WO2007004631A1 - 粒界性格制御多結晶の作製方法 - Google Patents

粒界性格制御多結晶の作製方法 Download PDF

Info

Publication number
WO2007004631A1
WO2007004631A1 PCT/JP2006/313275 JP2006313275W WO2007004631A1 WO 2007004631 A1 WO2007004631 A1 WO 2007004631A1 JP 2006313275 W JP2006313275 W JP 2006313275W WO 2007004631 A1 WO2007004631 A1 WO 2007004631A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
polycrystal
grain boundary
growth
grain
Prior art date
Application number
PCT/JP2006/313275
Other languages
English (en)
French (fr)
Inventor
Noritaka Usami
Kazuo Nakajima
Kozo Fujiwara
Original Assignee
Tohoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University filed Critical Tohoku University
Priority to JP2007524066A priority Critical patent/JP4887504B2/ja
Publication of WO2007004631A1 publication Critical patent/WO2007004631A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon

Definitions

  • the present invention relates to a technique for producing a polycrystalline material having an interface with low grain boundary energy inside a crystal.
  • the present invention relates to a technique for producing a polycrystalline material having a grain boundary surface having a lower sigma value by preparing a polycrystal having a crystal interface having a higher sigma value and using it as a seed crystal.
  • Polycrystal is a force composed of many crystal grain forces. Its macro properties are the size of crystal grains and the nature of grain boundaries, which are the boundaries between different crystal grains (grain boundary character). ) Is known to depend on.
  • a solar cell produced by cutting polycrystalline silicon into a wafer may be used.
  • the strength of the polycrystalline wafer is not so high due to defects at the crystal grain interface and accompanying grain boundary energy accumulated at the interface.
  • defects at the grain interface act as a recombination center for photoexcited carriers, which contributes to a decrease in solar cell efficiency.
  • Japan is the world's largest producer of solar cells, and the annual rate of increase in solar cell production in recent years has exceeded 25%.
  • solar cells based on silicon Balta crystals account for over 90% of the total production, and are the main materials for solar cells.
  • the thickness of the wafer reduces the cost of materials and reduces the weight of the product. If the accumulated energy is large, the mechanical strength decreases by reducing the thickness of the wafer.
  • the wafer When considered in the manufacturing process, the wafer may break when the polycrystalline wafer is transferred and processed, and the manufacturing yield of the solar cells is greatly reduced. This is due to the polycrystalline material that is the material of the wafer.
  • a process of terminating defects by hydrogen is performed.
  • the effect of hydrogen is not permanent and is also a factor in the change of solar cell performance over time. In essence, there is a need to form grain boundaries with high consistency and low carrier recombination rates.
  • the degree of correspondence between grain boundaries between crystals is expressed by using sigma ( ⁇ ) and the soot index, and the energy stored in the grain boundaries is low, as the saddle value is low. It will be.
  • the threshold value is obtained by the ratio of the unit cell area of the corresponding cell to the unit cell area.
  • the saddle value takes only odd values, and the mean value of 1 means that both unit cells at the grain boundary surface are the same, and there is no grain boundary. This indicates the same crystal. If there is actually another grain boundary interface, the saddle value will increase to 3, 5, 7, ....
  • the ⁇ value is 3 ( ⁇ 3), which is the best interface. In a cubic system such as silicon, ⁇ 3 and ⁇ 9 have an orientation relationship with a very low grain boundary energy.
  • tricrystalline silicon tricrystalline silicon
  • a silicon single crystal is mechanically cut, and only three grain boundaries of ⁇ 3, ⁇ 3, and ⁇ 9 exist.
  • a seed crystal is formed into a single crystal plane with a low grain boundary energy composition, and crystal growth is performed based on the single crystal plane. It is intended to obtain strong, quasi-single crystal (polycrystalline with few grain boundaries) silicon.
  • a triple structure with two sigma 3 grain boundaries and one sigma 9 grain boundary with ⁇ 110 ⁇ as the growth orientation Crystalline silicon is useful as a silicon ingot for solar cells that can be sliced thinly
  • Non-Patent Document 1 Appl. Phys. Lett. 62, 3262, 1993.
  • Schimiga et al. Reported a production example of a solar cell having a conversion efficiency of 17.6% from tricrystalline silicon produced by the same method
  • Non-Patent Document 2 PV in Europe, Oct. 2002, Ro me
  • J. of Crystal Growth, 280, pp.419-424 (2005) reveals that the carrier diffusion length in the vicinity of the grain boundary is short. It is suggested that there is not.
  • a single crystal material has a higher mechanical strength than a polycrystalline material.
  • the single crystal material has a higher mechanical strength.
  • a material having a high strength can be obtained. From the background described above, it has been proposed that designing grain boundaries is useful as a new degree of freedom in controlling the properties of materials. However, a method for controlling grain boundary characteristics has been established, Nah ...
  • the Si (l 10) single crystal rod was cut in half along the plane [111] and bonded in the opposite direction as a seed crystal, and the growth orientation [110] was FZ Growing and evaluating dislocation density (D) (Non-patent Document 3: J. of Crystal Growth, 280, pp.419 -424 (2005) force So the seed crystal used is along the plane [111].
  • D dislocation density
  • the seed crystal obtained by bonding the two crystals is only 3.5 ° or 7.0 ° out of alignment with the 3 grain boundaries, and the misalignment angle is
  • the dislocation density tends to decrease.
  • the results are only to suggest that the rugi has been reduced to a total, where the density of dislocations at the grain boundaries is evaluated and the relative orientation is intentionally random.
  • the grain boundary energy is the highest !, random The idea of low grain boundary energy, formation of grain boundaries, etc.
  • Non-Patent Document 4 Japanese Journal of A pplied Physics, Vol. 44, No. 24, pp ⁇ 778- L780, (2005), depending on the growth conditions, the X-ray rocking curve value (crystallinity index) and solar cell
  • Non-Patent Document 3 a polycrystal having a grain boundary with a high grain boundary energy with a random relative orientation relationship was intentionally created. Using this to produce a polycrystal with low grain boundary energy and a grain boundary is not a good idea.
  • Patent Document 1 Special Table 2001-504996
  • Non-patent literature l Appl. Phys. Lett. 62, 3262, 1993
  • Non-Patent Literature 2 PV in Europe-From PV Technology to Energy solutions, Confer enc e + Exhibition, Oct. 2002, Rome
  • Non-Patent Document 3 M. Kitamura et al., J. of Crystal Growth, 280, pp.419-424 (2005)
  • Non-Patent Document 4 N. Usami et al "Japanese Journal of Applied Physics, Vol. 44, No 24, pp ⁇ 778- L780, (2005)
  • the present invention is characterized in that a crystal interface having a high threshold value is used as a seed crystal in order to obtain a polycrystalline material having a grain interface having a low threshold value.
  • a crystal interface having a high threshold value is used as a seed crystal in order to obtain a polycrystalline material having a grain interface having a low threshold value.
  • the present invention relates to a new method for producing a polycrystal with controlled grain boundary character distribution.
  • a polycrystalline material forming method characterized in that a unidirectional growth is performed by using, as a seed crystal, a polycrystal having a grain boundary with a high grain boundary energy, which is intentionally random in relative orientation.
  • a unidirectional growth is performed by using, as a seed crystal, a polycrystal having a grain boundary with a high grain boundary energy, which is intentionally random in relative orientation.
  • it actively utilizes the fact that grain boundaries with low grain boundary energy are spontaneously formed from random grain boundaries with high grain boundary energy.
  • This is a technology that makes it possible to align all of the above with corresponding grain boundaries of low sigma values. Since the polycrystalline material formed in this way has few dangling bonds at the grain boundary, even in the macro property of the polycrystalline material configured as a network of grain boundaries, It is possible to develop excellent properties such as low aerodynamic activity and high crystal strength.
  • the present invention provides the following aspects.
  • the seed crystal (1) has at least 3 grain boundaries on the crystal growth surface, (2) has at least 4 grain boundaries on the crystal growth surface, (3) at least 5 on the crystal growth surface. (4) a crystal growth surface having at least 6 grain boundaries, (5) a crystal growth surface having at least 7 grain boundaries, and (6) a crystal growth surface. Having at least 8 grain boundaries
  • the crystal growth is a single crystal orientation as a crystal orientation in a crystal growth direction, and the crystal growth is performed in one direction in the crystal direction.
  • the manufacturing method of the polycrystalline material as described in any one.
  • the seed crystal is a polycrystal formed from a plurality of single crystals, and the crystal orientation in the direction of crystal growth is a single crystal orientation,
  • the number of single crystals constituting the polycrystal is at least 3 or more
  • the number of single crystals constituting the polycrystal is at least 4 or more
  • the number of single crystals constituting the polycrystal is at least 5 or more
  • the number of single crystals constituting the polycrystal is at least 6 or more
  • the number of single crystals constituting the polycrystal is at least 7 or more
  • the number of single crystals constituting the polycrystal is at least 8 or more
  • the number of single crystals constituting the polycrystal is at least 9 or more
  • the number of single crystals constituting the polycrystal is at least 10 or more
  • a silicon polycrystal which is silicon polycrystal, and the grain boundaries of the silicon polycrystal are only ⁇ 3 and Z or ⁇ 9.
  • the grain boundary control technique has a grain boundary having excellent electrical properties (quality is as if it is a single crystal), and strength is high. , Crystals stronger than conventional polycrystals can be produced. Therefore, it becomes easy to cut out a thin plate from the ingot and to handle it later, and it can contribute to the reduction of the slice thickness from the side of the material. For these reasons, the problem of securing future raw materials, which is currently an issue in the solar cell industry, will be solved, leading to expansion of the solar cell industry and resolution of energy problems.
  • the grain boundary control technology of the present invention can be applied to other polycrystalline materials (metals, composite materials, etc.), and the development of new material sciences for enhancing the functionality of materials through grain boundary design. Can be expected.
  • FIG. 1 is a diagram schematically illustrating a basic concept of a polycrystalline material forming technique of the present invention.
  • FIG.2 Taking a simple cubic lattice as an example, we explain the unit lattice and the corresponding lattice in many cases with a rotation angle of 36.52 ° around the ⁇ 001> axis.
  • FIG. 3 Shows the structural design and the effect prediction map obtained when designing high-quality Balta polycrystals in silicon polycrystals.
  • FIG. 4 schematically shows an example of constituting a starting seed crystal in the polycrystalline material forming technique of the present invention.
  • a typical example can be described by taking silicon polycrystal as an example. This corresponds to the seed crystal of the example.
  • FIG. 5 shows a photograph of a Si crystal obtained by the polycrystalline material forming technique of the present invention.
  • FIG. 6 shows an EBSP of a cross section near the seed crystal of a Si crystal obtained by the polycrystalline material forming technique of the present invention.
  • FIG. 7 shows an EBSP showing the change in orientation distribution of the longitudinal section of a Si crystal obtained by the polycrystalline material forming technique of the present invention.
  • FIG. 8 Distribution of orientation and grain boundary character distribution of the surface cut perpendicular to the growth direction at a crystal growth surface force of 40mm of Si crystal obtained by the polycrystalline material formation technology of the present invention.
  • the EBSP that was examined is shown.
  • FZ9 and FZ12 are produced Si crystal samples at a crystal growth rate of about 1.0 mm / min
  • FZ13 is a produced Si crystal sample at a crystal growth rate of about 0.2 mm / min.
  • EBSP is shown for the orientation distribution (left) and the perpendicular orientation distribution (right) of the crystal growth of the Si crystal obtained by the polycrystalline material formation technology of the present invention.
  • FIG. 10 Schematic diagram of the structure of a polycrystalline material that is predicted to have a theoretically strong mechanical strength (bottom left) and the grain boundary character of the Si crystal obtained by the polycrystalline material formation technology of the present invention.
  • An azimuth distribution (EBSP: upper three pictures) and a schematic diagram (lower right) of the structure are shown.
  • a crystal there is a method of crystal growth under a growth condition that inherits the orientation by the CZ (Czochralski) method.
  • the accuracy of the grain boundary character of the polycrystalline produced by this method is limited by the cutting accuracy, and the desired grain boundary character is not necessarily realized. For example, control of grain boundary character requires accuracy within 0.01 ° as a relative orientation relationship, but it is extremely difficult to achieve with current cutting techniques.
  • the bundled seed crystal is in contact with the face [100] and face [111] to form a grain boundary.
  • the orientation is assumed to be [110]), and as a result, it can be confirmed by verifying that the grain boundary characteristics are all sigma 3 and sigma 9 !, the grain boundary energy is small, and changes to grain boundaries.
  • the present invention relates to a technique for producing a polycrystalline material having an interface with low grain boundary energy inside a crystal.
