WO2007007412A1 - Rubber composition for shoe sole - Google Patents

Rubber composition for shoe sole Download PDF

Info

Publication number
WO2007007412A1
WO2007007412A1 PCT/JP2005/013042 JP2005013042W WO2007007412A1 WO 2007007412 A1 WO2007007412 A1 WO 2007007412A1 JP 2005013042 W JP2005013042 W JP 2005013042W WO 2007007412 A1 WO2007007412 A1 WO 2007007412A1
Authority
WO
WIPO (PCT)
Prior art keywords
shoe sole
rubber
rubber composition
slip
granular material
Prior art date
Application number
PCT/JP2005/013042
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Kawakami
Seiki Hadama
Original Assignee
Moonstar Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moonstar Chemical Corporation filed Critical Moonstar Chemical Corporation
Priority to JP2007524503A priority Critical patent/JPWO2007007412A1/en
Priority to PCT/JP2005/013042 priority patent/WO2007007412A1/en
Publication of WO2007007412A1 publication Critical patent/WO2007007412A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B1/00Footwear characterised by the material
    • A43B1/0027Footwear characterised by the material made at least partially from a material having special colours
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/22Soles made slip-preventing or wear-resisting, e.g. by impregnation or spreading a wear-resisting layer

Definitions

  • the present invention relates to a rubber composition containing a natural vitreous granule, and in particular, has an anti-slip effect on a wet pavement surface in addition to an ice surface and a compressed snow surface, and is suitable for a shoe sole.
  • a rubber composition containing a natural vitreous granule, and in particular, has an anti-slip effect on a wet pavement surface in addition to an ice surface and a compressed snow surface, and is suitable for a shoe sole.
  • a rubber composition containing a natural vitreous granule, and in particular, has an anti-slip effect on a wet pavement surface in addition to an ice surface and a compressed snow surface, and is suitable for a shoe sole.
  • rubber compositions are often used for shoe soles. Since rubber is easy to slip on ice and snow surfaces, etc., the rubber composition contains particles that provide anti-slip properties on ice and snow surfaces. Many attempts have been made to improve the properties of rubber compositions.
  • ceramic particles such as carborundum used as an artificial turret can be mixed with a rubber matrix to provide anti-slip properties. This is intended for the effect of pulling ice and snow surfaces by high hardness particles.
  • these barrels have a Mohs hardness of about 9 which is a little harder than the hardness value of 8 to 8.5, which is equivalent to iron at 10 levels of Mohs hardness.
  • Patent Document 1 Japanese Patent Publication No. Hei 4-292102
  • Patent Document 2 Japanese Patent Publication No. 10-337203
  • This conventional shoe sole has an excellent anti-slip effect on ice and snow surfaces by embedding the fiber density at a certain level or higher. It also has anti-slip properties on wet pavement surfaces. This is thought to be because glass fiber has a Mohs hardness of about 6 and is softer than the pavement surface.
  • Patent Document 3 Japanese Patent Publication No. 2002-53700
  • Patent Document 1 Japanese Patent Laid-Open No. 4-292102
  • Patent Document 2 Japanese Patent Laid-Open No. 10-337203
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-53700
  • the antiskid shoes using these ceramic particles have a problem that they are very slippery on a wet pavement even though they have an excellent antiskid effect on ice and snow.
  • ceramic particles can fully exert the effect of pulling, whereas hard crushed stones with a Mohs hardness of about 7 are generally used for pavements.
  • the ceramic particles do not have sufficient pulling effect, and the ceramic particles protrude from the bottom of the shoe and have a spike pin shape, making it difficult to obtain frictional resistance with a very small contact area with the pavement surface. It is in.
  • the conventional shoe sole described in Patent Document 2 has an excellent antiskid effect on ice and snow surfaces, and also has an antislip property on wet pavement surfaces.
  • glass fiber is mixed with unvulcanized rubber, and this is rolled to orient the glass fiber in the rolling direction, and the unvulcanized rubber sheet is laminated and pressed to form a laminate.
  • a complicated procedure is required in which a laminate is cut in a direction perpendicular to the rolling direction, inserted into a mold, and vulcanized by heating and pressing.
  • the glass fiber is perpendicular to the ground contact surface unless the glass fiber tends to be parallel to the mold surface.
  • the manufacturing process becomes special and complicated, such as requiring a process of cutting and removing the ground contact surface of the molded shoe sole. Had problems.
  • Patent Document 3 Although the conventional shoe sole described in Patent Document 3 has a black porous carbon material as an anti-slip material and can be used without being mixed with a black compound rubber, a light compound rubber If mixed with the rubber, it becomes spotted and the appearance is impaired, so there is a problem that it can be used only in the case of rubber containing black. Moreover, this anti-slip material also has a problem that it cannot be manufactured at low cost because it undergoes complicated processes such as carbonization firing in a special atmosphere.
  • the present invention has been made to solve the above-described problems, and does not require a special bonding process or a complicated molding process in molding of a shoe sole, and provides an anti-slip effect on a snowy surface or a wet pavement surface.
  • the rubber composition for a shoe sole according to the present invention comprises:
  • a rubber-like component composed of natural rubber and Z or synthetic rubber and Z or a thermoplastic elastomer, 100 parts by weight of porous and amorphous particles derived from volcanic ejecta, And 100 parts by weight.
  • a rubber composition containing a granular material which is a kind of volcanic ejecta as a shoe sole, a water film is sucked up by a large number of pores on the surface of the granular material and the pores The effect of removing the water film by the surrounding micro edges is obtained, and excellent anti-slip properties on ice and snow surfaces and wet pavement surfaces are obtained.
  • the pores on the surface of the porous granular material increase the adhesion area to the rubber-like component, and the pores are filled with the rubber-like component during molding by pressurization and heating, and serve as anchors. Since a physical bonding force is generated between the rubber-like component and the rubber-like component, it is possible to prevent the rubber-like component from falling off without any special adhesion treatment. For this reason, in a shoe sole that always wears, granular materials are always present on the sole surface.
  • the granular material has a Mohs hardness of 4-6.
  • the granular material having Mohs hardness of 4 to 6 has a ground contact area increased by appropriately collapsing the tip portion protruding in a spike pin shape from the shoe bottom surface on the hard pavement surface, Increases frictional resistance! ] Make it difficult to slip.
  • the granular material is porous vitreous containing about 63 to 75% diacid and about 11 to 19% acid aluminum, and has a white appearance. .
  • the granular material contains appropriate amounts of silicon dioxide and aluminum oxide as the main constituents of glass, and has a white appearance. Even if it is kneaded, its appearance will not be damaged.
  • this granular material can be obtained from white clay and pumice, which are widely present as volcanic ejecta, and can be obtained in a large amount and at a low cost, thereby reducing the cost of a rubber composition having anti-slip properties.
  • FIG. 1 is a surface view of a granular body in a rubber composition for a shoe sole according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of an interface between a granular material and a rubber matrix in a rubber composition for a shoe sole according to an embodiment of the present invention.
  • FIG. 3 is a graph showing the cumulative particle size distribution of granules in Example 2 of the rubber composition for shoe soles of the present invention.
  • FIG. 4 is a graph showing the cumulative particle size distribution of granules in Example 3 of the rubber composition for shoe soles of the present invention.
  • FIG. 5 is a graph showing the cumulative particle size distribution of granules in Example 4 of the rubber composition for shoe soles of the present invention.
  • FIG. 6 is a graph showing the cumulative particle size distribution of granules in Example 5 of the rubber composition for shoe soles of the present invention.
  • FIG. 7 is a graph showing the relationship between the added amount of granular material C and rubber hardness in the rubber composition for shoe soles of the present invention.
  • FIG. 8 is a graph showing the relationship between the added amount of granular material B and rubber hardness in the rubber composition for shoe soles of the present invention.
  • FIG. 9 is a graph showing the relationship between the amount of granular material added and the anti-slip performance in the rubber composition for shoe soles of the present invention.
  • the rubber composition for a shoe sole is a porous material derived from volcanic ejecta with respect to 100 parts by weight of natural rubber, synthetic rubber, and rubber-like component that is also Z or a thermoplastic elastomer. 10 to 100 parts by weight of a granular material having an average particle size of 40 to 350 ⁇ m It is a blended ratio.
  • the natural rubber and Z or synthetic rubber component used as the rubbery component those usually used for shoe soles can be used.
  • natural rubber, isoprene rubber, styrene-butadiene copolymer A combined rubber, a butadiene rubber, a nitrile rubber, a nitrile-butadiene copolymer rubber, a nitrile-butadiene-isoprene copolymer rubber, etc. can be used alone or in a blend.
  • the thermoplastic elastomer styrene, olefin, and olefin can be used alone or in a blend. These thermoplastic elastomers can be used in any blend with natural rubber and Z or synthetic rubber.
  • the granular material 10 contains about 63 to 75% of diacid and about 11 to 19% mainly of acid aluminum and has a white appearance on the surface. It is a natural glass with small pores 11 and many small hollows inside (see Fig. 1). These granular materials are made from glassy (amorphous) volcanic ejecta, and are composed of andesite and rhyolite magma on the surface. These volcanic ejecta rich in glassy are collectively called glassy volcanic debris regardless of the presence or absence of pores, and are called white clay, volcanic ash, pumice, silica, etc., depending on the location of their production. Those with open holes are a kind of so-called pumice.
  • This granular material contains silicon dioxide as an amorphous material and hardly contains a crystalline component.
  • the granular material has an appropriate pressure resistance and is excellent in collapsibility, and rubber. Excellent dispersibility. Even if the surface of the granular material collapses, a large number of hollow portions exist, so that pores having micro edges are newly formed on the surface.
