direction of the competitor.
[0082] 前記ァクチユエータ装置は、例えば、電子顕微鏡等の走査プローブ顕微鏡のプロ ーブの位置決め装置の駆動部、並びに、電子顕微鏡用試料微動装置の位置決め 等の駆動部に好適に用いることができる。  The above-mentioned actuator device can be suitably used for, for example, a drive unit for a probe positioning device of a scanning probe microscope such as an electron microscope and a drive unit for positioning an electron microscope sample micro-motion device.
[0083] 前記ァクチユエータ装置は、例えば、自動溶接ロボット、産業用ロボットや介護用口 ボットを含むロボットまたはマニピュレータにおけるロボットアームの手首等に代表さ れる関節機構の駆動部、直接駆動型以外の関節の駆動部、ロボットの指のそのもの 、ロボット等のハンドとして使用されるスライド開閉式チャック装置の運動変 «構の 駆動部、細胞微小操作や微小部品の組立作業等にお!、て微小な対象物を任意の 状態に操作するためのマイクロマニピュレータの駆動部、開閉可能な複数のフィンガ 一を有する電動義手等の義肢の駆動部、ハンドリング用ロボットの駆動部、補装具の 駆動部、並びにパワースーツの駆動部に好適に用いることができる。 [0084] 前記ァクチユエータ装置は、例えば、サイドトリマの上回転刃又は下回転刃等を押 圧する装置の押圧部に好適に用いることができる。 The actuator device is, for example, a driving unit of a joint mechanism typified by a wrist of a robot arm in an automatic welding robot, a robot including an industrial robot, a nursing mouth bot, or a manipulator, and a joint other than the direct drive type. The drive unit, the finger of the robot itself, the motion change of the slide opening and closing chuck device used as the hand of the robot, etc. «For the drive unit of the structure, cell micro operation and assembly work of micro parts! Of a micromanipulator for manipulating a device in an arbitrary state, a drive unit of an artificial limb such as an electric prosthesis having a plurality of openable and closable fingers, a drive unit of a handling robot, a drive unit of a prosthesis, and a power suit It can be used suitably for a drive part. The actuator device can be suitably used, for example, as a pressing portion of a device that presses the upper rotary blade or the lower rotary blade of the side trimmer.
[0085] 前記ァクチユエータ装置は、例えば、パチンコ等の遊戯装置における役物等の駆 動部、人形やペットロボット等のアミューズメント機器の駆動部、並びに、乗車用シミュ レーシヨン装置のシミュレーション装置の駆動部に好適に用いることができる。  [0085] The above-mentioned actuator device is, for example, a driving unit for an accessory in a game device such as a pachinko machine, a driving unit for an amusement device such as a doll or a pet robot, and a driving unit for a simulation device for a simulation device for riding. It can be used suitably.
[0086] 前記ァクチユエータ装置は、例えば、上記機器等を含む機械全般に用いられる弁 の駆動部に用いることができ、例えば、蒸発ヘリウムガスの再液ィ匕装置の弁の駆動部 、ベローズ式の感圧制御弁の駆動部、綜銑枠を駆動する開口装置の駆動部、真空 ゲート弁の駆動部、液圧システム用のソレノイド動作型制御ノ レブの駆動部、ピボット レバーを用いる運動伝達装置を組み込んだバルブの駆動部、ロケットの可動ノズル のバルブの駆動部、サックバックバルブの駆動部、並びに、調圧弁部の駆動部に好 適に用いることができる。  [0086] The actuator device can be used, for example, in a valve drive unit used in all machines including the above-described devices. For example, the valve drive unit of the evaporative helium gas re-liquid apparatus, a bellows type Drive unit for pressure-sensitive control valve, drive unit for opening device that drives rod frame, drive unit for vacuum gate valve, drive unit for solenoid operation type control valve for hydraulic system, and motion transmission device using pivot lever It can be suitably used for a built-in valve drive unit, a rocket movable nozzle valve drive unit, a suck back valve drive unit, and a pressure regulating valve unit drive unit.
[0087] 前記ァクチユエータ装置は、例えば、上記機器等を含む機械全般に用いられるブ レーキの押圧部として用いることができ、例えば、非常用、保安用、停留用等のブレ ーキゃエレベータのブレーキに用いて好適な制動装置の押圧部、並びに、ブレーキ 構造もしくはブレーキシステムの押圧部に好適に用いることができる。  [0087] The actuator device can be used as, for example, a brake pressing unit used in machines including the above-described devices. For example, brakes for elevators, brakes for elevators, etc. It can be suitably used for a pressing portion of a braking device suitable for use in a brake, and a pressing portion of a brake structure or a brake system.