  • the present invention intentionally forms a polycrystal having the highest grain boundary energy with a random relative orientation relationship, and then performs unidirectional crystal growth using the polycrystal as a seed crystal for appropriate growth. Under the condition, a grain boundary having a low grain boundary energy is formed from a random grain boundary having a high grain boundary energy.
  • the basic concept of the present invention is shown in FIG.
  • the present invention provides a polycrystal having a crystal interface with a higher sigma value and uses it as a seed crystal to produce a polycrystalline material having a corresponding grain boundary with a lower sigma value.
  • Is a polycrystalline material forming technique characterized by The present invention is characterized in that, in order to obtain a polycrystalline material having a grain interface with a low threshold value, a crystal interface with a high threshold value is used as a seed crystal. By using a seed crystal, the grain boundary energy is lowered and the overall grain boundary energy is lowered as a driving force. As a result, a polycrystal having a low grain boundary energy interface grows. On the other hand, since the consistency between crystals is very good, if the deviation is within several degrees, it will continue to grow as it is, rather than eliminating the deviation.
  • the term “grain boundary” that is necessarily present in a polycrystalline material refers to the crystal grains constituting the polycrystal. The seam, It is the boundary between Akiratsubu.
  • the overlap of the two crystals is considered.
  • lattice points that overlap periodically are formed, which are called “corresponding lattice points”.
  • the corresponding grid points occur periodically.
  • the unit cell area of the original crystal lattice The ratio of the unit cell area of the corresponding lattice formed here is called the sigma ( ⁇ ) value, and it is used as an index to indicate the degree of correspondence between grain boundaries between crystals.
  • the saddle value is obtained by the ratio of the area of the unit cell of the corresponding cell to the area of the unit cell.
  • FIG. 2 This will be explained using a simple cubic lattice (Fig. 2) as an example.
  • the unit cell of the simple cubic lattice is a portion surrounded by a small square in the upper left of FIG.
  • the simple cubic lattice shown by the vertical vertical line and the horizontal horizontal line in Fig. 2 is rotated around the rotation axis 001> by a rotation angle of 36.52 degrees, it overlaps with the original lattice point. (Corresponding grid points) are born, and the unit grid of the corresponding grid can be shown by a square surrounded part of the square in FIG. 2 having a larger area than the unit grid part of the simple cubic grid.
  • This (Fig. 2) is expressed as follows, which is an index that represents the degree of correspondence between the two grids.
  • the lower the threshold value the lower the energy stored at the grain boundaries where the correspondence between crystals is better.
  • the saddle value takes only odd values, and a mean value of 1 means that both unit cells at the grain interface are the same, and there is no grain boundary. This indicates the same crystal. If there is actually another grain boundary interface, the value increases as 3, 5, 7, .... For example, if the grain interface is [111] with respect to the growth orientation force 110>, the 3 value is 3 ( ⁇ 3), which is the best interface. In cubic systems such as silicon, ⁇ 3 and ⁇ 9 are orientation relationships with very low grain boundary energy.
  • Table 1 below shows combinations of diamond structures that can achieve low threshold values when the growth interface and grain boundaries are equal in growth orientation.
  • Fig. 3 shows a prediction map of the improvement of the polycrystalline structure and the effects obtained by the improvement in high-quality Si Balta polycrystal. Therefore, for example, (1) if the growth direction of the crystal grains is the same, it is easy to form a homogeneous texture.
  • the grain boundaries are electrically inactive, the grain boundaries Carrier recombination at (3) low intragranular defect density and minority carrier life similar to single crystals, and (4) high quality crystals with optimal particle size (5) If the impurity concentration is low, the crystallinity in the high-quality crystal grains will be obtained. (6) If the mechanical strength is strong, thin plate processing and handling will be performed. It becomes easy.
  • the polycrystal used as the starting seed crystal is formed from a plurality of single crystals, and when preferred, a single crystal orientation is used as the crystal orientation in the direction in which the intended crystal grows. What is said to be.
  • the number of single crystals constituting the polycrystal is at least 3 or more, at least 4 or more, at least 5 or more, at least 6 or more, at least 7 These are the above, at least 8 or more, at least 9 or more, or at least 10 or more.
  • the seed crystal examples include those having at least two grain boundaries on the crystal growth surface.
  • the seed crystal includes (1) one having at least 3 grain boundaries on the crystal growth surface, (2) one having at least 4 grain boundaries on the crystal growth surface, and (3) at least 5 on the crystal growth surface. (4) having at least 6 grain boundaries on the crystal growth surface, (5) having at least 7 grain boundaries on the crystal growth surface, (6) on the crystal growth surface Examples include those having at least 8 grain boundaries. It is preferable to make the surface energy of the crystal plane to grow equal to the surface energy of the crystal plane to be grown. For example, the plane is selected to be the same crystal plane.
  • the crystal growth is a single crystal orientation as the crystal orientation in the direction of crystal growth, and the crystal growth is performed in one direction in the crystal direction.
  • the present invention can be applied as a polycrystalline material to many practical materials such as crystals for solar cells, structural materials, and magnetic materials, and is widely applicable to polycrystalline materials used in this field, not limited to silicon.
  • the target polycrystalline materials include metal materials, intermetallic compound materials, ceramic materials, semiconductor materials, etc., and the included crystal structures are not limited to orthorhombic structures. It can be applied to.
  • the grain boundary control method in the present invention can be applied to other polycrystalline materials (metals, composite materials, etc.) such as silicon wafers for solar cells. It can be expected to develop into a new material science with high functionality.
  • the target crystal system of the present invention is not particularly limited as long as the desired purpose and effect can be obtained, including any of the typical metal elements, typical non-metal elements, and transition metal elements in the periodic table. It is not limited.
  • the typical metal element include an alkali metal element, an alkaline earth checking element, a zinc group element, an aluminum group element, a carbon group element, and a nitrogen group element.
  • Typical non-metallic elements include boron element, carbon group element, nitrogen group element, oxygen group element, halogen element and the like.
  • transition metal elements include rare earth elements, titanium group elements, earth metal elements, chromium group elements, manganese group elements, iron group elements, platinum group elements, copper group elements, lanthanoids, and actinoids.
  • Typical polycrystalline constituent elements include silicon (Si), germanium (Ge), carbon (C; including diamond), selenium (Se), tellurium (Te), tin (Sn), etc.
  • Polycrystals can also be composed of compounds, such as gallium arsenide (GaAs), gallium phosphide (GaP), indium arsenide (InAs), gallium aluminum-um arsenide (GaAlAs), gallium aluminum indium arsenide (GaAlInAs), Zinc sulfide (ZnS), cadmium sulfide (CdS), cadmium selenium (CdSe), cadmium tellurium (CdTe), silicon carbide (Si C), nickel oxide (NiO), copper oxide (Cu 0), zinc oxide (ZnO), tin oxide (SnO), A1P, AlAs
  • metals such as gun (Mn), chromium (Cr), vanadium (V), titanium (Ti), copper (Cu), gold (Au), silver (Ag), and alloys (materials). ! /, Teyo! /
  • FIG. 4 shows a schematic diagram of an example of constituting a seed crystal which is a starting material used in the present invention.
  • FIG. 4 also explains the arrangement of the seed crystals during crystal growth using Si used in Example 1.
  • crystal A is a thin plate obtained by cleaving a (001) single crystal wafer
  • crystal B is a thin plate obtained by cleaving a (111) single crystal wafer.
  • Thin plates) and crystals B (thin plates) are alternately arranged (laminated) to form the seed crystal (grain boundaries are random grain boundaries) shown on the right side of FIG.
  • the upper surface is the crystal growth start surface, and the crystal growth direction is 110>.
  • Bundling of high-value materials that will be seed crystals can be made up of an appropriate number of materials as appropriate.For example, strip-shaped thin plates are bonded together, rectangular solids, cubes, etc. are bonded together in a grid pattern. , Stick columns with triangular cross-sections, stick columns with hexagonal cross-sections, and combine columns with multiple polygon cross-sections together, or add a cylinder inside a cylinder. Any configuration, such as an enclosed shape, may be used.
  • the material once bonded can be formed into a shape suitable for use in crystal growth using the seed crystal as a seed crystal, and it may be preferable to do so.
  • Examples of the form (including the shape) include a columnar form having a circular cross section or an oval cross section.
  • the form (including the shape) can be arbitrarily processed into a form capable of achieving a desired purpose such as obtaining a desired crystal growth. May be.
  • the size of the single crystal piece used to construct the seed crystal can be set arbitrarily. Micron-sized ones are on the order of 0.1 mm, even on the order of mm, or only one of its dimensions is cm. In order, others Examples include 0.1 mm order or mm order.
  • the size of the single crystal piece can be selected and set according to the purpose.
  • the seed crystal is configured so that the relative orientation relationship has a higher grain boundary with a random grain boundary energy than the target polycrystalline product. It is not limited to a specific value, for example, a specific threshold value. For example, there are cases where the crystal is alternately arranged in the seed crystal, and the combination of the stacked layers has a larger threshold value and a combination. That is, when the threshold value of the polycrystalline seed crystal is X and the threshold value of the polycrystalline polycrystalline product is Y, X> Y is selected. ⁇ 5, ⁇ 7, ⁇ 9, etc., and even higher values, such as ⁇ 51, ⁇ 59, etc., may also be mentioned. The case of a saddle value may also be included.
  • a place where the grain boundary energy is large and does not change so much when it deviates several degrees can be selected.
  • the relationship of crystal structure (symmetry) it can be selected by conducting experiments if necessary.
  • the crystal growth method can be appropriately selected from methods known in the art.
  • the crystal growth method include, but are not limited to, a zone melting method (Zone Melting), a CZ method, and a floating zone (FZ) method (floating zone melting method).
  • An apparatus used in the method is widely known in the field, and can be appropriately selected from the known apparatus. In general, commercially available equipment can be used. The apparatus may be preferable in a case where the operation of the apparatus is controlled by a computer or the like on which a control program is or can be mounted.
  • the crystal growth rate can be selected to achieve the desired purpose and can be used, for example, as a control factor for the desired crystal growth. If the growth rate is slow, growth that takes over the surface of the seed crystal occurs, and by increasing the growth rate, new nuclear growth is promoted.
  • the crystal growth rate can be higher than usual, and the temperature gradient at the interface is selected so that the supercooling is large and induces a change in the character of the grain boundary.
  • the speed can be about 1.0 mm / min or faster, but can be selected according to the element or compound constituting the target crystal. Growth rate After achieving the intended grain boundary character change of the present invention, which does not need to be constant during crystal growth, it is preferable to slow down the speed and take over the grain boundary character. it can.
  • the crystal growth rate is about 0.3 mm / min or faster, or about 0.4 mm / min, is faster, or about 0.5 mm / min or faster, or 0.6 a speed of about mm / min or faster, a speed of about 0.7 mm / min or faster, or a speed of about 0.8 mm / min or faster, or a speed of about 0.9 mm / min or faster.
  • the crystal growth rate is 0.3-10.0 mm / min, or 0.4-5.0 mm / min, 0.5-3.0 mm / min, 0.6-2.5 mm / min, or 0.7-2.0 mm / min. Min, or 0.8-1.5 mm / min.
  • the above growth rate may be the crystal growth rate at the crystal growth start surface, for example, when the crystal growth start surface force grows to some extent and then, for example, the crystal growth start surface force is about 10 to 50 mm. It is possible to grow at about 20 to 45 mm or about 25 to 40 mm and then to a slower speed.For example, about 0.25 mm / min or slower, or about 0.2 mm / min or more. It can be slower and faster.
  • the composition of the starting seed crystal the selection of the sigma value of the grain boundary, the crystal growth direction, the crystal growth rate, the crystal growth method, the crystal growth temperature, and the like are suitably suitable depending on the crystal material used.
  • the selection can be made while analyzing the crystal properties of the product using the EBSP method.
  • the crystal interface of metal materials, intermetallic compounds, ceramics, semiconductors, and polymer materials can be controlled.
  • Development of composite materials, development of nanomaterials including ultra-miniaturization by controlling the crystal structure of the microstructure, material performance due to miniaturization of mechanical parts, fulfillment of reliability improvement requirements, biological functions and adaptive functions It is possible to develop intelligent materials (intelligent materials) with