  • the road surface is sometimes dry or sometimes thin and has a submerged water film.
  • the water film plays a role of a lubricant, so it is extremely slippery.
  • the holes and the edges around the holes work effectively to remove the water film on the wet road surface. In other words, small pores bring up the effect of sucking up the water film, while edges around the pores show the effect of scavenging the water film.
  • a rubber-like component 20 is enclosed in the pores 11 on the surface of the granular body 10 during molding by pressure and heating, and this encapsulated portion serves as an anchor, and rubber Matric As a result, a physical bonding force is generated between the particles and the rubber matrix force.
  • the shoe sole is worn out after use, it is possible to maintain a state in which the porous granular material mixed in the rubber is always present on the shoe sole surface.
  • the amount of the granular material is 10 to 100 parts by weight of the rubber-like component.
  • the force to be blended with LOO parts by weight As a result, the physical strength of the rubber matrix is reduced, and the durability problem associated therewith occurs. Further, even if the blending ratio exceeds 100 parts by weight, no further improvement in the anti-slip performance is observed.
  • the average particle diameter of the granular material is 40 ⁇ m to 350 ⁇ m! / However, if the average particle diameter is more intense than 40 ⁇ m, the ice and snow surface is drawn. There is little effect and sufficient frictional force does not occur. On the other hand, when the average particle size exceeds 350 m and becomes coarser, the number of granular materials present on the shoe sole surface decreases, the frictional force with the road surface decreases, and the physical strength of the rubber composition for the shoe sole decreases. Fatigue resistance is also reduced, resulting in durability problems.
  • the granular material has a Mohs hardness of 4-6.
  • the Mohs hardness of the ice surface is said to be 1 to 2.5, and a Mohs hardness of 2.5 or more is required to exert the pulling effect.
  • a Mohs hardness of 4 or more is desirable to obtain a sufficient pulling effect.
  • there are pavements with hard tiles such as artificial marble, and crushed stones commonly used for pavements are hard rocks with a Mohs hardness of about 7.
  • the granular material should have a Mohs hardness of 6 or less, which is softer than the pavement.
  • the tip of the granular material that protrudes like a spike pin in the shoe bottom force will collapse appropriately due to its appropriate hardness, increasing the contact area and increasing the difficulty of slipping due to friction resistance .
  • the rubber composition for a shoe sole according to the above-described embodiment has a configuration in which porous natural glass is used as the granular material, but the present invention is not limited to this, and a plate shape having the same size is used. It is also possible to use natural glass as a part of the granular material mixed with a predetermined percentage of the above-mentioned porous material, and to prevent slipping caused by dragging on wet ice. Performance can be enhanced.
  • the rubber composition for shoe soles according to the present invention will be described in terms of the results of evaluating the anti-slip performance and the like of the obtained shoe soles with a predetermined composition.
  • the rubber composition for a shoe sole according to the present invention has, as a basic compounding example, 30 parts by weight of silica as a filler with respect to a rubbery material obtained by blending 60 parts by weight of natural rubber with 40 parts by weight of a butadiene thermoplastic elastomer. , 10 parts by weight of process oil and 10 parts by weight of tackifier as other additives, Sarako, 2 parts by weight of sulfur, 1. 7 parts by weight of vulcanization accelerator, and vulcanization accelerator 5.
  • a slip property test was performed using a plurality of test bodies with different particle sizes of added granules, and the effect of the particle size of the granules on the anti-slip performance was evaluated.
  • Example 1 a rubber composition was produced using granular material A obtained by sieving white clay C manufactured by Biei Shirachi Kogyo Co., Ltd. into the anti-slip material added to the basic composition.
  • Granule A has a cumulative 50% particle size of about 50 ⁇ m, a particle size distribution range of 20-63 ⁇ m, and a Mohs hardness of 4-5.
  • Example 2 a rubber composition was manufactured using granule B made of pumice granule 90LHM manufactured by Kyoritsu Material Co., Ltd. as an anti-slip material.
  • Granule B has a cumulative 50% particle size of about 100 ⁇ m, a particle size distribution range of 75-150 ⁇ m, and a Mohs hardness of 5-6.
  • Example 3 a rubber composition was produced using a granular material C made of white clay C manufactured by Biei Hakuto Kogyo Co., Ltd. as an anti-slip material.
  • Granule C has a cumulative 50% particle size of about 120 m, a particle size distribution width of 20-500 ⁇ m, and a Mohs hardness of 4-5.
  • Example 4 a rubber composition was manufactured using granule D made of pumice granule 70LHM manufactured by Kyoritsu Material Co., Ltd. as an anti-slip material.
  • Granule D has a cumulative 50% particle size of about 150 ⁇ m, a particle size distribution range of 106-250 ⁇ m, and a Mohs hardness of 5-6.
  • Example 5 a rubber composition was produced using granule E composed of pumice granule 60LHM manufactured by Kyoritsu Material Co., Ltd. as an anti-slip material.
  • the cumulative 50% particle size of Granule E is about 180 ⁇ m, particle size distribution width is 125 to 250 ⁇ m, and Mohs hardness is 5 to 6.
  • Example 6 a rubber composition was produced using granular material F obtained by sieving white clay C manufactured by Biei Hakuto Kogyo Co., Ltd. as an anti-slip material.
  • Granule F has a cumulative 50% particle size of about 215 ⁇ m, a particle size distribution range of 180-250 ⁇ m, and a Mohs hardness of 4-5.
  • FIGS. 3 to 6 show the cumulative particle size distributions of the granular materials B, C, D, and E, respectively.
  • Comparative Example 1 a rubber composition was produced with the same basic composition and without adding an antislip material.
  • Comparative Example 2 a rubber composition was produced by the method described in Patent Document 2 (Japanese Patent Publication No. Hei 10-337203). The conditions regarding the blending ratio and basic blending other than the replacement of the anti-slip material of each of the above examples with glass fiber are the same as those of each of the examples.
  • the glass fiber used has a diameter of 13 m and a length of 3 mm.
  • a product manufactured and marketed based on the contents of Patent Document 3 Japanese Patent Publication No. 2002-53700 is used as Comparative Example 3 as a test object as described above.
  • the slip resistance coefficient calculated here expresses the degree of slipperiness, and a larger value means less slipping. When walking with shoes on, it is required that the value of this slip resistance coefficient is approximately 0.35 to 0.9.
  • Table 1 shows the composition of each example and comparative example, and the slip resistance coefficient obtained as a result of the slip test. [0039] [Table 1]
  • Example 16 As shown in Table 1, with respect to wet ice, the larger the particle size of the granular material, the better the slip resistance. In all of Examples 16 and 6, the slip resistance was higher than that of Comparative Example 13. For Comparative Example 2, the same anti-slip property was obtained in Example 5 6 having an average particle diameter of 180 ⁇ or more.
  • the anti-slip properties of wet artificial marble do not correspond to the particle size relationship, not only the difference in particle size but also the difference in the granular material supplier! It is thought that / also affects. However, in the case of using granular materials from the same supplier (Example 1 3 6 or Example 2 4 5), it can be seen that the larger the particle size, the better the slip resistance. With respect to Comparative Example 3, the anti-slip property is significantly higher in any of the Examples, and also compared with Comparative Example 2, Example 26 has a higher anti-slip property.
  • Example 7 a rubber composition was produced by blending 10 parts by weight of the granular material C having white clay C force, manufactured by Biei Shirachi Industrial Co., Ltd., with the anti-slip material added to the basic composition.
  • Ma as the implementation f row 8 9 10 11 12 13, 20 parts by weight, 30 parts by weight, 50 parts by weight, 70 parts by weight, 90 parts by weight, and 110 parts by weight of granule C as an anti-slip material are blended.
  • Each rubber composition was produced.
  • Example 14 a rubber composition was produced by blending 10 parts by weight of the granule B made of 90 LHM of pumice granules manufactured by Kyoritsu Material Co., Ltd. with the anti-slip material added to the basic composition.
  • rubber B was formed by blending 20 parts by weight, 30 parts by weight, 60 parts by weight, 80 parts by weight, and 100 parts by weight of granular material B as an anti-slip material. Each thing was manufactured.
  • Tackifier 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Sulfur 2 2 2 2 2 2 2 2 Vulcanization accelerator 1. 7 1. 7 1. 7 1. 7 1. 7 1. 7 1. 7
  • Vulcanization accelerator 5. 7 5. 7 5. 7 5. 7 5. 7
  • the granule B added this time shows an increase in rubber hardness almost proportionally as the number of added parts is increased up to 100 PHR. This is because the granular material C has a Mohs hardness of 4 to 5, whereas the granular material B has a Mohs hardness of 5 to 6, so that the rubber roll is kneaded with the rubbery component in the rubber roll. It is considered that the collapsing due to friction between the granular materials B sometimes does not occur.
  • FIG. 9 is a graph showing the relationship between the added amounts of the granular material B and the granular material C and the anti-slip performance, using the CSR values obtained as a result of the slip property test for Examples 7 to 19. Show. According to this, in any granular material, the C. S. R value is less than the generally required lower limit of 0.35 when the amount of the added salt is less than 10 parts by weight. Thus, it can be seen that sufficient anti-slip performance cannot be obtained.
  • the porous and amorphous average particle diameter derived from volcanic ejecta is 40 to 350 ⁇ m and the Mohs hardness is 4 to 100 parts by weight based on 100 parts by weight of the rubbery component.
  • the Mohs hardness is 4 to 100 parts by weight based on 100 parts by weight of the rubbery component.
  • the present invention provides a rubber composition that can provide excellent anti-slip performance without requiring any special work or process.
  • sole molding not only compression molding but also urethane shoe soles and chlorides are provided. It can also be used for injection molding and cast molding used to mold vinyl shoe soles. It can also be used in factories and kitchens as rubber sheets for non-slip flooring materials in addition to footwear.

