WO2006137591A1 - Controller of drive device for vehicle - Google Patents

Controller of drive device for vehicle Download PDF

Info

Publication number
WO2006137591A1
WO2006137591A1 PCT/JP2006/312953 JP2006312953W WO2006137591A1 WO 2006137591 A1 WO2006137591 A1 WO 2006137591A1 JP 2006312953 W JP2006312953 W JP 2006312953W WO 2006137591 A1 WO2006137591 A1 WO 2006137591A1
Authority
WO
WIPO (PCT)
Prior art keywords
differential
engine
state
continuously variable
vehicle
Prior art date
Application number
PCT/JP2006/312953
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Tabata
Atsushi Kamada
Yuji Inoue
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005182675A external-priority patent/JP4244966B2/en
Priority claimed from JP2005185738A external-priority patent/JP4723931B2/en
Priority claimed from JP2005184438A external-priority patent/JP4274158B2/en
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US11/993,257 priority Critical patent/US8038571B2/en
Priority to DE112006001718.7T priority patent/DE112006001718B4/en
Priority to CN2006800305249A priority patent/CN101242979B/en
Publication of WO2006137591A1 publication Critical patent/WO2006137591A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/62Gearings having three or more central gears
    • F16H3/66Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/10Controlling shift hysteresis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/463Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0043Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising four forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0047Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising five forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2007Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with two sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/201Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with three sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2012Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with four sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2046Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with six engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2048Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with seven engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • F16H3/728Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path with means to change ratio in the mechanical gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/686Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with orbital gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle drive device including a differential mechanism capable of operating a differential action and an electric motor, and more particularly to a technique for miniaturizing an electric motor and the like.
  • a vehicle drive device that includes a differential mechanism that distributes engine output to a first motor and an output shaft, and a second motor provided between the output shaft of the differential mechanism and a drive wheel is known.
  • the differential mechanism is composed of, for example, a planetary gear device, and the main part of the power from the engine is mechanically transmitted to the drive wheels by the differential action, and the power from the engine is transmitted.
  • the remaining portion is electrically transmitted using an electric path from the first motor to the first motor, thereby functioning as a transmission in which the gear ratio is continuously changed, for example, functioning as an electric continuously variable transmission. Therefore, the fuel consumption is improved by being controlled by the control device so that the vehicle travels while maintaining the engine in an optimum operating state.
  • Patent Document 1 Japanese Laid-Open Patent Publication No. 2 0 0 3-1 2 7 6 7 9
  • Patent Document 2 Japanese Patent Laid-Open No. 2 00 1-3 3 9 8 0 5
  • Patent Document 3 Japanese Laid-Open Patent Publication No. 2 0 3-3 0 1 7 3 1
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2000-089
  • Patent Document 5 Japanese Patent Laid-Open No. 2 0 0 4-2 7 0 6 7 9
  • a continuously variable transmission is known as a device that improves the fuel consumption of a vehicle
  • a gear like a stepped automatic transmission Is known as a device with good transmission efficiency Yes.
  • a power transmission mechanism that combines these advantages.
  • the electric path of the electric energy from the first electric motor to the second electric motor that is, transmission in which a part of the driving force of the vehicle is transmitted by the electric energy.
  • the first electric motor must be enlarged as the engine output increases, and the second electric motor driven by the electric energy output from the first electric motor must be enlarged.
  • a differential mechanism (electrical) is used in order to reduce the required capacity of the second motor and reduce the size of the second motor when a high drive torque is required.
  • a stepped transmission is provided in a power transmission path between an output member of a continuous variable transmission) and a drive wheel.
  • the output of the driving force source is transmitted to the drive wheels through one transmission mechanism of an electric continuously variable transmission and a stepped transmission, and each shift of each of the transmissions is changed. Based on the ratio, the overall transmission ratio of the drive is formed.
  • a low vehicle speed side gear ratio (a single gear) is set, which has a relatively large gear ratio compared to when running on a flat road.
  • the second motor when driving downhill, the second motor is operated as a generator to convert the vehicle's kinetic energy into electrical energy and collect it in the power storage device, and regenerative braking is performed by the power generation resistance of the first motor.
  • the necessary driving force source brake can be obtained.
  • the second electric motor is operated as a generator during deceleration traveling to convert the kinetic energy of the vehicle into electric energy and collect it in the power storage device.
  • the amount of regeneration is increased by stopping the fuel supply to the engine and reducing the engine drag by setting the engine rotation speed to zero or substantially zero.
  • the regenerative amount cannot be increased due to full charge of the power storage device, etc., there is a possibility that the target deceleration set by the driver or the specified operating conditions may not be obtained.
  • Patent Document 4 discloses a vehicle equipped with an in-cylinder pressure change suppression cylinder number variable engine.
  • Patent Document 5 describes that, during regeneration, the engine compression ratio is lowered by changing the volume of the combustion chamber, thereby reducing the engine friction (drag) torque and improving the regeneration efficiency of the motor. Techniques to do this are disclosed.
  • the engine's bow I drag torque also varies depending on the engine speed, and the engine drag torque may be further reduced as the engine speed decreases. Then, when the regenerative amount by the motor is reduced and the uniform regeneration amount is set at the time of decelerating driving according to the engine state where the drag torque of the engine is large, in other words, according to the direction where the regeneration amount by the motor decreases, the large regeneration amount Even in the engine state where the above can be obtained, the amount of regeneration could not be increased and the fuel cost could be bad.
  • the regeneration amount is increased when the regeneration is uniformly performed by the electric motor during the reduced speed traveling. There are seven possibilities that fuel consumption may be poor.
  • the present invention has been made against the background of the above circumstances.
  • the first object of the present invention is to provide a differential mechanism that distributes engine output to the first motor and the transmission member, and from the transmission member to the drive wheel.
  • a control device for a vehicle drive device comprising: an electric continuously variable transmission portion having a second electric motor provided in a power transmission path of the vehicle; and a transmission constituting a part of the power transmission route. It is an object of the present invention to provide a control device that can reduce the size of the vehicle and / or improve fuel efficiency and prevent busy shift.
  • the second object of the present invention is to provide a differential mechanism capable of operating a differential action for distributing the engine output to the first electric motor and the output shaft, and from the differential mechanism to the drive wheel.
  • the drive device can be reduced in size, or fuel efficiency can be improved, and deceleration control performance during deceleration traveling can be improved. It is to provide a control device.
  • the third object of the present invention is to provide a differential mechanism capable of operating a differential action that distributes engine output to the first electric motor and the output shaft, and power from the differential mechanism to the drive wheels.
  • a vehicle drive device including a second electric motor provided in a transmission path.
  • a control device that can downsize the drive device or improve fuel consumption and improve fuel consumption during deceleration traveling. There is to do. -Disclosure of the invention
  • the gist of the invention according to claim 1 or 2 is that: (a) the differential output for distributing the engine output to the first motor and the transmission member and the power transmission path from the transmission member to the drive wheel; A vehicle drive device comprising: a continuously variable transmission that has a second electric motor provided and that can operate as an electric continuously variable transmission; and a transmission that forms part of the power transmission path. (B) a continuously variable transmission state provided in the differential mechanism and capable of operating the continuously variable transmission unit with an electric continuously variable transmission; A differential state switching device for selectively switching to a continuously variable transmission state that does not operate; and (c) when a large vehicle driving force or driving force source brake is required as compared with a predetermined vehicle traveling time.
  • An overall transmission ratio formed by the continuously variable transmission unit and the transmission unit (D) a required vehicle drive when the overall speed ratio is set to a low vehicle speed side compared to a predetermined vehicle travel time by the speed change control unit; If the force or driving force source brake cannot be obtained, or if the load torque of the first electric motor and / or the second electric motor is not within an allowable range, the continuously variable transmission unit is moved from the continuously variable transmission state. And switching control means for switching to the continuously variable transmission state.
  • the continuously variable transmission unit in the vehicle drive device is provided by the differential state switching device.
  • the continuously variable transmission portion when the continuously variable transmission portion is set to a continuously variable transmission state in the normal output range of the engine where the vehicle is traveling at low and medium speeds and low and medium power, the fuel consumption performance of the vehicle is ensured.
  • the continuously variable transmission when the continuously variable transmission is in a continuously variable transmission state at high speeds, the engine output is transmitted to the drive wheels exclusively through a mechanical power transmission path, and the gear ratio is changed electrically. Since the conversion loss between the power and electric energy generated when operating as a machine is suppressed, fuel efficiency is improved.
  • the continuously variable transmission when the continuously variable transmission is set to a continuously variable transmission state during high-power traveling, the region where the continuously variable transmission is operated as a transmission whose gear ratio can be changed electrically is low and medium. In the output running, the electric energy that the motor should generate, in other words, the maximum value of the electric energy transmitted by the motor can be reduced, so that the motor or the drive device of the vehicle including the motor can be further downsized.
  • the vehicle driving force or ⁇ is when the driving force source brake is required, and when the overall speed ratio is set to the lower vehicle speed side compared to when the vehicle is traveling by the shift control means, the necessary vehicle driving force or driving force source
  • the continuously variable transmission unit is changed from the continuously variable transmission state to the continuously variable by the switching control means. Since it is switched to the shifting state, it is no longer necessary for the first motor to handle the reaction torque according to the engine output torque (hereinafter referred to as the engine torque), so it is large regardless of the torque capacity of the first motor.
  • Njintoruku obtain the required driving force obtained is generated.
  • engine braking torque can be generated according to the vehicle speed and the overall gear ratio, and the necessary driving force source brake can be achieved without increasing the regenerative torque by the first motor. Is obtained. That is, the first motor and The load torque of the second motor does not exceed the allowable range, and a large vehicle driving force or driving force source brake can be obtained as compared to when the vehicle is traveling, and busy shift is prevented.
  • the time when a large vehicle driving force or driving force source brake is required as compared with the predetermined vehicle traveling time is when traveling on an uphill road or traveling on a downhill road. In this way, when traveling on an uphill road or traveling on a downhill road, the required vehicle driving force or level can be obtained as a driving force source brake.
  • the gist of the invention according to claim 4 is that: (a) a differential mechanism that distributes engine output to the first motor and the transmission member, and a power transmission path from the transmission member to the drive wheels; A control device for a vehicle drive device having a continuously variable transmission that can be operated as an electrical continuously variable transmission with the first electric motor, and (b) provided in the differential mechanism A differential limiting device for limiting the operation of the continuously variable transmission as an electric continuously variable transmission by limiting the differential action of the differential mechanism; and (c) an engine brake during deceleration traveling And an engine brake control means for limiting the differential action of the differential mechanism.
  • the continuously variable transmission in the vehicle drive unit is put into a differential state in which the differential action of the differential mechanism is not limited by the differential limiter.
  • the electric continuously variable transmission can be operated, or the differential action of the differential mechanism is limited by the differential limiting device. Therefore, for example, the differential mechanism does not perform its differential action. Since it can be in a step shifting state, there is a drive unit that has both the advantages of improving the fuel efficiency of a transmission whose gear ratio is electrically changed and the high transmission efficiency of a gear transmission that mechanically transmits power. can get.
  • the continuously variable transmission when the continuously variable transmission is set to a continuously variable speed in the normal output range of the engine where the vehicle is traveling at low and medium speeds and low and medium power, the fuel efficiency of the vehicle is ensured.
  • the continuously variable transmission when the continuously variable transmission is set to a continuously variable transmission state at high speeds, the engine output is transmitted to the drive wheels exclusively through a mechanical power transmission path, and the gear is electrically shifted. Since the conversion loss between the motive power and the electric energy that is generated when the transmission is operated as a transmission in which the ratio is changed is suppressed, fuel efficiency is improved.
  • the region to be operated as a transmission in which the gear ratio is electrically changed is the vehicle's low / medium-speed traveling and low / medium output.
  • the electric energy that the electric motor should generate in other words, the maximum value of the electric energy transmitted by the electric motor can be reduced, so that the electric motor or the drive device of the vehicle including it can be further downsized.
  • the engine torque is obtained by the engine brake. Since the differential action of the differential mechanism is limited by the brake control means, the braking torque can be increased. Therefore, the range in which the deceleration can be controlled is expanded, and the deceleration control performance during deceleration traveling is improved. For example, since the braking torque of the vehicle can be obtained by the engine brake torque in addition to the regenerative torque by the second motor, the range in which the deceleration can be controlled is widened, and the deceleration control performance during deceleration traveling is improved. To do. In other words, the braking torque can be adjusted by the regenerative torque and the engine braking torque, so the deceleration control performance during deceleration is improved.
  • the engine brake control means sets the differential mechanism of the continuously variable transmission portion to a non-differential state during deceleration traveling. In this way, the engine's rotational speed is constrained by the vehicle speed, so that the engine brake torque can be obtained quickly and a large deceleration can be obtained quickly. For example, when combined with regenerative torque from the second motor, a large deceleration can be obtained quickly.
  • the engine brake control means changes the amount of restriction by the differential limiting device during the deceleration traveling.
  • the continuously variable transmission portion can be in a state between a continuously variable transmission state in which the continuously variable transmission unit can operate as an electrical continuously variable transmission and a non-continuously variable transmission state in which the electrical continuously variable transmission does not operate. From the engine speed of the engine can be between approximately zero and the rotational speed restrained by the vehicle speed, the engine brake torque can be adjusted in the range of the engine speed, and the deceleration control performance during deceleration traveling is improves.
  • the engine can perform an in-cylinder pressure change suppressing operation, and the engine brake control means changes an in-cylinder pressure change suppressing amount of the engine during deceleration traveling. It is something to be made. In this way, even if the engine speed is the same, the rotational resistance can be changed and the engine brake torque can be changed. Therefore, the deceleration control performance during deceleration traveling is further improved.
  • an engine brake is used depending on whether or not regeneration can be performed by the second electric motor so that a target deceleration of the vehicle can be obtained during deceleration traveling.
  • the engine further comprises a target deceleration control means for determining a braking torque, and the engine brake control means limits the differential action of the differential mechanism so that the braking torque by the engine brake can be obtained. .
  • braking by regeneration can be given top priority in consideration of energy efficiency, and when the target deceleration cannot be achieved by regeneration alone or the regeneration amount is suppressed and the target deceleration cannot be achieved, It is possible to obtain braking torque by engine braking. Therefore, the deceleration control performance during deceleration is improved.
  • the gist of the invention according to claim 9 is that: (a) a differential mechanism that distributes engine output to the first motor and the transmission member, and a power transmission path from the transmission member to the drive wheels; A control device for a vehicle drive device provided with a differential unit having a second electric motor, and (b) provided in the differential mechanism, and limiting the differential action of the differential mechanism. A differential limiting device for limiting the differential action of the differential part; and (c) engine brake control for limiting the differential action of the differential part in order to obtain a braking torque by the engine brake during traveling. Means.
  • the differential part in the vehicle drive device is brought into a differential state in which the differential action of the differential mechanism is not restricted by the differential restriction device.
  • the differential action can be activated, or the differential action is limited by limiting the differential action of the differential mechanism by the differential limiting device. Since the mechanism can be in a non-differential state where the differential action does not operate, for example, a non-differential state where the differential action does not operate, such as a locked state, the speed change ratio can be changed electrically. Gear type transmission that mechanically transmits power A driving device having both advantages of high transmission efficiency of the moving device is obtained.
  • the differential portion when the differential portion is brought into a differential state in the normal output range of the engine where the vehicle is driven at low to medium speed and low to medium output, fuel efficiency of the vehicle is ensured.
  • the differential unit when the differential unit is in a non-differential state during high-speed driving, the engine output is transmitted to the drive wheels exclusively through a mechanical power transmission path, and the gear ratio is electrically changed. Because the conversion loss between the power and electric energy that is generated when operating as an electric vehicle is suppressed, fuel efficiency is improved.
  • the differential part if the differential part is set to a non-differential state in high output running, the region operated as a transmission in which the gear ratio is electrically changed becomes low and medium output running of the vehicle.
  • the electric energy to be generated by the electric motor in other words, the maximum value of the electric energy transmitted by the electric motor can be reduced, the motor or the vehicle including the motor can be further miniaturized.
  • the difference between the differential portions is set by the engine brake control means. Since the operation is limited, the braking torque can be increased. Therefore, the range in which deceleration can be controlled is expanded, and the deceleration control performance during deceleration is improved. For example, since the braking torque of the vehicle can be obtained by the engine braking torque in addition to the regenerative torque by the second motor, the range in which the dredging speed can be controlled is widened and the deceleration control performance during deceleration traveling is improved. In other words, since the braking torque can be adjusted by the regenerative torque and the engine brake torque, the control performance of deceleration during deceleration is improved.
  • the engine brake control means sets the differential portion to a non-differential state that does not perform a differential action during deceleration traveling. In this way, since the engine speed is constrained by the vehicle speed, the engine brake torque can be obtained quickly and a large deceleration can be obtained quickly. For example, when combined with the regenerative torque from the second motor, a large deceleration can be obtained quickly.
  • the engine brake control means changes the limit amount by the differential limiting device during the deceleration traveling. In this way, the differential part is capable of operating the differential action and the differential action does not work.
  • the engine rotational speed can be between approximately zero and the rotational speed constrained to the vehicle speed, so the engine brake torque within the engine rotational speed range. Can be adjusted to improve the deceleration control performance during deceleration. .
  • the engine can perform in-cylinder pressure change suppression operation, and the engine brake control unit changes the in-cylinder pressure change suppression amount during deceleration traveling. Is. In this way, even if the engine speed is the same, the rotational resistance can be changed and the engine brake torque can be changed. Thus, the deceleration control performance during deceleration traveling is further improved.
  • the braking torque by the engine brake is determined depending on whether or not the motor can be regenerated so that the target deceleration of the vehicle can be obtained during deceleration.
  • Target deceleration control means for determining the engine braking speed, and the engine brake control means limits the differential action of the differential section so that the braking torque by the engine brake can be obtained. In this way, braking by regeneration can be given top priority in consideration of energy efficiency, and when the target deceleration cannot be achieved by regeneration alone or the regeneration amount is suppressed and the target deceleration cannot be achieved, It is possible to obtain braking torque by engine braking. Therefore, the deceleration control performance during deceleration is improved.
  • the gist of the invention according to claim 14 is that: (a) a differential mechanism that distributes engine output to the first motor and the transmission member, and a power transmission path from the transmission member to the drive wheels; A control device for a vehicle drive device including a differential unit having a second electric motor, wherein: (b) the differential unit is provided in the differential mechanism, and the differential unit operates differentially.
  • a differential state switching device for selectively switching between a state and a non-differential state that does not perform its differential action, and (c) based on whether or not the differential unit is in a differential state during deceleration traveling, And regenerative control means for changing the regenerative amount.
  • the differential unit is selectively switched between the differential state in which the differential action can be activated by the differential state switching device and the non-differential state in which the differential action is not activated, for example, the locked state.
  • the fuel efficiency of the transmission can be changed electrically.
  • a drive device having both the advantages of the effect and the high transmission efficiency of a gear transmission that mechanically transmits power can be obtained.
  • the differential portion when the differential portion is brought into a differential state in the normal output range of the engine where the vehicle is driven at low to medium speed and low to medium output, fuel efficiency of the vehicle is ensured.
  • the differential unit when the differential unit is in a non-differential state during high-speed running, the engine output is transmitted to the drive wheels exclusively through a mechanical power transmission path, and the gear ratio is electrically changed. Because the conversion loss between the power and electric energy that is generated when operating as an electric vehicle is suppressed, fuel efficiency is improved.
  • the differential unit when the differential unit is set to a non-differential state in high-power driving, the region that operates as a transmission in which the gear ratio is electrically changed is low-medium-speed driving and low-medium power driving. Since the electric energy to be generated by the electric motor, in other words, the maximum value of the electric energy transmitted by the electric motor can be reduced, the electric motor or the driving device of the vehicle including the electric motor can be further downsized.
  • the regeneration amount is changed by the regeneration control means, so that regeneration is performed with the regeneration amount corresponding to the drag torque of the engine, that is, the engine rotation speed can be made substantially zero by the differential action regardless of the vehicle speed.
  • Regeneration is performed with a regenerative amount that depends on the differential state and the non-differential state where the engine drag speed is constrained by the vehicle speed and the engine drag torque may be larger than the differential state.
  • the amount of regeneration is increased and fuel efficiency is improved compared to the case where regeneration is performed with a regeneration amount that is uniformly set according to the non-differential state where the drag torque of the engine may increase.
  • the regeneration control means increases the amount of regeneration when the differential section is in a differential state as compared to when the differential portion is in a non-differential state. In this way, in the differential state of the differential section, the engine speed can be reduced by the differential operation compared to the non-differential state, so that the regeneration is performed with a larger regeneration amount at the same vehicle speed during deceleration traveling. Can improve the fuel efficiency of the vehicle.
  • the engine is capable of in-cylinder pressure reduction control
  • the regeneration control means is configured such that the engine performs in-cylinder pressure reduction control.
  • the regenerative amount is changed based on the in-cylinder pressure reduction control amount.
  • regeneration is performed with the regeneration amount corresponding to the in-cylinder pressure reduction control amount during the in-cylinder pressure reduction control in which the drag torque of the engine can be changed even if the rotational speed of the engine is the same.
  • the amount of regeneration increases compared to the case where regeneration is performed at a uniformly set regeneration amount according to the state in which the in-cylinder pressure reduction control amount that may increase the drag torque of the engine is reduced. And fuel efficiency is improved.
  • the regeneration control means changes the regeneration amount based on whether or not the fuel supply to the self engine is stopped.
  • the regenerative operation is performed according to the state in which the fuel is supplied so that the engine does not rotate and the engine drag torque is not generated, and the state in which the fuel that may generate the engine drag torque is stopped.
  • Regeneration is performed compared to the case where regeneration is performed at a regenerative amount that is uniformly set in accordance with, for example, a state where the supply of fuel that may cause drag torque of the engine is stopped. The amount increases and fuel economy improves.
  • the continuously variable transmission unit or the differential unit is electrically operated by causing the differential mechanism to be in a differential state in which a differential action works by the differential state switching device or the differential limiting device.
  • a non-differential state in which the differential mechanism does not perform the differential action for example, in the mouth-lock state
  • the differential action is limited.
  • a continuously variable transmission state in which a continuously variable transmission does not operate for example, a stepped transmission state is set, so that the operation as an electric continuously variable speed changer is limited.
  • the continuously variable transmission unit can be switched between the continuously variable transmission state and the continuously variable transmission state.
  • the differential unit is switched between a differential state and a non-differential state.
  • the differential unit is in a differential state in which a differential action can be activated by the differential limiting device being in a differential state in which the differential mechanism is used for differential operation.
  • the non-differential state in which the dynamic mechanism does not perform the differential action for example, the mouth-lock state, and the differential action is limited, and the differential action is not activated. ⁇ is restricted.
  • the differential section can be switched between the differential state and the non-differential state.
  • the differential mechanism includes a first element coupled to the engine, a second element coupled to the first electric motor, and a third element coupled to the transmission member.
  • the differential state switching device or the differential limiting device enables the first to third elements to rotate relative to each other in order to place the differential mechanism in a differential state. At least the second element and the third element can be rotated at different speeds in order to obtain a moving state. In addition, the differential state switching device does not allow at least the second element and the third element to rotate at different speeds in order to place the differential mechanism in a non-differential state, for example, a mouth-locking state. In order to set a non-differential state, for example, a mouth-locking state, the first to third elements are rotated together or the second element is set to a non-rotating state. In this way, the differential rod is configured to be switched between a differential state and a non-differential state.
  • the differential state switching device or the differential limiting device has at least one of the first to third elements to integrally rotate the first to third elements together. It is provided with a brake for connecting the second element to the non-rotating member in order to bring the second element and the non-rotating state into the interconnecting clutch and / or the second element. In this way, the differential mechanism can be easily switched between the differential state and the non-differential state.
  • the differential mechanism is in a differential state in which at least the second element and the third element can be rotated at different speeds by releasing the clutch and the brake.
  • the transmission is a transmission having a gear ratio of 1 by engagement of the clutch, or a speed-up transmission having a gear ratio of less than 1 by engagement of the brake.
  • the differential mechanism can be configured to be switched between a differential state and a non-differential state, and can also be configured as a transmission having a single gear or a plurality of gears.
  • the differential mechanism motion is a planetary gear unit
  • the first element is a carrier of the planetary gear unit
  • the second element is a sun gear of the planetary gear unit
  • the third element The element is the ring gear of the planetary gear set.
  • the differential mechanism has one planetary gear It can be easily configured by the device.
  • the planetary gear device is a single pinion type planetary gear device.
  • the differential mechanism is easily configured by a single pinion type planetary gear unit.
  • the transmission unit further comprises a transmission unit that constitutes a part of a power transmission path from the transmission member to the drive wheel, and the transmission unit is based on the transmission ratio of the continuously variable transmission unit and the transmission unit.
  • the overall gear ratio of the drive device is formed. In this way, a wide range of driving force can be obtained by utilizing the gear ratio of the variable speed portion. This further increases the efficiency of the continuously variable transmission control in the continuously variable transmission unit.
  • the speed change ratio formed in the transmission unit is a reduction transmission greater than 1
  • the output torque of the second motor may be a low torque output with respect to the output shaft of the transmission unit. 2
  • the electric motor can be miniaturized.
  • the apparatus further comprises a transmission that forms part of a power transmission path from the transmission member to the drive wheel, and the drive based on the transmission ratio of the differential section and the transmission ratio of the transmission section.
  • the overall gear ratio of the device is formed. In this way, a wide driving force can be obtained by utilizing the speed change ratio of the transmission unit.
  • the speed reduction gear formed in the transmission unit is a reduction transmission greater than 1, the output torque of the second motor may be a low torque output with respect to the output shaft of the transmission unit.
  • Motivation can be miniaturized.
  • the continuously variable transmission unit and the transmission unit form a continuously variable transmission.
  • the continuously variable transmission unit of the continuously variable transmission state the continuously variable transmission unit and the transmission unit A stepped transmission can be configured.
  • the transmission unit is a stepped automatic transmission.
  • the continuously variable transmission unit and the transmission unit constitute a continuously variable transmission
  • a stepped transmission can be configured by the transmission unit and the transmission unit.
  • a continuously variable transmission is configured by the differential unit and the transmission unit
  • a stepped transmission is performed by the differential unit and the transmission unit.
  • a machine can be configured.
  • the overall gear ratio can be changed step by step with the shift of the transmission unit, the overall gear ratio can be changed continuously. And can be changed quickly. Therefore, the drive device can function as a continuously variable transmission to smoothly change the drive torque, and it is also possible to obtain the drive torque quickly by changing the gear ratio stepwise.
  • FIG. 1 is a skeleton diagram illustrating a configuration of a drive device for a hybrid vehicle according to an embodiment of the present invention.
  • FIG. 2 is an operation for explaining the relationship between the speed change operation and the operation of the hydraulic friction engagement device used in the case where the drive device of the hybrid vehicle of FIG. 1 is operated continuously or stepwise. It is a chart. '
  • FIG. 3 is a collinear diagram illustrating the relative rotational speeds of the respective gear stages when the drive device for the hybrid vehicle of the embodiment of FIG.
  • FIG. 4 is a diagram for explaining input / output signals of the electronic control unit provided in the driving apparatus of the embodiment of FIG.
  • FIG. 5 is a functional block diagram illustrating the main part of the control operation of the electronic control device of FIG.
  • Fig. 6 shows an example of a pre-stored shift diagram that is based on the same two-dimensional coordinates with the vehicle speed and output torque as parameters, and that is used as a basis for determining the shift of the automatic transmission unit.
  • An example of a pre-stored switching diagram that is a basis for determining whether to switch the state, and a pre-stored driving force having a boundary line between the engine traveling region and the motor traveling region for switching between engine traveling and motor traveling It is a figure which shows an example of a source switching diagram, Comprising: It is also a figure which shows each relationship.
  • the broken line is the optimum fuel efficiency curve of engine 8 and is an example of the fuel efficiency map. It is also a diagram for explaining the difference between engine operation with a continuously variable transmission (dashed line) and engine operation with a stepped transmission (dashed line).
  • FIG. 8 is a diagram showing a pre-stored relationship having a boundary line between the stepless control region and the stepped control region, and the boundary between the stepless control region and the stepped control region indicated by the broken line in FIG. It is also a conceptual diagram for mapping '.
  • FIG. 9 is an example of a change in engine speed accompanying an upshift in a stepped transmission.
  • FIG. 10 is a shift diagram used at the time of uphill / downhill in which each shift line is changed to the high vehicle speed side as compared with the shift diagram used at the time of predetermined traveling shown in FIG.
  • Figure 11 shows an example of a data map for setting the target deceleration using the vehicle speed as a parameter.
  • Figure 12 shows an example of the relationship between the target deceleration and the required braking torque for calculating the required braking torque to achieve the target deceleration.
  • FIG. 13 is an example of a shift state manual selection device that is a seesaw type switch as a switching device and is operated by a user to select a shift state.
  • FIG. 14 is a flowchart for explaining the control operation of the electronic control device of FIG. 4, that is, the control operation when the shift map is switched depending on whether the vehicle is traveling on a flat road or an uphill / downhill road.
  • FIG. 15 is a skeleton diagram for explaining the configuration 5 of the drive device for a hybrid vehicle in another embodiment of the present invention, and corresponds to FIG.
  • FIG. 16 shows the relationship between the shift operation when the drive device of the hybrid vehicle of the embodiment of Fig. 15 is stepless or stepped and the operation of the hydraulic friction engagement device used therefor.
  • FIG. 2 is an operation chart for explaining the above, corresponding to FIG. 1;
  • FIG. 17 is a collinear diagram for explaining the relative rotational speeds of the respective gear stages when the drive device for the hybrid vehicle of the embodiment of FIG.
  • FIG. 1 A first figure.
  • FIG. 18 is a functional block diagram for explaining another example of the main part of the control function of the electronic control unit of FIG. ⁇
  • Figure 19 shows an example of a data map for target deceleration with the vehicle speed as a parameter.
  • FIG. 20 is a slide-type deceleration setting device operated to set the deceleration by the user.
  • Figure 21 shows an example of the relationship between the target deceleration and the required braking torque for calculating the required braking torque to achieve the target deceleration.
  • FIG. 22 shows an example of the relationship between the engagement hydraulic pressure of the switching clutch and the engine brake torque for calculating the engagement hydraulic pressure of the switching clutch so that the necessary engine brake torque can be obtained.
  • FIG. 23 is a flowchart for explaining the control operation of the electronic control device of the embodiment of FIG. 18, that is, the control operation for controlling the deceleration during the deceleration traveling.
  • Fig. 24 is a time chart for explaining the control operation shown in the flow chart of Fig. 23, showing the control operation when the engine braking torque is generated in addition to the regenerative torque to achieve the target deceleration. Yes.
  • FIG. 25 is a functional block diagram for explaining another example of the main part of the control function of the electronic control unit of FIG. 4, and corresponds to FIG.
  • FIG. 26 is a functional block diagram for explaining another example of the main part of the control function of the electronic control unit of FIG.
  • FIG. 27 is an example of a shift operation device operated to select a plurality of types of shift positions having a shift lever.
  • Fig. 28 is a diagram showing the state of the differential section during deceleration traveling on the nomograph.
  • (A) shows the case where the differential section is in a continuously variable transmission state due to the engagement (locking) of the switching clutch, and
  • (b ') shows the fuel force force in the continuously variable transmission state of the differential section. This is the case when the engine is stopped and the first motor is idling.
  • Figure 29 shows an example of the relationship (map) between the preset vehicle speed and the regenerative amount.
  • a solid line A is a relationship used for setting the regeneration amount when the differential unit is in a continuously variable transmission state, that is, a stepped regeneration amount map A.
  • the solid line B is the relationship used for setting the regeneration amount R when the differential section is in a continuously variable speed state, that is, the continuously variable regeneration amount map B.
  • FIG. 30 is a flow chart for explaining the control operation of the electronic control device of the embodiment of FIG. 26, that is, the control operation for setting the amount of regeneration during deceleration traveling.
  • FIG. 31 is a functional block for explaining another example of the main part of the control function of the electronic control unit of FIG.
  • FIG. 6 is a lock diagram corresponding to FIG. 5, FIG. 26, and the like. Explanation of symbols
  • Switching control means engine brake control means
  • Hybrid control means (regenerative control means)
  • FIG. 1 is a skeleton diagram illustrating a speed change mechanism 10 constituting a part of a drive device of a hybrid vehicle to which a control device according to an embodiment of the present invention is applied.
  • a speed change mechanism 10 is a transmission case 12 as a non-rotating member attached to a vehicle body (hereinafter referred to as case 12) as an input rotating member disposed on a common axis.
  • Input shaft 14 and this input shaft 14 directly or directly
  • the differential part 11 as a continuously variable transmission part indirectly connected via a dynamic absorption damper (vibration damping device), etc., and the power transmission path between the differential part 11 and the drive wheels 3 8
  • an automatic transmission unit 20 that functions as a stepped transmission as a transmission unit connected in series via a transmission member (transmission shaft) 18, and is connected to the automatic transmission unit 20.
  • the output shaft 22 as an output rotating member is provided in series.
  • the speed change mechanism 10 is suitable for use in, for example, an FR (front engine / rear drive) type vehicle installed vertically in a vehicle, and is directly connected to the input shaft 14 or via a pulsation absorbing damper (not shown).
  • an engine 8 which is an internal combustion engine such as a gasoline engine or a diesel engine and a pair of driving wheels 3 8 (see FIG. 5) are provided. Is transmitted to a pair of drive wheels 38 via a differential gear device (final reduction gear) 36 and a pair of axles which constitute a part of the power transmission path.
  • the engine 8 and the differential section 11 are directly connected.
  • This direct connection means that the torque converter is connected without using a fluid transmission device such as a full force pulling ring.
  • a fluid transmission device such as a full force pulling ring.
  • the connection via the pulsation absorbing damper is included in this direct connection. Since the transmission mechanism 10 is configured symmetrically with respect to its axis, the lower side is omitted in the skeleton diagram of FIG. The same applies to the following examples.
  • the differential unit 1 1 is a mechanical mechanism that mechanically distributes the output of the engine 8 input to the first motor M 1 and the input shaft 14, and outputs the output of the engine 8 to the first motor M l.
  • a power distribution mechanism 16 as a differential mechanism that distributes to the transmission member 18, and a second electric motor M 2 provided to rotate integrally with the transmission member 18.
  • the first electric motor M 2 may be provided in any part constituting the power transmission path between the transmission member 18 and the drive wheels 38.
  • the first electric motor M l and the second electric motor M 2 of this embodiment are so-called motor generators that also have a power generation function, but the first electric motor M l has at least a generator (power generation) function for generating a reaction force.
  • the second electric motor M 2 has at least a motor (electric motor) function for outputting driving force as a driving force source for traveling. ',.
  • the power distribution mechanism 16 is mainly composed of a single pinion type first planetary gear unit 24 having a predetermined gear ratio 1 of, for example, “0.4 18”, a switching clutch C 0 and a switching brake BQ. Is prepared.
  • the first planetary gear unit 24 is composed of a first sun gear S 1, a first planetary gear P 1, a first carrier CA 1 that supports the first planetary gear P 1 so that it can rotate and revolve, and a first planetary gear 1.
  • a first ring gear R 1 that meshes with the first sun gear S 1 via the gear P 1 is provided as a rotating element (element).
  • the gear ratio p 1 is ZS 1 / ZR 1.
  • the first carrier CA 1 is connected to the input shaft 14, that is, the engine 8
  • the first sun gear S 1 is connected to the first electric motor M 1
  • the first ring gear R 1 is transmitted.
  • member 1 8 Connected to member 1 8.
  • the switching brake B0 is provided between the first sun gear S1 and the case 12, and the switching clutch C0 is provided between the first sun gear S1 and the first carrier CA1.
  • the power distribution mechanism 16 is divided into the first sun gear S 1 and the first carrier which are the three elements of the first planetary gear unit 2 4.
  • the differential action can be activated, that is, the differential action is activated, so the output of the engine 8 is the first motor. It is distributed to M 1 and the transmission member 1 8, and the part of the output of the distributed engine 8 is stored by the electric energy generated from the first motor M 1 or the second motor M 2 is rotated. Since it is driven, the differential unit 1 1 (power distribution mechanism 16) is caused to function as an electrical differential device. For example, the differential unit 11 is in a so-called continuously variable transmission state (electrical CVT state). Therefore, the rotation of the transmission member 1 8 is linked regardless of the predetermined rotation of the engine 8. To be varied.
  • the differential unit 1 1 when the power distribution mechanism 16 is in the differential state, the differential unit 1 1 is also in the differential state, and the differential unit 1 1 has its transmission ratio 0 (the rotational speed 4 / A continuously variable transmission state that functions as an electric continuously variable transmission in which the rotational speed N 1 8 ) of the transmission member 18 is continuously changed from the minimum value O min to the maximum value O max is set. ,
  • the power distribution mechanism 16 does not perform the differential action, that is, enters a non-differential state where the differential action is not possible.
  • the switching clutch C 0 is engaged and the first sun gear S 1 and the first carrier CA 1 are integrally connected
  • the power distribution mechanism 16 is connected to the first planetary gear device 2 4.
  • the differential section 1 1 is also in a non-differential state.
  • transmission member rotation speed N 1 8 since the rotation of the engine 8 and the rotation speed of the transmission member 18 (hereinafter referred to as transmission member rotation speed N 1 8 ) coincide with each other, the differential section 1 1 (power distribution mechanism 16) has a gear ratio ratio.
  • a non-continuously variable transmission state that functions as a transmission in which 0 is fixed to “1”, for example, a constant transmission state, that is, a stepped transmission state.
  • the differential state 1 1 is also set to the non-differential state because 1 is set to the non-rotating state, that is, the non-differential state where the self-differential action is not performed. Further, since the first ring gear R 1 is rotated at a higher speed than the first carrier C A 1, the power distribution mechanism 16 functions as a speed increase mechanism, and the differential section 1 1 (power distribution mechanism 1
  • 6) is a non-continuously variable speed state that functions as a speed increasing transmission in which the gear ratio 0 is fixed to a value smaller than “1”, for example, about 7, for example, a constant speed state, that is, a stepped speed state.
  • the switching clutch C 0 and the switching brake B 0 change the shift state of the differential portion 11 (power distribution mechanism 16) to the differential state, that is, the non-plugged state (non-coupled state).
  • State a non-differential state, that is, a locked state (connected state), that is, a peristaltic state in which the differential unit 1 1 (power distribution mechanism 1 6) can be operated as an electrical differential device.
  • a continuously variable transmission state that can operate as an electric continuously variable transmission that can be changed, and a continuously variable transmission state that does not operate an electrical continuously variable transmission, such as an electric continuously variable transmission.
  • An electric continuously variable transmission that operates as a transmission of several speeds, that is, an electrical continuously variable speed change operation (non-differential state) incapable of shifting operation, in other words, a single speed stage or a plurality of speed stages with a constant gear ratio It functions as a differential state switching device that selectively switches to a constant transmission state that operates as a transmission.
  • the switching clutch CO and the switching brake B 0 are configured so that the differential portion 11 is not operated by limiting the differential action of the power distributing mechanism 16 by setting the power distributing mechanism 16 to a non-differential state. It functions as a differential limiting device that restricts the operation of the differential section 11 as an electrical differential device in a continuously variable transmission state, that is, restricts the operation as an electrical continuously variable transmission. Further, the switching clutch CO and the switching brake B 0 are configured so that the differential portion 11 is set to a continuously variable transmission state by restricting the differential action of the power distributing mechanism 16 by setting the power distribution mechanism 16 to a differential state. The operation of the moving part 1 1 as an electric differential device is not restricted, that is, the operation as an electric continuously variable transmission is not restricted.
  • the automatic transmission unit 20 includes a single pinion type second planetary gear unit 26, a single pinion type third planetary gear unit 28, and a single pinion type fourth planetary gear unit 30. It functions as a transmission.
  • the second planetary gear unit 26 includes a second sun gear S 2, a second planetary gear F 2, a second carrier CA 2 that supports the second planetary gear F 2 so as to rotate and revolve, and a second planetary gear P 2. And a second ring gear R 2 that meshes with the second sun gear S 2, and has a predetermined gear ratio 2 of, for example, “0.5 6 2”.
  • the third planetary gear unit 28 is composed of a third sun gear S3, a third planetary gear P3, a third carrier CA3 that supports the third planetary gear F3 so that it can rotate and revolve, and a third planetary gear F3. And a third ring gear R 3 that meshes with the third sun gear S 3 via a shaft, and has a predetermined gear ratio ⁇ 3, for example, about “0.4 2 5”.
  • the fourth planetary gear unit 30 includes a fourth sun gear S4, a fourth planetary gear ⁇ 4, a fourth carrier CA4 that supports the fourth planetary gear ⁇ 4 so that it can rotate and revolve, and a fourth planetary gear.
  • a fourth ring gear R 4 that engages with the fourth sun gear S 4 via F 4 is provided, and has a predetermined gear ratio 4 of about “0.4 2 1”, for example.
  • the number of teeth of the second sun gear S 2 is ZS 2
  • the number of teeth of the second ring gear R 2 is ZR 2
  • the number of teeth of the third sun gear S 3 is ZS 3
  • the number of teeth of the third ring gear R 3 is ZR 3
  • 4 Sun gear S 4 Number of teeth Is ZS 4 and the number of teeth of the 4th ring gear R 4.
  • the gear ratio p 2 is ZS 2 / ZR 2.
  • the gear ratio 3 is ZS 3 / ZR3
  • the gear ratio 4 is ZS 4 / ZR 4 It is. '
  • the second sun gear S 2 and the third sun gear S 3 are integrally connected and selectively connected to the transmission member 18 via the second clutch C 2 and the first brake
  • the second carrier CA2 is selectively connected to the case 12 via the second brake B2
  • the fourth ring gear R4 is connected to the third brake B3.
  • the first ring gear R 2 and the third carrier CA3 and the fourth carrier CA4 are connected to the output shaft 22 and connected to the output shaft 22 and the third ring gear R 3
  • Four sun gears S 4 are integrally connected and selectively connected to the transmission member 1.8 via the first clutch C 1.
  • the automatic transmission unit 20 and the differential unit 11 are provided with the first clutch C1 or the second clutch C2 used to establish the shift stage of the automatic transmission unit 20.
  • the first clutch C 1 and the second clutch C 2 provide a power transmission path from the differential unit 11 to the automatic transmission unit 20, in other words, from the differential unit 11 to the drive wheel.
  • An engagement device that selectively switches the power transmission path to 8 between a power transmission enabling state that enables power transmission on the power transmission path and a power transmission cutoff state that interrupts power transmission on the power transmission path. Is functioning. That is, when at least one of the first clutch C 1 and the second clutch C 2 is engaged, the power transmission path becomes a power transmission enabled state, or the first clutch C 1 and the second clutch C 2 Is released, the power transmission path is in a power transmission cut-off state.
  • the automatic transmission unit 20 is a stepped transmission in which clutch-to-clutch shift is executed by releasing the disengagement side engagement device and engaging the engagement side engagement device.
  • the switching clutch C 0, the first clutch C 1, the second clutch C 2, the switching brake B 0, the first brake BK, the second brake B 2, and the third brake B 3 (hereinafter referred to as the clutch unless otherwise specified) C and brake B) are hydraulic frictional engagement devices as engagement elements that are often used in conventional automatic transmissions for vehicles, and a plurality of friction plates stacked on top of each other are hydraulically actuated. Humidity pressed by evening On both sides where a multi-plate type or one or two bands wound around the outer surface of a rotating drum are composed of a band brake that is tightened by a hydraulic actuate Is to selectively connect the two.
  • the power distribution mechanism 16 is provided with the switching clutch C 0 and the switching brake B 0, and the switching clutch C 0 and the switching brake B 0 are provided.
  • the differential unit 11 can operate as a transmission with a constant speed ratio in addition to the above-described continuously variable transmission state that can operate as a continuously variable transmission. It is possible to configure a continuously variable transmission state (constant transmission state). Therefore, in the speed change mechanism 10, the stepped transmission is made up of the differential portion 11 and the automatic speed change portion 20 that are brought into a constant speed change state by engaging and operating either the switching clutch CO or the switching brake B 0.
  • the differential section 11 and the automatic transmission section 20 that are set to the continuously variable transmission state by engaging neither the switching clutch C 0 nor the switching brake B 0 are electrically connected to each other.
  • a continuously variable transmission state operating as a typical continuously variable transmission is configured.
  • the gear shift 10 is switched to the stepped shift state by engaging and operating either the switching clutch C 0 or the switching brake B 0, and both the switching clutch C 0 and the switching brake B 0 are engaged. Switching to the continuously variable transmission state is possible by not operating them together.
  • the differential unit 11 can also be said to be a transmission that can be switched between a stepped transmission state and a continuously variable transmission state.
  • the peristaltic portion 11 when the peristaltic portion 11 is set to a continuously variable transmission state and the transmission mechanism 10 functions as a stepped transmission, either the switching clutch C 0 or the switching brake B 0 is engaged.
  • the first clutch C 1, the second clutch C 2, the first brake B 1, the second brake B 1, and the third brake B 3 are selectively engaged and operated, that is, automatic transmission
  • the engagement device involved in the gear shift of the part 20 for example, the engagement of the release-side hydraulic friction engagement device (hereinafter referred to as the release-side engagement device) involved in the gear shift and the gear change.
  • the speed change mechanism 10 functions as a stepped transmission
  • the first speed gear stage in which the transmission gear ratio 1 is the maximum value, for example, about “3.35 7” is established, and the switching clutch C 0, the first glatch C 1, and the second brake speed are established.
  • the second gear which is about 1800, is established, and the gear ratio 3 is greater than the second gear because of the engagement of the switching clutch CO, the first clutch C1, and the first brake B1.
  • the third gear which is a small value, for example, “1.4 2 4”, is established, and the gear ratio is changed by engaging the switching clutch C 0, the first clutch C 1, and the second clutch C 2.
  • 15 r 4 is smaller than the third speed gear stage, for example, about “1.0 00”, the fourth speed gear stage is established, and the first clutch C, the second clutch C 2, and the switching brake
  • both the switching clutch C 0 and the switching brake B 0 are released and the differential unit 1 1 functions as a continuously variable transmission, and the automatic transmission unit 2 0 in series with the differential unit 1 1
  • the rotational speed input to the automatic transmission unit 20 with respect to at least one shift stage M of the automatic transmission unit 20 (hereinafter referred to as the automatic transmission unit 20).
  • the input rotational speed N IN ), that is, the transmission member rotational speed N! 8 is changed steplessly, and a stepless speed ratio width is obtained at the gear stage M. Therefore, the total transmission ratio 7 T of the transmission mechanism 10 can be obtained steplessly.
  • the switching clutch C 0 and the switching brake B 0 are both released as shown in the engagement operation table of FIG. 1st speed, 2nd speed, 3rd speed, 4th speed of automatic transmission section 20 (the engagement operation of the engagement device of automatic transmission section 20 at 5th speed is the same as that of 4th speed)
  • the input rotational speed N IN of the automatic transmission unit 20 is changed steplessly, and a stepless speed ratio range is obtained for each gear stage. Accordingly, the gear ratio between the gear stages can be continuously changed continuously, and the total gear ratio T as the entire transmission mechanism 10 can be obtained continuously.
  • FIG. 3 shows a transmission mechanism composed of a differential unit 11 that functions as a continuously variable transmission unit or a first transmission unit and an automatic transmission unit 20 that functions as a transmission unit (stepped transmission unit) or a second transmission unit.
  • a collinear chart is shown in which the relative relationship between the rotational speeds of the rotating elements having different coupling states for each gear stage can be represented on a straight line.
  • This collinear diagram in Fig. 3 is a two-dimensional model consisting of a horizontal axis indicating the relationship of the gear ratio p of each planetary gear set 24, 26, 28, 30 and a vertical axis indicating the relative rotational speed.
  • the lower horizontal line X 1 indicates the rotational speed zero
  • the upper horizontal line X 2 indicates the rotational speed “1.0”, that is, the engine 8 connected to the input shaft 14.
  • the rotational speed N E is shown
  • the horizontal line XG shows the transmission member rotational speed N 18 .
  • the three vertical lines Y1, Y2, Y3 corresponding to the three elements of the power distribution mechanism 16 constituting the differential section 1 1 are the second rotation element (first element) RE in order from the left side.
  • R 1 the relative rotational speed of R 1
  • the five vertical lines Y4, Y5, Y6, Y7, Y8 of the automatic transmission unit 20 correspond to the fourth rotating element (fourth element) RE4 in order from the left.
  • the distance between the sun gear and the carrier corresponds to “1”
  • the distance between the carrier and the ring gear corresponds to the gear ratio of the planetary gear device. That is, in the differential section 1 1, the interval between the vertical lines Y 1 and ⁇ 2 is set to an interval corresponding to “1”, and the interval between the vertical lines ⁇ 2 and ⁇ 3 corresponds to the gear ratio (1).
  • the interval to be In the automatic transmission unit 20 an interval corresponding to “1” is set between the sun gear and the carrier every second, third, and fourth planetary gear devices 26, 28, and 30. Is set to the interval corresponding to ⁇ > between the ring gear and the ring gear.
  • the speed change mechanism 10 of the present embodiment is the first rotation of the first planetary gear device 24 in the power distribution mechanism 16 (differential portion 11).
  • the element R ⁇ 1 (first carrier CA 1) is connected to the input shaft 14, that is, the engine 8, and selectively connected to the second rotating element (first sun gear S 1) RE 2 via the switching clutch C 0.
  • the first rotating element R ⁇ 2 is connected to the first electric motor ⁇ 1 and is selectively connected to the case 1 2 via the switching brake ⁇ 0, and the third rotating element (first ring gear R 1 ) RE 3 is connected to transmission member 18 and second electric motor ⁇ 2 and is configured to transmit (input) rotation of input shaft 14 to automatic transmission unit 20 through transmission member 18.
  • the relationship between the rotational speed of the first sun gear S 1 and the rotational speed of the first ring gear R 1 is indicated by an oblique obstacle line L 0 passing through the intersection of ⁇ 2 and X 2.
  • the switching clutch C 0 and the switching brake ⁇ 0 are released, the first rotation element R ⁇ 1 to the third rotation element R ⁇ 3 are allowed to rotate relative to each other (differential state),
  • at least the second rotating element R ⁇ 2 and the third rotating element R ⁇ 3 can be switched to a continuously variable transmission state (differential state) that can rotate at different speeds.
  • the power distribution mechanism 16 rotates the three rotation elements RE 1, RE 2, and RE 3 together. At least the second rotating element RE 2 and the third rotating element RE 3
  • the first ring gear rotational speed that the transmitting member rotational speed 8 of R 1 represented by 'intersection, is input to the automatic shifting portion 2 0 in a rotation speed higher than the engine speed N E.
  • the fourth rotating element R E 4 is passed through the second clutch C 2.
  • the eighth rotating element RE 8 is selectively connected to the transmission member 18 via the first clutch C 1.
  • the rotation speed of the output shaft 22 of the 2nd speed is shown at the intersection with the line Y7, and the diagonal straight line 3 and the output determined by the engagement of the 1st clutch C1 and the 1st brake B1
  • the rotation speed of the output shaft 22 of the third speed is shown at the intersection with the vertical line Y 7 indicating the rotation speed of the seventh rotation element RE 7 connected to the shaft 2 2, and the first clutch C 1 and the second clutch
  • the output of the fourth speed is at the intersection of the horizontal straight line L 4 determined by the engagement with the latch C 2 and the vertical line Y 7 indicating the rotational speed of the seventh rotating element RE 7 connected to the output shaft 2 2.
  • the rotational speed of the force shaft 2 2 is shown.
  • the differential unit 1 1 i.e. the power distribution unit to the eighth rotary element RE 8 at the same rotational speed as the engine rotation speed N E.
  • Power from structure 1 6 is input. Since however, the switching brake B 0 in place of the switching clutch C 0 is engaged, power from the differential part 1 1 is input at a higher speed than the engine rotational speed N E, the first clutch C 1, second clutch C 2, and horizontal straight line L 5 determined by engagement of switching brake B 0 and vertical line indicating the rotational speed of the seventh rotating element R- ⁇ ⁇ ⁇ 7 connected to the output shaft The rotation speed of output shaft 2 at the 5th speed is shown at the intersection with ⁇ 7.
  • FIG. 4 exemplifies a signal input to the electronic control unit 40 for controlling the speed change mechanism 10 of this embodiment and a signal output from the electronic control unit 40.
  • This electronic control unit 40 is configured to include a so-called microcomputer that includes a CPU, a ROM. RAM, and an input / output interface, etc., while using the RAM's temporary storage function. Executes drive control such as hybrid drive control for engine 8, first and second motors Ml and M2 and shift control for automatic transmission unit 20 by performing signal processing according to a program stored in advance in M To do.
  • the electronic control device 40 includes a signal indicating the engine water temperature TEMF W , a signal indicating the 'shift position P SH ', an engine from each sensor switch as shown in FIG.
  • a signal indicating the engine speed N E which is the rotational speed of 8
  • a signal indicating the gear ratio set value a signal for instructing the M mode (manual transmission mode)
  • a signal indicating the operation of the air conditioner output shaft 2 2 Rotational speed of ⁇ .
  • a signal representing the vehicle speed V corresponding to ⁇ the hydraulic oil temperature T of the automatic transmission 20.
  • Signal indicating IL signal indicating side brake operation, signal indicating foot brake operation, signal indicating catalyst temperature, signal indicating accelerator opening Acc, which is the amount of accelerator pedal operation corresponding to the driver's required output, cam Signal representing angle, signal representing snow mode setting, signal representing longitudinal acceleration G of the vehicle, signal representing auto-cruising, signal representing vehicle weight (vehicle weight), signal representing wheel speed of each wheel, speed change
  • 1 Electric motor M 1 represents the rotation speed N M 1 (hereinafter referred to as the first motor rotation speed N M 1 ), and represents the rotation speed N M 2 of the second motor M 2 (hereinafter referred to as the second motor rotation speed N M 2 ).
  • a signal, a signal indicating the charge capacity (charge state) SOC of the power storage device 60 (see FIG. 5), etc. are supplied.
  • the electronic control device 40 controls the control signal to the engine output control device 43 (see FIG. 5) for controlling the engine output, for example, the electronic throttle valve 9 6 provided in the intake pipe 95 of the engine 8. Throttle valve to operate the throttle valve opening 0 TH .
  • FIG. 5 is a functional block diagram for explaining the main part of the control function by the electronic control unit 40.
  • a stepped gear shift control means (stepped gear shift control unit) 5 4 is, for example, a shift line diagram (relationships) indicated by a solid line and a one-dot chain line in FIG. From the shift map) From the vehicle speed V and the required output torque of the automatic transmission section 20
  • a command (engagement output command, hydraulic command) for engaging and / or releasing the involved hydraulic friction engagement device that is, a disengagement engagement device involved in the shift of the automatic transmission unit 20
  • a command to execute a clutch-to-clutch shift by releasing and engaging the engagement side engagement device is output to the hydraulic control circuit 42.
  • the hydraulic control circuit 42 releases, for example, the disengagement-side engagement device involved in the shift, and engages the engagement-side engagement device related to the shift.
  • the solenoid valve in the hydraulic control circuit 42 is operated so that the clutch-to-clutch shift is executed, and the hydraulic actuator of the hydraulic friction engagement device involved in the shift is operated.
  • the hybrid control means (hyperid control section) 52 functions as a continuously variable transmission control means.
  • the engine 8 is operated in a continuously variable transmission state of the transmission mechanism 10, that is, in a differential 5 state of the differential section 11. While operating in an efficient operating range, the differential force is changed by optimizing the distribution of the driving force between the engine 8 and the second motor ⁇ 2 and the reaction force generated by the power generation of the first motor ⁇ 1.
  • Controls gear ratio 0 as an electrical continuously variable transmission. For example, at the current traveling vehicle speed, the Calculate the target (required) output of the vehicle from the accelerator opening Acc and the vehicle speed V, calculate the required total target output from the target output of the vehicle and the required charging value, and obtain the desired torque target output.
  • the target engine output is calculated taking into account the transmission loss, auxiliary load, assist torque of the second motor M2, and so on, so that the engine rotational speed N E and engine torque T E can be obtained.
  • the engine 8 is controlled and the power generation amount of the first motor M 1 is controlled.
  • the hybrid control means 52 performs the control in consideration of the gear position of the automatic transmission unit 20 in order to improve the power and the fuel efficiency.
  • the engine rotational speed NE determined to operate the engine 8 in the operating range with efficiency and the transmission section ⁇ rotational speed N, 8 determined by the speed of the vehicle linkage V and the automatic transmission section 20 are determined.
  • the differential section 1 1 is made to function as an electric continuously variable transmission.
  • the hybrid control means 52 is capable of driving performance and fuel efficiency when running at continuously variable speed within the two-dimensional coordinates consisting of the engine speed N E and the output torque (engine torque) T E of the engine 8.
  • engine 8 along the optimum fuel efficiency curve (fuel cost map, relationship) of engine 8 as shown by the broken line in FIG.
  • engine speed T E and engine speed N E to generate the engine output necessary to satisfy the target output (total target output, required driving force).
  • the gear ratio T can be changed. Control is performed within a change range, for example, within a range of 13 to 0.5.
  • the hybrid control means 52 supplies the electric energy generated by the first electric motor M 1 to the power storage device 60 and the second electric motor M 2 through the inverter 58, so that the power of the engine 8 is The main part is mechanically transmitted to the transmission member 1 8, but a part of the motive power of the engine 8 is consumed for the power generation of the first motor M 1, where it is converted into electric energy, and through the inverter 5 8
  • the electric energy is supplied to the second electric motor M 2, and the second electric motor M 2 is driven and transmitted from the second electric motor M 2 to the ⁇ reaching member 18. From the generation of this electrical energy to consumption by the I motor ⁇ 2
  • the related equipment constitutes an electrical path from converting a part of the power of the engine 8 into electric energy and converting the electric energy into mechanical energy.
  • the hybrid control means 52 can control the first motor rotation speed N M 1 and / or the second motor rotation speed N M 2 by the electric CVT function of the differential section 1 1 regardless of whether the vehicle is stopped or traveling.
  • the hybrid control means 52 while maintaining the engine speed N E substantially constant or controlling it to an arbitrary speed, controls the first motor speed N M 1 and / or the second motor speed N M 2 .
  • Rotation can be controlled at any rotational speed. ⁇
  • the hybrid control means 5 2 rotates the second motor that is restrained by the vehicle speed V (drive wheel 3 8).
  • the first motor rotation speed N M 1 is increased while maintaining the speed N M 2 substantially constant.
  • the hybrid control means 52 is configured to maintain the engine speed N E substantially constant while maintaining the engine speed N E substantially constant.
  • the first motor rotation speed N M 1 is changed in the opposite direction to the change in the second motor rotation speed N M 2 due to the speed change.
  • the hybrid control means 52 controls the opening and closing of the electronic throttle valve 96 by means of a throttle actuator 9 7 for throttle control, and the fuel injection by the fuel injection device 98 for fuel injection control.
  • the engine output control device 4 3 outputs the command to control the ignition timing by the ignition device such as the igniter for controlling the ignition timing and the ignition timing for controlling the ignition timing.
  • Engine output control means for executing output control of the engine 8 or an engine output control unit is functionally provided so as to generate the engine.
  • the hybrid control means 52 basically drives the throttle actuator 60 based on the accelerator opening Acc from a pre-stored relationship (not shown), and the throttle opening increases as the accelerator opening Acc increases. Throttle control is executed to increase the valve opening ⁇ .
  • this engine output control device 43 is controlled by a throttle actuator 9 7 to control the electronic throttle according to the command from the hybrid control means 52.
  • the fuel injection by the fuel injection device 98 is controlled for fuel injection control
  • the ignition timing by the ignition device 99 such as an igniter is controlled for ignition timing control. Execute engine torque control.
  • the hybrid control means 52 can drive the motor by the electric C V T function (differential action) of the differential section 1, regardless of whether the engine 8 is stopped or in an idle state.
  • the solid line ⁇ in FIG. 6 indicates that the driving force source for starting / running the vehicle (hereinafter referred to as running) is switched between the engine 8 and the electric motor, for example, the second electric motor M 2, in other words, the engine.
  • running the driving force source for starting / running the vehicle
  • the second electric motor M 2 in other words, the engine.
  • This is the boundary line between the engine travel area and the motor travel area.
  • FIG. 5 is an example of a driving force source switching diagram (driving force source map) composed of two-dimensional coordinates in which the vehicle speed V and the output torque ⁇ ⁇ which is a driving force related value are parameters.
  • This driving force source switching diagram is stored in advance in the storage means 56 together with, for example, a shift diagram (shift map) indicated by a solid line and a one-dot chain line in FIG.
  • the hybrid control means 52 determines whether the motor travel region or the engine travel region is based on the vehicle state indicated by the vehicle speed V and the required output torque TOUT from the driving force source switching diagram of FIG. Judgment is made and motor running or engine running 'is executed.
  • the engine running by the hybrid control means 52 is generally considered to have poor engine efficiency compared to the high torque range. It is executed in the torque Te region or in a relatively low vehicle speed range of the vehicle speed V, that is, a low load range. Therefore, usually mode Isseki start is executed in preference to E engine starting.
  • the required output torque T Omikuron'upushirontau That request engine exceeds the motor drive region of the drive power source switching diagram of Fig. 6 when the car rain starting engine start by the vehicle state such as a large Akuserupedaru enough to be a torque T E is depressing are intended to be normally performed.
  • the engine is stopped.
  • the electric motor CVT function (differential action) of the differential section 1 1 is used to control the first motor speed N M 1 at a negative speed.
  • the engine speed N E is maintained at zero or substantially zero as required by the differential action of the differential section 11.
  • the hybrid control means 52 can supply the electric energy from the first electric motor M1 and / or the electric energy from the power storage device 6.0 by the electric path described above to the second electric motor even in the engine traveling region.
  • a so-called torque assist is possible to assist the power of the engine 8 by supplying the torque to the drive wheels 38 by supplying the torque to the drive wheels 38 by supplying the second motor M 2 to the M 2. Therefore, the engine traveling of this embodiment includes engine traveling and motor traveling.
  • the torque assist by the second electric motor M 2 may be performed so as to increase the output torque of the first electric motor M 2 when the motor is running.
  • the hybrid control means 52 can maintain the operation state of the engine 8 by the electric CVT function of the differential section 11 regardless of whether the vehicle is stopped or in a low vehicle speed state. For example, if the charging capacity S0 C of the power storage device 60 decreases when the vehicle is stopped and power generation by the first motor M 1 is necessary, the first motor M 1 generates power using the power of the engine 8. Even if the rotation speed of the first motor M 1 is increased and the second motor rotation speed N M 2, which is uniquely determined by the vehicle speed V, becomes zero (substantially zero) due to the vehicle stop state, the power distribution mechanism 1 6 Due to the differential action of the engine, the engine speed N E is maintained at a speed higher than the speed at which it can autonomously rotate.
  • the hybrid control means 52 cuts off the drive current to the first electric motor M 1 supplied from the power storage device 60 via the inverter 58 and puts the first electric motor M 1 into a no-load state.
  • the first motor M 1 is allowed to freely rotate, that is, to idle, and the differential unit 1 1 cannot transmit torque, that is, the power transmission path in the differential unit 1 1 It is equivalent to the shut-off state, and the output from the differential unit 1 1 is not generated ⁇ ! It is considered to be a dog.
  • the hybrid control means 52 is an electric motor control means that places the differential motor 11 in a neutral state (neutral state) in which the power transmission path is electrically interrupted by placing the first motor M1 in a no-load state. Or it functions as an electric motor control part.
  • the hybrid control means 52 rotates and drives the second electric motor M2 by the kinetic energy of the vehicle, that is, the reverse driving force transmitted from the drive wheels 38 to the engine 8 side when the vehicle is decelerated or braked with the accelerator off.
  • Regenerative brake control means or regenerative brake that performs so-called regenerative braking in which the electric energy, that is, the second motor generated current I M 2 G is charged to the power storage device 60 through the inverter 58. Functions as a key control unit.
  • Acceleration-side gear stage determination means (Acceleration-side gear stage determination unit) 6 2 engages either the switching clutch C 0 or the switching brake B 0 when the transmission mechanism 10 is set to the stepped transmission state.
  • the step shift control means 5 4 ′ is the speed increasing side gear stage, for example, the fifth speed gear stage.
  • the hybrid control means 52 suppresses the occurrence of a bombing loss due to dragging (rotational resistance) of the engine 8 that is stopped when the vehicle is decelerated while the accelerator is off, thereby reducing the braking force (deceleration) accordingly.
  • 'Switching control means (switching control unit) 50 is configured to switch the engagement / release of the engagement device (switching clutch C 0, switching brake B 0) on the basis of the vehicle state. And the stepped shift state, that is, the differential state and the lock state are selectively switched.
  • the switching control means 50 is indicated by the vehicle speed V and the required output torque T OUT from the switching diagram (switching map, relationship) indicated by the broken line and the two-dot chain line in FIG.
  • the shift state to be switched of the transmission structure ⁇ 0 (differential unit 1 1) is determined, that is, within the continuously variable control region where the shift I »1 0 is set to the continuously variable shift state, or It is determined whether the speed change mechanism 10 is within a stepped control region where the stepped speed change state is set, and the speed change mechanism 10 is Selectively switch between the state and the stepped shift state.
  • the switching control means 50 switches the differential section 11 to the non-stepless speed change state by switching the engagement / release of the switching clutch C 0 or the switching brake B 0. It functions as a differential limiting means or differential control unit that limits the operation as a typical differential device, that is, restricts the operation as an electric continuously variable transmission.
  • the stepped shift control means 54 performs the automatic shift control of the automatic transmission unit 20 according to the shift diagram shown in FIG. 6, for example, stored in advance in the storage means 56.
  • FIG. 1 stored in advance in the storage means 56 is the hydraulic friction engagement device selected in the speed change at this time, that is, C 0, C 1, C 2, B 0, B 1, B 2, B 3.
  • the combination of operation is shown. That is, the entire speed change mechanism 10, that is, the differential part 11 and the automatic speed change part 20 function as a so-called stepped automatic transmission, and the speed stage is achieved according to the engagement table shown in FIG. 2. .
  • the switching control means 50 releases the switching clutch C 0 and switches so that the differential section 11 can function as a sub-transmission with a fixed transmission ratio 0, for example, a transmission ratio 0 is 0.7.
  • a command to engage the brake B 0 is output to the hydraulic control circuit 42.
  • the speed-increasing gear stage determining means 62 determines that the gear position is not the fifth speed gear stage, a reduction gear stage having a gear ratio of 1.0 or more can be obtained as a whole of the speed change mechanism 10.
  • the switching control means 50 engages the switching clutch C 0 and releases the switching brake B 0 so that the differential unit 1 1 can function as a sub-transmission with a fixed transmission ratio 0, for example, a transmission ratio 0 of 1. Output ⁇ ⁇ ⁇ to the hydraulic control circuit 42.
  • the shift control means 50 switches the transmission mechanism 10 to the stepped shift state, and selectively switches to one of the two types of shift steps in the stepped shift state.
  • the differential part 1 1 ' is made to function as a sub-transmission and in series with it
  • the automatic transmission unit 20 functions as a stepped transmission, whereby the entire shift 10 is made to function as a so-called stepped automatic transmission.
  • the switching control means 50 determines that it is within the continuously variable transmission control region for switching the transmission mechanism 10 to the continuously variable transmission state, the transmission mechanism 10 as a whole can obtain the continuously variable transmission state.
  • a command to release the switching clutch C 0 and the switching brake B 0 is output to the hydraulic control circuit 4 2 so that the differential section 11 is in a continuously variable transmission state and can be continuously variable.
  • a signal permitting the hybrid control is output to the hybrid control means 52, and a signal for fixing to a preset gear position at the time of the continuously variable transmission is output to the stepped shift control means 54.
  • a signal permitting automatic shifting of the automatic transmission unit 20 is output in accordance with, for example, the shift diagram shown in FIG.
  • FIG. 6 is a shift diagram (relationship, shift map) stored in advance in the storage means 56 as a basis for shift determination of the automatic transmission unit 20.
  • FIG. 5 is an example of a shift diagram composed of two-dimensional coordinates having a required output torque ⁇ as a driving force-related value as a parameter.