  • the interface of polycrystalline grains is controlled to control the brittleness of the material, the microstructure is made uniform to improve its strength, and further, it is related to high temperature deformation, superplasticity and fracture phenomenon Mechanical performance can be advantageous.
  • the technique of the present invention makes it possible to control grain boundary brittleness caused by grain boundary fracture of a polycrystalline material.
  • the polycrystalline material forming technology of the present invention can be applied to the production of a polycrystalline silicon material (silicon Balta crystal) used in solar cell crystals and solar cells, The effect is obtained.
  • a polycrystal having a high grain boundary with a grain boundary energy which is intentionally random in relative orientation relation is intentionally formed, and then the unidirectional crystal growth is performed using the polycrystal as a seed crystal. Then, under appropriate growth conditions, a grain boundary having a low grain boundary energy is formed from a random grain boundary having a high grain boundary energy.
  • the arrangement of the seed crystal is to cleave a Si crystal with a growth orientation of [110] and side face of [100] and a Si crystal with a growth orientation of [110] and side face strength of 11]. Are produced by laminating them alternately, and a random grain boundary is formed by laminating them alternately.
  • the threshold value between the crystal planes of the fabricated laminate is predicted to take a large value because the grain boundary energy does not change much even when the relative orientation of the laminated crystal phases is several degrees. Good results can be expected by favoring the use of orientation relationships.
  • the size of each crystal can be any size, for example, 4-30 mm in width, 5-100 mm in length, and thickness power .l-2.0 mm.
  • a laminate can be used. In a typical example, the width is about 8 mm, the length is about 50 mm, and the thickness is about 0.4 to 0.5 mm.
  • the surface that is the starting point for crystal growth is preferably selected so that the surface energy of the crystal surface to be grown is equivalent.
  • the crystal growth starting surface can be adjusted to the [110] orientation to control the crystal orientation in the growth direction.
  • the crystal growth starting surface is equivalent to [110], and by setting the surface energy to be equivalent, the influence of the grain boundary energy in the growth process is increased, the grain boundary energy is low, and there is an interface. Promote the growth of polycrystals!
  • Growth of a silicon crystal using the seed crystal can be performed by 1S, for example, FZ method, to which a known crystal growth method can be applied.
  • the heating source is a force that can be used without limitation as long as it is a known and effective technique.
  • an electron beam from a ring-shaped tungsten filament is used.
  • the growth starting surface of the seed crystal is arranged upward, and a Si stacked polycrystal having a diameter of about 4 to 30 mm, for example, about 8 mm, which is a raw material, is arranged on the opposite side.
  • the lower part of the source polycrystalline silicon is melted by a heating source such as an electron beam, and then the molten surface is brought into contact with the upper part of the seed crystal. Crystal growth is performed by the method. Conditions such as the growth rate can be determined as described above, and may typically be 0.7 to 2.0 mm / min, or 0.8 to 1.5 mm / min, for example, about 1.0 mm / min. Can be controlled as follows.
  • the accuracy of the grain boundary character of the produced polycrystal is limited by the accuracy of cutting, and the desired grain boundary character is not necessarily realized.
  • the control of grain boundaries is a force that requires an accuracy within 0.01 ° as a relative orientation, which is extremely difficult to achieve with the current cutting technology (in the crystals used for seed crystals, Due to the misalignment of crystal planes and grain boundary mismatch, the part of the grain interface of the grown wafer remains high, and the expected crystal strength cannot be obtained.
  • the present invention it is possible to obtain a polycrystalline material having a property of very low interface energy.
  • the orientation-related force of the desired grain boundary also starts to grow from a seed crystal whose angle is greatly deviated, and the grain boundary character changes to one having the smallest grain boundary energy. Therefore, the requirement for the cutting accuracy is sufficient even within 1 °, and a polycrystal having a desired grain boundary character can be realized regardless of the cutting accuracy.
  • the silicon polycrystal for solar cell the technology of the present invention was applied and the growth orientation was [110] and the growth orientation was [110] and the side orientation was [110].
  • the Si polycrystal is grown using the crystal bundle (grain boundary is formed by the contact of [100] and [111]) as a seed crystal.
  • the grain boundary character is all sima 3 and sigma 9 !, the grain boundary energy is small, and the grain boundary character is changed to the grain boundary, which shows its superiority.
  • a polycrystal having a good grain boundary can be obtained.
  • Balta polycrystalline silicon obtained by the present invention solves the problem of securing the raw material silicon (which is strongly required to make the polycrystalline silicon wafer thin), and has a thickness when slicing from an ingot.
  • the grain boundary control method in the present invention can be applied to other polycrystalline materials (metals, composite materials, etc.). Can be expected.
  • the seed crystals are arranged in a Si crystal with a growth orientation of [110] and side surfaces of [100], and a growth orientation of [110] and side surfaces of [111].
  • a silicon crystal was prepared by cleaving and alternately layering them to form random grain boundaries. That is, the side surface [100] and the side surface [111] are bonded together so as to contact each other to form a grain boundary.
  • the threshold between these faces is 41. Even with a few degrees of deviation, the grain boundary energy does not change so much, and the orientation relation that is expected to take a large value was used.
  • Each crystal is 8mm wide and 50m long m, the thickness was 0.4 to 0.5 mm, and these were used by alternately stacking 8 sheets.
  • the crystal growth starting point is controlled by aligning the [110] orientation so that the surface energy of the crystal growth surface is equivalent to the [110] orientation. is doing.
  • the surface that is the starting point for crystal growth is
  • the silicon crystal was grown by an electron beam floating zone (FZ) growth method using the seed crystal produced by the above method.
  • the heating source is an electron beam from a ring-shaped tungsten filament.
  • the growth starting surface of the seed crystal was placed upward, and an Si polycrystal with a diameter of 8 mm as a raw material was placed facing it. After melting the lower part of the raw material polycrystalline silicon with an electron beam, the melted surface is brought into contact with the upper part of the seed crystal, and after fully acclimatizing, the filament is moved upward at a constant speed to grow. Crystal growth was performed.
  • the growth rate was controlled to be 1 mm / min.
  • An EBSP method (backscattered electron diffraction pattern) can be used to determine the index of crystal orientation of a sample obtained by cutting a crystal grown by the above method in a direction in which a cross section where a seed crystal is bonded can be seen.
  • Fig. 5 shows a photograph of the Si crystal obtained by growth using the technology of the present invention. As a result, it became clear that the grown crystal that can be placed near the seed crystal grew in the same orientation as the seed crystal.
  • Figure 6 shows the EBSP near the seed crystal. Further, in the vicinity of about 20 mm from the seed crystal, the crystal growth with good grain boundary alignment intended by the present invention has started.
  • Figure 7 shows the EBSP that shows the change in the orientation distribution of the longitudinal section of the Si crystal obtained by growing using the technology of the present invention.
  • the length of the Si crystal sample shown in the left side of Fig. 7 (the length in the growth direction) is about 40 mm (the grain boundaries are only ⁇ 3 and ⁇ 9), and the almost circular shape shown on the right side of it.
  • the diameter of the sample with a cross-sectional area of EBSP of the part cut in mm is shown. Although it is polycrystalline as shown in Fig. 7, only the orientation relations of ⁇ 3 and ⁇ 9 are observed. These interfaces are formed by spontaneous growth and have no defects.
  • the crystal growth rate in this example is lmm / min.
  • FZ9 and FZ12 are produced Si crystal samples at a crystal growth rate of about 1.0 mm / min
  • FZ13 is a produced Si crystal sample at a crystal growth rate of about 0.2 mm / min.
  • Fig. 9 shows the EBSP for the orientation distribution in the crystal growth direction (left in Fig. 9) and the vertical orientation distribution (right in Fig. 9) of the grown Si crystal sample.
  • the distribution of the growth direction is a force limited to several orientations. It can be explained geometrically because the orientation of the seed crystal is [110] and the newly formed grain boundary is ⁇ 3. According to the technique of the present invention, it is apparent that the crystal orientation can be limited in addition to the grain boundary character by selecting the orientation of the seed crystal.
  • the schematic diagram in the lower left of Fig. 10 shows the structure of a polycrystal that is theoretically predicted to have extremely high mechanical strength.
  • the force in the upper right of the figure is formed by the technique of the present invention.
  • the grain boundary character 'orientation distribution of the crystal is shown, and the lower right shows the schematic diagram. It can be seen that a very similar structure is formed. Since all the grain boundary characteristics are the corresponding grain boundaries, it can be predicted that this crystal will have excellent characteristics when processed into a solar cell, and further, it can be predicted that the mechanical strength is also excellent. If the mechanical strength is strong, even if the substrate is sliced thinly from an ingot and handled, it can be handled, contributing to the effective use of raw materials, and improving conversion efficiency. This is also very advantageous.
  • the silicon polycrystal obtained by crystal growth in the above examples is (1) substantially free from defects as observed by the backscattered electron diffraction pattern method, (2) excellent mechanical strength, excellent impact resistance. (3) Conversion efficiency in a 10 cm square cast cell (efficiency for converting sunlight into electricity) 18% or more, 19 % Or more, 20% or more, 21% or more, 22% or more, or 25% or more. (4) It may be characterized by comprising at least 4 crystalline phases.
  • a slow growth rate is advantageous when growing crystals from seed crystals. This is because a crystal having good crystallinity can be obtained by growing the crystallinity and orientation of the crystal to be grown by sufficiently taking over the crystallinity and orientation of the seed crystal. Even in the results obtained by experiments, when the crystal growth rate is slowed down, crystal growth occurs that inherits the grain boundary character of the seed crystal as it is. This is because, for the purpose of the present invention, for the nucleation of new crystal grains having a good grain boundary character, contrary to the conventional common sense, the growth rate is increased and the growth rate is increased by an appropriate growth rate. It can be seen that it is effective to apply the degree of supercooling as the driving force. In order to change the grain boundary character, it is suggested that it is important or necessary to overcome the active energy barrier under different growth conditions.
  • a polycrystal having a good grain boundary character obtained by the present invention By processing a polycrystal having a good grain boundary character obtained by the present invention and using it as a seed crystal to grow a crystal, only a crystal having a low threshold value exists at the crystal interface, and there are very few defects.
  • a crystalline material can be obtained. Since such a polycrystalline material has few dangling bonds at the grain boundary, it is configured as a network of grain boundaries, and even in the macro property of the polycrystalline material, the electrical activity is low, or the crystal Excellent properties such as high strength can be achieved. Particularly in silicon materials for solar cells, the power of using many polycrystalline materials has the problem of carrier recombination at the crystal interface. This can be improved by the technique of the present invention.
  • the polycrystalline silicon material obtained by carrying out the present invention carrier recombination can be reduced as compared with conventional polycrystalline silicon.
  • the single crystal material has a problem that it is difficult to handle when the wafer is thinned, but the mechanical strength of the material obtained by the technique of the present invention can be made larger than that of the conventional single crystal silicon. This allows for processes such as destruction when the wafer is thinned. It is expected that troubles during the process can be avoided.
  • a polycrystal having a controlled grain boundary property (grain boundary character) distribution which is a macro of many practical materials such as polycrystals for solar cells, structural materials, and magnetic materials. It becomes possible to control the properties of the material including various properties.
  • a crystal having a grain boundary having a high grain boundary energy with intentionally random relative orientation relation is used as a seed crystal, and crystal growth is performed in one direction, so that a random having a high grain boundary energy is obtained. Since grain boundaries with low grain boundary energy are formed from the grain boundaries, for example, all of the grain boundaries can be aligned with the corresponding grain boundaries with low sigma values. For this reason, it can be expected that excellent characteristics such as low electrical activity and high crystal strength can be expected even in the macro properties of the polycrystalline material, which is configured as a network of grain boundaries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Photovoltaic Devices (AREA)
  • Silicon Compounds (AREA)