Claims

請求の範囲 The scope of the claims
[1] 直方体の平板形状の固体電解質層と、該固体電解質層を挟んで対向する表面 に相互に絶縁状態で形成された電極層からなるァクチユエータ素子を、複数枚連結 させて直動駆動を与える高分子ァクチユエータ装置において、  [1] A plurality of actuator elements each having a rectangular parallelepiped-shaped solid electrolyte layer and electrode layers formed in an insulating state on opposite surfaces across the solid electrolyte layer are connected to provide direct drive. In a polymer actuator device,
直動駆動方向に対してほぼ直角方向に並行に配設された一対の前記ァクチユエ ータ素子が、直動駆動を与える駆動ユニットとして構成されており、  A pair of the actuator elements arranged in parallel in a direction substantially perpendicular to the linear drive direction is configured as a drive unit that gives a linear drive,
前記ァクチユエータ素子の同一端部力 その対向する表面に形成された電極層 同士において面状に連結され、かつ反対側の各表面に形成された前記同一端部に おけるそれぞれの電極層同士が電気的に接続されていることを特徴とする直動駆動 型高分子ァクチユエータ装置。  The same end force of the actuator element The electrode layers formed on the opposing surfaces are connected in a plane, and the electrode layers at the same end formed on the opposite surfaces are electrically connected to each other. A linear drive type polymer actuator device characterized by being connected to
[2] 前記一方のァクチユエータ素子の他端部が固定部に固定され、他のァクチユエ一 タ素子の他端部が移動端部を構成している請求項 1記載の直動駆動型高分子ァク チュエータ装置。  [2] The linear motion driven polymer polymer according to [1], wherein the other end portion of the one actuator element is fixed to a fixed portion, and the other end portion of the other actuator element constitutes a moving end portion. The actuator device.
[3] 前記各ァクチユエータ素子のそれぞれの同一表面における電極層が、前記一端 部から前記他端部の範囲にわたって、電気的絶縁部を介して異なる電極層要素から 構成され、かつ前記固体電解質層を挟んで対向する表面に異なる電極層要素を備 えており、  [3] The electrode layer on the same surface of each of the actuator elements is composed of different electrode layer elements through an electrical insulating portion over the range from the one end to the other end, and the solid electrolyte layer is It has different electrode layer elements on the opposite surfaces,
前記同一表面における電極層要素と、反対側の表面における電極層要素が交差 状態において同一電極層を構成する請求項 1又は 2記載の直動駆動型高分子ァク チュエータ装置。  3. The linear motion driven polymer actuator device according to claim 1, wherein the electrode layer element on the same surface and the electrode layer element on the opposite surface constitute the same electrode layer in an intersecting state.
[4] ァクチユエータ素子の各電極層に電圧が印加される一対の端子部が前記固定部 に設けられている請求項 1乃至 3のいずれかの項に記載の直動駆動型高分子ァクチ ユエータ装置。  4. The linear motion drive type polymer actuator device according to any one of claims 1 to 3, wherein a pair of terminal portions to which a voltage is applied to each electrode layer of the actuator element are provided in the fixed portion. .
PCT/JP2006/313418 2005-07-14 2006-07-05 Direct driven polymer actuator WO2007007616A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005205359A JP4711765B2 (en) 2005-07-14 2005-07-14 Linear motion type polymer actuator device
JP2005-205359 2005-07-14

Publications (1)

Publication Number Publication Date
WO2007007616A1 true WO2007007616A1 (en) 2007-01-18

Family

ID=37637010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313418 WO2007007616A1 (en) 2005-07-14 2006-07-05 Direct driven polymer actuator

Country Status (2)

Country Link
JP (1) JP4711765B2 (en)
WO (1) WO2007007616A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7839055B2 (en) 2008-03-27 2010-11-23 Panasonic Corporation Flat-plate lamination-type conductive polymer actuator and flat-plate lamination-type conductive polymer actuator device as well as operating method thereof
US8585015B2 (en) 2008-12-09 2013-11-19 Tsubakimoto Chain Co. Engagement chain
US20230241765A1 (en) * 2022-02-01 2023-08-03 Toyota Motor Engineering & Manufacturing North America, Inc. Artificial muscles comprising an electrode pair and a clamping device for compressing the electrode pair