  • the solid line in Fig. 6 is the upshift line, and the alternate long and short dash line is the downshift line.
  • the broken lines in FIG. 6 indicate the determination vehicle speed V 1 and the determination output torque T 1 for determining the stepped control region and the stepless control region by the switching control means 50.
  • the broken line in FIG. 6 indicates a preset high speed for determining the speed of the hybrid vehicle.
  • a high vehicle speed judgment line that is a series of judgment vehicle speed V 1 that is a running judgment value, and a driving force related value related to the driving force of a hybrid vehicle, for example, output torque ⁇ of automatic transmission unit 20.
  • 7 shows a high output travel determination line that is a series of determination output torques T1, which are preset high output travel determination values for determining high output travel where ⁇ is a high output.
  • FIG. 3 is a switching diagram (switching map, relationship) stored in advance for determining whether or not the region is an area. Note that the shift map including this switching diagram may be stored in advance in the storage means 56. Further, this switching diagram may include at least one of the judgment vehicle speed V 1 and the judgment output torque T 1, or a pre-stored switching using one of the vehicle speed V and the output torque T OUT as a parameter. It may be a line. ⁇
  • the above shift diagram, switching diagram, or driving force source switching diagram is not a map, but a judgment formula that compares the actual vehicle speed V with the judgment vehicle speed V 1, output torque T OUT and judgment output torque T 1 May be stored as a determination formula or the like.
  • the switching control means 50 determines whether or not the vehicle state, for example, the actual vehicle speed V has exceeded the determination vehicle speed V1, and if the determination vehicle speed VI exceeds, for example, the switching brake B0 is applied. Engage the transmission mechanism 1.0 to the stepped transmission state. Further, the switching control means 50 determines whether or not the vehicle 'state, for example, the output torque T OUT of the automatic transmission unit 20 has exceeded the judgment output torque T 1. Engage the clutch C 0 to place the speed change mechanism 10 in the stepped speed change state.
  • an electric control device such as an electric motor for operating the differential unit 11 as an electric continuously variable transmission fails or deteriorates in function, for example, from the generation of electric energy in the first electric motor M 1 Failure of the equipment related to the electrical path until the engineering energy is converted into mechanical energy or functional degradation, that is, the first motor M 1, the second motor M 2, the inverter 5 8, the power storage device 60, If the vehicle is in a state where a failure (failure) occurs in the transmission line to be connected, or a malfunction or deterioration in function due to low temperature occurs, In order to ensure vehicle travel even in the continuously variable control region, the switching control means 50 may preferentially place the transmission mechanism 10 in the stepped transmission state.
  • the switching control unit 50 has a failure or deterioration in function of an electric control device such as an electric motor for operating the differential unit 11 as an electric continuously variable transmission. If the failure or functional degradation occurs, the speed change mechanism 10 is set to the stepped speed change state.
  • the driving force-related value is a parameter that corresponds to the driving force of the vehicle on a one-to-one basis, and is driven by the driving wheels 38.
  • torque T OUT the output of the automatic transmission unit 20
  • engine torque T E calculated on the basis or the vehicle acceleration G, for example, accelerator opening Acc or the throttle valve opening ⁇ ⁇ (or intake air quantity, air-fuel ratio, fuel injection amount) and the engine rotational speed New E
  • accelerator opening Acc or the throttle valve opening ⁇ ⁇ or intake air quantity, air-fuel ratio, fuel injection amount
  • the engine rotational speed New E It is and actual values, such as the engine torque T E is, requests are calculated based on the accelerator opening Acc or the throttle valve opening theta Tauita etc.
  • target engine torque T E
  • the automatic transmission portion 2 0 request (target) It may be an estimated value of output torque ⁇ ⁇ , required driving force, or the like.
  • the driving torque is the output torque
  • T OUT it may be calculated from T OUT or the like in consideration of the differential ratio, the radius of the driving wheel 38, etc., for example, may be directly detected by a torque sensor or the like. The same applies to the other torques mentioned above. '
  • the determination vehicle speed V 1 is set so that, for example, when the speed change mechanism 10 is in a continuously variable speed state during high speed travel, the speed change mechanism 10 during high speed travel is suppressed so as to suppress deterioration of fuel consumption. Is set to be a stepped shift state. In other words, in high-speed running, the speed change mechanism 10 is effectively used as a planetary gear type stepped transmission with good transmission efficiency by not including an electric path.
  • the determination torque T 1 is used to reduce the size of the first electric motor M 1 without causing the reaction torque of the first electric motor M 1 to correspond to the high output range of the engine 8 when the vehicle is traveling at a high output. It is set according to the characteristics of the first electric motor M1, which can be installed with a lower maximum output of electric energy from the electric motor M1. Alternatively, the judgment torque T 1 is more important in the high-speed driving of the vehicle, for example, the demand for the shift feeling in which the engine speed changes with the shift than the demand for the fuel consumption of the driver. From the point of view, 'The transmission mechanism 10 It is set to be in a shift state. In other words, in high-power running, the transmission mechanism 10 is made to function as a continuously variable transmission whose speed ratio is changed stepwise by functioning as a continuously variable transmission. '
  • FIG. 8 shows the boundary line for determining whether the stepped control region or the stepless control region is performed by the switching control means 50, using the engine speed N E and the engine torque T E as parameters.
  • a switching diagram switching map, relationship
  • Switching control means 5 based on the switching diagram of FIG. 8 on the engine rotational speed N E and engine torque T E in place of the switching diagram of Figure 6, those of the engine speed N E and engine torque It may be determined whether the vehicle state represented by Te and 10 is in the stepless control region or the stepped control region.
  • Fig. 8 is also a conceptual diagram for creating the broken line in Fig. 6.
  • the broken line in Fig. 6 is also a switching line that has been rearranged on the two-dimensional coordinates with vehicle speed V and output torque ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ as parameters, based on the relationship diagram (map) in Fig. 8.
  • the output torque T OUT is determined in advance.
  • the engine torque T E is a high torque region where the preset value TE 1 or higher, and the engine speed N E is a preset high value of the NE 1 or higher.
  • Region, or high output region where the engine output calculated from engine torque T E and engine speed N E is more than the predetermined value is set as stepped control 25 region. It is executed at a relatively high torque, 'relatively high rotational speed, or relatively high output, and continuously variable speed running is at a relatively low torque, relatively low rotational speed, or relatively low output of engine 8, ie engine 8 It will be executed in the normal output area.
  • the boundary line between the step control region and the continuously variable control region corresponds to a high vehicle speed determination line that is a series of high vehicle speed determination values and a high output travel determination line that is a sequence of high output travel determination values.
  • the transmission 5 is set to a continuously variable transmission state to ensure the fuel efficiency of the vehicle.
  • the gear shift ⁇ 3 ⁇ 4 1 0 is set to a stepped shift state in which it operates as a stepped transmission, and the engine is transmitted exclusively through a mechanical power transmission path. Is transmitted to the drive wheels 38, and the conversion loss between the power and electric energy generated when operating as an electric continuously variable transmission is suppressed, and the fuel efficiency is improved.
  • the speed change mechanism 10 is set to a stepped transmission state that operates as a stepped transmission, and is exclusively mechanical.
  • the engine 8 output is transmitted to the drive wheels 3 8 through the power transmission path, and the area to operate as an electric continuously variable transmission is the low and medium power running and the low and medium power running in the rain.
  • Electric energy that should be generated by the electric motor M1 in other words, the maximum value of the electric energy transmitted by the first electric motor 5M1 can be reduced, and the first electric motor M1 or the drive device of the vehicle including the electric motor M1 can be further downsized. .
  • the predetermined value TE 1' when the first electric motor M 1 is preset as switching threshold value of the engine torque T E that can withstand the reaction torque, the engine torque T E is the predetermined value TE 1
  • the differential unit 1 1 In high-power running exceeding 1, the differential unit 1 1 is in the stepped variable 0 'speed state, so the first motor M1 is in the same way as when the differential unit 1 1 is in the continuously variable transmission state.
  • the first motor M 1 of this embodiment has a maximum output that is reduced compared to the reaction torque capacity required for the maximum value of the engine torque T E. Chisono maximum output that does not correspond to the reaction force torque capacity against the engine torque T E that exceeds the predetermined value TE 1, small I arsenide is realized.
  • the maximum output of the first electric motor M 1 is the rated value of the first electric motor M 1 that is experimentally determined and set to be allowed in the usage environment of the first electric motor M 1.
  • the switching determination value of the engine torque T E is the maximum value of the engine torque TE at which the first motor M l can take charge of the reaction force torque, or a value lower than the predetermined value by the first motor M This value is experimentally obtained in advance so that the decrease in durability of 1 is suppressed.
  • N E that is, the rhythmic engine speed N e that changes with shifting.
  • the total speed ratio T is set to the predetermined traveling time.
  • the gear ratio on the low vehicle speed side is maintained up to the high vehicle speed side compared to the predetermined driving.
  • the predetermined vehicle traveling, vehicle traveling a preset time flat road traveling example if the throttle valve opening 0 TH and the vehicle speed V and the engine rotational speed N E as parameters Isseki which falls within the traveling condition within a predetermined range
  • the actual vehicle acceleration G is within a predetermined range of the predetermined reference acceleration G K for traveling on a flat road. It is assumed that the vehicle travels.
  • the automatic transmission 20 is shifted according to the shift diagram as shown in FIG.
  • each shift line is changed to the high vehicle speed side so that the total gear ratio: r T is set to the low vehicle speed side compared to the shift diagram shown in FIG.
  • the shift of the automatic transmission unit 20 is executed in accordance with such shift diagram.
  • the uphill / downhill determination means (uphill / downhill determination unit) 80 determines whether or not the traveling path of the vehicle is an uphill / downhill road.
  • uphill slope determination means 8 0 is preset throttle valve opening theta TH and the vehicle speed V and Enjin speed N E as parameters were the reference acceleration G K during running on a flat road and an actual vehicle acceleration G If the actual vehicle acceleration G is smaller than the predetermined range of the reference acceleration G K for a predetermined time or more, it is determined that the road is an uphill road, or the actual vehicle acceleration is longer than a predetermined time. G is you determined is larger than the predetermined range of the reference acceleration G K is the downhill.
  • the uphill / downhill determination means 80 determines whether or not the uphill / downhill road has ended.
  • the shift control means 82 is determined to be an uphill / downhill road by the uphill / downhill determination means 80.
  • the shift control means 8 2 is configured to perform a predetermined traveling when the up / down slope determination means 80 determines that the road is not an up / down slope, or when the up / down slope determination means 80 determines that the up / down slope has ended. Set the shift diagram at the predetermined time as shown in Fig. 6.
  • the stepped shift control means 54 is set up by the shift control means 82, and the shift diagram at the time of uphill / downhill as shown in FIG. Vehicle speed V and required output torque of automatic transmission unit 20
  • the shift stage of the automatic transmission unit 20 is determined, and the determined shift stage is determined.
  • the automatic transmission control of the automatic transmission unit 2'0 is executed so as to be obtained.
  • the hybrid control means 52 satisfies the target output (total target output, required driving force F *) calculated based on the accelerator opening Acc and the vehicle speed V.
  • the target value of the gear shift ratio T of the gear change mechanism 10 is determined so that the engine torque T E and the engine speed N E for generating the engine output necessary for
  • the gear ratio ratio 0 of the differential section 11 is controlled in consideration of the gear position of the automatic transmission section 20 and the total speed ratio ratio T is controlled within the changeable range of the gear shift.
  • the hybrid control means 52 is a target output (total target) calculated based on the accelerator opening Acc and the vehicle speed V.
  • the engine 8 is controlled in consideration of the total gear ratio 'a T of the speed change mechanism 10 so that the engine torque T E is generated to generate the engine output necessary to satisfy the output and the required driving force). .
  • the hybrid control means 5 for example, experimentally in advance the actual vehicle speed V from the relation between the vehicle speed V and the target deceleration G M obtained based on 5 Zui and deceleration as shown by the solid line in FIG. 1 1
  • the target deceleration G * is calculated, and the target 'deceleration G * is calculated from the relationship between the target deceleration G * and the required braking torque T B * obtained experimentally as shown in Fig. 12.
  • the necessary braking torque T B * to achieve the target deceleration 'G * is calculated.
  • the engine 8 is stopped by the fuel force and the first motor M 1 is idled, and the differential action of the differential part 1 1 is not constrained to the vehicle speed V, that is, the automatic transmission part. 2 0 Output shaft 2 2 Rotational speed 2 ⁇ ⁇ and transmission member rotational speed uniquely determined based on gear ratio r! Enjin times regardless of 8 Rolling speed N E Maintain at zero or nearly zero.
  • the engine speed N E is forcibly rotated by being constrained by the vehicle speed V, and deceleration is obtained by the engine brake torque.
  • the braking torque T B of'll go-between vehicle to E down gin brake torque is obtained in addition to the regenerative torque. Therefore, in order to obtain the required braking torque T B *, the hybrid control means 52 obtains the torque that is insufficient with only the regenerative torque or all of the necessary braking torque T B * with the engine brake torque.
  • the speed change mechanism 10 (differential part 1 1, power distribution mechanism 16) of the present embodiment is in a continuously variable transmission state (differential state) and a continuously variable transmission state (locked state, non-differential state).
  • the switching control means 50 determines the shift state to be switched of the differential unit 11 based on the vehicle state, and the differential unit 11 is not switched to the continuously variable shift state. It is selectively switched to either the continuously variable transmission state.
  • the necessary driving force and driving force source brake can be obtained according to the continuously variable transmission state and the continuously variable transmission state of the differential section 11.
  • the continuously variable transmission state of the first motor M1 is appropriately controlled by the reaction force torque corresponding to the engine torque TE.
  • the first motor M 1 does not have to take charge of the reaction torque, and therefore, for example, the reaction torque against the engine torque TE exceeding the predetermined value TE 1 Therefore, the maximum output of the first electric motor M 1 is reduced and the first electric motor M 1 is reduced in size.
  • the load torque of the first motor M l may exceed the allowable range depending on the performance (rating) of the first motor M l. In other words, the load torque of the first motor M 1 is allowed so that the driving force does not become insufficient when driving uphill.
  • the first electric motor M 1 needs to be enlarged so that it does not exceed the range, and the enlargement of the first electric motor M 1 exclusively for climbing is the first electric motor M 1 of the present invention. This is not the purpose of the miniaturization.
  • the maximum value of the electric energy transmitted by the electric path is reduced by switching the differential portion 11 to the stepped speed change state, and the automatic transmission portion 20 is Since the power transmission path from the motor M 2 to the drive wheels 38 is provided, the second motor M 2 is also downsized.
  • the continuously-variable shifting state of the differential portion 1 1 the age such that deceleration as during downhill travel, since exclusively the braking Tonoreku T B by the second regenerative torque of the electric motor M 2 is generated
  • the required braking torque T B * during downhill driving can be greatly increased compared to when driving on a flat road shown by the solid line, so depending on the performance (rating) of the second motor M 2
  • the power source brake may be insufficient.
  • the second motor M by generating regenerative torque based on the second motor rotation speed N M 2 determined by the shift speed of the automatic transmission unit 20 in which the upshift is suppressed and the vehicle speed V, the second motor M Depending on the performance (rating) of 2, the load torque of the second motor M 2 may exceed the allowable range.
  • the second motor M 2 is used exclusively for downhill driving so that the driving force source brake does not become insufficient when driving downhill or the load torque of the second motor M2 does not exceed the allowable range. It is necessary to increase the size.
  • the regeneration amount may be suppressed and the driving force source brake may become insufficient.
  • the required vehicle driving force F * or driving force source brake (braking torque) is still required. If T B *) is not obtained, or if the load torque of the first motor M 1 and / or the first motor M 2 is not within the allowable range, the load of the first motor M 1 and the second motor M 2 In order to obtain the necessary vehicle driving force or driving force source brake (braking torque T B *) without the torque exceeding the allowable range, the differential unit 11 is switched from the continuously variable transmission state to the continuously variable transmission state. .
  • the control operation is described below.
  • the lock state determination means (lock state determination unit) 84 determines whether or not the differential unit 1 1 is in a continuously variable transmission state.
  • the lock state determination means 84 is controlled by the switching control means 50 in the stepped control area where the speed change mechanism 10 is switched to the stepped speed change state or the speed change mechanism 10 is controlled to be switched to the stepless speed change state.
  • the transmission mechanism 10 is set to the continuously variable transmission state. It is determined whether or not the differential unit 11 is in a continuously variable transmission state depending on whether or not it is within a stepped control region.
  • Driving force / driving force source brake determining means (driving cano driving force source brake determining unit) 8 6 is determined by the ascending / descending slope determining means 80 to be an uphill / downhill road, and by the hook state determining means 84. If it is determined that the differential unit 11 is in the continuously variable transmission state, whether or not the necessary vehicle driving force F * or driving force source brake (braking torque T B *) is obtained, that is, Determine whether the required driving force F * on the uphill road or the driving power source brake (braking torque T B *) on the downhill road is sufficient.
  • the driving force / driving force source braking judging means 8 6 with the actual vehicle acceleration G and the reference acceleration G T during uphill traveling previously set against the accelerator opening Acc by comparing the actual When the vehicle acceleration G is small, it is determined that the required vehicle driving force F * is not obtained. Further, the driving force / driving force source brake determination means 86 compares the target deceleration G * when traveling downhill calculated by the hybrid control means 52 and the actual vehicle deceleration G, When the vehicle deceleration G is small, it is determined that the necessary driving force source brake (braking torque T B *) is not obtained.
  • Motor load determination means (motor load determination section) 8 8 is determined as an uphill / downhill road by the uphill / downhill determination means 8 0, and the differential section 11 is set to a continuously variable transmission state by the lock state determination means 8 4. If it is determined that the load torque of the first electric motor M 1 and / or the second electric motor M 2 is within an allowable range, it is determined.
  • the motor load determination means 8 8 may be configured so that the rated value of the first motor M 1 when the vehicle is traveling on an uphill road is in response to the engine torque TE so that the differential unit 11 can be operated continuously variable.
  • the motor load determination means 8 8 is provided for the second motor rotation speed NM in which the rated value of the second motor M 2 is uniquely determined by the shift speed of the automatic transmission unit 0 and the vehicle speed V when traveling on a downhill road. If the regenerative torque generated based on 2 cannot be accommodated, it is determined that the load torque of the second electric motor M2 is not within the allowable range.
  • the switching control means 50 is determined to be an uphill / downhill road by the uphill / downhill determination means 80, and the shift map at the time of uphill / downhill as shown in FIG. 10 is set by the shift control means 82,
  • the vehicle driving force F * required by the driving force Z driving force source brake determination means 8 6 is determined.
  • the driving force source brake braking torque T B *
  • the load torque of the first motor M 1 and / or the second motor M 2 is determined by the motor load determination means 88. Is determined not to be within the allowable range, a command to engage the switching clutch C 0 or the switching brake B 0 to switch the differential unit 1 1 from the continuously variable transmission state to the continuously variable transmission state is hydraulically controlled. Output to circuit 4 2.
  • the switching between the stepped speed change state and the stepless speed change state of the differential section 11 is executed by the switching control means 50 based on a change in the vehicle state from the relationship diagram of FIG.
  • the differential unit 11 may be switched between a stepped speed change state and a continuously variable speed change state by human operation.
  • the control operation will be described.
  • Fig. 13 shows the continuously variable transmission state (differential state, non-locked state) and stepped transmission state (non-continuously variable transmission state) of the transmission mechanism 10 (differential part 11, power distribution mechanism 16) by manual operation.
  • This is an example of a seesaw type switch 4 4 (hereinafter referred to as switch 4 4) as a gear shifting state manual selection device for selecting switching between non-differential state and locked state.
  • the vehicle is equipped with possible.
  • This switch 4 4 is used by the user
  • the desired speed change mechanism 10 can select vehicle travel in the speed change state, and the switch 44 corresponding to continuously variable speed travel can be selected as a continuously variable speed travel command button or displayed.
  • each stepless variable speed travel that is, the speed change mechanism 10 operates as an electric continuously variable speed changer. It is possible to select whether to be a continuously variable transmission state, or a step-variable traveling state, that is, a step-variable shifting state in which the transmission mechanism 10 can be operated as a stepped transmission. For example, if the user desires a continuously variable transmission feeling or traveling that can improve fuel efficiency, the user selects the transmission mechanism 10 by manual operation so as to be in a continuously variable transmission state.
  • the switching control means 50 determines the selection operation of whether the continuously variable speed travel ⁇ ⁇ ⁇ button of the switch 4 4 is pressed or the stepped variable speed travel command button is pressed, and the stepped speed variable travel command button is When pressed, the speed change mechanism 10 is preferentially switched to the stepped speed change state.
  • the switching control means 5 when it is determined that the continuously-variable shifting control button switch 4 4 is pressed, when the first electric motor M l can not withstand the reaction force torque with respect to the engine torque T E
  • the speed change mechanism 10 is not preferentially set to the continuously variable speed change state. . one
  • the switch 44 when the switch 44 is provided with a neutral position in which neither continuously variable speed traveling nor stepped speed variable traveling is selected, when the switch 44 is in the neutral position state, that is, the user Therefore, when the desired shift state is not selected or when the desired shift state is automatic switching, it is necessary to automatically switch the shift state of the transmission mechanism 10 based on the change in the vehicle state from the relationship diagram of FIG.
  • the control operation may be executed.
  • FIG. 14 is a flowchart for explaining the control operation of the electronic control device 40, that is, the control operation when the shift map is switched depending on whether the vehicle is traveling on a flat road or an uphill / downhill road. For example, it is repeatedly executed with an extremely short cycle time of about several milliseconds to several tens of milliseconds. W
  • step S 1 it is determined whether or not the traveling road of the vehicle is an uphill / downhill road.
  • the standard acceleration G K when running on a flat road and the actual vehicle acceleration G are compared with the throttle valve opening ⁇ , vehicle speed V, and engine speed N E as parameters. If the actual vehicle acceleration G is smaller than the predetermined range of the reference acceleration G K for a predetermined time or more, it is determined that the road is an uphill road, or the actual vehicle acceleration G exceeds the reference acceleration G K for a predetermined predetermined time or more. If it is larger than the predetermined range, it is determined that the road is downhill.
  • a shift diagram at a predetermined time as shown in FIG. 6, for example, is set in the shift control means 82, that is, S corresponding to the shift control step.
  • the shift control means 82 that is, S3 corresponding to the shift control process, a shift diagram at the time of uphill / downhill as shown in FIG. A is set to the lower vehicle speed side than the predetermined time.
  • the driving force / driving force source brake determining means 86 that is, the driving force / driving force source brake determining step S5 corresponding to the driving force / driving force source brake determining step, is necessary: a necessary vehicle driving force F * or driving Whether the power source brake (braking torque T B *) is obtained, that is, whether the required driving force F * on the uphill road or the driving power source brake (braking torque T B *) on the downhill road is sufficient It is determined whether or not.
  • the load torque of the first motor M1 and / or the second motor M2 is within an allowable range in S6 corresponding to the motor load determination means 88, that is, the motor load determination step. It is determined whether or not.
  • the differential control unit 11 is set to a continuously variable transmission state in S7 corresponding to the switching control means 50, that is, the switching control step. Switching clutch C 0 or so as to switch from to the continuously variable transmission state. A command for engaging the switching brake B 0 is output to the hydraulic control circuit 42.
  • the determination in S4 is affirmative, or following S7, it is determined whether or not the uphill road has been terminated in S8 corresponding to the uphill / downhill determination means 80, that is, the uphill / downhill determination core low. .
  • the uphill hill drive it is compared with a reference acceleration G K and the actual vehicle acceleration G is, when the actual vehicle acceleration G is a predetermined time or more a predetermined falls within a predetermined range of the reference acceleration G K uphill It is determined that the slope has ended. This determination of S8 is repeated until it is affirmed. Further, for example, when the differential unit 11 is switched from the continuously variable transmission state to the continuously variable transmission state in S7, the switching to the continuously variable transmission state is not performed until the determination of S8 is affirmed. It is forbidden.
  • S 1 2 corresponding to the switching control means 50, that is, the switching control process following S 1 0, whether the continuously variable speed travel button of switch 4 4 is pressed or whether the stepped speed variable travel command button is pressed.
  • a selection operation is determined. For example, it is determined whether or not a stepped variable speed travel command button has been pressed. Further, when the stepped variable speed travel command button is pressed, the speed change mechanism 10 is preferentially switched to the stepped variable speed state.
  • the vehicle speed V and the automatic transmission unit can be obtained from a predetermined shift diagram as shown in FIG.
  • the speed change of the speed change mechanism 10 Based on the vehicle state indicated by the required output torque 0 ⁇ of 0, it is determined whether or not the speed change of the speed change mechanism 10 should be executed. For example, the gear position to be changed in the automatic transmission unit 20 is determined. The automatic transmission control of the automatic transmission unit 20 is executed so that the determined shift speed is obtained.
  • the engine torque T E and the engine speed N E required to satisfy the required driving force F * calculated based on the accelerator opening Acc and the vehicle speed V The target value of the total gear ratio T of the speed change mechanism 10 is determined so that the speed of the differential part 11 can be changed in consideration of the gear position of the automatic speed changer 20 so that the target value is obtained.
  • the ratio 0 is controlled, and the total transmission ratio; r T is controlled within the changeable range.
  • request driving force F * so that the engine torque T E required to satisfy preparative Isseki Le gear ratio of the transmission structure 1 0 Engine 8 is controlled taking into account T
  • the switching unit C 0 or the switching brake B 0 switches, for example, the differential unit 11 between a continuously variable transmission state and a continuously variable transmission state.
  • a drive device is obtained which has both the advantages of improving the fuel efficiency of a transmission whose gear ratio is changed and the high transmission efficiency of a gear transmission that mechanically transmits power.
  • the differential unit 11 when the differential unit 11 is set to a continuously variable transmission state in the normal output range of the engine where the vehicle is running at low and medium speeds and low and medium output, the fuel efficiency of the vehicle is ensured.
  • the differential unit 11 when the differential unit 11 is set to a continuously variable transmission state at high speed, the output of the engine 8 is transmitted to the drive wheels exclusively through a mechanical power transmission path, and the gear ratio is changed electrically. Since the conversion loss between power and electric energy generated when operating as a transmission to be operated is suppressed, fuel efficiency is improved.
  • the differential unit 11 when the differential unit 11 is set to a continuously variable transmission state in high output traveling, the region operated as a transmission in which the gear ratio is electrically changed is the low and medium speed traveling and the vehicle.
  • the electric energy that should be generated by the first motor M 1 in other words, the first motor M 1 Therefore, the first electric motor M 1, the second electric motor M 2 to which the electric energy is transmitted, or the speed change mechanism 10 including the first electric motor M 1 is further reduced in size.
  • the switching control means 50 switches the differential unit 1 1 from the continuously variable transmission state to the continuously variable transmission state.
  • FIG. 15 is a skeleton diagram illustrating the configuration of the speed change mechanism 70 according to another embodiment of the present invention.
  • FIG. 16 is a diagram showing the combination of the speed change stage of the speed change mechanism 70 and the engagement of the hydraulic friction engagement device.
  • FIG. 17 is an alignment chart for explaining the speed change operation of the speed change mechanism 70.
  • the speed change mechanism 70 includes a differential unit 11 having a first electric motor M1, a power distribution mechanism 16 and a second electric motor M2, and the differential unit 11 and the output thereof.
  • the power distribution mechanism 16 has, for example, a single pinion type first planetary gear unit 24 having a predetermined gear ratio p 1 of about “0.4 18”, a switching clutch C 0 and a switching brake B 0. is doing.
  • the automatic transmission unit 72 includes a single pinion type second planetary gear device 26 having a predetermined gear ratio 2 of, for example, “0.5 3 2” and a predetermined gear ratio of, for example, “0.4 18”.
  • the second sun gear S of the second planetary gear device 26 and the third sun gear S 3 of the third planetary gear device 28 are integrally connected to be selectively connected to the transmission member 18 via the second clutch C2.
  • the switching clutch C 0, the first clutch C 1, the second clutch C 2, and the switching brake B 0, the first brake BK and the second brake B 2 are selectively engaged so that one of the first gear (first gear) to the fourth gear (fourth gear)
  • the power distribution mechanism 16 is provided with a switching clutch C 0 and a switching brake ⁇ 0, and either the switching clutch C 0 or the switching brake ⁇ 0 is engaged.
  • the differential unit 11 can configure a constant transmission state that operates as a transmission with a constant gear ratio. ing. Therefore, in the transmission mechanism 70, the constant transmission state is established by engaging and operating either the switching clutch C0 or the switching brake ⁇ 0.
  • the stepped transmission is configured by the differential unit 11 and the automatic transmission unit 72.
  • the stepped gear shift state is configured to operate as follows, and the switching clutch C 0 and the switching brake ⁇ 0 are not engaged and actuated.
  • the differential section 1 1 and the automatic transmission section 7 2 in the state constitute a continuously variable transmission state that operates as an electric continuously variable transmission.
  • the speed change mechanism 70 is switched to the stepped speed change state by engaging and operating either the switching clutch C 0 or the switching brake B 0. Both the switching clutch C 0 and the switching brake B 0 Switching to the continuously variable transmission state is possible by not operating the engagement.
  • the gear ratio is changed by engaging the switching clutch C 0, the first clutch C 1 and the second brake B 2.
  • 1 1st gear stage where 1 is the maximum value, for example, about “2.8 0 4” is established, and the gear ratio ratio is reduced by the engagement of the switching clutch C 0, the first clutch C 1 and the first brake B 1.
  • the gear ratio ⁇ 3 is smaller than the first gear, for example, “1.0 0 0” ⁇
  • the third gear which is MS, is established, and the first clutch C 1 and the second clutch C 2 and the engagement of the switching brake B 0, the gear ratio 4 is smaller than the third gear, for example, “0.7 0 5” or so.
  • 4-speed gear stage is established.
  • the transmission gear ratio R is a value between the first speed gear stage and the second speed gear stage, for example, about “2.3 9 3”.
  • a reverse gear is established. When the neutral “N” state is set, for example, only the switching clutch C 0 is engaged.
  • transmission mechanism 70 functions as a continuously variable transmission
  • both switching clutch C 0 and switching brake B 0 in the engagement table shown in FIG. 16 are released.
  • the differential section 11 functions as a continuously variable transmission
  • the automatic transmission section 72 connected in series functions as a stepped transmission, whereby the first speed, the second speed of the automatic transmission section 72,
  • the rotational speed input to the automatic transmission section 72 i.e., the rotational speed of the transmission member 18 is changed steplessly so that each gear stage has a stepless transmission ratio.
  • a width is obtained. Therefore, the gear ratio between the gear stages can be continuously changed continuously, and the total speed ratio ⁇ T as the entire speed change mechanism 70 can be obtained continuously.
  • Fig. 17 shows the differential unit 11 and the transmission unit that function as a continuously variable transmission unit or a first transmission unit.
  • Stepd transmission section Or, in the transmission mechanism 70 composed of the automatic transmission section 72 that functions as the second transmission section, the relative relationship between the rotational speeds of the rotating elements having different connection states for each gear stage is linearly represented.
  • the alignment chart which can be represented by is shown.
  • the four vertical lines Y4, Y5, ⁇ 6, and ⁇ 7 of the automatic transmission 72 in Fig. 7 correspond to the fourth rotating element (fourth element) RE 4 and are connected to each other in order from the left.
  • the second sun gear S 2 and the third sun gear S 3 correspond to the fifth rotation element (fifth element) RE 5 and the third carrier CA 3 corresponds to the sixth rotation element (sixth element) RE 6.
  • the second carrier CA2 and the third ring gear R3 connected to each other represent the second ring gear R2 corresponding to the seventh rotation element (seventh element) RE7.
  • the fourth rotating element RE 4 is selectively connected to the transmission member 18 via the second clutch C 2 and selectively connected to the case 12 via the first brake B 1.
  • the fifth rotating element RE 5 is selectively connected to the case 11 through the second brake B 2
  • the sixth rotating element RE 6 is connected to the output shaft 2 2 of the automatic transmission 7 2
  • the rotating element RE 7 is selectively connected to the transmission member 18 via the first clutch C 1.
  • the first clutch C 1 and the second brake B 2 are engaged, so that the seventh rotating element RE 7 (R 2)
  • the rotation speed of the first output shaft 22 is indicated at the intersection with the vertical line Y 6 indicating the rotation speed of the sixth rotation element RE 6 (CA2, R 3) connected to the output shaft 2 2. .
  • an oblique straight line L 2 determined by engaging the first clutch C 1 and the first brake B 1 and a vertical line indicating the rotational speed of the sixth rotating element RE 6 connected to the output shaft 2 2.
  • the rotation speed of the output shaft 22 of the first speed is shown at the intersection with Y 6, and the horizontal straight line L 3 determined by the engagement of the first clutch C 1 and the second clutch C 2 and the output shaft 2 2 6th concatenated with
  • the rotation speed of the output shaft 2 of the third speed is shown at the intersection with the vertical line Y 6 indicating the rotation speed of the rolling element RE 6.
  • the switching clutch C 0 In the first to third speeds, the switching clutch C 0 is engaged, so that the power from the differential unit 11 is input to the seventh rotating element RE 7 at the same rotational speed as the engine rotational speed ⁇ ⁇ . Is done.
  • the switching brake B 0 is engaged instead of the switching clutch C 0
  • the power from the differential section 11 is input at a higher rotational speed than the engine rotational speed N E , and therefore the first clutch C 1, vertical line Y indicating the rotational speed of the horizontal straight line L 4 determined by engaging the second clutch C 2 and the switching brake B 0 and the sixth rotating element RE 6 connected to the output shaft 22
  • the rotation speed of the 4th speed output shaft 22 is shown at the intersection with 6
  • the differential unit 11 that functions as a continuously variable transmission unit or a first transmission unit
  • the automatic transmission that functions as a transmission unit (stepped transmission unit) or a second transmission unit. Therefore, the same effect as that of the above-described embodiment can be obtained.
  • FIG. 18 is a functional block diagram for explaining a main part of another example of the control function by the electronic control unit 40.
  • the target deceleration is set when the vehicle is decelerating, and the braking torque is generated so that the target deceleration G * is achieved.
  • This braking torque can be obtained, for example, by regeneration, engine braking, wheel brake, etc., and braking by regeneration is given the highest priority in consideration of energy efficiency.
  • the differential unit 11 is switched to the continuously variable transmission state when the accelerator is decelerated, and the hybrid control means is used to achieve the target deceleration G * by regeneration.
  • the braking torque is obtained by engine braking during deceleration traveling.
  • the differential section 1 1 is set to a continuously variable transmission state
  • the engine speed N E is maintained at zero, no engine braking force (torque) is generated.
  • N E is in a continuously variable transmission state that is constrained by vehicle speed V, and engine 8 is forcibly rotated to obtain deceleration by engine brake torque.
  • the braking torque for vehicle rain is obtained by the engine brake torque in addition to the regenerative torque, so the range of the deceleration G that can be achieved is expanded and the control performance for the target deceleration G * is improved.
  • the engine brake torque generated by determining the engine rotational speed NE is 1: 1 with respect to the vehicle speed V. Determined by 1. If the engine speed N E is changed with respect to the vehicle speed V and the engine brake torque is also changed, the control performance for the target deceleration G * will be further improved.
  • the switching clutch C 0 or the switching brake B 0 is completely engaged to set the differential portion 11 to the continuously variable transmission state, and the switching clutch C 0 or the switching brake.
  • B 0 By setting B 0 to the half-engaged (slip) state, the differential section 11 is brought into a speed change state between a continuously variable speed state and a continuously variable speed variable state, and the engine 8 is forcibly rotated.
  • the switching clutch C 0 or the switching brake B 0 is in the half-engaged state, the first motor M 1 and the switching clutch C 0 or the switching brake B 0 are responsible for the reaction torque against the engine torque T E. Become.
  • the engine speed N E can be varied from zero to a range of rotational speeds that are constrained to the speed V in a continuously variable transmission state.
  • the decelerating travel determining means (decelerating travel determining unit) 1 80 is based on the accelerator opening Acc, while the vehicle is decelerating with the accelerator off, that is, coasting (coast travel).
  • Regeneration availability determination means (Regeneration availability determination section) 1 8 2 determines that regeneration by the hybrid control means 52 is determined when the vehicle is decelerating by the above-mentioned deceleration travel determination means 1 80. Determine whether it is possible.
  • the regeneration possibility determining means 1 8 2 is configured such that the charge capacity SOC of the power storage device 60 satisfies a predetermined upper limit SOC of the charge capacity, for example, the charge capacity SOC 8 of about 80% of full charge, and the power storage device 6
  • Target deceleration control means (Target deceleration control section) 1 8 4 is equipped with target deceleration calculation means (target deceleration calculation section) 8 6 for calculating the target deceleration rate during deceleration travel. Generate vehicle braking torque so that speed G * is achieved.
  • the target deceleration calculation means 1 8 6 is, for example, a vehicle that is decelerating based on the actual vehicle speed V based on the relationship between the vehicle speed V and the target deceleration G M obtained experimentally in advance as shown by the solid line in FIG. Calculate the target deceleration G *.
  • a slide-type deceleration speech device 1 0 0 operated by the user to change the target deceleration G * to be increased or decreased as shown in FIG. 20 is provided.
  • the speed calculation means 8 6 may change the target deceleration G * within the range indicated by the broken line with reference to the solid line in FIG. 19 based on the operation of the deceleration setting device 100.
  • the target deceleration control means 1 8 4 is calculated by the target deceleration calculation means 8 6 based on the relationship between the target deceleration G * and the required braking torque T B * which are experimentally obtained in advance as shown in FIG. Achieve the target deceleration G * based on the target deceleration Necessary braking torque T B * is calculated. Then, the target deceleration control means 1 8 4 calculates the allocation of the regenerative torque and the engine brake torque in order to obtain the necessary braking torque T B *.
  • the target deceleration control means 1 84 can be regenerated by the hybrid control means 5 2 by the regenerative availability determination means 8 2 so as to achieve the target deceleration G * during deceleration traveling.
  • the engine brake torque is determined according to whether or not.
  • the f vote deceleration control means 1 84 is controlled by the hybrid control by the regenerative availability determination means 1 8 2.
  • a command is output to the hybrid control means 52 so that the required braking torque T B * can be obtained by the regeneration torque.
  • the hybrid control means 52 performs regeneration at a regeneration amount that is a predetermined regeneration torque so that the required braking torque T B * can be obtained according to the command. In this way, when the target deceleration control means 84 determines that regeneration is possible by the regeneration permission determination means 1 8 2, regeneration priority processing is performed by the hybrid control means 52.
  • the regeneration control means 52 determines whether the regeneration control unit 52 can regenerate the regeneration control. if it is determined not to be possible, the target deceleration control means 1 8 4 in order to obtain the required braking torque T B *, the torque component that is insufficient only regenerative torque, or the required brake torque T B * A command is output to the switching control means 50 so that all of the above can be obtained with the engine brake torque.
  • the switching control means 50 is an engine brake control means for limiting the differential action of the differential section 11 so that the required engine brake torque can be obtained in accordance with the above command from the target deceleration control means 1 84. Function. Specifically, the switching control means 50 includes, for example, a switching clutch obtained experimentally in advance as shown by a solid line in FIG. Calculate the engagement hydraulic pressure P EB of the switching clutch C 0 so that the required engine brake torque can be obtained from the relationship between the engagement hydraulic pressure of C 0 and the engine brake torque, and switch at that engagement hydraulic pressure F EB A command for half-engagement or complete engagement of the clutch C 0 is output to the hydraulic control circuit 4 2.
  • the necessary engine brake torque can be obtained by adjusting the engagement hydraulic pressure F EB of the switching clutch C 0.
  • the differential portion 11 is switched between the continuously variable transmission state and the continuously variable transmission state, that is, when the switching clutch C 0 is switched between release and engagement, the engine brake torque is switched stepwise.
  • the engine brake torque can be continuously switched by setting the switching clutch C 0 to the half-engaged (slip) state.
  • the engine brake torque is adjusted by using the switching clutch C 0.
  • the engine brake torque is reduced by half-engagement or complete engagement of the switching brake B 0. It may be adjusted.
  • FIG. 23 is a flowchart for explaining the main part of the control operation of the electronic control unit 40, that is, the control operation for controlling the deceleration during deceleration traveling. For example, the control is repeated with a very short cycle time of about several milliseconds to several tens of milliseconds. It is what is executed.
  • Fig. 24 is a time chart for explaining the control operation shown in the flowchart of Fig. 23.
  • the control operation is performed when the engine deceleration torque is generated in addition to the regenerative torque to achieve the target deceleration G *. Is shown.
  • step corresponding to the decelerating travel determining step 180 that is, a step corresponding to the decelerating travel determining step (hereinafter, step is omitted) SA1
  • the vehicle is decelerating while the accelerator is off based on the accelerator opening Acc. It is determined whether or not the vehicle is coasting (coast driving).
  • the charging capacity SOC of the power storage device 60 is a predetermined charging capacity upper limit value S0 C MAX, for example, the charging capacity 30 0 ( 3 .
  • S0 C MAX the charging capacity upper limit value
  • the target deceleration control means 1 8 4 that is, SA 3 corresponding to the target deceleration control process is obtained experimentally in advance as shown in FIG.
  • the target deceleration G * during deceleration is calculated based on the actual vehicle speed V.
  • the target deceleration G * may be changed within the range indicated by the broken line with reference to the solid line in FIG. 19 based on the operation of the slide type deceleration setting device 100 by the user.
  • the target deceleration G * is achieved from the viewpoint of giving top priority to obtaining the braking torque with the regenerative torque ⁇ is output to the hybrid control means 52 so that the necessary braking torque T B * can be obtained by the regenerative torque.
  • the switching control means 5′0 releases the non-stepless speed change state (lock) of the differential section 11 and determines in advance that the required braking torque T B * can be obtained by the hybrid control means 52.
  • Regeneration is performed with a regenerative amount that provides the regenerative torque. That is, the regeneration by the hybrid control means 52 is prioritized.
  • the target deceleration control means 1 8 that is, the SA 4 corresponding to the target deceleration control process, only the regenerative torque executed at SA 3
  • a command is output to the switching control unit 50 so that the insufficient torque or all of the necessary braking torque T B * can be obtained with the engine brake torque.
  • the differential action of the differential section 11 is limited so that the required engine brake torque can be obtained in accordance with the command in SA 4. .
  • the switching clutch C 0 or the switching that can obtain the required engine brake torque from the relationship between the engagement hydraulic pressure of the switching clutch C 0 or the switching brake B 0 and the engine brake torque that has been experimentally determined in advance.
  • the engagement hydraulic pressure P EB of the brake B 0 is calculated, and a command for half-engagement or complete engagement of the switching clutch C 0 or the switching brake B 0 is output to the hydraulic pressure control circuit 42 based on the engagement hydraulic pressure P EB.
  • the time point in Fig. 24 indicates that regeneration is determined to be possible and that the non-stepless speed change state (lock) of the differential section 11 has been released because regeneration is executed with priority.
  • the necessary braking torque T B * cannot be obtained only by regenerative operation
  • the non-stepless speed change state (lock) of the differential part 11 is released but not the stepless speed change state.
  • the switching clutch C 0 is in a half-engaged (slip) state so that the necessary engine brake torque can be obtained.
  • t time to t 2 time, with the release of the non-continuously-variable shifting state (locked) engine Rotation speed N E is indicated that the decrease.
  • the engagement hydraulic pressure (torque capacity) of the switching clutch C 0 is reduced so that the switching clutch C 0 is in a half-engagement (slip) state where the necessary engine brake torque can be obtained. It shows that. t 2 after the time indicates that the required braking torque T B * regenerative torque 'click and the engine braking torque to be obtained is generated.
  • the switching clutch CO is half-engaged, the engine 8 is forcibly rotated to cause bowing by the engine 8 and this engine brake torque is generated.
  • the differential clutch 11 as the differential limiting device or the switching brake B 0 as the differential limiting device that limits the operation of the differential unit 11 as the electrical differential device for example, the differential Part 1 1 can be switched between a continuously variable transmission state and a continuously variable transmission state
  • a drive device is obtained that has both the advantages of improving the fuel efficiency of a transmission whose gear ratio is electrically changed and the high power and transmission efficiency of a gear transmission that mechanically transmits power. .
  • the differential unit 11 when the differential unit 11 is set to a continuously variable speed in the normal output range of the engine that is used for low-medium speed travel and low-medium power travel of the vehicle, fuel efficiency of the vehicle is ensured.
  • the differential unit 11 when the differential unit 11 is set to a continuously variable transmission state at high speed, the output of the engine 8 is transmitted to the drive wheels exclusively through a mechanical power transmission path, and the gear ratio is changed electrically. Since the conversion loss between power and electric energy generated when operating as a transmission to be operated is suppressed, fuel efficiency is improved.
  • the differential unit 11 when the differential unit 11 is set to a continuously variable transmission state in high output traveling, the region to be operated as a transmission in which the gear ratio is electrically changed is the low and medium output of the vehicle.
  • the first motor M 1 Since the electric energy that should be generated by the first motor M 1 in other words, that is, the maximum value of the electric energy transmitted by the first motor M l can be reduced, the first motor M 1 and its electric energy are reduced.
  • the second electric motor M 2 to be transmitted or the speed change mechanism 10 including the second electric motor M 2 is reduced in size.
  • the switching control means 50 restricts the operation of the differential unit 11 as an electric continuously variable transmission, that is, the differential operation, in order to obtain the braking torque by the engine brake.
  • the braking torque can be increased. Therefore, the range in which the deceleration G can be controlled is widened, and the control performance of the deceleration G during deceleration traveling is improved.
  • the braking torque of the vehicle can be obtained by the engine braking torque in addition to the regenerative torque by the second electric motor M 2, so the range in which the deceleration G can be controlled is widened and the control performance of the deceleration G during deceleration traveling Will improve.
  • the braking torque can be adjusted by the regenerative torque and the engine brake torque, the control performance of the deceleration G during deceleration is improved.
  • the differential control unit 11 is brought into the continuously variable transmission state by the switching control means 50, so that the engine brake torque can be quickly obtained by the stepwise change. .
  • the switching clutch C 0 or the switching brake B 0 is brought into the half-engaged (sliff) state by the switching control means 50, so that the engine brake torque is reduced. It can be adjusted to further improve the control performance of deceleration G during deceleration.
  • the target deceleration control means 1 84 can achieve the target deceleration G *?
  • the engine braking torque is determined depending on whether or not, and the differential action of the differential section 1 1 is limited so that the determined engine braking torque can be obtained by the switching control means 50.
  • Regenerative braking is given the highest priority, and engine braking torque can be obtained when the target deceleration G * cannot be achieved by regeneration alone or when the regeneration amount is suppressed and the target deceleration G * cannot be achieved. Become. Accordingly, the deceleration control performance during deceleration traveling is improved.
  • the switching control means 50 functioning as the engine brake control means adjusts the engine brake torque with the switching clutch C 0 or the switching brake B 0 being semi-engaged or fully engaged.
  • the rotational resistance of the engine 8 by changing the rotational resistance of the engine 8, even if the engagement hydraulic pressure of the switching clutch C 0 or the switching brake B 0 is the same, in other words, the rotational speed of the engine 8 that is forcibly rotated. N
  • the engine brake torque can be adjusted even if E is the same.
  • a control operation for changing the rotational resistance of the engine 8 will be described.
  • FIG. 25 is a functional block diagram for explaining the main part of the control function by the electronic control unit 40, and corresponds to FIG. 5 and FIG.
  • the engine 8 includes a variable valve timing mechanism 90 that changes the operation timing of the intake and exhaust valves, and a fuel injection valve 92 that supplies or stops fuel. Decomfu. By reducing the fuel supply and stopping the cylinder, the engine displacement is substantially changed according to the load state of engine 8 and the fuel supply is reduced.
  • This is an in-cylinder pressure change suppression cylinder number variable engine that has been made possible.
  • the engine 8 is configured to enable the in-cylinder pressure fluctuation suppressing operation in which the number of cylinders in which the cylinder pressure change is suppressed is changed sequentially or at once as necessary.
  • the above-mentioned cylinder 8 cylinder pressure change suppression state means that the pressure fluctuation in the cylinder is suppressed in at least one stroke of the 4-cycle engine and the engine rotation resistance, in other words, the pump loss is suppressed. Indicates the state.
  • in-cylinder pressure change suppression operation in which some cylinders or all cylinders of the engine 8 in the present embodiment are in the in-cylinder pressure change suppression state, some cylinders or all cylinders are operated.
  • the cylinder is a decompression.
  • the pumping loss that is, the so-called pumping loss, is reduced according to the number of cylinders in which the in-cylinder pressure change is suppressed in the state of depression, and does not simply stop the fuel supply to the cylinders.
  • the intake air is compressed in the compression stroke of the 4-cycle engine with the intake valve and exhaust valve timing being the same as when the engine is operating.
  • the above-described decompression state that is, the decompression state, means that the intake air is sufficiently compressed by opening the intake valve or the exhaust valve or shifting the timing of the intake valve or the exhaust valve in the compression stroke of the 4-cycle engine. This shows a state in which the pressure change in the cylinder (pressurization) is suppressed and the rotation resistance of the crankshaft is reduced. In this decompressed state, the throttle valve and EGR valve may be released to further reduce the rotational resistance of the crankshaft.
  • the switching control means 50 obtains the necessary engine brake torque in accordance with the command for obtaining the required braking torque T B * by the target deceleration control means 18 4 by the engine brake torque in addition to the functions of the above-described embodiment.
  • the differential action of the differential section 11 is limited, and the cylinder pressure change suppression amount, that is, the decompression amount of the engine 8 is changed.
  • the amount of decompression is the in-cylinder pressure change of the engine 8 that is in the decompressed state.
  • ⁇ It can be changed according to the number of suppressed cylinders. At the same engine speed N E , the greater the number of cylinders that suppress in-cylinder pressure change, the greater the decompression amount and the lower the engine brake torque.
  • the solid line in Fig. 22 shows the case where all the cylinders are in the decompressed state and the decompression amount is maximized
  • the broken line in Fig. 22 shows the decompression amount in which all the cylinders are not in the decompressed state. This is the case when the minimum is set. Decomf like this.
  • the switching control means 50 is a decompression obtained experimentally in advance as shown in FIG.
  • Switch clutch C 0 engagement hydraulic pressure F EB and decompression amount that is, in-cylinder pressure so that the required engine brake torque can be obtained from the relationship between the engagement hydraulic pressure of switch clutch C 0 and the engine brake torque using the amount as a parameter Calculate the number of change suppression cylinders CD, and output the half-engagement or full-engagement of the switching clutch C 0 to the hydraulic control circuit 42 with the engagement hydraulic pressure F EB and suppress the cylinder pressure change of the cylinder of the engine 8 outputs a command to run only in-cylinder pressure change suppressing operable cylinder number C D to Haipuriddo control unit 5 2.
  • Haiburitsudo control unit 5 2 based on the direction, the Enjin output control device 4 3 so as to perform the cylinder pressure variation suppression operation as decompression state by the variable valve timing mechanism 9 0 by cylinder pressure variation suppression cylinder number C D Outputs a command.
  • the decomposing amount of the engine 8 is changed by the switching control means 50 during the deceleration traveling. Even if the engine speed N E is the same, the rotational resistance can be changed and the engine brake torque can be changed. Therefore, deceleration during deceleration
  • FIG. 26 is a functional block diagram for explaining a main part of another example of the control function by the electronic control unit 40.
  • FIG. 27 shows a switching device that switches between multiple types of shift positions by human operation.
  • the switching device 46 is provided with a shift lever 4 8 that is disposed beside the driver's seat and operated to select a plurality of types of shift positions.
  • the shift lever 48 is, for example, a speed change mechanism that does not engage any of the engagement devices (input clutches) of the first clutch C 1 and the second clutch C 2 as shown in the engagement operation table of FIG.
  • Parking position ⁇ F (Parking) for locking the output shaft 2 2 of the automatic transmission 20 and the neutral state where the power transmission path in the 0 0, that is, the automatic transmission 20 is interrupted ), ⁇ 3 ⁇ 41 Reverse travel position “R (reverse)” for traveling, neutral position “N (neutral)” where power transmission path in transmission mechanism 10 is cut off, forward automatic shift travel position “ D (drive) "or forward manual shift travel position” M (manual) J "is provided to be manually operated.
  • the manual valve in the hydraulic control circuit 42 that is mechanically connected to the shift lever 48 is switched in conjunction with the manual operation of the shift lever 48 to each shift position.
  • the hydraulic control circuit 42 is mechanically switched so that the reverse gear stage “R”, neutral “N”, forward gear stage “D”, etc. shown in the operation table are established.
  • the 1st to 5th shift stages shown in the engagement operation table of FIG. 2 at the “D” or “M” position are established when the solenoid valve in the hydraulic control circuit 42 is electrically switched. Be made. -
  • the “F ′” position and the “N” position are non-travel positions selected when the vehicle is not traveled.
  • the first clutch C 1 and the second clutch C 2 are both disengaged. This is a drive position for selecting switching to the power transmission cutoff state of the power transmission path by the clutch C 1 and the first clutch C 2.
  • the “R” position, the “D” position, and the “M” position are travel positions selected when the vehicle travels. For example, as shown in the engagement operation table of FIG. 1st and 2nd clutch.
  • Power transmission path in the automatic transmission unit 20 in which at least one of the two is engaged This is also a drive position for selecting switching to a power transmission enabled state of the power transmission path by the first clutch C 1 and / or the second clutch C 2 that enables driving of the vehicle to which the is connected.
  • the shift lever 48 when the shift lever 48 is manually operated from the “F” position or the “N” position to the “R” position, the second clutch C 2 is engaged and the power in the automatic transmission unit 20 is When the transmission path is changed from the power transmission cutoff state to the power transmission enabled state, and the shift lever 48 is manually operated from the “N” position to the “D” position, at least the first clutch C 1 is engaged and automatically The power transmission path in the transmission 20 is changed from the power transmission cut-off state to the power transmission enabled state.
  • the “D” position is also the fastest running fi 1 position
  • the “M” position for example, the “4” range to the “Shi” range, is also the engine brake range that provides the engine braking effect.
  • the “M” position is provided adjacent to the width direction of the vehicle at the same position as the “D” position in the longitudinal direction of the vehicle, for example, and the shift lever 48 is operated to the “M” position.
  • either the “D” range or the “L” range is changed according to the operation of the shift lever 48.
  • the “M” position is provided with an upshift position “10” and a downshift position “one” in the longitudinal direction of the vehicle, and the shift lever 48 has their upshift position “10”.
  • ”Or downshift position“ 1 ”, either“ D ”range or“ L ”range is selected.
  • the five shift ranges from the “D” range to the “Shi” range that are selected in the “M” position are the total gear ratio that allows automatic shift control of the speed change mechanism 10 and the high speed within the change range of T. Gears (gears) so that there are multiple types of gear ranges with different total gear ratios T on the side (the gear ratio is the smallest), and the maximum gears that can be shifted by the automatic transmission 20 are different. This limits the gear shift range.
  • the shift lever 48 is automatically returned from the upshift position “+” and the downshift position “one” to the “M” position by a biasing means such as a spring.
  • the switching device 4 6 has a shift position sensor 4 9 for detecting each shift position of the shift lever 48.
  • the signal indicating the shift position F SH of the shift lever 48 and the number of operations at the “M” position are output to the electronic control unit 40.
  • the shift control unit 50 controls the shift mechanism 10 based on the shift map stored in advance as shown in FIG.
  • the automatic switching control of the state is executed, the hybrid control means 5 2 executes the continuously variable transmission control of the power distribution mechanism 16, and the stepped transmission control means 5 4 executes the automatic transmission control of the automatic transmission unit 2 0 .
  • the speed change mechanism 10 is switched to the stepped speed change state, the speed change mechanism 10 is automatically controlled in the range of the first speed gear to the fifth speed as shown in FIG.
  • the speed change mechanism 10 when the speed change mechanism 10 is in a continuously variable speed travel where the 0 is switched to a continuously variable speed state, the speed change mechanism 10 is the continuously variable speed ratio width of the power distribution mechanism 16 and the first speed gear stage of the automatic speed changer 20.
  • the automatic transmission control is performed within the variable range of the total transmission ratio r T of the transmission mechanism 10 that can be obtained with each gear stage that is automatically controlled within the range of the fourth to fourth gears.
  • This “D” position is also a shift position for selecting an automatic shift running mode (automatic mode) which is a control mode in which the automatic shift control of the speed change mechanism 10 is executed.
  • the switching control means 50 and the hybrid control means 5 2 are set so as not to exceed the highest speed side gear ratio or gear ratio of the speed change range.
  • stepped shift control means 54 automatic shift control is performed within the range of the total transmission ratio T that can be shifted in each shift range of the transmission mechanism 10. For example, when the speed change mechanism 10 is switched to the stepped speed change state, the speed change 10 is automatically controlled within the range of the total speed ratio T where the speed change mechanism 10 can change the speed in each speed range.
  • the speed change mechanism 10 becomes the variable speed ratio width of the power distribution mechanism 16 and the automatic speed changer 20 according to each speed range.
  • Automatic shift control is performed within the range of the total speed change ratio T that can be changed in each shift range of 10 to 10.
  • This “M” position is also a shift position for selecting a manual shift running mode (manual mode) which is a control mode in which the manual shift control of the speed change mechanism 10 is executed.
  • the speed change mechanism 10 (differential portion 11, power distribution mechanism 16) of the present embodiment is in a continuously variable transmission state (differential state) and a continuously variable transmission state, for example, a stepped transmission state (lock state). And can be selectively switched.
  • the differential action does not restrict the vehicle speed V, that is, the rotational speed ⁇ ⁇ of the output shaft 2 2 of the automatic transmission unit 20 is Regardless of the transmission member rotational speed ⁇ 18 that is uniquely determined based on the gear ratio, the engine rotational speed ⁇ ⁇ ⁇ can be freely set. Further, when the differential unit 11 is in a continuously variable transmission state, the engine rotational speed ⁇ ⁇ is a rotational speed restrained by the vehicle speed V.
  • the engine rotational speed ⁇ ⁇ may be different between the continuously variable transmission state and the continuously variable transmission state of the differential section 11 even at the same vehicle speed V.
  • FIG. 28 is a diagram showing the state of the differential section 11 during deceleration traveling on a collinear chart as shown in FIG. (A) in Fig. 28 is the case where the differential section 11 is in a continuously variable transmission state by the engagement (locking) of the switching clutch CO, and (b) is the case where the differential section 11 is not In the step shifting state, the operation of the engine 8 is stopped by the fuel force and the first
  • the vehicle decelerates as shown in Fig. 28 (a). Because the engine 8 cannot be stopped during running, as shown in Fig. 28 (b) In contrast, the drag torque of the engine 8 may be increased as compared to the stepless speed change state of the differential portion 11 in which the engine 8 can be stopped during deceleration. At this time, in accordance with the continuously variable transmission state of the differential unit 11 in which the engine 8 has a higher drag torque, in other words, the regenerative amount by the motor is reduced. When a uniform regenerative amount is set during driving and regeneration is performed by the motor, it is set even in the continuously variable transmission state of the differential unit 11 that becomes an engine state in which a large regenerative amount is obtained. Only the regenerative amount was obtained, and as a result, the regenerative amount could not be increased and the fuel consumption could be worsened.
  • the regenerative amount by the motor is changed based on whether or not the differential unit 1 1 is in a continuously variable transmission state (differential state), that is, the drag torque of the engine 8 Set the amount of regeneration according to.
  • the deceleration traveling determination means (deceleration traveling determination unit) 2 80 is based on the accelerator opening Acc while the vehicle is traveling in deceleration with the accelerator off, ie, coasting (cost It is determined whether or not the vehicle is running. For example, when it is determined that the vehicle rain is traveling while decelerating by the decelerating travel determining means 28, the hybrid control means 52 uses the fuel injection valve 92 to improve fuel efficiency. Stop fuel supply to engine 8.
  • Mock state determination means (lock state determination unit) 2 8 2 is determined by the differential unit 11 when the vehicle is determined to be decelerating according to the above-mentioned decelerating traveling determination unit 2 80. Since the amount of regeneration by the motor is changed based on whether the motor is in a non-differential state or not, the power distribution mechanism 16 is in a non-differential state (locked state), that is, the differential unit 1 1 is in a non-stepless speed change state. It is determined whether or not it has been done. For example, the lock state determination means 2 8 2 is in the stepped control region where the speed change mechanism 10 is controlled to be switched to the stepped speed change state by the switch control means 50 or the speed change mechanism 10 is switched to the stepless speed change state.
  • the speed change mechanism 10 is continuously variable based on the vehicle state indicated by the vehicle speed V and the output torque T OUT from the switching diagram shown in FIG. It is determined whether or not the differential unit 11 is in a continuously variable transmission state depending on whether or not it is within the stepped control region to be set.
  • the regenerative amount setting means (regenerative amount setting unit) 2 8 4 determines that the vehicle is decelerating by the decelerating running determination means 2 8 0, the regenerative amount setting means 2 8 2 Based on the determination result of whether or not the differential section 11 is in a continuously variable transmission state, the regeneration amount of the motor, for example, the second motor M 2 during regeneration by the hybrid control means 52 is set.
  • Fig. 29 shows an example of the relationship (map) between the preset vehicle speed V and the regeneration amount R.
  • the solid line A shown in Fig. 29 shows the relationship used to set the regeneration amount R when the differential section 11 is in a continuously variable transmission state (stepped transmission state) (that is, in a stepped state) Therefore, stepped regeneration amount map A.
  • the solid line B shows the relationship used for setting the regeneration amount R when the differential portion 11 is in a continuously variable transmission state and the engine 8 is stopped (ie, continuously variable), that is, the continuously variable regeneration amount map. B.
  • the differential unit 1 1 is in the continuously variable transmission state (during stepped), it is in the continuously variable transmission 5 state (in the continuously variable state).
  • the regenerative amount R at the same vehicle speed V is set to be smaller than that of the stepless state. This can be thought of as the amount of regeneration generated by the engine braking due to the drag torque of the engine 8 in the non-continuously variable transmission state, and the total drive of the engine braking force and the regenerative braking force.
  • Power source engine 8, electric motor
  • the braking force is substantially the same in both the continuously variable transmission state and the continuously variable transmission state of the differential section 11.
  • the stepped regeneration amount map A differs depending on the gear ratio of the automatic transmission unit 20, and the larger the gear ratio (that is, the lower the gear speed side gear), the same vehicle 5 speed V In contrast, since the engine speed N E is higher, the regenerative amount R is set to be smaller at the same vehicle speed V as the gear ratio is increased.
  • stepped regeneration amount map A differs depending on the gear ratio of the automatic transmission unit 20, and the larger the gear ratio (that is, the lower the gear speed side gear), the same vehicle 5 speed V In contrast, since the engine speed N E is higher, the regenerative amount R is set to be smaller at the same vehicle speed V as the gear ratio is increased.
  • stepped regeneration amount map A differs depending on the gear ratio of the automatic transmission unit 20, and the larger the gear ratio (that is, the lower the gear speed side gear), the same vehicle 5 speed V In contrast, since the engine speed N E is higher, the regenerative amount R is set to be smaller at the same vehicle speed V as the gear ratio is increased.
  • stepped regeneration amount map A differs depending on
  • 'A differs depending on whether it is a stepped shift state due to the engagement (locking) of the switching clutch CO or a stepped shift state due to the engagement (locking) of the switching brake B 0.
  • ⁇ engine speed N E is lower than the same vehicle speed 0 'V, so regenerative amount R even when switching brake B 0 is engaged at the same vehicle speed V Will be increased.
  • both the stepped regeneration amount map A and the -stepped regeneration amount map B are examples when the engine 8 is fuel cut, but when the engine 8 is not fuel cut, for example, the engine 8 When idling speed N IDL is maintained and 5 is autonomously rotating, engine 8 is not dragged, so that regenerative amount R is larger than when engine 8 is fuel cut. To be told. '
  • the regenerative amount setting means 2 8 4 allows the differential section 1 1 to be in a continuously variable transmission state while traveling at a reduced speed.
  • the regeneration amount R during regeneration control by the hybrid control means 52 is set based on the actual vehicle speed V from the stepped regeneration amount map A in FIG.
  • the regeneration amount setting means 2 8 4 is used to change the actual vehicle speed V from the continuously variable regeneration amount map B in Fig. 1 2 when the differential unit 1 1 is in a continuously variable transmission state during deceleration. Based on this, set the regenerative amount R for regenerative control by hybrid control means 5.
  • the hybrid control means 52 determines that the vehicle is decelerating by the deceleration traveling determination means 2 8 0, the differential section 11 by the lock state determination means 2 8 2 Based on the determination result of whether or not the continuously variable transmission state is set, the motor is set so that the regeneration amount R of the second motor M 2 set by the regeneration amount setting means 2 8 4 can be obtained. Regenerative control is performed.
  • the hybrid control means 52 can It functions as a regeneration control means that changes the regeneration amount by the electric motor based on whether or not it is in a differential state.
  • the regenerative amount setting means 2 8 4 means that the regenerative amount R is larger when the differential unit 1 1 is in a continuously variable transmission state than when it is in a continuously variable transmission state.
  • 5 2 indicates that when the differential unit 1 1 is in a continuously variable transmission state (differential state), the amount of regeneration by the electric motor is increased compared to when it is in a continuously variable transmission state (non-differential state). It is.
  • the regeneration amount R corresponding to the continuously variable transmission state and the continuously variable transmission state of the differential unit 11 is set, and the regeneration amount can decrease as the drag torque of the engine increases.
  • the regenerative amount increases and fuel efficiency improves in the continuously variable transmission state.
  • the regeneration amount expressing means 2 8 4 is based on the stepped regeneration amount map A or the stepped regeneration amount map B that is set based on whether or not the engine 8 is fully cut during deceleration. Based on the actual vehicle speed V, the regeneration amount R during regeneration control by the hybrid control means 52 may be set.
  • the hybrid control means 52 is the decelerating running determination means 28. If it is determined that the vehicle is decelerating, the regenerative amount R of the motor set by the regenerative amount setting means 2 8 4 is obtained based on whether or not the fuel is being applied. In this way, regenerative control is performed by an electric motor.
  • the hybrid control means 52 can change the regenerative amount R by the motor based on whether or not the differential unit 11 is in the differential five-motion state during deceleration traveling,
  • the regenerative amount R by the motor may be changed based on whether or not power is being applied.
  • the regenerative amount setting means 2 8 4 can increase the regenerative amount R when the differential unit 1 1 is in a continuously variable transmission state compared to when it is in a continuously variable transmission state.
  • the regenerative amount R is set to be larger than when the fuel cut is performed.
  • the hybrid control means 52 is The amount of regeneration by the motor is increased compared to when in a continuously variable transmission state (non-differential state).
  • the regenerative amount is set according to whether the engine 8 is fuel-cut or not, and the engine drag torque may be generated to reduce the regenerative amount.
  • the regenerative amount R is set uniformly according to the state where the fuel is applied, the regenerative amount increases and the fuel consumption increases in the state where the engine 8 is not fueled. improves.
  • Fig. 30 is a flowchart explaining the main part of the control operation of the electronic control unit 40, that is, the control operation for setting the regenerative amount during deceleration traveling. For example, an extremely short cycle of about several milliseconds to several tens of milliseconds It is executed repeatedly in time.
  • the vehicle is decelerating while the accelerator is off based on the accelerator opening Acc That is, it is determined whether or not the vehicle is coasting (coast driving).
  • the lock state determination means 2 8 2 that is, in SB 2 corresponding to the lock state determination process, the power distribution mechanism 16 is In other words, whether the differential unit 11 is in a continuously variable transmission state or not is determined, for example, from the switching diagram shown in FIG. Whether or not the differential section 11 is in a continuously variable transmission state is determined depending on whether or not it is within the control region.
  • the regeneration amount setting means 84 and the hybrid control means 52 that is, the SB 3 corresponding to the hybrid control process, for example, the stepped regeneration amount map A in FIG.
  • the regenerative amount R of the motor for example, the second motor M2
  • regeneration control by the motor is performed so that the set regeneration amount R of the motor can be obtained.
  • the regeneration amount R may be increased when the engine 8 is not fully cut.