Abstract

 多結晶材料における粒界性格の制御技術を提供し、結晶内部に粒界エネルギーの低い界面を持つ多結晶材料を作製する。意図的に相対方位関係がランダムな粒界エネルギーの高い粒界を有する多結晶を種結晶として利用して、一方向成長を行うと、適切な成長条件の下では、粒界エネルギーの高いランダム粒界から、粒界エネルギーの低い粒界が自発的に形成される。本技術で、多結晶の粒界の全てを低シグマ値の対応粒界に揃えることが可能となり、形成される多結晶材料は、粒界における未結合手が少ないため、粒界のネットワークとして構成されている多結晶材料のマクロな性質においても、電気的活性度が小さい、結晶の強度が高いなどの優れた特性の発現を可能とする。                                                                                 

Description

明 細 書
粒界性格制御多結晶の作製方法
技術分野
[0001] 本発明は、結晶内部に粒界エネルギーの低い界面を持つ多結晶材料を作製する 技術に関するものである。特には、本発明は、より高いシグマ値を有する結晶界面を 持つ多結晶を用意し、それを種結晶として使用して、より低いシグマ値を有する粒界 面を持つ多結晶材料生成技術に関する。
背景技術
[0002] 太陽電池用結晶、構造材料、磁性材料などの多くの実用化材料は、材料内部に多 くの結晶組織を有する多結晶材料である。
多結晶は、多くの結晶粒 (crystal grain)力 構成される力 そのマクロな諸性質は結 晶粒の大きさや異なる結晶粒間の境界である結晶粒界 (grain boundary)の性質 (粒界 性格)に依存することが知られている。
例えば、太陽電池のセルに、多結晶シリコンをウェハー状に切り出して作製された ものを用いる場合がある。このとき、結晶の粒界面における欠陥やそれに伴って界面 に蓄積されている粒界エネルギーにより、多結晶ウェハーの強度はそれほど高くない 。また、粒界面における欠陥は、光励起キャリアに対する再結合中心として作用する ため、太陽電池効率の低下の一因となっている。我が国は、世界一の太陽電池生産 国であり、ここ数年の太陽電池生産量の年次増加率は 25%を超えている。中でも、シリ コンのバルタ結晶をベースとした太陽電池は、総生産量の 90%を超えており、太陽電 池の主要材料となって 、る。
[0003] し力しながら、今後の生産量の延びに対して、原材料のシリコンの確保が課題とな つており、その解決策の一つとして、インゴットからスライスする際の厚みを薄くするこ とが検討されている。コストの低い多結晶シリコンにおいては、粒界からの破壊が大き な問題となっている。
産業的に見た場合、ウェハーの厚みを薄くすることで、材料のコスト低減や製品の 軽量ィ匕につなげることが望まれている力 界面に多くの欠陥が存在したり、界面に蓄 積されたエネルギーが大き 、場合、ウェハーの厚みを薄くすることで機械的な強度が 減少する。製造プロセス内で考えた場合、多結晶ウェハーを搬送'加工する際にゥェ ハーが割れるということがあり、太陽電池セルの製造歩留まりが非常に低下する。こ れは、ウェハーの材料である多結晶材料に起因するものである。粒界面におけるキヤ リア再結合の抑制に対しては、水素により欠陥を終端するプロセスが行われているが 、水素の効果は永続せずに、太陽電池性能の経時変化の要因ともなつている。本質 的には、整合性が高ぐキャリア再結合速度の小さい粒界を形成することが希求され ている。
一方、この粒界の性格を制御することによって、強度の強い材料、鲭びにくい材料 などができるとした研究は行われて 、る。
[0004] 結晶間の粒界の対応度は、シグマ(∑ )と 、う指標を用いて表され、∑値が低 、ほ ど結晶間の対応がよぐ粒界に蓄積されたエネルギーが低いことになる。∑値は、単 位格子の面積に対して、対応する格子の単位格子面積がどの広さになっているかと いう比で求められる。∑値は奇数の値のみを取り、∑値が 1であるということは、粒界 面における両方の単位格子が同じであるということを意味し、粒界は存在しない。こ れは同じ結晶であるということを示す。実際に別の粒界の界面がある場合には、∑値 は 3、 5、 7、 · · ·というように大きくなつてくる。例えば、成長方位がく 110 >に対して 粒界面が〔111〕である場合などは、∑値が 3 (∑3)となり、最も対応がよい界面という ことになる。シリコンのような立方晶系においては、∑ 3と∑ 9が非常に粒界エネルギ 一の低い方位関係である。
この考えを基に、粒界エネルギーの低 、多結晶シリコン材料を製造する技術が研 究されている。これは、三結晶シリコン(トリシリコン)という技術である。この三結晶シリ コン技術では、シリコン単結晶を機械的にカットして、∑3、∑3、∑ 9の粒界しか存在 しな 、ように 3つの結晶を貼り合わせたものを種結晶として、結晶を成長させようと!/、う 考えのものである。これは、∑値の低い多結晶材料を得るために、種結晶を粒界エネ ルギ一の低い構成で単結晶の面を作り、それをもとに結晶成長させることにより、機 械的強度の強 、準単結晶 (粒界の少な 、多結晶)シリコンを得ようとするものである。
[0005] { 110}を成長方位として、二つのシグマ 3粒界と一つのシグマ 9粒界を有する三結 晶シリコンが、薄くスライス可能な太陽電池用シリコンインゴットとして有用であることが
Martinelliらにより提案された (非特許文献 1: Appl. Phys. Lett. 62, 3262, 1993)。その 後、 Schimigaらは、同様の手法で作製した三結晶シリコンから、 17.6%の変換効率を有 する太陽電池の作製例を報告している (非特許文献 2: PV in Europe, Oct. 2002, Ro me) J. of Crystal Growth, 280, pp.419- 424 (2005)が、粒界近傍のキャリア拡散長が 短いことが明らかになっており、粒界が精密にはシグマ 3やシグマ 9ではないことが示 唆される。
一般的には、多結晶材料よりも単結晶材料のほうが、機械的強度が強いが、上記 の三結晶シリコンのように、粒界エネルギーの低い界面を組み合わせた多結晶にお いて、単結晶よりも高い強度の材料を得ることができる。上記のような背景から、結晶 粒界を設計することが、材料の性質の制御に対する新たな自由度として有用であるこ とが提案されて 、るが、粒界性格の制御手法は確立されて 、な 、。
ところで、本発明者等のグループでは、 Si(l 10)単結晶ロッドを面 [111]に沿って半分 にカットし、逆向きに貼り合わせたものを種結晶として、成長方位 [110]に FZ成長させ 、転位の密度 (D)の評価をしている (非特許文献 3: J. of Crystal Growth, 280, pp.419 -424 (2005》力 そこで使用の種結晶は面 [111]に沿って半分にカットしたものを貼り 合わせているもので、カットに伴う方位のずれ、すなわち、 3.5あるいは 7.0° だけ方位 力 S[110]を軸として面 [111]よりずれた種結晶となっているものが使用されている。した 力 て、その二枚の結晶を貼りあわせた種結晶は、∑ 3粒界から 3.5あるいは 7.0° だ け方位がずれているというだけのものであり、ずれ角を大きく設定することで、転位の 密度を評価したところ、転位密度が小さくなつてくる傾向があり、粒界エネルギーがト 一タルで下がるという示唆が得られたとの結果を示すにとどまり、そこでは粒界の転 位の密度の評価を行って 、るものであって、意図的に相対方位関係がランダムな粒 界エネルギーの高 、粒界を有する多結晶を作成してそれを用いて粒界エネルギー の低い結晶粒界を持つ多結晶を作製するというものではなぐさらに、粒界エネルギ 一の高!、ランダム粒界から、粒界エネルギーの低!、粒界を形成するなどの思想は全 く示されていない。また、本発明者等のグループでは、上記非特許文献 3で作製した 結晶試料を X線で評価した結果を発表している (非特許文献 4: Japanese Journal of A pplied Physics, Vol. 44, No. 24, pp丄 778- L780, (2005》が、そこでは成長条件に依 存して、 X線のロッキングカーブの値 (結晶性の指標)や太陽電池セルとした場合の 電流値が変化することを確認しているもので、上記非特許文献 3と同様、意図的に相 対方位関係がランダムな粒界エネルギーの高い粒界を有する多結晶を作成してそ れを用いて粒界エネルギーの低 、結晶粒界を持つ多結晶を作製すると 、うものでは ない。
[0007] 特許文献 1:特表 2001-504996
非特許文献 l :Appl. Phys. Lett. 62, 3262, 1993
非特干文献 2 : PV in Europe - From PV Technology to Energy solutions, Confer enc e + Exhibition, Oct. 2002, Rome
非特許文献 3 : M. Kitamura et al., J. of Crystal Growth, 280, pp.419- 424 (2005) 非特許文献 4 : N. Usami et al" Japanese Journal of Applied Physics, Vol. 44, No. 24, pp丄 778- L780, (2005)
発明の開示
発明が解決しょうとする課題
[0008] 上記の三結晶シリコンのように、粒界エネルギーの低!、界面を組み合わせた多結 晶において、単結晶よりも高い強度の材料を得ることができる。ところが、上記のよう な複数の単結晶から方位を測定して切り出した結晶を束ね、人工的な対応粒界を形 成した多結晶を種結晶として用い、結晶成長させた材料 (三結晶シリコン)においても 、粒界間に存在する欠陥により、結晶内にクラックが発生する状況にあり、所望の粒 界を持つ材料が得られていない。上記の手法によりうまくゆかない理由は、粒界性格 の制御が、基になる単結晶の切り出し精度に依存するためである。例えば、粒界性 格の制御には、相対的な方位関係として 0.01度以内の精度が必要とされる力 現状 の切断技術からは、この実現は極めて困難である。貼り合わせる結晶間の方位のミク 口的なずれと、面間のミクロな凹凸の存在により、粒界面のエネルギーが低い理想的 な種結晶を得ることが非常に難しい。例えば、発明者らの実験によって得られた結果 では、∑ 3の方位関係から 0.1度以内の微小なずれを持つように貼り合わせた種結晶 を用いたフローティングゾーン成長法によるシリコンの結晶成長においては、成長し た結晶においても、種結晶の方位のずれをそのまま引き継いだ結晶として成長が起 こって ヽる。
多結晶材料で、結晶粒界を設計して、その粒界性格を制御する技術の開発が求め られている。
課題を解決するための手段
[0009] 上記問題点を解決するため、鋭意研究を進め、意図的に相対方位関係がランダム な粒界エネルギーの高 、粒界を有する多結晶を種結晶として利用して、一方向成長 を行う。すると、この方法により、適切な成長条件の下では、粒界エネルギーの高いラ ンダム粒界から、粒界エネルギーの低い粒界が自発的に形成されることを見出した。 よって、このことを積極的に利用すると、粒界の全てを低シグマ値の対応粒界に揃え ることを可能となることを見出した。本発明は、こうした現象に基礎を置いてなされたも のである。
本発明は、∑値の低い粒界面を持つ多結晶材料を得るために、あえて種結晶とし て、∑値の高くした結晶界面を用いることを特徴とする。これは、方位関係のずれが 非常に大きい種結晶を用いることで、粒界エネルギーが低くなり、全体の粒界エネル ギ一が低くなることをドライビングフォースとして用いたものである。これにより、自発的 に粒界エネルギーの低い界面を持つ多結晶が成長することを促す。つまり、結晶間 の整合性が非常によいところから、数度以内のずれであれば、そのずれを解消する よりも、ずれをそのまま引き継いで成長する方力 エネルギーとして得であるということ を逆に用いたものである。
[0010] 本発明は、粒界性格分布を制御した多結晶の新たな作製方法に関するものである
。本発明技術においては、意図的に相対方位関係がランダムな粒界エネルギーの 高い粒界を有する多結晶を種結晶として利用して、一方向成長を行うことを特徴とし た多結晶材料形成法であり、適切な成長条件の下では、粒界エネルギーの高いラン ダム粒界から、粒界エネルギーの低い粒界が自発的に形成されることを積極的に利 用しているもので、粒界の全てを低シグマ値の対応粒界に揃えることを可能とする技 術である。このように形成される多結晶材料は、粒界における未結合手が少ないため 、粒界のネットワークとして構成されている多結晶材料のマクロな性質においても、電 気的活性度が小さ!ヽ、結晶の強度が高!ヽなどの優れた特性の発現を可能とする。 本発明は、次なる態様を提供している。
〔1〕意図的に相対方位関係がランダムな粒界エネルギーの高 、粒界を有する多結 晶を形成し、次に該多結晶を種結晶として、一方向結晶成長を行い、粒界エネルギ 一の高 、ランダム粒界から、粒界エネルギーの低 、粒界を形成することを特徴とする 多結晶材料の製造法。
〔2〕種結晶力 結晶成長面に少なくとも 2以上の粒界を有するものであることを特徴と する上記〔1〕記載の多結晶材料の製造法。