Abstract

[PROBLEMS] To provide an inexpensive rubber composition for shoe sole requiring no special bonding treatment nor complex forming process in formation of the shoe sole, exhibiting nonslip effect on an ice and snow plane or wet pavement and being applicable even to a rubber compound of light color scheme. [MEANS FOR SOLVING PROBLEMS] Since a rubber composition compounded with porous granular bodies as volcanic products is used for shoe sole, an effect for sucking a water film by a large number of pores in granular bodies exposed to the shoe sole and an effect for scratching the water film by the edge around pores are attained and excellent nonslip performance is ensured for slippery surface. Furthermore, the pores in the surface of the granular bodies increase the contact area with the rubbery component, the rubbery component is encapsulated in the pores at the time of formation by pressurizing/heating to act as an anchor, and since a physical bonding force is generated between them, dropping of the granular bodies from the rubbery component can be prevented without requiring any special bonding treatment.

Description

明 細 書  Specification
靴底用ゴム組成物  Rubber composition for shoe sole
技術分野  Technical field
[0001] 本発明は、天然ガラス質の粒状体を含有するゴム組成物に関し、特に、氷面や圧 雪面に加え、濡れた舗道面に対しても防滑効果を有し、靴底に好適なゴム組成物に 関する。  TECHNICAL FIELD [0001] The present invention relates to a rubber composition containing a natural vitreous granule, and in particular, has an anti-slip effect on a wet pavement surface in addition to an ice surface and a compressed snow surface, and is suitable for a shoe sole. Related to a rubber composition.
背景技術  Background art
[0002] 一般に、靴底にはゴム組成物が多く用いられる力 ゴムのみでは氷雪面等で滑りや すいことから、氷雪面での防滑性を付与する粒子等をゴム組成物に含有させるなど、 ゴム組成物の特性を改善する試みが従来力 数多くなされている。  [0002] Generally, rubber compositions are often used for shoe soles. Since rubber is easy to slip on ice and snow surfaces, etc., the rubber composition contains particles that provide anti-slip properties on ice and snow surfaces. Many attempts have been made to improve the properties of rubber compositions.
例えば、人工砲石用の砲粒として使用されるカーボランダム等のセラミック粒子をゴ ムマトリックスに混合して防滑性を持たせたものが従来カゝら提案されている。これは、 高硬度粒子による氷雪面の引つ搔き効果を目的とするものである。一般に、こうした 砲粒は、 10段階のモース硬度で鉄にあたる 8〜8. 5という硬度値よりやや硬いモー ス硬度 9程度となっている。  For example, ceramic particles such as carborundum used as an artificial turret can be mixed with a rubber matrix to provide anti-slip properties. This is intended for the effect of pulling ice and snow surfaces by high hardness particles. In general, these barrels have a Mohs hardness of about 9 which is a little harder than the hardness value of 8 to 8.5, which is equivalent to iron at 10 levels of Mohs hardness.
[0003] 氷雪面に対しては硬い粒子であるほど引つ搔き効果は大きいが、硬い材質ほどゴ ムマトリックスとの相性 (接着強度)は低下する。これらの粒子を配合したゴム組成物を 靴底に使用した場合、履用初期には防滑効果があっても、すぐに粒子が脱落し防滑 効果を有しなくなる上、粒子の脱落後は靴底の耐磨耗性、耐クラック性が低下すると いう問題もあった。  [0003] The harder the particles on ice and snow, the greater the pulling effect, but the harder the material, the lower the compatibility (adhesive strength) with the rubber matrix. When a rubber composition containing these particles is used for a shoe sole, even if it has an anti-slip effect at the beginning of wearing, the particles will fall off immediately and will not have an anti-slip effect. There was also a problem that the wear resistance and crack resistance of the steel deteriorated.
[0004] これに対し、カーボランダムやコランダムなどのセラミック砲粒を結合剤で結合して 形成したチップを、靴底の接地部に埋設したものが提案されている。このような従来 の靴底の一例として、 日本特許公開公報平 4— 292102号 (以下、特許文献 1と呼称 )に開示されるものがある。  [0004] On the other hand, there has been proposed a chip in which ceramic barrels such as carborundum and corundum are bonded with a binder and embedded in a grounding portion of a shoe sole. An example of such a conventional shoe sole is disclosed in Japanese Patent Publication No. Hei 4-292102 (hereinafter referred to as Patent Document 1).
この従来の靴底では、チップ表面に砲粒の大きさに応じた小凹凸が存在するため に、靴底本体の構成材料がチップに絡みついた状態となり、チップは靴底に強力に 保持される。また、チップを構成している砥粒は、結合剤で互いに結合しているため、 靴底から容易に脱落することもな 、。 In this conventional shoe sole, there are small irregularities on the surface of the tip depending on the size of the barrel, so the constituent material of the shoe sole body is entangled with the tip, and the tip is strongly held on the shoe sole. . In addition, since the abrasive grains constituting the chip are bonded to each other with a binder, It doesn't fall off easily from the sole.
[0005] また、従来の他の靴底として、ガラス繊維を未加硫ゴムに混合し、これを圧延するこ とによって、ガラス繊維を圧延方向に配向させ、接地面に対し直角になるように工夫 して成形するものが提案されている。このような靴底の一例として、 日本特許公開公 報平 10— 337203号 (以下、特許文献 2と呼称)に開示されるものがある。  [0005] Further, as another conventional shoe sole, glass fiber is mixed with unvulcanized rubber and rolled to align the glass fiber in the rolling direction so that it is perpendicular to the ground plane. Some have been devised for molding. An example of such a shoe sole is disclosed in Japanese Patent Publication No. 10-337203 (hereinafter referred to as Patent Document 2).
この従来の靴底は、繊維の密度を一定以上のレベルに埋設することにより氷雪面 での優れた防滑効果を有している。又、濡れた舗道面でも防滑性を有している。これ は、ガラス繊維がモース硬度 6程度であり、舗道面より柔らかいためと考えられる。  This conventional shoe sole has an excellent anti-slip effect on ice and snow surfaces by embedding the fiber density at a certain level or higher. It also has anti-slip properties on wet pavement surfaces. This is thought to be because glass fiber has a Mohs hardness of about 6 and is softer than the pavement surface.
[0006] さらに、別の靴底として、米ぬか等の麩糠類にフエノール榭脂を含浸させ、窒素ガ ス雰囲気中 700〜900°Cで炭化焼成した多孔性炭素材をゴムに混合して防滑性を 持たせたものも提案されている。このような従来の靴底の一例として、 日本特許公開 公報 2002— 53700号 (以下、特許文献 3と呼称)に開示されるものがある。  [0006] In addition, as another shoe sole, rice bran and other cocoons are impregnated with phenolic resin and carbonized and fired at 700 to 900 ° C in a nitrogen gas atmosphere and mixed with rubber to prevent slippage. Proposals have also been made that have sex. One example of such a conventional shoe sole is disclosed in Japanese Patent Publication No. 2002-53700 (hereinafter referred to as Patent Document 3).
特許文献 1:特開平 4— 292102号公報  Patent Document 1: Japanese Patent Laid-Open No. 4-292102
特許文献 2:特開平 10— 337203号公報  Patent Document 2: Japanese Patent Laid-Open No. 10-337203
特許文献 3:特開 2002— 53700号公報  Patent Document 3: Japanese Patent Laid-Open No. 2002-53700
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 従来の防滑性を有する靴底等ゴム組成物は、前記各特許文献に示されるものとな つており、 、ずれもゴムに混合した各種防滑材により防滑性能を得る仕組みである。 このうち、前記特許文献 1に記載される従来の靴底は、常に砥粒が靴底にあらわれて 防滑性能を発揮できるものの、チップが砲石とほぼ同様の構造となるため、製造コス ト高となるという課題を有していた。カロえて、使用を経てゴムとチップの結合力が弱ま り、チップが脱落してしまう危険性もあり、靴底で比較的大きな部位を占めるチップが 外れると、歩行に悪影響を与えるなど靴として正常な機能を果さなくなるという課題を 有していた。 [0007] Conventional rubber compositions such as shoe soles having anti-slip properties are those described in each of the above-mentioned patent documents, and the mechanism is to obtain anti-slip performance by using various anti-slip materials mixed with rubber. Among them, the conventional shoe sole described in Patent Document 1 always has abrasive grains appearing on the shoe sole and can exhibit anti-slip performance, but the tip has almost the same structure as a turret, so that the manufacturing cost is high. Had the problem of becoming. There is also a risk that the bonding force between the rubber and the chip will weaken after use, and the chip may fall off.If the chip that occupies a relatively large part on the sole is removed, it will adversely affect walking. The problem was that it would not function normally.
[0008] また、前記特許文献 1以外で砲粒等のセラミック粒子を用いるものとして、ゴムから 脱落しやすいセラミック粒子を前もって接着処理して脱落防止を図ったものも、従来 力も使用されていた。しかし、セラミック粒子は、もともとゴムに親和性がなぐまた、こ れらの粒子表面は、総じて滑らかで表面積も小さぐ物理的なアンカー効果も得にく V、ため、処理を経ても接着力が十分に得られな ヽと ヽぅ課題を有して ヽた。 [0008] Further, other than the above-mentioned Patent Document 1, as ceramic particles such as cannonballs, ceramic particles that are easy to fall off from rubber have been treated in advance to prevent dropping, and conventional forces have also been used. However, ceramic particles are not compatible with rubber. The surface of these particles is generally smooth and has a small surface area, making it difficult to obtain a physical anchoring effect V. Therefore, sufficient adhesion cannot be obtained even after treatment. .
[0009] さらに、これらのセラミック粒子を使用した防滑靴は、氷雪面での防滑効果は優れて いても、濡れた舗道面では非常に滑り易いという課題を有していた。すなわち、モー ス硬度が 1〜2. 5とされる氷面では、セラミック粒子が引つ搔き効果を十分発揮できる のに対し、舗道には一般にモース硬度 7程度の硬堅な砕石が使用されているため、 セラミック粒子の引つ搔き効果が不足すると共に、セラミック粒子が靴底面より突出し スパイクピン状になっているため、舗道面との接触面積が非常に少なぐ摩擦抵抗を 得にくい状況にある。 [0009] Further, the antiskid shoes using these ceramic particles have a problem that they are very slippery on a wet pavement even though they have an excellent antiskid effect on ice and snow. In other words, on the ice surface with a Mohs hardness of 1 to 2.5, ceramic particles can fully exert the effect of pulling, whereas hard crushed stones with a Mohs hardness of about 7 are generally used for pavements. As a result, the ceramic particles do not have sufficient pulling effect, and the ceramic particles protrude from the bottom of the shoe and have a spike pin shape, making it difficult to obtain frictional resistance with a very small contact area with the pavement surface. It is in.