  • the regeneration amount setting means 2 8 4 and the hybrid control means 52 that is, the SB 4 corresponding to the hybrid control process, for example, the continuously variable regeneration amount map of FIG.
  • the regeneration amount R of the electric motor for example, the second electric motor M2
  • regeneration control by the motor is performed so that the set regeneration amount R of the motor can be obtained.
  • the regeneration amount R may be increased.
  • SB 5 If the determination of SB 1 is negative, in SB 5, the control operation by various control means of the control device 40 when the vehicle is not decelerating is executed, or this routine is terminated. .
  • a drive device is obtained that has both the advantages of improving the fuel efficiency of a transmission whose ratio is changed and the high transmission efficiency of a gear transmission that mechanically transmits power.
  • the differential unit 11 is set to a continuously variable transmission state in the normal output range of the engine where the vehicle runs at low to medium speeds and low to medium power. It is.
  • the differential unit 11 is set to a continuously variable transmission state at high speed, the output of the engine 8 is transmitted to the drive wheels exclusively through a mechanical power transmission path, and the gear ratio is changed electrically. Since the conversion loss between power and electric energy generated when operating as a transmission to be operated is suppressed, fuel efficiency is improved.
  • the differential unit 11 is set to a continuously variable transmission state in high output traveling, the region to be operated as a transmission in which the gear ratio is electrically changed is low and low in medium and medium speeds.
  • the electrical energy that should be generated by the first motor M1 in other words, the maximum value of the electrical energy transmitted by the first motor M.1 can be reduced.
  • the second electric motor M 2 to which the mechanical energy is transmitted or the speed change mechanism 10 including the second electric motor M 2 is reduced in size.
  • the regeneration amount is changed by the hybrid control means 52 based on whether or not the differential section 11 is in a continuously variable transmission state, so that the regeneration amount corresponding to the drag torque of the engine 8 is increased.
  • regeneration is performed Te, i.e. the continuously-variable shifting state and the engine rotational speed N E of the engine rotational speed N E regardless of the vehicle speed V may be substantially zero is bound with the vehicle speed V is drag torque of the engine 8 by the differential action Regenerative amount R depending on the continuously variable transmission state that may be larger than the continuously variable transmission state, regeneration is performed, and the engine 8 drag torque may increase.
  • the regenerative amount increases and fuel efficiency improves.
  • the regeneration amount is increased compared to when the differential unit 11 is in a continuously variable transmission state.
  • variable shifting state as compared with the non-continuously-variable shifting state, since the Enjin speed N E can be reduced by the differential operation, the regeneration is carried out at more larger amount of regeneration in the same vehicle speed V during deceleration traveling vehicle Improved fuel economy.
  • the engine 8 rotates autonomously and the engine 8
  • the fuel force that does not generate the drag torque of the engine 8 and the engine 8 that may generate the drag torque Regeneration is performed at a regenerative amount R according to the state where the fuel is cut, and regeneration is performed at a regenerative amount R which is uniformly set according to the fuel cut state where drag torque of the engine 8 may be generated.
  • the amount of regeneration is increased and fuel consumption is improved as compared to
  • the regeneration amount setting means 28 4 sets the regeneration amount R at the time of regeneration control by the hybrid control means 52 using the stepped regeneration amount map A or the continuously variable regeneration amount map B.
  • This stepped regeneration amount map A or continuously variable regeneration amount map B has a predetermined relationship based on whether or not the differential section 11 is in a continuously variable transmission state during deceleration traveling.
  • it is also a stepped state due to the engagement (locking) of the switching clutch C 0 or the engagement of the switching brake B 0. It differs depending on whether it is a stepped shift state due to (lock), or it also differs depending on whether or not the engine 8 is fuel cut.
  • the vehicle speed V is the same by changing the rotation resistance of the engine 8, particularly in the non-stepless speed change state of the differential section 11 where the engine 8 is not stopped.
  • the regeneration amount can be increased or decreased.
  • FIG. 31 is a functional block diagram for explaining the main part of the control function by the electronic control unit 40, and corresponds to FIG.
  • the engine 8 includes a variable valve timing mechanism 90 that changes the operation timing of the intake and exhaust valves, and a fuel injection valve 92 that supplies or stops fuel, as in the embodiment of FIG.
  • some cylinders or all cylinders are in a deconvolution state, that is, in-cylinder pressure reduction control state, and the cylinder is stopped by stopping the fuel supply.
  • This is a cylinder variable pressure control engine with variable cylinder pressure that enables the fuel supply to be reduced by substantially changing the displacement.
  • the hybrid control means 52 can reduce the necessary cylinder pressure reduction control cylinder number C by the variable valve timing mechanism 90 so that the engine brake torque required for the required braking torque T B * can be obtained during deceleration.
  • a command is output to the engine output control device 43 so that the in-cylinder pressure reduction control is executed with only D being in the decompressed state, and the in-cylinder pressure reduction control amount of the engine 8, that is, the decompression amount is changed.
  • this decompression amount is varied according to the cylinder pressure reduction control cylinder number C D of the engine 8 to be in the decompression state.
  • the cylinder pressure reduction control cylinder number The greater the CD, the greater the decompression amount.
  • the broken line A MAX indicates that all cylinders are in the decompressed state and the decompressed amount is maximized
  • the broken line A MIN indicates that all cylinders are in the decompressed state. This is the case when the decompression amount is minimized.
  • Decompression as is evident from stepped regeneration map A (including dashed line A MAX and dashed line A MIN ).
  • the drag torque of engine 8 can be reduced and the regenerative amount can be increased during deceleration, so that the regenerative amount R at the same vehicle speed V is increased. Decomf like this.
  • the regenerative amount is set in the range from the broken line A MAX to the broken line A min .
  • the continuously variable regeneration amount map B shown in FIG. 29 since the engine 8 is in a rotation stopped state, there is no change in the regeneration amount based on the decompression amount during the in-cylinder pressure reduction control.
  • the regenerative amount setting means 2 8 4 determines the actual vehicle speed V from the stepped regenerative amount map A set based on the decompression amount when the engine 8 is performing in-cylinder pressure reduction control during deceleration traveling. Based on the above, set the regeneration amount R during regeneration control by the hybrid control means 52.
  • the hybrid control means 5 is set by the regeneration amount setting means 84 based on the decompression amount when it is determined that the vehicle is decelerating by the halfway IJ fixing means 80. Regenerative control by the motor is performed so that the regenerative amount R of the generated motor can be obtained.
  • the hybrid control means 52 is different from the differential section 11 during the deceleration traveling.
  • the regenerative amount R by the motor is changed based on the decompression amount.
  • the regenerative amount setting means 2 8 4 is configured so that when the differential unit 1 1 is in a continuously variable transmission state, the regeneration amount R is set to be larger than that in a non-continuously variable transmission state. 8 is set so that the regenerative amount R increases as the decompression amount increases when in-cylinder pressure reduction control is performed, so the hybrid control means 5 2 increases the regenerative amount by the motor as the decompression amount increases. It is.
  • the regenerative amount when engine 8 is performing in-cylinder pressure reduction control while decelerating, decompression occurs. Since the regenerative amount is set according to the amount, the regenerative amount may be reduced when the engine drag torque becomes large, and the regenerative amount is uniformly regenerated according to the case where the in-cylinder pressure reduction control is not performed. Compared to the amount R being set, when the engine 8 is performing in-cylinder pressure reduction control, the greater the decompression amount, the greater the regeneration amount and the better the fuel consumption.
  • the hybrid control step for example, the stepped regeneration amount map A in FIG.
  • the regeneration amount R of the motor for example, the second motor M2
  • regeneration control by the motor is performed so that the set regeneration amount R of the motor can be obtained.
  • the regeneration amount R increases as the decompression amount increases.
  • the hybrid control means 52 uses the decompression amount based on the decompression amount. Since the regeneration amount is changed, the engine speed The drag torque of engine 8 can be changed even if N E is the same.Regeneration is performed at the regeneration amount R corresponding to the decompression amount in the in-cylinder pressure reduction control, and the drag torque of engine 8 is large. The amount of regeneration is increased and fuel efficiency is improved as compared to the case where regeneration is performed at a regenerative amount R that is uniformly set according to the state in which the decompression amount that can be reduced is reduced.
  • step S2 of the flow chart shown in FIG. 3 the power distribution mechanism is based on the fact that the switch 4 4 is manually operated to select the locked state of the power distribution mechanism 16 or the non-continuously variable transmission state of the speed change mechanism 10. It is determined whether 1 6 is in a hooked state, that is, whether differential unit 1 1 is in a continuously variable transmission state.
  • the speed change as shown in FIG. 10 where each speed change line is changed to the high vehicle speed side as compared with the speed change map used at the time of predetermined traveling as shown in FIG.
  • the switching diagram for switching between the stepped speed change state and the stepless speed change state is a lower output torque side (ie accelerator A switching diagram as shown in FIG. 10 changed to the lower opening side of the opening may be used.
  • the shift diagram for uphill / downhill as shown in FIG. 10 may be a shift diagram that prohibits an upshift to the highest gear.
  • the 4 ⁇ 5 upshift line in FIG. 10 may be deleted.
  • the lock state determination means 8 4 determines whether or not the power distribution mechanism 16 is in the differential state, for example, from the switching line diagram shown in FIG. Although it is determined based on whether or not it is within the continuously variable control region based on the state, it is based on the determination by the switching control means 50 whether the speed change mechanism 10 is within the stepped control region or the continuously variable control region. Determine whether the power distribution mechanism 1 6 is in a differential state May be.
  • the transmission mechanisms 10 and 70 of the above-described embodiment are configured so that the differential unit 1 1 (power distribution mechanism 1 6) can be operated as an electric continuously variable transmission and is not operated.
  • the non-differential state locked state
  • the switching between the continuously variable transmission state and the stepped transmission state is the differential unit 1 1 Is switched between the differential state and the non-differential state.
  • the transmission ratio of the differential unit 1 1 is continuously changed. Instead, it can function as a stepped transmission by changing it stepwise.
  • the differential unit 11 does not necessarily need to be configured to be able to switch between the continuously variable transmission state and the stepped transmission state, and the transmission mechanism 10.7 (differential unit 1 1, power distribution mechanism 1 6) Can be switched between a differential state and a non-differential state, the present invention can be applied.
  • the stepped speed change state means that power is transmitted exclusively through a mechanical transmission path without using an electric path.
  • the first part that constitutes a part of the automatic transmission unit 20.7 as an engagement device that selectively switches the power transmission path between the power transmission enabled state and the power transmission cut-off state.
  • the clutch C 1 and the second clutch C 2 were used, and the first clutch C 1 and the second clutch C 2 were disposed between the automatic transmission portion 0.7 2 and the differential portion 11 1,
  • the first clutch C 1 and the second clutch C 2 do not necessarily have to be provided, provided that at least one engagement device capable of selectively switching the power transmission path between the power transmission enabled state and the power transmission cut-off state is provided.
  • the engaging device may be connected to the output shaft 22 or may be connected to a rotating member in the automatic transmission units 20 and 72. Further, the engaging device does not need to constitute a part of the automatic transmission units 20 and 72, and may be provided separately from the automatic transmission units 20 and 72.
  • the first carrier CA 1 is connected to the engine 8, the first sun gear S 1 is connected to the first motor M 1, and the first ring gear R 1 is transmitted.
  • the member 18 are 1 Planetary gear unit 2 4 3 elements CA and SKR 1 can be connected to any one of them.
  • the engine 8 is directly connected to the input shaft 14.
  • the engine 8 may be operatively connected via a gear, a belt, etc., and is arranged on a common shaft center. There is no need to
  • the first motor M 1 and the second motor M 2 are arranged concentrically with the input shaft 14, and the first motor M 1 is connected to the first sun gear S 1 and the second motor M 2 is connected to the transmission member 18, but is not necessarily arranged as such.
  • the first electric motor M 1 is operatively connected to the first sun gear S 1 via a gear, a belt, a speed reducer, or the like.
  • the second electric motor M 2 may be connected to the transmission member 18.
  • the second electric motor M 2 is connected to the transmission member 18, but may be connected to the output shaft 22, or may be connected to a rotating member in the automatic transmission units 20, 72. Also good.
  • a configuration in which the second motor M 2 is connected to the transmission member 18, the output shaft 2 2, etc. via a gear, a belt, a speed reducer, etc is also provided in the power transmission path from the transmission member to the drive wheel. It is an aspect.
  • the power distribution mechanism 16 described above is provided with the switching clutch C O and the switching brake B 0, both the switching clutch C 0 and the switching brake B 0 are not necessarily provided.
  • the switching clutch C 0 selectively connects the sun gear S 1 and the carrier CA 1 ⁇ 5.
  • the switching clutch C 0 is connected between the sun gear S 1 and the ring gear R 1 or between the carrier CA 1 and the ring gear R 1.
  • R 1 may be selectively linked.
  • any one of the three elements of the first planetary gear unit 24 may be connected to each other.
  • the switching clutch C 0 is engaged when the neutral “N” is set, but it is not always necessary to be engaged.
  • the hydraulic friction engagement devices such as the switching clutch C 0 and the switching brake B 0 are magnetic powder type electromagnetics such as powder (magnetic powder) clutches, electromagnetic clutches, and meshing type dog clutches. It may consist of a mechanical or mechanical engagement device.
  • the automatic transmission units 20, 7 2 are provided in the power transmission path between the transmission member 18 and the drive wheel 38, which are output members of the differential unit 11, that is, the power distribution mechanism 16.
  • an automatic transmission which is well known as a manual transmission, is an always-matching parallel twin-shaft type, but the gear stage can be automatically switched by a select cylinder and a shift cylinder.
  • Another type of power transmission device may be provided.
  • the automatic transmission units 20 and 72 are connected in series with the differential unit 11 via the transmission member 18. However, a countdown shaft is provided in parallel with the input shaft 14.
  • the automatic transmission units 20 and 72 may be arranged concentrically on the counter shaft.
  • the differential unit 11 and the automatic transmission units 20 and 7 2 are connected to each other through, for example, a pair of transmission gears as a transmission member 18, a pair of transmission members composed of a sprocket and a chain, and the like. It is connected so that power can be transmitted.
  • the power distribution mechanism 16 as the differential gear of the above-described embodiment includes, for example, a pinion that is rotationally driven by an engine and a pair of bevel gears that mesh with the pinion. 2
  • a differential gear unit operatively connected to the motor M 2 may be used.
  • the power distribution mechanism 16 of the above-described embodiment is composed of one set of planetary gear units, but is composed of two or more planetary gear units, and in a non-differential state (constant speed change state). It may function as a transmission having three or more stages.
  • the planetary gear device is not limited to the single pinion type, but may be a double pinion type planetary gear device.
  • the switch 44 in the above-described embodiment is a single-type switch.
  • it is a push-button type switch, or two push-button type switches that can hold only one alternative state.
  • Any switch such as a switch, lever type switch, slide type switch, or the like that can selectively switch between continuously variable speed running (differential state) and stepped speed variable running (non-differential state).
  • a neutral position is provided for switch 4 4
  • a switch that can select whether the switch 4 4 is set to valid or invalid, that is, equivalent to the neutral position is provided separately from switch 4 4 instead of the neutral position. May be.
  • At least one of continuously variable speed driving (differential state) and stepped variable speed driving (non-differential state) is selected in response to the driver's voice regardless of manual operation.
  • a device that can be switched automatically or a device that can be switched by foot operation may be used.
  • the target deceleration control means 1 8 4 gives the highest priority to obtaining the braking torque by the regenerative torque in order to obtain the necessary braking torque T B * to achieve the target deceleration G *.
  • the torque that cannot be obtained by the regenerative torque is obtained by the engine brake kit, but the braking torque may be obtained by using other braking devices such as a wheel brake provided on the wheel in addition to the engine braking torque.
  • the priority of wheel brakes is lowered. ⁇ .
  • the engine 8 of the above-described embodiment decompresses the cylinder by opening the intake valve or the exhaust valve or shifting the timing of the intake valve or the exhaust valve in the compression stroke of the 4-cycle engine.
  • In-cylinder pressure change suppression state was established by setting this state, but instead of or in addition to the decompression state, when the cylinder volume expansion other than the compression stroke of 4-cycle engine, for example, the throttle opening is positive in the intake stroke It may be possible to suppress the rotation resistance of the crankshaft by suppressing the pressure variation in the cylinder by suppressing the generation of the negative pressure by opening it to the open. Even in this case, the engine 8's bombing loss is reduced.
  • the engine 8 may be configured such that the mechanical connection between the crankshaft and the piston can be disconnected, and the in-cylinder pressure change suppression state may be established by stopping the reciprocating motion of the viston.
  • the hybrid control means 52 used the second motor as the motor during regeneration.
  • the engine 8 starts to drive wheels 3. Since the power transmission path to 8 is mechanically connected and the first motor M 1 is also rotated by the drive wheels 3 8, the first motor M l and the non-differential state (in the stepped state)
  • the second electric motor M 2 may be used for regeneration.
  • an electric motor that can be rotated by a wheel for example, 3rd motor M 3
  • hybrid control means 5 2 is provided with first motor M 1 and / or Alternatively, instead of or in addition to the second electric motor M2, regeneration may be performed using the third electric motor M3 as the electric motor.
  • this motor M3 Such as an electric motor that is operatively connected to the motor 8, an electric motor that is operatively provided on the output shaft 22, and an electric motor that drives a wheel (second driving wheel) different from the driving wheel 38.
  • the automatic transmission units 20, 7 2 are provided in the power transmission path between the transmission member 18, which is the differential member 11, that is, the output member of the power distribution mechanism 16, and the drive wheels 38.
  • a continuously variable transmission which is a kind of automatic transmission, is a constant-combination parallel two-shaft type well known as a manual transmission, but with a select cylinder and a shift cylinder.
  • Other types of power transmission devices are provided, such as an automatic transmission that can automatically switch gears, and a synchronous mesh type manual transmission that switches gears by manual operation. It may be.
  • the power distribution mechanism 16 is brought into a constant speed change state as a whole so as to be in a stepped speed change state.
  • the stepped speed change state means that power is transmitted exclusively through a mechanical transmission path without using an electric path.
  • a plurality of fixed gear ratios are stored in advance so as to correspond to the gear positions in the stepped transmission, and the automatic transmission unit 20 uses the plurality of fixed gear ratios. , 72 2 may be executed.
  • the present invention can be applied even if the automatic transmission units 20 and 72 are not necessarily provided.
  • the switching device 46 of the above-described embodiment includes a shift lever 48 that is operated to select a plurality of types of shift positions.
  • a push button type can be used.
  • a switch that can select multiple types of shift positions such as a slide switch, or a device that can switch between multiple types of shift positions in response to the driver's voice regardless of manual operation
  • a device that can switch the shift position may be used.
  • the shift lever 48 is operated to the “M” position, the shift range is set, but the shift stage is set, that is, the highest speed shift stage of each shift range is set as the shift stage. It may be set.
  • the speed change stage is switched and the shift is executed.
  • the shift lever 4 8 is manually moved to the upshift position “10” or downshift position “1” in the “M” position.
  • the automatic transmission unit 20 sets one of the first to fourth gears according to the operation of the shift lever 48.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

A controller enabling a reduction in the size of a differential mechanism and an increase in fuel economy and capable of preventing busy shift from occurring in a drive device having the differential mechanism and a transmission. The drive device comprises a changeover clutch (C0) or a changeover brake (B0) to changeover the transmission mechanism (10) between a continuously variable transmission state and a stepped transmission state to provide both advantages of the improvement of the fuel consumption of the transmission with electrically changeable gear ratio and the high transmitting efficiency of a gear type transmission device mechanically transmitting a power. Also, if a necessary drive force or a drive force source braking cannot be obtained when an overall gear ratio ϜT is set to a lower vehicle speed side than that in a prescribed traveling or the load torque of a motor is not within an allowable range, a differential part (11) is changed over to the stepped transmission state by a changeover control means (50). As a result, the drive force or the drive source braking larger than that in the prescribed traveling can be provided without allowing the load torque of the motor to exceed an allowable range and the busy shift can be prevented from occurring.

Description

車両用駆動装置の制御装置 技術分野  Technical Field of Control Device for Vehicle Drive Device
本発明は、差動作用が作動可能な差動機構と電動機とを備える車両用駆動装 置に係り、特に、 電動機などを小型明化する技術に関するものである。 田  The present invention relates to a vehicle drive device including a differential mechanism capable of operating a differential action and an electric motor, and more particularly to a technique for miniaturizing an electric motor and the like. Rice field
背景技術  Background art
エンジンの出力を第 1電動機および出力軸へ分配する差動機構と、 その差動機 構の出力軸と駆動輪との間に設けられた第 2電動機とを、 備えた車両用駆動装置 が知られている。 例えば、特許文献 1、 3、 5などに言己載されたハイブリッド車 雨用駆動装置がそれである。 このようなハイブリツド車両用駆動装置では、差動 機構が例えば遊星歯車装置で構成され、 その差動作用によりエンジンからの動力 の主部を駆動輪へ機械的に伝達し、 そのエンジンからの動力の残部を第 1電動機 から第 電動機への電気パスを用いて電気的に伝達することにより変速比が連続 的に変更される変速機として機能させられ、例えば電気的な無段変速機として機 能させられ、 エンジンを最適な作動状態に維持しつつ車両を走行させるように制 ' 御装置により制御されて燃費が向上させられる。  2. Description of the Related Art A vehicle drive device that includes a differential mechanism that distributes engine output to a first motor and an output shaft, and a second motor provided between the output shaft of the differential mechanism and a drive wheel is known. ing. For example, it is a hybrid vehicle rain drive device described in Patent Documents 1, 3, 5 and the like. In such a hybrid vehicle drive device, the differential mechanism is composed of, for example, a planetary gear device, and the main part of the power from the engine is mechanically transmitted to the drive wheels by the differential action, and the power from the engine is transmitted. The remaining portion is electrically transmitted using an electric path from the first motor to the first motor, thereby functioning as a transmission in which the gear ratio is continuously changed, for example, functioning as an electric continuously variable transmission. Therefore, the fuel consumption is improved by being controlled by the control device so that the vehicle travels while maintaining the engine in an optimum operating state.
特許文献 1 :特開 2 0 0 3— 1 2 7 6 7 9号公報  Patent Document 1: Japanese Laid-Open Patent Publication No. 2 0 0 3-1 2 7 6 7 9
特許文献 2 :特開 2 0 0 1— 3 3 9 8 0 5号公報  Patent Document 2: Japanese Patent Laid-Open No. 2 00 1-3 3 9 8 0 5
特許文献 3 :特開 2 0 0 3— 3 0 1 7 3 1号公報  Patent Document 3: Japanese Laid-Open Patent Publication No. 2 0 3-3 0 1 7 3 1
特許文献 4 :特開 2 0 0 2— 8 9 3 0 7号公報  Patent Document 4: Japanese Patent Application Laid-Open No. 2000-089
特許文献 5 :特開 2 0 0 4 - 2 7 0 6 7 9号公報 一般に、 無段変速機は車両の燃費を良くする装置として知られている一方、 有段式自動変速機のような歯車式伝動装置は伝達効率が良い装置として知られて いる。 しかし、 それ等の長所を兼ね備えた動力伝達機構は未だ存在しなかった。 例えば、上記特許文献, 1に示すようなハイプリッド車両用駆動装置では、 第 1電 動機から第 2電動機への電気工ネルギの電気パスすなわち車両の駆動力の一部を 電気工ネルギで伝送する伝送路を含むため、 エンジンの高出力化に伴ってその第' 1電動機を大型化させねばならないとともに、 その第 1電動機から出力される電 気エネルギにより駆動される第 2電動機も大型化させねばならないので、 駆動装 置が大きくなるという問題があった。 或いは、 エンジンの出力の一部が一旦電気 エネルギに変換されて駆動輪に伝達されるので、高速走行などのような車両の走 行条件によつてはかえつて燃費が悪化する可能性があつた。 上記動力分配機構が 電気的に変速比が変更される変速機例えば電気的 C V Tと称されるような無段変 速機として使用される場合も、 同様の課題があった。 Patent Document 5: Japanese Patent Laid-Open No. 2 0 0 4-2 7 0 6 7 9 Generally, a continuously variable transmission is known as a device that improves the fuel consumption of a vehicle, while a gear like a stepped automatic transmission Is known as a device with good transmission efficiency Yes. However, there has not yet been a power transmission mechanism that combines these advantages. For example, in a hybrid vehicle drive apparatus as shown in Patent Document 1 above, the electric path of the electric energy from the first electric motor to the second electric motor, that is, transmission in which a part of the driving force of the vehicle is transmitted by the electric energy. The first electric motor must be enlarged as the engine output increases, and the second electric motor driven by the electric energy output from the first electric motor must be enlarged. As a result, there was a problem that the drive device became large. Alternatively, since part of the engine output is once converted into electric energy and transmitted to the drive wheels, there is a possibility that the fuel consumption will be deteriorated depending on the driving conditions of the vehicle such as high-speed driving. . The same problem has been encountered when the power distribution mechanism is used as a transmission in which the gear ratio is electrically changed, for example, a continuously variable transmission such as an electric CVT.
ところで、上述したようなハイブリツド車両用駆動装置では、高駆動トルク が要求された場合に対する第 2電動機の必要容量を小さくして、 その第 2電動機 を小型化するために、 差動機構 (電気的な無段変速機) の出力部材と駆動輪との 間の動力伝達経路に有段変速機が備えられるものも良く知られている。 このよう な車両用駆動装置では、 電気的な無段変速機と有段変速機との 1つの変速機構を 介して駆動力源の出力を駆動輪へ伝達すると共に、 それらの変速 asの各変速比 に基づいてその駆動装置の総合変速比が形成される。  By the way, in the hybrid vehicle drive device as described above, a differential mechanism (electrical) is used in order to reduce the required capacity of the second motor and reduce the size of the second motor when a high drive torque is required. It is also well known that a stepped transmission is provided in a power transmission path between an output member of a continuous variable transmission) and a drive wheel. In such a vehicle drive device, the output of the driving force source is transmitted to the drive wheels through one transmission mechanism of an electric continuously variable transmission and a stepped transmission, and each shift of each of the transmissions is changed. Based on the ratio, the overall transmission ratio of the drive is formed.
また、 一般に、 有段変速機を単独で備える車両用駆動装置では、 平坦路走行 時に比較して大きな車両駆動力或いはエンジンブレーキが必要な時には、例えば 登降坂走行時には、必要な車両駆動力やエンジンブレーキを得る為に、 平坦路走 行時に比較して変速比が相対的に大きな低車速側変速比 (口一ギヤ) が設定され る。 これによつて、平坦路走行時に比較して高車速側まで口一ギヤが維持される ことになり、 アップシフトが抑制されてビジーシフトが防止される。  Also, in general, in a vehicle drive device that includes a stepped transmission alone, when a large vehicle driving force or engine brake is required compared to when traveling on a flat road, for example, when traveling on an uphill or downhill, the required vehicle driving force or engine In order to obtain the brake, a low vehicle speed side gear ratio (a single gear) is set, which has a relatively large gear ratio compared to when running on a flat road. As a result, a single gear is maintained up to a higher vehicle speed than when traveling on a flat road, and an upshift is suppressed and a busy shift is prevented.
このことは、上述したような電気的な無段変速機と有段変速機との各変速比 に基づいて駆動装置の総合変速比が形成される場合も同じであり、例えば登降坂 走行時には、平坦路走行時に比較して低車速側の総合変速比が設定されることに よりアツプシフトが抑制されてビジ一シフトが防止される。 しかしながら、 上記電気的な無段変速機では、 電気的 C VTとして機能させ ' る為に、第 1電動機においてエンジントルクに応じた反力トルクを受け持つ必要 があることから、登坂走行時のように高負荷での走行となるような場合には受け 持つ反力トルク (負荷トルク) が増大する為、 第 1電動機の性能によっては駆動 5 力不足となる可能性があった。 見方を換えれば、登坂走行時に駆動力不足となら ないようにするには、第 1電動機を大型化する必要があった。 This also applies to the case where the overall gear ratio of the drive unit is formed based on the respective gear ratios of the electric continuously variable transmission and the stepped transmission as described above. By setting the overall gear ratio on the low vehicle speed side compared to when traveling on a flat road, the upshift is suppressed and the busy shift is prevented. However, in order to function as an electrical CVT in the electric continuously variable transmission described above, it is necessary for the first electric motor to take on the reaction torque corresponding to the engine torque. When running at high loads, the reaction torque (load torque) that is handled increases, so depending on the performance of the first motor, there is a possibility that the driving force will be insufficient. In other words, it was necessary to increase the size of the first motor so that the driving force would not be insufficient when running uphill.
また、 降坂走行時には第 2電動機を発電機として作動させて車両の運動エネ ルギを電気エネルギに変換して蓄電装置に回収すると共に、 その第 電動機の発 電抵抗によつて回生制動が行われて必要な駆動力源ブレーキが得られる。 しかし Also, when driving downhill, the second motor is operated as a generator to convert the vehicle's kinetic energy into electrical energy and collect it in the power storage device, and regenerative braking is performed by the power generation resistance of the first motor. The necessary driving force source brake can be obtained. However
10 ながら、 アップシフトが抑制されることで第 2電動機の負荷トルクが増大する可 能性があった。 また、蓄電装置の満充電などにより回生量が増やせない場合には 、 必要な駆動力源ブレーキが得られない可能性があつた。 However, there was a possibility that the load torque of the second motor could be increased by suppressing the upshift. In addition, if the regenerative amount cannot be increased due to full charge of the power storage device, the necessary driving force source brake may not be obtained.
このようなことから、 '前記特許文献 1に記載されたハイプリッド車両用駆動 装置の課題を解決できるような駆動装置に自動変速機が更に備えられるような車 For this reason, a vehicle in which an automatic transmission is further provided in a drive device that can solve the problem of the drive device for a hybrid vehicle described in Patent Document 1 above.
15 両用駆動装置において、 必要な駆動力や駆動力源ブレーキが得られると共にビジ —シフトが防止されることが望まれる。 15 It is desirable for the dual-purpose drive system to provide the necessary drive force and drive force source brake and to prevent busy shift.
' また、 上記特許文献 3に示すようなハイブリッド車両においては、減速走行 時に第 2電動機を発電機として作動させて車両の運動エネルギを電気工ネルギに 変換して蓄電装置に回収すると共に、 その第 2.電動機の発電抵抗によって回生制 In addition, in the hybrid vehicle as shown in Patent Document 3, the second electric motor is operated as a generator during deceleration traveling to convert the kinetic energy of the vehicle into electric energy and collect it in the power storage device. 2. Regenerative system by electric generator resistance
20 動が行われる。 このとき、 エンジンへの燃料供給を停止し、 エンジン回転速度を 零乃至略零としてエンジンの引き摺りを低減することにより回生量が多くされる 。 しかしながら、蓄電装置の満充電などにより回生量が増やせない場合には、 所 定の運転条件や運転者により設定された目標減速度が得られない可能性があつた。 20 moves. At this time, the amount of regeneration is increased by stopping the fuel supply to the engine and reducing the engine drag by setting the engine rotation speed to zero or substantially zero. However, if the regenerative amount cannot be increased due to full charge of the power storage device, etc., there is a possibility that the target deceleration set by the driver or the specified operating conditions may not be obtained.
また、 特許文献 4には、筒内圧力変化抑制気筒数可変エンジンを備える車両 Patent Document 4 discloses a vehicle equipped with an in-cylinder pressure change suppression cylinder number variable engine.
25 の減速走行時において、 回生制動を行わないときにはエンジンの全気筒がコンプ レツション状態とされることによりェンジンブレーキ効果が得られる一方、 回生 制動時には作動していないエンジンの一部の気筒が筒内圧力変ィヒ抑制状態すなわ ちデコンブレツション状態とされることによりエンジンブレーキ効果が小さくさ れて、 回生の有無に拘わらず同様の制動効果が得られる技術が開示されている。 しかしながら、 ェンジンの気筒数の変更と回生量とで減速度が制御されることか ら所定の運転条件や運転者により設定された目標減速度が得られない可能性があ つた。 When the regenerative braking is not performed at 25 deceleration, all the cylinders of the engine are brought into a compression state to obtain the engine braking effect. On the other hand, some cylinders of the engine that are not operating during the regenerative braking are cylinders. The engine braking effect is reduced by the internal pressure fluctuation suppression state, that is, the deconvolution state. Thus, a technique is disclosed in which the same braking effect can be obtained regardless of the presence or absence of regeneration. However, because the deceleration is controlled by changing the number of cylinders in the engine and the regenerative amount, there is a possibility that the target deceleration set by the driver or the predetermined operating conditions cannot be obtained.
また、 前記特許文献 3に記載されたハイプリッド車両用駆動装置の課題を解 決できるような車両用駆動装置においても、 同様に減速走行時に所定の運転条件 や運転者により設定された目標減速度が得られない可能性があつた。  Similarly, in a vehicle drive device that can solve the problems of the hybrid vehicle drive device described in Patent Document 3, predetermined driving conditions and a target deceleration set by the driver during deceleration traveling are also the same. There was a possibility that it could not be obtained.
また、特許文献 5には、 回生時において、 燃焼室の容積を変更することによ つてエンジンの圧縮比を低くすることで、 エンジンのフリクション (引き摺り) トルクを低減させて電動機の回生効率を向上する技術が開示されている。 このェ ンジンの弓 Iき摺りトルクは、 ェンジン回転速度によっても相違するものであり、 エンジンが低回転速度である程、 エンジンの引き摺りトルクがより低減させられ る可能性がある。 そうすると、 エンジンの引き摺りトルクが大きなエンジン状態 に合わせて、言い換えれば電動機による回生量が少なくなる方に合わせて、 減速 走行時に一律の回生量が設定されて電動機による回生が行われると、 大きな回生 量が得られるようなェンジン状態であっても回生量を増加させることができず燃 費が悪ィヒする可能性があった。  Also, Patent Document 5 describes that, during regeneration, the engine compression ratio is lowered by changing the volume of the combustion chamber, thereby reducing the engine friction (drag) torque and improving the regeneration efficiency of the motor. Techniques to do this are disclosed. The engine's bow I drag torque also varies depending on the engine speed, and the engine drag torque may be further reduced as the engine speed decreases. Then, when the regenerative amount by the motor is reduced and the uniform regeneration amount is set at the time of decelerating driving according to the engine state where the drag torque of the engine is large, in other words, according to the direction where the regeneration amount by the motor decreases, the large regeneration amount Even in the engine state where the above can be obtained, the amount of regeneration could not be increased and the fuel cost could be bad.
また、 前記特許文献 3に記載されたハイブリツド車両用駆動装置の課題を解 決できるような車両用駆動装置においても、 同様に減速走行時に一律に電動機に · よる回生が行われると回生量を増加させることができず燃費が悪ィヒする可能性が めつ 7こ。  Similarly, in the vehicle drive device that can solve the problem of the hybrid vehicle drive device described in Patent Document 3, the regeneration amount is increased when the regeneration is uniformly performed by the electric motor during the reduced speed traveling. There are seven possibilities that fuel consumption may be poor.
本発明は、以上の事情を背景として為されたものであり、 その第 1の目的と するところは、 エンジンの出力を第 1電動機および伝達部材へ分配する差動機構 と伝達部材から駆動輪への動力伝達経路に設けられた第 2電動機とを有する電気 的な無段変速部と、 その動力伝達経路の一部を構成する変速機とを備える車両用 駆動装置の制御装置において、 その駆動装置を小型化できたり、 或いはまた燃費 が向上させられると共に、 ビジーシフトが防止される制御装置を提供することに ある。 また、 本発明の第 2の目的とするところは、 エンジンの出力を第 1電動機お よぴ出力軸へ分配する差動作用が作動可能な差動機構と、 その差動機構から駆動 輪への動力伝達経路に設けられた第 2電動機とを備える車両用駆動装置において 、 その駆動装置を小型化できたり、 或いはまた燃費が向上させられると共に、減 速走行時の減速度の制御性能が向上する制御装置を提供することにある。 The present invention has been made against the background of the above circumstances. The first object of the present invention is to provide a differential mechanism that distributes engine output to the first motor and the transmission member, and from the transmission member to the drive wheel. In a control device for a vehicle drive device, comprising: an electric continuously variable transmission portion having a second electric motor provided in a power transmission path of the vehicle; and a transmission constituting a part of the power transmission route. It is an object of the present invention to provide a control device that can reduce the size of the vehicle and / or improve fuel efficiency and prevent busy shift. The second object of the present invention is to provide a differential mechanism capable of operating a differential action for distributing the engine output to the first electric motor and the output shaft, and from the differential mechanism to the drive wheel. In a vehicle drive device including a second electric motor provided in a power transmission path, the drive device can be reduced in size, or fuel efficiency can be improved, and deceleration control performance during deceleration traveling can be improved. It is to provide a control device.
また、 本発明の第 3の目的とするところは、 エンジンの出力を第 1電動機お よび出力軸へ分配する差動作用が作動可能な差動機構と、 その差動機構から駆動 輪への動力伝達経路に設けられた第 2電動機とを備える車両用駆動装置において. 、 その駆動装置を小型化できたり、 或いはまた燃費が向上させられると共に、減 速走行時の燃費が向上する制御装置を提供することにある。 - 発明の開示  The third object of the present invention is to provide a differential mechanism capable of operating a differential action that distributes engine output to the first electric motor and the output shaft, and power from the differential mechanism to the drive wheels. In a vehicle drive device including a second electric motor provided in a transmission path. Provided is a control device that can downsize the drive device or improve fuel consumption and improve fuel consumption during deceleration traveling. There is to do. -Disclosure of the invention
すなわち、 請求項 1または 2にかかる発明の要旨とするところは、 (a) ェンジ ンの出力を第 1電動機および伝達部材へ分配する差動 «と該伝達部材から駆動 輪への動力伝達経路に設けられた第 2電動機とを有して電気的な無段変速機とし て作動可能な無段変速部と、 前記動力伝達経路の一部を構成する変速部とを備え た車両用駆動装置の制御装置であって、 (b) 前記差動機構に備えられ、前記無段 変速部を電気的な無段変速作動可能な無段変速状態と l己無段変速部を電気的な 無段変速作動しな ヽ非無段変速状態とに選択的に切り換えるための差動状態切換 装置と、 (c) 所定の車両走行時に比較して大きな車両駆動力或いは駆動力源ブレ —キが必要なときには、 前記無段変速部と前記変速部とで形成される総合変速比 を所定の車両走行時に比較して低車速側に設定する変速制御手段と、 (d) 前記変 速制御手段により総合変速比が所定の車両走行時に比較して低車速側に設定され たときに、 必要な車両駆動力或いは駆動力源ブレーキが得られない場合には、或 いは前記第 1電動機および/または第 2電動機の負荷トルクが許容範囲でない場 合には、前記無段変速部を無段変速状態から非無段変速状態へ切り換える切換制 御手段とを、 含むことにある。  Specifically, the gist of the invention according to claim 1 or 2 is that: (a) the differential output for distributing the engine output to the first motor and the transmission member and the power transmission path from the transmission member to the drive wheel; A vehicle drive device comprising: a continuously variable transmission that has a second electric motor provided and that can operate as an electric continuously variable transmission; and a transmission that forms part of the power transmission path. (B) a continuously variable transmission state provided in the differential mechanism and capable of operating the continuously variable transmission unit with an electric continuously variable transmission; A differential state switching device for selectively switching to a continuously variable transmission state that does not operate; and (c) when a large vehicle driving force or driving force source brake is required as compared with a predetermined vehicle traveling time. An overall transmission ratio formed by the continuously variable transmission unit and the transmission unit (D) a required vehicle drive when the overall speed ratio is set to a low vehicle speed side compared to a predetermined vehicle travel time by the speed change control unit; If the force or driving force source brake cannot be obtained, or if the load torque of the first electric motor and / or the second electric motor is not within an allowable range, the continuously variable transmission unit is moved from the continuously variable transmission state. And switching control means for switching to the continuously variable transmission state.
このようにすれば、 差動状態切換装置により車両の駆動装置内の無段変速部 が、電気的な無段変速作動可能な無段変速状態とその電気的な無段変速作動しな い非無段変速状態例えば有段変速状態とに選択的に切り換えられることから、電 気的に変速比が変更させられる変速機の燃費改善効果と機械的に動力を伝達する 歯車式伝動装置の高い伝達効率との両長所を兼ね備えた駆動装置が得られる。 In this case, the continuously variable transmission unit in the vehicle drive device is provided by the differential state switching device. Can be selectively switched between a continuously variable transmission state in which an electric continuously variable transmission can be operated and a continuously variable transmission state in which the electric continuously variable transmission does not operate, for example, a stepped gear shifting state. Thus, there is obtained a driving device that has both the advantages of improving the fuel efficiency of a transmission whose gear ratio is changed and the high transmission efficiency of a gear transmission that mechanically transmits power.
例えば、 車両の低中速走行および低中出力走行となるようなエンジンの常用 出力域において上記無段変速部が無段変速状態とされると、 車両の燃費性能が確 保される。 また、 高速走行において無段変速部が非無段変速状態とされると、 専 ら機械的な動力伝達経路でェンジンの出力が駆動輪へ伝達されて、 電気的に変速 比が変更させられる変速機として作動させる場合に発生する動力と電気工ネルギ との間の変換損失が抑制されるので、 燃費が向上させられる。 また、 高出力走行 において無段変速部を非無段変速状態と.されると、 電気的に変速比が変更させら れる変速機として作動させる領域が車両の低中速走行およぴ低中出力走行となつ て、 電動機が発生すべき電気的エネルギ換言すれば電動機が伝える電気的ェネル ギの最大値を小さくできるので、 その電動機或いはそれを含む車両の駆動装置が' 一層小型化される。  For example, when the continuously variable transmission portion is set to a continuously variable transmission state in the normal output range of the engine where the vehicle is traveling at low and medium speeds and low and medium power, the fuel consumption performance of the vehicle is ensured. In addition, when the continuously variable transmission is in a continuously variable transmission state at high speeds, the engine output is transmitted to the drive wheels exclusively through a mechanical power transmission path, and the gear ratio is changed electrically. Since the conversion loss between the power and electric energy generated when operating as a machine is suppressed, fuel efficiency is improved. In addition, when the continuously variable transmission is set to a continuously variable transmission state during high-power traveling, the region where the continuously variable transmission is operated as a transmission whose gear ratio can be changed electrically is low and medium. In the output running, the electric energy that the motor should generate, in other words, the maximum value of the electric energy transmitted by the motor can be reduced, so that the motor or the drive device of the vehicle including the motor can be further downsized.
また、 前記無段変速状態と前記非無段変速状態とに切換え可能に構成される 無段変速部を備えた上記車両用駆動装置において、 所定の車両走行時に比較して 大きな車両駆動力或しヽは駆動力源ブレーキが必要なときであって、 変速制御手段 により総合変速比が所定の車両走行時に比較して低車速側に設定されたときに、 ' 必要な車両駆動力或いは駆動力源ブレーキが得られない場合には、或いは前記第 1電動機および/または第 1電動機の負荷トルクが許容範囲でない場合には、切 換制御手段により前記無段変速部が無段変速状態から非無段変速状態へ切り換え られるので、 エンジンの出力トルク (以下、 エンジントルクという) に応じた反 力トルクを第 1電動機が受け持つ必要が無くなつて第 1電動機のトルク容量に拘 わらず大きなエンジントルクが発生させられ得て必要な駆動力が得られる。 また 、 エンジンの回転速度が車速に拘束されることから車速と総合変速比とに応じた ェンジンブレーキトルクが発生させられ得て第 電動機による回生トルクを大き くすることなく必要な駆動力源ブレーキが得られる。 つまり、 第 1電動機および 第 2電動機の負荷トルクが許容範囲を超えることなく、 所定の車両走行時に比較 して大きな車両駆動力或しヽは駆動力源ブレーキが得られると共にビジーシフトが 防止される。 In the above vehicle drive device having a continuously variable transmission configured to be switchable between the continuously variable transmission state and the continuously variable transmission state, the vehicle driving force orヽ is when the driving force source brake is required, and when the overall speed ratio is set to the lower vehicle speed side compared to when the vehicle is traveling by the shift control means, the necessary vehicle driving force or driving force source When the brake cannot be obtained, or when the load torque of the first motor and / or the first motor is not within an allowable range, the continuously variable transmission unit is changed from the continuously variable transmission state to the continuously variable by the switching control means. Since it is switched to the shifting state, it is no longer necessary for the first motor to handle the reaction torque according to the engine output torque (hereinafter referred to as the engine torque), so it is large regardless of the torque capacity of the first motor. Njintoruku obtain the required driving force obtained is generated. In addition, since the engine speed is constrained by the vehicle speed, engine braking torque can be generated according to the vehicle speed and the overall gear ratio, and the necessary driving force source brake can be achieved without increasing the regenerative torque by the first motor. Is obtained. That is, the first motor and The load torque of the second motor does not exceed the allowable range, and a large vehicle driving force or driving force source brake can be obtained as compared to when the vehicle is traveling, and busy shift is prevented.
請求項 3にかかる発明では、前記所定の車両走行時に比較して大きな車両駆 動力或いは駆動力源ブレーキが必要なときとは、登坂路走行時或いは降坂路走行 時である。 このようにすれば、登坂路走行時或いは降坂路走行時に、 必要な車両 駆動力或レヽは駆動力源ブレーキが得られる。  In the invention according to claim 3, the time when a large vehicle driving force or driving force source brake is required as compared with the predetermined vehicle traveling time is when traveling on an uphill road or traveling on a downhill road. In this way, when traveling on an uphill road or traveling on a downhill road, the required vehicle driving force or level can be obtained as a driving force source brake.
また、 請求項 4にかかる発明の要旨とするところは、 (a) エンジンの出力を 第 1電動機および伝達部材へ分配する差動機構とその伝達部材から駆動輪への動 力伝達経路に設けられた第 1電動機とを有して電気的な無段変速機として作動可 能な無段変速部を備えた車両用駆動装置の制御装置であって、 (b) 前記差動機構 に備えられて、 その差動機構の差動作用を制限することにより前記無段変速部の 電気的な無段変速機としての作動を制限する差動制限装置と、 (c) 減速走行中に は、 エンジンブレーキによる制動トルクを得る為に、 前記差動機構の差動作用を 制限するエンジンブレーキ制御手段とを、 含むことにある。  The gist of the invention according to claim 4 is that: (a) a differential mechanism that distributes engine output to the first motor and the transmission member, and a power transmission path from the transmission member to the drive wheels; A control device for a vehicle drive device having a continuously variable transmission that can be operated as an electrical continuously variable transmission with the first electric motor, and (b) provided in the differential mechanism A differential limiting device for limiting the operation of the continuously variable transmission as an electric continuously variable transmission by limiting the differential action of the differential mechanism; and (c) an engine brake during deceleration traveling And an engine brake control means for limiting the differential action of the differential mechanism.
このようにすれば、 車両の駆動装置内の無段変速部が、差動制限装置により 差動機構の差動作用が制限されずその差動機構が差動作用が働く差動状態とされ • ることで電気的な無段変速作動可能な無段変速状態とされ、或いはまた、 差動制 限装置により差動機構の差動作用が制限されることで電気的な無段変速機として ' の作動が制限されることから、例えば差動機構がその差動作用をしない非差動状 態例えば口ック状態とされることで電気的な無段変速作動しない非無段変速状態 例えば有段変速状態とされ得ることから、 電気的に変速比が変更させられる変速 機の燃費改善効果と機械的に動力を伝達する歯車式伝動装置の高い伝達効率との 両長所を兼ね備えた駆動装置が得られる。  In this way, the continuously variable transmission in the vehicle drive unit is put into a differential state in which the differential action of the differential mechanism is not limited by the differential limiter. As a result, the electric continuously variable transmission can be operated, or the differential action of the differential mechanism is limited by the differential limiting device. Therefore, for example, the differential mechanism does not perform its differential action. Since it can be in a step shifting state, there is a drive unit that has both the advantages of improving the fuel efficiency of a transmission whose gear ratio is electrically changed and the high transmission efficiency of a gear transmission that mechanically transmits power. can get.
' 例えば、 車両の低中速走行および低中出力走行となるようなエンジンの常用 出力域において上記無段変速部が無段変速状態とされると、車両の燃費性能が確 保される。 また、 高速走行において無段変速部が非無段変速状態とされると、専 ら機械的な動力伝達経路でェンジンの出力が駆動輪へ伝達されて、 電気的に変速 比が変更させられる変速機として作動させる場合に発生する動力と電気工ネルギ との間の変換損失が抑制されるので、燃費が向上させられる。 また、高出力走行 において無段変速部が非無段変速状態とされると、 電気的に変速比が変更させら れる変速機として作動させる領域が車両の低中速走行およぴ低中出力走行となつ て、 電動機が発生すべき電気的エネルギ換言すれば電動機が伝える電気的エネル ギの最大値を小さくできるので、 その電動機或いはそれを含む車両の駆動装置が. 一層小型化される。 'For example, when the continuously variable transmission is set to a continuously variable speed in the normal output range of the engine where the vehicle is traveling at low and medium speeds and low and medium power, the fuel efficiency of the vehicle is ensured. In addition, when the continuously variable transmission is set to a continuously variable transmission state at high speeds, the engine output is transmitted to the drive wheels exclusively through a mechanical power transmission path, and the gear is electrically shifted. Since the conversion loss between the motive power and the electric energy that is generated when the transmission is operated as a transmission in which the ratio is changed is suppressed, fuel efficiency is improved. In addition, when the continuously variable transmission is set to a continuously variable transmission state during high-power traveling, the region to be operated as a transmission in which the gear ratio is electrically changed is the vehicle's low / medium-speed traveling and low / medium output. As the vehicle travels, the electric energy that the electric motor should generate, in other words, the maximum value of the electric energy transmitted by the electric motor can be reduced, so that the electric motor or the drive device of the vehicle including it can be further downsized.
また、 電気的な無段変速機としての作動が制限され得る無段変速部を備えた 上記車両用駆動装置において、減速走行中には、 ェンジンブレーキによる制動ト ルクを得る為に、 ェンジンブレーキ制御手段により前記差動機構の差動作用が制 限されるので、制動トルクが大きくされ得る。 よって、減速度を制御できる範囲 が広がって減速走行時の減速度の制御性能が向上する。 例えば、 第 2電動機によ る回生トルクに加えてエンジンブレーキトルクによつて車両の制動トルクが得ら れるので、減速度を制御できる範囲が広がつて減速走行時の減速度の制御性能が 向上する。 見方を換えれば、 回生トルクとエンジンブレーキトルクとで制動トル クが調整され得るので、 減速走行時の減速度の制御性能が向上する。  Further, in the above vehicle drive device provided with a continuously variable transmission that can be restricted in operation as an electric continuously variable transmission, during the deceleration traveling, the engine torque is obtained by the engine brake. Since the differential action of the differential mechanism is limited by the brake control means, the braking torque can be increased. Therefore, the range in which the deceleration can be controlled is expanded, and the deceleration control performance during deceleration traveling is improved. For example, since the braking torque of the vehicle can be obtained by the engine brake torque in addition to the regenerative torque by the second motor, the range in which the deceleration can be controlled is widened, and the deceleration control performance during deceleration traveling is improved. To do. In other words, the braking torque can be adjusted by the regenerative torque and the engine braking torque, so the deceleration control performance during deceleration is improved.
また、 請求項 5にかかる発明では、前記エンジンブレーキ制御手段は、減速 走行中には、前記無段変速部の差動機構を非差動状態とするものである。 このよ うにすれば、 ェンジンの回転速度が車速に拘束されることからエンジンブレーキ トルクが速やかに得られて大きな減速度が速やかに得られる。 例えば、第 2電動 機による回生トルクと併せることで、 大きな減速度が速やかに得られる。  Further, in the invention according to claim 5, the engine brake control means sets the differential mechanism of the continuously variable transmission portion to a non-differential state during deceleration traveling. In this way, the engine's rotational speed is constrained by the vehicle speed, so that the engine brake torque can be obtained quickly and a large deceleration can be obtained quickly. For example, when combined with regenerative torque from the second motor, a large deceleration can be obtained quickly.
また、 請求項 6にかかる発明では、 前記エンジンブレーキ制御手段は、減速 走行中には、前記差動制限装置による制限量を変ィヒさせるものである。 このよう にすれば、 前記無段変速部が電気的な無段変速機として作動可能な無段変速状態 と電気的な無段変速作動しない非無段変速状態との間の状態とされ得ることから 、 ェンジンの回転速度が略零から車速に拘束される回転速度の間とされ得るので 、 そのエンジンの回転速度の範囲でエンジンブレーキトルクが調整され得て減速 走行時の減速度の制御性能が向上する。 また、 請求項 7にかかる発明では、 前記エンジンは筒内圧力変化抑制運転が 可能であり、前記エンジンブレーキ制御手段は、減速走行中には、前記エンジン の筒内圧力変化抑制量を変ィヒさせるものである。 このようにすれば、 エンジンの 回転速度が同じであっても回転抵抗が変化させられ得てェンジンブレーキトルク が変ィ匕させられ得る。 よって、減速走行時の減速度の制御性能が一層向上する。 In the invention according to claim 6, the engine brake control means changes the amount of restriction by the differential limiting device during the deceleration traveling. In this way, the continuously variable transmission portion can be in a state between a continuously variable transmission state in which the continuously variable transmission unit can operate as an electrical continuously variable transmission and a non-continuously variable transmission state in which the electrical continuously variable transmission does not operate. From the engine speed of the engine can be between approximately zero and the rotational speed restrained by the vehicle speed, the engine brake torque can be adjusted in the range of the engine speed, and the deceleration control performance during deceleration traveling is improves. Further, in the invention according to claim 7, the engine can perform an in-cylinder pressure change suppressing operation, and the engine brake control means changes an in-cylinder pressure change suppressing amount of the engine during deceleration traveling. It is something to be made. In this way, even if the engine speed is the same, the rotational resistance can be changed and the engine brake torque can be changed. Therefore, the deceleration control performance during deceleration traveling is further improved.
また、 請求項 8にかかる発明では、減速走行中には車両の目標減速度が得ら れるように、前記第 2電動機で回生させることが可能であるか否かに応じてェン ジンブレーキによる制動トルクを決定する目標減速度制御手段を更に備え、 前記 ェンジンブレーキ制御手段は、 そのェンジンブレーキによる制動トルクが得られ るよ'うに前記差動機構の差動作用を制限するものである。 このようにすれば、 ェ ネルギー効率を考えて回生による制動が最優先され得ると共に、 目標減速度が回 生のみでは達成できなかったり回生量が抑制されて目標減速度が達成できないよ うなときには、 エンジンブレーキによる制動トルクを得ることが可能となる。 よ つて、 減速走行時の減速度の制御性能が向上する。  Further, in the invention according to claim 8, an engine brake is used depending on whether or not regeneration can be performed by the second electric motor so that a target deceleration of the vehicle can be obtained during deceleration traveling. The engine further comprises a target deceleration control means for determining a braking torque, and the engine brake control means limits the differential action of the differential mechanism so that the braking torque by the engine brake can be obtained. . In this way, braking by regeneration can be given top priority in consideration of energy efficiency, and when the target deceleration cannot be achieved by regeneration alone or the regeneration amount is suppressed and the target deceleration cannot be achieved, It is possible to obtain braking torque by engine braking. Therefore, the deceleration control performance during deceleration is improved.
また、 請求項 9にかかる発明の要旨とするところは、 (a) エンジンの出力を 第 1電動機および伝達部材へ分配する差動機構とその伝達部材から駆動輪への動 力伝達経路に設けられた第 2電動機とを有する差動部を備えた車両用駆動装置の 制御装置であって、 (b) 前記差動機構に備えられて、 その差動機構の差動作用を 制限することにより前記差動部の差動作用を制限する差動制限装置と,、 (c) 減速 走行中には、 エンジンブレーキによる制動トルクを得る為に、 前記差動部の差動 作用を制限するエンジンブレーキ制御手段とを、 含むことにある。  The gist of the invention according to claim 9 is that: (a) a differential mechanism that distributes engine output to the first motor and the transmission member, and a power transmission path from the transmission member to the drive wheels; A control device for a vehicle drive device provided with a differential unit having a second electric motor, and (b) provided in the differential mechanism, and limiting the differential action of the differential mechanism. A differential limiting device for limiting the differential action of the differential part; and (c) engine brake control for limiting the differential action of the differential part in order to obtain a braking torque by the engine brake during traveling. Means.
このようにすれば、 車両の駆動装置内の差動部が、差動制限装置.により差動 機構の差動作用が制限されずその差動機構が差動作用が働く差動状態とされるこ とで差動作用が作動可能な差動状態とされ、 或いはまた、 差動制限装置により差 動機構の差動作用が制限されることで差動作用が制限されることから、例えば差 動機構がその差動作用をしない非差動状態例えば口ック状態とされることで差動 作用が作動しない非差動状態例えばロック状態とされ得ることから、 電気的に変 速比が変更させられる変速機の燃費改善効果と機械的に動力を伝達する歯車式伝 動装置の高い伝達効率との両長所を兼ね備えた駆動装置が得られる。 In this way, the differential part in the vehicle drive device is brought into a differential state in which the differential action of the differential mechanism is not restricted by the differential restriction device. Thus, the differential action can be activated, or the differential action is limited by limiting the differential action of the differential mechanism by the differential limiting device. Since the mechanism can be in a non-differential state where the differential action does not operate, for example, a non-differential state where the differential action does not operate, such as a locked state, the speed change ratio can be changed electrically. Gear type transmission that mechanically transmits power A driving device having both advantages of high transmission efficiency of the moving device is obtained.
例えば、 車両の低中速走行およぴ低中出力走行となるようなエンジンの常用 出力域において上記差動部が差動状態とされると、 車両の燃費性能が確保される 。 また、高速走行において差動部が非差動状態とされると、専ら機械的な動力伝 達経路でェンジンの出力が駆動輪へ伝達されて、 電気的に変速比が変更させられ る変速機として作動させる場合に発生する動力と電気工ネルギとの間の変換損失 が抑制されるので、燃費が向上させられる。 また、 高出力走行において差動部が 非差動状龜とされると、 電気的に変速比が変更させられる変速機として作動させ る領域が車両の低中速走行および低中出力走行となって、 電動機が発生すべき電 気的エネルギ換言すれば電動機が伝える電気的エネルギの最大値を小さくできる ので、 その電動機或レヽはそれを含む車両の駆動装置が一層小型ィ匕される。  For example, when the differential portion is brought into a differential state in the normal output range of the engine where the vehicle is driven at low to medium speed and low to medium output, fuel efficiency of the vehicle is ensured. In addition, when the differential unit is in a non-differential state during high-speed driving, the engine output is transmitted to the drive wheels exclusively through a mechanical power transmission path, and the gear ratio is electrically changed. Because the conversion loss between the power and electric energy that is generated when operating as an electric vehicle is suppressed, fuel efficiency is improved. In addition, if the differential part is set to a non-differential state in high output running, the region operated as a transmission in which the gear ratio is electrically changed becomes low and medium output running of the vehicle. Thus, since the electric energy to be generated by the electric motor, in other words, the maximum value of the electric energy transmitted by the electric motor can be reduced, the motor or the vehicle including the motor can be further miniaturized.
また、 差動作用が制限され得る差動部を備えた上記車両用駆動装置において 、減速走行中には、 エンジンブレーキによる制動トルクを得る為に、 エンジンブ レーキ制御手段により前記差動部の差動作用が制限されるので、 制動トルクが大 きくされ得る。 よって、減速度を制御できる範囲が広がって減速走行時の減速度 の制御性能が向上する。 例えば、第 2電動機による回生トルクに加えてエンジン ブレーキトルクによって車両の制動トルクが得られるので、减速度を制御できる 範囲が広がって減速走行時の減速度の制御性能が向上する。 見方を換えれば、 回 生トルクとエンジンブレーキトルクとで制動トルクが調整され得るので、減速走 行時の減速度の制御性能が向上する。  Further, in the above vehicle drive device provided with a differential portion that can limit the differential action, during the deceleration traveling, in order to obtain a braking torque by the engine brake, the difference between the differential portions is set by the engine brake control means. Since the operation is limited, the braking torque can be increased. Therefore, the range in which deceleration can be controlled is expanded, and the deceleration control performance during deceleration is improved. For example, since the braking torque of the vehicle can be obtained by the engine braking torque in addition to the regenerative torque by the second motor, the range in which the dredging speed can be controlled is widened and the deceleration control performance during deceleration traveling is improved. In other words, since the braking torque can be adjusted by the regenerative torque and the engine brake torque, the control performance of deceleration during deceleration is improved.
また、 請求項 1 0にかかる発明では、 前記エンジンブレーキ制御手段は、減 速走行中には、前記差動部を差動作用をしない非差動状態とするものである。 こ のようにすれば、 エンジンの回転速度が車速に拘束されることからエンジンブレ · —キトルクが速やかに得られて大きな減速度が速やかに得られる。 例えば、第 2 電動機による回生トルクと併せることで、 大きな減速度が速やかに得られる。 また、請求項 1 1にかかる発明では、前記エンジンブレーキ制御手段は、減速 走行中には、 前記差動制限装置による制限量を変ィ匕させるものである。 このよう にすれば、 前記差動部が差動作用が作動可能な差動状態と差動作用が作動しない 非差動状態との間の状態とされ得ることから、 エンジンの回転速度が略零から車 速に拘束される回転速度の間とされ得るので、 そのェンジンの回転速度の範囲で ェンジンブレーキトルクが調整され得て減速走行時の減速度の制御性能が向上す る。 . In the invention according to claim 10, the engine brake control means sets the differential portion to a non-differential state that does not perform a differential action during deceleration traveling. In this way, since the engine speed is constrained by the vehicle speed, the engine brake torque can be obtained quickly and a large deceleration can be obtained quickly. For example, when combined with the regenerative torque from the second motor, a large deceleration can be obtained quickly. In the invention according to claim 11, the engine brake control means changes the limit amount by the differential limiting device during the deceleration traveling. In this way, the differential part is capable of operating the differential action and the differential action does not work. Since it can be between non-differential states, the engine rotational speed can be between approximately zero and the rotational speed constrained to the vehicle speed, so the engine brake torque within the engine rotational speed range. Can be adjusted to improve the deceleration control performance during deceleration. .
また、請求項 1 2にかかる発明では、前記エンジンは筒内圧力変化抑制運転が 可能であり、前記エンジンブレーキ制御手段は、減速走行中には、前記エンジン の筒内圧力変化抑制量を変化させるものである。 このようにすれば、 エンジンの 回転速度が同じであっても回転抵抗が変化させられ得てェンジンブレーキトルク が変ィ匕させられ得る。 よって、減速走行時の減速度の制御性能が一層向上する。  In the invention according to claim 12, the engine can perform in-cylinder pressure change suppression operation, and the engine brake control unit changes the in-cylinder pressure change suppression amount during deceleration traveling. Is. In this way, even if the engine speed is the same, the rotational resistance can be changed and the engine brake torque can be changed. Thus, the deceleration control performance during deceleration traveling is further improved.
また、 請求項 1 3にかかる発明では、減速走行中には車両の目標減速度が得 られるように、前記第 電動機で回生させることが可能であるか否かに応じてェ ンジンブレーキによる制動トルクを決定する目標減速度制御手段を更に備え、前 記ェンジンブレーキ制御手段は、 そのェンジンブレーキによる制動トルクが得ら れるように前記差動部の差動作用を制限するものである。 このようにすれば、 ェ ネルギー効率を考えて回生による制動が最優先され得ると共に、 目標減速度が回 生のみでは達成できなかったり回生量が抑制されて目標減速度が達成できないよ うなときには、 エンジンブレーキによる制動トルクを得ることが可能となる。 よ つて、減速走行時の減速度の制御性能が向上する。 - また、 請求項 1 4にかかる発明の要旨とするところは、 (a) エンジンの出力 を第 1電動機および伝達部材へ分配する差動機構とその伝達部材から駆動輪への 動力伝達経路に設けられた第 2電動機とを有する差動部を備えた車両用駆動装置 の制御装置であって、. (b) 前記差動機構に備えられ、 前記差動部を差動作用が働 く差動状態とその差動作用をしない非差動状態とに選択的に切り換えるための差 動状態切換装置と、 (c) 減速走行中に、前記差動部が差動状態か否かに基づいて 、 回生量を変更する回生制御手段とを、 含むことにある。  In the invention according to claim 13, the braking torque by the engine brake is determined depending on whether or not the motor can be regenerated so that the target deceleration of the vehicle can be obtained during deceleration. Target deceleration control means for determining the engine braking speed, and the engine brake control means limits the differential action of the differential section so that the braking torque by the engine brake can be obtained. In this way, braking by regeneration can be given top priority in consideration of energy efficiency, and when the target deceleration cannot be achieved by regeneration alone or the regeneration amount is suppressed and the target deceleration cannot be achieved, It is possible to obtain braking torque by engine braking. Therefore, the deceleration control performance during deceleration is improved. -In addition, the gist of the invention according to claim 14 is that: (a) a differential mechanism that distributes engine output to the first motor and the transmission member, and a power transmission path from the transmission member to the drive wheels; A control device for a vehicle drive device including a differential unit having a second electric motor, wherein: (b) the differential unit is provided in the differential mechanism, and the differential unit operates differentially. A differential state switching device for selectively switching between a state and a non-differential state that does not perform its differential action, and (c) based on whether or not the differential unit is in a differential state during deceleration traveling, And regenerative control means for changing the regenerative amount.
このようにすれば、 差動状態切換装置により差動作用が作動可能な差動状態 とその差動作用が作動されなレヽ非差動状態例えばロック状態とに差動部が選択的 に切り換えられることから、 電気的に変速比が変更させられる変速機の燃費改善 効果と機械的に動力を伝達する歯車式伝動装置の高い伝達効率との両長所を兼ね 備えた駆動装置が得られる。 In this way, the differential unit is selectively switched between the differential state in which the differential action can be activated by the differential state switching device and the non-differential state in which the differential action is not activated, for example, the locked state. As a result, the fuel efficiency of the transmission can be changed electrically. A drive device having both the advantages of the effect and the high transmission efficiency of a gear transmission that mechanically transmits power can be obtained.
例えば、 車両の低中速走行およぴ低中出力走行となるようなエンジンの常用 出力域において上記差動部が差動状態とされると、 車両の燃費性能が確保される 。 また、高速走行において差動部が非差動状態とされると、専ら機械的な動力伝 達経路でェンジンの出力が駆動輪へ伝達されて、電気的に変速比が変更させられ る変速機として作動させる場合に発生する動力と電気工ネルギとの間の変換損失 が抑制されるので、燃費が向上させられる。 また、 高出力走行において差動部が 非差動状態とされると、 電気的に変速比が変更させられる変速機として作動させ る領域が車両の低中速走行および低中出力走行となって、 電動機が発生すべき電 気的エネルギ換言すれば電動機が伝える電気的エネルギの最大値を小さくできる ので、 その電動機或いはそれを含む車両の駆動装置が一層小型化される。  For example, when the differential portion is brought into a differential state in the normal output range of the engine where the vehicle is driven at low to medium speed and low to medium output, fuel efficiency of the vehicle is ensured. In addition, when the differential unit is in a non-differential state during high-speed running, the engine output is transmitted to the drive wheels exclusively through a mechanical power transmission path, and the gear ratio is electrically changed. Because the conversion loss between the power and electric energy that is generated when operating as an electric vehicle is suppressed, fuel efficiency is improved. In addition, when the differential unit is set to a non-differential state in high-power driving, the region that operates as a transmission in which the gear ratio is electrically changed is low-medium-speed driving and low-medium power driving. Since the electric energy to be generated by the electric motor, in other words, the maximum value of the electric energy transmitted by the electric motor can be reduced, the electric motor or the driving device of the vehicle including the electric motor can be further downsized.