〔3〕種結晶が、(1)結晶成長面に少なくとも 3以上の粒界を有するもの、(2)結晶成長面 に少なくとも 4以上の粒界を有するもの、(3)結晶成長面に少なくとも 5以上の粒界を 有するもの、(4)結晶成長面に少なくとも 6以上の粒界を有するもの、(5)結晶成長面に 少なくとも 7以上の粒界を有するもの、及び (6)結晶成長面に少なくとも 8以上の粒界 を有するもの
力もなる群力も選択されたものであることを特徴とする上記〔1〕又は〔2〕記載の多結晶 材料の製造法。
〔4〕結晶成長が、結晶の成長する方向の結晶の方位として単一の結晶方位とされて 、該結晶成長が当該結晶方向に一方向になされるものであることを特徴とする上記〔 1〕〜〔3〕の 、ずれか一記載の多結晶材料の製造法。
〔5〕種結晶が、複数の単結晶から形成された多結晶であり、結晶の成長する方向の 結晶の方位として単一の結晶方位とされており、
(1)多結晶を構成する単結晶の数が、少なくとも 3個以上であるもの、
(2)多結晶を構成する単結晶の数が、少なくとも 4個以上であるもの、
(3)多結晶を構成する単結晶の数が、少なくとも 5個以上であるもの、
(4)多結晶を構成する単結晶の数が、少なくとも 6個以上であるもの、
(5)多結晶を構成する単結晶の数が、少なくとも 7個以上であるもの、
(6)多結晶を構成する単結晶の数が、少なくとも 8個以上であるもの、
(7)多結晶を構成する単結晶の数が、少なくとも 9個以上であるもの、及び
(8)多結晶を構成する単結晶の数が、少なくとも 10個以上であるもの 力もなる群力も選択されたものであることを特徴とする上記〔1〕〜〔4〕の 、ずれか一記 載の多結晶材料の製造法。
〔6〕∑値を高くした結晶界面を有する多結晶を種結晶として用いて、結晶を成長せし めて、∑値の低 、粒界面を持つ多結晶を得ることを特徴とする上記〔1〕〜〔5〕の 、ず れか一記載の多結晶材料の製造法。
〔7〕多結晶が、シリコン多結晶であることを特徴とする上記〔1〕〜〔6〕の 、ずれか一記 載の多結晶材料の製造法。
〔8〕結晶成長開始面での結晶成長速度が、 0.3mm/分程度あるいはそれより早い速 度であることを特徴とする上記〔1〕〜〔7〕の 、ずれか一記載の多結晶材料の製造法。 〔9〕種結晶の配置として、成長方位が [110]であり側面が [100]である Si結晶と、成長 方位が [110]であり側面が [111]である Si結晶を、面 [100]と面 [111]とが接するように交 互に積層することによりランダム粒界を形成したものであることを特徴とする上記〔1〕 〜〔8〕の 、ずれか一記載の多結晶材料の製造法。
〔10〕上記〔1〕〜〔9〕の 、ずれか一記載の多結晶材料の製造法で得られたシリコン多 ホ吉晶。
〔11〕シリコン多結晶であり、該シリコン多結晶の粒界が∑ 3及び Z又は∑ 9のみであ ることを特徴とするシリコン多結晶。
〔12〕(1)後方散乱電子回折パターン法による観察で実質的に欠陥が存在しない、
(2)優れた機械的強度、優れた衝撃抵抗性、インゴットのスライス時での優れた破壊抵 抗性、あるいは優れた耐割れ性を示す、
(3) 10 cm角のキャストセルにおける変換効率 18%以上、 19%以上、 20%以上、 21%以上、 22%以上、あるいは 25%以上を与える、及び Z又は、
(4)少なくとも 4以上の結晶相からなる
ことを特徴とする上記〔11〕記載のシリコン多結晶。
〔13〕上記〔10〕〜〔12〕の 、ずれか一記載のシリコン多結晶より製造された太陽電池。 発明の効果
本発明によれば、多結晶材料の粒界を制御する手法が提供され、該粒界制御技 術により優れた電気的性質を有する粒界を有し (品質が単結晶なみ)、かつ強度が、 従来の多結晶よりも強い結晶が作製できる。よって、インゴットからの、薄板切り出し や、その後のハンドリングが容易となり、スライス厚さの低減に材料の側面から寄与で きる。このような理由により、現在、太陽電池産業で課題となっている将来的な原料の 確保の問題を解決し、太陽電池産業の拡大とエネルギー問題解決に繋がる。また、 他の多結晶材料 (金属、複合材料など)に対しても、本発明の粒界制御技術を適用可 能であり、粒界設計による材料の高機能化という新たな材料科学への展開が期待で きる。
本発明のその他の目的、特徴、優秀性及びその有する観点は、以下の記載より当 業者にとっては明白であろう。し力しながら、以下の記載及び具体的な実施例等の記 載を含めた本件明細書の記載は本発明の好ましい態様を示すものであり、説明のた めにのみ示されて 、るものであることを理解された!、。本明細書に開示した本発明の 意図及び範囲内で、種々の変化及び Z又は改変(あるいは修飾)をなすことは、以 下の記載及び本明細書のその他の部分からの知識により、当業者には容易に明ら かであろう。本明細書で引用されている全ての特許文献及び参考文献は、説明の目 的で引用されているもので、それらは本明細書の一部としてその内容はここに含めて 解釈されるべきものである。
図面の簡単な説明
[図 1]本発明の多結晶材料形成技術の基本概念を模式的に説明する図である。
[図 2]単純立方格子を例にして、その単位格子と、く 001〉軸の周りに回転角 36.52° 回 転させ多場合の対応格子を説明する。
[図 3]シリコン多結晶における高品質バルタ多結晶をデザインする場合の構造デザィ ンとそれにより得られる効果予測マップを示す。
[図 4]本発明の多結晶材料形成技術における出発種結晶を構成する場合につき一 例を模式的に示すものである。代表例としては、シリコン多結晶を例にして説明でき る。実施例の種結晶に相当する。
[図 5]本発明の多結晶材料形成技術で得られた Si結晶の写真を示す。
[図 6]本発明の多結晶材料形成技術で得られた Si結晶の種結晶近傍断面の EBSPを 示す。 [図 7]本発明の多結晶材料形成技術で得られた Si結晶の縦断面の方位分布変化を しめす EBSPを示す。
[図 8]本発明の多結晶材料形成技術で得られた Si結晶の結晶成長面力 40mmの位 置で、成長方向に対して垂直に切断した面の方位の分布、および粒界性格の分布 を調べた EBSPを示す。 FZ9及び FZ12は、結晶成長速度約 1.0mm/分での生成 Si結晶 試料であり、 FZ13は、結晶成長速度約 0.2mm/分での生成 Si結晶試料である。
[図 9]本発明の多結晶材料形成技術で得られた Si結晶の結晶の成長方向の方位分 布 (左)とそれに垂直な方位分布 (右)につ 、ての EBSPを示す。
[図 10]理論的に強い機械的強度を有すると予測される多結晶材料の組織の模式図( 下左)と本発明の多結晶材料形成技術で得られた Si結晶についての粒界性格'方位 分布 (EBSP:上側の三つの写真)と、その組織構造の模式図(下右)を示す。
発明を実施するための最良の形態
[0014] 従来技術として、複数の単結晶から、方位関係を測定して切り出した結晶を、束ね ることにより人工的な対応粒界を形成した多結晶を作製し、さらに、この結晶を種結 晶として、 CZ (チヨクラルスキー: Czochralski)法により、その方位を継承するような成 長条件下で結晶成長を行う手法がある。この手法において作製される多結晶の粒界 性格の精度は、切り出しの精度により制限され、必ずしも所望の粒界性格が実現され てはいない。例えば、粒界性格の制御には、相対的な方位関係として 0.01° 以内の 精度が必要とされるが、現状の切断技術からは、実現が極めて困難である。
従来のアプローチであった、種結晶として用いる材料として、粒界の対応性のよい 結晶を束ねるという概念、粒界種結晶間の∑を小さくするという考えがある。ところが 、結晶間の整合性を原子レベルで取ることは現実的には不可能であり、微小な不整 合が残れば、結晶成長中に解消することはない。これは不整合の度合いが小さいた めに、それ以上の整合を取るドライビングフォースが生じな 、ためと思われる。
[0015] 一方、本発明においては、意図的に、所望の粒界の方位関係からは、角度が大き くずれた種結晶から成長を開始して、自発的に粒界性格が、粒界エネルギーの小さ いものに変化することを利用する。よって、切り出しの精度に対する要請は、 1° 以内 でも十分であり、切断精度によらずに、所望の粒界性格を有する多結晶が実現可能 である。この手法は、成長方位が [110]であり、側面が [100]である Si結晶と、成長方位 力 S[110]であり、側面が [111]である Si結晶を交互に束ねた結晶束を種結晶として、 Si 多結晶の成長を行う(この場合束ねた種結晶では面 [100]と面 [111]とが接して粒界を 形成していることとなり、結晶の成長する方向の結晶方位は [110]とされている)と、そ の結果、粒界性格が全てシグマ 3およびシグマ 9と!、う粒界エネルギーの小さ 、粒界 に変化したことを検証することにより確認できる。
本発明は、結晶内部に粒界エネルギーの低い界面を持つ多結晶材料を作製する 技術に関するものである。本発明は、意図的に相対方位関係がランダムな粒界エネ ルギ一の高い粒界を有する多結晶を形成し、次に該多結晶を種結晶として、一方向 結晶成長を行い、適切な成長条件の下で、粒界エネルギーの高いランダム粒界から 、粒界エネルギーの低い粒界を形成することを特徴としている。本発明の基本概念を 図 1に示す。特には、本発明は、より高いシグマ値を有する結晶界面を持つ多結晶を 用意し、それを種結晶として使用して、より低いシグマ値の対応粒界を持つ多結晶材 料を生成することを特徴とする多結晶材料形成技術である。本発明は、∑値の低い 粒界面を持つ多結晶材料を得るために、あえて種結晶として、∑値の高くした結晶 界面を用いることを特徴とするもので、方位関係のずれが非常に大きい種結晶を用 いることで、粒界エネルギーが低くなり、全体の粒界エネルギーが低くなることをドライ ビングフォースとして用いたもので、これにより、粒界エネルギーの低い界面を持つ多 結晶が成長することを促しているのであり、一方では、結晶間の整合性が非常によい ところから、数度以内のずれであれば、そのずれを解消するよりも、ずれをそのまま引 き継 、で成長する方が、エネルギーとして得であると!/、うことを逆に用いたものである 本明細書中、多結晶材料に必ず存在する「粒界」とは、該多結晶を構成する結晶 粒同志のつなぎ目、すなわち、結晶粒間の境界のことである。
粒界を構成する二つの結晶の一つをある回転軸の周囲に、ある角度だけ回転させ た場合の 2つの結晶の重なりを考えたとすると、この際に、回転軸と回転角度によって 原点以外にも周期的に相重なる格子点が形成されるが、これを「対応格子点」と呼ん でいる。該対応格子点は周期的に生じる。ここでもとの結晶格子の単位胞面積と、こ こで形成される対応格子の単位胞面積との比を、シグマ(∑)値と言って、結晶間の 粒界の対応度を表す指標として利用されている。このように、∑値は、単位格子の面 積に対して、対応する格子の単位格子面積がどの広さになっているかという比で求 められる。
[0017] これを、単純立方格子(図 2)を例に挙げて説明する。該単純立方格子の単位格子 は、図 2の左上側の小さな正方形の四角で囲った部分である。図 2において縦の垂 直な線と横の水平な線とで示される単純立方格子を回転軸く 001〉の周りに回転角 36. 52度回転させると、もとの格子点と互いに重なり合う点 (対応格子点)が生まれるが、 その対応格子の単位格子は、図 2のはぼ中央にあり且つ前記単純立方格子の単位 格子部分より大きな面積の四角形の囲まれた部分で示すことができる。これ (図 2)を 両格子の対応度を表す指標である∑値で示すと次のようになる。
[0018] [数 1] 対応格子の単位格子の面積 i
単位格子の面積 11
[0019] 力くして、図 2の例では∑ 5の対応関係である。
一般的には、∑値が低いほど結晶間の対応がよぐ粒界に蓄積されたエネルギー が低いことになる。∑値は奇数の値のみを取り、∑値が 1であるということは、粒界面 における両方の単位格子が同じであるということを意味し、粒界は存在しない。これは 同じ結晶であるということを示している。実際に別の粒界の界面がある場合には、∑ 値は 3、 5、 7、 · · ·というように大きくなつてくる。例えば、成長方位力く 110〉に対して粒 界面が〔111〕である場合などは、∑値が 3 (∑3)となり、最も対応がよい界面ということ になる。シリコンのような立方晶系においては、∑ 3と∑ 9が非常に粒界エネルギーの 低い方位関係である。
次の表 1にはダイアモンド構造において、成長方位が等しぐ成長界面と粒界が垂 直な場合の低∑値が実現可能な組み合わせを示す。
[0020] [表 1] 成長方位 粒界面 粒界性格
. u
π ηη) 1
〈110〉 { 111 } ∑3
〈210〉 1121 } ∑3
〈111〉 {211 } ∑3
[0021] ∑値が小さいほど対応度が高ぐ例えば、太陽電池用シリコン (Si)多結晶では、電 気的に不活性な結晶粒界であることとなり、結晶粒界でのキャリア再結合が低減する 。図 3には、高品質 Siバルタ多結晶における多結晶構造の改良並びにその改良で得 られる効果の予測マップが示されてある。そこにおいて、例えば、(1)結晶粒の成長方 位が同じであれば、均質なテクスチユア形成が容易ということになり、(2)電気的に不 活性な結晶粒界であれば、結晶粒界でのキャリア再結合が低減することになり、(3)粒 内欠陥密度が低いと、単結晶並みの少数キャリア寿命が得られるし、(4)最適な粒子 サイズであれば、高品質な結晶粒内の結晶性となるし、(5)不純物濃度が低いと、同 様に、高品質な結晶粒内の結晶性となり、(6)機械的な強度が強いと、薄板加工、ハ ンドリングが容易となる。