[0010] 次に、前記特許文献 2に記載の従来の靴底は、氷雪面での優れた防滑効果を有 すると共に、濡れた舗道面でも防滑性を有している。しかし、この従来の靴底の成形 にあたっては、ガラス繊維を未加硫ゴムに混合し、これを圧延することによりガラス繊 維を圧延方向に配向させ、未加硫ゴムシートを積層加圧し積層体を形成し、圧延方 向と直角となる方向に積層体を切断したものを金型に挿入し、加熱,加圧により加硫 を行うという複雑な手順を要する。さらに、金型のキヤビティ内の靴底の接地面となる 靴底表面近傍においては、ガラス繊維が金型表面に対し平行になり易ぐその部分 を除去しなければ接地面に対し垂直にガラス繊維が埋設された靴底を得られないこ とから、成型された靴底の接地面側表面を切削除去するという工程を必要とするなど 、製造工程が特殊且つ複雑となり、製造コストが高くなるという課題を有していた。  [0010] Next, the conventional shoe sole described in Patent Document 2 has an excellent antiskid effect on ice and snow surfaces, and also has an antislip property on wet pavement surfaces. However, in forming this conventional shoe sole, glass fiber is mixed with unvulcanized rubber, and this is rolled to orient the glass fiber in the rolling direction, and the unvulcanized rubber sheet is laminated and pressed to form a laminate. A complicated procedure is required in which a laminate is cut in a direction perpendicular to the rolling direction, inserted into a mold, and vulcanized by heating and pressing. Furthermore, in the vicinity of the shoe sole surface that becomes the ground contact surface of the shoe sole in the mold cavity, the glass fiber is perpendicular to the ground contact surface unless the glass fiber tends to be parallel to the mold surface. As a result, the manufacturing process becomes special and complicated, such as requiring a process of cutting and removing the ground contact surface of the molded shoe sole. Had problems.
[0011] また、前記特許文献 3に記載された従来の靴底は、防滑材となる多孔性炭素材が 黒色であり、黒色配合のゴムでは違和感なく混合して使用できるものの、淡色配合の ゴムに混合すれば、斑点状となり、外観が損なわれるため、事実上黒色配合のゴムの 場合しか使用できないという課題を有していた。力!]えて、この防滑材も特殊雰囲気下 での炭化焼成など複雑な工程を経るため、その製造を低コストで行えないという課題 を有していた。  [0011] Although the conventional shoe sole described in Patent Document 3 has a black porous carbon material as an anti-slip material and can be used without being mixed with a black compound rubber, a light compound rubber If mixed with the rubber, it becomes spotted and the appearance is impaired, so there is a problem that it can be used only in the case of rubber containing black. Moreover, this anti-slip material also has a problem that it cannot be manufactured at low cost because it undergoes complicated processes such as carbonization firing in a special atmosphere.
[0012] 本発明は前記課題を解消するためになされたもので、靴底の成形において特別な 接着処理や複雑な成形工程を必要とせず、氷雪面や濡れた舗道面での防滑効果が 得られ、し力も淡色配合のゴム配合物にも使用でき、低コストな靴底用ゴム組成物を 提供することを目的とする。 [0012] The present invention has been made to solve the above-described problems, and does not require a special bonding process or a complicated molding process in molding of a shoe sole, and provides an anti-slip effect on a snowy surface or a wet pavement surface. Low-cost rubber composition for shoe soles. The purpose is to provide.
課題を解決するための手段  Means for solving the problem
[0013] 本発明に係る靴底用ゴム組成物は、  [0013] The rubber composition for a shoe sole according to the present invention comprises:
(1)天然ゴム及び Z又は合成ゴム及び Z又は熱可塑性エラストマ一からなるゴム状 成分 100重量部に対し、火山噴出物由来の多孔質で且つ非晶質である粒状体を、 1 0な 、し 100重量部配合したものである。  (1) A rubber-like component composed of natural rubber and Z or synthetic rubber and Z or a thermoplastic elastomer, 100 parts by weight of porous and amorphous particles derived from volcanic ejecta, And 100 parts by weight.
このように本発明によれば、火山噴出物の一種である粒状体を配合したゴム組成物 を靴底用として使用することにより、粒状体表面の多数の空孔による水膜の吸い上げ と空孔周囲のミクロなエッジによる水膜の搔き取りの効果が得られ、氷雪面や濡れた 舗道面での優れた防滑性が得られる。  As described above, according to the present invention, by using a rubber composition containing a granular material which is a kind of volcanic ejecta as a shoe sole, a water film is sucked up by a large number of pores on the surface of the granular material and the pores The effect of removing the water film by the surrounding micro edges is obtained, and excellent anti-slip properties on ice and snow surfaces and wet pavement surfaces are obtained.
[0014] また、多孔質である粒状体表面の空孔はゴム状成分に対する接着面積の増大をも たらすと共に、空孔には加圧 '加熱による成型時にゴム状成分が封入されてアンカー として働き、ゴム状成分との間に物理的な結合力を生じさせることから、特別な接着 処理なしに粒状体がゴム状成分力 脱落するのを防止できる。このため、常に磨耗 する靴底において、粒状体が常に靴底表面に存在する。  [0014] In addition, the pores on the surface of the porous granular material increase the adhesion area to the rubber-like component, and the pores are filled with the rubber-like component during molding by pressurization and heating, and serve as anchors. Since a physical bonding force is generated between the rubber-like component and the rubber-like component, it is possible to prevent the rubber-like component from falling off without any special adhesion treatment. For this reason, in a shoe sole that always wears, granular materials are always present on the sole surface.
[0015] また、本発明に係る靴底用ゴム組成物は必要に応じて、  [0015] Further, the rubber composition for a shoe sole according to the present invention, if necessary,
(2)前記粒状体が、モース硬度 4〜6とされるものである。  (2) The granular material has a Mohs hardness of 4-6.
このように本発明によれば、モース硬度 4〜6の粒状体は、硬い舗道面では靴底面 からスパイクピン状に突出したその先端部分を適度に崩潰させることにより、接地面 積が増加し、摩擦抵抗を増力!]させ滑りにくくする。  As described above, according to the present invention, the granular material having Mohs hardness of 4 to 6 has a ground contact area increased by appropriately collapsing the tip portion protruding in a spike pin shape from the shoe bottom surface on the hard pavement surface, Increases frictional resistance! ] Make it difficult to slip.
[0016] また、本発明に係る靴底用ゴム組成物は必要に応じて、 [0016] Also, the rubber composition for a shoe sole according to the present invention, if necessary,
(3)前記粒状体が、二酸ィ匕ケィ素を約 63〜75%、酸ィ匕アルミニウムを約 11〜19% 含有する多孔性のガラス質であり、且つ白色の外観を有するものである。  (3) The granular material is porous vitreous containing about 63 to 75% diacid and about 11 to 19% acid aluminum, and has a white appearance. .
このように本発明によれば、粒状体は、ガラス質をなす主成分としての二酸化ケィ 素と酸化アルミニウムをそれぞれ適量含有して、白色の外観を有するものであり、淡 色のゴム状成分に練り込んでも、その外観を損なうことがない。また、この粒状体は、 火山噴出物として広く存在する白土や軽石等力 得られるものであり、大量且つ低コ ストに入手でき、防滑性を備えたゴム組成物のコストダウンが図れる。 図面の簡単な説明 As described above, according to the present invention, the granular material contains appropriate amounts of silicon dioxide and aluminum oxide as the main constituents of glass, and has a white appearance. Even if it is kneaded, its appearance will not be damaged. In addition, this granular material can be obtained from white clay and pumice, which are widely present as volcanic ejecta, and can be obtained in a large amount and at a low cost, thereby reducing the cost of a rubber composition having anti-slip properties. Brief Description of Drawings
[0017] [図 1]本発明の一実施形態に係る靴底用ゴム組成物における粒状体の表面図である  FIG. 1 is a surface view of a granular body in a rubber composition for a shoe sole according to an embodiment of the present invention.
[図 2]本発明の一実施形態に係る靴底用ゴム組成物における粒状体とゴムマトリック スとの界面の拡大図である。 FIG. 2 is an enlarged view of an interface between a granular material and a rubber matrix in a rubber composition for a shoe sole according to an embodiment of the present invention.
[図 3]本発明の靴底用ゴム組成物の実施例 2における粒状体の累積粒度分布を表す グラフである。  FIG. 3 is a graph showing the cumulative particle size distribution of granules in Example 2 of the rubber composition for shoe soles of the present invention.
[図 4]本発明の靴底用ゴム組成物の実施例 3における粒状体の累積粒度分布を表す グラフである。  FIG. 4 is a graph showing the cumulative particle size distribution of granules in Example 3 of the rubber composition for shoe soles of the present invention.
[図 5]本発明の靴底用ゴム組成物の実施例 4における粒状体の累積粒度分布を表す グラフである。  FIG. 5 is a graph showing the cumulative particle size distribution of granules in Example 4 of the rubber composition for shoe soles of the present invention.
[図 6]本発明の靴底用ゴム組成物の実施例 5における粒状体の累積粒度分布を表す グラフである。  FIG. 6 is a graph showing the cumulative particle size distribution of granules in Example 5 of the rubber composition for shoe soles of the present invention.
[図 7]本発明の靴底用ゴム組成物における粒状体 Cの添加量とゴム硬さとの関係を表 すグラフである。  FIG. 7 is a graph showing the relationship between the added amount of granular material C and rubber hardness in the rubber composition for shoe soles of the present invention.
[図 8]本発明の靴底用ゴム組成物における粒状体 Bの添加量とゴム硬さとの関係を表 すグラフである。  FIG. 8 is a graph showing the relationship between the added amount of granular material B and rubber hardness in the rubber composition for shoe soles of the present invention.
[図 9]本発明の靴底用ゴム組成物における粒状体の添加量と防滑性能との関係を表 すグラフである。  FIG. 9 is a graph showing the relationship between the amount of granular material added and the anti-slip performance in the rubber composition for shoe soles of the present invention.
符号の説明  Explanation of symbols
[0018] 10 粒状体 [0018] 10 Granules
11 空孔  11 holes
20 ゴム状成分  20 Rubber component
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、本発明の一実施の形態を図 1及び図 2に基づいて説明する。前記各図にお いて本実施形態に係る靴底用ゴム組成物は、天然ゴム、合成ゴム、及び Z又は熱可 塑性エラストマ一力もなるゴム状成分 100重量部に対し、火山噴出物由来の多孔質 で且つ非晶質の平均粒径 40〜350 μ mである粒状体を、 10ないし 100重量部とな る割合で配合したものである。 Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2. In each of the drawings, the rubber composition for a shoe sole according to the present embodiment is a porous material derived from volcanic ejecta with respect to 100 parts by weight of natural rubber, synthetic rubber, and rubber-like component that is also Z or a thermoplastic elastomer. 10 to 100 parts by weight of a granular material having an average particle size of 40 to 350 μm It is a blended ratio.
[0020] 前記ゴム状成分として使用される天然ゴム及び Z又は合成ゴム成分としては、靴底 用として通常使用されるものを用いることができ、例えば、天然ゴム、イソプレンゴム、 スチレン一ブタジエン共重合体ゴム、ブタジエンゴム、二トリルゴム、二トリル一ブタジ ェン共重合体ゴム、二トリル—ブタジエン—イソプレン共重合体ゴムなどを単独である いはブレンドで使用可能である。また、熱可塑性エラストマ一としては、スチレン系、 ォレフィン系、ジォレフイン系などが単独であるいはブレンドで使用できる。これらの 熱可塑性エラストマ一は、天然ゴム及び Z又は合成ゴムと任意のブレンドで使用でき る。  [0020] As the natural rubber and Z or synthetic rubber component used as the rubbery component, those usually used for shoe soles can be used. For example, natural rubber, isoprene rubber, styrene-butadiene copolymer A combined rubber, a butadiene rubber, a nitrile rubber, a nitrile-butadiene copolymer rubber, a nitrile-butadiene-isoprene copolymer rubber, etc. can be used alone or in a blend. Further, as the thermoplastic elastomer, styrene, olefin, and olefin can be used alone or in a blend. These thermoplastic elastomers can be used in any blend with natural rubber and Z or synthetic rubber.