また、 前記差動状態と前記非差動状態とに切換え可能に構成される差動部を 備えた上記車両用駆動装置において、減速走行中に、 前記差動部が差動状態か否 かに基づいて回生制御手段により回生量が変更されるので、 エンジンの引き摺り トルクに応じた回生量にて回生が行われ、 すなわち差動作用によって車速に拘わ らずェンジン回転速度が略零とされ得る差動状態とエンジンの回転速度が車速に 拘束されてエンジンの引き摺りトルクが差動状態に比べて大きくなる可能性のあ る非差動状態とに応じた回生量にて回生が行われ、例えばエンジンの引き摺りト ルクが大きくなる可能性のある非差動状態に合わせて一律に設定された回生量に て回生が行われることに比較して回生量が増大して燃費が向上する。  In the vehicle drive device including a differential unit configured to be switchable between the differential state and the non-differential state, whether or not the differential unit is in the differential state during deceleration traveling. Based on this, the regeneration amount is changed by the regeneration control means, so that regeneration is performed with the regeneration amount corresponding to the drag torque of the engine, that is, the engine rotation speed can be made substantially zero by the differential action regardless of the vehicle speed. Regeneration is performed with a regenerative amount that depends on the differential state and the non-differential state where the engine drag speed is constrained by the vehicle speed and the engine drag torque may be larger than the differential state. The amount of regeneration is increased and fuel efficiency is improved compared to the case where regeneration is performed with a regeneration amount that is uniformly set according to the non-differential state where the drag torque of the engine may increase.
また、 請求項 1 5にかかる発明では、 前記回生制御手段は、 前記差動部が差 動状態にあるときには、非差動状態にあるときに比較して前記回生量を多くする ものである。 このようにすれば、 差動部の差動状態では非差動状態に比べて、 差 動作用によってエンジン回転速度が低下させられ得る為、減速走行中の同じ車速 においてより大きな回生量にて回生が行われ得て車両の燃費が向上する。  In the invention according to claim 15, the regeneration control means increases the amount of regeneration when the differential section is in a differential state as compared to when the differential portion is in a non-differential state. In this way, in the differential state of the differential section, the engine speed can be reduced by the differential operation compared to the non-differential state, so that the regeneration is performed with a larger regeneration amount at the same vehicle speed during deceleration traveling. Can improve the fuel efficiency of the vehicle.
また、 請求項 1 6にかかる発明では、前記エンジンは筒内圧力低減制御が可 能であり、 前記回生制御手段は、前記エンジンが筒内圧力低減制御を行っている Γ 3 In the invention according to claim 16, the engine is capable of in-cylinder pressure reduction control, and the regeneration control means is configured such that the engine performs in-cylinder pressure reduction control. Γ 3
' ときの筒内圧力低減制御量に基づいて、前記回生量を変更するものである。 この ■ようにすれば、 ェンジンの回転速度が同じであってもェンジンの引き摺り トルク が変化させられ得る筒内圧力低減制御時の筒内圧力低減制御量に応じた回生量に て回生が行われ、例えばエンジンの引き摺りトルクが大きくなる可能性のある筒 内圧力低減制御量が小さくされた状態に合わせて一律に設定された回生量にて回 生が行われることに比較して回生量が増大して燃費が向上する。 'The regenerative amount is changed based on the in-cylinder pressure reduction control amount. In this way, regeneration is performed with the regeneration amount corresponding to the in-cylinder pressure reduction control amount during the in-cylinder pressure reduction control in which the drag torque of the engine can be changed even if the rotational speed of the engine is the same. For example, the amount of regeneration increases compared to the case where regeneration is performed at a uniformly set regeneration amount according to the state in which the in-cylinder pressure reduction control amount that may increase the drag torque of the engine is reduced. And fuel efficiency is improved.
また、請求項 1 7にかかる発明では、前記回生制御手段は、 l己エンジンへ の燃料の供給 停止されているか否かに基づいて、 前記回生量を変更するもので ある。 このようにすれば、 ェンジンが自律回転してエンジンの引き摺りトルクが 発生しない燃料が供給される状態とェンジンの引き摺りトルクが発生する可能性 のある燃料の供給が停止される状態とに応じた回生量にて回生が行われ、例えば エンジンの引き摺りトルクが発生する可能性のある燃料の供給が停止される状態 に合わせて一律に設定された回生量にて回生が行われることに比較して回生量が 増大して燃費が向上する。  Further, in the invention according to claim 17, the regeneration control means changes the regeneration amount based on whether or not the fuel supply to the self engine is stopped. In this way, the regenerative operation is performed according to the state in which the fuel is supplied so that the engine does not rotate and the engine drag torque is not generated, and the state in which the fuel that may generate the engine drag torque is stopped. Regeneration is performed compared to the case where regeneration is performed at a regenerative amount that is uniformly set in accordance with, for example, a state where the supply of fuel that may cause drag torque of the engine is stopped. The amount increases and fuel economy improves.
. ここで、 好適には、 前記無段変速部或いは差動部は、 前記差動状態切換装置 又は差動制限装置により前記差動機構が差動作用が働く差動状態とされることで 電気的な無段変速作動可能な無段変速状態とされ、 差動機構がその差動作用をし ない非差動状態例えば口ック状態とされて差動作用が制限されるこどで電気的な 無段変速作動しない非無段変速状態例えば有段変速状態とされて電気的な無段変 —速機としての作動が制限されるものである。 このようにすれば、無段変速部が、 無段変速状態と非無段変速状態とに切り換えられる。 また、差動部が差動状態と 非差動状態とに切り換えられる。 Here, it is preferable that the continuously variable transmission unit or the differential unit is electrically operated by causing the differential mechanism to be in a differential state in which a differential action works by the differential state switching device or the differential limiting device. In a non-differential state in which the differential mechanism does not perform the differential action, for example, in the mouth-lock state, the differential action is limited. A continuously variable transmission state in which a continuously variable transmission does not operate, for example, a stepped transmission state is set, so that the operation as an electric continuously variable speed changer is limited. In this way, the continuously variable transmission unit can be switched between the continuously variable transmission state and the continuously variable transmission state. The differential unit is switched between a differential state and a non-differential state.
また、好適には、 前記差動部は、前記差動制限装置により前記差動機構が差 動作用が働く差動状態とされることで差動作用が作動可能な差動状態とされ、差 動機構がその差動作用をしない非差動状態例えば口ック状態とされて差動作用が 制限されることで差動作用が作動しなレヽ非差動状態例えばロック状態とされて差 動作甩が制限されるものである。 このようにすれば、 差動部が、 差動状態と非差 動状態とに切り換えられる。 また、好適には、 前記差動機構は、前記エンジンに連結された第 1要素と前 記第 1電動機に連結された第 2要素と前記伝達部材に連結された第 3要素とを有 するものであり、 前記差動状態切換装置又は差動制限装置は、 前記差動機構を差 動状態とするために第 1要素乃至第 3要素を相互に相対回転可能とする、 例えば 差動機構を差動状態とするために少なくとも第 2要素および第 3要素を互いに異 なる速度にて回転可能とするものである。 また、差動状態切換装置は、差動機構 を非差動状態例えば口ック状態とするために少なくとも第 2要素および第 3要素 を互いに異なる速度にて回転可能としない、例えば差動機構を非差動状態例えば 口ック状態とするために第 1要素乃至第 3要素を共に一体回転させるか或いは第 2要素を非回転状態とするものである。 このようにすれば、差動謹が差動状態 と非差動状態とに切り換えられるように構成される。 Preferably, the differential unit is in a differential state in which a differential action can be activated by the differential limiting device being in a differential state in which the differential mechanism is used for differential operation. The non-differential state in which the dynamic mechanism does not perform the differential action, for example, the mouth-lock state, and the differential action is limited, and the differential action is not activated.甩 is restricted. In this way, the differential section can be switched between the differential state and the non-differential state. Preferably, the differential mechanism includes a first element coupled to the engine, a second element coupled to the first electric motor, and a third element coupled to the transmission member. The differential state switching device or the differential limiting device enables the first to third elements to rotate relative to each other in order to place the differential mechanism in a differential state. At least the second element and the third element can be rotated at different speeds in order to obtain a moving state. In addition, the differential state switching device does not allow at least the second element and the third element to rotate at different speeds in order to place the differential mechanism in a non-differential state, for example, a mouth-locking state. In order to set a non-differential state, for example, a mouth-locking state, the first to third elements are rotated together or the second element is set to a non-rotating state. In this way, the differential rod is configured to be switched between a differential state and a non-differential state.
+ また、好適には、 前記差動状態切換装置又は差動制限装置は、前記第 1要素 乃至第 3要素を共に一体回転させるために第 1要素乃至第 3要素のうちの少なく とも 1つを相互に連結するクラッヂおよび/または第 2要素を非回転状態とする ために第 2要素を非回転部材に連結するブレーキを備えたものである。 このよう にすれば、 差動機構が差動状態と非差動状態とに簡単に切り換えられるように構 成される。  + Preferably, the differential state switching device or the differential limiting device has at least one of the first to third elements to integrally rotate the first to third elements together. It is provided with a brake for connecting the second element to the non-rotating member in order to bring the second element and the non-rotating state into the interconnecting clutch and / or the second element. In this way, the differential mechanism can be easily switched between the differential state and the non-differential state.
また、好適には、 前記差動機構は、前記クラッチおよび前記ブレーキの解放 により少なくとも前記第 2要素および前記第 3要素が互いに異なる速度にて回転 ' 可能な差動状態とされて電気的な差動装置とされ、前記クラッチの係合により変 速比が 1である変速機とされるか、 或いは前記ブレーキの係合により変速比が 1 より小さい増速変速機とされるものである。 このようにすれば、 差動機構が差動 状態と非差動状態とに切り換えられるように構成されると共に、 単段または複数 段の定変速比を有する変速機としても構成され得る。  Preferably, the differential mechanism is in a differential state in which at least the second element and the third element can be rotated at different speeds by releasing the clutch and the brake. The transmission is a transmission having a gear ratio of 1 by engagement of the clutch, or a speed-up transmission having a gear ratio of less than 1 by engagement of the brake. In this way, the differential mechanism can be configured to be switched between a differential state and a non-differential state, and can also be configured as a transmission having a single gear or a plurality of gears.
また、好適には、 前記差動機構動は遊星歯車装置であり、 前記第 1要素はそ の遊星歯車装置のキヤリャであり、 前記第 2要素はその遊星歯車装置のサンギヤ であり、前記第 3要素はその遊星歯車装置のリングギヤである。 このよ.うにすれ ば、前記差動機構の軸方向寸法が小さくなる。 また、 差動機構が 1つの遊星歯車 装置によって簡単に構成され得る。 Preferably, the differential mechanism motion is a planetary gear unit, the first element is a carrier of the planetary gear unit, the second element is a sun gear of the planetary gear unit, and the third element The element is the ring gear of the planetary gear set. In this way, the axial dimension of the differential mechanism is reduced. Also, the differential mechanism has one planetary gear It can be easily configured by the device.
また、好適には、前記遊星歯車装置はシングルピニオン型遊星歯車装置であ る。 このようにすれば、 前記差動機構の軸方向 去が小さくなる。 また、 差動機 構が 1つのシングルピニオン型遊星歯車装置によって簡単に構成される。  Preferably, the planetary gear device is a single pinion type planetary gear device. In this way, the axial displacement of the differential mechanism is reduced. In addition, the differential mechanism is easily configured by a single pinion type planetary gear unit.
また、好適には、 前記伝達部材から前記駆動輪への動力伝達経路の一部を構 成する変速部とを備え、 前記無段変速部の変速比と変速部の変速比とに基づいて 前記駆動装置の総合変速比が形成されるものである。 このようにすれば、 その変 速部の変速比を利用することによつて駆動力が幅広く得られるようになる。 また .、 これによつて、 無段変速部における無段変速制御の効率が一層高められる。 或 いはまた、 変速部において形成される変速比が 1より大きい減速変速機とされる と、第 2電動機の出力トルクは変速部の出力軸に対して低トルクの出力でよいの で、第 2電動機が小型化され得る。  Preferably, the transmission unit further comprises a transmission unit that constitutes a part of a power transmission path from the transmission member to the drive wheel, and the transmission unit is based on the transmission ratio of the continuously variable transmission unit and the transmission unit. The overall gear ratio of the drive device is formed. In this way, a wide range of driving force can be obtained by utilizing the gear ratio of the variable speed portion. This further increases the efficiency of the continuously variable transmission control in the continuously variable transmission unit. Alternatively, if the speed change ratio formed in the transmission unit is a reduction transmission greater than 1, the output torque of the second motor may be a low torque output with respect to the output shaft of the transmission unit. 2 The electric motor can be miniaturized.
また、好適には、 前記伝達部材から前記駆動輪への動力伝達経路の一部を構 成する変速部とを備え、前記差動部の変速比と変速部の変速比とに基づいて前記 駆動装置の総合変速.比が形成されるものである。 このようにすれば、変速部の変 速比を利用することによって駆動力が幅広く得られるようになる。 或いはまた、 変速部において形成される変速比が 1より大きい減速変速機とされると、第 2電 動機の出力トルクは変速部の出力軸に対して低トルクの出力でよいので、 第 2電 動機が小型化され得る。 また、 無段変速部の無段変速状態において、無段変速部 と変速部とで無段変速機が構成され、無段変速部の非無段変速状態において、 無 段変速部と変速部とで有段変速機が構成され得る。  Preferably, the apparatus further comprises a transmission that forms part of a power transmission path from the transmission member to the drive wheel, and the drive based on the transmission ratio of the differential section and the transmission ratio of the transmission section. The overall gear ratio of the device is formed. In this way, a wide driving force can be obtained by utilizing the speed change ratio of the transmission unit. Alternatively, if the speed reduction gear formed in the transmission unit is a reduction transmission greater than 1, the output torque of the second motor may be a low torque output with respect to the output shaft of the transmission unit. Motivation can be miniaturized. In the continuously variable transmission state of the continuously variable transmission unit, the continuously variable transmission unit and the transmission unit form a continuously variable transmission. In the continuously variable transmission unit of the continuously variable transmission state, the continuously variable transmission unit and the transmission unit A stepped transmission can be configured.
また、 前記変速部は、 有段式の自動変速機である。 このようにすれば、 前記 '無段変速部の無段変速状態において、無段変速部と変速部とで無段変速機が構成 され、 無段変速部の非無段変速状態において、 無段変速部と変速部とで有段変速 機が構成され得る。 或いはまた、前記差動部の差動状態において、 差動部と変速 部とで無段変速機が構成され、 差動部の非差動状態において、 差動部と変速部と で有段変速機が構成され得る。 また、前記総合変速比が変速部の変速に伴って段 階的に変化させられ得るので、 総合変速比が連続的に変化させられることに比較 して速やかに変化させられ得る。 よって、 駆動装置が無段変速機として機能させ られて滑らかに駆動トルクを変化させることが可能であると共に、段階的に変速 比を変ィ匕させて速やかに駆動トルクを得ることも可能となる。 図面の簡単な説明 The transmission unit is a stepped automatic transmission. In this way, in the continuously variable transmission state of the continuously variable transmission unit, the continuously variable transmission unit and the transmission unit constitute a continuously variable transmission, and in the continuously variable transmission state of the continuously variable transmission unit, A stepped transmission can be configured by the transmission unit and the transmission unit. Alternatively, in the differential state of the differential unit, a continuously variable transmission is configured by the differential unit and the transmission unit, and in the non-differential state of the differential unit, a stepped transmission is performed by the differential unit and the transmission unit. A machine can be configured. In addition, since the overall gear ratio can be changed step by step with the shift of the transmission unit, the overall gear ratio can be changed continuously. And can be changed quickly. Therefore, the drive device can function as a continuously variable transmission to smoothly change the drive torque, and it is also possible to obtain the drive torque quickly by changing the gear ratio stepwise. . Brief Description of Drawings
図 1は、 本発明の一実施例であるハイプリッド車両の駆動装置の構成を説明 する骨子図である。  FIG. 1 is a skeleton diagram illustrating a configuration of a drive device for a hybrid vehicle according to an embodiment of the present invention.
図 2は、 図 1の実施例のハイプリッド車両の駆動装置が無段或いは有段変速 作動させられる場合における変速作動とそれに用いられる油圧式摩擦係合装置の 作動の組み合わせとの関係を説明する作動図表である。 '  FIG. 2 is an operation for explaining the relationship between the speed change operation and the operation of the hydraulic friction engagement device used in the case where the drive device of the hybrid vehicle of FIG. 1 is operated continuously or stepwise. It is a chart. '
図 3は、 図 1の実施例のハイプリッド車両の駆動装置が有段変速作動させら れる場合における各ギヤ段の相対的回転速度を説明する共線図である。  FIG. 3 is a collinear diagram illustrating the relative rotational speeds of the respective gear stages when the drive device for the hybrid vehicle of the embodiment of FIG.
図 4は、 図 1の実施例の駆動装置に設けられた電子制御装置の入出力信号を 説明する図である。  FIG. 4 is a diagram for explaining input / output signals of the electronic control unit provided in the driving apparatus of the embodiment of FIG.
図 5は、 図 4の電子制御装置の制御作動の要部を説明する機能プロック線図' である。  FIG. 5 is a functional block diagram illustrating the main part of the control operation of the electronic control device of FIG.
図 6は、 車速と出力トルクとをパラメ一タとする同じ二次元座標に構成され た、 自動変速部の変速判断の基となる予め記憶された変速線図の一例と、 変速機 構の変速状態の切換判断の基となる予め記憶された切換線図の一例と、 エンジン 走行とモータ走行とを切り換えるためのェンジン走行領域とモ一タ走行領域との 境界線を有する予め記憶された駆動力源切換線図の一例とを示す図であつて、 そ れぞれの関係を示す図でもある。  Fig. 6 shows an example of a pre-stored shift diagram that is based on the same two-dimensional coordinates with the vehicle speed and output torque as parameters, and that is used as a basis for determining the shift of the automatic transmission unit. An example of a pre-stored switching diagram that is a basis for determining whether to switch the state, and a pre-stored driving force having a boundary line between the engine traveling region and the motor traveling region for switching between engine traveling and motor traveling It is a figure which shows an example of a source switching diagram, Comprising: It is also a figure which shows each relationship.
図 7は、 破線はェンジン 8の最適燃費率曲線であつて燃費マップの一例であ る。 また、 無段変速機でのエンジン作動 (破線) と有段変速機でのエンジン作動 (一点鎖線) の違いを説明する図でもある。  In FIG. 7, the broken line is the optimum fuel efficiency curve of engine 8 and is an example of the fuel efficiency map. It is also a diagram for explaining the difference between engine operation with a continuously variable transmission (dashed line) and engine operation with a stepped transmission (dashed line).
図 8は、 無段制御領域と有段制御領域との境界線を有する予め記憶された関 係を示す図であつて、 図 6の破線に示す無段制御領域と有段制御領域との境界を マップ化するための概念図でもある'。 図 9は、 有段式変速機におけるアップシフトに伴うエンジン回転速度の変ィ匕 の一例である。 FIG. 8 is a diagram showing a pre-stored relationship having a boundary line between the stepless control region and the stepped control region, and the boundary between the stepless control region and the stepped control region indicated by the broken line in FIG. It is also a conceptual diagram for mapping '. FIG. 9 is an example of a change in engine speed accompanying an upshift in a stepped transmission.
図 1 0は、 図 6に示す所定走行時に用いられる変速線図に比較して各変速線 が高車速側へ変更された登降坂時に用いられる変速線図である。  FIG. 10 is a shift diagram used at the time of uphill / downhill in which each shift line is changed to the high vehicle speed side as compared with the shift diagram used at the time of predetermined traveling shown in FIG.
5 図 1 1は、 車速をパラメータとして目標減速度を設定する際のデータマップ の一例である。  5 Figure 11 shows an example of a data map for setting the target deceleration using the vehicle speed as a parameter.
図 1 2は、 目標減速度を達成する必要制動トルクを算出する為の目標減速度 と必要制動トルクとの関係の一例である。  Figure 12 shows an example of the relationship between the target deceleration and the required braking torque for calculating the required braking torque to achieve the target deceleration.
図 1 3は、切換装置としてのシーソー型スィツチであって変速状態を選択す0 るためにユーザによつて操作される変速状態手動選択装置の一例である。  FIG. 13 is an example of a shift state manual selection device that is a seesaw type switch as a switching device and is operated by a user to select a shift state.
図 1 4は、 図 4の電子制御装置の制御作動すなわち平坦路を走行しているか 登降坂路を走行しているかによつて変速線図を切り換えるときの制御作動を説明 - するフローチャートである。  FIG. 14 is a flowchart for explaining the control operation of the electronic control device of FIG. 4, that is, the control operation when the shift map is switched depending on whether the vehicle is traveling on a flat road or an uphill / downhill road.
図 1 5は、 本発明の他の実施例におけるハイプリッド車両の駆動装置の構成5 を説明する骨子図であって、 図 1に相当する図である。  FIG. 15 is a skeleton diagram for explaining the configuration 5 of the drive device for a hybrid vehicle in another embodiment of the present invention, and corresponds to FIG.
図 1 6は、 図 1 5の実施例のハイプリッド車両の駆動装置が無段或いは有段 ' 変速作動させられる場合における変速作動とそれに用いられる油圧式摩擦係合装 置の作動の組み合わせとの関係を説明する作動図表であって、 図 1に相当する図 である。 Fig. 16 shows the relationship between the shift operation when the drive device of the hybrid vehicle of the embodiment of Fig. 15 is stepless or stepped and the operation of the hydraulic friction engagement device used therefor. FIG. 2 is an operation chart for explaining the above, corresponding to FIG. 1;
0 図 1 7は、 図 1 5の実施例のハイプリッド車両の駆動装置が有段変速作動さ せられる場合における各ギヤ段の相対的回転速度を説明する共線図であって、 図FIG. 17 is a collinear diagram for explaining the relative rotational speeds of the respective gear stages when the drive device for the hybrid vehicle of the embodiment of FIG.
3に相当する図である。 FIG.
図 1 8は、 図 4の電子制御装置の制御機能の要部の他の例を説明する機能ブ ロック線図である。 · FIG. 18 is a functional block diagram for explaining another example of the main part of the control function of the electronic control unit of FIG. ·
5 図 1 9は、 車速をパラメータとして目標減速度を^する際のデータマップ の一例である。 5 Figure 19 shows an example of a data map for target deceleration with the vehicle speed as a parameter.
図 2 0は、 ユーザにより減速度が設定される為に操作されるスライド式の減 速度設定装置である。 図 2 1は、 目標減速度を達成する必要制動トルクを算出する為の目標減速度 と必要制動トルクとの関係の一例である。 FIG. 20 is a slide-type deceleration setting device operated to set the deceleration by the user. Figure 21 shows an example of the relationship between the target deceleration and the required braking torque for calculating the required braking torque to achieve the target deceleration.
図 2 2は、 必要なエンジンブレーキトルクが得られるような切換クラッチの 係合油圧を算出する為の切換クラッチの係合油圧とェンジンブレーキトルクとの 関係の一例である。  FIG. 22 shows an example of the relationship between the engagement hydraulic pressure of the switching clutch and the engine brake torque for calculating the engagement hydraulic pressure of the switching clutch so that the necessary engine brake torque can be obtained.
図 2 3は、 図 1 8の実施例の電子制御装置の制御作動すなわち減速走行中の 減速度を制御する制御作動を説明するフローチャートである。  FIG. 23 is a flowchart for explaining the control operation of the electronic control device of the embodiment of FIG. 18, that is, the control operation for controlling the deceleration during the deceleration traveling.
図 2 4は、 図 2 3のフローチャートに示す制御作動を説明するタイムチヤ一 トであり、 回生トルクに加えてェンジンブレーキトルクを発生させて目標減速度 を達成する場合での制御作動を示している。  Fig. 24 is a time chart for explaining the control operation shown in the flow chart of Fig. 23, showing the control operation when the engine braking torque is generated in addition to the regenerative torque to achieve the target deceleration. Yes.
図 2 5は、 図 4の電子制御装置の制御機能の要部の他の例を説明する機能ブ ロック線図であって、 図 5に相当する図である。  FIG. 25 is a functional block diagram for explaining another example of the main part of the control function of the electronic control unit of FIG. 4, and corresponds to FIG.
図 2 6は、 図 4の電子制御装置の制御機能の要部の他の例を説明する機能ブ ロック線図である。  FIG. 26 is a functional block diagram for explaining another example of the main part of the control function of the electronic control unit of FIG.
. 図 2 7は、 シフトレバ一を備えた複数種類のシフトポジションを選択するた めに操作されるシフト操作装置の一例である。 FIG. 27 is an example of a shift operation device operated to select a plurality of types of shift positions having a shift lever.
図 2 8は、減速走行時の差動部の状態を共線図上に表した図である。 ( a ) は切換クラッチの係合 (ロック) により差動部が非無段変速状態とされている場 合であり、 (b') は差動部の無段変速状態においてフユ一エル力ットにてェンジ ンの作動が停止され且つ第 1電動機が空転させられている場合である。  Fig. 28 is a diagram showing the state of the differential section during deceleration traveling on the nomograph. (A) shows the case where the differential section is in a continuously variable transmission state due to the engagement (locking) of the switching clutch, and (b ') shows the fuel force force in the continuously variable transmission state of the differential section. This is the case when the engine is stopped and the first motor is idling.
図 2 9は、予め設定された車速と回生量との関係 (マップ) を示す一例であ る。 実線 Aは差動部が非無段変速状態とされているときの回生量の設定に用いら れる関係すなわち有段用回生量マップ Aである。 また、実線 Bは差動部が無段変 速状態とされているときの回生量 Rの設定に用いられる関係すなわち無段用回生 量マップ Bである。  Figure 29 shows an example of the relationship (map) between the preset vehicle speed and the regenerative amount. A solid line A is a relationship used for setting the regeneration amount when the differential unit is in a continuously variable transmission state, that is, a stepped regeneration amount map A. The solid line B is the relationship used for setting the regeneration amount R when the differential section is in a continuously variable speed state, that is, the continuously variable regeneration amount map B.
図 3 0は、 図 2 6の実施例の電子制御装置の制御作動すなわち減速走行中の 回生'量を設定する制御作動を説明するフローチヤートである。  FIG. 30 is a flow chart for explaining the control operation of the electronic control device of the embodiment of FIG. 26, that is, the control operation for setting the amount of regeneration during deceleration traveling.
図 3 1は、 図 4の電子制御装置の制御機能の要部の他の例を説明する機能ブ ロック線図であって、 図 5、 図 2 6等に相当する図である。 符号の説明 FIG. 31 is a functional block for explaining another example of the main part of the control function of the electronic control unit of FIG. FIG. 6 is a lock diagram corresponding to FIG. 5, FIG. 26, and the like. Explanation of symbols
8 :エンジン .  8: Engine.
i o、 7 0 : . m (駆動装置)  i o, 7 0: .m (Driver)
1 1 :差動部 (無段変速部) '  1 1: Differential part (continuously variable transmission part) '
1 6 :動力分配機構 (差動機構)  1 6: Power distribution mechanism (differential mechanism)
1 8 :伝達部材  1 8: Transmission member
2 0、 7 2 :自動変速部 (変速部)  2 0, 7 2: Automatic transmission (transmission)
3 8 :駆動輪  3 8: Drive wheel
4 0 :電子制御装置 (制御装置) - 4 0: Electronic control device (control device)-
5 0 :切換制御手段 (エンジンブレーキ制御手段) 5 0: Switching control means (engine brake control means)
5 2 :ハイブリッド制御手段 (回生制御手段)  5 2: Hybrid control means (regenerative control means)
8 :変速制御手段  8: Shift control means
1 8 4 :'目標減速度制御手段  1 8 4: 'Target deceleration control means
M 1 :第 1電動機 M1: First electric motor
M 2 :第 2電動機 M 2: Second electric motor
C O :切換クラッチ (差動状態切換装置) . ―  C O: Switching clutch (Differential state switching device)
B 0 :切換ブレーキ (差動状態切換装置) 発明を実施するための最良の形態 B 0: Switching brake (Differential state switching device) BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施例を図面を参照しつつ詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
実施例 1  Example 1
図 1は、 本発明の一実施例である制御装置が適用されるハイプリッド車両の 駆動装置の一部を構成する変速機構 1 0を説明する骨子図である。 図 1において 、 変速機構 1 0は車体に取り付けられる非回転部材としてのトランスミツション ケース 1 2 (以下、 ケース 1 2という) 内において共通の軸心上に配設された入 力回転部材としての入力軸 1 4と、 この入力軸 1 4に直接に或いは図示しない脈 動吸収ダンバ一 (振動減衰装置) などを介して間接に連結された無段変速部とし ての差動部 1 1と、 その差動部 1 1と駆動輪 3 8との間の動力伝達経路で伝達部 材 (伝動軸) 1 8を介して直列に連結されている変速部として有段式の変速機と して機能する自動変速部 2 0と、 この自動変速部 2 0に連結されている出力回転 部材としての出力軸 2 2とを直列に備えている。 この変速機構 1 0は、例えば車 両において縦置きされる F R (フロントエンジン · リヤドライブ) 型車両に好適 に用いられるものであり、 入力軸 1 4に直接に或いは図示しない脈動吸収ダンバ 一を介して直接的に連結された走行用の駆動力源として例えばガソリンエンジン やディーゼルエンジン等の内燃機関であるエンジン 8と一対の駆動輪 3 8 (図 5 参照) との間に設けられて、 エンジン 8からの動力を動力伝達経路の一部を構成 する差動歯車装置 (終減速機) 3 6および一対の車軸等を順次介して一対の駆動 輪 3 8へ伝達する。 FIG. 1 is a skeleton diagram illustrating a speed change mechanism 10 constituting a part of a drive device of a hybrid vehicle to which a control device according to an embodiment of the present invention is applied. In FIG. 1, a speed change mechanism 10 is a transmission case 12 as a non-rotating member attached to a vehicle body (hereinafter referred to as case 12) as an input rotating member disposed on a common axis. Input shaft 14 and this input shaft 14 directly or directly The differential part 11 as a continuously variable transmission part indirectly connected via a dynamic absorption damper (vibration damping device), etc., and the power transmission path between the differential part 11 and the drive wheels 3 8 And an automatic transmission unit 20 that functions as a stepped transmission as a transmission unit connected in series via a transmission member (transmission shaft) 18, and is connected to the automatic transmission unit 20. The output shaft 22 as an output rotating member is provided in series. The speed change mechanism 10 is suitable for use in, for example, an FR (front engine / rear drive) type vehicle installed vertically in a vehicle, and is directly connected to the input shaft 14 or via a pulsation absorbing damper (not shown). As a driving power source for traveling directly connected to each other, an engine 8 which is an internal combustion engine such as a gasoline engine or a diesel engine and a pair of driving wheels 3 8 (see FIG. 5) are provided. Is transmitted to a pair of drive wheels 38 via a differential gear device (final reduction gear) 36 and a pair of axles which constitute a part of the power transmission path.
このように、 本実施例の変速機構 1 0においてはエンジン 8と差動部 1 1と は直結されている。 この直結にはトルクコンバータゃフル一ド力ップリング等の 流体式伝動装置を介することなく連結されているということであり、例えば上記 脈動吸収ダンバ一などを介する連結はこの直結に含まれる。 なお、変速機構 1 0 はその軸心に対して対称的に構成されているため、 図 1の骨子図においてはその 下側が省略されている。 以下の各実施例についても—同様である。  Thus, in the speed change mechanism 10 of the present embodiment, the engine 8 and the differential section 11 are directly connected. This direct connection means that the torque converter is connected without using a fluid transmission device such as a full force pulling ring. For example, the connection via the pulsation absorbing damper is included in this direct connection. Since the transmission mechanism 10 is configured symmetrically with respect to its axis, the lower side is omitted in the skeleton diagram of FIG. The same applies to the following examples.
差動部 1 1は、 第 1電動機 M 1と、 入力軸 1 4に入力されたエンジン 8の出 ' 力を機械的に分配する機械的機構であってエンジン 8の出力を第 1電動機 M lお よび伝達部材 1 8に分配する差動機構としての動力分配機構 1 6と、伝達部材 1 8と一体的に回転するように設けられている第 2電動機 M 2とを備えている。 な お、 この第 1電動機 M 2は伝達部材 1 8から駆動輪 3 8までの間の動力伝達経路 を構成するいずれの部分に設けられてもよい。 本実施例の第 1電動機 M lおよび 第 2電動機 M 2は発電機能をも有する所謂モータジェネレータであるが、第 1電 動機 M lは反力を発生させるためのジェネレータ (発電) 機能を少なくとも備え 、第 2電動機 M 2は走行用の駆動力源として駆動力を出力するためのモー夕 (電 動機) 機能を少なくとも備える。 ' , . · 動力分配機構 1 6は、例えば 「0 . 4 1 8」程度の所定のギヤ比 1を有す るシングルピニオン型の第 1遊星歯車装置 2 4と、 切換クラッチ C 0および切換 ブレーキ B Qとを主体的に備えている。 - この第 1遊星歯車装置 2 4は、第 1サン ギヤ S 1、 第 1遊星歯車 P 1、 その第 1遊星歯車 P 1を自転および公転可能に支 持する第 1キヤリャ C A 1、 第 1遊星歯車 P 1を介して第 1サンギヤ S 1と嚙み 合う第 1 リングギヤ R 1を回転要素 (要素) として備えている。 第 1サンギヤ S ]の歯数を Z S 1、第 1·リングギヤ R 1の歯数を Z R 1とすると、上記ギヤ比 p 1は Z S 1 / Z R 1である。 The differential unit 1 1 is a mechanical mechanism that mechanically distributes the output of the engine 8 input to the first motor M 1 and the input shaft 14, and outputs the output of the engine 8 to the first motor M l. And a power distribution mechanism 16 as a differential mechanism that distributes to the transmission member 18, and a second electric motor M 2 provided to rotate integrally with the transmission member 18. The first electric motor M 2 may be provided in any part constituting the power transmission path between the transmission member 18 and the drive wheels 38. The first electric motor M l and the second electric motor M 2 of this embodiment are so-called motor generators that also have a power generation function, but the first electric motor M l has at least a generator (power generation) function for generating a reaction force. The second electric motor M 2 has at least a motor (electric motor) function for outputting driving force as a driving force source for traveling. ',. The power distribution mechanism 16 is mainly composed of a single pinion type first planetary gear unit 24 having a predetermined gear ratio 1 of, for example, “0.4 18”, a switching clutch C 0 and a switching brake BQ. Is prepared. -The first planetary gear unit 24 is composed of a first sun gear S 1, a first planetary gear P 1, a first carrier CA 1 that supports the first planetary gear P 1 so that it can rotate and revolve, and a first planetary gear 1. A first ring gear R 1 that meshes with the first sun gear S 1 via the gear P 1 is provided as a rotating element (element). When the number of teeth of the first sun gear S] is ZS 1 and the number of teeth of the first ring gear R 1 is ZR 1, the gear ratio p 1 is ZS 1 / ZR 1.
この動力分配機構 1 6においては、第 1キヤリャ C A 1は入力軸 1 4すなわ ちエンジン 8に連結され、第 1サンギヤ S 1は第 1電動機 M 1に連結され、 第 1 リングギヤ R 1は伝達部材 1 8に連結されている。 また、 切換ブレーキ B 0は第 1サンギヤ S 1とケース 1 2との間に設けられ、切換クラッチ C 0は第 1サンギ ャ S 1と第 1キヤリャ C A 1との間に設けられている。 それら切換クラッチ C 0 および切換ブレーキ B 0が解放されるとすなわち解放状態へ切り換えられると、 動力分配機構 1 6は第 1遊星歯車装置 2 4の 3要素である第 1サンギヤ S 1、第 1キヤリャ C A 1、第 1 リングギヤ R 1がそれぞれ相互に相対回転可能とされて 差動作用が作動可能なすなわち差動作用が働く差動状態とされることから、 ェン ジン 8の出力が第 1電動機 M 1と伝達部材 1 8とに分配されるとともに、 分配さ れたエンジン 8の出力の一部で第 1電動機 M 1から発生させられた電気工ネルギ で蓄電されたり第 2電動機 M 2が回転駆動されるので、 差動部 1 1 (動力分配機 構 1 6 ) は電気的な差動装置として機能させられて例えば差動部 1 1は所謂無段 変速状態 (電気的 C V T状態) とされて、 エンジン 8の所定回転に拘わらず伝達 部材 1 8の回転が連続的に変化させられる。 すなわち、 動力分配機構 1 6が差動- 状態とされると差動部 1 1も差動状態とされ、 差動部 1 1はその変速比ァ 0 (入 力軸 1 4の回転速度 4 /伝達部材 1 8の回転速度 N 1 8 ) が最小値ァ O min から 最大値ァ O max まで連続的に変ィヒさせられる電気的な無段変速機として機能する 無段変速状態とされる。 , In this power distribution mechanism 16, the first carrier CA 1 is connected to the input shaft 14, that is, the engine 8, the first sun gear S 1 is connected to the first electric motor M 1, and the first ring gear R 1 is transmitted. Connected to member 1 8. The switching brake B0 is provided between the first sun gear S1 and the case 12, and the switching clutch C0 is provided between the first sun gear S1 and the first carrier CA1. When the switching clutch C 0 and the switching brake B 0 are released, that is, switched to the released state, the power distribution mechanism 16 is divided into the first sun gear S 1 and the first carrier which are the three elements of the first planetary gear unit 2 4. Since the CA 1 and the first ring gear R 1 can be rotated relative to each other, the differential action can be activated, that is, the differential action is activated, so the output of the engine 8 is the first motor. It is distributed to M 1 and the transmission member 1 8, and the part of the output of the distributed engine 8 is stored by the electric energy generated from the first motor M 1 or the second motor M 2 is rotated. Since it is driven, the differential unit 1 1 (power distribution mechanism 16) is caused to function as an electrical differential device. For example, the differential unit 11 is in a so-called continuously variable transmission state (electrical CVT state). Therefore, the rotation of the transmission member 1 8 is linked regardless of the predetermined rotation of the engine 8. To be varied. That is, when the power distribution mechanism 16 is in the differential state, the differential unit 1 1 is also in the differential state, and the differential unit 1 1 has its transmission ratio 0 (the rotational speed 4 / A continuously variable transmission state that functions as an electric continuously variable transmission in which the rotational speed N 1 8 ) of the transmission member 18 is continuously changed from the minimum value O min to the maximum value O max is set. ,
この状態で、 上記切換クラッヂ C 0或いは切換ブレーキ B 0が係合されると すなわち係合状態へ切り換えられると、 動力分配機構 1 6は前記差動作用をしな いすなわち差動作用が不能な非差動状態とされる。 具体的には、上記切換クラッ チ C 0が係合されて第 1サンギヤ S 1と第 1キヤリャ C A 1とが一体的に連結さ れると、動力分配機構 1 6は第 1遊星歯車装置 2 4の 3要素である第 1サンギヤ S 1、 第 1キヤリャ C A 1、 第 1 リングギヤ R 1が共に回転すなわち一体回転さ せられる連結状態すなわちロック状態とされて前記差動作用をしない非差動状態 とされることから、 差動部 1 1も非差動状態とされる。 また、 エンジン 8の回転 と伝達部材 1 8の回転速度 (以下、伝達部材回転速度 N 1 8 ) とが一致する状態と なるので、 差動部 1 1 (動力分配機構 1 6 ) は変速比ァ 0が 「1」 に固定された 変速機として機能する非無段変速状態例えば定変速状態すなわち有段変速状態と される。 In this state, when the above-mentioned switching clutch C 0 or the switching brake B 0 is engaged. That is, when switched to the engaged state, the power distribution mechanism 16 does not perform the differential action, that is, enters a non-differential state where the differential action is not possible. Specifically, when the switching clutch C 0 is engaged and the first sun gear S 1 and the first carrier CA 1 are integrally connected, the power distribution mechanism 16 is connected to the first planetary gear device 2 4. The first sun gear S 1, the first carrier CA 1, and the first ring gear R 1, which are the three elements of the first and second ring gears R 1, rotate together, or are integrally rotated, that is, in a non-differential state where the differential action does not occur. Therefore, the differential section 1 1 is also in a non-differential state. In addition, since the rotation of the engine 8 and the rotation speed of the transmission member 18 (hereinafter referred to as transmission member rotation speed N 1 8 ) coincide with each other, the differential section 1 1 (power distribution mechanism 16) has a gear ratio ratio. A non-continuously variable transmission state that functions as a transmission in which 0 is fixed to “1”, for example, a constant transmission state, that is, a stepped transmission state.
次いで、 上記切換クラッチ C 0に替えて切換ブレーキ B 0が係合されて第 1 サンギヤ S 1がケース 1 2に連結されると、動力分配機構 1 6は第 1サンギヤ S Next, when the switching brake B 0 is engaged in place of the switching clutch C 0 and the first sun gear S 1 is connected to the case 12, the power distribution mechanism 16 becomes the first sun gear S.
1が非回転状態とさせられる連結状態すなわち口ック状態とされて前己差動作用 をしない非差動状態とされることから、 差動部 1 1も非差動状態とされる。 また 、 第 1 リングギヤ R 1は第 1キヤリャ C A 1よりも増速回転されるので、 動力分 配機構 1 6は増速 «として機能するものであり、 差動部 1 1 (動力分配機構 1Since the differential state 1 1 is also set to the non-differential state because 1 is set to the non-rotating state, that is, the non-differential state where the self-differential action is not performed. Further, since the first ring gear R 1 is rotated at a higher speed than the first carrier C A 1, the power distribution mechanism 16 functions as a speed increase mechanism, and the differential section 1 1 (power distribution mechanism 1
6 ) は変速比ァ 0が 「 1」 より小さい値例えば 7程度に固定された増速変速 機として機能する非無段変速状態例えば定変速状態すなわち有段変速状態とされ る。 6) is a non-continuously variable speed state that functions as a speed increasing transmission in which the gear ratio 0 is fixed to a value smaller than “1”, for example, about 7, for example, a constant speed state, that is, a stepped speed state.
このように、 本実施例では、上記切換クラッチ C 0および切換ブレーキ B 0 は、差動部 1 1 (動力分配機構 1 6 ) の変速状態を差動状態すなわち非口ック状 態 (非連結状態) と非差動状態すなわちロック状態 (連結状態) とに、 すなわち 差動部 1 1 (動力分配機構 1 6 ) を電気的な差動装置として作動可能な萆動状態 例えば変速比が連続的変化可能な電気的な無段変速機として作動する無段変速作 動可能な無段変速状態と、電気的な無段変速作動しない非無段変速状態例えば電 気的な無段変速機として作動させず無段変速作動を非作動として変速比孝ィ匕を一 定にロックする口ック状態すなわち 1または 2禾画以上の変速比の単段または複 数段の変速機として作動する電気的な無段変速作動しないすなわち電気的な無段 変速作動不能な定変速状態 (非差動状態) 、換言すれば変速比が一定の 1段また は複数段の変速機として作動する定変速状態とに選択的に切換える差動状態切換 装置として機能している。 As described above, in this embodiment, the switching clutch C 0 and the switching brake B 0 change the shift state of the differential portion 11 (power distribution mechanism 16) to the differential state, that is, the non-plugged state (non-coupled state). State) and a non-differential state, that is, a locked state (connected state), that is, a peristaltic state in which the differential unit 1 1 (power distribution mechanism 1 6) can be operated as an electrical differential device. A continuously variable transmission state that can operate as an electric continuously variable transmission that can be changed, and a continuously variable transmission state that does not operate an electrical continuously variable transmission, such as an electric continuously variable transmission. Do not operate the continuously variable transmission operation without operating, and the gear ratio will be locked constantly, that is, with a gear ratio of 1 or 2 or more An electric continuously variable transmission that operates as a transmission of several speeds, that is, an electrical continuously variable speed change operation (non-differential state) incapable of shifting operation, in other words, a single speed stage or a plurality of speed stages with a constant gear ratio It functions as a differential state switching device that selectively switches to a constant transmission state that operates as a transmission.
別の見方をすれば、 切換クラッチ C Oおよび切換ブレーキ B 0は、動力分配 機構 1 6を非差動状態として動力分配機構 1 6の差動作用を制限することにより 、 差動部 1 1を非無段変速状態として差動部 1 1の電気的な差動装置としての作 動を制限する、 すなわち電気的な無段変速機としての作動を制限する差動制限装 置として機能している。 また、切換クラッチ C Oおよび切換ブレーキ B 0は、 動 力分配機構 1 6を差動状態として動力分配« 1 6の差動作用を制限しないこと により、差動部 1 1を無段変速状態として差動部 1 1の電気的な差動装置として の作動を制限しない、 すなわち電気的な無段変速機としての作動を制限しない。  From another point of view, the switching clutch CO and the switching brake B 0 are configured so that the differential portion 11 is not operated by limiting the differential action of the power distributing mechanism 16 by setting the power distributing mechanism 16 to a non-differential state. It functions as a differential limiting device that restricts the operation of the differential section 11 as an electrical differential device in a continuously variable transmission state, that is, restricts the operation as an electrical continuously variable transmission. Further, the switching clutch CO and the switching brake B 0 are configured so that the differential portion 11 is set to a continuously variable transmission state by restricting the differential action of the power distributing mechanism 16 by setting the power distribution mechanism 16 to a differential state. The operation of the moving part 1 1 as an electric differential device is not restricted, that is, the operation as an electric continuously variable transmission is not restricted.
自動変速部 2 0は、 シングルピニォン型の第 2遊星歯車装置 2 6、 シングル ピニオン型の第 3遊星歯車装置 2 8、 およびシングルピニオン型の第 4遊星歯車 装置 3 0を備え、 有段式の自動変速機として機能する。 第 遊星歯車装置 2 6は 、 第 2サンギヤ S 2、 第 2遊星歯車 F 2、 その第 2遊星歯車 F 2を自転および公 転可能に支持する第 2キヤリャ C A 2、第 2遊星歯車 P 2を介して第 2サンギヤ S 2と嚙み合う第 2リングギヤ R 2を備えており、例えば 「 0 . 5 6 2」 程度の 所定のギヤ比 2を有している。 第 3遊星歯車装置 2 8は、第 3サンギヤ S 3、 ' 第 3遊星歯車 P 3、 その第 3遊星歯車 F 3を自転および公転可能に支持する第 3 キヤリャ C A 3、 第 3遊星歯車 F 3を介して第 3サンギヤ S 3と嚙み合う第 3リ ングギヤ R 3を備えており、例えば 「 0 . 4 2 5」 程度の所定のギヤ比 ί> 3を有 している。 第 4遊星歯車装置 3 0は、第 4サンギヤ S 4、 第 4遊星歯車 Ρ 4、 そ の第 4遊星歯車 Ρ 4を自転およぴ公転可能に支持する第 4キヤリャ C A 4、第 4 遊星歯車 F 4を介して第 4サンギヤ S 4と嚙み合う第 4リングギヤ R 4を備えて おり、例えば 「0 . 4 2 1」 程度の所定のギヤ比 4を有している。 第 2サンギ ャ S 2の歯数を Z S 2、 第 2リングギヤ R 2の歯数を Z R 2、 第 3サンギヤ S 3 の歯数を Z S 3、 箄 3 リングギヤ R 3の歯数を Z R 3、第 4サンギヤ S 4の歯数 を ZS 4、第 4リングギヤ R 4.の歯数を ZR 4とすると、 上記ギヤ比 p 2は ZS 2/ZR2. 上記ギヤ比 3は ZS 3/ZR3、上記ギヤ比 4は Z S 4/ZR 4である。 ' The automatic transmission unit 20 includes a single pinion type second planetary gear unit 26, a single pinion type third planetary gear unit 28, and a single pinion type fourth planetary gear unit 30. It functions as a transmission. The second planetary gear unit 26 includes a second sun gear S 2, a second planetary gear F 2, a second carrier CA 2 that supports the second planetary gear F 2 so as to rotate and revolve, and a second planetary gear P 2. And a second ring gear R 2 that meshes with the second sun gear S 2, and has a predetermined gear ratio 2 of, for example, “0.5 6 2”. The third planetary gear unit 28 is composed of a third sun gear S3, a third planetary gear P3, a third carrier CA3 that supports the third planetary gear F3 so that it can rotate and revolve, and a third planetary gear F3. And a third ring gear R 3 that meshes with the third sun gear S 3 via a shaft, and has a predetermined gear ratio ≧ 3, for example, about “0.4 2 5”. The fourth planetary gear unit 30 includes a fourth sun gear S4, a fourth planetary gear Ρ4, a fourth carrier CA4 that supports the fourth planetary gear Ρ4 so that it can rotate and revolve, and a fourth planetary gear. A fourth ring gear R 4 that engages with the fourth sun gear S 4 via F 4 is provided, and has a predetermined gear ratio 4 of about “0.4 2 1”, for example. The number of teeth of the second sun gear S 2 is ZS 2, the number of teeth of the second ring gear R 2 is ZR 2, the number of teeth of the third sun gear S 3 is ZS 3, the number of teeth of the third ring gear R 3 is ZR 3, 4 Sun gear S 4 Number of teeth Is ZS 4 and the number of teeth of the 4th ring gear R 4. is ZR 4, the gear ratio p 2 is ZS 2 / ZR 2. The gear ratio 3 is ZS 3 / ZR3, the gear ratio 4 is ZS 4 / ZR 4 It is. '
自動変速部 2 0では、第 2サンギヤ S 2と第 3サンギヤ S 3とが一体的に連 結されて第 2クラッチ C 2を介して伝達部材 1 8に選択的に連結されるとともに 第 1ブレーキ B 1を介してケース 1 2に選択的に連結され、第 2キヤリャ CA2 は第 2ブレーキ B 2を介してケース 1 2に選択的に連結され、 第 4リングギヤ R 4は第 3ブレーキ B 3を介してケース 1 2に選択的に連結され、 第 リングギヤ R 2と第 3キヤリャ CA3ど第 4キヤリャ CA4とがー体的に連結されて出力軸 2 2に連結され、 第 3リングギヤ R 3と第 4サンギヤ S 4とが一体的に連結され て第厂クラッチ C 1を介して伝達部材 1.8に選択的に連結されている。 このよう に、 自動変速部 2 0と差動部 1 1 (伝達部材 1 8) とは自動変速部 2 0の変速段 を成立させるために用いられる第 1クラッチ C 1または第 2クラッチ C 2を介し て選択的に連結されている。 別の見方をすれば、第 1クラッチ C 1および第 2ク ラッチ C 2は、差動部 1 1から自動変速部 20内への動力伝達経路を、言い換え れば差動部 1 1から駆動輪 3 8への動力伝達経路を、 その動力伝達経路の動力伝 達を可能とする動力伝達可能状態とその動力伝達経路の動力伝達を遮断する動力 伝達遮断状態とに選択的に切り換える係合装置とじて機能している。 つまり、第 1クラッチ C 1および第 2クラッチ C 2の少なくとの一方が係合されることでそ の動力伝達経路が動力伝達可能状態とされ、或いは第 1クラッチ C 1および第 2 クラッチ C 2が解放されることでその動力伝達経路が動力伝達遮断状態とされる 。 また、 この自動変速部 2 0は、解放側係合装置の解放と係合側係合装置の係合 とによりクラッチッゥクラッチ変速が実行される有段式変速記である。  In the automatic transmission 20, the second sun gear S 2 and the third sun gear S 3 are integrally connected and selectively connected to the transmission member 18 via the second clutch C 2 and the first brake The second carrier CA2 is selectively connected to the case 12 via the second brake B2, and the fourth ring gear R4 is connected to the third brake B3. The first ring gear R 2 and the third carrier CA3 and the fourth carrier CA4 are connected to the output shaft 22 and connected to the output shaft 22 and the third ring gear R 3 Four sun gears S 4 are integrally connected and selectively connected to the transmission member 1.8 via the first clutch C 1. As described above, the automatic transmission unit 20 and the differential unit 11 (transmission member 18) are provided with the first clutch C1 or the second clutch C2 used to establish the shift stage of the automatic transmission unit 20. Are selectively connected to each other. In other words, the first clutch C 1 and the second clutch C 2 provide a power transmission path from the differential unit 11 to the automatic transmission unit 20, in other words, from the differential unit 11 to the drive wheel. 3 An engagement device that selectively switches the power transmission path to 8 between a power transmission enabling state that enables power transmission on the power transmission path and a power transmission cutoff state that interrupts power transmission on the power transmission path. Is functioning. That is, when at least one of the first clutch C 1 and the second clutch C 2 is engaged, the power transmission path becomes a power transmission enabled state, or the first clutch C 1 and the second clutch C 2 Is released, the power transmission path is in a power transmission cut-off state. The automatic transmission unit 20 is a stepped transmission in which clutch-to-clutch shift is executed by releasing the disengagement side engagement device and engaging the engagement side engagement device.
前記切換クラッチ C 0、 第 1クラッチ C 1、第 2クラッチ C 2、 切換ブレ一 キ B 0、第 1ブレーキ B K 第 2ブレーキ B 2、 および第 3ブレーキ B 3 (以下 、 特に区別しない場合はクラッチ C、 ブレーキ Bと表す) は、 従来の車両用自動 変速機においてよく用いられている係合要素としての油圧式摩擦係合装置であつ て、互いに重ねられた複数枚の摩擦板が油圧ァクチユエ一夕により押圧される湿 式多板型や、 回転するドラムの外周面に巻き付けられた 1本または 2本のバンド の一端が油圧ァクチユエ一夕によって引き締められるバンドブレーキなどにより 構成され、 それが介挿されている両側の部材を選択的に連結するためのものであ る。 The switching clutch C 0, the first clutch C 1, the second clutch C 2, the switching brake B 0, the first brake BK, the second brake B 2, and the third brake B 3 (hereinafter referred to as the clutch unless otherwise specified) C and brake B) are hydraulic frictional engagement devices as engagement elements that are often used in conventional automatic transmissions for vehicles, and a plurality of friction plates stacked on top of each other are hydraulically actuated. Humidity pressed by evening On both sides where a multi-plate type or one or two bands wound around the outer surface of a rotating drum are composed of a band brake that is tightened by a hydraulic actuate Is to selectively connect the two.
以上のように構成された変速機構 1 0において、 特に、本実施例では動力分 配機構 1 6に切換クラッチ C 0および切換ブレーキ B 0が備えられており、 切換 クラッチ C 0および切換ブレーキ B 0の何れかが係合作動させられることによつ て、差動部 1 1は前述した無段変速機として作動可能な無段変速状態に加え、変 速比が一定の変速機として作動可能な非無段変速状態 (定変速状態) を構成する ことが可能とされている。 したがって、 変速機構 1 0では、 切換クラッチ C Oお よび切換ブレーキ B 0の何れかを係合作動させることで定変速状態とされた差動 部 1 1と自動変速部 2 0とで有段変速機として作動する有段変速状態が構成され 、切換クラッチ C 0および切換ブレーキ B 0の何れも係合作動させないことで無 段変速状態とされた差動部 1 1と自動変速部 2 0とで電気的な無段変速機として 作動する無段変速状態が構成される。 言い換えれば、 変速騰 1 0は、切換クラ ツチ C 0および切換ブレーキ B 0の何れかを係合作動させることで有段変速状態 に切り換えられ、 切換クラッチ C 0および切換ブレーキ B 0の何れも係合作動さ せないことで無段変速状態に切り換えられる。 また、 差動部 1 1も有段変速状態 と無段変速状態とに切り換え可能な変速機であると言える。  In the speed change mechanism 10 configured as described above, in this embodiment, in particular, the power distribution mechanism 16 is provided with the switching clutch C 0 and the switching brake B 0, and the switching clutch C 0 and the switching brake B 0 are provided. As a result, the differential unit 11 can operate as a transmission with a constant speed ratio in addition to the above-described continuously variable transmission state that can operate as a continuously variable transmission. It is possible to configure a continuously variable transmission state (constant transmission state). Therefore, in the speed change mechanism 10, the stepped transmission is made up of the differential portion 11 and the automatic speed change portion 20 that are brought into a constant speed change state by engaging and operating either the switching clutch CO or the switching brake B 0. The differential section 11 and the automatic transmission section 20 that are set to the continuously variable transmission state by engaging neither the switching clutch C 0 nor the switching brake B 0 are electrically connected to each other. A continuously variable transmission state operating as a typical continuously variable transmission is configured. In other words, the gear shift 10 is switched to the stepped shift state by engaging and operating either the switching clutch C 0 or the switching brake B 0, and both the switching clutch C 0 and the switching brake B 0 are engaged. Switching to the continuously variable transmission state is possible by not operating them together. The differential unit 11 can also be said to be a transmission that can be switched between a stepped transmission state and a continuously variable transmission state.
具体的には、 牵動部 1 1が非無段変速状態とされて変速機構 1 0が有段変速 機として機能する場合には、 切換クラッチ C 0および切換ブレーキ B 0の何れか が係合させられ、 且つ第 1クラッチ C 1、 第 2クラッチ C 2、 第 1ブレーキ B 1 、 第 2ブレーキ B 1、 および第 3ブレーキ B 3が選択的に係合作動させられるこ とにより、 すなわち自動変速部 2 0の変速に関与する係合装置の解放と係合とに より、 例えば変速に関与する解放側の油圧式摩擦係合装置 (以下解放側係合装置 ) の解放と変速に関与する係合側の油圧式摩擦係合装置(以下係合側係合装置) の係合とにより変速比が自動的に切り換えられるように、 第 1速ギヤ段 (第 1変 速段) 乃至第 5速ギヤ段 (第 5変速段) のいずれか或いは後進ギヤ段 (後進変速 段)或いはニュートラルが選択的に成立させられ、 略等比的に変ィ匕する変速機構 1 0の総合変速比ァ T ( =入力軸回転速度 N 1 4Z出力軸回転速度 Ν。υτ ) が各ギ ャ段毎に得られるようになつている。 この変速機構 1 0の総合変速比ァ Τは、 差 動部 1 1の変速比ァ 0と自動変速部 2 0の変速比ァとに基づいて形成される変速 5 機構 1 0全体としてのトータル変速比ァ Τである。 Specifically, when the peristaltic portion 11 is set to a continuously variable transmission state and the transmission mechanism 10 functions as a stepped transmission, either the switching clutch C 0 or the switching brake B 0 is engaged. And the first clutch C 1, the second clutch C 2, the first brake B 1, the second brake B 1, and the third brake B 3 are selectively engaged and operated, that is, automatic transmission By releasing and engaging the engagement device involved in the gear shift of the part 20, for example, the engagement of the release-side hydraulic friction engagement device (hereinafter referred to as the release-side engagement device) involved in the gear shift and the gear change. 1st speed gear stage (1st speed change stage) to 5th speed so that the gear ratio is automatically switched by the engagement of the combined hydraulic friction engagement device (hereinafter referred to as engagement side engagement device). One of the gears (5th gear) or reverse gear (reverse gear) Stage) or neutral is selectively established, a nearly equal to Heni spoon to overall speed ratio § T of the transmission mechanism 1 0 (= input shaft rotational speed N 1 4 Z output shaft speed Ν. Υτ) is It can be obtained for each gear. The overall speed ratio key の of the speed change mechanism 10 is determined based on the speed ratio ratio 0 of the differential section 11 and the speed ratio ratio of the automatic speed change section 20. The ratio is ァ.
例えば、 変速機構 1 0が有段変速機として機能する場合には、 図 2の係合作 動表に示されるように、 切換クラッチ C 0、 第 1クラッチ C 1および第 3ブレー キ Β 3の係合により、 変速比ァ 1が最大値例えば 「 3 . 3 5 7」 程度である第 1 速ギヤ段が成立させられ、切換クラッチ C 0、 第 1グラッチ C 1および第 2ブレ For example, when the speed change mechanism 10 functions as a stepped transmission, the engagement of the switching clutch C 0, the first clutch C 1 and the third brake Β 3 as shown in the engagement operation table of FIG. As a result, the first speed gear stage in which the transmission gear ratio 1 is the maximum value, for example, about “3.35 7” is established, and the switching clutch C 0, the first glatch C 1, and the second brake speed are established.
10 —キ B 2の係合により、 変速比ァ が第 1速ギヤ段よりも小さい値例えば 「 2 . 10-Key B 2 is engaged so that the gear ratio is smaller than the first gear.
1 8 0」程度である第 2速ギヤ段が成立させられ、 切換クラッチ C O、第 1クラ ツチ C 1および第 1ブレーキ B 1の係合により、 変速比ァ 3が第 2速ギヤ段より も小さい値例えば 「 1 . 4 2 4」程度である第 3速ギヤ段が成立させられ、 切換 クラッチ C 0、第 1クラッチ C 1および第 2クラッチ C 2の係合により、 変速比 The second gear, which is about 1800, is established, and the gear ratio 3 is greater than the second gear because of the engagement of the switching clutch CO, the first clutch C1, and the first brake B1. The third gear, which is a small value, for example, “1.4 2 4”, is established, and the gear ratio is changed by engaging the switching clutch C 0, the first clutch C 1, and the second clutch C 2.
15 r 4が第 3速ギヤ段よりも小さい値例えば 「 1 . 0 0 0」 程度である第 4速ギヤ 段が成立させられ、 第 1クラッチ C 第 2クラッチ C 2、 および切換ブレーキ15 r 4 is smaller than the third speed gear stage, for example, about “1.0 00”, the fourth speed gear stage is established, and the first clutch C, the second clutch C 2, and the switching brake
' B 0の係合により、 変速比; 5が第 4速ギヤ段よりも小さい値例えば 「0 . 7 0 5」程度である第 5速ギヤ段が成立させられる。 また、第 2クラッチ C 2および 第 3ブレーキ B 3の係合により、変速比 Rが第 1速ギヤ段と第 2速ギヤ段との 0 間の値例えば 「3 . 2 0 9」 程度である後進ギヤ段が成立させられる。 なお、 こ の後進ギヤ段は、 通常、 差動部 1 1の無段変速状態において成立させられる。 ま た、 ニュートラル 「N」 状態とする場合には、 例えば切換クラッチ C 0のみが係 合される。 - ' 'By engaging B 0, the fifth speed gear stage in which the speed ratio; 5 is smaller than the fourth speed gear stage, for example, about “0.7 0 5” is established. Further, due to the engagement of the second clutch C 2 and the third brake B 3, the gear ratio R is a value between 0 between the first speed gear stage and the second speed gear stage, for example, about “3.2 0 9”. A reverse gear is established. Note that this reverse gear is normally established in the continuously variable transmission state of the differential section 11. When the neutral “N” state is set, for example, only the switching clutch C 0 is engaged. -'
また、 差動部 1 1が無段変速状態とされて変速機構 1 0が無段変速機として 5 機能する場合には、切換クラッチ C 0および切換ブレーキ B 0が共に解放されて 差動部 1 1が無段変速機'として機能し、且つ差動部 1 1に直列の自動変速部 2 0 Further, when the differential unit 1 1 is in a continuously variable transmission state and the transmission mechanism 10 functions as a continuously variable transmission, both the switching clutch C 0 and the switching brake B 0 are released and the differential unit 1 1 functions as a continuously variable transmission, and the automatic transmission unit 2 0 in series with the differential unit 1 1
• が有段変速機として機能することにより、 自動変速部 2 0の少なくとも 1つの変 速段 Mに対して自動変速部 2 0に入力される回転速度 (以下、 自動変速部 2 0の 入力回転速度 N I N) すなわち伝達部材回転速度 N ! 8が無段的に変化させられてそ の変速段 Mにおいて無段的な変速比幅が得られる。 したがって、 変速機構 1 0の ト一タル変速比 7 Tが無段階に得られるようになる。 • By functioning as a stepped transmission, the rotational speed input to the automatic transmission unit 20 with respect to at least one shift stage M of the automatic transmission unit 20 (hereinafter referred to as the automatic transmission unit 20). The input rotational speed N IN ), that is, the transmission member rotational speed N! 8 is changed steplessly, and a stepless speed ratio width is obtained at the gear stage M. Therefore, the total transmission ratio 7 T of the transmission mechanism 10 can be obtained steplessly.
例えば、 変速 !«' 1 0が無段変速機として機能する場合には、 図 2の係合作 動表に示されるように、 切換クラッチ C 0および切換ブレーキ B 0が共に解放さ れた状態で、 自動変速部 2 0の第 1速、 第 2速、第 3速、 第 4速 (第 5速におけ る自動変速部 2 0の係合装置の係合作動は第 4速に同じ) の各ギヤ段に対しその 自動変速部 2 0の入力回転速度 N I Nが無段的に変化させられて各ギヤ段は無段的 な変速比幅が得られる。 したがって、 その各ギヤ段の間が無段的に連続変化可能 な変速比となって、変速機構 1 0全体としてのトータル変速比ァ Tが無段階に得 られる。 For example, when the shift! «'1 0 functions as a continuously variable transmission, the switching clutch C 0 and the switching brake B 0 are both released as shown in the engagement operation table of FIG. 1st speed, 2nd speed, 3rd speed, 4th speed of automatic transmission section 20 (the engagement operation of the engagement device of automatic transmission section 20 at 5th speed is the same as that of 4th speed) For each gear stage, the input rotational speed N IN of the automatic transmission unit 20 is changed steplessly, and a stepless speed ratio range is obtained for each gear stage. Accordingly, the gear ratio between the gear stages can be continuously changed continuously, and the total gear ratio T as the entire transmission mechanism 10 can be obtained continuously.
図 3は、無段変速部或いは第 1変速部として機能する差動部 1 1と変速部 ( 有段変速部) 或いは第 2変速部として機能する自動変速部 2 0とから構成される 変速機構 1 0において、 ギヤ段毎に連結状態が異なる各回転要素の回転速度の相 対関係を直線上で表すことができる共線図を示している。 この図 3の共線図は、 '各遊星歯車装置 2 4、 2 6、 2 8、 3 0のギヤ比 pの関係を示す横軸と、 相対的 回転速度を示す縦軸とから成る二次元座標であり、 3本の横線のうちの下側の横 線 X 1が回転速度零を示し、 上側の横線 X 2が回転速度 「 1 . 0」 すなわち入力 軸 1 4に連結されたエンジン 8の回転速度 NE を示し、横線 X Gが伝達部材回転 速度 N 1 8を示している。 FIG. 3 shows a transmission mechanism composed of a differential unit 11 that functions as a continuously variable transmission unit or a first transmission unit and an automatic transmission unit 20 that functions as a transmission unit (stepped transmission unit) or a second transmission unit. In FIG. 10, a collinear chart is shown in which the relative relationship between the rotational speeds of the rotating elements having different coupling states for each gear stage can be represented on a straight line. This collinear diagram in Fig. 3 is a two-dimensional model consisting of a horizontal axis indicating the relationship of the gear ratio p of each planetary gear set 24, 26, 28, 30 and a vertical axis indicating the relative rotational speed. Of the three horizontal lines, the lower horizontal line X 1 indicates the rotational speed zero, and the upper horizontal line X 2 indicates the rotational speed “1.0”, that is, the engine 8 connected to the input shaft 14. The rotational speed N E is shown, and the horizontal line XG shows the transmission member rotational speed N 18 .