[0022] 本明細書中、出発種結晶として使用する多結晶は、複数の単結晶から形成された もので、好適な場合、意図した結晶の成長する方向の結晶の方位として単一の結晶 方位とされているものが挙げられる。当該多結晶を構成する単結晶の数としては、少 なくとも 3個以上であるもの、少なくとも 4個以上であるもの、少なくとも 5個以上である もの、少なくとも 6個以上であるもの、少なくとも 7個以上であるもの、少なくとも 8個以 上であるもの、少なくとも 9個以上であるもの、少なくとも 10個以上であるものなどが挙 げられる。
当該種結晶としては、結晶成長面に少なくとも 2以上の粒界を有するものが挙げら れる。当該種結晶としては、(1)結晶成長面に少なくとも 3以上の粒界を有するもの、(2 )結晶成長面に少なくとも 4以上の粒界を有するもの、(3)結晶成長面に少なくとも 5以 上の粒界を有するもの、(4)結晶成長面に少なくとも 6以上の粒界を有するもの、(5)結 晶成長面に少なくとも 7以上の粒界を有するもの、(6)結晶成長面に少なくとも 8以上 の粒界を有するものなどが挙げられる。結晶を成長させる起点となる面は、成長させ る結晶面の表面エネルギーを等価にするようにすることが好ましぐ例えば、同一の 結晶面となるように選択される。好適な態様では、結晶成長は、結晶の成長する方向 の結晶の方位として単一の結晶方位とされて、該結晶成長が当該結晶方向に一方 向になされるものである。
本発明は、多結晶材料として太陽電池用結晶、構造材料、磁性材料などの多くの 実用化材料に適用でき、シリコンに限られることなぐ当該分野で利用されている多 結晶材料に広く適用できる。対象多結晶材料は、金属材料、金属間化合物材料、セ ラミックス材料、半導体材料などを含むものであってよぐその含まれる結晶構造も立 方晶構造に限定されることなぐ様々な結晶系に応用できる。
また、本発明における粒界制御手法は、太陽電池用シリコンウェハーなど、それ以 外の他の多結晶材料 (金属、複合材料など)に対しても、適用可能であり、粒界設計 による材料の高機能化という新たな材料科学への展開が期待できる。
本発明の対象結晶系としては、元素周期表の典型金属元素、典型非金属元素、遷 移金属元素を含む如何なるものであってもよぐ所要の目的、作用効果が得られるも のであれば特に限定されない。典型金属元素としては、アルカリ金属元素、アルカリ 土類検束元素、亜鉛族元素、アルミニウム族元素、炭素族元素、窒素族元素などが 挙げられる。典型非金属元素としては、ホウ素元素、炭素族元素、窒素族元素、酸素 族元素、ハロゲン元素などが挙げられる。遷移金属元素としては、希土類元素、チタ ン族元素、土酸金属元素、クロム族元素、マンガン族元素、鉄族元素、白金族元素、 銅族元素、ランタノイド、ァクチノイドなどが挙げられる。代表的な多結晶構成元素と しては、シリコン (Si)、ゲルマニウム (Ge)、炭素(C;ダイヤモンドを含む)、セレン (Se)、テ ルル (Te)、スズ (Sn)などが挙げられる。多結晶は、化合物から構成されることもでき、 例えば、ガリウムヒ素 (GaAs)、ガリウムリン (GaP)、インジウムヒ素 (InAs)、ガリウムアルミ -ゥムヒ素 (GaAlAs)、ガリウムアルミニウムインジウムヒ素 (GaAlInAs)、硫化亜鉛 (ZnS)、 硫ィ匕カドミウム (CdS)、カドミウムセレン (CdSe)、カドミウムテルル (CdTe)、炭化ケィ素 (Si C)、酸化ニッケル (NiO)、酸化銅 (Cu 0)、酸化亜鉛 (ZnO)、酸化スズ (SnO ), A1P、 AlAs
2 2
、 AlSbゝ GaNゝ GaSbゝ InPゝ InSbゝ ZnSeゝ ZnTe、 CdTe、 HgSゝ HgSeゝ HgTeゝ PbSゝ PbSe、 PbTe、 SnTe、 CuGaS 、 CuInS 、 CuGaSe、 AglnS 、 CuInSe、 AglnSe、 CuInTe 、 AglnT
2 2 2 2 2 2 2 e 、 GeSiなどが含まれていてよい。さらに、鉄 (Fe)、コバルト (Co)、ニッケル (Ni)、マン
2
ガン (Mn)、クロム (Cr)、バナジウム (V)、チタン (Ti)、銅 (Cu)、金 (Au)、銀 (Ag)などの金属 (材料)及びその合金 (材料)が含まれて!/、てよ!/、。
本発明で利用する出発材料である種結晶を構成する場合の一例の模式図を図 4 に示す。図 4は、同時に、実施例 1で使用した Siを利用した結晶成長での種結晶の配 置をも説明するものである。図 4で結晶 Aは、(001)単結晶ウェハーをへき開して得ら れた薄板で、一方、結晶 Bは、(111)単結晶ウェハーをへき開して得られた薄板で、該 結晶 A (薄板)と結晶 B (薄板)とを交互に配置 (積層)して、図 4の右側端に示された 種結晶 (粒界はランダム粒界である)を構成する。図 4の例では、上の面が結晶成長 開始面となり、結晶成長方向はく 110〉を使用している。
種結晶となる∑値の高い材料の束ね合わせは、適宜、適切な数のものから構成し てよぐ例えば、短冊状の薄板を貼り合わせたり、直方体、立方体などを碁盤目状に 貼り合わせたり、三角形断面の柱状物を貼り合わせたり、六角形断面の柱状物を貼り 合わせたり、ある!、は複数の多角形断面の柱状物を互!、に組み合わせて貼り合わせ たり、円柱内部に円柱を入れた形など、どのような構成であってもよい。例えば、短冊 状の 8枚を交互に貼り合わせたもの、 3枚の短冊を交互に貼り合わせたもの、あるいは 4以上の短冊、例えば、 4〜20枚の短冊を交互に貼り合わせたもの、碁盤目状、三角 断面の貼り合わせ、円柱内部に円柱を入れた形など、適宜、目的などに応じて構成 してよい。また、一旦貼り合わせた材料は、それを種結晶とした結晶成長に使用する に適した形状 '形態にすることが可能であり、またそうすることが好ましい場合もある。 該形態 (形状を含む)としては、例えば、円形断面あるいはだ円形断面を有する柱状 形態などが挙げられるが、目的の結晶成長が得られるなど所要の目的を達成できる 形態に任意に加工してあってもよい。種結晶を構成するのに用いる単結晶片のサイ ズは任意に設定でき、ミクロンサイズのものから 0.1mmのオーダーのもの、さらには mm のオーダーのもの、あるいはそのディメンジョンの一つのみが cmのオーダーで、他は 0.1mmのオーダーあるいは mmのオーダーのものなどが挙げられる。目的に合わせて その単結晶片のサイズは選択できるし、設定できる。
[0024] ある場合には、種結晶では、目的とする多結晶生成物に比して、相対方位関係が ランダムな粒界エネルギーのより高 ヽ粒界を有するように構成されればよぐ特に特 定の値に、例えば、特定の∑値に制限されるものではない。例えば、種結晶における 結晶の交互配置ある 、は積層の組み合わせとしては、∑値がより大き 、組み合わせ とする場合が挙げられる。すなわち、種結晶である多結晶の∑値 =Xで、生産物であ る多結晶の∑値 =Yの場合、X>Yとなるように選択する。∑値としては、∑5、∑7、 ∑ 9など、さらにはそれよりも高い数値の∑値の場合も挙げられてよいが、∑51、 Σ 59 などという高い数値もあり、そうした高い数値の∑値の場合も含まれてよい。好適には 、粒界エネルギーの第一原理計算結果などを参照にして、粒界エネルギーが大きく 、かつ数度ずれたところで、あまり大きく変化しないようなところを選ぶことができる。さ らに、結晶構造 (対称性)の関係も考慮して、必要に応じて、実験を行うなどして選定 できる。
[0025] 本発明技術での、結晶成長法としては当該分野で知られた方法から適宜選択して 使用できる。結晶成長法としては、帯域溶融法 (Zone Melting), CZ法、フローティング ゾーン (Floating Zone; FZ)法 (浮遊帯溶融法)などが挙げられる力 これには限定さ れない。当該方法に使用される装置は、当該分野で広く知られており、当該公知の 装置カゝら適宜選んで使用することも可能である。一般的には、市販の装置を使用で きる。当該装置は、制御プログラムを搭載又は搭載可能なコンピュータなどにより、そ の動作を制御されているものであってよぐある場合には好ましい場合もある。
結晶成長速度は、所望の目的を達成するように選択でき、例えば、目的結晶成長 の制御因子として使用できる。成長速度は、その速度が遅ければ、種結晶の面を引 き継いだ成長が起こり、成長速度を上げることで、新しい核成長を促すこととなる。具 体的な態様では、結晶成長速度は、通常の場合より速い速度とすることができ、界面 での温度勾配として、過冷却が大きく粒界の性格の変化を誘起するような速度を選 ぶことができ、例えば、 1.0mm/分程度あるいはそれより早い速度とすることができるが 、対象結晶を構成する元素あるいは化合物に応じて選択することができる。成長速度 は、結晶成長の間にわたって一定である必要はなぐ本発明の目的の粒界性格の変 化を達成した後はその速度を遅くして、好まし 、粒界性格を引く継ぐようにすることも できる。ある場合には、結晶成長速度は、 0.3mm/分程度あるいはそれより早い速度、 あるいは 0.4mm/分程度ある 、はそれより早 、速度、また 0.5mm/分程度あるいはそれ より早い速度、あるいは 0.6mm/分程度あるいはそれより早い速度、さらに 0.7mm/分 程度あるいはそれより早い速度、または 0.8mm/分程度あるいはそれより早い速度、あ るいは 0.9mm/分程度あるいはそれより早い速度であってよい。別の例では、結晶成 長速度は、 0.3〜10.0mm/分、あるいは 0.4〜5.0mm/分、また 0.5〜3.0mm/分、あるい は 0.6〜2.5mm/分、さらに 0.7〜2.0mm/分、あるいは 0.8〜1.5mm/分であってよい。上 記成長速度は、結晶成長開始面での結晶成長速度であってよいし、例えば、結晶成 長開始面力 ある程度成長してから、例えば、結晶成長開始面力 約 10〜50mm、あ る場合には約 20〜45mm、又は約 25〜40mm程度成長してから、それよりは遅い速度 にしてもよぐ例えば、 0.25mm/分程度あるいはそれより遅い速度、さら〖こ 0.2mm/分 程度あるいはそれより遅 、速度にすることもできる。
本発明の技術では、出発種結晶の構成、粒界のシグマ値の選択、結晶成長の方 位、結晶成長速度、結晶成長法、結晶成長温度などは、使用結晶材料に応じて、適 宜適した条件を選択でき、そうした選択は、生成物の結晶の性状を EBSP法を使用し て解析しながら行うことができる。
本発明の多結晶材料形成技術を使用することにより、金属材料、金属間化合物、 セラミックス、半導体、高分子材料の結晶界面を制御でき、得られた材料の複合化な どにより、多層膜材料'複合材料を開発したり、微細組織の結晶構造制御により超微 細化を含めてのナノ材料開発、機械部品の微小化に伴う材料性能'信頼性の向上要 求の充足、生体機能 ·適応機能をもった知的材料 (インテリジェント ·マテリアル)の開 発が可能となる。
本発明の技術で、多結晶粒界面をコントロールして材料の脆弱性を制御したり、微 細組織を均一化してその強度を向上せしめたり、さらには、高温変形、超塑性、破壊 現象に関わる力学的性能を有利なものとできる。本発明の技術で、多結晶材料の粒 界破壊に起因した粒界脆性の制御が可能となる。 [0027] 一つの具体的態様では、太陽電池用結晶、太陽電池セルに使用される多結晶シリ コン材料 (シリコンのバルタ結晶)の製造に本発明の多結晶材料形成技術を適用でき 、優れた作用効果が得られる。
該バルタ多結晶シリコンの製造においては、意図的に相対方位関係がランダムな 粒界エネルギーの高 ヽ粒界を有する多結晶を形成し、次に該多結晶を種結晶として 、一方向結晶成長を行い、適切な成長条件の下で、粒界エネルギーの高いランダム 粒界から、粒界エネルギーの低い粒界を形成する。具体的には、種結晶の配置とし て、成長方位が [110]であり側面が [100]である Si結晶と、成長方位が [110]であり側面 力 ¾ 11]である Si結晶をへき開により作製し、それらを交互に積層することによりランダ ム粒界を形成したものを作製する。本作製積層体の結晶面間の∑値は、積層結晶相 互の相対的な方位関係として数度のずれに対しても、粒界エネルギーがあまり変化 せず、大きな値をとると予測される方位関係を用いることが好ましぐそうすることによ り良好な結果を期待できる。各結晶の大きさは、任意の大きさとすることができ、例え ば、幅 4〜30mm、長さ 5〜100mm、厚さ力 .l〜2.0mmであり、これらを交互に 4〜16枚 の積層としたものを用いることができる。代表例では、幅約 8mm、長さ約 50mm、厚さが 約 0.4〜0.5mmであり、これらを交互に 8枚の積層としたものを用いる。貼り合わせた面 のうち、結晶を成長させる起点となる面は、成長させる結晶面の表面エネルギーを等 価にするように選択することが好ましい。該結晶成長起点面は、例えば、本例では [11 0]方位と合せることで、成長する方向の結晶の方位を制御できる。上記のように、貼り 合わせた面のうち、結晶を成長させる起点となる面を、表面エネルギーが等価となる ように設定することで、成長過程における粒界エネルギーの影響を大きくし、粒界ェ ネルギ一の低 、界面を持つ多結晶の成長を促進せしめるようにすることができ、好ま しい。本例では、例えば、結晶成長起点面は [110]と等価にし、表面エネルギーを等 価に設定することにより、成長過程における粒界エネルギーの影響を大きくし、粒界 エネルギーの低 、界面を持つ多結晶の成長を促進せしめるようにして!/ヽる。