[0021] 前記粒状体 10は、二酸ィ匕ケィ素を 63〜75%程度含み、他に主として酸ィ匕アルミ- ゥムを 11〜19%程度含んで、白色の外観を呈し、表面に小さな空孔 11が存在する と共に、内部にも小さな中空部が多数存在する天然ガラスである(図 1参照)。この粒 状体は、ガラス質 (非晶質)の火山噴出物を原料とするものであり、これは安山岩質 や流紋岩質等のマグマが地表で固まったものである。このガラス質に富む火山噴出 物は、空孔の有無に拘らず、ガラス質火山砕屑物と総称され、その産出場所により、 白土、火山灰、軽石、シリカなどと呼ばれている。空孔の開いたものは、いわゆる軽石 (Pumice)の一種である。この粒状体は二酸化ケイ素を非晶質体として含み、結晶質 分をほとんど含まないものであり、前記組成となることで、粒状体は適度の耐圧力を 有しつつ崩潰性に優れ、またゴムへの分散性にも優れている。仮に粒状体の表面が 崩潰しても、中空部が多数存在することから、ミクロなエッジを有する空孔が新たに表 面に形成される。  [0021] The granular material 10 contains about 63 to 75% of diacid and about 11 to 19% mainly of acid aluminum and has a white appearance on the surface. It is a natural glass with small pores 11 and many small hollows inside (see Fig. 1). These granular materials are made from glassy (amorphous) volcanic ejecta, and are composed of andesite and rhyolite magma on the surface. These volcanic ejecta rich in glassy are collectively called glassy volcanic debris regardless of the presence or absence of pores, and are called white clay, volcanic ash, pumice, silica, etc., depending on the location of their production. Those with open holes are a kind of so-called pumice. This granular material contains silicon dioxide as an amorphous material and hardly contains a crystalline component. By having the above composition, the granular material has an appropriate pressure resistance and is excellent in collapsibility, and rubber. Excellent dispersibility. Even if the surface of the granular material collapses, a large number of hollow portions exist, so that pores having micro edges are newly formed on the surface.
[0022] 例えば、路面は、時には乾燥した状態であったり、時には薄!ヽ水膜を張った状態で あったりし、濡れた面では水膜が潤滑剤の役割を果たすために極めて滑りやすくなつ ていることがあるが、こうした濡れた路面の水膜を除き去るのに、空孔と空孔周辺のェ ッジが有効に働く。すなわち、小さな空孔は水膜の吸い上げ効果をもたらす一方、空 孔周辺のエッジは水膜の搔き取り効果を発揮する。  [0022] For example, the road surface is sometimes dry or sometimes thin and has a submerged water film. On the wet surface, the water film plays a role of a lubricant, so it is extremely slippery. However, the holes and the edges around the holes work effectively to remove the water film on the wet road surface. In other words, small pores bring up the effect of sucking up the water film, while edges around the pores show the effect of scavenging the water film.
[0023] また、図 2に示すように、この粒状体 10の表面の空孔 11には、加圧'加熱による成 型時にゴム状成分 20が封入され、この封入部分がアンカーとして働き、ゴムマトリック スとの間に物理的な結合力を生じさせることとなり、粒状体がゴムマトリックス力 離脱 するのを防止できる。こうして、使用を経て靴底は磨耗するものの、ゴムに混入された 多孔質の粒状体が常に靴底表面に存在する状態を維持できる。 In addition, as shown in FIG. 2, a rubber-like component 20 is enclosed in the pores 11 on the surface of the granular body 10 during molding by pressure and heating, and this encapsulated portion serves as an anchor, and rubber Matric As a result, a physical bonding force is generated between the particles and the rubber matrix force. Thus, although the shoe sole is worn out after use, it is possible to maintain a state in which the porous granular material mixed in the rubber is always present on the shoe sole surface.
[0024] 前記粒状体は、ゴム状成分 100重量部に対し、 10〜: LOO重量部配合される力 仮 に 10重量部未満では十分な防滑効果が得られず、また、 100重量部を越えるとゴム マトリックスの物理的強度の低下と、これに伴う耐久性の問題が生じる。また、配合割 合が 100重量部を越えても、防滑性能のさらなる向上は見られない。  [0024] The amount of the granular material is 10 to 100 parts by weight of the rubber-like component. The force to be blended with LOO parts by weight. As a result, the physical strength of the rubber matrix is reduced, and the durability problem associated therewith occurs. Further, even if the blending ratio exceeds 100 parts by weight, no further improvement in the anti-slip performance is observed.
[0025] 前記粒状体の平均粒径は、 40 μ m〜350 μ mとなって!/、るが、この平均粒径が 40 μ mより更に細力べなると、氷雪面を引つ搔く効果が少なく十分な摩擦力が生じない。 一方、平均粒径が 350 mを超え、より粗くなると、靴底表面に存在する粒状体の数 が少なくなり、路面との摩擦力が低下する上、靴底用ゴム組成物の物理的強度ゃ耐 疲労性も低下し、耐久性の問題が生じる。  [0025] The average particle diameter of the granular material is 40 μm to 350 μm! / However, if the average particle diameter is more intense than 40 μm, the ice and snow surface is drawn. There is little effect and sufficient frictional force does not occur. On the other hand, when the average particle size exceeds 350 m and becomes coarser, the number of granular materials present on the shoe sole surface decreases, the frictional force with the road surface decreases, and the physical strength of the rubber composition for the shoe sole decreases. Fatigue resistance is also reduced, resulting in durability problems.
[0026] 前記粒状体の硬さは、モース硬度 4〜6である。氷面のモース硬度は 1〜2. 5とい われ、引つ搔き効果を発揮するには、モース硬度が 2. 5以上必要となる。十分な引つ 搔き効果を得ようとする場合には、モース硬度 4以上が望ましい。一方、人工大理石 などの硬質なタイルを配置した舗道が存在する他、一般的に舗道に使用される砕石 は、モース硬度 7程度の硬堅な岩石であることなどから、濡れた舗道での接地面積確 保のためには、粒状体は舗道より柔らかなモース硬度 6以下が望ましい。硬い舗道面 では、靴底面力もスパイクピン状に突出した粒状体の先端部分が、その適切な硬度 により適度に崩潰することとなり、接地面積を増加させて摩擦抵抗に伴う滑りにくさを 増大させられる。  [0026] The granular material has a Mohs hardness of 4-6. The Mohs hardness of the ice surface is said to be 1 to 2.5, and a Mohs hardness of 2.5 or more is required to exert the pulling effect. A Mohs hardness of 4 or more is desirable to obtain a sufficient pulling effect. On the other hand, there are pavements with hard tiles such as artificial marble, and crushed stones commonly used for pavements are hard rocks with a Mohs hardness of about 7. In order to secure the area, the granular material should have a Mohs hardness of 6 or less, which is softer than the pavement. On the hard pavement surface, the tip of the granular material that protrudes like a spike pin in the shoe bottom force will collapse appropriately due to its appropriate hardness, increasing the contact area and increasing the difficulty of slipping due to friction resistance .
[0027] なお、前記実施の形態に係る靴底用ゴム組成物にぉ 、て、粒状体として多孔質の 天然ガラスを用いる構成としているが、これに限らず、同程度の大きさとなる板状で空 孔のな!/、天然ガラスを、粒状体の一部として前記多孔質のものに所定割合混合して 用いる構成とすることもでき、濡れた氷面での引つ搔きに伴う防滑性能を強化できる。 実施例  [0027] It should be noted that the rubber composition for a shoe sole according to the above-described embodiment has a configuration in which porous natural glass is used as the granular material, but the present invention is not limited to this, and a plate shape having the same size is used. It is also possible to use natural glass as a part of the granular material mixed with a predetermined percentage of the above-mentioned porous material, and to prevent slipping caused by dragging on wet ice. Performance can be enhanced. Example
[0028] 以下、本発明に係る靴底用ゴム組成物を所定の配合で製造し、得られた靴底の防 滑性能等にっ 、て評価した結果にっ 、て説明する。 本発明に係る靴底用ゴム組成物は、基本配合例として、天然ゴム 60重量部にブタ ジェン系熱可塑性エラストマ一 40重量部をブレンドしたゴム状材料に対し、充填材と してシリカ 30重量部、他の添加材としてプロセスオイル 10重量部、及び粘着付与剤 10重量部を加え、さら〖こ、硫黄 2重量部、加硫促進剤 1. 7重量部、並びに加硫促進 助剤 5. 7重量部を加えたものに対し、前記粒状体をはじめとする各種防滑材を添カロ した配合内容となっている。これを基に、通常の精練'ロール出しを行い、金型のキヤ ビティ内に未加硫ゴム生地を載置し、圧縮成形にて靴底を作製すると共に、通常の 靴底の加硫条件による加硫を経て、トレッドタイヤ状の靴底パターンを有する靴底 (ゴ ム組成物)を作製し、この靴底表面を浅く切削して、成型時の離型剤と表層のゴム分 を削除した試験面を得た。このようにして得られた各実施例について防滑性能等の 測定を実施する。 [0028] Hereinafter, the rubber composition for shoe soles according to the present invention will be described in terms of the results of evaluating the anti-slip performance and the like of the obtained shoe soles with a predetermined composition. The rubber composition for a shoe sole according to the present invention has, as a basic compounding example, 30 parts by weight of silica as a filler with respect to a rubbery material obtained by blending 60 parts by weight of natural rubber with 40 parts by weight of a butadiene thermoplastic elastomer. , 10 parts by weight of process oil and 10 parts by weight of tackifier as other additives, Sarako, 2 parts by weight of sulfur, 1. 7 parts by weight of vulcanization accelerator, and vulcanization accelerator 5. It is a blended content with 7 parts by weight added and various types of anti-slip material including the granule. Based on this, normal scouring and roll-out are performed, an unvulcanized rubber fabric is placed in the mold cavity, and a shoe sole is produced by compression molding. After the vulcanization, a shoe sole (rubber composition) with a tread-tyre-like shoe sole pattern was prepared, and the surface of the shoe sole was cut shallowly to remove the mold release agent and the rubber component of the surface layer during molding. A test surface was obtained. For each of the examples thus obtained, the anti-slip performance and the like are measured.
[0029] まず、第一の試験として、添加する粒状体の粒径を異ならせた試験体を複数用い て滑り性試験を行 ヽ、粒状体の粒径が防滑性能に与える影響を評価した。  [0029] First, as a first test, a slip property test was performed using a plurality of test bodies with different particle sizes of added granules, and the effect of the particle size of the granules on the anti-slip performance was evaluated.
実施例 1として、前記基本配合に添加される防滑材に、美瑛白土工業株式会社製 の白土 Cを篩 、分けして得た粒状体 Aを用いてゴム組成物を製造した。粒状体 Aの 累積 50%粒径は約 50 μ m、粒度分布幅は 20〜63 μ m、並びにモース硬度は 4〜5 となっている。  As Example 1, a rubber composition was produced using granular material A obtained by sieving white clay C manufactured by Biei Shirachi Kogyo Co., Ltd. into the anti-slip material added to the basic composition. Granule A has a cumulative 50% particle size of about 50 μm, a particle size distribution range of 20-63 μm, and a Mohs hardness of 4-5.