また、 差動部 1 1を構成する動力分配機構 1 6の 3つの要素に対応する 3本 の縦線 Y 1、 Y 2、 Y 3は、 左側から順に第 2回転要素 (第 1要素) R E 2に対 応ずる第 1サンギヤ S 1、 第 1 .回転要素 (第 1要素) R E 1に対応する第' 1キヤ リャ C A 1、 第 3回転要素 (第 3要素) R E 3に対応する第 1 リングギヤ R 1の 相対回転速度を示すものであり、 それらの間隔は第 1遊星歯車装置 4のギヤ比 p 1に応じて定められている。 さらに、 自動変速部 2 0の 5本の縦線 Y 4、 Y 5 、 Y 6、 Y 7、 Y 8は、 左から順に、第 4回転要素 (第 4要素) R E 4に対応し 且つ相互に連結された第 2サンギヤ S 2および第 3サンギヤ S 3を、 第 5回転要 素 (第 5要素) R E 5に対応する第 2キヤリャ C A 2を、 第 6回転要素 (第 6要 素) R E 6に対応する第 4リングギヤ R 4を、第 7回転要素 (第 7要素) R E 7 に対応し且つ相互に連結された第' 2リングギヤ R 2、 第 3キヤリャ C A 3、第 4 キヤリャ C A 4を、第 8回転要素 (第 8要素) R E 8に対応し且つ相互に連結さ れた第 3リングギヤ R 3、第 4サンギヤ S 4をそれぞれ表し、 それらの間隔は第 2、第 3、 第 4遊星歯車装置 2 6、 2 8、 3 0のギヤ比 p 2、 p 3、 p 4に応じ てそれぞれ定められでいる。 共線図の縦軸間の関係においてサンギヤとキヤリャ との間が 「 1」 に対応する間隔とされるとキヤリャとリングギヤとの間が遊星歯 車装置のギヤ比 に対応する間隔とされる。 すなわち、差動部 1 1では縦線 Y 1 と Υ 2との縦線間が 「 1」 に対応する間隔に設定され、縦線 Υ 2と Υ 3との間隔 はギヤ比 ί) 1に対応する間隔に設定される。 また、 自動変速部 2 0では各第 2、 第 3、 第 4遊星歯車装置 2 6、 2 8、 3 0毎にそのサンギヤとキヤリャとの間が 「 1」 に対応する間隔に設定され、 キヤリャとリングギヤとの間が ί>に対応する 間隔に設定される。 In addition, the three vertical lines Y1, Y2, Y3 corresponding to the three elements of the power distribution mechanism 16 constituting the differential section 1 1 are the second rotation element (first element) RE in order from the left side. 1st sun gear S 1 corresponding to 2, 1st rotation element (1st element) 1st carrier CA 1 corresponding to RE 1 3rd rotation element (3rd element) 1st ring gear corresponding to RE 3 It shows the relative rotational speed of R 1, and the interval between them is determined according to the gear ratio p 1 of the first planetary gear unit 4. Furthermore, the five vertical lines Y4, Y5, Y6, Y7, Y8 of the automatic transmission unit 20 correspond to the fourth rotating element (fourth element) RE4 in order from the left. Connect the second sun gear S 2 and the third sun gear S 3 Element (5th element) 2nd carrier CA 2 corresponding to RE 5; 6th rotating element (6th element) 4th ring gear R 4 corresponding to RE 6; 7th rotating element (7th element) RE The second ring gear R 2, the third carrier CA 3 and the fourth carrier CA 4 corresponding to 7 and connected to each other correspond to the eighth rotating element (eighth element) RE 8 and connected to each other. Represents the third ring gear R 3 and the fourth sun gear S 4, and the distance between them is the gear ratio p 2, p 3, p 4 of the second, third and fourth planetary gear units 26, 28, 30 It is determined according to each. In the relationship between the vertical axes of the nomograph, if the distance between the sun gear and the carrier corresponds to “1”, the distance between the carrier and the ring gear corresponds to the gear ratio of the planetary gear device. That is, in the differential section 1 1, the interval between the vertical lines Y 1 and Υ 2 is set to an interval corresponding to “1”, and the interval between the vertical lines Υ 2 and Υ 3 corresponds to the gear ratio (1). Set to the interval to be In the automatic transmission unit 20, an interval corresponding to “1” is set between the sun gear and the carrier every second, third, and fourth planetary gear devices 26, 28, and 30. Is set to the interval corresponding to ί> between the ring gear and the ring gear.
上記図 3の共線図を用いて表現すれば、 本実施例の変速機構 1 0は、 動力分 配機構 1 6 (差動部 1 1 ) において、第 1遊星歯車装置 2 4の第 1回転要素 R Ε 1 (第 1キヤリャ C A 1 ) が入力軸 1 4すなわちエンジン 8に連結されるととも に切換クラッチ C 0を介して第 2回転要素(第 1サンギヤ S 1 ) R E 2と選択的 に連結され、第 1回転要素 R Ε 2が第 1電動機 Μ 1に連結されるとともに切換ブ レーキ Β 0を介してケース 1 2に選択的に連結され、第 3回転要素 (第 1 リング ギヤ R 1 ) R E 3が伝達部材 1 8および第 2電動機 Μ 2に連結されて、入力軸 1 4の回転を伝達部材 1 8を介して自動変速部 2 0へ伝達する (入力させる) よう に構成されている。 このとき、 Υ 2と X 2の交点を通る斜めの障線 L 0により第 1サンギヤ S 1の回転速度と第 1リングギヤ R 1の回転速度との関係が示される。 例えば、 上記切換クラッチ C 0および切換ブレーキ Β 0の解放により、 第 1回 転要素 R Ε 1乃至第 3回転要素 R Ε 3を相互に相対回転可能とする無段変速状態 (差動状態) 、例えば少なくとも第 2回転要素 R Ε 2および第 3回転要素 R Ε 3 を互いに異なる速度にて回転可能どする無段変速状態 (差動状態) に切換えられ たときは、 第 1電動機 M 1の回転速度を制御することによつて直線 L 0と縦線 Y 1との交点で示される第 1サンギヤ S 1の回転が上昇或いは下降させられると、 直線し 0と縦線 Y 3との交点で示される車速 Vに拘束される第 1 リングギヤ R 1 の回転速度が略一定である場合には、 直線し 0と縦線 Y 2との交点で示される第 5 1キヤリャ C A 1の回転速度すなわちエンジン回転速度 N R が上昇或いは下降さ せられる。 If expressed using the collinear diagram of FIG. 3, the speed change mechanism 10 of the present embodiment is the first rotation of the first planetary gear device 24 in the power distribution mechanism 16 (differential portion 11). The element R 第 1 (first carrier CA 1) is connected to the input shaft 14, that is, the engine 8, and selectively connected to the second rotating element (first sun gear S 1) RE 2 via the switching clutch C 0. The first rotating element R Ε 2 is connected to the first electric motor Μ 1 and is selectively connected to the case 1 2 via the switching brake 、 0, and the third rotating element (first ring gear R 1 ) RE 3 is connected to transmission member 18 and second electric motor Μ 2 and is configured to transmit (input) rotation of input shaft 14 to automatic transmission unit 20 through transmission member 18. Yes. At this time, the relationship between the rotational speed of the first sun gear S 1 and the rotational speed of the first ring gear R 1 is indicated by an oblique obstacle line L 0 passing through the intersection of Υ 2 and X 2. For example, when the switching clutch C 0 and the switching brake Β 0 are released, the first rotation element R Ε 1 to the third rotation element R Ε 3 are allowed to rotate relative to each other (differential state), For example, at least the second rotating element R Ε 2 and the third rotating element R Ε 3 can be switched to a continuously variable transmission state (differential state) that can rotate at different speeds. If the rotation of the first sun gear S 1 indicated by the intersection of the straight line L 0 and the vertical line Y 1 is increased or decreased by controlling the rotational speed of the first motor M 1, When the rotational speed of the first ring gear R 1 constrained by the vehicle speed V indicated by the intersection of 0 and the vertical line Y 3 is substantially constant, the straight line is the first indicated by the intersection of 0 and the vertical line Y 2. 5 1 Carrying speed of CA 1 or engine speed N R is increased or decreased.
また、 切換クラッチ C 0の係合により第 1サンギヤ S 1と第 1キヤリャ C A 1とが連結されると、 動力分配機構 1 6は上記 3回転要素 R E 1、 R E 2、 R E 3がー体回転して少なくとも第 2回転要素 R E 2および第 3回転要素 R E 3を互 In addition, when the first sun gear S 1 and the first carrier CA 1 are connected by the engagement of the switching clutch C 0, the power distribution mechanism 16 rotates the three rotation elements RE 1, RE 2, and RE 3 together. At least the second rotating element RE 2 and the third rotating element RE 3
10 ' いに異なる速度にて回転可能としない非差動状態とされるので、 直線し 0は横線 X 2と一致させられ、 エンジン回転速度 N E と同じ回転で伝達部材 1 8が回転さ せられる。 或いは、切換ブレーキ B 0の係合により第 1サンギヤ Sレがケース 1 2に連結されると、動力分配機構 1 6は第 2回転要素 R E 2の回転が停止させら れて少なく も第 2回転要素 R E 2およ 第 3回転要素 R E 3を互いに異なる速10 'Because it is in a non-differential state that does not allow rotation at different speeds, straight line 0 is matched with horizontal line X 2 and transmission member 18 is rotated at the same rotation as engine speed N E. It is done. Alternatively, when the first sun gear S is connected to the case 12 by the engagement of the switching brake B 0, the power distribution mechanism 16 stops at least the second rotation because the rotation of the second rotating element RE 2 is stopped. Element RE 2 and 3rd rotation element RE 3
15 度にて回転可能としない非差動状態とされるので、 直線 L 0は図 3に示す状態と なって差動部 1 1が増速機構として機能させられ、 その直線 L 0と縦線 Y 3とのSince it is in a non-differential state where rotation at 15 degrees is not possible, the straight line L 0 becomes the state shown in Fig. 3 and the differential part 1 1 functions as a speed increasing mechanism. With Y 3
' 交点で示される第 1 リングギヤ R 1の回転速度すなわち伝達部材回転速度 8は 、 エンジン回転速度 N E よりも増速された回転で自動変速部 2 0へ入力される。 The first ring gear rotational speed, that the transmitting member rotational speed 8 of R 1 represented by 'intersection, is input to the automatic shifting portion 2 0 in a rotation speed higher than the engine speed N E.
また、 自動変速部 2 0において第 4回転要素 R E 4は第 2クラッチ C 2を介 Further, in the automatic transmission 20, the fourth rotating element R E 4 is passed through the second clutch C 2.
20 ' して伝達部材 1 8に選択的に連結されるとともに第 1ブレーキ B 1を介してケ一 ス 1 2に選択的に連結され、 第 5回転要素 R E 5は第 2ブレーキ B 2を介してケ ース 1 2に選択的に連結され、 第 6回転要素 R E 6は第 3ブレーキ B 3を介して ケース 1 2に選択的に連結され、第 7回転要素 R E 7は出力軸 2 2に連結され、 第 8回転要素 R E 8は第 1クラッチ C 1を介して伝達部材 1 8に選択的に連結さ20 'and is selectively connected to the transmission member 18 and selectively connected to the case 12 via the first brake B1, and the fifth rotating element RE5 is connected via the second brake B2. The sixth rotating element RE 6 is selectively connected to the case 12 via the third brake B 3 and the seventh rotating element RE 7 is connected to the output shaft 2 2. The eighth rotating element RE 8 is selectively connected to the transmission member 18 via the first clutch C 1.
'25 れている。 '25.
自動変速部 2 0では、 図 3に示すように、 第 1クラッチ C 1と第 3ブレーキ B 3とが係合させられることにより、第 8回転要素 R E 8の回転速度を示す縦線 Y 8と横線 X 2との交点と第 6回転要素 R E 6の回転速度を示す縦線 Y 6と横線 1との交点とを通る斜めの直線 L 1と、 出力軸 2 2と連結された第 7回転要素 R E 7の回転速度を示す縦線 Y 7との交点で第 1速の出力軸 2 2の回転速度が示 される。 同様に、第 1クラッチ C 1と第 2ブレーキ B 2とが係合させられること により決まる斜めの直線 L 2と出力軸 2 2と連結された第 7回転要素 R E 7の回 転速度を示す縦線 Y 7との交点で第 2速の出力軸 2 2の回転速度が示され、 第 1 クラッチ C 1と第 1ブレーキ B 1とが係合させられることにより決まる斜めの直 線し 3と出力軸 2 2と連結された第 7回転要素 R E 7の回転速度を示す縦線 Y 7 との交点で第 3速の出力軸 2 2の回転速度が示され、 第 1クラッチ C 1と第 2ク ラッチ C 2とが係合させられることにより決まる水平な直線 L 4と出力軸 2 2と 連結された第 7回転要素 R E 7の回転速度を示す縦線 Y 7との交点で第 4速の出 力軸 2 2の回転速度が示される。 上記第 1速乃至第 4速では、 切換クラッチ C O が係合させられている結果、 エンジン回転速度 N E と同じ回転速度で第 8回転要 素 R E 8に差動部 1 1すなわち動力分配機.構 1 6からの動力が入力される。 しか し、切換クラッチ C 0に替えて切換ブレーキ B 0が係合させられると、差動部 1 1からの動力がエンジン回転速度 N E よりも高い回転速度で入力されることから 、 第 1クラッチ C 1、 第 2クラッチ C 2、 および切換ブレーキ B 0が係合させら れることにより決まる水平な直線 L 5と出力軸 と連結された第 7回転要素 R - Ε 7の回転速度を示す縦線 Υ 7との交点で第 5速の出力軸 2 の回転速度が示さ れる。 In the automatic transmission unit 20, as shown in FIG. 3, when the first clutch C 1 and the third brake B 3 are engaged, the vertical line Y 8 indicating the rotational speed of the eighth rotating element RE 8 Vertical line Y 6 and horizontal line indicating the rotation speed of the sixth rotational element RE 6 and the intersection with horizontal line X 2 Of the first speed output shaft 2 2 at the intersection of the slanted straight line L 1 passing through the intersection with 1 and the vertical line Y 7 indicating the rotational speed of the seventh rotating element RE 7 connected to the output shaft 2 2 The rotation speed is indicated. Similarly, a longitudinal line indicating the rotational speed of the seventh rotating element RE 7 connected to the output shaft 22 and the slanted straight line L 2 determined by engaging the first clutch C 1 and the second brake B 2. The rotation speed of the output shaft 22 of the 2nd speed is shown at the intersection with the line Y7, and the diagonal straight line 3 and the output determined by the engagement of the 1st clutch C1 and the 1st brake B1 The rotation speed of the output shaft 22 of the third speed is shown at the intersection with the vertical line Y 7 indicating the rotation speed of the seventh rotation element RE 7 connected to the shaft 2 2, and the first clutch C 1 and the second clutch The output of the fourth speed is at the intersection of the horizontal straight line L 4 determined by the engagement with the latch C 2 and the vertical line Y 7 indicating the rotational speed of the seventh rotating element RE 7 connected to the output shaft 2 2. The rotational speed of the force shaft 2 2 is shown. In the first speed through the fourth speed, as a result of the switching clutch CO is engaged, the differential unit 1 1 i.e. the power distribution unit to the eighth rotary element RE 8 at the same rotational speed as the engine rotation speed N E. Power from structure 1 6 is input. Since however, the switching brake B 0 in place of the switching clutch C 0 is engaged, power from the differential part 1 1 is input at a higher speed than the engine rotational speed N E, the first clutch C 1, second clutch C 2, and horizontal straight line L 5 determined by engagement of switching brake B 0 and vertical line indicating the rotational speed of the seventh rotating element R-決 ま る 7 connected to the output shaft The rotation speed of output shaft 2 at the 5th speed is shown at the intersection with と 7.
図 4は、 本実施例の変速機構 1 0を制御するための電子制御装置 4 0に入力 される信号及びその電子制御装置 4 0から出力される信号を例示している。 この 電子制御装置 4 0は、 C P U、 R O M. RAM.及び入出力イン夕一フェースな どから成る所謂マイクロコンピュー夕を含んで構成されており、 RAMの一時記 憶機能を利用しつつ R〇 Mに予め記憶されたプログラムに従つて信号処理を行う ことによりエンジン 8、 第 1、 第 2電動機 M l、 M 2に関するハイブリツド駆動 制御、 自動変速部 2 0の変速制御等の駆動制御を実行するものである。  FIG. 4 exemplifies a signal input to the electronic control unit 40 for controlling the speed change mechanism 10 of this embodiment and a signal output from the electronic control unit 40. This electronic control unit 40 is configured to include a so-called microcomputer that includes a CPU, a ROM. RAM, and an input / output interface, etc., while using the RAM's temporary storage function. Executes drive control such as hybrid drive control for engine 8, first and second motors Ml and M2 and shift control for automatic transmission unit 20 by performing signal processing according to a program stored in advance in M To do.
電子制御装置 4 0には、 図 4に示すような各センサゃスィッチなどから、 ェ ンジン水温 T E M F W を表す信号、 'シフトポジション P S H'を表す信号、 エンジン 8の回転速度であるエンジン回転速度 N E を表す信号、 ギヤ比列設定値を表す信 号、 Mモード (手動変速走行モード) を指令する信号、 エアコンの作動を表す信 号、 出力軸 2 2の回転速度 Ν。υτ に対応する車速 Vを表す信号、 自動変速部 2 0 の作動油温 T。I L を表す信号、 サイドブレーキ操作を表す信号、 フットブレーキ 操作を表す信号、 触媒温度を表す信号、 運転者の出力要求量に対応するァクセル ペダルの操作量であるアクセル開度 Accを表す信号、 カム角を表す信号、 スノー モード設定を表す信号、 車両の前後加速度 Gを表す信号、 ォ一トクルーズ走行を 表す信号、 車両の重量 (車重) を表す信号、各車輪の車輪速を表す信号、 変速機 構 1 0を有段変速機として機能させるために差動部 1 1 (動力分配機構 I 6 ) を 有段変速状態 (ロック状態) に切り換えるための有段スィツチ操作の有無を表す 信号、 変速機構 1 0を無段変速機として機能させるために差動部 1 1 (動力分配 機構 1 6 ) を無段変速状態 (差動状態) に切り換えるための無段スィッチ操作の 有無を表す信号、 第 1電動機 M 1の回転速度 NM 1 (以下、 第 1電動機回転速度 N M 1という) を表す信号、 第 2電動機 M 2の回転速度 NM 2 (以下、 第 2電動機回転 速度 NM 2という) を表す信号、蓄電装置 6 0 (図 5参照) の充電容量 (充電状態 ) S O Cを表す信号などが、 それぞれ供給される。 The electronic control device 40 includes a signal indicating the engine water temperature TEMF W , a signal indicating the 'shift position P SH ', an engine from each sensor switch as shown in FIG. A signal indicating the engine speed N E , which is the rotational speed of 8, a signal indicating the gear ratio set value, a signal for instructing the M mode (manual transmission mode), a signal indicating the operation of the air conditioner, output shaft 2 2 Rotational speed of Ν. A signal representing the vehicle speed V corresponding to υτ , the hydraulic oil temperature T of the automatic transmission 20. Signal indicating IL , signal indicating side brake operation, signal indicating foot brake operation, signal indicating catalyst temperature, signal indicating accelerator opening Acc, which is the amount of accelerator pedal operation corresponding to the driver's required output, cam Signal representing angle, signal representing snow mode setting, signal representing longitudinal acceleration G of the vehicle, signal representing auto-cruising, signal representing vehicle weight (vehicle weight), signal representing wheel speed of each wheel, speed change A signal indicating whether or not there is a stepped switch operation for switching the differential unit 1 1 (power distribution mechanism I 6) to a stepped shift state (locked state) in order for the mechanism 10 to function as a stepped transmission. A signal indicating the presence or absence of a continuously variable switch for switching the differential unit 1 1 (power distribution mechanism 1 6) to a continuously variable transmission state (differential state) in order for the mechanism 10 to function as a continuously variable transmission; 1 Electric motor M 1 represents the rotation speed N M 1 (hereinafter referred to as the first motor rotation speed N M 1 ), and represents the rotation speed N M 2 of the second motor M 2 (hereinafter referred to as the second motor rotation speed N M 2 ). A signal, a signal indicating the charge capacity (charge state) SOC of the power storage device 60 (see FIG. 5), etc. are supplied.
また、 上記電子制御装置 4 0からは、 ェンジン出力を制御するェンジン出力 制御装置 4 3 (図 5参照) への制御信号例えばェンジン 8の吸気管 9 5に備えら れた電子スロットル弁 9 6のスロットル弁開度 0 THを操作するスロットルァクチ. ユエータ 9 7への駆動信号や燃料噴射装置 9 8による吸気管 9 5或いはエンジン 8の筒内への燃料供給量を制御する燃料供給量信号や点火装置 9 9によるェンジ ン 8の点火時期を ί ^する点火信号、過給圧を調整するための過給圧調整信号、 電動エアコンを作動させるための電動エアコン駆動信号、 電動機 Μ 1および Μ 2 の作動を指令する 信号、 シフトインジケータを作動させるためのシフトポジ シヨン (操作位置)表示信号、 ギヤ比を表示させるためのギヤ比表示信号、 スノ 一モードであることを表示させるためのスノーモード表示信号、 制動時の車輪の スリップを防止する A B Sァクチユエ一夕を作動させるための A B S作動信号、 Μモードが選択されていることを表示させる Μモード表示信号、 差動部 1 1ゃ自 動変速部 2 0の油圧式摩擦係合装置の油圧ァクチユエ一夕を制御するために油圧 制御回路 4 2 (図 5参照) に含まれる電磁弁を作動させるバルブ ί 信号、 この 油圧制御回路 4 の油圧源である電動油圧ポンプを作動させるための駆動指令信 号、電動ヒータを駆動するための信号、 クルーズコント口ール制御用コンビュ一. • 5 夕への信号等が、 それぞれ出力される。 In addition, the electronic control device 40 controls the control signal to the engine output control device 43 (see FIG. 5) for controlling the engine output, for example, the electronic throttle valve 9 6 provided in the intake pipe 95 of the engine 8. Throttle valve to operate the throttle valve opening 0 TH . Drive signal to the UA 9 7 and fuel supply signal to control the fuel supply to the intake pipe 9 5 or the cylinder of the engine 8 by the fuel injector 9 8 Ignition signal for igniting engine 8 by ignition device 9 9, supercharging pressure adjustment signal for adjusting supercharging pressure, electric air conditioner drive signal for operating electric air conditioner, motor Μ 1 and Μ 2 Signal for commanding operation, shift position (operation position) display signal for operating the shift indicator, gear ratio display signal for displaying the gear ratio, and display of the snow mode Snow mode display signal for braking, ABS activation signal for operating the wheel to prevent wheel slipping during braking, こ と Mode display signal for displaying that Μ mode is selected, Differential section 1 1 Nya A valve ί signal for operating the solenoid valve included in the hydraulic control circuit 4 2 (see FIG. 5) to control the hydraulic action of the hydraulic friction engagement device of the dynamic transmission unit 20, the hydraulic control circuit 4 A drive command signal for operating the electric hydraulic pump, which is the hydraulic power source, a signal for driving the electric heater, and a control for cruise control control are output.
図 5は、 電子制御装置 4 0による制御機能の要部を説明する機能ブロック線 図である。 図 5において、 有段変速制御手段 (有段変速制御部) 5 4は、例えば 記憶手段 (記憶部) 5 6に予め記憶された図 6の実線および一点鎖線に示す変速 一 線図 (関係、 変速マップ) から車速 Vおよび自動変速部 2 0の要求出力トルク Τ FIG. 5 is a functional block diagram for explaining the main part of the control function by the electronic control unit 40. In FIG. 5, a stepped gear shift control means (stepped gear shift control unit) 5 4 is, for example, a shift line diagram (relationships) indicated by a solid line and a one-dot chain line in FIG. From the shift map) From the vehicle speed V and the required output torque of the automatic transmission section 20
10 。υτ で示される車両状態に基づいて、 変速機構 1 .0の変速を実行すべきか否かを 判断し、例えば自動変速部 2 0の変速すべき変速段を判断し、 その判断した変速 段が得られるように自動変速部 2 0の自動変速制御を実行する。 このとき、 有段 変速制御手段 5 4は、 例えば図 2に示す係合表に従って変速段が達成されるよう に、切換クラッチ C 0および切換ブレーキ Β 0を除いた自動変速部 2 0の変速にTen . Based on the vehicle state indicated by υτ , it is determined whether or not a shift of the speed change mechanism 1.0 is to be executed, for example, the shift stage to be shifted by the automatic transmission unit 20 is determined, and the determined shift stage is obtained. As a result, the automatic transmission control of the automatic transmission unit 20 is executed. At this time, the stepped gear shift control means 54 performs gear shifting of the automatic transmission unit 20 except for the switching clutch C 0 and the switching brake Β 0 so that the gear position is achieved in accordance with, for example, the engagement table shown in FIG.
15 関与する油圧式摩擦係合装置を係合および/または解放させる指令(変速出力指 令、油圧指令) を、 すなわち自動変速部 2 0の変速に関与する解放側係合装置を15 A command (engagement output command, hydraulic command) for engaging and / or releasing the involved hydraulic friction engagement device, that is, a disengagement engagement device involved in the shift of the automatic transmission unit 20
' 解放すると共に係合側係合装置を係合することによりクラッチッゥクラッチ変速 'を実行させる指令を油圧制御回路 4 2へ出力する。油圧制御回路 4 2は、 その指 令に従って、例えば変速に関与する解放側係合装置を解放すると共に、 変速に関 0 与する係合側係合装置を係合レて自動変速部 2 0のクラッチッゥクラッチ変速が 実行されるように、油圧制御回路 4 2内の電磁弁を作動させてその変速に関与す る油圧式摩擦係合装置の油圧ァクチユエ一夕を作動させる。 A command to execute a clutch-to-clutch shift by releasing and engaging the engagement side engagement device is output to the hydraulic control circuit 42. In accordance with the command, the hydraulic control circuit 42 releases, for example, the disengagement-side engagement device involved in the shift, and engages the engagement-side engagement device related to the shift. The solenoid valve in the hydraulic control circuit 42 is operated so that the clutch-to-clutch shift is executed, and the hydraulic actuator of the hydraulic friction engagement device involved in the shift is operated.
ハイプリッド制御手段 (ハイプリッド制御部) 5 2は、無段変速制御手段と して機能するものであり、 変速機構 1 0の無段変速状態すなわち差動部 1 1の差 5 動状態においてエンジン 8を効率のよい作動域で作動させる一方で、 エンジン 8 と第 2電動機 Μ 2との駆動力の配分や第 1電動機 Μ 1の発電による反力を最適に なるように変化させて差動部 1· 1の電気的な無段変速機としての変速比ァ 0を制 御する。 例えば、 そのときの走行車速において、運転者の出力要求量としてのァ クセル開度 Accや車速 Vから車両の目標 (要求) 出力を算出し、 その車両の目標 出力と充電要求値から必要なト一タル目標出力を算出し、 そのトー夕ル目標出力 が得られるように伝達損失、 補機負荷、 第 2電動機 M 2のアシストトルク等を考 慮して目標エンジン出力を算出し、 その目標ェンジン出力が得られるエンジン回 転速度 NE とエンジントルク TE となるようにエンジン 8を制御するとともに第 1電動機 M 1の発電量を制御する。 The hybrid control means (hyperid control section) 52 functions as a continuously variable transmission control means. The engine 8 is operated in a continuously variable transmission state of the transmission mechanism 10, that is, in a differential 5 state of the differential section 11. While operating in an efficient operating range, the differential force is changed by optimizing the distribution of the driving force between the engine 8 and the second motor Μ 2 and the reaction force generated by the power generation of the first motor Μ 1. Controls gear ratio 0 as an electrical continuously variable transmission. For example, at the current traveling vehicle speed, the Calculate the target (required) output of the vehicle from the accelerator opening Acc and the vehicle speed V, calculate the required total target output from the target output of the vehicle and the required charging value, and obtain the desired torque target output. The target engine output is calculated taking into account the transmission loss, auxiliary load, assist torque of the second motor M2, and so on, so that the engine rotational speed N E and engine torque T E can be obtained. In addition, the engine 8 is controlled and the power generation amount of the first motor M 1 is controlled.
ハイブリツド制御手段 5 2ほ、 その制御を動力'生能や燃費向上などのために 自動変速部 2 0の変速段を考慮して実行する。 このようなハイブリツド制御では 、 エンジン 8を効率のよし、作動域で作動させるために定まるェンジン回転速度 N E と車連 Vおよび自動変速部 2 0の変速段で定まる伝達部衬回転速度 N , 8とを整 合させるために、 差動部 1 1が電気的な無段変速機として機能させられる。 すな わち、 ハイブリツド制御手段 5 2は、 エンジン回転速度 N E とエンジン 8の出力 トルク (エンジントルク) TE とで構成される二次元座標内において無段変速走 行の時に運転性と燃費性とを両立するように予め実験的に求められて例えば記憶 手段 5 6に記憶された図 7の破線に示すようなェンジン 8の最適燃費率曲線 (燃 費マップ、 関係) に沿ってエンジン 8が作動させられるように、 例えば目標出力 (トータル目標出力、要求駆動力) を充足するために必要なエンジン出力を発生 するためのエンジントルク T E とエンジン回転速度 NE となるように、 変速機構 1 0のト一タル変速比ァ Tの目標値を定め、 その目標値が得られるように自動変 ' 速部 2 0の変速段を考慮して差動部 1 1の変速比 0を制御し、 ト一夕ル変速比 ァ Tをその変速可能な変化範囲内例えば 1 3〜0 . 5の範囲内で制御する。 The hybrid control means 52 performs the control in consideration of the gear position of the automatic transmission unit 20 in order to improve the power and the fuel efficiency. In such hybrid control, the engine rotational speed NE determined to operate the engine 8 in the operating range with efficiency and the transmission section 衬 rotational speed N, 8 determined by the speed of the vehicle linkage V and the automatic transmission section 20 are determined. In order to match the differential section, the differential section 1 1 is made to function as an electric continuously variable transmission. In other words, the hybrid control means 52 is capable of driving performance and fuel efficiency when running at continuously variable speed within the two-dimensional coordinates consisting of the engine speed N E and the output torque (engine torque) T E of the engine 8. For example, engine 8 along the optimum fuel efficiency curve (fuel cost map, relationship) of engine 8 as shown by the broken line in FIG. For example, engine speed T E and engine speed N E to generate the engine output necessary to satisfy the target output (total target output, required driving force). Determine the target value of the total gear ratio T of 10 and control the gear ratio 0 of the differential unit 1 1 in consideration of the gear position of the automatic variable speed unit 20 so that the target value can be obtained. The gear ratio T can be changed. Control is performed within a change range, for example, within a range of 13 to 0.5.
このとき、 ハイプリッド制御手段 5 2は、 第 1電動機 M 1により発電された 電気工ネルギをインバ一タ 5 8を通して蓄電装置 6 0や第 2電動機 M 2へ供給す るので、 エンジン 8の動力の主要部は機械的に伝達部材 1 8へ伝達されるが、 ェ ンジン 8の動力の一部は第 1電動機 M 1の発電のために消費されてそこで電気工 ネルギに変換され、 インバータ 5 8を通してその電気工ネルギが第 2電動機 M 2 へ供給され、 その第 2電動機 M 2が駆動されて第 2電動機 M 2から β達部材 1 8 へ伝 される。 この電気エネルギの'発生から第 I電動機 Μ 2で消費されるまでに 関連する機器により、 エンジン 8の動力の一部を電気工ネルギに変換し、 その電 気エネルギを機械的エネルギに変換するまでの電気パスが構成される。 At this time, the hybrid control means 52 supplies the electric energy generated by the first electric motor M 1 to the power storage device 60 and the second electric motor M 2 through the inverter 58, so that the power of the engine 8 is The main part is mechanically transmitted to the transmission member 1 8, but a part of the motive power of the engine 8 is consumed for the power generation of the first motor M 1, where it is converted into electric energy, and through the inverter 5 8 The electric energy is supplied to the second electric motor M 2, and the second electric motor M 2 is driven and transmitted from the second electric motor M 2 to the β reaching member 18. From the generation of this electrical energy to consumption by the I motor 電動 2 The related equipment constitutes an electrical path from converting a part of the power of the engine 8 into electric energy and converting the electric energy into mechanical energy.
また、 ハイブリッド制御手段 5 2は、 車両の停止中又は走行中に拘わらず、 差動部 1 1の電気的 C V T機能によって第 1電動機回転速度 NM 1および/または 第 2電動機回転速度 NM 2を制御してエンジン回転速度 N E を略一定に維持したり 任意の回転速度に回転制御さぜられる。 言い換えれば、 ハイプリッド制御手段 5 2は、 エンジン回転速度 N E を略一定に維持したり任意の回転速度に制御しつつ 第 1電動機回転速度 NM 1および/または第 2電動機回転速度 NM 2を任意の回転速 度に回転制御することができる。 · In addition, the hybrid control means 52 can control the first motor rotation speed N M 1 and / or the second motor rotation speed N M 2 by the electric CVT function of the differential section 1 1 regardless of whether the vehicle is stopped or traveling. To control the engine speed N E to be substantially constant or to control the rotation to an arbitrary speed. In other words, the hybrid control means 52, while maintaining the engine speed N E substantially constant or controlling it to an arbitrary speed, controls the first motor speed N M 1 and / or the second motor speed N M 2 . Rotation can be controlled at any rotational speed. ·
例えば、 図 3の共線図からもわかるようにハイブリッド制御手段 5 2は車両 走行中にエンジン回転速度 N E を引き上げる場合には、 車速 V (駆動輪 3 8 ) に 拘束される第 2電動機回転速度 NM 2を略一定に維持しつつ第 1電動機回転速度 N M 1の引き上げを実行する。 また、 ハイプリッド制御手段 5 2は自動変速部 2. 0の 変速中にエンジン回転速度 N E を略一定に維持する場合には、 エンジン回転速度 N E を略一定に維持しつつ自動変速部 2 0の変速に伴う第 2電動機回転速度 NM 2 の変化とは反対方向に第 1電動機回転速度 NM 1を変化させる。 For example, as can be seen from the collinear diagram of FIG. 3, when the engine speed N E is increased while the vehicle is running, the hybrid control means 5 2 rotates the second motor that is restrained by the vehicle speed V (drive wheel 3 8). The first motor rotation speed N M 1 is increased while maintaining the speed N M 2 substantially constant. Further, when the engine speed N E is maintained substantially constant during the shift of the automatic transmission section 2.0, the hybrid control means 52 is configured to maintain the engine speed N E substantially constant while maintaining the engine speed N E substantially constant. The first motor rotation speed N M 1 is changed in the opposite direction to the change in the second motor rotation speed N M 2 due to the speed change.
また、 ハイプリッド制 ί卸手段 5 2は、 スロットル制御のためにスロットルァ クチユエ一夕 9 7により電子スロットル弁 9 6を開閉制御させる他、燃料噴射制 御のために燃料噴射装置 9 8による燃料噴射量や噴射時期を制御させ、点火時期 制御のためにィグナイタ等の点火装置 9 9による点火時期を制御させる指令を単 独で或いは組み合わせてエンジン出力制御装置 4 3に出力して、 必要なエンジン 出力を発生するようにエンジン 8の出力制御を実行するエンジン出力制御手段ま たはエンジン出力制御部を機能的に備えている。 例えば、 ハイブリツド制御手段 5 2は、基本的には図示しない予め記憶された関係からアクセル開度 Accに基づ いてスロットルァクチユエ一夕 6 0を駆動し、 アクセル開度 Accが増加するほど スロットル弁開度 Θ ΤΗを増加させるようにスロットル制御を実行する。 また、 こ のエンジン出力制御装置 4 3は、 ハイブリツド制御手段 5 2による指令に従って 、 スロットル制 J御のためにスロッドルァクチユエータ 9 7により電子スロットル 弁 9 6を開閉制御する他、燃料噴射制御のために燃料噴射装置 9 8による燃料噴 射を制御し、 点火時期制御のためにィグナイタ等の点火装置 9 9による点火時期 を制御するなどしてエンジントルク制御を実行する。 In addition, the hybrid control means 52 controls the opening and closing of the electronic throttle valve 96 by means of a throttle actuator 9 7 for throttle control, and the fuel injection by the fuel injection device 98 for fuel injection control. The engine output control device 4 3 outputs the command to control the ignition timing by the ignition device such as the igniter for controlling the ignition timing and the ignition timing for controlling the ignition timing. Engine output control means for executing output control of the engine 8 or an engine output control unit is functionally provided so as to generate the engine. For example, the hybrid control means 52 basically drives the throttle actuator 60 based on the accelerator opening Acc from a pre-stored relationship (not shown), and the throttle opening increases as the accelerator opening Acc increases. Throttle control is executed to increase the valve opening ΘΤΗ . Further, this engine output control device 43 is controlled by a throttle actuator 9 7 to control the electronic throttle according to the command from the hybrid control means 52. In addition to controlling the opening and closing of the valve 96, the fuel injection by the fuel injection device 98 is controlled for fuel injection control, and the ignition timing by the ignition device 99 such as an igniter is controlled for ignition timing control. Execute engine torque control.
また、 ハイプリッド制御手段 5 2.は、 エンジン 8の停止又はアイ ドル状態に 拘わらず、 差動部 1 ίの電気的 C V T機能 (差動作用) によってモータ走行させ ることができる。 例えば、前記図 6の実線 Αは、 車両の発進/走行用 (以下、走 行用という) の駆動力源をエンジン 8と電動機例えば第 2電動機 M 2とで切り換 えるための、 言い換えればエンジン 8を走行用の駆動力源として車両を発進/走 行 (以下、 走行という) させる所謂エンジン走行と第 2電動機 M 2を走行用の駆 動力源として車両を走行させる所謂モータ走行とを切り換えるための、 エンジン 走行領域とモータ走行領域との境界線である。 この図 6に示すエンジン走行とモ 一夕走行とを切り換えるための境界線(実線 A) を有する予め記憶された関係は In addition, the hybrid control means 52 can drive the motor by the electric C V T function (differential action) of the differential section 1, regardless of whether the engine 8 is stopped or in an idle state. For example, the solid line の in FIG. 6 indicates that the driving force source for starting / running the vehicle (hereinafter referred to as running) is switched between the engine 8 and the electric motor, for example, the second electric motor M 2, in other words, the engine. To switch between so-called engine running that starts and runs (hereinafter referred to as running) using 8 as a driving power source for running and so-called motor running that uses the second electric motor M 2 as a driving power source for running. This is the boundary line between the engine travel area and the motor travel area. A pre-stored relationship having a boundary line (solid line A) for switching between engine driving and motor driving shown in FIG.
、 車速 Vと駆動力関連値である出力トルク Τ ΟΥΤ とをパラメ一夕とする二次元座 標で構成された駆動力源切換線図 (駆動力源マップ) の一例である。 この駆動力 源切換線図は、例えば同じ図 6中の実線および一点鎖線に示す変速線図 (変速マ ップ) と共に記憶手段 5 6に予め記憶されている。 FIG. 5 is an example of a driving force source switching diagram (driving force source map) composed of two-dimensional coordinates in which the vehicle speed V and the output torque 値 で which is a driving force related value are parameters. This driving force source switching diagram is stored in advance in the storage means 56 together with, for example, a shift diagram (shift map) indicated by a solid line and a one-dot chain line in FIG.
そして、 ハイブリッド制御手段 5 2は、例えば図 6の駆動力源切換線図から 車速 Vと要求出力トルク TOUT とで示される車両状態に基づいてモータ走行領域 とェンジン走行領域との何れであるかを判断してモータ走行或いはェンジン走行 ' を実行する。 このように、 ハイブリツド制御手段 5 2によるモー夕走行は、 図 6 から明らかなように一般的にェンジン効率が高トルク域に比較して悪いとされる 比較的低出力トルク T OUT域すなわち低エンジントルク T e域、 或いは車速 Vの 比較的低車速域すなわち低負荷域で実行される。 よって、 通常はモ一夕発進がェ ンジン発進に優先して実行されるが、.例えば車雨発進時に図 6の駆動力源切換線 図のモータ走行領域を超える要求出力トルク Τουτすなわち要求エンジントルク ΤΕ とされる程大きくァクセルペダルが踏込操作されるような車両状態によって はエンジン発進も通常実行されるものである。 Then, for example, the hybrid control means 52 determines whether the motor travel region or the engine travel region is based on the vehicle state indicated by the vehicle speed V and the required output torque TOUT from the driving force source switching diagram of FIG. Judgment is made and motor running or engine running 'is executed. In this way, as is apparent from FIG. 6, the engine running by the hybrid control means 52 is generally considered to have poor engine efficiency compared to the high torque range. It is executed in the torque Te region or in a relatively low vehicle speed range of the vehicle speed V, that is, a low load range. Therefore, usually mode Isseki start is executed in preference to E engine starting. For example the required output torque T Omikuron'upushirontau That request engine exceeds the motor drive region of the drive power source switching diagram of Fig. 6 when the car rain starting engine start by the vehicle state such as a large Akuserupedaru enough to be a torque T E is depressing are intended to be normally performed.
ハイプリッド制御手段 5 2は、 このモー夕走行時には、 停止しているェンジ ン 8の引き摺りを抑制して燃費を向上させるために、 差動部 1 1の電気的 C V T 機能 (差動作用) によって、第 1電動機回転速度 NM 1を負の回転速度で制御例え ば空転させて、差動部 1 1の差動作用により必要に応じてエンジン回転速度 NE を零乃至略零に維持する。 When the hybrid control means 5 2 is running in this mode, the engine is stopped. In order to suppress dragging of the motor 8 and improve fuel efficiency, the electric motor CVT function (differential action) of the differential section 1 1 is used to control the first motor speed N M 1 at a negative speed. Thus, the engine speed N E is maintained at zero or substantially zero as required by the differential action of the differential section 11.
また、 ハイブリツド制御手段 5 2は、 エンジン走行領域であっても、 上述し た電気パスによる第 1電動機 M 1からの電気工ネルギおよび/または蓄電装置 6 . 0からの電気工ネルギを第 2電動機 M 2へ供給し、 その第 2電動機 M 2を駆動し て駆動輪 3 8にトルクを付与することにより、 エンジン 8の動力を補助するため ' の所謂トルクアシストが可能である。 よって、本実施例のエンジン走行には、 ェ ンジン走行 +モータ走行も含むものとする。 尚、第 2電動機 M 2によるトルクァ シストは、 モータ走行時にその第 1電動機 M 2の出力トルクを増加するように行 われても良い。  Further, the hybrid control means 52 can supply the electric energy from the first electric motor M1 and / or the electric energy from the power storage device 6.0 by the electric path described above to the second electric motor even in the engine traveling region. A so-called torque assist is possible to assist the power of the engine 8 by supplying the torque to the drive wheels 38 by supplying the torque to the drive wheels 38 by supplying the second motor M 2 to the M 2. Therefore, the engine traveling of this embodiment includes engine traveling and motor traveling. The torque assist by the second electric motor M 2 may be performed so as to increase the output torque of the first electric motor M 2 when the motor is running.
また、 ハイブリツド制御手段 5 2は、 車両の停止状態又は低車速状態に拘わ . らず、 差動部 1 1の電気的 C V T機能によってエンジン 8の運転状態を維持させ られる。 例えば、 車両停止時に蓄電装置 6 0の充電容量 S〇 Cが低下して第 1電 動機 M 1による発電が必要となった場合には、 エンジン 8の動力により第 1電動 機 M 1が発電させられてその第 1電動機 M 1の回転速度が引き上げられ、 車速 V で一意的に決められる第 2電動機回転速度 NM 2が車両停止状態により零 (略零) となっても動力分配機構 1 6の差動作用によってエンジン回転速度 N E が自律回 ' 転可能な回転速度以上に維持される。 Further, the hybrid control means 52 can maintain the operation state of the engine 8 by the electric CVT function of the differential section 11 regardless of whether the vehicle is stopped or in a low vehicle speed state. For example, if the charging capacity S0 C of the power storage device 60 decreases when the vehicle is stopped and power generation by the first motor M 1 is necessary, the first motor M 1 generates power using the power of the engine 8. Even if the rotation speed of the first motor M 1 is increased and the second motor rotation speed N M 2, which is uniquely determined by the vehicle speed V, becomes zero (substantially zero) due to the vehicle stop state, the power distribution mechanism 1 6 Due to the differential action of the engine, the engine speed N E is maintained at a speed higher than the speed at which it can autonomously rotate.
また、 ハイブリツド制御手段 5 2は、蓄電装置 6 0からインバー夕 5 8を介 して供給される第 1電動機 M 1への駆動電流を遮断して第 1電動機 M 1を無負荷 状態とする。 第 1電動機 M 1は無負荷状態とされると自由回転することすなわち 空転することが許容され、 差動部 1 1はトルクの伝達が不能な状態すなわち差動 部 1 1内の動力伝達経路が遮断された状態と同等の状態であって、且つ差動部 1 1からの出力が発生されない^!犬態とされる。 すなわち、 ハイブリツド制御手段 5 2は、 第 1電動機 M 1を無負荷状態とすることにより差動部 1 1をその動力伝達 経路が電気的に遮断される中立状態 (ニュートラル状態) とする電動機制御手段 または電動機制御部として機能する。 Further, the hybrid control means 52 cuts off the drive current to the first electric motor M 1 supplied from the power storage device 60 via the inverter 58 and puts the first electric motor M 1 into a no-load state. When the first motor M 1 is in a no-load state, the first motor M 1 is allowed to freely rotate, that is, to idle, and the differential unit 1 1 cannot transmit torque, that is, the power transmission path in the differential unit 1 1 It is equivalent to the shut-off state, and the output from the differential unit 1 1 is not generated ^! It is considered to be a dog. That is, the hybrid control means 52 is an electric motor control means that places the differential motor 11 in a neutral state (neutral state) in which the power transmission path is electrically interrupted by placing the first motor M1 in a no-load state. Or it functions as an electric motor control part.
また、 ハイブリツド制御手段 5 2は、 アクセルオフの車両減速走行時や制動 時には車両の運動エネルギすなわち駆動輪 3 8からエンジン 8側へ伝達される逆 駆動力により第 2電動機 M 2を回転駆動させて発電機として作動させ、 .その電気 エネルギすなわち第 2電動機発電電流 I M 2 G をインバ一タ 5 8を介して蓄電装置 ' 6 0へ充電する所謂回生制動を実行する回生ブレーキ制御手段または回生ブレー キ制御部として機能する。 The hybrid control means 52 rotates and drives the second electric motor M2 by the kinetic energy of the vehicle, that is, the reverse driving force transmitted from the drive wheels 38 to the engine 8 side when the vehicle is decelerated or braked with the accelerator off. Regenerative brake control means or regenerative brake that performs so-called regenerative braking in which the electric energy, that is, the second motor generated current I M 2 G is charged to the power storage device 60 through the inverter 58. Functions as a key control unit.
増速側ギヤ段判定手段 (増速側ギヤ段判定部) 6 2は、変速機構 1 0を有段 変速状態とする際に切換クラッチ C 0およぴ切換ブレーキ B 0のいずれを係合さ せるかを判定するために、例えば車両状態に基づいて記憶手段 5 6に予め記憶さ れた前記図 6に示す変速線図に従って変速機構 1 0'の変速されるべき変速段が、 或いは前記有段変速制御手段 5 4'により判断された変速機構 1 0の変速されるべ き変速段が、 増速側ギヤ段例えば第 5速ギヤ段であるか否かを判定する。 例えば 、 ハイプリッド制御手段 5 2は、 アクセルオフの車雨減速走行時には、停止して いるエンジン 8の引き摺り (回転抵抗) によるボンビングロスの発生を抑制して その分制動力 (減速度) を抑制し、 第 2電動機 M 2による回生量を増加すること によって燃費を向上させる為に、 エンジン 8への燃料供給を停止してすなわちフ ユーエル力ットしてエンジン 8の作動を停止し且つ第 1電動機 M 1を空転させ、 差動部 1 1の差動作用によりエンジン回転速度 N B を零乃至略零に維持する。 ' 切換制御手段 (切換制御部) 5 0は、 車両状態に基づいて前記係合装置 (切 換クラッチ C 0、切換ブレーキ B 0 ) の係合/解放を切り換えることにより、前 記無段変速状態と前記有段変速状態とを、 すなわち前記差動状態と前記ロック状 態とを選択的に切り換える。 例えば、 切換制御手段 5 0は、記憶手段 5 6に予め 記憶された前記図 6の破線および二点鎖線に示す切換線図 (切換マップ、 関係) から車速 Vおよび要求出力トルク T OUT で示される車両状態に基づいて、 変速機 構 Γ 0 (差動部 1 1 ) の切り換えるべき変速状態を判断して、 すなわち変速 I» 1 0を無段変速状態とする無段制御領域内であるか或いは変速機構 1 0を有段変 速状態とする有段制御領域内であるかを判定して、 変速機構 1 0を前記無段変速 状態と前記有段変速状態とのいずれかに選択的に切り換える。 このように、切換 制御手段 5 0は、 切換クラッチ C 0或いは切換ブレーキ B 0の係合/解放を切り 換えることにより、 差動部 1 1を非無段変速状態として差動部 1 1の電気的な差 動装置としての作動を制限する、 すなわち電気的な無段変速機としての作動を制 限する差動制限手段または差動制御部として機能している。 Acceleration-side gear stage determination means (Acceleration-side gear stage determination unit) 6 2 engages either the switching clutch C 0 or the switching brake B 0 when the transmission mechanism 10 is set to the stepped transmission state. In order to determine whether or not to perform the shift, for example, according to the shift diagram shown in FIG. It is determined whether or not the gear position to be shifted of the speed change mechanism 10 determined by the step shift control means 5 4 ′ is the speed increasing side gear stage, for example, the fifth speed gear stage. For example, the hybrid control means 52 suppresses the occurrence of a bombing loss due to dragging (rotational resistance) of the engine 8 that is stopped when the vehicle is decelerated while the accelerator is off, thereby reducing the braking force (deceleration) accordingly. In order to improve fuel efficiency by increasing the amount of regeneration by the second electric motor M2, the fuel supply to the engine 8 is stopped, that is, the fuel is applied to stop the operation of the engine 8, and the first electric motor M 1 is idled, and the engine speed N B is maintained from zero to substantially zero by the differential action of the differential section 1 1. 'Switching control means (switching control unit) 50 is configured to switch the engagement / release of the engagement device (switching clutch C 0, switching brake B 0) on the basis of the vehicle state. And the stepped shift state, that is, the differential state and the lock state are selectively switched. For example, the switching control means 50 is indicated by the vehicle speed V and the required output torque T OUT from the switching diagram (switching map, relationship) indicated by the broken line and the two-dot chain line in FIG. Based on the vehicle state, the shift state to be switched of the transmission structure Γ 0 (differential unit 1 1) is determined, that is, within the continuously variable control region where the shift I »1 0 is set to the continuously variable shift state, or It is determined whether the speed change mechanism 10 is within a stepped control region where the stepped speed change state is set, and the speed change mechanism 10 is Selectively switch between the state and the stepped shift state. In this way, the switching control means 50 switches the differential section 11 to the non-stepless speed change state by switching the engagement / release of the switching clutch C 0 or the switching brake B 0. It functions as a differential limiting means or differential control unit that limits the operation as a typical differential device, that is, restricts the operation as an electric continuously variable transmission.
具体的には、 切換制御手段 5 0は有段変速制御領域内であると判定した場合 'は、 ハイプリッド制御手段 5 2に対してハイプリッド制御或いは無段変速制御を 不許可すなわち禁止とする信号を出力するとともに、 有段変速制 ffl手段 5 4に対 しては、予め設定された有段変速時の変速を許可する。 このときの有段変速制御 手段 5 4は、 記憶手段 5 6に予め記憶された例えば図 6に示す変速線図に従つて 自動変速部 2 0の自動変速制御を実行する。 例えば記憶手段 5 6に予め記憶され た図 1は、 このときの変速において選択される油圧式摩擦係合装置すなわち C 0 、 C l、 C 2、 B 0、 B l、 B 2、 B 3の作動の組み合わせを示している。 すな わち、 変速機構 1 0全体すなわち差動部 1 1および自動変速部 2 0が所謂有段式 自動変速機として機能し、 図 2に示す係合表に従つて変速段が達成される。  Specifically, when it is determined that the switching control means 50 is within the stepped shift control region, a signal for disabling or prohibiting the hybrid control or the continuously variable shift control is issued to the hybrid control means 52. In addition to the output, the stepped gear shift ffl means 54 permits a gear shift during a preset stepped gear shift. At this time, the stepped shift control means 54 performs the automatic shift control of the automatic transmission unit 20 according to the shift diagram shown in FIG. 6, for example, stored in advance in the storage means 56. For example, FIG. 1 stored in advance in the storage means 56 is the hydraulic friction engagement device selected in the speed change at this time, that is, C 0, C 1, C 2, B 0, B 1, B 2, B 3. The combination of operation is shown. That is, the entire speed change mechanism 10, that is, the differential part 11 and the automatic speed change part 20 function as a so-called stepped automatic transmission, and the speed stage is achieved according to the engagement table shown in FIG. 2. .
例えば、増速側ギヤ段判定手段 6 2により第 5速ギヤ段が判定される場合に は、変速機構 1 0全体として変速比が 0より小さな增速側ギヤ段所謂オーバ ―ドライブギヤ段が得られるために切換制御手段 5 0は差動部 1 1が固定の変速 比ァ 0例えば変速比ァ 0が 0 . 7の副変速機として機能させられるように切換ク ラッチ C 0を解放させ且つ切換ブレーキ B 0を係合させる指令を油圧制御回路 4 2へ出力する。 また、 增速側ギヤ段判定手段 6 2により第 5速ギヤ段でないと判 定される場合には、 変速機構 1 0全体として変速比が 1 . 0以上の減速側ギヤ段 が得られるために切換制御手段 5 0は差動部 1 1が固定の変速比ァ 0例えば変速 比ァ 0が 1の副変速機として機能させられるように切換クラッチ C 0を係合させ 且つ切換ブレーキ B 0を解放させる ί^·を油圧制御回路 4 2へ出力する。 このよ うに、切換制御手段 5 0によつて変速機構 1 0が有段変速状態に切り換えられる とともに、 その有段変速状態における 2種類の変速段のいずれかとなるように達 択的に切り換えられて、 差動部 1 1'が副変速機として機能させられ、 それに直列 の自動変速部 2 0が有段変速機として機能することにより、 変速 l 0全体が 所謂有段式自動変速機として機能させられる。 ' しかし、 切換制御手段 5 0は、 変速機構 1 0を無段変速状態に切り換える無 段変速制御領域内であると判定した場合は、変速機構 1 0全体として無段変速状 態が得られるために差動部 1 1を無段変速状態として無段変速可能とするように 切換クラツチ C 0および切換ブレーキ B 0を解放させる指令を油圧制御回路 4 2 へ出力する。 同時に、 ハイプリッド制御手段 5 2に対してハイプリッド制御を許 可する信号を出力するとともに、有段変速制御手段 5 4には、 予め設定された無 段変速時の変速段に固定する信号を出力するか、或いは記憶手段 5 6に予め記憶 された例えば図 6に示す変速線図に従って自動変速部 2 0を自動変速することを 許可する信号を出力する。 この場合、有段変速制御手段 5 4により、 図 2の係合 表内において切換クラッチ C 0および切換ブレーキ B 0の係合を除いた作動によ り自動変速が行われる。 このように、切換制御手段 5 0により無段変速状態に切 り換えられた差動部 1 1が無段変速機として機能し、 それに直列の自動変速部 2 0が有段変速機として機能することにより、適切な大きさの駆動力が得られると 同時に、 自動変速部 2 0の第 1速、 第 2速、第 3速、第 4速の各ギヤ段に対しそ の自動変速部 2 0の入力回転速度 N I Nすなわち伝達部材回転速度 8が無段的に 変化させられて各ギヤ段は無段的な変速比幅が得られる。 したがって、 その各ギ ャ段の間が無段的に連続変化可能な変速比となつて変速機構 1 0全体として無段 ' 変速状態となりトータル変速比ァ Tが無段階に得られるようになる。 For example, when the fifth gear stage is determined by the speed-increasing gear stage determining means 62, a so-called over-drive gear stage in which the gear ratio is smaller than 0 as a whole is obtained. Therefore, the switching control means 50 releases the switching clutch C 0 and switches so that the differential section 11 can function as a sub-transmission with a fixed transmission ratio 0, for example, a transmission ratio 0 is 0.7. A command to engage the brake B 0 is output to the hydraulic control circuit 42. In addition, if the speed-increasing gear stage determining means 62 determines that the gear position is not the fifth speed gear stage, a reduction gear stage having a gear ratio of 1.0 or more can be obtained as a whole of the speed change mechanism 10. The switching control means 50 engages the switching clutch C 0 and releases the switching brake B 0 so that the differential unit 1 1 can function as a sub-transmission with a fixed transmission ratio 0, for example, a transmission ratio 0 of 1. Output ί ^ · to the hydraulic control circuit 42. Thus, the shift control means 50 switches the transmission mechanism 10 to the stepped shift state, and selectively switches to one of the two types of shift steps in the stepped shift state. The differential part 1 1 'is made to function as a sub-transmission and in series with it The automatic transmission unit 20 functions as a stepped transmission, whereby the entire shift 10 is made to function as a so-called stepped automatic transmission. 'However, if the switching control means 50 determines that it is within the continuously variable transmission control region for switching the transmission mechanism 10 to the continuously variable transmission state, the transmission mechanism 10 as a whole can obtain the continuously variable transmission state. At the same time, a command to release the switching clutch C 0 and the switching brake B 0 is output to the hydraulic control circuit 4 2 so that the differential section 11 is in a continuously variable transmission state and can be continuously variable. At the same time, a signal permitting the hybrid control is output to the hybrid control means 52, and a signal for fixing to a preset gear position at the time of the continuously variable transmission is output to the stepped shift control means 54. Alternatively, a signal permitting automatic shifting of the automatic transmission unit 20 is output in accordance with, for example, the shift diagram shown in FIG. In this case, automatic transmission is performed by the stepped shift control means 54 by an operation excluding the engagement of the switching clutch C 0 and the switching brake B 0 in the engagement table of FIG. In this way, the differential section 11 switched to the continuously variable transmission state by the switching control means 50 functions as a continuously variable transmission, and the serial automatic transmission section 20 functions as a stepped transmission. As a result, an appropriate magnitude of driving force can be obtained, and at the same time, the automatic transmission unit 20 for each of the first speed, second speed, third speed, and fourth speed of the automatic transmission unit 20 can be obtained. The input rotational speed N IN, that is, the transmission member rotational speed 8, is changed steplessly, and each gear stage has a stepless speed ratio width. Therefore, the gear ratio between the gears can be continuously changed continuously, so that the transmission mechanism 10 as a whole is in a continuously variable transmission state, and the total gear ratio T can be obtained continuously.
ここで前記図 6について詳述すると、 図 6は自動変速部 2 0の変速判断の基 となる記憶手段 5 6に予め記憶された変速線図 (関係、 変速マップ) であり、車 速 Vと駆動力関連値である要求出力トルク Τουτ とをパラメータとする二次元座 標で構成された変速線図の一例である。 図 6の実線はアップシフト線であり一点 鎖線はダウンシフト線である。 Here, FIG. 6 will be described in detail. FIG. 6 is a shift diagram (relationship, shift map) stored in advance in the storage means 56 as a basis for shift determination of the automatic transmission unit 20. FIG. 5 is an example of a shift diagram composed of two-dimensional coordinates having a required output torque Τουτ as a driving force-related value as a parameter. The solid line in Fig. 6 is the upshift line, and the alternate long and short dash line is the downshift line.
. また、 図 6の破線は切換制御手段 5 0による有段制御領域と無段制御領域と の判定のための判定車速 V 1および判定出力トルク T 1を示している。 つまり、 図 6の破線はハイプリッド車両の髙速走行を判定するための予め設定された高速 走行判定値である判定車速 V 1の連なりである高車速判定線と、 ハイプリッド車 両の駆動力に関連する駆動力関連値例えば自動変速部 2 0の出力トルク Τ。υτ が 高出力となる高出力走行を判定するための予め設定された高出力走行判定値であ る判定出力トルク T 1の連なりである高出力走行判定線とを示している。 さらに 、 図 6の破線に対して二点鎖線に示すように有段制御領域と無段制御領域との判 定にヒステリシスが設けられている。 つまり、 この図 6は判定車速 V 1および判 定出力トルク T 1を含む、車速 Vと出力トルク ΤΟ ΥΤ とをパラメータとして切換 制御手段 5 0により有段制御領域と無段制御領域とのいずれであるかを領域判定 するための予め記憶された切換線図 (切換マップ、 関係) である。 なお、 この切 換線図を含めて変速マップとして記憶手段 5 6に予め記憶されてもよい。 また、 この切換線図は判定車速 V 1および判定出力トルク T 1の少なくとも 1つを含む ものであってもよいし、 車速 Vおよび出力トルク T OUT の何れかをパラメータと する予め記憶された切換線であってもよい。 · Further, the broken lines in FIG. 6 indicate the determination vehicle speed V 1 and the determination output torque T 1 for determining the stepped control region and the stepless control region by the switching control means 50. In other words, the broken line in FIG. 6 indicates a preset high speed for determining the speed of the hybrid vehicle. A high vehicle speed judgment line that is a series of judgment vehicle speed V 1 that is a running judgment value, and a driving force related value related to the driving force of a hybrid vehicle, for example, output torque の of automatic transmission unit 20. 7 shows a high output travel determination line that is a series of determination output torques T1, which are preset high output travel determination values for determining high output travel where ττ is a high output. Further, as shown by the two-dot chain line with respect to the broken line in FIG. In other words, this Fig. 6 shows that the vehicle speed V and the output torque Τ Ο 含 む including the judgment vehicle speed V 1 and the judgment output torque T 1 are used as parameters. FIG. 3 is a switching diagram (switching map, relationship) stored in advance for determining whether or not the region is an area. Note that the shift map including this switching diagram may be stored in advance in the storage means 56. Further, this switching diagram may include at least one of the judgment vehicle speed V 1 and the judgment output torque T 1, or a pre-stored switching using one of the vehicle speed V and the output torque T OUT as a parameter. It may be a line. ·
上記変速線図、切換線図、或いは駆動力源切換線図等は、 マップとしてでは なく実際の車速 Vと判定車速 V 1とを比較する判定式、 出力トルク T OUT と判定 出力トルク T 1とを比較する判定式等として記憶されてもよい。 例えば、 この場 合には、 切換制御手段 5 0は、 車両状態例えば実際の車速 Vが判定車速 V 1を越 えたか否かを判定し、 判定車速 V Iを越えたときには例えば切換ブレーキ B 0を 係合して変速機構 1 .0を有段変速状態とする。 また、 切換制御手段 5 0は、.車両 ' 状態例えば自動変速部 2 0の出力トルク T OUT が判定出力トルク T 1を越えたか 否かを判定し、 判定出力トルク T 1を越えたときには例えば切換クラッチ C 0を 係合して変速機構 1 0を有段変速状態とする。  The above shift diagram, switching diagram, or driving force source switching diagram is not a map, but a judgment formula that compares the actual vehicle speed V with the judgment vehicle speed V 1, output torque T OUT and judgment output torque T 1 May be stored as a determination formula or the like. For example, in this case, the switching control means 50 determines whether or not the vehicle state, for example, the actual vehicle speed V has exceeded the determination vehicle speed V1, and if the determination vehicle speed VI exceeds, for example, the switching brake B0 is applied. Engage the transmission mechanism 1.0 to the stepped transmission state. Further, the switching control means 50 determines whether or not the vehicle 'state, for example, the output torque T OUT of the automatic transmission unit 20 has exceeded the judgment output torque T 1. Engage the clutch C 0 to place the speed change mechanism 10 in the stepped speed change state.
また、 差動部 1 1を電気的な無段変速機として作動させるための電動機等の 電気系の制御機器の故障や機能低下時、例えば第 1電動機 M 1における電気エネ ルギの発生からその電気工ネルギが機械的エネルギに変換されるまでの電気パス に関連する機器の故障や機能低下、 すなわち第 1電動機 M 1、 第 2電動機 M 2、 インバ一タ 5 8、蓄電装置 6 0、 それらを接続する伝送路などの故障 (フェイル ) や、 故障とか低温による機能低下が発生したような車両状態となる場合には、 無段制御領域であっても車両走行を確保するために切換制御手段 5 0は変速機構 1 0を優先的に有段変速状態としてもよい。 例えば、 この場合には、切換制御手 段 5 0は、 差動部 1 1を電気的な無段変速機として作動させるための電動機等の 電気系の制御機器の故障や機能低下が発生したか否かを判定し、 その故障や機能 低下が発生したときには変速機構 1 0を有段変速状態とする。 In addition, when an electric control device such as an electric motor for operating the differential unit 11 as an electric continuously variable transmission fails or deteriorates in function, for example, from the generation of electric energy in the first electric motor M 1 Failure of the equipment related to the electrical path until the engineering energy is converted into mechanical energy or functional degradation, that is, the first motor M 1, the second motor M 2, the inverter 5 8, the power storage device 60, If the vehicle is in a state where a failure (failure) occurs in the transmission line to be connected, or a malfunction or deterioration in function due to low temperature occurs, In order to ensure vehicle travel even in the continuously variable control region, the switching control means 50 may preferentially place the transmission mechanism 10 in the stepped transmission state. For example, in this case, the switching control unit 50 has a failure or deterioration in function of an electric control device such as an electric motor for operating the differential unit 11 as an electric continuously variable transmission. If the failure or functional degradation occurs, the speed change mechanism 10 is set to the stepped speed change state.
. 前記駆動力関連値とは、 車両の駆動力に 1対 1に対応するパラメータであつ • て、駆動輪 3 8での駆動.トルク或いは駆動力のみならず、 例えば自動変速部 2 0 の出力トルク T OUT 、 エンジントルク T E 、 車両加速度 Gや、例えばアクセル開 度 Acc或いはスロットル弁開度 Θ ΤΗ (或いは吸入空気量、 空燃比、燃料噴射量) とエンジン回転速度 Ν Ε とに基づいて算出されるエンジントルク ΤΕ などの実際 値や、 アクセル開度 Acc或いはスロットル弁開度 Θ ΤΗ等に基づいて算出される要 求 (目標) エンジントルク ΤΕ 、 自動変速部 2 0の要求(目標) 出力トルク Του τ 、要求駆動力等の推定値であってもよい。 また、 上記駆動トルクは出力トルクThe driving force-related value is a parameter that corresponds to the driving force of the vehicle on a one-to-one basis, and is driven by the driving wheels 38. Not only the torque or driving force but also the output of the automatic transmission unit 20, for example torque T OUT, engine torque T E, calculated on the basis or the vehicle acceleration G, for example, accelerator opening Acc or the throttle valve opening Θ ΤΗ (or intake air quantity, air-fuel ratio, fuel injection amount) and the engine rotational speed New E It is and actual values, such as the engine torque T E is, requests are calculated based on the accelerator opening Acc or the throttle valve opening theta Tauita etc. (target) engine torque T E, the automatic transmission portion 2 0 request (target) It may be an estimated value of output torque Του τ, required driving force, or the like. The driving torque is the output torque
T OUT等からデフ比、 駆動輪 3 8の半径等を考慮して算出されてもよいし、例え ばトルクセンサ等によつて直接検出されてもよい。 上記他の各トルク等も同様で め 。 ' It may be calculated from T OUT or the like in consideration of the differential ratio, the radius of the driving wheel 38, etc., for example, may be directly detected by a torque sensor or the like. The same applies to the other torques mentioned above. '
また、前記判定車速 V 1は、例えば高速走行において変速機構 1 0が無段変 速状態とされるとかえつて燃費が悪化するのを抑制するように、 その高速走行に おいて変速機構 1 0が有段変速状態とされるように設定されている。 つまり、 高 速走行においては、 電気パスを含まないことにより変速機構 1 0を伝達効率の良 い遊星歯車式の有段変速機として有効に利用するものである。  Further, the determination vehicle speed V 1 is set so that, for example, when the speed change mechanism 10 is in a continuously variable speed state during high speed travel, the speed change mechanism 10 during high speed travel is suppressed so as to suppress deterioration of fuel consumption. Is set to be a stepped shift state. In other words, in high-speed running, the speed change mechanism 10 is effectively used as a planetary gear type stepped transmission with good transmission efficiency by not including an electric path.