[0028] 上記種結晶を使用してのシリコン結晶の成長は、公知の結晶成長法を適用できる 1S 例えば、 FZ法で行うことができる。加熱ソースは、公知の有効な手法であれば特 に制限なく使用できる力 例えば、リング状のタングステンフィラメントからの電子ビー ム、レーザービーム、鏡面を使用した収束光 (ハロゲンランプ光を含む)などが挙げら れる。通常は、上記種結晶の成長起点面を上向きに配置し、その上に原料となる直 径約 4〜30mm、例えば、約 8mmの Si積層多結晶を対向させて配置させる。原料の多 結晶シリコン下部を電子ビームなどの加熱ソースによって溶融させた後、その溶融面 を種結晶上部に接触させ、十分に馴染ませた後に、フィラメントを上部に一定速度で 移動させて成長を行う方法で結晶成長を行う。成長速度などの条件は、上記したよう にして決定でき、代表的には、 0.7〜2.0mm/分、あるいは 0.8〜1.5mm/分であってよく 、例えば、約 1.0mm/分の速度となるように制御して行うことができる。
複数の単結晶から方位関係を測定して切り出した結晶を束ねることにより人工的な 対応粒界を形成した多結晶を作製し、さらに、この結晶を種結晶として、 CZ法により、 その方位を継承するような成長条件下で結晶成長を行う従来技術では、作製される 多結晶の粒界性格の精度は、切り出しの精度により制限され、必ずしも所望の粒界 性格が実現されない。例えば、粒界性格の制御には、相対的な方位関係として 0.01 ° 以内の精度が必要とされる力 現状の切断技術からは、実現が極めて困難である( 種結晶に用いる結晶において、ミクロな結晶面のずれや粒界不整合により、成長した ウェハーの粒界面の粒界エネルギーが高い部分が残り、予想した結晶強度のものが 得られない)。一方、本発明では、界面エネルギーの非常に小さい性質を持つ多結 晶材料を得ることができる。本発明においては、意図的に、所望の粒界の方位関係 力もは、角度が大きくずれた種結晶から成長を開始して、粒界性格が、粒界エネルギ 一の小さ 、ものに変化することを利用して 、るので、切り出しの精度に対する要請は 、 1° 以内でも十分であり、切断精度によらずに、所望の粒界性格を有する多結晶が 実現可能である。太陽電池用シリコン多結晶において、本発明の技術を適用し、成 長方位が [110]であり、側面が [100]である Si結晶と、成長方位が [110]であり、側面が [ 111]である Si結晶を交互に束ねた結晶束 (粒界は面 [100]と面 [111]とが接して形成さ れている)を種結晶として、 Si多結晶の成長を行って、その結果、粒界性格が全てシ ダマ 3およびシグマ 9と!、う粒界エネルギーの小さ 、粒界に変化したものが得られて いることで、その優位性が示される。本発明では、良質な結晶粒界を持つ多結晶体 を得ることができる。 [0030] 本発明で得られるバルタ多結晶シリコンは、原材料のシリコンの確保という課題 (多 結晶シリコンのウェハーを薄くすることが強く求められる)を解決するもので、インゴット からスライスする際の厚みを薄くすることが可能 (従来では、薄くすることで機械的強 度が不足することとなり、加工途中で割れるなどの問題を生じていた)で、コストの低 減に寄与し、粒界力もの破壊の問題の解決に資することができ、優れた電気的性質 を有する粒界を有し (品質が単結晶なみ)、かつ強度が、従来の多結晶よりも強いもの である。よって、インゴットからの、薄板切り出しや、その後のハンドリングが容易となり 、スライス厚さの低減に材料の側面力も寄与できる。力べして、現在、太陽電池産業で 課題となっている将来的な原料の確保の問題を解決し、太陽電池産業の拡大とエネ ルギー問題解決に繋がる。また、本発明における粒界制御手法は、他の多結晶材料 (金属、複合材料など)に対しても、適用可能であり、粒界設計による材料の高機能化 t 、う新たな材料科学への展開が期待できる。
以下に実施例を掲げ、本発明を具体的に説明するが、この実施例は単に本発明の 説明のため、その具体的な態様の参考のために提供されているものである。これらの 例示は本発明の特定の具体的な態様を説明するためのものであるが、本願で開示 する発明の範囲を限定したり、あるいは制限することを表すものではない。本発明で は、本明細書の思想に基づく様々な実施形態が可能であることは理解されるべきで ある。全ての実施例は、他に詳細に記載するもの以外は、標準的な技術を用いて実 施したもの、又は実施することのできるものであり、これは当業者にとり周知で慣用的 なものである。
実施例
[0031] 本実施例おいては、種結晶の配置として、成長方位が [110]であり側面が [100]であ る Si結晶と、成長方位が [110]であり側面が [111]である Si結晶をへき開により作製し、 それらを交互に積層することによりランダム粒界を形成したものを用いた。つまり、側 面の面 [100]と側面の面 [111]とが互いに接して粒界を形成するように貼り合わされて いる。
この面間の∑値は 41。数度のずれに対しても、粒界エネルギーがあまり変化せず、 大きな値をとると予測される方位関係を用いた。各結晶の大きさは、幅 8mm、長さ 50m m、厚さが 0.4から 0.5mmであり、これらを交互に 8枚の積層としたものを用いた。
貼り合わせた面のうち、結晶を成長させる起点となる面は、成長させる結晶面の表 面エネルギーを等価にするように、 [110]方位と合せることで、成長する方向の結晶の 方位を制御している。また、貼り合わせた面のうち、結晶を成長させる起点となる面は
[110]と等価にし、表面エネルギーを等価に設定することにより、成長過程における粒 界ェネルギ一の影響を大きくし、粒界エネルギーの低 、界面を持つ多結晶の成長を 促進せしめるようにしている。
[0032] シリコン結晶の成長は、上記の方法で作製した種結晶を用い、電子線フローテイン グゾーン (Floating Zone; FZ)成長法で行った。加熱ソースは、リング状のタングステン フィラメントからの電子ビームである。上記種結晶の成長起点面を上向きに配置し、 その上に原料となる直径 8mmの Si多結晶を対向させて配置させた。原料の多結晶シ リコン下部を電子ビームによって溶融させた後、その溶融面を種結晶上部に接触さ せ、十分に馴染ませた後に、フィラメントを上部に一定速度で移動させて成長を行う 方法で結晶成長を行った。
成長速度は、 1mm/分の速度となるように制御した。
[0033] 上記の方法で成長させた結晶を、種結晶を貼り合わせた断面が見える方向に切断 した面を、試料の結晶方位の指数を決定することができる EBSP法 (後方散乱電子回 折パターン法: Electron Backscatter Diffraction Pattern)により観察を行った。本発 明の技術で成長せしめて得られた Si結晶の写真を、図 5に示す。その結果、種結晶 付近に置ける成長結晶は、種結晶と同じ方位で成長していることがわ力つた。種結晶 近傍断面の EBSPを、図 6に示す。更に成長が進んだ、種結晶から 20mm程度の付近 においては、本発明の意図する粒界整合のよい結晶成長が開始している。それ以降 の結晶成長においては、粒界エネルギーの低い、互いに整合性のよい方位を持つ 結晶が優先的に成長し、 40mm以降の成長した結晶においては、粒界性格のよい結 晶が支配的に成長した。本発明の技術で成長せしめて得られた Si結晶の縦断面の 方位分布変化をしめす EBSPを、図 7に示す。図 7の左側に示してある Si結晶試料の 長さ(成長方向の長さ)は約 40mmで (粒界は、∑ 3と∑ 9のみとなっている)、その右側 に示してあるほぼ円形の断面積を有する試料の直径は 8mmであり、種結晶力 約 40 mmで輪切りした部位の EBSPを示している。図 7より明らかな如ぐ多結晶であるもの の、∑ 3と∑ 9のみの方位関係のみとなつている。これらの界面は自発的な成長により 形成されたものであり、欠陥などが存在していない。本実施例での結晶成長速度は、 lmm/分である。
[0034] 結晶成長面から 40mmの位置で、成長方向に対して垂直に切断した面の方位の分 布、および粒界性格の分布を調べた(図 8)。その結果、もとの成長面の (110)面は残 存してな!/、が、成長した面の粒界は全て∑ 3および∑ 9と!、う対応粒界になって!/、た。 この結果は、複数の試料で再現されており、本発明技術手法における粒界性格の良 好な多結晶成長が可能であることが明らかである。比較例としての、成長速度 0.2mm /分程度の遅い場合は、成長面は種結晶の成長面を継承して (110)が大半であり、ラ ンダム粒界が残存して 、た。
FZ9及び FZ12は、結晶成長速度約 1.0mm/分での生成 Si結晶試料であり、 FZ13は、 結晶成長速度約 0.2mm/分での生成 Si結晶試料である。
[0035] 図 9には、成長した Si結晶試料の結晶の成長方向の方位分布(図 9左)とそれに垂 直な方位分布(図 9右)についての EBSPを示す。成長方向の分布は、数種類の方位 に限定されている力 それは、種結晶の方位が [110]であり、新たに形成された粒界 が∑ 3であることから幾何学的に説明可能であり、本発明の技術によれば、種結晶の 方位を選定することにより、粒界性格に加えて結晶方位も限定できることが明らかで ある。
図 10の左下の模式図は、機械的強度が極めて高いことが理論的に予測される多 結晶の組織図を示しているものである力 同図の右上では、本発明の技術により形 成された結晶の粒界性格'方位分布を示し、右下は、その模式図を示すものである 力 非常によく似た組織が形成されていることがわかる。粒界性格がすべて対応粒界 であることから、この結晶は太陽電池に加工した場合に優れた特性が得られると予測 でき、更に、機械的強度も優れていることが予測できる。機械的強度が強いと、インゴ ットから薄くスライスして基板ィ匕しても、ハンドリングできることとなり、原料の有効活用 にも貢献できて、且つ、変換効率の面からも改善が期待でき、コスト的にも非常に有 利である。 上記実施例で結晶成長させて得られるシリコン多結晶は、(1)後方散乱電子回折パ ターン法による観察で実質的に欠陥が存在しない、(2)優れた機械的強度、優れた衝 撃抵抗性、インゴットのスライス時での優れた破壊抵抗性、あるいは優れた耐割れ性 を示す、(3)10 cm角のキャストセルにおける変換効率 (太陽光を電気に変換する効率) 18%以上、 19%以上、 20%以上、 21%以上、 22%以上、あるいは 25%以上を与える、 (4)少 なくとも 4以上の結晶相からなるなどで特徴付けられるものとしてよい。
通常の技術常識力 判断すれば、種結晶から結晶を成長させる場合には、遅い成 長速度が有利である。これは、成長する結晶の結晶性や方位を、種結晶の結晶性や 方位を十分に引き継いで成長させることにより、良好な結晶性を持つ結晶を得ること ができるためである。実験により得られた結果でも、結晶成長速度を遅くした場合に は、種結晶の粒界性格をそのまま承継した結晶成長が起こる。このことは、本発明で 目的とする、粒界性格の良好な新しい結晶粒の核生成のためには、従来の常識とは 逆に、成長速度を大きくし、適度な成長速度により、成長の駆動力である過冷却度を つけることが有効であるある 、は必要であることがわかる。粒界性格を変化させるに は、従来とは異なる成長条件で、活性ィ匕エネルギー障壁を乗り越えることの重要性、 あるいは必要性があることが示唆される。
本発明によって得られた良好な粒界性格を持つ多結晶を加工し、種結晶として用 いて結晶成長させることにより、結晶界面に∑値の低いもののみが存在し、欠陥など が非常に少ない多結晶材料を得ることができる。このような多結晶材料は、粒界にお ける未結合手が少な 、ため、粒界のネットワークとして構成されて 、る多結晶材料の マクロな性質においても、電気的活性度が小さいとか、結晶の強度が高いなどの優 れた特性の発現を可能とする。特に太陽電池用のシリコン材料においては、多結晶 材料が多く使われている力 その結晶界面でキャリアが再結合する問題がある。本発 明の技術によれば、これを改良できる。本発明を実施することにより得られる多結晶 シリコン材料においては、従来の多結晶シリコンよりもキャリアの再結合を減少させる ことが可能である。また、単結晶材料では、ウェハーを薄くしたときに取扱いが難しい という問題があるが、本発明技術では得られる材料の機械的な強度を、従来の単結 晶シリコンよりも大きくできる。これにより、ウェハーを薄くしたときに破壊などのプロセ ス中のトラブルを回避できると期待される。
産業上の利用可能性
本発明により、結晶粒界の性質 (粒界性格)分布を制御した多結晶の作製が可能 で、多結晶である太陽電池用結晶、構造材料、磁性材料など多くの実用化材料のマ クロな諸性質を含めた材料の性質を制御することが可能となる。本発明で、意図的に 相対方位関係がランダムな粒界エネルギーの高い粒界を有する多結晶としてものを 種結晶として利用して、結晶成長を一方向に行って、粒界エネルギーの高いランダ ム粒界から、粒界エネルギーの低い粒界を形成せしめるので、例えば、粒界の全て を低シグマ値の対応粒界に揃えることが可能で、形成多結晶材料は、粒界における 未結合手が少な 、ため、粒界のネットワークとして構成されて 、る多結晶材料のマク 口な性質においても、電気的活性度が小さいとか、結晶の強度が高いなどの優れた 特性の発現を期待できる。
本発明は、前述の説明及び実施例に特に記載した以外も、実行できることは明らか である。上述の教示に鑑みて、本発明の多くの改変及び変形が可能であり、従って それらも本件添付の請求の範囲の範囲内のものである。