[0030] また、実施例 2として、防滑材に共立マテリアル株式会社製の軽石粒体 90LHMか らなる粒状体 Bを用いてゴム組成物を製造した。粒状体 Bの累積 50%粒径は約 100 μ m、粒度分布幅は 75〜 150 μ m、並びにモース硬度は 5〜6である。  [0030] Further, as Example 2, a rubber composition was manufactured using granule B made of pumice granule 90LHM manufactured by Kyoritsu Material Co., Ltd. as an anti-slip material. Granule B has a cumulative 50% particle size of about 100 μm, a particle size distribution range of 75-150 μm, and a Mohs hardness of 5-6.
[0031] また、実施例 3として、防滑材に美瑛白土工業株式会社製の白土 Cからなる粒状体 Cを用いてゴム組成物を製造した。粒状体 Cの累積 50%粒径は約 120 m、粒度分 布幅は 20〜500 μ m、並びにモース硬度は 4〜 5である。  [0031] Further, as Example 3, a rubber composition was produced using a granular material C made of white clay C manufactured by Biei Hakuto Kogyo Co., Ltd. as an anti-slip material. Granule C has a cumulative 50% particle size of about 120 m, a particle size distribution width of 20-500 μm, and a Mohs hardness of 4-5.
[0032] また、実施例 4として、防滑材に共立マテリアル株式会社製の軽石粒体 70LHMか らなる粒状体 Dを用いてゴム組成物を製造した。粒状体 Dの累積 50%粒径は約 150 μ m、粒度分布幅は 106〜250 μ m、並びにモース硬度は 5〜6である。  [0032] Further, as Example 4, a rubber composition was manufactured using granule D made of pumice granule 70LHM manufactured by Kyoritsu Material Co., Ltd. as an anti-slip material. Granule D has a cumulative 50% particle size of about 150 μm, a particle size distribution range of 106-250 μm, and a Mohs hardness of 5-6.
[0033] また、実施例 5として、防滑材に共立マテリアル株式会社製の軽石粒体 60LHMか らなる粒状体 Eを用いてゴム組成物を製造した。粒状体 Eの累積 50%粒径は約 180 μ m、粒度分布幅は 125〜250 μ m、並びにモース硬度は 5〜6である。 [0033] Further, as Example 5, a rubber composition was produced using granule E composed of pumice granule 60LHM manufactured by Kyoritsu Material Co., Ltd. as an anti-slip material. The cumulative 50% particle size of Granule E is about 180 μm, particle size distribution width is 125 to 250 μm, and Mohs hardness is 5 to 6.
[0034] さらに、実施例 6として、防滑材に美瑛白土工業株式会社製の白土 Cを篩い分けし て得た粒状体 Fを用いてゴム組成物を製造した。粒状体 Fの累積 50%粒径は約 215 μ m、粒度分布幅は 180〜250 μ m、並びにモース硬度は 4〜5である。 [0034] Further, as Example 6, a rubber composition was produced using granular material F obtained by sieving white clay C manufactured by Biei Hakuto Kogyo Co., Ltd. as an anti-slip material. Granule F has a cumulative 50% particle size of about 215 μm, a particle size distribution range of 180-250 μm, and a Mohs hardness of 4-5.
[0035] 図 3ないし図 6に、前記粒状体 B、 C、 D、 Eの各累積粒度分布を示す。 [0035] FIGS. 3 to 6 show the cumulative particle size distributions of the granular materials B, C, D, and E, respectively.
この他、比較例 1として、同じ基本配合で防滑材を添加せずにゴム組成物を製造し た。また、比較例 2として、前記特許文献 2 (日本特許公開公報平 10— 337203号) に記載の方法でゴム組成物を製造した。前記各実施例の防滑材をガラス繊維と置換 えた以外の、配合割合や基本配合に関する条件は、各実施例と同一である。用いる ガラス繊維は直径 13 m、長さ 3mmである。さらに、前記特許文献 3 (日本特許公開 公報 2002— 53700号)の内容に基づいて製造され、市販されている製品を、比較 例 3として前記同様に試験対象とする。  In addition, as Comparative Example 1, a rubber composition was produced with the same basic composition and without adding an antislip material. As Comparative Example 2, a rubber composition was produced by the method described in Patent Document 2 (Japanese Patent Publication No. Hei 10-337203). The conditions regarding the blending ratio and basic blending other than the replacement of the anti-slip material of each of the above examples with glass fiber are the same as those of each of the examples. The glass fiber used has a diameter of 13 m and a length of 3 mm. Furthermore, a product manufactured and marketed based on the contents of Patent Document 3 (Japanese Patent Publication No. 2002-53700) is used as Comparative Example 3 as a test object as described above.
[0036] 前記各実施例及び比較例の各ゴム組成物について行う滑り性試験は、大きさ 80 X 70mmの鋼製滑り片台座の底面に、試験片であるゴム組成物を取付けた滑り片に対 し、 765Nの鉛直荷重を載荷し、滑り片を床材に接触させた瞬間に 785NZsの引張 荷重速度で、水平方向から 18° 斜め上方となる向きへ引張った時に、得られる最大 引張荷重を測定し、滑り抵抗係数 (C. S. R)を次式、 [0036] The slip test performed on each rubber composition of each of the examples and comparative examples was performed on a slide piece in which a rubber composition as a test piece was attached to the bottom surface of a steel slide piece base having a size of 80 x 70 mm. On the other hand, when a vertical load of 765 N is loaded and the sliding piece is brought into contact with the flooring material, the maximum tensile load that can be obtained when it is pulled 18 ° diagonally upward from the horizontal direction at a tensile load speed of 785 NZs. Measure the slip resistance coefficient (CSR) as follows:
C. S. R= P /W  C. S. R = P / W
max  max
(P :最大引っ張り荷重 (N)、 W:鉛直荷重(785N) )  (P: Maximum tensile load (N), W: Vertical load (785N))
max  max
によって算出するという過程で実施される。  It is implemented in the process of calculating by.
[0037] ここで算出される滑り抵抗係数で滑りやすさの度合が表現され、この値が大きいほ ど滑りにくいことを意味する。靴を履いて歩行する箇所では、この滑り抵抗係数の値と して、一般〖こ 0. 35〜0. 9程度が要求される。 [0037] The slip resistance coefficient calculated here expresses the degree of slipperiness, and a larger value means less slipping. When walking with shoes on, it is required that the value of this slip resistance coefficient is approximately 0.35 to 0.9.
[0038] 前記各実施例及び比較例の各ゴム組成物に対しては、床材として表面ウエット状態 の氷、及び表面ウエット状態の人工大理石を用いた二つの場合について、前記滑り 性試験を行って得られた結果の評価を行う。 [0038] For each rubber composition of each of the examples and comparative examples, the slip property test was carried out in two cases where surface wet ice and surface wet artificial marble were used as the flooring material. The results obtained are evaluated.
各実施例及び比較例の配合、並びに滑り性試験の結果得られた滑り抵抗係数を、 表 1に示す。 [0039] [表 1] Table 1 shows the composition of each example and comparative example, and the slip resistance coefficient obtained as a result of the slip test. [0039] [Table 1]
Figure imgf000012_0001
Figure imgf000012_0001
[0040] 表 1からわ力るように、ウエット状態の氷に対しては、粒状体の粒径が大きくなるほど 防滑性が向上している。また、実施例 1 6のいずれにおいても、比較例 1 3より防 滑性が上回っている。比較例 2に対しては、平均粒径が 180 μ πι以上の実施例 5 6 において、同等の防滑'性となっている。  [0040] As shown in Table 1, with respect to wet ice, the larger the particle size of the granular material, the better the slip resistance. In all of Examples 16 and 6, the slip resistance was higher than that of Comparative Example 13. For Comparative Example 2, the same anti-slip property was obtained in Example 5 6 having an average particle diameter of 180 μπι or more.
また、ウエット状態の人工大理石に対する防滑性は、その大小が粒径の関係と対応 しておらず、粒径の差異だけでなく粒状体の供給元の違!/、も影響して 、ると考えられ る。ただし、同一供給元の粒状体を用いている場合 (実施例 1 3 6、あるいは実施 例 2 4 5)では、粒径が大きくなるほど、防滑性が向上してレ、ることがわかる。比較例 3に対しては、いずれの実施例においても、防滑性が大きく上回っており、比較例 2 に対しても、実施例 2 6は、防滑性が上回っている。  In addition, the anti-slip properties of wet artificial marble do not correspond to the particle size relationship, not only the difference in particle size but also the difference in the granular material supplier! It is thought that / also affects. However, in the case of using granular materials from the same supplier (Example 1 3 6 or Example 2 4 5), it can be seen that the larger the particle size, the better the slip resistance. With respect to Comparative Example 3, the anti-slip property is significantly higher in any of the Examples, and also compared with Comparative Example 2, Example 26 has a higher anti-slip property.
[0041] 次に、粒状体 Cの添加量を変えてゴム組成物を製造し、前記同様滑り性試験を行 つて、粒状体添加量の違!ヽが防滑性能へ及ぼす影響を検証した。  [0041] Next, a rubber composition was produced by changing the addition amount of the granular material C, and a sliding test was conducted in the same manner as described above to verify the effect of the difference in the addition amount of the granular material on the anti-slip performance.
まず、実施例 7として、前記基本配合に添加される防滑材に、美瑛白土工業株式会 社製の白土 C力もなる前記粒状体 Cを 10重量部配合してゴム組成物を製造した。ま た、実施 f列 8 9 10 11 12 13として、それぞれ防滑材としての粒状体 Cを 20重 量部、 30重量部、 50重量部、 70重量部、 90重量部、 110重量部配合して、ゴム組 成物をそれぞれ製造した。 First, as Example 7, a rubber composition was produced by blending 10 parts by weight of the granular material C having white clay C force, manufactured by Biei Shirachi Industrial Co., Ltd., with the anti-slip material added to the basic composition. Ma In addition, as the implementation f row 8 9 10 11 12 13, 20 parts by weight, 30 parts by weight, 50 parts by weight, 70 parts by weight, 90 parts by weight, and 110 parts by weight of granule C as an anti-slip material are blended. Each rubber composition was produced.
[0042] 前記実施例 7ないし 13及び前記比較例 1について、まず、ゴム硬さ (JIS K 6253:19 93に規定される硬さ、タイプ Aデュロメータによる)を測定し、粒状体 Cのゴムマトリック スへの添加量の違いに伴うゴム硬さの変化を調べた。測定結果を、各実施例及び比 較例 1の配合と合わせて、表 2に示す。また、図 7に粒状体 Cの添加量とゴム硬さとの 関係を表すグラフを示す。  [0042] For Examples 7 to 13 and Comparative Example 1, first, rubber hardness (hardness specified by JIS K 6253: 1993, using a type A durometer) was measured, and rubber matrix of granular material C was measured. The change in rubber hardness with the difference in the amount added to the soot was investigated. The measurement results are shown in Table 2 together with the formulation of each Example and Comparative Example 1. Fig. 7 shows a graph showing the relationship between the amount of particulate C added and rubber hardness.
[0043] [表 2]  [0043] [Table 2]
Figure imgf000013_0001
Figure imgf000013_0001
[0044] 表 2からわ力るように、粒状体 C添カ卩によるゴムマトリックスの硬さ変化は、 50重量部 添加で約 10ポイント上昇、 100重量部添加で約 15ポイント上昇であり、粒状体 Cはゴ ムマトリックス中への分散性に優れ、ゴムマトリックスの柔軟性、屈曲性をそれほど阻 害しないことがわかる。  [0044] As shown in Table 2, the change in the hardness of the rubber matrix due to the granulated C-added cocoon increased by about 10 points when 50 parts by weight was added, and increased by about 15 points when added by 100 parts by weight. Body C has excellent dispersibility in the rubber matrix, and it is found that the flexibility and flexibility of the rubber matrix are not so hindered.