また、 前記判定トルク T 1は、例えば車両の高出力走行において第 1電動機 M 1の反力トルクをエンジン 8の高出力域まで対応させないで第 1電動機 M 1を 小型化するために、第 1電動機 M 1からの電気工ネルギの最大出力を小さくして 配設可能とされた第 1電動機 M 1の特性に応じて設定されている。 或いはま.た、 その判定トルク T 1は、例えば車両の高出力走行においては運転者の燃費に対す る要求より変速に伴ってエンジン回転速度が変化する変速フィーリングに対する 要求が重視されるとの考え方から、 'その高出力走行において変速機構 1 0が有段 変速状態とされるように設定されている。 つまり、 高出力走行においては、 変速 機構 1 0を無段変速機として機能させることより変速比が段階的に変化させられ る有段変速機として機能させるものである。 ' Further, the determination torque T 1 is used to reduce the size of the first electric motor M 1 without causing the reaction torque of the first electric motor M 1 to correspond to the high output range of the engine 8 when the vehicle is traveling at a high output. It is set according to the characteristics of the first electric motor M1, which can be installed with a lower maximum output of electric energy from the electric motor M1. Alternatively, the judgment torque T 1 is more important in the high-speed driving of the vehicle, for example, the demand for the shift feeling in which the engine speed changes with the shift than the demand for the fuel consumption of the driver. From the point of view, 'The transmission mechanism 10 It is set to be in a shift state. In other words, in high-power running, the transmission mechanism 10 is made to function as a continuously variable transmission whose speed ratio is changed stepwise by functioning as a continuously variable transmission. '
図 8は、 エンジン回転速度 N E とエンジントルク T E とをパラメ一夕として 5 切換制御手段 5 0により有段制御領域と無段制御領域とのいずれであるかを領域 判定するための境界線としてのエンジン出力線を有し、例えば記憶手段 5 6に予 め記憶された切換線図 (切換マップ、 関係) である。 切換制御手段 5 0は、 図 6 の切換線図に替えてこの図 8の切換線図からエンジン回転速度 N E とエンジント ルク T E とに基づいて、 それらのエンジン回転速度 N E とエンジントルク T e と 10 で表される車両状態が無段制御領域内であるか或いは有段制御領域内であるかを 判定してもよい。 また、 この図 8は図 6 ·の破線を作るための概念図でもある。. 言 い換えれば、 図 6の破線は図 8の関係図 (マップ) に基づいて車速 Vと出力トル ク Τ Ο ΥΤ とをパラメータとする二次元座標上に置き直された切換線でもある。 FIG. 8 shows the boundary line for determining whether the stepped control region or the stepless control region is performed by the switching control means 50, using the engine speed N E and the engine torque T E as parameters. For example, a switching diagram (switching map, relationship) stored in advance in the storage means 56. Switching control means 5 0, based on the switching diagram of FIG. 8 on the engine rotational speed N E and engine torque T E in place of the switching diagram of Figure 6, those of the engine speed N E and engine torque It may be determined whether the vehicle state represented by Te and 10 is in the stepless control region or the stepped control region. Fig. 8 is also a conceptual diagram for creating the broken line in Fig. 6. In other words, the broken line in Fig. 6 is also a switching line that has been rearranged on the two-dimensional coordinates with vehicle speed V and output torque Τ Ο パ ラ メ ー タ as parameters, based on the relationship diagram (map) in Fig. 8.
この図 6の関係に示されるように、 出力トルク T OUT が予め設定された判定 As shown in the relationship of Fig. 6, the output torque T OUT is determined in advance.
15 出力トルク T 1以上の高トルク領域、或いは車速 Vが予め設定された判定車速 V 1以上の高車速領域が、 有段制御領域として設定されているので有段変速走行が ' ェンジン 8の比較的高トルクとなる高駆動トルク時、 或いは車速の比較的高車速 . 時において実行され、 無段変速走行がエンジン 8の比較的低トルクとなる低駆動 、 トルク時、 或いは車速の比較的低車速時すなわちエンジン 8の常用出力域におい 20 て実行されるようになっている。 15 High torque range where output torque T1 or higher, or high vehicle speed range where vehicle speed V is preset as vehicle speed V1 is set as stepped control range, so stepped variable speed driving is compared It is executed at the time of a high driving torque that is a relatively high torque, or at a relatively high vehicle speed of the vehicle speed, and the continuously variable speed running is a low drive that is a relatively low torque of the engine 8, a torque at a relatively low vehicle speed. It will be executed at the time when the engine 8 is in the normal output range.
同様に、 図 8の関係に示されるように、 エンジントルク T E が予め設定され た所定値 T E 1以上の高トルク領域、 エンジン回転速度 N E が予め設定された所 定値 N E 1以上の高回転領域、 或いはそれらエンジントルク T E およびエンジン 回転速度 N E から算出されるエンジン出力が所定以上の高出力領域が、有段制御 25 領域として設定されているので、 有段変速走行がェンジン 8の比較的高トルク、 '比較的高回転速度、或いは比較的高出力時において実行され、 無段変速走行がェ ンジン 8の比較的低トルク、 比較的低回転速度、或いは比較的低出力時すなわち エンジン 8の常用出力域において実行されるようになって.いる。 図 8における有 段制御領域と無段制御領域との間の境界線は、 高車速判定値の連なりである高車 速判定線および高出力走行判定値の連なりである高出力走行判定線に対応してい る。 Similarly, as shown in the relationship of FIG. 8, the engine torque T E is a high torque region where the preset value TE 1 or higher, and the engine speed N E is a preset high value of the NE 1 or higher. Region, or high output region where the engine output calculated from engine torque T E and engine speed N E is more than the predetermined value is set as stepped control 25 region. It is executed at a relatively high torque, 'relatively high rotational speed, or relatively high output, and continuously variable speed running is at a relatively low torque, relatively low rotational speed, or relatively low output of engine 8, ie engine 8 It will be executed in the normal output area. Yes in Figure 8 The boundary line between the step control region and the continuously variable control region corresponds to a high vehicle speed determination line that is a series of high vehicle speed determination values and a high output travel determination line that is a sequence of high output travel determination values.
これによつて、例えば、 車両の低中速走行および低中出力走行では、 変速機 5 構 1 0が無段変速状態とされて車両の燃費性能が確保される。 また、実際の車速 Vが前記判定車速 V 1を越えるような高速走行では、 変速 ϋ¾ 1 0が有段の変速 機として作動する有段変速状態とされて専ら機械的な動力伝達経路でェンジン 8 の出力が駆動輪 3 8へ伝達され、電気的な無段変速機として作動させる場合に発 生する動力と電気エネルギとの間の変換損失が抑制されて燃費が向上させられる。 As a result, for example, when the vehicle is traveling at low to medium speeds and traveling at low to medium power, the transmission 5 is set to a continuously variable transmission state to ensure the fuel efficiency of the vehicle. Further, at high speeds where the actual vehicle speed V exceeds the judgment vehicle speed V 1, the gear shift ϋ¾ 1 0 is set to a stepped shift state in which it operates as a stepped transmission, and the engine is transmitted exclusively through a mechanical power transmission path. Is transmitted to the drive wheels 38, and the conversion loss between the power and electric energy generated when operating as an electric continuously variable transmission is suppressed, and the fuel efficiency is improved.
0 また、 出力トルク T OUT などの前記躯動力関連値が判定トルク T 1を越える ような高出力走行では変速機構 1 0が有段の変速機として作動する有段変速状態 とされ専ら機械的な動力伝達経路でェンジン 8の出力が駆動輪 3 8へ伝達されて ' 電気的な無段変速機として作動させる領域が車雨の低中速走行および低中出力走 - 行となって、 第 1電動機 M 1が発生すべき電気的エネルギ換言すれば第 1電動機 5 M 1が伝える電気的エネルギの最大値を小さくできて第 1電動機 M 1或いはそれ を含む車両の駆動装置が一層小型化される。 0 Also, in high-power running where the power-related value such as the output torque T OUT exceeds the judgment torque T 1, the speed change mechanism 10 is set to a stepped transmission state that operates as a stepped transmission, and is exclusively mechanical. The engine 8 output is transmitted to the drive wheels 3 8 through the power transmission path, and the area to operate as an electric continuously variable transmission is the low and medium power running and the low and medium power running in the rain. Electric energy that should be generated by the electric motor M1, in other words, the maximum value of the electric energy transmitted by the first electric motor 5M1 can be reduced, and the first electric motor M1 or the drive device of the vehicle including the electric motor M1 can be further downsized. .
' つまり、 前記所定値 T E 1 'が第 1電動機 M 1が反力トルクを受け持つことが できるエンジントルク TE の切換判定値として予め設定されると、 エンジントル ク TE がその所定値 T E 1を超えるような高出力走行では、差動部 1 1が有段変 0 ' 速状態とされるため、 第 1電動機 M 1は差動部 1 1が無段変速状態とされている ときのようにエンジントルク TE に対する反力トルクを受け持つ必要が無いので 、 第 1電動機 M lの大型化が防止されつつその耐久性の低下が抑制される。 言い 換えれば、 本実施例の第 1電動機 M 1は、 その最大出力がエンジントルク TE の 最大値に対して必要とされる反力トルク容量に比較して小さくされることで、 す 5 なわちその最大出力を上記所定値 T E 1を超えるようなエンジントルク TE に対 する反力トルク容量に対応させないことで、 小型ィヒが実現されている。 'That is, the predetermined value TE 1' when the first electric motor M 1 is preset as switching threshold value of the engine torque T E that can withstand the reaction torque, the engine torque T E is the predetermined value TE 1 In high-power running exceeding 1, the differential unit 1 1 is in the stepped variable 0 'speed state, so the first motor M1 is in the same way as when the differential unit 1 1 is in the continuously variable transmission state. In addition, since it is not necessary to handle the reaction torque against the engine torque T E , the increase in the size of the first electric motor Ml is prevented, and the decrease in durability is suppressed. In other words, the first motor M 1 of this embodiment has a maximum output that is reduced compared to the reaction torque capacity required for the maximum value of the engine torque T E. Chisono maximum output that does not correspond to the reaction force torque capacity against the engine torque T E that exceeds the predetermined value TE 1, small I arsenide is realized.
尚、上記第 1電動機 M 1の最大出力は、 この第 1電動機 M 1の使用環境に許 容されるように実験的に求められて設定されている第 1電動機 M 1の定格値であ る。 また、 上記エンジントルク TE の切換判定値は、 第 1電動機 M lが反力トル クを受け持つことができるエンジントルク T E の最大値またはそれよりも所定値 低い値であつて、 第 1電動機 M 1の耐久性の低下が抑制されるように予め実験的 に求められた値である。 The maximum output of the first electric motor M 1 is the rated value of the first electric motor M 1 that is experimentally determined and set to be allowed in the usage environment of the first electric motor M 1. The Further, the switching determination value of the engine torque T E is the maximum value of the engine torque TE at which the first motor M l can take charge of the reaction force torque, or a value lower than the predetermined value by the first motor M This value is experimentally obtained in advance so that the decrease in durability of 1 is suppressed.
また、 他の考え方として、 この高出力走行においては燃費に対する要求より 運転者の駆動力に対する要求が重視されるので、無段変速状態より有段変速状態 (定変速状態) に切り換えられるのである。 これによつて、 ユーザは、例えば図 9に示すような有段自動変速走行におけるァップシフトに伴うェンジン回転速度 Another way of thinking is that in this high-power running, the demand for the driving force of the driver is more important than the demand for fuel consumption, so that the stepless speed change state is switched to the stepped speed change state (constant speed change state). As a result, the user can change the engine rotation speed associated with the upshift in the stepped automatic transmission as shown in FIG. 9, for example.
N E の変ィヒすなわち変速に伴うリズミカルなエンジン回転速度 N e の変ィヒが楽し める。 You can enjoy the change of N E , that is, the rhythmic engine speed N e that changes with shifting.
ここで、 本実施例においては、 所定の車両走行時 (以下、 所定走行時という ) に比較して大きな車両駆動力或いは駆動力源ブレーキが必要なときには、 トー タル変速比ァ Tを所定走行時に比較して低車速側 (口一ギヤ側) に設定して、 所 定走行時に比較してより.高車速側まで低車速側の変速比を維持する。  Here, in this embodiment, when a large vehicle driving force or driving force source brake is required as compared with a predetermined vehicle traveling time (hereinafter referred to as a predetermined traveling time), the total speed ratio T is set to the predetermined traveling time. Compared to the lower vehicle speed side (one gear side), the gear ratio on the low vehicle speed side is maintained up to the high vehicle speed side compared to the predetermined driving.
上記所定の車両走行は、 予め定められた走行条件範囲内となる車両走行、例 えばスロットル弁開度 0 THや車速 Vやエンジン回転速度 N E をパラメ一夕として 予め設定された平坦路走行時の基準カロ速度 GK と実際の車両加速度 Gとを比較し て、実際の車両加速度 Gが平坦路を走行中であるどされる為の予め定められた基 準加速度 GK の所定範囲内となる車両走行が想定される。 また、 所定走行時に比 ' 較して大きな車両駆動力が必要なときとしては、実際の車両加速度 Gが基準加速 度 GK -の所定範囲より小さくなるような登坂路の走行が想定され、或いは駆動力 源ブレーキが必要なときとしては、実際の車両加速度 Gが基準加速度 GK の所定 範囲より大きくなるような降坂路の走行が想定される。 そして、 所定走行時には 、 図 6に示すような変速線図にて自動変速部 2 0の変速が実される。 また、登降 坂路時には、 その図 6に示す変速線図に比較してトータル変速比: r Tが低車速側 に設定されるように各変速線が高車速側へ変更された図 1 0に示すような変速線 図にて自動変速部 2 0の変速が実行される。 The predetermined vehicle traveling, vehicle traveling a preset time flat road traveling example if the throttle valve opening 0 TH and the vehicle speed V and the engine rotational speed N E as parameters Isseki which falls within the traveling condition within a predetermined range By comparing the actual car acceleration G K and the actual vehicle acceleration G, the actual vehicle acceleration G is within a predetermined range of the predetermined reference acceleration G K for traveling on a flat road. It is assumed that the vehicle travels. In addition, when a large vehicle driving force is required as compared with the predetermined travel time, it is assumed that the vehicle travels on an uphill road where the actual vehicle acceleration G is smaller than the predetermined range of the reference acceleration G K- , or as when the driving force source braking is required, the actual vehicle acceleration G is the reference acceleration G becomes larger such downhill travel than the predetermined range of K is assumed. When the vehicle travels a predetermined distance, the automatic transmission 20 is shifted according to the shift diagram as shown in FIG. In addition, on uphill and downhill roads, each shift line is changed to the high vehicle speed side so that the total gear ratio: r T is set to the low vehicle speed side compared to the shift diagram shown in FIG. The shift of the automatic transmission unit 20 is executed in accordance with such shift diagram.
よって、 登降坂走行時に変速線'図としてこの図 1 0の変速線図を用いること により所定走行時に比較して、登坂路時にはより高車速側まで大きな駆動力が得 られ、 降坂路時には第 2電動機回転速度 N M 2がより高車速側まで高くされること により大きな回生トルクが発生させられて大きな駆動力源ブレーキが得られる。 また、 図 1 0の変速線図を用いることにより図 6の変速線図に比較してより高車 速側までアップシフトが抑制されることからビジ一シフトの発生が抑制される。 Therefore, use the shift diagram shown in Fig. 10 as the shift diagram when traveling up and down hills. The compared at predetermined traveling uphill when a large driving force to a higher vehicle speed side is obtained to when downhill will generate large regenerative torque by the second electric motor rotation speed N M 2 is increased to a higher vehicle speed side Thus, a large driving force source brake can be obtained. Further, by using the shift diagram of FIG. 10, the upshift is suppressed to the higher vehicle speed side compared to the shift diagram of FIG.
具体的には、 図.5に戻り、登降坂判定手段 (登降坂判定部) 8 0は、 車両の 走行路が登降坂路か否かを判定する。 例えば、登降坂判定手段 8 0は、 スロット ル弁開度 Θ THや車速 Vやェンジン回転速度 N E をパラメータとして予め設定され , た平坦路走行時の基準加速度 G K と実際の車両加速度 Gとを比較して、予め定め られた所定時間以上実際の車両加速度 Gが基準加速度 GK の所定範囲より小さい 場合には登坂路であると判定し、或いは予め定められた所定時間以上実際の車両 加速度 Gが基準加速度 G K の所定範囲より大きい場合には降坂路であると判定す る。 また、 登降坂判定手段 8 0は、登降坂路が終了したか否かを判定する。 例え . ば、登降坂判定手段 8 0は、登降坂路走行中に、基準加速度 G K と実際の車両加 速度 Gとを比較して、 予め定められた所定時間以上実際の車両加速度 Gが基準加 速度 G K の所定範囲内となる場合には登降坂路が終了したと判定する。 Specifically, returning to FIG. 5, the uphill / downhill determination means (uphill / downhill determination unit) 80 determines whether or not the traveling path of the vehicle is an uphill / downhill road. For example, uphill slope determination means 8 0 is preset throttle valve opening theta TH and the vehicle speed V and Enjin speed N E as parameters were the reference acceleration G K during running on a flat road and an actual vehicle acceleration G If the actual vehicle acceleration G is smaller than the predetermined range of the reference acceleration G K for a predetermined time or more, it is determined that the road is an uphill road, or the actual vehicle acceleration is longer than a predetermined time. G is you determined is larger than the predetermined range of the reference acceleration G K is the downhill. The uphill / downhill determination means 80 determines whether or not the uphill / downhill road has ended. Example. Ba, uphill slope determination means 8 0, during uphill hill drive, reference acceleration is compared with the actual vehicle acceleration G and G K, a predetermined time or more actual vehicle acceleration G is the reference pressure determined in advance if falls within a predetermined range of velocity G K determines that an uphill slope is completed.
変速制御手段 8 2は、上記登降坂判定手段 8 0により登降坂路であると判定 The shift control means 82 is determined to be an uphill / downhill road by the uphill / downhill determination means 80.
. されたときには、 図 1 0に示すような登降坂時の変速線図を設定してトータル変 、速比ァ Tを所定走行時より低車速側に設定する。 また、 変速制御手段 8 2は、登 ' 降坂判定手段 8 0により登降坂路でないと判定されたときには、 或いは登降坂判 定手段 8 0により登降坂路が終了したと判定されたときには、 所定走行時に用い られる図 6に示すような所定時の変速線図を設定する。 When this is done, set up a shift diagram for the uphill / downhill as shown in FIG. 10 and set the total change and set the speed ratio T to the lower vehicle speed side than during the predetermined travel. Further, the shift control means 8 2 is configured to perform a predetermined traveling when the up / down slope determination means 80 determines that the road is not an up / down slope, or when the up / down slope determination means 80 determines that the up / down slope has ended. Set the shift diagram at the predetermined time as shown in Fig. 6.
前記有段変速制御手段 5 4は、 変速制御手段 8 2により設定された図 1 0に 示すような登降坂時の変速線図或 ヽは変速制御手段 8 2により設定された図 6に 示すような所定時の変速線図から車速 Vおよび自動変速部 2 0の要求出力トルク As shown in FIG. 6, the stepped shift control means 54 is set up by the shift control means 82, and the shift diagram at the time of uphill / downhill as shown in FIG. Vehicle speed V and required output torque of automatic transmission unit 20
T O UT で示される車両状態に基づいて、 変速機構 1 0の変速を実行すべきか否か を判断し、例えば自動変速部 2 0の変速すべき変速段を判断し、 その判断した変 速段が得られるように自動変速部 2 ' 0の自動変速制御を実行する。 そして、 差動部 1 1の無段変速状態においては、 前記ハイプリッド制御手段 5 2は、 アクセル開度 Accや車速 Vに基づいて算出した目標出力 (トータル目標 出力、 要求駆動力 F * ) を充足するために必要なエンジン出力を発生するための エンジントルク T E とエンジン回転速度 N E となるように、変速機構 1 0のトー 5 タル変速比ァ Tの目標値を定め、 その目標値が得られるように自動変速部 2 0の 変速段を考慮して差動部 1 1の変速比ァ 0を制御し、 トータル変速比ァ Tをその 変速可能な変化範囲内で制御する。 Based on the vehicle state indicated by TO UT, it is determined whether or not the shift of the transmission mechanism 10 should be executed. For example, the shift stage of the automatic transmission unit 20 is determined, and the determined shift stage is determined. The automatic transmission control of the automatic transmission unit 2'0 is executed so as to be obtained. In the continuously variable transmission state of the differential section 11, the hybrid control means 52 satisfies the target output (total target output, required driving force F *) calculated based on the accelerator opening Acc and the vehicle speed V. The target value of the gear shift ratio T of the gear change mechanism 10 is determined so that the engine torque T E and the engine speed N E for generating the engine output necessary for Thus, the gear ratio ratio 0 of the differential section 11 is controlled in consideration of the gear position of the automatic transmission section 20 and the total speed ratio ratio T is controlled within the changeable range of the gear shift.
また、 差動部 1 1の非無段変速状態 (有段変速状態) においては、前記ハイ ブリツド制御手段 5 2は、 アクセル開度 Accや車速 Vに基づいて算出した目標出0 力 (トータル目標出力、 要求駆動力) を充足するために必要なエンジン出力を発 生するためのエンジントルク T E となるように、変速機構 1 0のトータル変速比 ' ァ Tを考慮してエンジン 8を制御する。 In addition, in the non-stepless speed change state (stepped speed change state) of the differential section 11, the hybrid control means 52 is a target output (total target) calculated based on the accelerator opening Acc and the vehicle speed V. The engine 8 is controlled in consideration of the total gear ratio 'a T of the speed change mechanism 10 so that the engine torque T E is generated to generate the engine output necessary to satisfy the output and the required driving force). .
また、前記ハイブリッド制御手段 5 2は、 例えば図 1 1の実線で示すような 予め実験的に求められた車速 Vと目標減速度 GM との関係から実際の車速 Vに基5 づいて減速走行中の目標減速度 G* を算出し、 例えば図 1 2に示すような予め実 験的に求められた目標減速度 G * と必要制動トルク TB * との関係からその目標 ' 減速度 G * に基づいてその目標減速度' G * を達成する為の必要制動トルク TB * を算出する。 ― Further, the hybrid control means 5 2, for example, experimentally in advance the actual vehicle speed V from the relation between the vehicle speed V and the target deceleration G M obtained based on 5 Zui and deceleration as shown by the solid line in FIG. 1 1 The target deceleration G * is calculated, and the target 'deceleration G * is calculated from the relationship between the target deceleration G * and the required braking torque T B * obtained experimentally as shown in Fig. 12. Based on the above, the necessary braking torque T B * to achieve the target deceleration 'G * is calculated. -
そして、 差動部 1 1の無段変速状態においては、 前記ハイプリッド制御手段0 ' 5 2は、例えば、 エネルギー効率を考えて、 回生トルクにて制動トルク TB を得 ることを最優先するという観点から、必要制動トルク TB * が得られるように第 2電動機 M 2を用いて予め定められた回生トルクとなる回生量にて回生を行う。 このとき、 エンジン 8の引き摺り (回転抵抗) によるボンビングロスの発生が抑 制され、 その分駆動力源ブレーキ (減速度) が抑制されて回生量が増加される為 5 に、 ハイブリッド制御手段 5 2は、 フューエル力ットにてェンジン 8の 動を停 . 止し且つ第 1電動機 M 1を空転し、 差動部 1 1の差動作用によつて車速 Vに拘束 されることなくすなわち自動変速部 2 0の出力軸 2 2の回転速度 Νο υτ と変速比 rとに基づいて一意的に定められる伝達部材回転速度 N! 8に拘わらずェンジン回 転速度 NE 零乃至略零に維持する。 Then, as in the continuously-variable shifting state of the differential portion 1 1, wherein Haipuriddo control unit 0 '5 2, for example, consider the energy efficiency is highest priority Rukoto obtain the braking torque T B in the regenerative torque From the viewpoint, regeneration is performed with a regeneration amount that is a predetermined regeneration torque using the second electric motor M 2 so that the required braking torque T B * is obtained. At this time, the occurrence of bombing loss due to dragging (rotational resistance) of the engine 8 is suppressed, and the driving force source brake (deceleration) is suppressed and the regeneration amount is increased accordingly. The engine 8 is stopped by the fuel force and the first motor M 1 is idled, and the differential action of the differential part 1 1 is not constrained to the vehicle speed V, that is, the automatic transmission part. 2 0 Output shaft 2 2 Rotational speed 2 ο υτ and transmission member rotational speed uniquely determined based on gear ratio r! Enjin times regardless of 8 Rolling speed N E Maintain at zero or nearly zero.
また、 差動部 1 1の非無段変速状態 (有段変速状態) においては、 エンジン 回転速度 NE が車速 Vに拘束されて強制的に回転させられ、 エンジンブレーキト ルクにより減速度が得られることから、 回生トルクに加えてェンジンブレーキト ルクによつて車両の制動トルク TB が得られる。 よって、 前記ハイブリッド制御 手段 5 2は、 必要制動トルク TB * を得る為に、 回生トルクだけでは不足するト ルク分を、 或いはその必要制動トルク TB * の全てをエンジンブレーキトルクで 得る。 In addition, in the non-stepless speed change state (stepped speed change state) of the differential section 1 1, the engine speed N E is forcibly rotated by being constrained by the vehicle speed V, and deceleration is obtained by the engine brake torque. from the fact that is, the braking torque T B of'll go-between vehicle to E down gin brake torque is obtained in addition to the regenerative torque. Therefore, in order to obtain the required braking torque T B *, the hybrid control means 52 obtains the torque that is insufficient with only the regenerative torque or all of the necessary braking torque T B * with the engine brake torque.
このように、 本実施例の変速機構 1 0 (差動部 1 1、 動力分配機構 1 6 ) は 無段変速状態 (差動状態) と非無段変速状態 (ロック状態、非差動状態) とに選 択的に切換え可能であって、 前記切換制御手段 5 0により車両状態に基づいて差 動部 1 1の切り換えるべき変速状態が判断され、差動部 1 1が無段変速状態と非 無段変速状態とのいずれかに選択的に切り換えられる。 そして、 差動部 1 1の無 段変速状態と非無段変速状態とに応じて必要な駆動力や駆動力源ブレーキが得ら れる。  In this way, the speed change mechanism 10 (differential part 1 1, power distribution mechanism 16) of the present embodiment is in a continuously variable transmission state (differential state) and a continuously variable transmission state (locked state, non-differential state). The switching control means 50 determines the shift state to be switched of the differential unit 11 based on the vehicle state, and the differential unit 11 is not switched to the continuously variable shift state. It is selectively switched to either the continuously variable transmission state. The necessary driving force and driving force source brake can be obtained according to the continuously variable transmission state and the continuously variable transmission state of the differential section 11.
ところで、 差動部 1 1の無段変速状態においては、第 1電動機 M 1がェンジ ントルク T Eに応じた反力トルクを受け持つことによりその無段変速状鍾が適切 に制御される。 また、差動部 1 1の有段変速状態においては、第 1電動機 M 1が その反力トルクを受け持つ必要が無いことから、例えば前記所定値 T E 1を超え るようなェンジントルク T Eに対する反力トルクを受け持つ必要が無いことから 、 第 1電動機 M 1の最大出力が小さくされて第 1電動機 M 1が小型ィ匕されている。  By the way, in the continuously variable transmission state of the differential section 11, the continuously variable transmission state of the first motor M1 is appropriately controlled by the reaction force torque corresponding to the engine torque TE. In addition, in the stepped speed change state of the differential section 11, the first motor M 1 does not have to take charge of the reaction torque, and therefore, for example, the reaction torque against the engine torque TE exceeding the predetermined value TE 1 Therefore, the maximum output of the first electric motor M 1 is reduced and the first electric motor M 1 is reduced in size.
そうすると、 差動部 1 1の無段変速状態において、登坂走行時のようにェン ジン高負荷での走行となるような場合には、第 1電動機 M lの性能 (定格) によ つてはエンジントルク T E に対する反ガトルクを受け持つことができない為、駆 動力不足となる可能性がある。 また、 同様に、 エンジントルク TE に対する反力 トルクを受け持つことにより、 第 1電動機 M lの性能 (定格) によっては第 1電 動機 M lの負荷トルクが許容範囲を超える可能性がある。 見方を換えれば、登坂 走行時に駆動力不足とならないように、 或いは第 1電動機 M 1の負荷トルクが許 容範囲を超えないように、 第 1電動機 M 1を大型ィヒずる必要があり、専ら登坂走 行の為だけに第 1電動機 M 1を大型化することは、 本発明の第 1電動機 M 1の小 型化の目的 (趣旨) から外れることになる。 As a result, in the continuously variable transmission state of the differential section 1 1, when driving at a high engine load, such as when driving uphill, depending on the performance (rating) of the first motor M l Since it is not possible to handle the anti-torque torque against the engine torque T E, there is a possibility of insufficient driving power. Similarly, depending on the reaction torque against the engine torque T E , the load torque of the first motor M l may exceed the allowable range depending on the performance (rating) of the first motor M l. In other words, the load torque of the first motor M 1 is allowed so that the driving force does not become insufficient when driving uphill. The first electric motor M 1 needs to be enlarged so that it does not exceed the range, and the enlargement of the first electric motor M 1 exclusively for climbing is the first electric motor M 1 of the present invention. This is not the purpose of the miniaturization.
また、 本実施例では、差動部 1 1が有段変速状態に切り換えられることによ り電気パスによって伝達される電気的エネルギーの最大値も少なくされ、 また、 自動変速部 2 0が第 2電動機 M 2から駆動輪 3 8への動力伝達経路に備えられる ので、 第 2電動機 M 2も小型化される。  Further, in the present embodiment, the maximum value of the electric energy transmitted by the electric path is reduced by switching the differential portion 11 to the stepped speed change state, and the automatic transmission portion 20 is Since the power transmission path from the motor M 2 to the drive wheels 38 is provided, the second motor M 2 is also downsized.
そうすると、 差動部 1 1の無段変速状態において、 降坂走行時のように減速 走行となるような齢には、 専ら第 2電動機 M 2の回生トルクにより制動トノレク TB が発生させられる為、 図 1 1の破線に示すように下り勾配走行時の必要制動 トルク TB * が実線に示す平坦路走行時に比較して大きくきれることから、 第 2 電動機 M 2の性能 (定格) によっては駆動力源ブレーキ不足となる可能性がある 。 また、 同様に、 アップシフトが抑制された自動変速部 2 0の変速段ァと車速 V とにより定められる第 2電動機回転速度 NM 2に基づいて回生トルクを発生させる ことにより、 第 2電動機 M 2の性能 (定格) によっては第 2電動機 M 2の負荷ト ルクが許容範囲を超える可能性がある。 見方を換えれば、 降坂走行時に駆動力源 ブレーキ不足とならないように、或いは第 2電動機 M 2の負荷トルクが許容範囲 を超えないように、専ら降坂走行の為だけに第 2電動機 M 2を大型化する必要が ある。 これとは別に、蓄電装置 6 0の満充電などその充電状態 S 0 Cによっては 回生量が抑制されて駆動力源ブレーキ不足となる可能性がある。 Then, the continuously-variable shifting state of the differential portion 1 1, the age such that deceleration as during downhill travel, since exclusively the braking Tonoreku T B by the second regenerative torque of the electric motor M 2 is generated As shown by the broken line in Fig. 11, the required braking torque T B * during downhill driving can be greatly increased compared to when driving on a flat road shown by the solid line, so depending on the performance (rating) of the second motor M 2 The power source brake may be insufficient. Similarly, by generating regenerative torque based on the second motor rotation speed N M 2 determined by the shift speed of the automatic transmission unit 20 in which the upshift is suppressed and the vehicle speed V, the second motor M Depending on the performance (rating) of 2, the load torque of the second motor M 2 may exceed the allowable range. In other words, the second motor M 2 is used exclusively for downhill driving so that the driving force source brake does not become insufficient when driving downhill or the load torque of the second motor M2 does not exceed the allowable range. It is necessary to increase the size. Apart from this, depending on the state of charge S 0 C such as full charge of the power storage device 60, the regeneration amount may be suppressed and the driving force source brake may become insufficient.
そこで、前記変速制御手段 8 2によりト一タル変速比ァ Tが所定走行時に比 較して低車速側に設定されたときに、 それでも必要な車両駆動力 F * 或いは駆動 力源ブレーキ (制動トルク TB * ) が得られない場合には、 或いは第 1電動機 M 1および/または第 1電動機 M 2の負荷トルクが許容範囲でない場合には、 第 1 電動機 M 1および第 2電動機 M 2の負荷トルクが許容範囲を超えない状態で必要 な車両駆動力 或いは駆動力源ブレーキ (制動トルク TB * ) が得られる為に 、 差動部 1 1を無段変速状態から非無段変速状態へ切り換える。 以下に、 その制 御作動について説明する。 具体的には、 ロック状態判定手段 (ロック状態判定部) 8 4は、 差動部 1 1 が非無段変速状態とされているか否かを判定する。 例えば、 ロック状態判定手段 8 4は、切換制御手段 5 0により変速機構 1 0が有段変速状態に切換制御される 有段制御領域内か或いは変速機構 1 0が無段変速状態に切換制御される無段制御 領域内であるかの判定のための例えば図 6に示す切換線図から車速 Vおよび出力 トルク T OUT で示される車両状態に基づいて変速機構 1 0を非無段変速状態とす る有段制御領域内であるか否かによって差動部 1 1が非無段変速状態とされている か否かを判定する。 Therefore, when the total gear ratio T is set to the lower vehicle speed side by the shift control means 82 as compared with the predetermined travel time, the required vehicle driving force F * or driving force source brake (braking torque) is still required. If T B *) is not obtained, or if the load torque of the first motor M 1 and / or the first motor M 2 is not within the allowable range, the load of the first motor M 1 and the second motor M 2 In order to obtain the necessary vehicle driving force or driving force source brake (braking torque T B *) without the torque exceeding the allowable range, the differential unit 11 is switched from the continuously variable transmission state to the continuously variable transmission state. . The control operation is described below. Specifically, the lock state determination means (lock state determination unit) 84 determines whether or not the differential unit 1 1 is in a continuously variable transmission state. For example, the lock state determination means 84 is controlled by the switching control means 50 in the stepped control area where the speed change mechanism 10 is switched to the stepped speed change state or the speed change mechanism 10 is controlled to be switched to the stepless speed change state. For example, based on the vehicle state indicated by the vehicle speed V and the output torque T OUT from the switching diagram shown in FIG. 6, the transmission mechanism 10 is set to the continuously variable transmission state. It is determined whether or not the differential unit 11 is in a continuously variable transmission state depending on whether or not it is within a stepped control region.
駆動力/駆動力源ブレーキ判定手段 (駆動カノ駆動力源ブレーキ判定部) 8 6は、 前記登降坂判定手段 8 0により登降坂路であると判定され、且つ前記口ッ ク状態判定手段 8 4により差動部 1 1が無段変速状態とされていると判定された 場合には、 必要な車両駆動力 F *或いは駆動力源ブレーキ (制動トルク TB * ) が得られているか否か、 すなわち登坂路時の要求駆動力 F *或いは降坂路時の駆 動力源ブレーキ (制動トルク TB * ) が十分であるか否かを判定する。 Driving force / driving force source brake determining means (driving cano driving force source brake determining unit) 8 6 is determined by the ascending / descending slope determining means 80 to be an uphill / downhill road, and by the hook state determining means 84. If it is determined that the differential unit 11 is in the continuously variable transmission state, whether or not the necessary vehicle driving force F * or driving force source brake (braking torque T B *) is obtained, that is, Determine whether the required driving force F * on the uphill road or the driving power source brake (braking torque T B *) on the downhill road is sufficient.
例えば、駆動力/駆動力源ブレーキ判定手段 8 6は、 アクセル開度 Accに対 して予め設定された登坂路走行時の基準加速度 GT と実際の車両加速度 Gとを比 較して、実際の車両加速度 Gが小さい場合には必要な車両駆動力 F * が得られて いないと判定する。 また、駆動力/駆動力源ブレーキ判定手段 8 6は、前記ハイ ブリツド制御手段 5 2により算出された降坂路走行時の目標減速度 G * と実際の 車両減速度 Gとを比較して、実際の車両減速度 Gが小さい場合には必要な駆動力 源ブレーキ (制動トルク TB * ) が得られていないと判定する。 For example, the driving force / driving force source braking judging means 8 6, with the actual vehicle acceleration G and the reference acceleration G T during uphill traveling previously set against the accelerator opening Acc by comparing the actual When the vehicle acceleration G is small, it is determined that the required vehicle driving force F * is not obtained. Further, the driving force / driving force source brake determination means 86 compares the target deceleration G * when traveling downhill calculated by the hybrid control means 52 and the actual vehicle deceleration G, When the vehicle deceleration G is small, it is determined that the necessary driving force source brake (braking torque T B *) is not obtained.
電動機負荷判定手段 (電動機負荷判定部) 8 8は、前記登降坂判定手段 8 0 により登降坂路であると判定され、 且つ前記ロック状態判定手段 8 4により差動 部 1 1が無段変速状態とされていると判定された場合には、第 1電動機 M 1およ び/または第 2電動機 M 2の負荷トルクが許容範囲であるか否かを判定する。  Motor load determination means (motor load determination section) 8 8 is determined as an uphill / downhill road by the uphill / downhill determination means 8 0, and the differential section 11 is set to a continuously variable transmission state by the lock state determination means 8 4. If it is determined that the load torque of the first electric motor M 1 and / or the second electric motor M 2 is within an allowable range, it is determined.
例えば、 電動機負荷判定手段 8 8は、登坂路走行時において、第 1電動機 M 1の定格値が差動部 1 1を無段変速作動可能な状態とする為にェンジントルク T E に対して第 1電動機 M lが受け持つべき必要な反力トルク TM 1 ( = T E · p 1 / ( \ + p I ) ) に対応させられない場合には、第 1電動機 M 1の負荷トルクが 許容範囲でないと判定する。 また、 電動機負荷判定手段 8 8は、 降坂路走行時に おいて、第 2電動機 M 2の定格値が自動変速部 0の変速段ァと車速 Vとにより 一意的に定められる第 2電動機回転速度 N M 2に基づいて発生させられる回生トル クに対応させられない場合には、第 2電動機 M 2の負荷トルクが許容範囲でない と判定する。 For example, the motor load determination means 8 8 may be configured so that the rated value of the first motor M 1 when the vehicle is traveling on an uphill road is in response to the engine torque TE so that the differential unit 11 can be operated continuously variable. M l Required reaction force torque to be handled by T M 1 (= T E · p 1 / (\ + p I)), it is determined that the load torque of the first electric motor M 1 is not within the allowable range. In addition, the motor load determination means 8 8 is provided for the second motor rotation speed NM in which the rated value of the second motor M 2 is uniquely determined by the shift speed of the automatic transmission unit 0 and the vehicle speed V when traveling on a downhill road. If the regenerative torque generated based on 2 cannot be accommodated, it is determined that the load torque of the second electric motor M2 is not within the allowable range.
そして、切換制御手段 5 0は、 前記登降坂判定手段 8 0により登降坂路であ ると判定されて変速制御手段 8 2により図 1 0に示すような登降坂時の変速線図 が設定され、 且つ前記ロック状態判定手段 8 4により差動部 1 1が無段変速状態 とされていると判定されたときに、 前記駆動力 Z駆動力源ブレーキ判定手段 8 6 により必要な車両駆動力 F *或いは駆動力源ブレーキ (制動トルク TB * ) が得 られていないと判定された場合には、或いは前記電動機負荷判定手段 8 8により 第 1電動機 M 1および/または第 2電動機 M 2の負荷トルクが許容範囲でないと 判定された場合には、 差動部 1 1を無段変速状態から非無段変速状態へ切り換え るように切換クラッチ C 0或いは切換ブレーキ B 0を係合する指令を油圧制御回 路 4 2に出力する。 Then, the switching control means 50 is determined to be an uphill / downhill road by the uphill / downhill determination means 80, and the shift map at the time of uphill / downhill as shown in FIG. 10 is set by the shift control means 82, When the differential state 11 is determined to be in a continuously variable transmission state by the lock state determination means 8 4, the vehicle driving force F * required by the driving force Z driving force source brake determination means 8 6 is determined. Alternatively, when it is determined that the driving force source brake (braking torque T B *) is not obtained, or the load torque of the first motor M 1 and / or the second motor M 2 is determined by the motor load determination means 88. Is determined not to be within the allowable range, a command to engage the switching clutch C 0 or the switching brake B 0 to switch the differential unit 1 1 from the continuously variable transmission state to the continuously variable transmission state is hydraulically controlled. Output to circuit 4 2.
このように、 差動部 1 1の有段変速状態と無段変速状態との切換えは、切換 制御手段 5 0により例えば図 6の関係図から車両状態の変化に基づいて実行され たり、或いは登降坂時に必要な車両駆動力 F * 或いは駆動力源ブレーキ (制動ト · ルク TB * ) が得られない場合や第 1電動機 M lおよび Zまたは第 2電動機 M 2 の負荷トルクが許容範囲でない場合に実行された。 それに加えて、人為的な操作 によって差動部 1 1の有段変速状態と無段変速状態との切換えが行われても良い 。 以下、 その制御作動を説明する。 In this way, the switching between the stepped speed change state and the stepless speed change state of the differential section 11 is executed by the switching control means 50 based on a change in the vehicle state from the relationship diagram of FIG. When the vehicle driving force F * or driving force source brake (braking torque T B *) required for hills cannot be obtained, or when the load torque of the first motor M l and Z or the second motor M 2 is not within the allowable range Was executed. In addition, the differential unit 11 may be switched between a stepped speed change state and a continuously variable speed change state by human operation. Hereinafter, the control operation will be described.
図 1 3は、手動操作により変速機構 1 0 (差動部 1 1、動力分配機構 1 6 ) の無段変速状態 (差動状態、 非ロック状態) と有段変速状態 (非無段変速状態、 非差動状態、 ロック状態) との切換えを選択するための変速状態手動選択装置と してのシーソー型スィッチ 4 4 (以下、 スィッチ 4 4と表す) の一例でありュ一 ザにより手動操作可能に車両に備えられている。 このスィッチ 4 4は、 ユーザが 所望する変速機構 1 0の変速状態での車両走行を選択可能とするものであり、無 段変速走行に対応するスィツチ 4 4の無段と表示された無段変速走行指令釦或い. は有段変速走行に対応する有段と表示された有段変速走行 ¾ ^釦がュ一ザにより 押されることで、 それぞれ無段変速走行すなわち変速機構 1 0を電気的な無段変 速機として作動可能な無段変速状態とするか、 或いは有段変速走行すなわち変速 機構 1 0を有段変速機として作動可能な有段変速状態とするかが選択可能とされ る。 例えば、 ユーザは無段変速機のフィーリングや燃費改善効果が得られる走行 を所望すれば変速機構 1 0が無段変速状態とされるように手動操作により選択す る。 またユーザは有段変速機の変速に伴うリズミカルなェンジン回転速度の変化 によるフィ一リング向上を所望すれば変速 l 0が有段変速状態とされるよう に手動操作により選択する。 - そして、 切換制御手段 5 0は、 スィッチ 4 4の無段変速走行 ί^·釦が押され たか、 有段変速走行指令釦が押されたかの選択操作を判断し、 有段変速走行指令 釦が押された場合には優先的に変速機構 1 0を有段変速状態に切り換える。 Fig. 13 shows the continuously variable transmission state (differential state, non-locked state) and stepped transmission state (non-continuously variable transmission state) of the transmission mechanism 10 (differential part 11, power distribution mechanism 16) by manual operation. This is an example of a seesaw type switch 4 4 (hereinafter referred to as switch 4 4) as a gear shifting state manual selection device for selecting switching between non-differential state and locked state. The vehicle is equipped with possible. This switch 4 4 is used by the user The desired speed change mechanism 10 can select vehicle travel in the speed change state, and the switch 44 corresponding to continuously variable speed travel can be selected as a continuously variable speed travel command button or displayed. Stepped variable speed travel corresponding to stepped speed variable travel ¾ ^ When the button is pressed by the user, each stepless variable speed travel, that is, the speed change mechanism 10 operates as an electric continuously variable speed changer. It is possible to select whether to be a continuously variable transmission state, or a step-variable traveling state, that is, a step-variable shifting state in which the transmission mechanism 10 can be operated as a stepped transmission. For example, if the user desires a continuously variable transmission feeling or traveling that can improve fuel efficiency, the user selects the transmission mechanism 10 by manual operation so as to be in a continuously variable transmission state. In addition, if the user desires to improve the filling by changing the rhythmic engine rotation speed associated with the speed change of the stepped transmission, the user selects the speed change 10 by manual operation so that the speed change becomes the stepped speed change state. -Then, the switching control means 50 determines the selection operation of whether the continuously variable speed travel ί ^ · button of the switch 4 4 is pressed or the stepped variable speed travel command button is pressed, and the stepped speed variable travel command button is When pressed, the speed change mechanism 10 is preferentially switched to the stepped speed change state.
- しかし、 切換制御手段 5 0は、 スィッチ 4 4の無段変速走行 釦が押され たと判定した場合には、第 1電動機 M lがエンジントルク TE に対する反力トル クを受け持つことができない場合を考慮して、 優先的に変速機構 1 0を無段変速 状態とするのではなく、例えば図 6の関係図から車両状態の変化に基づいて変速 , 機構 1 0の変速状態の切換えを実行する。 一 - However, the switching control means 5 0, when it is determined that the continuously-variable shifting control button switch 4 4 is pressed, when the first electric motor M l can not withstand the reaction force torque with respect to the engine torque T E In consideration of the above, the speed change mechanism 10 is not preferentially set to the continuously variable speed change state. . one
また、 スィッチ 4 4に無段変速走行或いは有段変速走行の何れも選択されな い状態である中立位置が設けられる場合には、 スィッチ 4 4がその中立位置の状 ' 態であるときすなわちユーザによつて所望する変速 態が選択されていないとき や所望する変速状態が自動切換のときには、伊 jえば図 6の関係図から車両状態の 変化に基づいて変速機構 1 0の変速状態の自動切換制御作動が実行されればよい。  In addition, when the switch 44 is provided with a neutral position in which neither continuously variable speed traveling nor stepped speed variable traveling is selected, when the switch 44 is in the neutral position state, that is, the user Therefore, when the desired shift state is not selected or when the desired shift state is automatic switching, it is necessary to automatically switch the shift state of the transmission mechanism 10 based on the change in the vehicle state from the relationship diagram of FIG. The control operation may be executed.
図 1 4は、電子制御装置 4 0の制御作動の要部すなわち平坦路を走行してい るか登降坂路を走行しているかによつて変速線図を切り換えるときの制御作動を , 説明するフローチャートであり、例えば数 m s e c乃至数十 m s e c程度の極め て短いサイクルタイムで繰り返し実行される。 W FIG. 14 is a flowchart for explaining the control operation of the electronic control device 40, that is, the control operation when the shift map is switched depending on whether the vehicle is traveling on a flat road or an uphill / downhill road. For example, it is repeatedly executed with an extremely short cycle time of about several milliseconds to several tens of milliseconds. W
5 2 先ず、 前記登降坂判定手段 8 0に対応するステップ(以下、 ステップを省略 する) S 1において、 車両の走行路が登降坂路か否かが判定される。 例えば、 ス ロットル弁開度 Θ ΤΗや車速 Vやエンジン回転速度 N E をパラメータとして予め設 定された平坦路走行時の基準加速度 GK と実際の車両加速度 Gとが比較され、 予 め定められた所定時間以上実際の車両加速度 Gが基準加速度 GK の所定範囲より 小さい場合には登坂路であると判定され、 或いは予め定められた所定時間以上実 際の車両加速度 Gが基準加速度 GK の所定範囲より大きい場合には降坂路である と判定される。 5 2 First, in a step corresponding to the uphill / downhill determination means 80 (hereinafter, step is omitted) S 1, it is determined whether or not the traveling road of the vehicle is an uphill / downhill road. For example, the standard acceleration G K when running on a flat road and the actual vehicle acceleration G are compared with the throttle valve opening ΘΤΗ , vehicle speed V, and engine speed N E as parameters. If the actual vehicle acceleration G is smaller than the predetermined range of the reference acceleration G K for a predetermined time or more, it is determined that the road is an uphill road, or the actual vehicle acceleration G exceeds the reference acceleration G K for a predetermined predetermined time or more. If it is larger than the predetermined range, it is determined that the road is downhill.
上記 S 1の判断が否定される場合は前記変速制御手段 8 2すなわち変速制御 工程に対応する S において、例えば図 6に示すような所定時の変速線図が設定 される。  If the determination of S1 is negative, a shift diagram at a predetermined time as shown in FIG. 6, for example, is set in the shift control means 82, that is, S corresponding to the shift control step.
前記 S 1の判断が肯定される場合は前記変速制御手段 8 2すなわち変速制御 工程に対応する S 3において、 例えば図 1 0に示すような登降坂時の変速線図が 設定されてトータル変速比ァ Tが所定時より低車速側に設定される。  If the determination of S1 is affirmative, the shift control means 82, that is, S3 corresponding to the shift control process, a shift diagram at the time of uphill / downhill as shown in FIG. A is set to the lower vehicle speed side than the predetermined time.
上記 S 3に続いて前記口ック状態判定手段 8 4すなわちロック状態判定工程 に対応する S 4において、差動部 1 1が非無段変速状態とされているか否かが判 定される。  Subsequent to S3, in the mouth-stick state determination means 84, that is, S4 corresponding to the lock state determination step, it is determined whether or not the differential section 11 is in a continuously variable transmission state.
上記 S 4の判断が否定される場合は前記駆動力/駆動力源ブレーキ判定手段 8 6すなわち駆動力/駆動力源ブレーキ判定工程に対応する S 5において、 必要 : な車両駆動力 F * 或いは駆動力源ブレーキ (制動トルク TB * ) が得られている か否か、 すなわち登坂路時の要求駆動力 F * 或いは降坂路時の駆動力源ブレーキ (制動トルク TB * ) が十分であるか否かが判定される。 If the determination in S4 is negative, the driving force / driving force source brake determining means 86, that is, the driving force / driving force source brake determining step S5 corresponding to the driving force / driving force source brake determining step, is necessary: a necessary vehicle driving force F * or driving Whether the power source brake (braking torque T B *) is obtained, that is, whether the required driving force F * on the uphill road or the driving power source brake (braking torque T B *) on the downhill road is sufficient It is determined whether or not.
上記 S 5の判断が肯定される場合は前記電動機負荷判定手段 8 8すなわち電 動機負荷判定工程に対応する S 6において、第 1電動機 M 1および/または第 2 電動機 M 2の負荷トルクが許容範囲であるか否かが判定される。  If the determination in S5 is affirmative, the load torque of the first motor M1 and / or the second motor M2 is within an allowable range in S6 corresponding to the motor load determination means 88, that is, the motor load determination step. It is determined whether or not.
前記 S 5の判断が否定されるか或いは上記 S 6の判断が否定される場合は前 記切換制御手段 5 0すなわち切換制御工程に対応する S 7において、差動部 1 1 を無段変速状態から非無段変速状態へ切り換えるように切換クラッチ C 0或いは 切換ブレーキ B 0を係合する指令が油圧制御回路 4 2に出力される。 If the determination of S5 is negative or the determination of S6 is negative, the differential control unit 11 is set to a continuously variable transmission state in S7 corresponding to the switching control means 50, that is, the switching control step. Switching clutch C 0 or so as to switch from to the continuously variable transmission state. A command for engaging the switching brake B 0 is output to the hydraulic control circuit 42.
前記 S 4の判断が肯定される場合は或いは上記 S 7に続いて前記登降坂判定 手段 8 0すなわち登降坂判定コゥァ低に対応する S 8において、 登降坂路が終了 したか否かが判定される。 例えば、登降坂路走行中に、基準加速度 G K と実際の 車両加速度 Gとが比較され、 予め定められた所定時間以上実際の車両加速度 Gが 基準加速度 G K の所定範囲内となる場合には登降坂路が終了したと判定される。 この S 8の判断は肯定されるまで繰り返し実行される。 また、例えば、上記 S 7 において差動部 1 1が無段変速状態から非無段変速状態へ切り換えられた場合に は、 この S 8の判断は肯定されるまで無段変速状態への切換えが禁止される。 If the determination in S4 is affirmative, or following S7, it is determined whether or not the uphill road has been terminated in S8 corresponding to the uphill / downhill determination means 80, that is, the uphill / downhill determination core low. . For example, during uphill hill drive it is compared with a reference acceleration G K and the actual vehicle acceleration G is, when the actual vehicle acceleration G is a predetermined time or more a predetermined falls within a predetermined range of the reference acceleration G K uphill It is determined that the slope has ended. This determination of S8 is repeated until it is affirmed. Further, for example, when the differential unit 11 is switched from the continuously variable transmission state to the continuously variable transmission state in S7, the switching to the continuously variable transmission state is not performed until the determination of S8 is affirmed. It is forbidden.
前記 S 6の判断が肯定される場合は前記登降坂判定手段 8 0すなわち登降坂 判定工程に対応する S 9において、登降坂路が終了したか否かが判定される。 こ の S 9の判断が否定される場合は前記 S 5カ実行される。  If the determination at S6 is affirmative, it is determined at S9 corresponding to the uphill / downhill determination means 80, that is, the uphill / downhill determination step, whether or not the uphill / downhill road has ended. If the determination of S9 is negative, S5 is executed.
前記 S 8の判断が肯定される場合は前記変速制御手段 8 2すなわち変速制御 工程に対応する S 1 0において、例えば図 6に示すような所定時の変速線図が設 定される。  If the determination in S8 is affirmative, a shift diagram at a predetermined time as shown in FIG. 6, for example, is set in the shift control means 82, that is, S10 corresponding to the shift control step.
前記 S 9の判断が肯定される場合は前記変速制御手段 8 2すなわち変速制御 工程に対応する S 1 1において、例えば図 6に示すような所定時の変速線図が設 定される。 ― ,  If the determination in S9 is affirmative, a shift diagram at a predetermined time as shown in FIG. 6, for example, is set in the shift control means 82, that is, S11 corresponding to the shift control process. -,
前記 S 1 0に続いて前記切換制御手段 5 0すなわち切換制御工程に対応する S 1 2において、 スィッチ 4 4の無段変速走行 釦が押されたか、 有段変速走 行指令釦が押されたかの選択操作が判断される。 例えば、 有段変速走行指令釦が 押されたか否かが判断される。 また、有段変速走行指令釦が押された場合には優 先的に変速機構 1 0が有段変速状態に切り換えられる。  In S 1 2 corresponding to the switching control means 50, that is, the switching control process following S 1 0, whether the continuously variable speed travel button of switch 4 4 is pressed or whether the stepped speed variable travel command button is pressed. A selection operation is determined. For example, it is determined whether or not a stepped variable speed travel command button has been pressed. Further, when the stepped variable speed travel command button is pressed, the speed change mechanism 10 is preferentially switched to the stepped variable speed state.
上記 S 1 2の判断が否定される場合は前記切換制御手段 5 0すなわち切換制 御工程に対応する S 1 3において、例えば'図 6の関係図から車両状態の変化に基 づいて変速機構 1 0の変速状態の切換えが実行される。  If the determination of S12 is negative, in the switching control means 50, that is, S13 corresponding to the switching control process, for example, based on the change in the vehicle state from the relationship diagram of FIG. The shift state change of 0 is executed.
前記 S 2\ S 1 1に続いて、前記 S 1 2の判断が肯定される場合は、 或いは 前記 S 1 3に続いて前記有段変速制御手段 5 4および前記ハイブリツド制御手段 5 2すなわち有段変速制御工程およびハイプリッド制御工程に対応する S 1 4に おいて、例えば図 6に示すような所定時の変速線図から車速 Vおよび自動変速部If the determination of S 1 2 is affirmed following S 2 \ S 1 1, or the stepped shift control means 54 and hybrid control means subsequent to S 13 5 In S 14 corresponding to the step-change control process and the hybrid control process, for example, the vehicle speed V and the automatic transmission unit can be obtained from a predetermined shift diagram as shown in FIG.
2 0の要求出力トルク Τ ο υτ で示される車両状態に基づいて、 変速機構 1 0の変 速を実行すべきか否かが判断され、例えば自動変速部 2 0の変速すべき変速段が 判断され、 その判断した変速段が得られるように自動変速部 2 0の自動変速制御 が実行される。 Based on the vehicle state indicated by the required output torque 0ουτ of 0, it is determined whether or not the speed change of the speed change mechanism 10 should be executed. For example, the gear position to be changed in the automatic transmission unit 20 is determined. The automatic transmission control of the automatic transmission unit 20 is executed so that the determined shift speed is obtained.
また、 差動部 1 1の無段変速状態においては、 アクセル開度 Accや車速 Vに 基づいて算出された要求駆動力 F * を充足するために必要なエンジントルク TE とエンジン回転速度 N E となるように、 変速機構 1 0のトータル変速比ァ Tの目 標値が定められ、 その目標値が得られるように自動変速部 2 0の変速段を考慮し て差動部 1 1の変速比ァ 0が制御され、 トータル変速比; r Tがその変速可能な変 化範囲内で制御される。 或いはまた、差動部 1 1の有段変速状態においては、要 求駆動力 F * を充足するために必要なエンジントルク TE となるように、変速機 構 1 0のト一夕ル変速比ァ Tを考慮してエンジン 8が制御される。 Further, in the continuously variable transmission state of the differential section 11, the engine torque T E and the engine speed N E required to satisfy the required driving force F * calculated based on the accelerator opening Acc and the vehicle speed V The target value of the total gear ratio T of the speed change mechanism 10 is determined so that the speed of the differential part 11 can be changed in consideration of the gear position of the automatic speed changer 20 so that the target value is obtained. The ratio 0 is controlled, and the total transmission ratio; r T is controlled within the changeable range. Alternatively, in the step-variable shifting state of the differential portion 1 1, request driving force F * so that the engine torque T E required to satisfy, preparative Isseki Le gear ratio of the transmission structure 1 0 Engine 8 is controlled taking into account T
上述のように、 本実施例によれば、切換クラッチ C 0或いは切換ブレーキ B 0 により、例えば差動部 1 1が無段変速状態と非無段変速状態とに切り換えられる ことから、 電気的に変速比が変更させられる変速機の燃費改善効果と機械的に動 力を伝達する歯車式伝動装置の高い伝達効率との両長所を兼ね備えた駆動装置が 得られる。  As described above, according to the present embodiment, the switching unit C 0 or the switching brake B 0 switches, for example, the differential unit 11 between a continuously variable transmission state and a continuously variable transmission state. A drive device is obtained which has both the advantages of improving the fuel efficiency of a transmission whose gear ratio is changed and the high transmission efficiency of a gear transmission that mechanically transmits power.
例えば、 車両の低中速走行および低中出力走行となるようなエンジンの常用 出力域において差動部 1 1が無段変速状態とされると、車両の燃費性能が確保さ れる。 また、 高速走行において差動部 1 1が非無段変速状態とされると、 専ら機 械的な動力伝達経路でエンジン 8の出力が駆動輪へ伝達されて、 電気的に変速比 が変更させられる変速機として作動させる場合に発生する動力と電気エネルギと の間の変換損失が抑制されるので、 燃費が向上させられる。 また例えば、,高出力' 走行において差動部 1 1が非無段変速状態とされると、 電気的に変速比が変更さ せられる変速機として作動させる領域が車両の低中速走行およぴ低中出力走行と なって、第 1電動機 M 1が発生すべき電気的エネルギ換言すれば第 1電動機 M 1 が伝える電気的エネルギの最大値を小さくできるので、第 1電動機 M 1やその電 気的エネルギが伝達される第 2電動機 M 2、或いはそれを含む変速機構 1 0がー 層小型化される。 For example, when the differential unit 11 is set to a continuously variable transmission state in the normal output range of the engine where the vehicle is running at low and medium speeds and low and medium output, the fuel efficiency of the vehicle is ensured. In addition, when the differential unit 11 is set to a continuously variable transmission state at high speed, the output of the engine 8 is transmitted to the drive wheels exclusively through a mechanical power transmission path, and the gear ratio is changed electrically. Since the conversion loss between power and electric energy generated when operating as a transmission to be operated is suppressed, fuel efficiency is improved. Further, for example, when the differential unit 11 is set to a continuously variable transmission state in high output traveling, the region operated as a transmission in which the gear ratio is electrically changed is the low and medium speed traveling and the vehicle. The electric energy that should be generated by the first motor M 1 in other words, the first motor M 1 Therefore, the first electric motor M 1, the second electric motor M 2 to which the electric energy is transmitted, or the speed change mechanism 10 including the first electric motor M 1 is further reduced in size.
また、 所定走行時に比較して大きな車両駆動力或いは駆動力源ブレーキが必 要なときであつて、例えば登坂路走行時或いは降坂路走行時であつて、 変速制御 手段 8 0によりト一タル変速比ァ Tが所定走行時に比較して低車速側に設定され たときに、 必要な車両駆動力 F * 或いは駆動力源ブレーキ (制動トルク TB * ) が得られない場合には、或いは第 1電動機 M 1および/または第 2電動機 M 2の 負荷トルクが許容範囲でない場合には、 切換制御手段 5 0により差動部 1 1が無 段変速状態から非無段変速状態へ切り換えられるので、 エンジントルク TE に応 じた反力トルクを第 1電動機 M 1が受け持つ必要が無くなって第 1電動機 M 1の トルク容量に拘わらず大きなエンジントルク T E が発生させられ得て必要な駆動 力 F * が得られる。 また、 エンジン回転速度 NE が車速 Vに拘束されることから 車速 Vとト一タル変速比ァ Tとに応じたエンジンブレーキトルクが発生させられ 得て第 2電動機 M 2による回生トルクを大きくすることなく必要な (制動トルク TB * ) が得られる。 つまり、 第 1電動機 M lおよび第 2電動機 M 2の負荷トル クが許容範囲を超えることなく、所定走行時に比較して大きな車雨駆動力或いは 駆動力源ブレーキが得られると共にビジ一シフ卜が防止される。 In addition, when a large vehicle driving force or driving force source brake is required compared with a predetermined traveling time, for example, when traveling on an uphill road or traveling on a downhill road, the total speed is changed by the shift control means 80. If the required vehicle driving force F * or driving force source brake (braking torque T B *) cannot be obtained when the ratio T is set to the lower vehicle speed side compared to the predetermined driving time, When the load torque of the motor M 1 and / or the second motor M 2 is not within the allowable range, the switching control means 50 switches the differential unit 1 1 from the continuously variable transmission state to the continuously variable transmission state. torque T E necessary reaction force torque depending eliminated must first electric motor M 1 is responsible regardless of the first torque capacity of the motor M 1 is a large engine torque T E-obtained was allowed to occur to a driving force F * Is obtained. Further, since the engine speed N E is constrained by the vehicle speed V, an engine brake torque according to the vehicle speed V and the total gear ratio T can be generated, and the regenerative torque by the second electric motor M 2 is increased. The required (braking torque T B *) can be obtained without any problems. In other words, the load torque of the first electric motor M l and the second electric motor M 2 does not exceed the allowable range, and a large vehicle rain driving force or driving force source brake can be obtained as compared with the predetermined traveling time, and the busy shift can be reduced. Is prevented.
次に、 本発明の他の実施例を説明する。 なお、 以下の説明において実施例相 互に共通する部分には同一の符号を付して説明を省略する。  Next, another embodiment of the present invention will be described. In the following description, parts common to the embodiments are denoted by the same reference numerals and description thereof is omitted.
. 実施例 2  Example 2
図 1 5は本発明の他の実施例における変速機構 7 0の構成を説明する骨子図 、 図 1 6はその変速機構 7 0の変速段と油圧式摩擦係合装置の係合の組み合わせ との関係を示す係合表、 図 1 7はその変速機構 7 0の変速作動を説明する共線図 である。  FIG. 15 is a skeleton diagram illustrating the configuration of the speed change mechanism 70 according to another embodiment of the present invention. FIG. 16 is a diagram showing the combination of the speed change stage of the speed change mechanism 70 and the engagement of the hydraulic friction engagement device. FIG. 17 is an alignment chart for explaining the speed change operation of the speed change mechanism 70. FIG.
変速機構 7 0は、 前述の実施例と同様に第 1電動機 M 1、 動力分配機構 1 6 、 および第 2電動機 M 2を備えている差動部 1 1と、 その差動部 1 1と出力軸 2 2との間で伝達部材 1 8を介して直列に連結されている前進 3段の自動変速部 7 とを備えている。 動力分配機構 1 6は、例えば 「0 . 4 1 8」 程度の所定のギ ャ比 p 1を有するシングルピニオン型の第 1遊星歯車装置 2 4と切換クラッチ C 0および切換ブレーキ B 0とを有している。 自動変速部 7 2は、例えば 「0 . 5 3 2」 程度の所定のギヤ比 2を有するシングルピニオン型の第 2遊星歯車装置 2 6と例えば 「0 . 4 1 8」 程度の所定の ヤ比 ρ 3を有するシングルピニオン 型の第 3遊星歯車装置 2 8とを備えている。 第 2遊星歯車装置 2 6の第 2サンギ ャ S と第 3遊星歯車装置 2 8の第 3サンギヤ S 3とが一体的に連結されて第 2 クラッチ C 2を介して伝達部材 1 8に選択的に連結されるとともに第 1ブレーキ Β 1を介してケース 1 2に選択的に連結され、 第 2遊星歯車装置 2 6の第 2キヤ リャ C A 2と第 3遊星歯車装置 2 8の第 3リングギヤ R 3とが一体的に連結され て出力軸 2 2に連結され、第 2リングギヤ R 2は第 1クラッチ C 1を介して伝達 部材 1 8に選択的に連結され、 第 3キヤリャ C A 3は第 2ブレーキ B 2を介して ケース 1 2に選択的に連結されている。 As in the previous embodiment, the speed change mechanism 70 includes a differential unit 11 having a first electric motor M1, a power distribution mechanism 16 and a second electric motor M2, and the differential unit 11 and the output thereof. Forward three-stage automatic transmission 7 connected in series with shaft 2 2 via transmission member 1 8 And. The power distribution mechanism 16 has, for example, a single pinion type first planetary gear unit 24 having a predetermined gear ratio p 1 of about “0.4 18”, a switching clutch C 0 and a switching brake B 0. is doing. The automatic transmission unit 72 includes a single pinion type second planetary gear device 26 having a predetermined gear ratio 2 of, for example, “0.5 3 2” and a predetermined gear ratio of, for example, “0.4 18”. a single pinion type third planetary gear unit 28 having ρ 3. The second sun gear S of the second planetary gear device 26 and the third sun gear S 3 of the third planetary gear device 28 are integrally connected to be selectively connected to the transmission member 18 via the second clutch C2. To the case 1 2 via the first brake Β 1 and the second carrier CA 2 of the second planetary gear set 2 6 and the third ring gear R of the third planetary gear set 2 8. 3 is integrally connected to the output shaft 22, the second ring gear R 2 is selectively connected to the transmission member 18 via the first clutch C 1, and the third carrier CA 3 is connected to the second It is selectively connected to case 1 2 via brake B 2.
以上のように構成された変速機構 7 0では、例えば、 図 1 6の係合作動表に 示されるように、 前記切換クラッチ C 0、 第 1クラッチ C 1、 第 2クラッチ C 2 、切換ブレーキ B 0、 第 1ブレーキ B K および第 2ブレーキ B 2が選択的に係 合作動させられることにより、 第 1速ギヤ段 (第 1変速段)乃至第 4速ギヤ段 ( 第 4変速段) のいずれか或いは後進ギヤ段 (後進変速段) 或いはニュートラゾレが 選択的に成立させられ、 略等比的に変ィヒする変速比ァ (=入力軸回転速度 N I N/ 出力軸回転速度 Ν ουτ ) が各ギヤ段每に得られるようになつている。 特に、 本実 施例では動力分配機構 1 6に切換クラッチ C 0および切換ブレ キ Β 0が備え れており、 切換クラッチ C 0およぴ切換ブレ一キ Β 0の何れかが係合作動させら れることによって、差動部 1 1は前述した無段変速機として作動する無段変速状 態に加え、 変速比が一定の変速機として作動する定変速状態を構成することが可 能とされている。 したがって、 変速機構 7 0では、切換クラッチ C 0および切換 ブレーキ Β 0の何れかを係合作動させることで定変速状態とされこ差動部 1 1と 自動変速部 7 2とで有段変速機として作動する有段変速状態が構成され、 切換ク ラッチ C 0および切換ブレーキ Β 0の何れも係合作動させないことで無段変速状 態とされた差動部 1 1と自動変速部 7 2とで電気的な無段変速機として作動する 無段変速状態が構成される。 言い換えれば、変速機構 7 0は、切換クラッチ C 0 および切換ブレーキ B 0の何れかを係合作動させることで有段変速状態に切り換 えられ、切換クラッチ C 0および切換ブレーキ B 0の何れも係合作動させないこ とで無段変速状態に切り換えられる。 In the speed change mechanism 70 configured as described above, for example, as shown in the engagement operation table of FIG. 16, the switching clutch C 0, the first clutch C 1, the second clutch C 2, and the switching brake B 0, the first brake BK and the second brake B 2 are selectively engaged so that one of the first gear (first gear) to the fourth gear (fourth gear) Alternatively, a reverse gear stage (reverse gear stage) or a neutral shift is selectively established, and a gear ratio (= input shaft rotational speed N IN / output shaft rotational speed Νουτ) that changes substantially in an equal ratio is set for each gear. It can be obtained step by step. In particular, in this embodiment, the power distribution mechanism 16 is provided with a switching clutch C 0 and a switching brake Β 0, and either the switching clutch C 0 or the switching brake Β 0 is engaged. Thus, in addition to the above-described continuously variable transmission state that operates as a continuously variable transmission, the differential unit 11 can configure a constant transmission state that operates as a transmission with a constant gear ratio. ing. Therefore, in the transmission mechanism 70, the constant transmission state is established by engaging and operating either the switching clutch C0 or the switching brake Β0. The stepped transmission is configured by the differential unit 11 and the automatic transmission unit 72. The stepped gear shift state is configured to operate as follows, and the switching clutch C 0 and the switching brake Β 0 are not engaged and actuated. The differential section 1 1 and the automatic transmission section 7 2 in the state constitute a continuously variable transmission state that operates as an electric continuously variable transmission. In other words, the speed change mechanism 70 is switched to the stepped speed change state by engaging and operating either the switching clutch C 0 or the switching brake B 0. Both the switching clutch C 0 and the switching brake B 0 Switching to the continuously variable transmission state is possible by not operating the engagement.