Claims

請求の範囲 [1] 意図的に相対方位関係がランダムな粒界エネルギーの高 、粒界を有する多結晶を 形成し、次に該多結晶を種結晶として、一方向結晶成長を行い、粒界エネルギーの 高 、ランダム粒界から、粒界エネルギーの低 、粒界を形成することを特徴とする多結 晶材料の製造法。 [2] 種結晶が、結晶成長面に少なくとも 2以上の粒界を有するものであることを特徴とする 請求項 1記載の多結晶材料の製造法。 [3] 種結晶が、(1)結晶成長面に少なくとも 3以上の粒界を有するもの、(2)結晶成長面に 少なくとも 4以上の粒界を有するもの、(3)結晶成長面に少なくとも 5以上の粒界を有 するもの、(4)結晶成長面に少なくとも 6以上の粒界を有するもの、(5)結晶成長面に少 なくとも 7以上の粒界を有するもの、及び (6)結晶成長面に少なくとも 8以上の粒界を 有するもの 力 なる群力 選択されたものであることを特徴とする請求項 1又は 2記載の多結晶 材料の製造法。 [4] 結晶成長が、結晶の成長する方向の結晶の方位として単一の結晶方位とされて、該 結晶成長が当該結晶方向に一方向になされるものであることを特徴とする請求項 1 〜3の!、ずれか一記載の多結晶材料の製造法。 [5] 種結晶が、複数の単結晶から形成された多結晶であり、結晶の成長する方向の結晶 の方位として単一の結晶方位とされており、
(1)多結晶を構成する単結晶の数が、少なくとも 3個以上であるもの、
(2)多結晶を構成する単結晶の数が、少なくとも 4個以上であるもの、
(3)多結晶を構成する単結晶の数が、少なくとも 5個以上であるもの、
(4)多結晶を構成する単結晶の数が、少なくとも 6個以上であるもの、
(5)多結晶を構成する単結晶の数が、少なくとも 7個以上であるもの、
(6)多結晶を構成する単結晶の数が、少なくとも 8個以上であるもの、
(7)多結晶を構成する単結晶の数が、少なくとも 9個以上であるもの、及び
(8)多結晶を構成する単結晶の数が、少なくとも 10個以上であるもの
力 なる群力 選択されたものであることを特徴とする請求項 1〜4のいずれか一記載 の多結晶材料の製造法。
[6] ∑値を高くした結晶界面を有する多結晶を種結晶として用いて、結晶を成長せしめ て、∑値の低 、粒界面を持つ多結晶を得ることを特徴とする請求項 1〜5の 、ずれか 一記載の多結晶材料の製造法。
[7] 多結晶が、シリコン多結晶であることを特徴とする請求項 1〜6のいずれか一記載の 多結晶材料の製造法。
[8] 結晶成長開始面での結晶成長速度が、 0.3mm/分程度あるいはそれより早い速度で あることを特徴とする請求項 1〜7のいずれか一記載の多結晶材料の製造法。
[9] 種結晶の配置として、成長方位が [110]であり側面が [100]である Si結晶と、成長方位 力 ¾ 10]であり側面が [111]である Si結晶を、面 [100]と面 [111]とが接するように交互に 積層することによりランダム粒界を形成したものであることを特徴とする請求項 1〜8の V、ずれか一記載の多結晶材料の製造法。
[10] 請求項 1〜9の 、ずれか一記載の多結晶材料の製造法で得られたシリコン多結晶。
[11] シリコン多結晶であり、該シリコン多結晶の粒界が∑ 3及び Z又は∑ 9のみであること を特徴とするシリコン多結晶。
[12] (1)後方散乱電子回折パターン法による観察で実質的に欠陥が存在しない、
(2)優れた機械的強度、優れた衝撃抵抗性、インゴットのスライス時での優れた破壊抵 抗性、あるいは優れた耐割れ性を示す、
(3) 10 cm角のキャストセルにおける変換効率 18%以上、 19%以上、 20%以上、 21%以上、 22%以上、あるいは 25%以上を与える、及び Z又は、
(4)少なくとも 4以上の結晶相からなる
ことを特徴とする請求項 11記載のシリコン多結晶。
[13] 請求項 10〜12のいずれか一記載のシリコン多結晶より製造された太陽電池。
PCT/JP2006/313275 2005-07-04 2006-07-04 粒界性格制御多結晶の作製方法 WO2007004631A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007524066A JP4887504B2 (ja) 2005-07-04 2006-07-04 粒界性格制御多結晶の作製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-195388 2005-07-04
JP2005195388 2005-07-04

Publications (1)

Publication Number Publication Date
WO2007004631A1 true WO2007004631A1 (ja) 2007-01-11

Family

ID=37604492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313275 WO2007004631A1 (ja) 2005-07-04 2006-07-04 粒界性格制御多結晶の作製方法

Country Status (2)

Country Link
JP (1) JP4887504B2 (ja)
WO (1) WO2007004631A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534189A (ja) * 2007-07-20 2010-11-04 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド シード結晶からキャストシリコンを製造するための方法及び装置
CN102534772A (zh) * 2012-02-28 2012-07-04 江苏协鑫硅材料科技发展有限公司 一种生长大晶粒铸造多晶硅的方法
CN103122478A (zh) * 2011-11-18 2013-05-29 太阳世界创新有限公司 用于制造硅块的方法
WO2016080037A1 (ja) * 2014-11-21 2016-05-26 シャープ株式会社 多結晶シリコンインゴット製造方法、多結晶シリコンインゴットの用途の製造方法及び多結晶シリコンインゴット
WO2021020510A1 (ja) * 2019-07-31 2021-02-04 京セラ株式会社 シリコンのインゴット、シリコンのブロック、シリコンの基板および太陽電池
JP2022003004A (ja) * 2020-06-23 2022-01-11 信越化学工業株式会社 ポリシリコンロッド及びポリシリコンロッド製造方法
US11607733B2 (en) 2019-12-16 2023-03-21 Brown University Bulk grain boundary materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288489A (ja) * 1988-06-13 1990-03-28 Kawasaki Steel Corp 結晶体の製造方法
JP2001504996A (ja) * 1996-12-03 2001-04-10 シーメンス ソーラー ゲゼルシャフト ミット ベシュレンクテル ハフツング 僅かなシェージングを有する太陽電池およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288489A (ja) * 1988-06-13 1990-03-28 Kawasaki Steel Corp 結晶体の製造方法
JP2001504996A (ja) * 1996-12-03 2001-04-10 シーメンス ソーラー ゲゼルシャフト ミット ベシュレンクテル ハフツング 僅かなシェージングを有する太陽電池およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KITAMURA M. ET AL.: "Growth of multi crystalline Si with controlled grain boundary configuration by the floating zone technique", JOURNAL OF CRYSTAL GROWTH, vol. 280, no. 3-4, 1 July 2005 (2005-07-01), pages 419 - 424, XP003008831 *
MARTINELLI G. ET AL.: "Growth of stable discloation-free 3-grain silicon ingots for thinner slicing", APPLIED PHYSICS LETTERS, vol. 62, no. 25, 21 June 1993 (1993-06-21), pages 3262 - 3263, XP000380976 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534189A (ja) * 2007-07-20 2010-11-04 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド シード結晶からキャストシリコンを製造するための方法及び装置
CN103122478A (zh) * 2011-11-18 2013-05-29 太阳世界创新有限公司 用于制造硅块的方法
CN103122478B (zh) * 2011-11-18 2016-02-17 太阳世界创新有限公司 用于制造硅块的方法
CN102534772A (zh) * 2012-02-28 2012-07-04 江苏协鑫硅材料科技发展有限公司 一种生长大晶粒铸造多晶硅的方法
CN102534772B (zh) * 2012-02-28 2014-11-05 江苏协鑫硅材料科技发展有限公司 一种生长大晶粒铸造多晶硅的方法
JP2016098142A (ja) * 2014-11-21 2016-05-30 シャープ株式会社 多結晶シリコンインゴット製造方法、多結晶シリコンインゴットの用途の製造方法及び多結晶シリコンインゴット
WO2016080037A1 (ja) * 2014-11-21 2016-05-26 シャープ株式会社 多結晶シリコンインゴット製造方法、多結晶シリコンインゴットの用途の製造方法及び多結晶シリコンインゴット
CN106794993A (zh) * 2014-11-21 2017-05-31 夏普株式会社 多晶硅锭制造方法、多晶硅锭的用途的制造方法和多晶硅锭
WO2021020510A1 (ja) * 2019-07-31 2021-02-04 京セラ株式会社 シリコンのインゴット、シリコンのブロック、シリコンの基板および太陽電池
JPWO2021020510A1 (ja) * 2019-07-31 2021-02-04
CN114207194A (zh) * 2019-07-31 2022-03-18 京瓷株式会社 硅锭、硅晶块、硅衬底和太阳能电池
JP7329051B2 (ja) 2019-07-31 2023-08-17 京セラ株式会社 シリコンのインゴット、シリコンのブロック、シリコンの基板および太陽電池
CN114207194B (zh) * 2019-07-31 2023-12-22 京瓷株式会社 硅锭、硅晶块、硅衬底和太阳能电池
US11607733B2 (en) 2019-12-16 2023-03-21 Brown University Bulk grain boundary materials
JP2022003004A (ja) * 2020-06-23 2022-01-11 信越化学工業株式会社 ポリシリコンロッド及びポリシリコンロッド製造方法

Also Published As

Publication number Publication date
JP4887504B2 (ja) 2012-02-29
JPWO2007004631A1 (ja) 2009-01-29

Similar Documents

Publication Publication Date Title
JP4887504B2 (ja) 粒界性格制御多結晶の作製方法
TW538548B (en) Process for producing gallium nitride crystal substrate, and gallium nitride crystal substrate
CN101180420B (zh) GaN单晶生长方法、GaN基板制备方法、GaN系元件制备方法以及GaN系元件
US8927392B2 (en) Methods for forming crystalline thin-film photovoltaic structures
US6602760B2 (en) Method of producing a semiconductor layer on a substrate
US20060033160A1 (en) Conductive layer for biaxially oriented semiconductor film growth
US10316431B2 (en) Method of growing group III nitride crystals
Le et al. Growth of single crystal ZnO nanorods on GaN using an aqueous solution method
CN101599466B (zh) 一种外延生长用的图形衬底及其制作方法
US20100270653A1 (en) Crystalline thin-film photovoltaic structures and methods for forming the same
US8956952B2 (en) Multilayer substrate structure and method of manufacturing the same
US20130298985A1 (en) Microelectronic structures including cuprous oxide semiconductors and having improved p-n heterojunctions
Lei et al. Void formation and surface energies in Cu (InGa) Se2
US20130233382A1 (en) Photoelectric conversion device
US20200211841A1 (en) Epitaxial growth substrate, method of manufacturing epitaxial growth substrate, epitaxial substrate, and semiconductor device
CN112490112A (zh) 氧化镓薄膜及其异质外延生长方法与应用
CN101807523A (zh) 在大失配衬底上生长表面无裂纹的GaN薄膜的方法
Martinelli et al. Growth of stable dislocation‐free 3‐grain silicon ingots for thinner slicing
CN107002275B (zh) Iii族氮化物衬底和其制造方法
CN106328774A (zh) 一种GaN薄膜的外延生长方法及应用
Behera et al. Study of quasi-amorphous to nanocrystalline phase transition in thermally evaporated CuInS2 thin films
Kehagias et al. Electron microscopy of InGaN nanopillars spontaneously grown on Si (111) substrates
Belouet et al. Growth of polysilicon sheets on a carbon shaper by the RAD process
RU2208068C1 (ru) Способ получения кристаллов кремния с циклической двойниковой структурой
EP1220330B1 (en) A method of producing a semiconductor layer on a substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007524066

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767806

Country of ref document: EP

Kind code of ref document: A1