粒状体 Cの添加量が 40PHRを超すと、添加量に対するゴム硬さの上昇の程度が 少なくなるのは、ゴムロールでのゴム状成分と粒状体との混練時に、粒状体 C同士の 摩擦により粒状体 Cの崩潰が一部で生じているためと考えられる。  When the added amount of granule C exceeds 40 PHR, the degree of increase in rubber hardness with respect to the added amount decreases because the rubber roll is kneaded with the rubber-like component and the granule in the rubber roll due to friction between the granule C. This is thought to be due to the partial collapse of body C.
[0045] さらに、前記実施例 7ないし 13の各ゴム組成物について、前記実施例 1ないし 6同 様に、床材として表面ウエット状態の氷と人工大理石を用いた二つの場合で滑り性試 験を実施した。滑り性試験の結果得られた C. S. R値を、比較対象となる前記比較例 1、 2、 3での値と共に表 3に示す。 [0045] Further, with respect to each rubber composition of Examples 7 to 13, in the same manner as in Examples 1 to 6, the slip property test was performed in two cases using surface wet ice and artificial marble as the flooring material. The experiment was conducted. Table 3 shows the CSR values obtained as a result of the slip test together with the values in Comparative Examples 1, 2, and 3 to be compared.
[表 3]  [Table 3]
Figure imgf000014_0001
Figure imgf000014_0001
[0047] 表 3からわ力るように、ウエット状態の氷に対する防滑性と、ウエット状態の人工大理 石に対する防滑性のいずれについても、粒状体 Cの添加量が増加するほど防滑性 が向上している。比較例 3に対しては、実施例 7〜13の全てにおいて C. S. R値すな わち防滑性が上回っている。また、比較例 2に対しては、添加量が 70PHR以上であ る実施例 11〜13で、より優れた防滑性が得られていることがわかる。 [0047] As shown in Table 3, both the slip resistance against wet ice and the slip resistance against wet artificial stone increased as the amount of granular C added increased. ing. For Comparative Example 3, the C. S. R values, i.e., anti-slip properties, were exceeded in all of Examples 7-13. In addition, compared with Comparative Example 2, it can be seen that in Examples 11 to 13 in which the addition amount is 70 PHR or more, more excellent anti-slip properties are obtained.
[0048] 続ヽて、粒状体 Bの添加量を変えてゴム組成物を製造し、前記同様滑り性試験を 行って、粒状体添加量の違 ヽが防滑性能へ及ぼす影響を検証した。  [0048] Subsequently, a rubber composition was produced by changing the addition amount of the granular material B, and a slip property test was conducted in the same manner as described above to verify the influence of the difference in the addition amount of the granular material on the anti-slip performance.
まず、実施例 14として、前記基本配合に添加される防滑材に、共立マテリアル株式 会社製の軽石粒体 90LHMカゝらなる前記粒状体 Bを 10重量部配合してゴム組成物 を製造した。また、実施例 15、 16、 17、 18、 19として、それぞれ防滑材としての粒状 体 Bを 20重量部、 30重量部、 60重量部、 80重量部、 100重量部配合して、ゴム組 成物をそれぞれ製造した。  First, as Example 14, a rubber composition was produced by blending 10 parts by weight of the granule B made of 90 LHM of pumice granules manufactured by Kyoritsu Material Co., Ltd. with the anti-slip material added to the basic composition. In Examples 15, 16, 17, 18, and 19, rubber B was formed by blending 20 parts by weight, 30 parts by weight, 60 parts by weight, 80 parts by weight, and 100 parts by weight of granular material B as an anti-slip material. Each thing was manufactured.
[0049] 前記実施例 14ないし 19について、まず、ゴム硬さ(JIS K 6253: 1993に規定される硬 さ、タイプ Aデュロメータによる)を測定し、粒状体 Bのゴムマトリックスへの添カ卩量の違 いに伴うゴム硬さの変化を調べた。測定結果を、前記比較例 1の測定結果、並びに 各実施例及び比較例 1の配合と合わせて、表 4に示す。また、図 8に粒状体 Bの添カロ 量とゴム硬さとの関係を表すグラフを示す。  [0049] For Examples 14 to 19, first, the rubber hardness (the hardness specified in JIS K 6253: 1993, using a type A durometer) was measured, and the amount of particulate B added to the rubber matrix was measured. The change in rubber hardness due to the difference was investigated. The measurement results are shown in Table 4 together with the measurement results of Comparative Example 1 and the formulations of Examples and Comparative Example 1. Fig. 8 shows a graph showing the relationship between the amount of added calories of granulate B and rubber hardness.
[0050] [表 4] 比較例 実施例 [0050] [Table 4] Comparative Example
1 14 15 16 17 18 19  1 14 15 16 17 18 19
天然ゴム 60 60 60 60 60 60 60 ブタジエン系熱  Natural rubber 60 60 60 60 60 60 60 Butadiene heat
可塑 ェラス ト 40 40 40 40 40 40 40 マー  Plasticlast 40 40 40 40 40 40 40
シリカ 30 30 30 30 30 30 30  Silica 30 30 30 30 30 30 30
配合 (重量 プロセス才ィ /レ 10 10 10 10 10 10 10  Formulation (weight process age / re 10 10 10 10 10 10 10
部)  Part)
粘着付与剤 10 10 10 10 10 10 10 硫黄 2 2 2 2 2 2 2 加硫促進剤 1. 7 1. 7 1. 7 1. 7 1. 7 1. 7 1. 7  Tackifier 10 10 10 10 10 10 10 Sulfur 2 2 2 2 2 2 2 Vulcanization accelerator 1. 7 1. 7 1. 7 1. 7 1. 7 1. 7 1. 7
加硫促進助剤 5. 7 5. 7 5. 7 5. 7 5. 7 5. 7 5. 7  Vulcanization accelerator 5. 7 5. 7 5. 7 5. 7 5. 7 5. 7 5. 7
粒状体 B 10 20 30 60 80 100  Granule B 10 20 30 60 80 100
比較例 実施例  Comparative Example
1 14 15 16 17 ] 8 19  1 14 15 16 17] 8 19
硬さ  Hardness
56 57 59 62 70 74 77  56 57 59 62 70 74 77
(JIS タイプ Aデュロメータ)  (JIS type A durometer)
[0051] 表 4からわ力るように、粒状体 B添カ卩によるゴムマトリックスの硬さ変化は、 50重量部 添加で約 11ポイント上昇、 100重量部添加で約 21ポイント上昇であり、粒状体 Bはゴ ムマトリックス中への分散性に優れ、ゴムマトリックスの柔軟性、屈曲性もそれほど阻 害しないことがわかる。 [0051] As shown in Table 4, the change in the hardness of the rubber matrix caused by the addition of granulated B-added powder increased approximately 11 points when 50 parts by weight was added, and increased approximately 21 points when added 100 parts by weight. Body B is excellent in dispersibility in the rubber matrix, and it can be seen that the flexibility and flexibility of the rubber matrix are not so hindered.
前記実施例 7ないし 13での粒状体 C添加に比べ、今回添加した粒状体 Bは、 100 PHRまでの添加において、添加部数の増加と共にゴム硬さの上昇がほぼ比例的に 見られる。これは、前記粒状体 Cのモース硬度が 4〜5であるのに対し、粒状体 Bのモ ース硬度が 5〜6と硬 、ために、ゴムロールでのゴム状成分と粒状体との混練時にお ける粒状体 B同士の摩擦による崩潰が生じていないものと考えられる。  Compared to the addition of granule C in Examples 7 to 13, the granule B added this time shows an increase in rubber hardness almost proportionally as the number of added parts is increased up to 100 PHR. This is because the granular material C has a Mohs hardness of 4 to 5, whereas the granular material B has a Mohs hardness of 5 to 6, so that the rubber roll is kneaded with the rubbery component in the rubber roll. It is considered that the collapsing due to friction between the granular materials B sometimes does not occur.
[0052] さらに、前記実施例 14ないし 19の各ゴム糸且成物について、前記実施例 1ないし 13 同様に、床材として表面ウエット状態の氷と人工大理石を用いた二つの場合で滑り性 試験を実施した。滑り性試験の結果得られた C. S. R値を、比較対象となる前記比較 例 1、 2、 3での値と共に表 5に示す。  [0052] Further, for each of the rubber yarns of Examples 14 to 19, the slip property test was conducted in two cases using surface wet ice and artificial marble as the flooring material, as in Examples 1 to 13. Carried out. Table 5 shows the C.S.R values obtained as a result of the slip test together with the values in Comparative Examples 1, 2, and 3 to be compared.
[0053] [表 5]  [0053] [Table 5]
Figure imgf000015_0001
Figure imgf000015_0001
[0054] 表 5からわ力るように、ウエット状態の氷に対する防滑性と、ウエット状態の人工大理 石に対する防滑性のいずれについても、粒状体 Bの添加量が増加するほど防滑性 が向上している。比較例 3に対しては、実施例 14〜19の全てにおいて C. S. R値す なわち防滑性が上回っている。比較例 2に対しては、添加量が 60PHR以上である実 施例 17〜 19で、より優れた防滑性が得られていることがわかる。 [0054] As shown in Table 5, the anti-slip property against ice in the wet state and the artificial reason in the wet state As for the anti-slip property against stones, the anti-slip property is improved as the amount of granule B added increases. For Comparative Example 3, the CSR values, i.e., anti-slip properties, exceeded in all of Examples 14-19. As compared with Comparative Example 2, it can be seen that Examples 17 to 19 in which the addition amount is 60 PHR or more have better slip resistance.
[0055] 実施例 7ないし 19についての滑り性試験の結果得られた C. S. Rの各値を用いて 、図 9に粒状体 B及び粒状体 Cの各添加量と防滑性能との関係のグラフを示す。これ によれば、いずれの粒状体においても、添カ卩量が 10重量部未満である場合には、 C . S. Rの値が一般的に要求される下限値の 0. 35を下回ることとなり、十分な防滑性 能が得られな 、ことがわかる。  [0055] FIG. 9 is a graph showing the relationship between the added amounts of the granular material B and the granular material C and the anti-slip performance, using the CSR values obtained as a result of the slip property test for Examples 7 to 19. Show. According to this, in any granular material, the C. S. R value is less than the generally required lower limit of 0.35 when the amount of the added salt is less than 10 parts by weight. Thus, it can be seen that sufficient anti-slip performance cannot be obtained.
[0056] これらにより、本発明のゴム組成物では、ゴム状成分 100重量部に対し、火山噴出 物由来の多孔質で且つ非晶質の平均粒径 40〜350 μ mで且つモース硬度 4〜6で ある粒状体を、 10ないし 100重量部配合することで、ゴム硬さを過度に増大させるこ ともなぐ氷雪面に限らず一般的な舗道面に相当する濡れた硬い面においても粒状 体の摩擦抵抗を十分に生じさせて、優れた防滑性能を得られることが確認できた。 産業上の利用可能性  [0056] Thus, in the rubber composition of the present invention, the porous and amorphous average particle diameter derived from volcanic ejecta is 40 to 350 μm and the Mohs hardness is 4 to 100 parts by weight based on 100 parts by weight of the rubbery component. By blending 10 to 100 parts by weight of the granular material of No. 6, it is not limited to ice and snow surfaces that excessively increase rubber hardness, but also on wet hard surfaces corresponding to general pavement surfaces. It was confirmed that excellent anti-slip performance could be obtained by sufficiently generating frictional resistance. Industrial applicability
[0057] 本発明は、特別な作業や工程を必要とせずに優れた防滑性能を得られるゴム組成 物を提供するものであり、靴底成形において、圧縮成形のみならず、ウレタン靴底や 塩化ビニール靴底の成形に用いられる射出成形や注型成形にお ヽても利用可能で あり、又、履物以外に防滑床材用ゴムシートとして工場や厨房などでも使用できる。 [0057] The present invention provides a rubber composition that can provide excellent anti-slip performance without requiring any special work or process. In the sole molding, not only compression molding but also urethane shoe soles and chlorides are provided. It can also be used for injection molding and cast molding used to mold vinyl shoe soles. It can also be used in factories and kitchens as rubber sheets for non-slip flooring materials in addition to footwear.