例えば、 変速機構 7 0が有段変速機として機能する場合には、 図 1 6に示す ように、切換クラッチ C 0、 第 1クラッチ C 1および第 2ブレーキ B 2の係合に より、 変速比 Ύ 1が最大値例えば 「 2 . 8 0 4」 程度である第 1速ギヤ段が成立 させられ、 切換クラッチ C 0、 第 1クラッチ C 1および第 1ブレーキ B 1の係合 により、変速比ァ 2が第 1速ギヤ段よりも小さい値例えば 「1 . 5 3 1」 程度で ある第 2速ギヤ段が成立させられ、切換クラッチ C 0、第 1クラッチ C 1および 第 2クラッチ C 2の係合により、 変速比 γ 3が第 1速ギヤ段よりも小さい値例え ば 「1 . 0 0 0」 禾 MSである第 3速ギヤ段が成立させられ、第 1クラッチ C 1、 第 2クラッチ C 2、 および切換ブレーキ B 0の係合により、変速比ァ 4が第 3速 ギヤ段よりも小さい値例えば.「 0 . 7 0 5」 程度である第 4速ギヤ段が成立させ られる。 また、第 2クラッチ C 2および第 2ブレーキ B 2の係合により、 変速比 ァ Rが第 1速ギヤ段と第 2速ギヤ段との間の値例えば 「 2 . 3 9 3」 程度である 後進ギヤ段が成立させられる。 なお、 ニュートラル 「N」 状態とする場合には、 例えば切換クラッチ C 0のみが係合される。  For example, when the speed change mechanism 70 functions as a stepped transmission, as shown in FIG. 16, the gear ratio is changed by engaging the switching clutch C 0, the first clutch C 1 and the second brake B 2. 1 1st gear stage where 1 is the maximum value, for example, about “2.8 0 4” is established, and the gear ratio ratio is reduced by the engagement of the switching clutch C 0, the first clutch C 1 and the first brake B 1. The second speed gear stage in which 2 is smaller than the first speed gear stage, for example, about “1.5 3 1” is established, and the engagement of the switching clutch C 0, the first clutch C 1 and the second clutch C 2 is established. As a result, the gear ratio γ 3 is smaller than the first gear, for example, “1.0 0 0” 禾 The third gear, which is MS, is established, and the first clutch C 1 and the second clutch C 2 and the engagement of the switching brake B 0, the gear ratio 4 is smaller than the third gear, for example, “0.7 0 5” or so. 4-speed gear stage is established. Further, due to the engagement of the second clutch C 2 and the second brake B 2, the transmission gear ratio R is a value between the first speed gear stage and the second speed gear stage, for example, about “2.3 9 3”. A reverse gear is established. When the neutral “N” state is set, for example, only the switching clutch C 0 is engaged.
' しかし、 変速機構 7 0が無段変速機として機能する場合には、 図 1 6に示さ れる係合表の切換クラッチ C 0および切換ブレーキ B 0が共に解放される。 これ により、差動部 1 1が無段変速機として機能し、 それに直列の自動変速部 7 2が 有段変速機として機能することにより、 自動変速部 7 2の第 1速、第 2速、第 3 速の各ギヤ段に対しその自動変速部 7 2に入力される回転速度すなわち伝達部材 1 8の回転速度が無段的に変ィ匕させられて各ギヤ段は無段的な変速比幅が得られ る。 したがって、 その各ギヤ段の間が無段的に連続変化可能な変速比となって変 速機構 7 0全体としてのト一タル変速比 γ Tが無段階に得られるようになる。 However, when transmission mechanism 70 functions as a continuously variable transmission, both switching clutch C 0 and switching brake B 0 in the engagement table shown in FIG. 16 are released. As a result, the differential section 11 functions as a continuously variable transmission, and the automatic transmission section 72 connected in series functions as a stepped transmission, whereby the first speed, the second speed of the automatic transmission section 72, For each third gear, the rotational speed input to the automatic transmission section 72, i.e., the rotational speed of the transmission member 18 is changed steplessly so that each gear stage has a stepless transmission ratio. A width is obtained. Therefore, the gear ratio between the gear stages can be continuously changed continuously, and the total speed ratio γ T as the entire speed change mechanism 70 can be obtained continuously.
図 1 7は、無段変速部或いは第 1変速部として機能する差動部 1 1と変速部 (有段変速部) 或いは第 2変速部として機能する自動変速部 7 2から構成される 変速機構 7 0において、 ギヤ段毎に連結状態が異なる各回転要素の回転速度の相 対関係を直線上で表すことができる共線図を示している。 切換クラッチ C 0およ ぴ切換ブレーキ B 0が解放される場合、 および切換クラッチ C 0または切換ブレ —キ B 0が係合させられる場合の動力分配機構 1 6の各要素の回転速度は前述の 場合と同様である。 Fig. 17 shows the differential unit 11 and the transmission unit that function as a continuously variable transmission unit or a first transmission unit. (Stepped transmission section) Or, in the transmission mechanism 70 composed of the automatic transmission section 72 that functions as the second transmission section, the relative relationship between the rotational speeds of the rotating elements having different connection states for each gear stage is linearly represented. The alignment chart which can be represented by is shown. When the switching clutch C 0 and the switching brake B 0 are released, and when the switching clutch C 0 or the switching brake B 0 is engaged, the rotational speed of each element of the power distribution mechanism 16 is as described above. Same as the case.
図 1 7における自動変速機 72の 4本の縦線 Y 4、 Y 5、 Υ 6、 Υ 7は、左 から順に、 第 4回転要素 (第 4要素) RE 4に対応し且つ相互に連結された第 2 サンギヤ S 2および第 3サンギヤ S 3を、 第 5回転要素 (第 5要素) RE 5に対 応ずる第 3キヤリャ C A 3を、 第 6回転要素 (第.6要素) RE 6に対応し且つ相 互に連結された第 2キヤリャ CA2および第 3リングギヤ R3を、第 7回転要素 (第 7要素) RE 7に対応する第 2リングギヤ R 2をそれぞれ表している。 また 、 自動変速機 72において第 4回転要素 R E 4は第 2クラッチ C 2を介して伝達 部材 1 8に選択的に連結されるとともに第 1ブレーキ B 1を介してケース 1 2に 選択的に連結され、第 5回転要素 RE 5は第 2ブレーキ B 2を介してケース 1 1 に選択的に連結され、 第 6回転要素 RE 6は自動変速機 7 2の出力軸 2 2に連結 され、第 7回転要素 R E 7は第 1クラッチ C 1を介して伝達部材 1 8に選択的に 連結されている。 ·'  The four vertical lines Y4, Y5, Υ6, and Υ7 of the automatic transmission 72 in Fig. 7 correspond to the fourth rotating element (fourth element) RE 4 and are connected to each other in order from the left. The second sun gear S 2 and the third sun gear S 3 correspond to the fifth rotation element (fifth element) RE 5 and the third carrier CA 3 corresponds to the sixth rotation element (sixth element) RE 6. In addition, the second carrier CA2 and the third ring gear R3 connected to each other represent the second ring gear R2 corresponding to the seventh rotation element (seventh element) RE7. In the automatic transmission 72, the fourth rotating element RE 4 is selectively connected to the transmission member 18 via the second clutch C 2 and selectively connected to the case 12 via the first brake B 1. The fifth rotating element RE 5 is selectively connected to the case 11 through the second brake B 2, and the sixth rotating element RE 6 is connected to the output shaft 2 2 of the automatic transmission 7 2, The rotating element RE 7 is selectively connected to the transmission member 18 via the first clutch C 1. · '
. 自動変速部 7 2では、 図 1 7に示すように、第 1クラッチ C 1と第 2,ブレー ' キ B 2とが係合させられることにより、 第 7回転要素 RE 7 (R 2) の回転速度 を示す縦線 Y 7と横線 X 2との交点と第 5回転要素 RE 5 (CA3) の回転速度 を示す縦線 Y 5と横線 X 1との交点とを通る斜めの直線 L 1と、 出力軸 2 2と連 結された第 6回転要素 RE 6 (CA2, R 3) の回転速度を示す縦線 Y 6との交 点で第 1速の出力軸 2 2の回転速度が示される。 同様に、 第 1クラッチ C 1と第 1ブレーキ B 1とが係合させられることにより決まる斜めの直線 L 2と出力軸 2 2と連結された第 6回転要素 R E 6の回転速度を示す縦線 Y 6との交点で第 速 の出力軸 2 2の回転速度が示され、第 1クラッチ C 1と第 2クラッチ C 2とが係 合させられることにより決まる水平な直線 L 3と出力軸 2 2と連結された第 6回 転要素 R E 6の回転速度を示す縦線 Y 6との交点で第 3速の出力軸 2の回転速 度が示される。 上記第 1速乃至第 3速では、切換クラッチ C 0が係合させられて いる結果、 エンジン回転速度 Ν Ε と同じ回転速度で第 7回転要素 R E 7に差動部 1 1からの動力が入力される。 しかし、切換クラッチ C 0に替えて切換ブレーキ B 0が係合させられると、差動部 1 1からの動力がエンジン回転速度 N E よりも 高い回転速度で入力されることから、第 1クラッチ C 1、 第 2クラッチ C 2、 お よび切換ブレーキ B 0が係合させられることにより決まる水平な直線 L 4と出力 軸 2 2と連結された第 6回転要素 R E 6の回転速度を示す縦線 Y 6との交点で第 4速の出力軸 2 2の回転速度が示される。 In the automatic transmission unit 7 2, as shown in FIG. 17, the first clutch C 1 and the second brake B 2 are engaged, so that the seventh rotating element RE 7 (R 2) An oblique line L 1 passing through the intersection of the vertical line Y 7 indicating the rotation speed and the horizontal line X 2 and the intersection of the vertical line Y 5 indicating the rotation speed of the fifth rotation element RE 5 (CA3) and the horizontal line X 1 The rotation speed of the first output shaft 22 is indicated at the intersection with the vertical line Y 6 indicating the rotation speed of the sixth rotation element RE 6 (CA2, R 3) connected to the output shaft 2 2. . Similarly, an oblique straight line L 2 determined by engaging the first clutch C 1 and the first brake B 1 and a vertical line indicating the rotational speed of the sixth rotating element RE 6 connected to the output shaft 2 2. The rotation speed of the output shaft 22 of the first speed is shown at the intersection with Y 6, and the horizontal straight line L 3 determined by the engagement of the first clutch C 1 and the second clutch C 2 and the output shaft 2 2 6th concatenated with The rotation speed of the output shaft 2 of the third speed is shown at the intersection with the vertical line Y 6 indicating the rotation speed of the rolling element RE 6. In the first to third speeds, the switching clutch C 0 is engaged, so that the power from the differential unit 11 is input to the seventh rotating element RE 7 at the same rotational speed as the engine rotational speed Ν Ε. Is done. However, when the switching brake B 0 is engaged instead of the switching clutch C 0, the power from the differential section 11 is input at a higher rotational speed than the engine rotational speed N E , and therefore the first clutch C 1, vertical line Y indicating the rotational speed of the horizontal straight line L 4 determined by engaging the second clutch C 2 and the switching brake B 0 and the sixth rotating element RE 6 connected to the output shaft 22 The rotation speed of the 4th speed output shaft 22 is shown at the intersection with 6
本実施例の変速機構 7 0においても、 無段変速部或いは第 1変速部として機 能する差動部 1 1と、 変速部 (有段変速部) 或いは第 2変速部として機能する自 動変速部 7 2とから構成されるので、前述の実施例と同様の効果が得られる。  Also in the transmission mechanism 70 of the present embodiment, the differential unit 11 that functions as a continuously variable transmission unit or a first transmission unit, and the automatic transmission that functions as a transmission unit (stepped transmission unit) or a second transmission unit. Therefore, the same effect as that of the above-described embodiment can be obtained.
実施例 3  Example 3
図 1 8は、 電子制御装置 4 0による他の例の制御機能の要部を説明する機能 ブロック線図である。 図 1 8の実施例においては、 車両の減速走行時には目標減 速度 が設定され、 その目標減速度 G * が達成されるように制動トルクが発生 させられる。 この制動トルクは、例えば回生やエンジンブレーキやホイ一ルブレ —キ等により得られるが、 エネルギー効率を考えて回生による制動が最優先され る。 図 6の切換線図からも明らかなようにアクセルオフの減速走行時には差動部 1 1は無段変速状態へ切り換えられると共に、 目標減速度 G * を回生にて達成す るときには、 ハイブリツド制御手段 5 2によりフューエルカツ トにてエンジン 8 の作動が停止され且つ第 1電動機 M 1が空転され、 差動部 1 1の差動作用によつ て車速 Vに拘束されることなくすなわち自動変速部 2 0の出力軸 2 2の回転速度 Ν ουτ と変速比ァとに基づいて一意的に定められる伝達部材回転速度 Ν 1 8に拘わ らずエンジン回転速度 Ν Ε が零乃至略零に維持される。 よって、 エンジン 8の引 き摺り (回転抵抗) によるボンビングロスの発生が抑制され、 その分制動力 (減 速度) が抑制されて回生量が増加される。 FIG. 18 is a functional block diagram for explaining a main part of another example of the control function by the electronic control unit 40. In the embodiment of FIG. 18, the target deceleration is set when the vehicle is decelerating, and the braking torque is generated so that the target deceleration G * is achieved. This braking torque can be obtained, for example, by regeneration, engine braking, wheel brake, etc., and braking by regeneration is given the highest priority in consideration of energy efficiency. As is apparent from the switching diagram of FIG. 6, the differential unit 11 is switched to the continuously variable transmission state when the accelerator is decelerated, and the hybrid control means is used to achieve the target deceleration G * by regeneration. 5 2 stops the operation of the engine 8 at the fuel cut and the first electric motor M 1 is idled, and is not restrained by the vehicle speed V by the differential action of the differential part 11, that is, the automatic transmission part. 2 0 of the output shaft 2 second rotational speed New Omikuron'upushirontau and the gear ratio § and Razz engine rotational speed New E Kakawawa the transmitting member rotational speed New 1 8 which is uniquely determined on the basis of is maintained at zero or substantially zero The Therefore, the occurrence of bombing loss due to dragging (rotational resistance) of the engine 8 is suppressed, and the braking force (deceleration) is suppressed accordingly and the regeneration amount is increased.
しかしながら、設定される目標、减速度 G * によっては回生のみでは達成でき なかったり、 蓄電装置 6 0の充電状態 S O Cによっては回生量が抑制されて目標 減速度 G * が達成できない可能性がある。 However, depending on the set target and dredging speed G *, it cannot be achieved by regeneration alone. There is a possibility that the target deceleration G * cannot be achieved because the regenerative amount is suppressed depending on the SOC of the battery 60.
そこで、 本実施例では、 目標減速度 G * を回生のみでは達成できなような場 合には、減速走行中にエンジンブレーキにより制動トルクを得る。 例えば差動部 1 1が無段変速状態とされる場合にエンジン回転速度 N E が零に維持されるとェ ンジンブレーキ力 (トルク) が発生しないことから、 差動部 1 1をエンジン回転 速度 N E が車速 Vに拘束される非無段変速状態とし、 エンジン 8を強制的に回転 させてエンジンブレーキトルクにより減速度を得る。 これによつて、 回生トルク に加えてエンジンブレーキトルクによって車雨の制動トルクが得られるので、達 成可能な減速度 Gの範囲が広がって目標減速度 G * に対する制御性能が向上する。 Therefore, in this embodiment, when the target deceleration G * cannot be achieved only by regeneration, the braking torque is obtained by engine braking during deceleration traveling. For example, when the differential section 1 1 is set to a continuously variable transmission state, if the engine speed N E is maintained at zero, no engine braking force (torque) is generated. N E is in a continuously variable transmission state that is constrained by vehicle speed V, and engine 8 is forcibly rotated to obtain deceleration by engine brake torque. As a result, the braking torque for vehicle rain is obtained by the engine brake torque in addition to the regenerative torque, so the range of the deceleration G that can be achieved is expanded and the control performance for the target deceleration G * is improved.
また、 差動部 1 1を非無段変速状態とする場合には、車速 Vに対して 1対 1 でェンジン回転速度 N E が決まることから発生するエンジンブレーキトルクも車 速 Vに対して 1対 1で決められる。 車速 Vに対してエンジン回転速度 N E を変ィ匕 させてエンジンブレーキトルクも変化させられれば目標減速度 G * に対する制御 性能が一層向上すると考えられる。 In addition, when the differential unit 1 1 is set to a continuously variable transmission state, the engine brake torque generated by determining the engine rotational speed NE is 1: 1 with respect to the vehicle speed V. Determined by 1. If the engine speed N E is changed with respect to the vehicle speed V and the engine brake torque is also changed, the control performance for the target deceleration G * will be further improved.
そこで、減速走行中には、 切換クラッチ C 0或いは切換ブレーキ B 0を完全 係合して差動部 1 1を非無段変速状態とすることに加えて、切換クラッチ C 0或 いは切換ブレーキ B 0を半係合 (スリツフ。)状態どすることにより差動部 1 1を 無段変速状態と非無段変速状態との間の変速状態とし、 エンジン 8を強制的に回 転させる。 切換クラッチ C 0或いは切換ブレーキ B 0が半係合状態とされると、 エンジントルク T E に対する反力トルクは第 1電動機 M 1と切換クラッチ C 0或 いは切換ブレーキ B 0とが受け持つことになる。 このとき、切換クラッチ C O或 いは切換ブレーキ B 0の係合油圧を変ィヒさせることにより、 すなわち切換クラッ チ C 0或いは切換ブレーキ B 0のトルク容量を変化させることによりエンジン回 転速度 N E を零から非無段変速状態における箄速 Vに拘束される回転速度の範囲 で変化させられ得る。 つまり、 差動部 1 1の差動作用を制限する場合に切換クラ ツチ C 0或いは切換ブレーキ B 0を半係合状態として差動作用を制限する制限量 を変ィ匕させるのである。 具体的には、 図 1 8において、減速走行中判定手段 (減速走行中判定部) 1 8 0は、 アクセル開度 Accに基づいて車両がアクセルオフの減速走行中すなわち 惰性走行 (コ一スト走行) 中であるか否かを判定する。 この減速走行中判定手段 1 8 0により車両が減速走行中であると判定された場合には、 前記ハイプリッド 制御手段 5 2は燃費を向上させるために前記燃料噴射弁 9 2によるエンジン 8へ の燃料供給を停止させる。 Therefore, during deceleration traveling, the switching clutch C 0 or the switching brake B 0 is completely engaged to set the differential portion 11 to the continuously variable transmission state, and the switching clutch C 0 or the switching brake. By setting B 0 to the half-engaged (slip) state, the differential section 11 is brought into a speed change state between a continuously variable speed state and a continuously variable speed variable state, and the engine 8 is forcibly rotated. When the switching clutch C 0 or the switching brake B 0 is in the half-engaged state, the first motor M 1 and the switching clutch C 0 or the switching brake B 0 are responsible for the reaction torque against the engine torque T E. Become. At this time, by changing the engagement hydraulic pressure of the switching clutch CO or the switching brake B 0, that is, by changing the torque capacity of the switching clutch C 0 or the switching brake B 0, the engine speed N E Can be varied from zero to a range of rotational speeds that are constrained to the speed V in a continuously variable transmission state. In other words, when limiting the differential action of the differential section 11, the switching clutch C 0 or the switching brake B 0 is in a semi-engaged state, and the limit amount for limiting the differential action is changed. Specifically, in FIG. 18, the decelerating travel determining means (decelerating travel determining unit) 1 80 is based on the accelerator opening Acc, while the vehicle is decelerating with the accelerator off, that is, coasting (coast travel). ) Determine if it is in the middle. When it is determined that the vehicle is decelerating by the decelerating running determination means 180, the hybrid control means 52 is fueled to the engine 8 by the fuel injection valve 92 in order to improve fuel consumption. Stop supplying.
回生可否判定手段 (回生可否判定部) 1 8 2は、 上記減速走行中判定手段 1 8 0により車両が減速走行中であると判定された場合には、前記ハイプリッド制 御手段 5 2による回生が可能か否かを判定する。 例えば、 回生可否判定手段 1 8 2は、蓄電装置 6 0の充電容量 S O Cが予め定められた充電容量の上限値 S O C 例えば満充電の 8 0 %程度の充電容量 S O C 8 を満たしており蓄電装置 6Regeneration availability determination means (Regeneration availability determination section) 1 8 2 determines that regeneration by the hybrid control means 52 is determined when the vehicle is decelerating by the above-mentioned deceleration travel determination means 1 80. Determine whether it is possible. For example, the regeneration possibility determining means 1 8 2 is configured such that the charge capacity SOC of the power storage device 60 satisfies a predetermined upper limit SOC of the charge capacity, for example, the charge capacity SOC 8 of about 80% of full charge, and the power storage device 6
0の充電が必要でないような場合、 或いは第 1電動機 M l、第 2電動機 M 2、 ィ ンバ一タ 5 8、蓄電装置 6 0、 それらを接続する伝送路などの故障(フェイル) や機能低下により発電能力の低下が発生したような場合には、 回生が可能でない ど半 lj定する。 ' ' 目標減速度制御手段 (目標減速度制御部) 1 8 4は、減速走行中の目標減速 度 を算出する目標減速度算出手段 (目標減速度算出部) 8 6を備え、 その目 標減速度 G * が達成されるように車両の制動トルグを発生させる。 0 charge is not required, or failure (failure) or deterioration of function of the first motor M l, the second motor M 2, the inverter 58, the power storage device 60, the transmission line connecting them, etc. If the power generation capacity declines due to the above, regenerate is not possible. '' Target deceleration control means (Target deceleration control section) 1 8 4 is equipped with target deceleration calculation means (target deceleration calculation section) 8 6 for calculating the target deceleration rate during deceleration travel. Generate vehicle braking torque so that speed G * is achieved.
目標減速度算出手段 1 8 6は、例えば図 1 9の実線で示すような予め実験的 に求められた車速 Vと目標減速度 GM との関係から実際の車速 Vに基づいて減速 走行中の目標減速度 G * を算出する。 また、例えば図 2 0に示すような目標減速 度 G* が大きくされたり小さくされたりするように変更される為にユーザにより 操作されるスライド式の減速度言 装置 1 0 0を備え、 目標減速度算出手段 8 6 は減速度設定装置 1 0 0の操作に基づいて図 1 9の実線を基準として破線に示す 範囲で目標減速度 G * を変更しても良い。 The target deceleration calculation means 1 8 6 is, for example, a vehicle that is decelerating based on the actual vehicle speed V based on the relationship between the vehicle speed V and the target deceleration G M obtained experimentally in advance as shown by the solid line in FIG. Calculate the target deceleration G *. In addition, for example, a slide-type deceleration speech device 1 0 0 operated by the user to change the target deceleration G * to be increased or decreased as shown in FIG. 20 is provided. The speed calculation means 8 6 may change the target deceleration G * within the range indicated by the broken line with reference to the solid line in FIG. 19 based on the operation of the deceleration setting device 100.
目標減速度制御手段 1 8 4は、例えば図 2 1に示すような予め実験的に求め られた目標減速度 G * と必要制動トルク TB * との関係から目標減速度算出手段 8 6により算出された目標減速度 に基づいてその目標減速度 G* を達成する 為の必要制動トルク TB * を算出する。 そして、 目標減速度制御手段 1 8 4は、 その必要制動トルク TB * を得る為に、 回生トルクとエンジンブレーキトルクと の割り振りを算出する。 図 2 1の実線は、平坦路走行時に目標減速度 G* を達成 する為の必要制動トルク TB * であり、破線は平坦路走行時に比較して大きくさ れた下り勾配走行時の必要制動トルク TB * の一例である。 The target deceleration control means 1 8 4 is calculated by the target deceleration calculation means 8 6 based on the relationship between the target deceleration G * and the required braking torque T B * which are experimentally obtained in advance as shown in FIG. Achieve the target deceleration G * based on the target deceleration Necessary braking torque T B * is calculated. Then, the target deceleration control means 1 8 4 calculates the allocation of the regenerative torque and the engine brake torque in order to obtain the necessary braking torque T B *. The solid line in Fig. 21 shows the required braking torque T B * to achieve the target deceleration G * when running on a flat road, and the broken line shows the required braking during downhill driving, which is larger than when driving on a flat road. It is an example of torque T B *.
つまり、 目標減速度制御手段 1 8 4は、減速走行中には目標減速度 G* を達 成するように、 前記回生可否判定手段 8 2により前記ハイブリツド制御手段 5 2 による回生が可能であるか否かに応じて、 エンジンブレーキトルクを決定する。  That is, whether the target deceleration control means 1 84 can be regenerated by the hybrid control means 5 2 by the regenerative availability determination means 8 2 so as to achieve the target deceleration G * during deceleration traveling. The engine brake torque is determined according to whether or not.
例えば、 エネルギー効率を考えて、 回生トルクにて制動トルクを得ることを 最優先するという観点から、 目 f票減速度制御手段 1 8 4は、前記回生可否判定手 段 1 8 2により前記ハイブリツド制御手段 5 2による回生が可能であると判定さ れた場合には、 必要制動トルク TB * が回生トルクで得られるようにハイブリツ. ド制御手段 5 2に指令を出力する。 ハイブリツド制御手段 5 2は、 その指令に従 つて必要制動トルク TB * が得られるように予め定められた回生トルクとなる回 生量にて回生を行う。 このように、 目標減速度制御手段 8 4は回生可否判定手段 1 8 2により回生が可能であると判定された場合には、 ハイプリッド制御手段 5 2により回生優先処理を行う。 For example, in view of energy efficiency, from the viewpoint of giving top priority to obtaining braking torque by regenerative torque, the f vote deceleration control means 1 84 is controlled by the hybrid control by the regenerative availability determination means 1 8 2. When it is determined that the regeneration by means 52 is possible, a command is output to the hybrid control means 52 so that the required braking torque T B * can be obtained by the regeneration torque. The hybrid control means 52 performs regeneration at a regeneration amount that is a predetermined regeneration torque so that the required braking torque T B * can be obtained according to the command. In this way, when the target deceleration control means 84 determines that regeneration is possible by the regeneration permission determination means 1 8 2, regeneration priority processing is performed by the hybrid control means 52.
また、 ハイブリツド制御手段 5 2による回生優先処理が行われる場合にその 回生だけでは必要制動トルク TB * が得られない場合、或いは前記回生可否判定 手段 1 8 2により前記ハイプリッド制御手段 5 2による回生が可能でないと判定 された場合には、 目標減速度制御手段 1 8 4はその必要制動トルク TB * を得る 為に、 回生トルクだけでは不足するトルク分を、 或いはその必要制動トルク TB * の全てをエンジンブレーキトルクで得られるように切換制御手段 5 0に指令を 出力する。 Further, when regeneration priority processing is performed by the hybrid control means 52, if the necessary braking torque T B * cannot be obtained by the regeneration alone, or the regeneration control means 52 determines whether the regeneration control unit 52 can regenerate the regeneration control. if it is determined not to be possible, the target deceleration control means 1 8 4 in order to obtain the required braking torque T B *, the torque component that is insufficient only regenerative torque, or the required brake torque T B * A command is output to the switching control means 50 so that all of the above can be obtained with the engine brake torque.
そして、 切換制御手段 5 0は、 目標減速度制御手段, 1 8 4による上記指令に 従って必要なエンジンブレーキトルクが得られるように差動部 1 1の差動作用を 制限するエンジンブレーキ制御手段として機能する。 具体的には、切換制御手段 5 0は、例えば図 2 2の実線に示すような予め実験的に求められた切換クラッチ C 0の係合油圧とェンジンブレーキトルクとの関係から必要なェンジンブレーキ トルクが得られるような切換クラッチ C 0の係合油圧 P EBを算出し、 その係合油 圧 F EBにて切換クラッチ C 0を半係合乃至完全係合する指令を油圧制御回路 4 2 に出力する。 The switching control means 50 is an engine brake control means for limiting the differential action of the differential section 11 so that the required engine brake torque can be obtained in accordance with the above command from the target deceleration control means 1 84. Function. Specifically, the switching control means 50 includes, for example, a switching clutch obtained experimentally in advance as shown by a solid line in FIG. Calculate the engagement hydraulic pressure P EB of the switching clutch C 0 so that the required engine brake torque can be obtained from the relationship between the engagement hydraulic pressure of C 0 and the engine brake torque, and switch at that engagement hydraulic pressure F EB A command for half-engagement or complete engagement of the clutch C 0 is output to the hydraulic control circuit 4 2.
図 2 2の実線に示すように切換クラッチ C 0の係合油圧 P EBが零とされる差' 動部 1 1の無段変速状態においてエンジン回転速度 N E が零とされるとエンジン ブレーキトルク (エンジンブレーキ力) は発生しない。 しかし、切換クラッチ C2 2 of the engine speed N E in the continuously-variable shifting state of engagement oil pressure P EB is zero and is being 'dynamic portion 1 1 of the switching clutch C 0 as shown by the solid line is made zero when the engine braking torque (Engine braking force) is not generated. However, the switching clutch C
0の係合油圧 F E Bを上昇させ、 エンジン回転速度 N E を強制的に回転させること により引きずりが生じてエンジンブレーキトルクが発生する。 この切換クラッチ C 0の係合油圧 F EBを調整することによって必要なエンジンブレーキトルクが得 られる。 また、差動部 1 1が無段変速状態と非無段変速状態とに切り換えられる ことによって、 すなわち切換クラツチ C 0が解放と係合とに切り換えられること によってエンジンブレーキトルクが段階的に切り換えられ、切換クラッチ C 0が 半係合 (スリツプ) 状態とされることによつてェンジンブレーキトルクが連続的 に切り換えられ得る。 ここでは、切換クラッチ C 0を用いてエンジンブレ一キト ルクを調整する例であつたが、 もちろん図 2 2と同様に切換ブレーキ B 0を半係 合乃至完全係合することによってエンジンブレーキトルクが調整されても良い。 When the engagement hydraulic pressure F EB is increased to 0 and the engine speed N E is forcibly rotated, dragging occurs and engine brake torque is generated. The necessary engine brake torque can be obtained by adjusting the engagement hydraulic pressure F EB of the switching clutch C 0. Further, when the differential portion 11 is switched between the continuously variable transmission state and the continuously variable transmission state, that is, when the switching clutch C 0 is switched between release and engagement, the engine brake torque is switched stepwise. The engine brake torque can be continuously switched by setting the switching clutch C 0 to the half-engaged (slip) state. In this example, the engine brake torque is adjusted by using the switching clutch C 0. Of course, as in FIG. 22, the engine brake torque is reduced by half-engagement or complete engagement of the switching brake B 0. It may be adjusted.
図 2 3は、電子制御装置 4 0の制御作動の要部すなわち減速走行中の減速度 を制御する制御作動を説明するフローチャートであり、例えば数 m s e c乃至数 十 m s e c程度の極めて短いサイクルタイムで繰り返し実行され ものである。  FIG. 23 is a flowchart for explaining the main part of the control operation of the electronic control unit 40, that is, the control operation for controlling the deceleration during deceleration traveling. For example, the control is repeated with a very short cycle time of about several milliseconds to several tens of milliseconds. It is what is executed.
また、 図 2 4は、 図 2 3のフローチャートに示す制御作動を説明するタイム チャートであり、 回生トルクに加えてェンジンブレーキトルクを発生させて目標 減速度 G * を達成する場合での制御作動を示している。  Fig. 24 is a time chart for explaining the control operation shown in the flowchart of Fig. 23. The control operation is performed when the engine deceleration torque is generated in addition to the regenerative torque to achieve the target deceleration G *. Is shown.
先ず、 前記減速走行中判定手段 1 8 0すなわち減速走行中判定工程に対応す るステップ (以下、 ステップを省略する) S A 1において、 アクセル開度 Accに 基づいて車両がアクセルオフの減速走行中すなわち惰性走行 (コースト走行) 中 であるか否かが判定される。  First, in the step corresponding to the decelerating travel determining step 180, that is, a step corresponding to the decelerating travel determining step (hereinafter, step is omitted) SA1, the vehicle is decelerating while the accelerator is off based on the accelerator opening Acc. It is determined whether or not the vehicle is coasting (coast driving).
図 2 4の t! 時点は、 ァクセル'オフの減速走行が判定されたことを示してい る。 Figure 2 4 t! The time point indicates that the accelerator was turned off. The
前記 S A 1の判断が肯定される場合は I己回生可否判定手段 1 8 2すなわち 回生可否判定工程に対応する S A 2において、 回生が可能か否かが判定される。 例えば、蓄電装置 6 0の充電容量 S O Cが予め定められた充電容量の上限値 S〇 C MAX例えば満充電の 8 0 %程度の充電容量3 0 ( 3。% を満たしており蓄電装置 6 0の充電が必要でないような場合、或いは第 1電動機 M 1、 第 2電動機 M 2、 インバ一タ 5 8、 蓄電装置 6 0、 それらを接続する伝送路などの故障 (フヱイル ) や機能低下により発電能力の低下が発生したような場合には、 回生が可能でな いと判定される。 If the determination of SA 1 is affirmative, it is determined whether or not regeneration is possible in SA 2 corresponding to the self-regeneration determination unit 1 8 2, that is, the regeneration determination step. For example, the charging capacity SOC of the power storage device 60 is a predetermined charging capacity upper limit value S0 C MAX, for example, the charging capacity 30 0 ( 3 . When charging is not necessary, or due to failure or failure of the first motor M1, second motor M2, inverter 58, power storage device 60, transmission path connecting them, etc. If there is a decrease in the level, it is determined that regeneration is not possible.
前記 S A 2の判断が肯定される場合は前記目標減速度制御手段 1 8 4すなわ ち目標減速度制御工程に対応する S A 3において、例えば図 1 9で示すような予 め実験的に求められた車速 Vと目標減速度 GM との関係から実際の車速 Vに基づ いて減速走行中の目標減速度 G * が算出される。 或いはまた、 ユーザによるスラ ィド式の減速度設定装置 1 0 0の操作に基づいて図 1 9の実線を基準として破線 に示す範囲で目標減速度 G * が変更されても良い。 If the determination of SA 2 is affirmative, the target deceleration control means 1 8 4, that is, SA 3 corresponding to the target deceleration control process is obtained experimentally in advance as shown in FIG. Based on the relationship between the vehicle speed V and the target deceleration G M , the target deceleration G * during deceleration is calculated based on the actual vehicle speed V. Alternatively, the target deceleration G * may be changed within the range indicated by the broken line with reference to the solid line in FIG. 19 based on the operation of the slide type deceleration setting device 100 by the user.
また、 目標減速度 G * を達成する為の必要制動トルク TB * でエネルギー効 率を考えて、 回生トルクにて制動トルクを得ることを最優先するという観点から 、 目標減速度 G * を達成する為の必要制動トルク T B * が回生トルクで得られる ようにハイブリッド制御手段 5 2に ί が出力される。 そして、 切換制御手段 5 ' 0により差動部 1 1の非無段変速状態 (ロック) が解除されると共に、 その に従ってハイブリツド制御手段 5 2により必要制動トルク TB * が得られるよう に予め定められた回生トルクとなる回生量にて回生が行われる。 つまり、 ハイブ リッド制御手段 5 2による回生が優先して実行される。 In addition, considering the energy efficiency with the necessary braking torque T B * to achieve the target deceleration G *, the target deceleration G * is achieved from the viewpoint of giving top priority to obtaining the braking torque with the regenerative torque Ί is output to the hybrid control means 52 so that the necessary braking torque T B * can be obtained by the regenerative torque. Then, the switching control means 5′0 releases the non-stepless speed change state (lock) of the differential section 11 and determines in advance that the required braking torque T B * can be obtained by the hybrid control means 52. Regeneration is performed with a regenerative amount that provides the regenerative torque. That is, the regeneration by the hybrid control means 52 is prioritized.
前記 S A 3に次いで、 或いは前記 S A 2の判断が否定される場合は前記目標 減速度制御手段 1 8 4すなわち目標減速度制御工程に対応する S A 4において、 S A 3にて実行された回生トルクだけでは不足するトルク分を、 或いはその必要 制動トルク T B * の全てをエンジンブレーキトルクで得られるように切換制御手 段 5 0に指令が出力される。 前記 S A 4に次いで前記切換制御手段 5 0すなわち切換制御工程に対応する S A 5において、 S A 4における指令に従って必要なエンジンブレーキトルクが 得られるように差動部 1 1の差動作用が制限される。 例えば予め実験的に求めら れた切換クラッチ C 0或いは切換ブレーキ B 0の係合油圧とエンジンブレーキト ノレクとの関係から、必要なェンジンブレーキトルクが得られるような切換クラッ チ C 0或いは切換ブレーキ B 0の係合油圧 P EBが算出され、 その係合油圧 P EBに て切換クラッチ C 0或いは切換ブレーキ B 0を半係合乃至完全係合する指令が油 圧制御回路 4 2に出力される。 Next to SA 3 or when the determination of SA 2 is negative, the target deceleration control means 1 8 4, that is, the SA 4 corresponding to the target deceleration control process, only the regenerative torque executed at SA 3 Then, a command is output to the switching control unit 50 so that the insufficient torque or all of the necessary braking torque T B * can be obtained with the engine brake torque. In SA 5 corresponding to the switching control means 50, that is, the switching control process after SA 4, the differential action of the differential section 11 is limited so that the required engine brake torque can be obtained in accordance with the command in SA 4. . For example, the switching clutch C 0 or the switching that can obtain the required engine brake torque from the relationship between the engagement hydraulic pressure of the switching clutch C 0 or the switching brake B 0 and the engine brake torque that has been experimentally determined in advance. The engagement hydraulic pressure P EB of the brake B 0 is calculated, and a command for half-engagement or complete engagement of the switching clutch C 0 or the switching brake B 0 is output to the hydraulic pressure control circuit 42 based on the engagement hydraulic pressure P EB. The
図 2 4の 時点は、 回生が可能であると判定され、 回生が優先して実行さ れる為に差動部 1 1の非無段変速状態 (ロック) が解除されたことを示している 。 この実施例では、 回生だけでは必要制動トルク TB * が得られないことから差 動部 1 1の非無段変速状態 (ロック) は解除されるものの無段変速状態とはされ ず、 回生トルクだけでは不足するトルク分を補う為に、必要なエンジンブレーキ トルクが得られるように切換クラッチ C 0が半係合 (スリツフ。) 状態とされる。 t , 時点乃至 t 2 時点は、非無段変速状態 (ロック) の解除に伴ってエンジン回 転速度 N E が低下したことを示している。 また、 回生が開始されると共に、 必要 なェンジンブレーキトルクが得られる切換クラッチ C 0の半係合 (スリップ)状 態となるように切換クラッチ C 0の係合油圧(トルク容量) が低下されたことを 示している。 t 2 時点以降は、 必要制動トルク TB * が得られるように回生トル ' クとエンジンブレーキトルクが発生されたことを示している。 切換クラッチ C O が半係合されることによりエンジン 8が強制的に回転させられてエンジン 8によ る弓 ίきづりが発生してこのエンジンブレーキトルクが発生する。 The time point in Fig. 24 indicates that regeneration is determined to be possible and that the non-stepless speed change state (lock) of the differential section 11 has been released because regeneration is executed with priority. In this embodiment, since the necessary braking torque T B * cannot be obtained only by regenerative operation, the non-stepless speed change state (lock) of the differential part 11 is released but not the stepless speed change state. In order to compensate for the insufficient torque, the switching clutch C 0 is in a half-engaged (slip) state so that the necessary engine brake torque can be obtained. t, time to t 2 time, with the release of the non-continuously-variable shifting state (locked) engine Rotation speed N E is indicated that the decrease. In addition, as the regeneration starts, the engagement hydraulic pressure (torque capacity) of the switching clutch C 0 is reduced so that the switching clutch C 0 is in a half-engagement (slip) state where the necessary engine brake torque can be obtained. It shows that. t 2 after the time indicates that the required braking torque T B * regenerative torque 'click and the engine braking torque to be obtained is generated. When the switching clutch CO is half-engaged, the engine 8 is forcibly rotated to cause bowing by the engine 8 and this engine brake torque is generated.
前記 S A 1の判断が否定されるか場合は S A 6において、減速度走行中でな いときの制御装置 4 0の各種制御手段による制御作動が実行されるか或いは本ル 一チンが終了させられる。  If the determination of SA 1 is negative, in SA 6, the control operation by the various control means of the control device 40 when the vehicle is not decelerating is executed, or this routine is terminated. .
上述のように、本実施例によれば、 差動部 1 1の電気的な差動装置としての 作動を制限する差動制限装置としての切換クラッチ C 0或いは切換ブレーキ B 0 により、例えば差動部 1 1が無段変速状態と非無段変速状態とに切り換えられる ことから、 電気的に変速比が変更させられる変速機の燃費改善効果と機械的に動 力を伝達する歯車式伝動装置の高レ、伝達効率との両長所を兼ね餹えた駆動装置が 得られる。 As described above, according to the present embodiment, for example, the differential clutch 11 as the differential limiting device or the switching brake B 0 as the differential limiting device that limits the operation of the differential unit 11 as the electrical differential device, for example, the differential Part 1 1 can be switched between a continuously variable transmission state and a continuously variable transmission state As a result, a drive device is obtained that has both the advantages of improving the fuel efficiency of a transmission whose gear ratio is electrically changed and the high power and transmission efficiency of a gear transmission that mechanically transmits power. .
例えば、 車両の低中速走行および低中出力走行となるようなエンジンの常用 出力域において差動部 1 1が無段変速状態とされると、 車両の燃費性能が確保さ れる。 また、 高速走行において差動部 1 1が非無段変速状態とされると、専ら機 械的な動力伝達経路でェンジン 8の出力が駆動輪へ伝達されて、 電気的に変速比 が変更させられる変速機として作動させる場合に発生する動力と電気エネルギと の間の変換損失が抑制されるので、 燃費が向上させられる。 また例えば、 高出力 走行において差動部 1 1が非無段変速状態とされると、電気的に変速比が変更さ せられる変速機として作動させる領域が車両の低中速走行および低中出力走行と なって、第 1電動機 M 1が発生すべき電気的エネルギ換言すれば第 1電動機 M l が伝える電気的エネルギの最大値を小さくできるので、第 1電動機 M 1やその電 気的エネルギが伝達される第 2電動機 M 2、或いはそれを含む変速機構 1 0がー 層小型化される。  For example, when the differential unit 11 is set to a continuously variable speed in the normal output range of the engine that is used for low-medium speed travel and low-medium power travel of the vehicle, fuel efficiency of the vehicle is ensured. In addition, when the differential unit 11 is set to a continuously variable transmission state at high speed, the output of the engine 8 is transmitted to the drive wheels exclusively through a mechanical power transmission path, and the gear ratio is changed electrically. Since the conversion loss between power and electric energy generated when operating as a transmission to be operated is suppressed, fuel efficiency is improved. In addition, for example, when the differential unit 11 is set to a continuously variable transmission state in high output traveling, the region to be operated as a transmission in which the gear ratio is electrically changed is the low and medium output of the vehicle. Since the electric energy that should be generated by the first motor M 1 in other words, that is, the maximum value of the electric energy transmitted by the first motor M l can be reduced, the first motor M 1 and its electric energy are reduced. The second electric motor M 2 to be transmitted or the speed change mechanism 10 including the second electric motor M 2 is reduced in size.
また、 減速走行中には、 エンジンブレーキによる制動トルクを得る為に、切 換制御手段 5 0により差動部 1 1の電気的な無段変速機としての作動すなわち差 動作用が制限されるので、 制動トルクが大きくされ得る。 よって、減速度 Gを制 御できる範囲が広がつて減速走行時の減速度 Gの制御性能が向上する。 例えば、 ' 第 2電動機 M 2による回生トルクに加えてェンジンブレーキトルクによつて車両 の制動トルクが得られるので、減速度 Gを制御できる範囲が広がって減速走行時 の減速度 Gの制御性能が向上する。 見方を換えれば、 回生トルクとエンジンブレ ーキトルクとで制動トルクが調整され得るので、減速走行時の減速度 Gの制御性 能が向上する。  Further, during deceleration traveling, the switching control means 50 restricts the operation of the differential unit 11 as an electric continuously variable transmission, that is, the differential operation, in order to obtain the braking torque by the engine brake. The braking torque can be increased. Therefore, the range in which the deceleration G can be controlled is widened, and the control performance of the deceleration G during deceleration traveling is improved. For example, 'The braking torque of the vehicle can be obtained by the engine braking torque in addition to the regenerative torque by the second electric motor M 2, so the range in which the deceleration G can be controlled is widened and the control performance of the deceleration G during deceleration traveling Will improve. In other words, since the braking torque can be adjusted by the regenerative torque and the engine brake torque, the control performance of the deceleration G during deceleration is improved.
また、 本実施例によれば、 減速走行中には、 切換制御手段 5 0により差動部 1 1が非無段変速状態とされるので、段階的な変化でエンジンブレーキトルクが 速やかに得られる。 例えば、 回生トルクと併せることで、大きな減速度 Gが速や かに得られる。 また、 本実施例によれば、減速走行中には、切換制御手段 5 0により切換ク ラッチ C 0或いは切換ブレーキ B 0が半係合 (スリッフ。) 状態とされるので、 ェ ンジンブレーキトルクが調整され得て減速走行時の減速度 Gの制御性能が一層向 上する。 Further, according to the present embodiment, during traveling at a reduced speed, the differential control unit 11 is brought into the continuously variable transmission state by the switching control means 50, so that the engine brake torque can be quickly obtained by the stepwise change. . For example, when combined with regenerative torque, large deceleration G can be obtained quickly. Further, according to the present embodiment, during deceleration traveling, the switching clutch C 0 or the switching brake B 0 is brought into the half-engaged (sliff) state by the switching control means 50, so that the engine brake torque is reduced. It can be adjusted to further improve the control performance of deceleration G during deceleration.
また、 本実施例によれば、減速走行中には、 目標減速度制御手段 1 8 4によ り目標減速度 G* を達成するように、前記ハイブリッド制御手段 5 2による回生 が可能であるか否かに応じてエンジンブレーキトルクが決定され、切換制御手段 5 0によりその決定されたエンジンブレーキトルクが得られるように差動部 1 1 の差動作用が制限されるので、 エネルギー効率を考えて回生による制動が最優先 されると共に、 目標減速度 G* が回生のみでは達成できなかったり回生量が抑制 されて目標減速度 G* が達成できないようなときには、 エンジンブレーキトルク を得ることが可能となる。 よって、減速走行時の減速度の制御性能が向上する。  Further, according to the present embodiment, during deceleration traveling, is it possible to perform regeneration by the hybrid control means 52 so that the target deceleration control means 1 84 can achieve the target deceleration G *? The engine braking torque is determined depending on whether or not, and the differential action of the differential section 1 1 is limited so that the determined engine braking torque can be obtained by the switching control means 50. Regenerative braking is given the highest priority, and engine braking torque can be obtained when the target deceleration G * cannot be achieved by regeneration alone or when the regeneration amount is suppressed and the target deceleration G * cannot be achieved. Become. Accordingly, the deceleration control performance during deceleration traveling is improved.
実施例 4  Example 4
前述の実施例では、 エンジンブレーキ制御手段として機能する切換制御手段 5 0は、切換クラッチ C 0或いは切換ブレーキ B 0を半係合乃至完全係合として' エンジンブレーキトルクを調整したが、 それに加えて、本実施例では、 エンジン 8の回転抵抗を変化させることにより、 切換クラッチ C 0或いは切換ブレーキ B 0の係合油圧が同じであっても、言い換えれば強制的に回転させられるエンジン 8の回転速度 NE が同じであっても、 エンジンブレーキトルクを調整可能とする ■ 。 以下、 エンジン 8の回転抵抗を変化させる制御作動を説明する。 In the above-described embodiment, the switching control means 50 functioning as the engine brake control means adjusts the engine brake torque with the switching clutch C 0 or the switching brake B 0 being semi-engaged or fully engaged. In this embodiment, by changing the rotational resistance of the engine 8, even if the engagement hydraulic pressure of the switching clutch C 0 or the switching brake B 0 is the same, in other words, the rotational speed of the engine 8 that is forcibly rotated. N The engine brake torque can be adjusted even if E is the same. Hereinafter, a control operation for changing the rotational resistance of the engine 8 will be described.
図 2 5は、電子制御装置 4 0による制御機能の要部を説明する機能ブロック 線図であって、 図 5、 図 1 8に相当する図である。  FIG. 25 is a functional block diagram for explaining the main part of the control function by the electronic control unit 40, and corresponds to FIG. 5 and FIG.
図 1 5において、 エンジン 8は、 吸排気弁の作動タイミングを変更する可変 バルブタイミング機構 9 0と、 燃料を供給し或いは停止する燃料噴射弁 9 2とを 備え、 一部の気筒乃至全気筒がデコンフ。レツション状態すなわち筒内圧力変化抑 制状態とされ且つ燃料供給を停止させてその気筒を休止させることにより、 ェン ジン 8の負荷状態に応じて排気量を実質的に変化させ、燃料供給が低減され得る ことを可能とした筒内圧力変化抑制気筒数可変エンジンである。 このように、 ェ ンジン 8は、筒内圧力変化抑制気筒数が必要に応じて順次或いは一挙に変更され るような筒内圧力変ィヒ抑制運転が可能となるように構成されたものである。 上記 ェンジン 8の筒内圧力変化抑制状態とは、 4サイクルェンジンの各行程の少なく とも 1行程において気筒内の圧力変ィ匕が抑制されてエンジンの回転抵抗言い換え ればポンプ損失が抑制された状態を示している。 In FIG. 15, the engine 8 includes a variable valve timing mechanism 90 that changes the operation timing of the intake and exhaust valves, and a fuel injection valve 92 that supplies or stops fuel. Decomfu. By reducing the fuel supply and stopping the cylinder, the engine displacement is substantially changed according to the load state of engine 8 and the fuel supply is reduced. This is an in-cylinder pressure change suppression cylinder number variable engine that has been made possible. Like this The engine 8 is configured to enable the in-cylinder pressure fluctuation suppressing operation in which the number of cylinders in which the cylinder pressure change is suppressed is changed sequentially or at once as necessary. The above-mentioned cylinder 8 cylinder pressure change suppression state means that the pressure fluctuation in the cylinder is suppressed in at least one stroke of the 4-cycle engine and the engine rotation resistance, in other words, the pump loss is suppressed. Indicates the state.
従って、本実施例におけるエンジン 8の一部の気筒乃至全気筒を筒内圧力変 化抑制状態とする筒内圧力変化抑制運転 (減筒運転或いは休筒運転) は、 その一 部の気筒乃至全気筒が例えばデコンフ。レツション状態とされてその筒内圧力変化 抑制気筒数に応じてポンプ損失所謂ボンピングロスが低減されるものであり、単 に気筒への燃料供給を停止させるものではない。 例えば、 エンジン 8の全気筒へ の燃料供給を停止する所謂フユ一エル力ット作動が単に実行されるエンジン 8の 作動停止状態すなわちェンジン 8の非作動状態においては、各気筒がコンプレッ シヨン状態でありエンジン 8が回転状態にある場合は引き摺り (エンジン回転抵 抗) が生じてボンビングロスが発生する。  Therefore, in-cylinder pressure change suppression operation (reduced cylinder operation or idle cylinder operation) in which some cylinders or all cylinders of the engine 8 in the present embodiment are in the in-cylinder pressure change suppression state, some cylinders or all cylinders are operated. For example, the cylinder is a decompression. The pumping loss, that is, the so-called pumping loss, is reduced according to the number of cylinders in which the in-cylinder pressure change is suppressed in the state of depression, and does not simply stop the fuel supply to the cylinders. For example, when the so-called fuel force operation that stops the fuel supply to all the cylinders of the engine 8 is simply executed, that is, when the engine 8 is in an inactive state, that is, when the engine 8 is not in operation, each cylinder is in a compression state. Yes When the engine 8 is in a rotating state, drag (engine rotation resistance) occurs and bombing loss occurs.
上記コンフ。レツション状態とは、 4サイクルエンジンの圧縮行程において、 吸気弁および排気弁のタイミングがェンジン作動時と同様とされて吸入空気が圧 縮される状態を示している。 また、 上記デコンブレツシヨン状 すなわちデコン プ状態とは、 4サイクルエンジンの圧縮行程において、 吸気弁或いは排気弁を開 いたり或いは吸気弁或いは排気弁のタイミングがずらされて吸入空気の圧縮が十 ' 分に行われないようにされて気筒内の圧力変ィ匕 (加圧) が抑制され、 クランク軸 の回転抵抗が小さくされた状態を示している。 このデコンブ状態においては、 ス ロットル弁や E G R弁が解放されて一層クランク軸の回転抵抗が小さくされても よい。  The conf. In the compression state, the intake air is compressed in the compression stroke of the 4-cycle engine with the intake valve and exhaust valve timing being the same as when the engine is operating. In addition, the above-described decompression state, that is, the decompression state, means that the intake air is sufficiently compressed by opening the intake valve or the exhaust valve or shifting the timing of the intake valve or the exhaust valve in the compression stroke of the 4-cycle engine. This shows a state in which the pressure change in the cylinder (pressurization) is suppressed and the rotation resistance of the crankshaft is reduced. In this decompressed state, the throttle valve and EGR valve may be released to further reduce the rotational resistance of the crankshaft.
切換制御手段 5 0は、前述の実施例の機能に加え、前記目標減速度制御手段 1 8 4による必要制動トルク TB * をエンジンブレーキトルクで得る為の指令に 従って必要なエンジンブレーキトルクが得られるように、 差動部 1 1の差動作用 を制限すると共にェンジン 8の筒内圧力変化抑制量すなわちデコンプ量を変ィ匕さ せる。 例えば、 このデコンブ量は、 デコンブ状態とするエンジン 8の筒内圧力変 ィ匕抑制気筒数に応じて変化させられるものであり、 同じエンジン回転速度 N E に おいては筒内圧力変化抑制気筒数が多い程デコンプ量が多くなってェンジンブレ ーキトルクが小さくされる。 ' 例えば前記図 2 2の実線は、全気筒がデコンプ状態とされてデコンプ量が最 大とされた場合であり、 また図 2 2の破線は、 全気筒がデコンブ状態とされずデ コンプ量が最小とされた場合である。 このようにデコンフ。量を変化させることに より、 切換クラッチ C 0或いは切換ブレーキ B 0の係合油圧が同じであっても、 実線から破線までの範囲でエンジンブレーキトルクが調整され得る。 The switching control means 50 obtains the necessary engine brake torque in accordance with the command for obtaining the required braking torque T B * by the target deceleration control means 18 4 by the engine brake torque in addition to the functions of the above-described embodiment. Thus, the differential action of the differential section 11 is limited, and the cylinder pressure change suppression amount, that is, the decompression amount of the engine 8 is changed. For example, the amount of decompression is the in-cylinder pressure change of the engine 8 that is in the decompressed state. 匕 It can be changed according to the number of suppressed cylinders. At the same engine speed N E , the greater the number of cylinders that suppress in-cylinder pressure change, the greater the decompression amount and the lower the engine brake torque. '' For example, the solid line in Fig. 22 shows the case where all the cylinders are in the decompressed state and the decompression amount is maximized, and the broken line in Fig. 22 shows the decompression amount in which all the cylinders are not in the decompressed state. This is the case when the minimum is set. Decomf like this. By changing the amount, the engine brake torque can be adjusted in the range from the solid line to the broken line even if the engagement hydraulic pressure of the switching clutch C 0 or the switching brake B 0 is the same.
具体的には、切換制御手段 5 0は、 図 2 2に示すような予め実験的に求めら れたデコンフ。量をパラメータとして切換クラッチ C 0の係合油圧とエンジンブレ —キトルクとの関係から必要なェンジンブレーキトルクが得られるような切換ク ラッチ C 0の係合油圧 F EBとデコンプ量すなわち筒内圧力変化抑制気筒数 C D を 算出し、 その係合油圧 F EBにて切換クラッチ C 0を半係合乃至完全係合する を油圧制御回路 4 2に出力すると共にエンジン 8の気筒を筒内圧力変化抑制気筒 数 C D だけ筒内圧力変化抑制運転を実行する指令をハイプリッド制御手段 5 2に 出力する。 例えばハイブリツド制御手段 5 2は、 その指令に従って、可変バルブ タイミング機構 9 0により筒内圧力変化抑制気筒数 C D だけデコンプ状態として 筒内圧力変化抑制運転を実行するようにェンジン出力制御装置 4 3に指令を出力 する。 Specifically, the switching control means 50 is a decompression obtained experimentally in advance as shown in FIG. Switch clutch C 0 engagement hydraulic pressure F EB and decompression amount, that is, in-cylinder pressure so that the required engine brake torque can be obtained from the relationship between the engagement hydraulic pressure of switch clutch C 0 and the engine brake torque using the amount as a parameter Calculate the number of change suppression cylinders CD, and output the half-engagement or full-engagement of the switching clutch C 0 to the hydraulic control circuit 42 with the engagement hydraulic pressure F EB and suppress the cylinder pressure change of the cylinder of the engine 8 outputs a command to run only in-cylinder pressure change suppressing operable cylinder number C D to Haipuriddo control unit 5 2. For example Haiburitsudo control unit 5 2, based on the direction, the Enjin output control device 4 3 so as to perform the cylinder pressure variation suppression operation as decompression state by the variable valve timing mechanism 9 0 by cylinder pressure variation suppression cylinder number C D Outputs a command.
' 上述のように、本実施例によれば、前述と同様の効果が得られることに加え て、減速走行中には、 切換制御手段 5 0によりエンジン 8のデコンブ量が変化さ せられるので、 エンジン回転速度 N E が同じであっても回転抵抗が変ィヒさせられ 得てエンジンブレーキトルクが変ィ匕させられ得る。 よって、減速走行時の減速度'' As described above, according to the present embodiment, in addition to obtaining the same effect as described above, the decomposing amount of the engine 8 is changed by the switching control means 50 during the deceleration traveling. Even if the engine speed N E is the same, the rotational resistance can be changed and the engine brake torque can be changed. Therefore, deceleration during deceleration
Gの制御性能が一層向上する。 G control performance is further improved.
実施例 5  Example 5
図 2 6は、電子制御装置 4 0による他の例の制御機能の要部を説明する機能 ブロック線図である。  FIG. 26 is a functional block diagram for explaining a main part of another example of the control function by the electronic control unit 40.
図 2 7は複数種類のシフトポジションを人為的操作により切り換える切換装 置 4 6の一例を示す図である。 この切換装置 4 6は、 例えば運転席の横に配設さ れ、複数種類のシフトポジションを選択するために操作されるシフトレバ一 4 8 を備えている。 そのシフトレバ一 4 8は、例えば図 2の係合作動表に示されるよ うに第 1クラッチ C 1および第 2クラッチ C 2のいずれの係合装置(入力クラッ チ) も係合されないような変速機構 1 0内つまり自動変速部 2 0内の動力伝達経 路が遮断されたニュートラル状態すなわち中立状態とし且つ自動変速部 2 0の出 力軸 2 2をロックするための駐車ポジション 「F (パ一キング) 」 、 ί¾1走行の ための後進走行ポジション 「R (リバース) 」 、変速機構 1 0内の動力伝達経路 が遮断された中立状態とする中立ポジション 「N (ニュートラル) 」 、前進自動 変速走行ポジション 「D (ドライブ) 」 、 または前進手動変速走行ポジション 「 M (マニュアル) J へ手動操作されるように設けられている。 Figure 27 shows a switching device that switches between multiple types of shift positions by human operation. FIG. The switching device 46 is provided with a shift lever 4 8 that is disposed beside the driver's seat and operated to select a plurality of types of shift positions. The shift lever 48 is, for example, a speed change mechanism that does not engage any of the engagement devices (input clutches) of the first clutch C 1 and the second clutch C 2 as shown in the engagement operation table of FIG. Parking position `` F (Parking) for locking the output shaft 2 2 of the automatic transmission 20 and the neutral state where the power transmission path in the 0 0, that is, the automatic transmission 20 is interrupted ), Ί¾1 Reverse travel position “R (reverse)” for traveling, neutral position “N (neutral)” where power transmission path in transmission mechanism 10 is cut off, forward automatic shift travel position “ D (drive) "or forward manual shift travel position" M (manual) J "is provided to be manually operated.
例えば、上記シフトレバ一 4 8の各シフトポジションへの手動操作に連動し てそのシフトレバー 4 8に機械的に連結された油圧制御回路 4 2内のマニュアル 弁が切り換えられて、 図 2の係合作動表に示す後進ギヤ段 「R」 、 ニュートラル 「N」 、前進ギヤ段 「D」 等が成立するように油圧制御回路 4 2が機械的に切り' 換えられる。 また、 「D」 または 「M」 'ポジションにおける図 2の係合作動表に 示す 1st乃至 5th の各変速段は、油圧制御回路 4 2内の電磁弁が電気的に切り換 えられることにより成立させられる。 ―  For example, the manual valve in the hydraulic control circuit 42 that is mechanically connected to the shift lever 48 is switched in conjunction with the manual operation of the shift lever 48 to each shift position. The hydraulic control circuit 42 is mechanically switched so that the reverse gear stage “R”, neutral “N”, forward gear stage “D”, etc. shown in the operation table are established. In addition, the 1st to 5th shift stages shown in the engagement operation table of FIG. 2 at the “D” or “M” position are established when the solenoid valve in the hydraulic control circuit 42 is electrically switched. Be made. -
上記 「F」 乃至 「M」 ポジションに示す各シフトポジションにおいて、 「F ' 」 ポジションおよび 「N」 ポジションは、 車両を走行させないときに選択される 非走行ポジションであって、 例えば図 2の係合作動表に示されるように第 1クラ ツチ C 1および第 2クラッチ C 2のいずれもが解放されるような自動変速部 2 0 内の動力伝達経路が遮断された車両を駆動不能とする第 1クラッチ C 1および第 クラッチ C 2による動力伝達経路の動力伝達遮断状態へ切換えを選択するため の 駆動ポジションである。 また、 「R」 ポジション、 「D」 ポジションおよび 「M」 ポジションは、 車両を走行させるときに選択される走行ポジションであつ て、例えば図 2の係合作動表に示されるように第 1クラッチ C 1および第 2クラ ツチ。 2の少なくとも一方が係合されるような自動変速部 2 0内の動力伝達経路 が連結された車両を駆動可能とする第 1クラッチ C 1および/または第 2クラッ チ C 2による動力伝達経路の動力伝達可能状態へ切換えを選択するための駆動ポ ジションでもある。 In each of the shift positions shown in the “F” to “M” positions, the “F ′” position and the “N” position are non-travel positions selected when the vehicle is not traveled. As shown in the operation table, the first clutch C 1 and the second clutch C 2 are both disengaged. This is a drive position for selecting switching to the power transmission cutoff state of the power transmission path by the clutch C 1 and the first clutch C 2. Further, the “R” position, the “D” position, and the “M” position are travel positions selected when the vehicle travels. For example, as shown in the engagement operation table of FIG. 1st and 2nd clutch. Power transmission path in the automatic transmission unit 20 in which at least one of the two is engaged This is also a drive position for selecting switching to a power transmission enabled state of the power transmission path by the first clutch C 1 and / or the second clutch C 2 that enables driving of the vehicle to which the is connected.
具体的には、 シフトレバ一 4 8が 「F」 ポジション或いは 「N」 ポジション から 「R」 ポジションへ手動操作されることで、 第 2クラッチ C 2が係合されて 自動変速部 2 0内の動力伝達経路が動力伝達遮断状態から動力伝達可能状態とさ れ、 シフトレバー 4 8が 「N」 ポジションから 「D」 ポジションへ手動操作され ることで、 少なくとも第 1クラッチ C 1が係合されて自動変速部 2 0内の動力伝 達経路が動力伝達遮断状態から動力伝達可能状態とされる。 また、 「D」 ポジシ ョンは最高速走 fi1ポジションでもあり、 「M」 ポジションにおける例えば 「 4」 レンジ乃至 「し」 レンジはエンジンブレーキ効果が得られるエンジンブレーキレ ンジでもある。 Specifically, when the shift lever 48 is manually operated from the “F” position or the “N” position to the “R” position, the second clutch C 2 is engaged and the power in the automatic transmission unit 20 is When the transmission path is changed from the power transmission cutoff state to the power transmission enabled state, and the shift lever 48 is manually operated from the “N” position to the “D” position, at least the first clutch C 1 is engaged and automatically The power transmission path in the transmission 20 is changed from the power transmission cut-off state to the power transmission enabled state. The “D” position is also the fastest running fi 1 position, and the “M” position, for example, the “4” range to the “Shi” range, is also the engine brake range that provides the engine braking effect.
上記「M」 ポジションは、例えば車両の前後方向において上記 「D」 ポジシ ョンと同じ位置において車両の幅方向に隣接して設けられており、 シフトレバ一 4 8が 「M」 ポジションへ操作されることにより、 「D」 レンジ乃至 「L」 レン ジの何れかがシフトレバ一 4 8の操作に応じて変更される。 具体的には、 この 「 M」 ポジションには、 車両の前後方向にアップシフト位置 「十」 、 およびダウン シフト位置 「一」 が設けられており、 シフトレバ 4 8がそれ等のアップシフト 位置 「十」 またはダウンシフト位置 「一」 へ操作されると、 「D」 レンジ乃至 「 L」 レンジの何れかが選択される。 例えば、 「M」 ポジションにおいて選択され る 「D」 レンジ乃至 「し」 レンジの 5つの変速レンジは、 変速機構 1 0の自動変 速制御が可能なト一タル変速比 Ύ Tの変化範囲における高速側 (変速比が最小側 ) のトータル変速比ァ Tが異なる複数種類の変速レンジであり、 また自動変速部 2 0の変速が可能な最高速側変速段が異なるように変速段 (ギヤ段) の変速範囲 を制限するものである。 また、 シフトレバー 4 8はスプリング等の付勢手段によ り上記アップシフト位置 「 +」 およびダウンシフト位置 「一」 から、 「M」 ポジ シヨンへ自動的に戻されるようになつている。 また、 切換装置 4 6にはシフトレ バ一4 8の各シフトポジションを検出するためのシフトポジションセンサ 4 9が 備えられており、 そのシフトレバ一 4 8のシフトポジション F SHを表す信号や 「 M」 ポジションにおける操作回数等を電子制御装置 4 0へ出力する。 The “M” position is provided adjacent to the width direction of the vehicle at the same position as the “D” position in the longitudinal direction of the vehicle, for example, and the shift lever 48 is operated to the “M” position. Thus, either the “D” range or the “L” range is changed according to the operation of the shift lever 48. Specifically, the “M” position is provided with an upshift position “10” and a downshift position “one” in the longitudinal direction of the vehicle, and the shift lever 48 has their upshift position “10”. ”Or downshift position“ 1 ”, either“ D ”range or“ L ”range is selected. For example, the five shift ranges from the “D” range to the “Shi” range that are selected in the “M” position are the total gear ratio that allows automatic shift control of the speed change mechanism 10 and the high speed within the change range of T. Gears (gears) so that there are multiple types of gear ranges with different total gear ratios T on the side (the gear ratio is the smallest), and the maximum gears that can be shifted by the automatic transmission 20 are different. This limits the gear shift range. The shift lever 48 is automatically returned from the upshift position “+” and the downshift position “one” to the “M” position by a biasing means such as a spring. The switching device 4 6 has a shift position sensor 4 9 for detecting each shift position of the shift lever 48. The signal indicating the shift position F SH of the shift lever 48 and the number of operations at the “M” position are output to the electronic control unit 40.