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8013897B2 (en) 2007-02-27 2011-09-06 Casio Computer Co., Ltd. Apparatus for correcting camera shake and image capturing apparatus
JP5144096B2 (en) * 2007-03-22 2013-02-13 イーメックス株式会社 Open / close motion actuator
JP5243112B2 (en) * 2008-06-18 2013-07-24 アルプス電気株式会社 Actuator and manufacturing method thereof
JP5271410B2 (en) * 2009-04-17 2013-08-21 アルプス電気株式会社 Actuator element and input device
CN102474206B (en) * 2009-09-24 2014-08-13 松下电器产业株式会社 Flat stacked-type conductive polymer actuator
JP5959807B2 (en) 2010-08-05 2016-08-02 キヤノン株式会社 Actuator and actuator structure
CN113366238B (en) 2019-01-30 2023-11-21 DRiV汽车公司 Suspension with electrically controlled material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004314219A (en) * 2003-04-14 2004-11-11 Institute Of Physical & Chemical Research Linear motion artificial muscle actuator and method of manufacturing linear motion artificial muscle actuator
JP2005168088A (en) * 2003-11-28 2005-06-23 Eamex Co Element for drive, and its application

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004314219A (en) * 2003-04-14 2004-11-11 Institute Of Physical & Chemical Research Linear motion artificial muscle actuator and method of manufacturing linear motion artificial muscle actuator
JP2005168088A (en) * 2003-11-28 2005-06-23 Eamex Co Element for drive, and its application

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7839055B2 (en) 2008-03-27 2010-11-23 Panasonic Corporation Flat-plate lamination-type conductive polymer actuator and flat-plate lamination-type conductive polymer actuator device as well as operating method thereof
US8585015B2 (en) 2008-12-09 2013-11-19 Tsubakimoto Chain Co. Engagement chain
US20230241765A1 (en) * 2022-02-01 2023-08-03 Toyota Motor Engineering & Manufacturing North America, Inc. Artificial muscles comprising an electrode pair and a clamping device for compressing the electrode pair
US11731269B1 (en) 2022-02-01 2023-08-22 Toyota Motor Engineering & Manufacturing North America, Inc. Artificial muscles comprising an electrode pair and a clamping device for compressing the electrode pair

Also Published As

Publication number Publication date
JP4711765B2 (en) 2011-06-29
JP2007028749A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
WO2007007616A1 (en) Direct driven polymer actuator
JP5838448B2 (en) Conductive polymer composite structure, method for producing conductive polymer composite structure, and actuator element
WO2004014987A1 (en) Process for producing conductive polymer
JP2004162035A (en) Method for producing conductive polymer, conductive polymer, conductive polymer molding and conductive molymer, laminate and apparatus using them
JP4732678B2 (en) Actuator, manufacturing method of actuator, and electrolytic expansion / contraction method of actuator
JP2008086185A (en) Polymer actuator element and manufacturing method therefor
JP4659343B2 (en) Actuator element and driving method
JP4447343B2 (en) Drive mechanism and operating method thereof
JP4897345B2 (en) Method for driving polymer actuator element, actuator and method for manufacturing the same
WO2004075388A1 (en) Drive mechanism
JP5181143B2 (en) Planar devices
JP5144096B2 (en) Open / close motion actuator
JP4048236B2 (en) Conductive polymer composite structure, laminate, and method for producing conductive polymer
JP4727193B2 (en) Actuator element including conductive polymer molding
WO2004061156A1 (en) Method for electroless plating
US20110083785A1 (en) Electrode forming method
JP4323308B2 (en) Manufacturing method of laminate
JP2004254497A (en) Actuator and its use
WO2005026230A1 (en) Method for producing electroconductive polymer
JP4350990B2 (en) Electrode forming method by plating, laminated body, and apparatus using this laminated body
WO2008026534A1 (en) Polymer actuator element and method of producing the same
JP5712372B2 (en) Conductive polymer composite structure, method for producing conductive polymer composite structure, and actuator element
WO2004068690A1 (en) Actuator
JP2007327061A (en) Method for producing conductive polymer, conductive polymer, molded article of conductive polymer, laminate, method for producing actuator and actuator
WO2004075389A1 (en) Actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06780794

Country of ref document: EP

Kind code of ref document: A1