Claims

請求の範囲 The scope of the claims
[1] 天然ゴム、合成ゴム、及び Z又は熱可塑性エラストマ一からなるゴム状成分 loo重量 部に対し、火山噴出物由来の多孔質で且つ非晶質の粒状体を、 10ないし 100重量 部配合することを  [1] 10 to 100 parts by weight of porous and amorphous particles derived from volcanic ejecta with loo parts by weight of a rubber-like component consisting of natural rubber, synthetic rubber, and Z or thermoplastic elastomer To do
特徴とする靴底用ゴム組成物。  A rubber composition for a shoe sole.
[2] 前記請求項 1に記載の靴底用ゴム組成物にぉ 、て、  [2] The rubber composition for a shoe sole according to claim 1, wherein
前記粒状体が、平均粒径 40〜350 μ mであることを  The granular material has an average particle size of 40 to 350 μm.
特徴とする靴底用ゴム組成物。  A rubber composition for a shoe sole.
[3] 前記請求項 1又は 2に記載の靴底用ゴム組成物において、 [3] In the rubber composition for a shoe sole according to claim 1 or 2,
前記粒状体が、モース硬度 4〜6であることを  The granular material has a Mohs hardness of 4-6.
特徴とする靴底用ゴム組成物。  A rubber composition for a shoe sole.
[4] 前記請求項 1な!、し 3の 、ずれかに記載の靴底用ゴム組成物にお!、て、 [4] The rubber composition for a shoe sole according to any one of claims 1 and 3, and
前記粒状体が、内部に中空部を多数含む軽石状の火山砕屑物を原材料とすること を  The granular material is made of a pumice-like volcanic debris containing a large number of hollow parts inside as a raw material.
特徴とする靴底用ゴム組成物。  A rubber composition for a shoe sole.
[5] 前記請求項 1な!、し 4の 、ずれかに記載の靴底用ゴム組成物にお!、て、 [5] In the rubber composition for a shoe sole according to any one of claims 1 and 4, the shoe composition according to
前記粒状体と大きさを略一致させた、火山噴出物由来の中実で且つ非晶質の板状 片が、所定量混合されることを  A predetermined amount of solid and amorphous plate-like pieces derived from volcanic eruptions, the size of which is approximately the same as that of the granular material, are mixed.
特徴とする靴底用ゴム組成物。  A rubber composition for a shoe sole.
[6] 前記請求項 1な!、し 5の 、ずれかに記載の靴底用ゴム組成物にお!、て、 [6] In the rubber composition for a shoe sole according to any one of claims 1 and 5, and
前記粒状体が、二酸ィ匕ケィ素を約 63〜75%、酸ィ匕アルミニウムを約 11〜19%含 有する多孔性のガラス質であり、且つ白色の外観を有することを  The granular material is porous vitreous containing about 63 to 75% diacid and about 11 to 19% acid aluminum, and has a white appearance.
特徴とする靴底用ゴム組成物。  A rubber composition for a shoe sole.
PCT/JP2005/013042 2005-07-14 2005-07-14 Rubber composition for shoe sole WO2007007412A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007524503A JPWO2007007412A1 (en) 2005-07-14 2005-07-14 Rubber composition for shoe sole
PCT/JP2005/013042 WO2007007412A1 (en) 2005-07-14 2005-07-14 Rubber composition for shoe sole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/013042 WO2007007412A1 (en) 2005-07-14 2005-07-14 Rubber composition for shoe sole

Publications (1)

Publication Number Publication Date
WO2007007412A1 true WO2007007412A1 (en) 2007-01-18

Family

ID=37636819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013042 WO2007007412A1 (en) 2005-07-14 2005-07-14 Rubber composition for shoe sole

Country Status (2)

Country Link
JP (1) JPWO2007007412A1 (en)
WO (1) WO2007007412A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021176685A1 (en) 2020-03-06 2021-09-10 株式会社アシックス Shoe sole, and shoe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187426A (en) * 1990-11-21 1992-07-06 Yachiyo Micro Sci Kk Composite material
JP2004034744A (en) * 2002-06-28 2004-02-05 Sumitomo Rubber Ind Ltd Manufacturing method for studless tire and its tread

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187426A (en) * 1990-11-21 1992-07-06 Yachiyo Micro Sci Kk Composite material
JP2004034744A (en) * 2002-06-28 2004-02-05 Sumitomo Rubber Ind Ltd Manufacturing method for studless tire and its tread

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021176685A1 (en) 2020-03-06 2021-09-10 株式会社アシックス Shoe sole, and shoe

Also Published As

Publication number Publication date
JPWO2007007412A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
CN101899176B (en) Material for sole
JP5436954B2 (en) Rubber composition and pneumatic tire
JP4918969B2 (en) Method for manufacturing anti-slip sole and anti-slip sole
JP4864349B2 (en) Anti-slip material for frozen road surface and footwear bottom using the same
JP4462396B2 (en) Rubber composition for shoe sole, shoe sole using the rubber composition, and shoe
JP3678689B2 (en) Rubber composition and tire using the same
JP2012184361A (en) Rubber composition and pneumatic tire
WO2007007412A1 (en) Rubber composition for shoe sole
JP2007031521A (en) Tread rubber composition and pneumatic tire
JP2002320503A (en) Anti-slippage shoes sole member
JP2006136689A (en) Antislip member for sole, method of manufacturing antislip sole, antislip sole, and antislip shoes
JP4009654B2 (en) Non-slip sole member and manufacturing method
JP2015172157A (en) Elastic composite material
CA2850284C (en) Floor covering
JP2010018641A (en) Rubber composition for tire tread and pneumatic tire
JP2020124323A (en) Anti-slip footwear sole using fine diameter fiber
JP2008267067A (en) Elastic paving material
EP4215578A1 (en) Anti-slip member for wearable article or sports article, wearable article, and sports article
JP4171050B2 (en) Anti-slip footwear bottom
JP4093979B2 (en) Rubber composition for tire and pneumatic tire using the same
JPS62143707A (en) Wheel
JP4784119B2 (en) Method for manufacturing anti-slip soles
CN200957683Y (en) Anti-skid material
JPH0291137A (en) Rubbery elastomer composition with excellent non-slip properties
JPH1025353A (en) Antislip rubber material, shoe sole material and shoe sole

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007524503

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05765713

Country of ref document: EP

Kind code of ref document: A1