例えば、 「D」 ポジションがシフトレバー 4 8の操作により選択された場合 には、 図 6に示す予め記憶された変速マップゃ切換マップに基づいて切換制御手 段 5 0により変速機構 1 0の変速状態の自動切換制御が実行され、 ハイプリッド 制御手段 5 2により動力分配機構 1 6の無段変速制御が実行され、有段変速制御 手段 5 4により自動変速部 2 0の自動変速制御が実行される。 例えば、変速機構 1 0が有段変速状態に切り換えられる有段変速走行時には変速機構 1 0が例えば 図 2に示すような第 1速ギヤ段乃至第 5速ギヤ段の範囲で自動変速制御され、或 いは変速機構 1 0が無段変速状態に切り換えられる無段変速走行時には変速機構 1 0が動力分配機構 1 6の無段的な変速比幅と自動変速部 2 0の第 1速ギヤ段乃 至第 4速ギヤ段の範囲で自動変速制御される各ギヤ段とで得られる変速機構 1 0 の変速可能なトータル変速比 r Tの変ィ匕範囲内で自動変速制御される。 この 「D 」 ポジションは変速機構 1 0の自動変速制御が実行される制御様式である自動変 速走行モード (自動モード) を選択するシフトポジションでもある。  For example, when the “D” position is selected by operating the shift lever 48, the shift control unit 50 controls the shift mechanism 10 based on the shift map stored in advance as shown in FIG. The automatic switching control of the state is executed, the hybrid control means 5 2 executes the continuously variable transmission control of the power distribution mechanism 16, and the stepped transmission control means 5 4 executes the automatic transmission control of the automatic transmission unit 2 0 . For example, when the speed change mechanism 10 is switched to the stepped speed change state, the speed change mechanism 10 is automatically controlled in the range of the first speed gear to the fifth speed as shown in FIG. Or, when the speed change mechanism 10 is in a continuously variable speed travel where the 0 is switched to a continuously variable speed state, the speed change mechanism 10 is the continuously variable speed ratio width of the power distribution mechanism 16 and the first speed gear stage of the automatic speed changer 20. The automatic transmission control is performed within the variable range of the total transmission ratio r T of the transmission mechanism 10 that can be obtained with each gear stage that is automatically controlled within the range of the fourth to fourth gears. This “D” position is also a shift position for selecting an automatic shift running mode (automatic mode) which is a control mode in which the automatic shift control of the speed change mechanism 10 is executed.
或いは、 「M」 ポジションがシフトレバ一 4 8の操作により選択された場合 には、 変速レンジの最高速側変速段或いは変速比を越えないように、切換制御手 段 5 0、 ハイブリツド制御手段 5 2、 および有段変速制御手段 5 4により変速機 構 1 0の各変速レンジで変速可能なトータル変速比ァ Tの範囲で自動変速制御さ ' れる。 例えば、 変速機構 1 0が有段変速状態に切り換えられる有段変速卑行時に は変速 l 0が各変速レンジで変速機構 1 0が変速可能なトータル変速比ァ T の範囲で自動変速制御され、 或いは変速機構 1 0が無段変速状態に切り換えられ る無段変速走行時には変速機構 1 0が動力分配機構 1 6の無段的な変速比幅と各 変速レンジに応じた自動変速部 2 0の変速可能な変速段の範囲で自動変速制御さ れる各ギヤ段とで得られる変速 ¾ 1 0の各変速レンジで変速可能なトータル変 速比ァ Tの範囲で自動変速制御される。 この 「M」 ポジションは変速機構 1 0の 手動変速制御が実行される制御様式である手動変速走行モード (手動モード) を 選択するシフトポジシヨンでもある。 このように、本実施例の変速機構 1 0 (差動部 1 1、 動力分配機構 1 6 ) は 無段変速状態 (差動状態) と非無段変速状態例えば有段変速状態 (ロック状態) とに選択的に切換え可能である。 そして、 差動部 1 1が無段変速状態であるとき には、 その差動作用によつて車速 Vに拘束されることなくすなわち自動変速部 2 0の出力軸 2 2の回転速度 Ν ουτ と変速比ァとに基づいて一意的に定められる伝 達部材回転速度 Ν 1 8に拘わらずエンジン回転速度 Ν Ε が自由に設定され得る。 ま た、 差動部 1 1が非無段変速状態であるときには、 エンジン回転速度 Ν Ε は車速 Vに拘束される回転速度とされる。 Alternatively, when the “M” position is selected by operating the shift lever 48, the switching control means 50 and the hybrid control means 5 2 are set so as not to exceed the highest speed side gear ratio or gear ratio of the speed change range. , And stepped shift control means 54, automatic shift control is performed within the range of the total transmission ratio T that can be shifted in each shift range of the transmission mechanism 10. For example, when the speed change mechanism 10 is switched to the stepped speed change state, the speed change 10 is automatically controlled within the range of the total speed ratio T where the speed change mechanism 10 can change the speed in each speed range. Alternatively, during continuously variable speed travel where the speed change mechanism 10 is switched to the stepless speed change state, the speed change mechanism 10 becomes the variable speed ratio width of the power distribution mechanism 16 and the automatic speed changer 20 according to each speed range. Automatic shift control is performed within the range of the total speed change ratio T that can be changed in each shift range of 10 to 10. This “M” position is also a shift position for selecting a manual shift running mode (manual mode) which is a control mode in which the manual shift control of the speed change mechanism 10 is executed. As described above, the speed change mechanism 10 (differential portion 11, power distribution mechanism 16) of the present embodiment is in a continuously variable transmission state (differential state) and a continuously variable transmission state, for example, a stepped transmission state (lock state). And can be selectively switched. When the differential unit 11 is in a continuously variable transmission state, the differential action does not restrict the vehicle speed V, that is, the rotational speed 出力 ουτ of the output shaft 2 2 of the automatic transmission unit 20 is Regardless of the transmission member rotational speed Ν 18 that is uniquely determined based on the gear ratio, the engine rotational speed Ν 得 can be freely set. Further, when the differential unit 11 is in a continuously variable transmission state, the engine rotational speed Ν is a rotational speed restrained by the vehicle speed V.
そうすると、 アクセルオフの減速走行時には、 同じ車速 Vでも差動部 1 1の 無段変速状態と非無段変速状態とではェンジン回転速度 Ν Ε が相違することが考 えられる。  Then, when the accelerator is off and the vehicle is decelerated, the engine rotational speed Ν Ε may be different between the continuously variable transmission state and the continuously variable transmission state of the differential section 11 even at the same vehicle speed V.
例えば、 図 2 8は減速走行時の差動部 1 1の状態を図 3に示すような共線図 上に表した図である。 図 2 8の (a ) は切換クラッチ C Oの係合 (ロック) によ り差動部 1 1が非無段変速状態とされている場合であり、 (b ) は差動部 1 1の 無段変速状態においてフユ一エル力ットにてエンジン 8の作動が停止され且つ第 For example, FIG. 28 is a diagram showing the state of the differential section 11 during deceleration traveling on a collinear chart as shown in FIG. (A) in Fig. 28 is the case where the differential section 11 is in a continuously variable transmission state by the engagement (locking) of the switching clutch CO, and (b) is the case where the differential section 11 is not In the step shifting state, the operation of the engine 8 is stopped by the fuel force and the first
' 1電動機 M 1が空転させられている場合である。 'This is the case when 1 motor M 1 is idling.
差動部 1 1の非無段変速状態においては、 図 2 8 ( a ) に示すように減速走. 行時にエンジン 8が回転停止させられないことから-、 図 2 8 ( b ) に示すように 減速走行時にエンジン 8が回転停止させられ得る差動部 1 1の無段変速状態のと ' きに比較して、 エンジン 8の引き摺りトルクが増加させられる可能性がある。 こ のとき、 エンジン 8の引き摺りトルクがより大きいエンジン状態となる差動部 1 1の非無段変速状態に合わせて、言い換えれば電動機による回生量が少なくなる 非無段変速状態に合わせて、 減速走行時に一律の回生量が設定されて電動機によ る回生が行われると、 大きな回生量が得られるようなェンジン状態となる差動部 1 1の無段変速状態であってもその設定された回生量までしか得られず、結果と して回生量を増加させることができず燃費が悪ィヒする可能性があつた。  When the differential section 1 1 is in a continuously variable transmission state, the vehicle decelerates as shown in Fig. 28 (a). Because the engine 8 cannot be stopped during running, as shown in Fig. 28 (b) In contrast, the drag torque of the engine 8 may be increased as compared to the stepless speed change state of the differential portion 11 in which the engine 8 can be stopped during deceleration. At this time, in accordance with the continuously variable transmission state of the differential unit 11 in which the engine 8 has a higher drag torque, in other words, the regenerative amount by the motor is reduced. When a uniform regenerative amount is set during driving and regeneration is performed by the motor, it is set even in the continuously variable transmission state of the differential unit 11 that becomes an engine state in which a large regenerative amount is obtained. Only the regenerative amount was obtained, and as a result, the regenerative amount could not be increased and the fuel consumption could be worsened.
そこで、 本実施例では、減速走行中に、 エンジンの引き摺りトルクが大きく なる可能性のある非差動状態に合わせて一律に回生量が設定されることに比較し て回生量が増大して燃費が向上する為に、 差動部 1 1が無段変速状態 (差動状態 ) か否かに基づいて電動機による回生量を変更する、 すなわちエンジン 8の引き 摺りトルクに応じた回生量を設定する。 Therefore, in this embodiment, compared with the case where the regenerative amount is uniformly set in accordance with the non-differential state in which the drag torque of the engine may increase during the deceleration traveling. In order to increase the regenerative amount and improve fuel efficiency, the regenerative amount by the motor is changed based on whether or not the differential unit 1 1 is in a continuously variable transmission state (differential state), that is, the drag torque of the engine 8 Set the amount of regeneration according to.
具体的には、 図 2 6に戻り、減速走行中判定手段 (減速走行中判定部) 2 8 0は、 ァクセル開度 Accに基づいて車両がァクセルオフの減速走行中すなわち惰 性走行 (コ一スト走行) 中であるか否かを判定する。 例えば、 この減速走行中判 定手段 2 8 0により車雨が減速走行中であると判定された場合には、 前記ハイブ リツド制御手段 5 2は燃費を向上させるために前記燃料噴射弁 9 2によるェンジ ン 8への燃料供給を停止させる。  Specifically, returning to FIG. 26, the deceleration traveling determination means (deceleration traveling determination unit) 2 80 is based on the accelerator opening Acc while the vehicle is traveling in deceleration with the accelerator off, ie, coasting (cost It is determined whether or not the vehicle is running. For example, when it is determined that the vehicle rain is traveling while decelerating by the decelerating travel determining means 28, the hybrid control means 52 uses the fuel injection valve 92 to improve fuel efficiency. Stop fuel supply to engine 8.
口ック状態判定手段 (ロック状態判定部) 2 8 2は、 上記減速走行中判定手 段 2 8 0により車両が減速走行中であると判定された場合には、差動部 1 1が差 動状態か非差動状態かに基づいて電動機による回生量が変更される為に、 動力分 配機構 1 6が非差動状態 (ロック状態) すなわち差動部 1 1が非無段変速状態と されているか否かを判定する。 例えば、 ロック状態判定手段 2 8 2は、切換制御 手段 5 0により変速機構 1 0が有段変速状態に切換制御さ'れる有段制御領域内か 或いは変速機構 1 0が無段変速状態に切換制御される無段制御領域内であるかの 判定のための例えば図 6に示す切換線図から車速 Vおよび出力トルク T OUT で示 される車両状態に基づいて変速機構 1 0を非無段変速状態とする有段制御領域内 であるか否かによって差動部 1 1が非無段変速状態となっているか否かを判定す る。  Mock state determination means (lock state determination unit) 2 8 2 is determined by the differential unit 11 when the vehicle is determined to be decelerating according to the above-mentioned decelerating traveling determination unit 2 80. Since the amount of regeneration by the motor is changed based on whether the motor is in a non-differential state or not, the power distribution mechanism 16 is in a non-differential state (locked state), that is, the differential unit 1 1 is in a non-stepless speed change state. It is determined whether or not it has been done. For example, the lock state determination means 2 8 2 is in the stepped control region where the speed change mechanism 10 is controlled to be switched to the stepped speed change state by the switch control means 50 or the speed change mechanism 10 is switched to the stepless speed change state. For determining whether or not the controlled stepless control region is in effect, for example, the speed change mechanism 10 is continuously variable based on the vehicle state indicated by the vehicle speed V and the output torque T OUT from the switching diagram shown in FIG. It is determined whether or not the differential unit 11 is in a continuously variable transmission state depending on whether or not it is within the stepped control region to be set.
回生量設定手段 (回生量設定部) 2 8 4は、 前記減速走行中判定手段 2 8 0 により車両が減速走行中であると判定された場合には、上記口ック状態判定手段 2 8 2による差動部 1 1が非無段変速状態とされているか否かの判定結果に基づ いて、 ハイブリツド制御手段 5 2による回生時の電動機例えば第 2電動機 M 2の 回生量を設定する。  When the regenerative amount setting means (regenerative amount setting unit) 2 8 4 determines that the vehicle is decelerating by the decelerating running determination means 2 8 0, the regenerative amount setting means 2 8 2 Based on the determination result of whether or not the differential section 11 is in a continuously variable transmission state, the regeneration amount of the motor, for example, the second motor M 2 during regeneration by the hybrid control means 52 is set.
図 2 9は、 予め設定された車速 Vと回生量 Rとの関係 (マップ) を示す一例 である。 図 2 9に示す実線 Aは差動部 1 1が非無段変速状態(有段変速状態) と されているとき (すなわち有段時) 'の回生量 Rの設定に用いられる関係すなわち ,有段用回生量マップ Aである。 また、実線 Bは差動部 1 1が無段変速状態とされ 、 エンジン 8が回転停止されているとき (すなわち無段時) の回生量 Rの設定に 用いられる関係すなわち無段用回生量マップ Bである。 図 2 9からも明らかなよ うに、 差動部 1 1が非無段変速状態とされているとき (有段時) には、 無段変速 5 状態とされているとき (無段時) に比較して減速走行時にエンジン 8が回転停止 されずエンジンの引き摺りトルクがあって回生量が低下することから、 同じ車速 Vにおける回生量 Rが無段時に比較して小さく設定されている。 このことは、非 無段変速状態においてはエンジン 8の引き摺りトルクによるエンジンブレーキが , 発生する分回生量が小さくされると考えることもでき、 エンジンブレーキ力と回0 生ブレーキ力との合計の駆動力源 (エンジン 8、 電動機) ブレーキ力が、 差動部 1 1の無段変速状態と非無段変速状態との何れの変速状態でも略同じとされるこ とでもある。 Fig. 29 shows an example of the relationship (map) between the preset vehicle speed V and the regeneration amount R. The solid line A shown in Fig. 29 shows the relationship used to set the regeneration amount R when the differential section 11 is in a continuously variable transmission state (stepped transmission state) (that is, in a stepped state) Therefore, stepped regeneration amount map A. The solid line B shows the relationship used for setting the regeneration amount R when the differential portion 11 is in a continuously variable transmission state and the engine 8 is stopped (ie, continuously variable), that is, the continuously variable regeneration amount map. B. As can be seen from Fig. 29, when the differential unit 1 1 is in the continuously variable transmission state (during stepped), it is in the continuously variable transmission 5 state (in the continuously variable state). In comparison, the engine 8 is not stopped during deceleration, and the regenerative amount is reduced due to the drag torque of the engine. Therefore, the regenerative amount R at the same vehicle speed V is set to be smaller than that of the stepless state. This can be thought of as the amount of regeneration generated by the engine braking due to the drag torque of the engine 8 in the non-continuously variable transmission state, and the total drive of the engine braking force and the regenerative braking force. Power source (engine 8, electric motor) The braking force is substantially the same in both the continuously variable transmission state and the continuously variable transmission state of the differential section 11.
また、 有段用回生量マップ Aは、 自動変速部 2 0の変速比ァによって相違す るものであり、 変速比ァが大きい程 (すなわち低車速側ギヤ段である程) 同じ車5 速 Vに対してエンジン回転速度 NE が高いので、 変速比ァが大きい程同じ車速 V でも回生量 Rが小さくなるように設定される。 或いはまた、 有段用回生量マップIn addition, the stepped regeneration amount map A differs depending on the gear ratio of the automatic transmission unit 20, and the larger the gear ratio (that is, the lower the gear speed side gear), the same vehicle 5 speed V In contrast, since the engine speed N E is higher, the regenerative amount R is set to be smaller at the same vehicle speed V as the gear ratio is increased. Alternatively, stepped regeneration amount map
' Aは、 切換クラッチ C Oの係合 (ロック) による有段変速状態であるのか或いは 切換ブレーキ B 0の係合 (ロック) による有段変速状態であるのかによつて相違 するものであり、切換ブレーキ B 0の係合 (ロック) による場合の方;^同じ車速0 ' Vに対してエンジン回転速度 N E が低いので、 切換ブレーキ B 0の係合の方が同 じ車速 Vでも回生量 Rが大きくなるように^される。 'A differs depending on whether it is a stepped shift state due to the engagement (locking) of the switching clutch CO or a stepped shift state due to the engagement (locking) of the switching brake B 0. When brake B 0 is engaged (locked); ^ engine speed N E is lower than the same vehicle speed 0 'V, so regenerative amount R even when switching brake B 0 is engaged at the same vehicle speed V Will be increased.
また、 有段用回生量マップ A、-有段用回生量マップ B共に、 エンジン 8がフ ユーエルカツトされている場合の一例であるが、 エンジン 8がフユ一エルカツト されていないときには、 例えばエンジン 8がアイドル回転速度 N I D L を維持して5 自律回転しているときには、 エンジン 8は引き摺りの状態にはなっていないので 、 エンジン 8がフューエルカツ卜されている場合に比べて回生量 Rが大きくなる ように言^される。 ' In addition, both the stepped regeneration amount map A and the -stepped regeneration amount map B are examples when the engine 8 is fuel cut, but when the engine 8 is not fuel cut, for example, the engine 8 When idling speed N IDL is maintained and 5 is autonomously rotating, engine 8 is not dragged, so that regenerative amount R is larger than when engine 8 is fuel cut. To be told. '
回生量設定手段 2 8 4は、 減速走行中に差動部 1 1が非無段変速状態とされ ているときには、 .図 2 9の有段用回生量マップ Aから実際の車速 Vに基づいてハ イブリツド制御手段 5 2による回生制御時の回生量 Rを設定する。 また、 回生量 設定手段 2 8 4は、減速走行中に差動部 1 1が無段変速状態とされているときに は、 図 1 2の無段用回生量マップ Bから実際の車速 Vに基づいてハイブリツド制 御手段 5 による回生制御時の回生量 Rを設定する。 The regenerative amount setting means 2 8 4 allows the differential section 1 1 to be in a continuously variable transmission state while traveling at a reduced speed. When the vehicle is running, the regeneration amount R during regeneration control by the hybrid control means 52 is set based on the actual vehicle speed V from the stepped regeneration amount map A in FIG. Also, the regeneration amount setting means 2 8 4 is used to change the actual vehicle speed V from the continuously variable regeneration amount map B in Fig. 1 2 when the differential unit 1 1 is in a continuously variable transmission state during deceleration. Based on this, set the regenerative amount R for regenerative control by hybrid control means 5.
そして、前記ハイプリッド制御手段 5 2は、前記減速走行中判定手段 2 8 0 により車両が減速走行中であると判定された場合には、 前記ロック状態判定手段 2 8 2による差動部 1 1が非無段変速状態とされているか否かの判定結果に基づ レヽて前記回生量設定手段 2 8 4により設定された電動機例えば第 2電動機 M 2の 回生量 Rが得られるように、 電動機による回生制御を行う。  When the hybrid control means 52 determines that the vehicle is decelerating by the deceleration traveling determination means 2 8 0, the differential section 11 by the lock state determination means 2 8 2 Based on the determination result of whether or not the continuously variable transmission state is set, the motor is set so that the regeneration amount R of the second motor M 2 set by the regeneration amount setting means 2 8 4 can be obtained. Regenerative control is performed.
このように、 回生量設定手段 2 8 4により設定された電動機例えば第 2電動 機 M 2の回生量 Rを用いることにより、 ハイブリツド制御手段 5 2は、減速走行 中に、 差動部 1 1が差動状態か否かに基づいて電動機による回生量を変更する回 生制御手段として機能する。  Thus, by using the regeneration amount R of the electric motor set by the regeneration amount setting means 2 8 4, for example, the second motor M 2, the hybrid control means 52 can It functions as a regeneration control means that changes the regeneration amount by the electric motor based on whether or not it is in a differential state.
例えば、 回生量設定手段 2 8 4は、 差動部 1 1が無段変速状態にあるときに は 無段変速状態にあるときに比較して回生量 Rを大きく言 するので、 ハイブ リッド制御手段 5 2は、 差動部 1 1が無段変速状態 (差動状態) にあるときには 、非無段変速状態 (非差動状態) にあるときに比較して電動機による回生量を多 くするものである。  For example, the regenerative amount setting means 2 8 4 means that the regenerative amount R is larger when the differential unit 1 1 is in a continuously variable transmission state than when it is in a continuously variable transmission state. 5 2 indicates that when the differential unit 1 1 is in a continuously variable transmission state (differential state), the amount of regeneration by the electric motor is increased compared to when it is in a continuously variable transmission state (non-differential state). It is.
このように、減速走行中に、差動部 1 1の無段変速状態と非無段変速状態と に応じた回生量 Rが設定され、 エンジンの引き摺りトルクが大きくなつて回生量 が減少する可能性のある非差動状態に合わせて一律に回生量 Rが設定されること に比較して無段変速状態では回生量が増大して燃費が向上する。  In this way, during deceleration, the regeneration amount R corresponding to the continuously variable transmission state and the continuously variable transmission state of the differential unit 11 is set, and the regeneration amount can decrease as the drag torque of the engine increases. Compared to the constant regeneration amount R that is set according to the characteristic non-differential state, the regenerative amount increases and fuel efficiency improves in the continuously variable transmission state.
更に、 回生量言 手段 2 8 4は、減速走行中にエンジン 8がフユ一エルカツ トされているか否かに基づいて設定される有段用回生量マップ A或いは有段用回 生量マップ Bから実際の車速 Vに基づいてハイプリッド制御手段 5 2による回生 制御時の回生量 Rを設定しても良い。  Further, the regeneration amount expressing means 2 8 4 is based on the stepped regeneration amount map A or the stepped regeneration amount map B that is set based on whether or not the engine 8 is fully cut during deceleration. Based on the actual vehicle speed V, the regeneration amount R during regeneration control by the hybrid control means 52 may be set.
そして、 前記ハイブリツド制御手段 5 2は、前記減速走行中判定手段 2 8 0 により車両が減速走行中であると判定された場合には、 フユ一エル力ットされて いるか否かに基づいて前記回生量設定手段 2 8 4により設定された電動機の回生 量 Rが得られるように、 電動機による回生制御を行う。 Then, the hybrid control means 52 is the decelerating running determination means 28. If it is determined that the vehicle is decelerating, the regenerative amount R of the motor set by the regenerative amount setting means 2 8 4 is obtained based on whether or not the fuel is being applied. In this way, regenerative control is performed by an electric motor.
このように、 ハイブリツド制御手段 5 2は、減速走行中に、 差動部 1 1が差 5 動状態か否かに基づいて電動機による回生量 Rを変更することに加え、 ェンジン 8のフユ一エル力ットが行われているか否かに基づいて電動機による回生量 Rを 変更しても良い。  In this way, the hybrid control means 52 can change the regenerative amount R by the motor based on whether or not the differential unit 11 is in the differential five-motion state during deceleration traveling, The regenerative amount R by the motor may be changed based on whether or not power is being applied.
例えば、 回生量設定手段 2 8 4は、 差動部 1 1が無段変速状態にあるときに は非無段変速状態にあるときに比較して回生量 Rを大きく言 することに加え、 10 エンジン 8がフューエルカッ トされていないときには、 フューエルカットされて いる場合に比べて回生量 Rが大きくなるように設定するので、 ハイブリツド制御 手段 5 2は、 エンジン 8がフユ一エルカツトされていないときには、非無段変速 状態 (非差動状態) にあるときに比較して電動機による回生量を多くするもので ある。  For example, the regenerative amount setting means 2 8 4 can increase the regenerative amount R when the differential unit 1 1 is in a continuously variable transmission state compared to when it is in a continuously variable transmission state. When the engine 8 is not fuel cut, the regenerative amount R is set to be larger than when the fuel cut is performed.Therefore, the hybrid control means 52 is The amount of regeneration by the motor is increased compared to when in a continuously variable transmission state (non-differential state).
このように、減速走行中に、 エンジン 8がフューエルカツトされているか否' かに応じた回生量が設定され、 エンジンの引き摺りトルクが発生して回生量が減 ' 少する可能性のあるエンジン 8がフューエル力ットされている状態に合わせて一 律に回生量 Rが設定されることに比較してェンジン 8がフュ一エル力ットされて いな 、状態では回生量が増大して燃費が向上する。  In this way, during deceleration, the regenerative amount is set according to whether the engine 8 is fuel-cut or not, and the engine drag torque may be generated to reduce the regenerative amount. Compared to the fact that the regenerative amount R is set uniformly according to the state where the fuel is applied, the regenerative amount increases and the fuel consumption increases in the state where the engine 8 is not fueled. improves.
20 図 3 0は、 電子制御装置 4 0の制御作動の要部すなわち減速走行中の回生量 を設定する制御作動を説明するフローチヤ一トであり、例えば数 m s e c乃至数 十 m s e c程度の極めて短いサイクルタイムで繰り返し実行されるものである。 20 Fig. 30 is a flowchart explaining the main part of the control operation of the electronic control unit 40, that is, the control operation for setting the regenerative amount during deceleration traveling. For example, an extremely short cycle of about several milliseconds to several tens of milliseconds It is executed repeatedly in time.
先ず、 前記減速走行中判定手段 2 8 0すなわち減速走行中判定工程に対応す るステップ (以下、 ステップを省略する) S B 1において、 アクセル開度 Accに 25 基づいて車両がアクセルオフの減速走行中すなわち惰性走行 (コースト走行) 中 であるか否かが判定される。 First, a step corresponding to the decelerating travel determination means 28 0, that is, a step corresponding to the decelerating travel determination step (hereinafter step is omitted) In SB 1, the vehicle is decelerating while the accelerator is off based on the accelerator opening Acc That is, it is determined whether or not the vehicle is coasting (coast driving).
前記 S B 1の判断が肯定される場合は前記ロック状態判定手段 2 8 2すなわ ちロック状態判定工程に対応する S B 2において、 動力分配機構 1 6が口ック状 態すなわち差動部 1 1が非無段変速状態とされているか否かが、 例えば図 6に示 す切換線図から車両状態に基づいて変速機構 1 0を非無段変速状態とする有段制 御領域内であるか否かによって差動部 1 1が非無段変速状態となっているか否か が判定される。 If the determination of SB 1 is affirmative, the lock state determination means 2 8 2, that is, in SB 2 corresponding to the lock state determination process, the power distribution mechanism 16 is In other words, whether the differential unit 11 is in a continuously variable transmission state or not is determined, for example, from the switching diagram shown in FIG. Whether or not the differential section 11 is in a continuously variable transmission state is determined depending on whether or not it is within the control region.
前記 S B 2の判断が肯定される場合は前記回生量設定手段 8 4および前記 ハイブリッド制御手段 5 2すなわちハイブリッド制御工程に対応する S B 3にお いて、例えば図 1 2の有段用回生量マップ Aから実際の車速 Vに基づいて減速走 行中の回生制御時の電動機例えば第 2電動機 M 2の回生量 Rが設定される。 そし て、 その設定された電動機の回生量 Rが得られるように、 電動機による回生制御 が行われる。 このとき、 エンジン 8がフユ一エルカッ トされていないときには、 回生量 Rが増加されても良い。 '  If the determination of SB 2 is affirmative, the regeneration amount setting means 84 and the hybrid control means 52, that is, the SB 3 corresponding to the hybrid control process, for example, the stepped regeneration amount map A in FIG. Based on the actual vehicle speed V, the regenerative amount R of the motor, for example, the second motor M2, during regeneration control during deceleration is set. Then, regeneration control by the motor is performed so that the set regeneration amount R of the motor can be obtained. At this time, the regeneration amount R may be increased when the engine 8 is not fully cut. '
前記 S B 2の判断が否定される場合は前記回生量設定手段 2 8 4および前記 ハイブリッド制御手段 5 2すなわちハイブリッド制御工程に対応する S B 4にお いて、 例えば図 2 9の無段用回生量マップ Bから実際の車速 Vに基づいて減速走 行中の回生制御時の電動機例えば第 2電動機 M 2の回生量 Rが設定される。 そし て、 その設定された電動機の回生量 Rが得られるように、 電動機による回生制御 が行われる。 このとき、 エンジン 8がフューエルカツ 卜されていないときには、 回生量 Rが増加されても良い。 ―  If the determination of SB 2 is negative, the regeneration amount setting means 2 8 4 and the hybrid control means 52, that is, the SB 4 corresponding to the hybrid control process, for example, the continuously variable regeneration amount map of FIG. Based on the actual vehicle speed V from B, the regeneration amount R of the electric motor, for example, the second electric motor M2, during regeneration control during deceleration is set. Then, regeneration control by the motor is performed so that the set regeneration amount R of the motor can be obtained. At this time, when the engine 8 is not fuel cut, the regeneration amount R may be increased. -
前記 S B 1の判断が否定されるか場合は S B 5において、 減速度走行中でな いときの制御装置 4 0の各種制御手段による制御作動が実行されるか或いは本ル —チンが終了させられる。  If the determination of SB 1 is negative, in SB 5, the control operation by various control means of the control device 40 when the vehicle is not decelerating is executed, or this routine is terminated. .
上述のように、 本実施例によれば、 切換クラッチ C 0或いは切換ブレーキ B 0により差動部 1 1が無段変速状態と非無段変速状態とに切り換えられることか ら、電気的に変速比が変更させられる変速機の燃費改善効果と機械的に動力を伝 達する歯車式伝動装置の高い伝達効率との両長所を兼ね備えた駆動装置が得られ る。  As described above, according to this embodiment, since the differential portion 11 is switched between the continuously variable transmission state and the continuously variable transmission state by the switching clutch C 0 or the switching brake B 0, A drive device is obtained that has both the advantages of improving the fuel efficiency of a transmission whose ratio is changed and the high transmission efficiency of a gear transmission that mechanically transmits power.
例えば、 車両の低中速走行および低中出力走行となるようなエンジンの常用 出力域において差動部 1 1が無段変速状態とされると、車両の燃費性能が確保さ れる。 また、高速走行において差動部 1 1が非無段変速状態とされると、 専ら機 械的な動力伝達経路でエンジン 8の出力が駆動輪へ伝達されて、 電気的に変速比 が変更させられる変速機として作動させる場合に発生する動力と電気エネルギと の間の変換損失が抑制されるので、 燃費が向上させられる。 また例えば、 高出力 走行において差動部 1 1が非無段変速状態とされると、 電気的に変速比が変更さ せられる変速機として作動させる領域が車両の低中速走行およぴ低中出力走行と なって、第 1電動機 M 1が発生すべき電気的エネルギ換言すれば第 1電動機 M.1 が伝える電気的エネルギの最大値を小さくできるので、 第 1電動機 M 1やその電 気的エネルギが伝達される第 2電動機 M 2、或いはそれを含む変速機構 1 0がー 層小型化される。 For example, if the differential unit 11 is set to a continuously variable transmission state in the normal output range of the engine where the vehicle runs at low to medium speeds and low to medium power, the fuel efficiency of the vehicle is secured. It is. In addition, when the differential unit 11 is set to a continuously variable transmission state at high speed, the output of the engine 8 is transmitted to the drive wheels exclusively through a mechanical power transmission path, and the gear ratio is changed electrically. Since the conversion loss between power and electric energy generated when operating as a transmission to be operated is suppressed, fuel efficiency is improved. Further, for example, when the differential unit 11 is set to a continuously variable transmission state in high output traveling, the region to be operated as a transmission in which the gear ratio is electrically changed is low and low in medium and medium speeds. In medium power traveling, the electrical energy that should be generated by the first motor M1, in other words, the maximum value of the electrical energy transmitted by the first motor M.1 can be reduced. The second electric motor M 2 to which the mechanical energy is transmitted or the speed change mechanism 10 including the second electric motor M 2 is reduced in size.
また、減速走行中に、差動部 1 1が無段変速状態か否かに基づいてハイプリ ッ ド制御手段 5 2により回生量が変更されるので、 エンジン 8の引き摺りトルク に応じた回生量にて回生が行われ、 すなわち差動作用によって車速 Vに拘わらず エンジン回転速度 N E が略零とされ得る無段変速状態とエンジン回転速度 N E が 車速 Vに拘束されてエンジン 8の引き摺りトルクが無段変速状態に比べて大きく なる可能性のある非無段変速状態とに応じた回生量 Rにて回生が行われ、 ェンジ ン 8の引き摺りトルクが大きくなる可能性のある非無段変速状態に合わせて一律 に^された回生量 Rにて回生が行われることに比較して回生量が増大して燃費 が向上する。 In addition, during deceleration travel, the regeneration amount is changed by the hybrid control means 52 based on whether or not the differential section 11 is in a continuously variable transmission state, so that the regeneration amount corresponding to the drag torque of the engine 8 is increased. regeneration is performed Te, i.e. the continuously-variable shifting state and the engine rotational speed N E of the engine rotational speed N E regardless of the vehicle speed V may be substantially zero is bound with the vehicle speed V is drag torque of the engine 8 by the differential action Regenerative amount R depending on the continuously variable transmission state that may be larger than the continuously variable transmission state, regeneration is performed, and the engine 8 drag torque may increase. Compared to regeneration that is performed uniformly at the regenerative amount R, the regenerative amount increases and fuel efficiency improves.
' 例えば、 ハイプリッド制御手段 5 2により差動部 1 1が無段変速状態にある ときには、非無段変速状態にあるときに比較して回生量が多くされるので、 差動 部 1 1の無段変速状態では非無段変速状態に比べて、 差動作用によってェンジン 回転速度 N E が低下させられ得る為、減速走行中の同じ車速 Vにおいてより大き な回生量にて回生が行われて車両の燃費が向上する。 '' For example, when the differential unit 11 is in a continuously variable transmission state by the hybrid control means 52, the regeneration amount is increased compared to when the differential unit 11 is in a continuously variable transmission state. in variable shifting state as compared with the non-continuously-variable shifting state, since the Enjin speed N E can be reduced by the differential operation, the regeneration is carried out at more larger amount of regeneration in the same vehicle speed V during deceleration traveling vehicle Improved fuel economy.
また、 本実施例によれば、 エンジン 8のフユ一エルカツトが行われているか 否かに基づいて、 ハイブリツド制御手段 5 2により回生量が変更されるので、 ェ ンジン 8が自律回転してエンジン 8の引き摺りトルクが発生しないフユ一エル力 ットされていない状態とエンジン 8の引き摺りトルクが発生する可能性のあるフ ユーエルカツトされる状態とに応じた回生量 Rにて回生が行われ、 エンジン 8の 引き摺りトルクが発生する可能性のあるフューエルカツ卜される状態に合わせて 一律に設定された回生量 Rにて回生が行われることに比較して回生量が増大して 燃費が向上する。 Further, according to the present embodiment, since the regeneration amount is changed by the hybrid control means 52 based on whether or not the fuel cut of the engine 8 is being performed, the engine 8 rotates autonomously and the engine 8 The fuel force that does not generate the drag torque of the engine 8 and the engine 8 that may generate the drag torque Regeneration is performed at a regenerative amount R according to the state where the fuel is cut, and regeneration is performed at a regenerative amount R which is uniformly set according to the fuel cut state where drag torque of the engine 8 may be generated. The amount of regeneration is increased and fuel consumption is improved as compared to
実施例 5  Example 5
前述の実施例では、 回生量設定手段 2 8 4は、有段用回生量マップ A或いは無 段用回生量マップ Bを用いてハイブリツド制御手段 5 2による回生制御時の回生 量 Rを設定した。 この有段用回生量マップ A或いは無段用回生量マップ Bは、減 速走行中に差動部 1 1が無段変速状態とされているか否かに基づいて予め定めら れた関係であって、 自動変速部 2 0の変速比ァによって相違するものであり、或 いはまた切換クラッチ C 0の係合 (ロック) による有段変速状態であるのか或い は切換ブレーキ B 0の係合 (ロック) による有段変速状態であるのかによつて相 違するものであり、或いはまたエンジン 8がフューエルカツトされているか否か によって相違するものでもあった。 それに加えて、 本実施例では、特に、 ェンジ ン 8が回転停止されない差動部 1 1の非無段変速状態において、 エンジン 8の回 転抵抗を変化させることにより、 車速 Vが同じであっても、言い換えれば駆動輪 3 8によって弓翁制的に回転させられるエンジン 8の回転速度 N E が同じであって も、 回生量を増減可能とする。 以下、 エンジン 8の回転抵抗を変化させる制御作 動を説明する。 In the above-described embodiment, the regeneration amount setting means 28 4 sets the regeneration amount R at the time of regeneration control by the hybrid control means 52 using the stepped regeneration amount map A or the continuously variable regeneration amount map B. This stepped regeneration amount map A or continuously variable regeneration amount map B has a predetermined relationship based on whether or not the differential section 11 is in a continuously variable transmission state during deceleration traveling. Depending on the transmission gear ratio of the automatic transmission unit 20, it is also a stepped state due to the engagement (locking) of the switching clutch C 0 or the engagement of the switching brake B 0. It differs depending on whether it is a stepped shift state due to (lock), or it also differs depending on whether or not the engine 8 is fuel cut. In addition, in this embodiment, the vehicle speed V is the same by changing the rotation resistance of the engine 8, particularly in the non-stepless speed change state of the differential section 11 where the engine 8 is not stopped. In other words, even if the rotational speed N E of the engine 8 that is rotated in an arcuate manner by the drive wheels 3 8 is the same, the regeneration amount can be increased or decreased. Hereinafter, the control operation for changing the rotational resistance of the engine 8 will be described.
図 3 1は、電子制御装置 4 0による制御機能の要部を説明する機能プロック 線図であって、 図 5に相当する図である。  FIG. 31 is a functional block diagram for explaining the main part of the control function by the electronic control unit 40, and corresponds to FIG.
図 3 1において、 エンジン 8は、 図 2 5の実施例と同様に、 吸排気弁の作動 タイミングを変更する可変バルブタイミング機構 9 0と、 燃料を供給し或いは停 止する燃料噴射弁 9 2とを備え、一部の気筒乃至全気筒がデコンブレツシヨン状 態すなわち筒内圧力低減制御状態とされ且つ燃料供給を停止させてその気筒を休 止させることにより、 エンジン 8の負荷状態に応じて排気量を実質的に変化させ 、 燃料供給が低減され得ることを可能とした筒内圧力低減制御気筒数可変ェンジ ンである。 そして、 例えばハイブリツド制御手段 5 2は、 減速走行時には、必要制動ト ルク T B * に必要なエンジンブレーキトルクが得られるように、可変バルブタイ ミング機構 9 0により必要な筒内圧力低減制御気筒数 C D だけデコンブ状態とし て筒内圧力低減制御を実行するようにェンジン出力制御装置 4 3に指令を出力し て、 エンジン 8の筒内圧力低減制御量すなわちデコンブ量を変化させる。 例えば 、 このデコンプ量は、 デコンプ状態とするエンジン 8の筒内圧力低減制御気筒数 C D に応じて変ィ匕させられるものであり、 同じエンジン回転速度 N E においては 筒内圧力低減制御気筒数 C D が多い程デコンプ量が多くなつてェンジンブレーキ トルク力 J、さくされる。 In FIG. 31, the engine 8 includes a variable valve timing mechanism 90 that changes the operation timing of the intake and exhaust valves, and a fuel injection valve 92 that supplies or stops fuel, as in the embodiment of FIG. In accordance with the load state of the engine 8, some cylinders or all cylinders are in a deconvolution state, that is, in-cylinder pressure reduction control state, and the cylinder is stopped by stopping the fuel supply. This is a cylinder variable pressure control engine with variable cylinder pressure that enables the fuel supply to be reduced by substantially changing the displacement. For example, the hybrid control means 52 can reduce the necessary cylinder pressure reduction control cylinder number C by the variable valve timing mechanism 90 so that the engine brake torque required for the required braking torque T B * can be obtained during deceleration. A command is output to the engine output control device 43 so that the in-cylinder pressure reduction control is executed with only D being in the decompressed state, and the in-cylinder pressure reduction control amount of the engine 8, that is, the decompression amount is changed. For example, this decompression amount is varied according to the cylinder pressure reduction control cylinder number C D of the engine 8 to be in the decompression state. At the same engine speed N E , the cylinder pressure reduction control cylinder number The greater the CD, the greater the decompression amount.
例えば図 2 9に示す有段用回生量マップ Aにおいて、 破線 AMAX は全気筒が デコンブ状態とされてデコンブ量が最大とされた場合であり、 また破線 AM I N は 全気筒がデコンプ状態とされずデコンプ量が最小とされた場合である。 有段用回 生量マップ A (破線 AMAXおよび破線 AM I N を含む) からも明らかなよう 、 デ コンフ。量が多くなる程、減速走行時にェンジン 8の引き摺りトルクが低減されて 回生量が増加させられ得ることから、 同じ車速 Vにおける回生量 Rが大きくなる ように^されている。 このようにデコンフ。量が変ィ匕させられることにより、破 線 AMAX から破線 Am i n までの範囲で回生量が設定される。 また、 図 2 9に示す 無段用回生量マップ Bにおいては、 ェンジン 8が回転停止の状態であるので、 筒 内圧力低減制御時のデコンプ量に基づく回生量の変化はない。 , , ' 回生量設定手段 2 8 4は、減速走行中にェンジン 8が筒内圧力低減制御を行 つているときのデコンブ量に基づいて設定される有段用回生量マップ Aから実際 の車速 Vに基づいてハイプリッド制御手段 5 2による回生制御時の回生量 Rを設 定する。 For example, in the stepped regeneration amount map A shown in FIG. 29, the broken line A MAX indicates that all cylinders are in the decompressed state and the decompressed amount is maximized, and the broken line A MIN indicates that all cylinders are in the decompressed state. This is the case when the decompression amount is minimized. Decompression, as is evident from stepped regeneration map A (including dashed line A MAX and dashed line A MIN ). As the amount increases, the drag torque of engine 8 can be reduced and the regenerative amount can be increased during deceleration, so that the regenerative amount R at the same vehicle speed V is increased. Decomf like this. By changing the amount, the regenerative amount is set in the range from the broken line A MAX to the broken line A min . Further, in the continuously variable regeneration amount map B shown in FIG. 29, since the engine 8 is in a rotation stopped state, there is no change in the regeneration amount based on the decompression amount during the in-cylinder pressure reduction control. ,, 'The regenerative amount setting means 2 8 4 determines the actual vehicle speed V from the stepped regenerative amount map A set based on the decompression amount when the engine 8 is performing in-cylinder pressure reduction control during deceleration traveling. Based on the above, set the regeneration amount R during regeneration control by the hybrid control means 52.
そして、 前記ハイブリッド制御手段 5 は、前記減速走行中半 IJ定手段 8 0に より車両が減速走行中であると判定された場合には、 デコンプ量に基づいて前記 回生量設定手段 8 4により設定された電動機の回生量 Rが得られるように、 電動 機による回生制御を行う。  The hybrid control means 5 is set by the regeneration amount setting means 84 based on the decompression amount when it is determined that the vehicle is decelerating by the halfway IJ fixing means 80. Regenerative control by the motor is performed so that the regenerative amount R of the generated motor can be obtained.
このように、 ハイブリツド制御手段 5 2は、減速走行中に、 差動部 1 1が差 動状態か否かに基づいて電動機による回生量 Rを変更することに加え、 ェンジン 8が筒内圧力低減制御を行つているときはデコンプ量に基づいて電動機による回 生量 Rを変更する。 ' In this way, the hybrid control means 52 is different from the differential section 11 during the deceleration traveling. In addition to changing the regenerative amount R by the motor based on whether or not it is in a moving state, when the engine 8 is performing in-cylinder pressure reduction control, the regenerative amount R by the motor is changed based on the decompression amount. '
例えば、 回生量設定手段 2 8 4は、 差動部 1 1が無段変速状態にあるときに は非無段変速状態にあるときに比較して回生量 Rを大きく設定することに加え、 ェンジン 8が筒内圧力低減制御を行っているときのデコンプ量が多い程回生量 R が大きくなるように設定するので、 ハイブリツド制御手段 5 2は、 デコンブ量が 多い程電動機による回生量を多くするものである。  For example, the regenerative amount setting means 2 8 4 is configured so that when the differential unit 1 1 is in a continuously variable transmission state, the regeneration amount R is set to be larger than that in a non-continuously variable transmission state. 8 is set so that the regenerative amount R increases as the decompression amount increases when in-cylinder pressure reduction control is performed, so the hybrid control means 5 2 increases the regenerative amount by the motor as the decompression amount increases. It is.
このように、減速走行中にェンジン 8が筒内圧力低減制御を行つているとき にはデコンフ。量に応じた回生量が設定されることから、 エンジンの引き摺りトル クが大きくなつて回生量が減少する可能性のあるエンジン 8が筒内圧力低減制御 を行っていない場合に合わせて一律に回生量 Rが設定されることに比較して、 ェ ンジン 8が筒内圧力低減制御を行つているときにはデコンプ量が多い程回生量が 増大して燃費が向上する。  Thus, when engine 8 is performing in-cylinder pressure reduction control while decelerating, decompression occurs. Since the regenerative amount is set according to the amount, the regenerative amount may be reduced when the engine drag torque becomes large, and the regenerative amount is uniformly regenerated according to the case where the in-cylinder pressure reduction control is not performed. Compared to the amount R being set, when the engine 8 is performing in-cylinder pressure reduction control, the greater the decompression amount, the greater the regeneration amount and the better the fuel consumption.
例えば、 前記図 3 0のフローチャートにおける前記回生量設定手段 2 8 4お よび前記ハイプリッド制御手段 5 2すなわちハイプリッド制御工程に対応する前 記 S B 3において、例えば図 2 9の有段用回生量マップ Aから実際の車速 Vに基 づいて減速走行中の回生制御時の電動機例えば第 2·電動機 M 2の回生量 Rが設定 される。 そして、 その設定された電動機の回生量 Rが得られるように、 電動機に よる回生制御が行われる。 このとき、 エンジン 8が筒内圧力低減制御を行ってい るときにはデコンプ量が多い程回生量 Rが増加される。  For example, in the above-described SB 3 corresponding to the regeneration amount setting means 28 4 and the hybrid control means 52 in the flowchart of FIG. 30, that is, the hybrid control step, for example, the stepped regeneration amount map A in FIG. Based on the actual vehicle speed V, the regeneration amount R of the motor, for example, the second motor M2, during regeneration control during deceleration traveling is set. Then, regeneration control by the motor is performed so that the set regeneration amount R of the motor can be obtained. At this time, when the engine 8 is performing in-cylinder pressure reduction control, the regeneration amount R increases as the decompression amount increases.
また、 前記図 3 0のフローチヤ一トにおける前記回生量設定手段 2 8 4およ び育 己ハイプリッド制御手段 5 2すなわちハイプリッド制御工程に対応する前記 S B 4においては、 エンジン 8が回転停止の状態であるので、 筒内圧力低減制御 時のデコンブ量は考慮に入れない。  Further, in the regenerative amount setting means 2 84 and the self-hybrid control means 52 in the flow chart of FIG. 30, that is, in the SB 4 corresponding to the hybrid control process, the engine 8 is in a state where the rotation is stopped. Therefore, the amount of decompression during cylinder pressure reduction control is not taken into account.
上述のように、本実施例によれば、前述と同様の効果が得られることに加え て、 ェンジン 8が筒内圧力低減制御を行っているときにはデコンプ量に基づいて 、 ハイブリツド制御手段 5 2により回生量が変更されるので、 エンジン回転速度 NE が同じであってもエンジン 8の引き摺りトルクが変ィ匕ざせられ得る筒内圧力 低減制御時のデコンプ量に応じた回生量 Rにて回生が行われ、 エンジン 8の引き 摺りトルクが大きくなる可能性のあるデコンプ量が小さくされた状態に合わせて 一律に設定された回生量 Rにて回生が行われることに比較して回生量が増大して 燃費が向上する。 As described above, according to the present embodiment, in addition to obtaining the same effect as described above, when the engine 8 is performing in-cylinder pressure reduction control, the hybrid control means 52 uses the decompression amount based on the decompression amount. Since the regeneration amount is changed, the engine speed The drag torque of engine 8 can be changed even if N E is the same.Regeneration is performed at the regeneration amount R corresponding to the decompression amount in the in-cylinder pressure reduction control, and the drag torque of engine 8 is large. The amount of regeneration is increased and fuel efficiency is improved as compared to the case where regeneration is performed at a regenerative amount R that is uniformly set according to the state in which the decompression amount that can be reduced is reduced.
なお、 本実施例において、 自動切換制御作動に替えてスィッチ 4 4が手動操 作されたことにより変速機構 1 0の変速状態が手動切換制御される場合には、 前 述の実施例の図 1 3に示すフロ一チャートのステップ S 2において、 スィッチ 4 4が手動操作によって動力分配機構 1 6のロック状態すなわち変速機構 1 0の非 無段変速状態が選択されていることに基づいて動力分配機構 1 6が口ック状態す なわち差動部 1 1が非無段変速状態とされているか否かが判定される。  In this embodiment, when the shift state of the speed change mechanism 10 is manually controlled by switching the switch 4 4 manually instead of the automatic switching control operation, FIG. In step S2 of the flow chart shown in FIG. 3, the power distribution mechanism is based on the fact that the switch 4 4 is manually operated to select the locked state of the power distribution mechanism 16 or the non-continuously variable transmission state of the speed change mechanism 10. It is determined whether 1 6 is in a hooked state, that is, whether differential unit 1 1 is in a continuously variable transmission state.
以上、 本発明の実施例を図面に基づいて詳細に説明したが、 本発明はその他 の態、様においても適用される。  As mentioned above, although the Example of this invention was described in detail based on drawing, this invention is applied also in another aspect and aspect.
例えば、 前述の実施例において、登降坂時には、 図 6に示すような所定走行 時に用いられる変速線図に比較して各変速線が高車速側へ変更された図 1 0に示 すような変速線図が用いられたが、 同じく登降坂時には、 有段変速状態と無段変 速状態とを切り換える切換線図が例えば図 6に示すような所定走行時に比較して 低出力トルク側 (すなわちアクセル開度の低開度側) へ変更された図 1 0に示す ような切換線図が用いられてもよい。 これによつて、 所定走行時に比較して低開 度で有段変速状態へ切り換えられて第 1電動機 M 1の負荷が抑制される。 また、 図 1 0に示すような登降坂時用の変速線図においては、最高速ギヤ段へのアップ シフトを禁止するような変速線図としても良い。 例えば図 1 0の 4→5アップシ フト線が削除されてもよい。  For example, in the above-described embodiment, at the time of uphill / downhill, the speed change as shown in FIG. 10 where each speed change line is changed to the high vehicle speed side as compared with the speed change map used at the time of predetermined traveling as shown in FIG. Similarly, when going up and down the slope, the switching diagram for switching between the stepped speed change state and the stepless speed change state is a lower output torque side (ie accelerator A switching diagram as shown in FIG. 10 changed to the lower opening side of the opening may be used. Thus, the load on the first electric motor M1 is suppressed by switching to the stepped speed change state at a lower opening compared to the predetermined travel time. In addition, the shift diagram for uphill / downhill as shown in FIG. 10 may be a shift diagram that prohibits an upshift to the highest gear. For example, the 4 → 5 upshift line in FIG. 10 may be deleted.
また、 前述の実施例ではロック状態判定手段 8 4 (図 1 4のステップ S 4 ) は、動力分配機構 1 6が差動状態とされているか否かを例えば図 6に示す切換線 図から車両状態に基づいて無段制御領域内であるか否かによって判定したが、切 換制御手段 5 0による変速機構 1 0が有段制御領域内か或いは無段制御領域内で あるかの判定に基づいて動力分配機構 1 6が差動状態とされているか否かを判定 してもよい。 In the above-described embodiment, the lock state determination means 8 4 (step S 4 in FIG. 14) determines whether or not the power distribution mechanism 16 is in the differential state, for example, from the switching line diagram shown in FIG. Although it is determined based on whether or not it is within the continuously variable control region based on the state, it is based on the determination by the switching control means 50 whether the speed change mechanism 10 is within the stepped control region or the continuously variable control region. Determine whether the power distribution mechanism 1 6 is in a differential state May be.
また、 前述の実施例の変速機構 1 0、 7 0は、 差動部 1 1 (動力分配機構 1 6 ) が電気的な無段変速機として作動可能な差動状態とそれを非作動とする非差 動状態 (ロック状態) とに切り換えられることで無段変速状態と有段変速状態と に切り換え可能に構成され、 この無段変速状態と有段変速状態との切換えは差動 部 1 1が差動状態と非差動状態とに切換えられることによつて行われていたが、 例えば差動部 1 1が差動状態のままであっても差動部 1 1の変速比を連続的では なく段階的に変化させることにより有段変速機として機能させられ得る。 言い換 えれば、差動部 1 1の差動状態/非差動状態と、変速機構 1 0、 7 0の無段変速 状態/有段変速状態とは必ずしも一対一の関係にある訳ではないので、 差動部 1 1は必ずしも無段変速状態と有段変速状態とに切換可能に構成される必要はなく 、 変速機構 1 0 . 7 0 (差動部 1 1、 動力分配機構 1 6 ) が差動状態と非差動状 態とに切換え可能に構成されれば本発明は適用され得る。 有段変速状態とは、 電 気パスを用いないで専ら機械的伝達経路で動力伝達することである。  Further, the transmission mechanisms 10 and 70 of the above-described embodiment are configured so that the differential unit 1 1 (power distribution mechanism 1 6) can be operated as an electric continuously variable transmission and is not operated. By switching to the non-differential state (locked state), it is possible to switch between the continuously variable transmission state and the stepped transmission state. The switching between the continuously variable transmission state and the stepped transmission state is the differential unit 1 1 Is switched between the differential state and the non-differential state. For example, even if the differential unit 1 1 remains in the differential state, the transmission ratio of the differential unit 1 1 is continuously changed. Instead, it can function as a stepped transmission by changing it stepwise. In other words, there is not necessarily a one-to-one relationship between the differential state / non-differential state of the differential unit 11 and the continuously variable transmission state / stepped transmission state of the transmission mechanisms 10 and 70. Therefore, the differential unit 11 does not necessarily need to be configured to be able to switch between the continuously variable transmission state and the stepped transmission state, and the transmission mechanism 10.7 (differential unit 1 1, power distribution mechanism 1 6) Can be switched between a differential state and a non-differential state, the present invention can be applied. The stepped speed change state means that power is transmitted exclusively through a mechanical transmission path without using an electric path.
また、 前述の実施例では、 動力伝達経路を、 動力伝達可能状態と動力伝達遮 断状態とに選択的に切り換える係合装置として自動変速部 2 0 . 7 2の一部を構 成する第 1クラッチ C 1および第 2クラッチ C 2が用いられ、 その第 1クラッチ C 1および第 2クラッチ C 2は自動変速部 0 . 7 2と差動部 1 1との間に配設 されていたが、必ずしも第 1クラッチ C 1および第 2クラッチ C 2である必要は なく動力伝達可能状態と動力伝達遮断状態とに動力伝達経路を選択的に切り換え られれる係合装置が少なくとも 1つ備えられておればよい。 例えばその係合装置 は出力軸 2 2に連結されていてもよいし自動変速部 2 0、 7 2内の回転部材に連 結されていてもよい。 また、上記係合装置は自動変速部 2 0、 7 2の一部を構成 する必要もなく自動変速部 2 0、 7 2とは別に備えられてもよい。  Further, in the above-described embodiment, the first part that constitutes a part of the automatic transmission unit 20.7 as an engagement device that selectively switches the power transmission path between the power transmission enabled state and the power transmission cut-off state. The clutch C 1 and the second clutch C 2 were used, and the first clutch C 1 and the second clutch C 2 were disposed between the automatic transmission portion 0.7 2 and the differential portion 11 1, The first clutch C 1 and the second clutch C 2 do not necessarily have to be provided, provided that at least one engagement device capable of selectively switching the power transmission path between the power transmission enabled state and the power transmission cut-off state is provided. Good. For example, the engaging device may be connected to the output shaft 22 or may be connected to a rotating member in the automatic transmission units 20 and 72. Further, the engaging device does not need to constitute a part of the automatic transmission units 20 and 72, and may be provided separately from the automatic transmission units 20 and 72.
また、 前述の実施例の動力分配機構 1 6では、 第 1キヤリャ C A 1がェンジ ン 8に連結され、 第 1サンギヤ S 1が第 1電動機 M 1に連結され、第 1 リングギ ャ R 1が伝達部材 1 8に連結されていたが、 それらの連結関係は、必ずしもそれ に限定されるものではなく、 エンジン 8、 第 1電動機 M 1、伝達部材 1 8は、第 1遊星歯車装置 2 4の 3要素 C Aし S K R 1のうちのいずれと連結されてい ても差し支えない。 In the power distribution mechanism 16 of the above-described embodiment, the first carrier CA 1 is connected to the engine 8, the first sun gear S 1 is connected to the first motor M 1, and the first ring gear R 1 is transmitted. Although connected to the member 18, their connection relationship is not necessarily limited to that. The engine 8, the first motor M 1, and the transmission member 18 are 1 Planetary gear unit 2 4 3 elements CA and SKR 1 can be connected to any one of them.
また、 前述の実施例では、 エンジン 8は入力軸 1 4と直結されていたが、例 えばギヤ、 ベルト等を介して作動的に連結されておればよく、 共通の軸心上に配 置される必要もない。  In the above-described embodiment, the engine 8 is directly connected to the input shaft 14. However, for example, the engine 8 may be operatively connected via a gear, a belt, etc., and is arranged on a common shaft center. There is no need to
また、 前 の実施例では、 第 1電動機 M 1および第 2電動機 M 2は、 入力軸 1 4に同心に配置されて第 1電動機 M 1は第 1サンギヤ S 1に連結され第 2電動 機 M 2は伝達部材 1 8に連結されていたが、必ずしもそのように配置される必要 はなく、例えばギヤ、 ベルト、 減速機等を介して作動的に第 1電動機 M 1は第 1 サンギヤ S 1に連結され、第 2電動機 M 2は伝達部材 1 8に連結されてもよい。 また、第 2電動機 M 2が伝達部材 1 8に連結されていたが、 出力軸 2 2に連結さ れていてもよいし、 自動変速部 2 0、 7 2内の回転部材に連結されていてもよい 。 第 2電動機 M 2がギヤ、 ベルト、減速機等を介して伝達部材 1 8や出力軸 2 2 等に連結される様な形態も、 伝達部材から駆動輪への動力伝達経路に設けられた 一態様である。  In the previous embodiment, the first motor M 1 and the second motor M 2 are arranged concentrically with the input shaft 14, and the first motor M 1 is connected to the first sun gear S 1 and the second motor M 2 is connected to the transmission member 18, but is not necessarily arranged as such. For example, the first electric motor M 1 is operatively connected to the first sun gear S 1 via a gear, a belt, a speed reducer, or the like. The second electric motor M 2 may be connected to the transmission member 18. Further, the second electric motor M 2 is connected to the transmission member 18, but may be connected to the output shaft 22, or may be connected to a rotating member in the automatic transmission units 20, 72. Also good. A configuration in which the second motor M 2 is connected to the transmission member 18, the output shaft 2 2, etc. via a gear, a belt, a speed reducer, etc. is also provided in the power transmission path from the transmission member to the drive wheel. It is an aspect.
また、 前述の動力分配機構 1 6には切換クラッチ C Oおよび切換ブレーキ B 0が備えられていたが、 切換クラッチ C 0および切換ブレーキ B 0は必ずしも両 方備えられる必要はない。 また、 上記切換クラッチ C 0は、 サンギヤ S 1とキヤ リャ C A 1とを選択的に連 ^5吉するものであつたが、 サンギヤ S 1とリングギヤ R 1との間や、 キヤリャ C A 1とリングギヤ R 1との間を選択的に連結するもので あってもよい。 要するに、第 1遊星歯車装置 2 4の 3要素のうちのいずれか 2つ を相互に連結するものであればよい。  Further, although the power distribution mechanism 16 described above is provided with the switching clutch C O and the switching brake B 0, both the switching clutch C 0 and the switching brake B 0 are not necessarily provided. The switching clutch C 0 selectively connects the sun gear S 1 and the carrier CA 1 ^ 5. However, the switching clutch C 0 is connected between the sun gear S 1 and the ring gear R 1 or between the carrier CA 1 and the ring gear R 1. R 1 may be selectively linked. In short, any one of the three elements of the first planetary gear unit 24 may be connected to each other.
また、 前述の実施例の変速機構 1 0、 7 0では、 ニュートラル 「N」 とする 場合には切換クラッチ C 0が係合されていたが、 必ずしも係合される必要はない。  Further, in the transmission mechanisms 10 and 70 of the above-described embodiment, the switching clutch C 0 is engaged when the neutral “N” is set, but it is not always necessary to be engaged.
また、 前述の実施例では、 切換クラッチ C 0およぴ切換ブレーキ B 0などの 油圧式摩擦係合装置は、 パウダー (磁粉) クラッチ、 電磁クラッチ、 嚙み合い型 のドグクラッチなどの磁粉式、 電磁式、 機械式係合装置から構成されていてもよ い。 また、 前述の実施例では、 差動部 1 1すなわち動力分配機構 1 6の出力部材 である伝達部材 1 8と駆動輪 3 8との間の動力伝達経路に、 自動変速部 2 0、 7 2が介揷されていたが、例えば手動変速機としてよく知られた常時嚙合式平行 2 軸型ではあるがセレクトシリンダおよびシフトシリンダによりギヤ段が自動的に 切り換えられることが可能な自動変速機等の他の形式の動力伝達装置 (変速機) が設けられていてもよい。 In the above-described embodiment, the hydraulic friction engagement devices such as the switching clutch C 0 and the switching brake B 0 are magnetic powder type electromagnetics such as powder (magnetic powder) clutches, electromagnetic clutches, and meshing type dog clutches. It may consist of a mechanical or mechanical engagement device. Further, in the above-described embodiment, the automatic transmission units 20, 7 2 are provided in the power transmission path between the transmission member 18 and the drive wheel 38, which are output members of the differential unit 11, that is, the power distribution mechanism 16. For example, an automatic transmission, which is well known as a manual transmission, is an always-matching parallel twin-shaft type, but the gear stage can be automatically switched by a select cylinder and a shift cylinder. Another type of power transmission device (transmission) may be provided.
また、 前述の実施例では、 自動変速部 2 0、 7 2は伝達部材 1 8を介して差 動部 1 1と直列に連結されていたが、入力軸 1 4と平行にカウン夕軸が設けられ そのカウンタ軸上に同心に自動変速部 2 0、 7 2が配設されてもよい。 この場合 には、 差動部 1 1と自動変速部 2 0、 · 7 2とは、例えば伝達部材 1 8としての力 ゥンタギヤ対、 スプロケットおよびチヱーンで構成される 1組の伝達部材などを 介して動力伝達可能に連結される。  In the above-described embodiment, the automatic transmission units 20 and 72 are connected in series with the differential unit 11 via the transmission member 18. However, a countdown shaft is provided in parallel with the input shaft 14. The automatic transmission units 20 and 72 may be arranged concentrically on the counter shaft. In this case, the differential unit 11 and the automatic transmission units 20 and 7 2 are connected to each other through, for example, a pair of transmission gears as a transmission member 18, a pair of transmission members composed of a sprocket and a chain, and the like. It is connected so that power can be transmitted.
また、 前述の実施例の差動 «としての動力分配機構 1 6は、例えばェンジ ンによつて回転駆動されるピニオンと、 そのピニオンに嚙み合う一対のかさ歯車 が第 1電動機 M 1および第 2電動機 M 2に作動的に連結された差動歯車装置であ つてもよい。 ■ また、前述の実施例の動力分配機構 1 6は、 1組の遊星歯車装置から構成さ れていたが、 2以上の遊星歯車装置から構成されて、非差動状態 (定変速状態) では 3段以上の変速機として機能するものであってもよい。 また、 その遊星歯車 ' 装置はシングルピニオン型に限られたものではなくダブルピニオン型の遊星歯車 装置であってもよい。  Further, the power distribution mechanism 16 as the differential gear of the above-described embodiment includes, for example, a pinion that is rotationally driven by an engine and a pair of bevel gears that mesh with the pinion. 2 A differential gear unit operatively connected to the motor M 2 may be used. ■ In addition, the power distribution mechanism 16 of the above-described embodiment is composed of one set of planetary gear units, but is composed of two or more planetary gear units, and in a non-differential state (constant speed change state). It may function as a transmission having three or more stages. Further, the planetary gear device is not limited to the single pinion type, but may be a double pinion type planetary gear device.
. また、前述の実施例のスィツチ 4 4はシ一ソ一型のスィツチであつたが、例 えば押しボタン式のスィッチ、 択一的にのみ押した状態が保持可能な 2つの押し ボタン式のスィッチ、 レバー式スィッチ、 スライド式スィッチ等の少なくとも無 段変速走行 (差動状態) と有段変速走行 (非差動状態) とが択一的に切り換えら れるスィッチであればよい。 また、 スィッチ 4 4に中立位置が設けられる場合に その中立位置に替えて、 スィッチ 4 4の選キ尺状態を有効或いは無効すなわち中立 位置相当が選択可能なスィッチがスィッチ 4 4とは別に設けられてもよい。 また 、 スィッチ 4 4に替えて或いは加えて、 手動操作に因らず運転者の音声に反応し て少なくとも無段変速走行 (差動状態) と有段変速走行 (非差動状態) とが択一 的に切り換えられる装置や足の操作により切り換えられる装置等であつてもよい。 In addition, the switch 44 in the above-described embodiment is a single-type switch. For example, it is a push-button type switch, or two push-button type switches that can hold only one alternative state. Any switch such as a switch, lever type switch, slide type switch, or the like that can selectively switch between continuously variable speed running (differential state) and stepped speed variable running (non-differential state). In addition, when a neutral position is provided for switch 4 4, a switch that can select whether the switch 4 4 is set to valid or invalid, that is, equivalent to the neutral position, is provided separately from switch 4 4 instead of the neutral position. May be. Also Instead of or in addition to switch 4 4, at least one of continuously variable speed driving (differential state) and stepped variable speed driving (non-differential state) is selected in response to the driver's voice regardless of manual operation. A device that can be switched automatically or a device that can be switched by foot operation may be used.
例えば、 前述の実施例では、 目標減速度制御手段 1 8 4は、 目標減速度 G* を達成する必要制動トルク TB * を得る為に、 回生トルクにて制動トルクを得る ことを最優先として回生トルクでは得られないトルク分をェンジンブレ一キトル' クによって得たが、 エンジンブレーキトルクに加えて車輪に設けられたホイール ブレーキ等の他の制動装置を用いて制動トルクを得ても良い。 但し、 ホイ一ルブ レーキ等は優先順位は下げられる。 · . For example, in the above-described embodiment, the target deceleration control means 1 8 4 gives the highest priority to obtaining the braking torque by the regenerative torque in order to obtain the necessary braking torque T B * to achieve the target deceleration G *. The torque that cannot be obtained by the regenerative torque is obtained by the engine brake kit, but the braking torque may be obtained by using other braking devices such as a wheel brake provided on the wheel in addition to the engine braking torque. However, the priority of wheel brakes is lowered. ·.
また、 前述の実施例のエンジン 8は、 4サイクルエンジンの圧縮行程におい て吸気弁或いは排気弁を開いたり或いは吸気弁或いは排気弁のタイミングがずら されて気筒をデコンフ。状態とすることで筒内圧力変化抑制状態とされたが、 その デコンプ状態に替えて或いは加えて、 4サイクルェンジンの圧縮行程以外の筒内 容積拡張時例えば吸気行程においてスロットル開度を積極的に開くことにより負 圧の発生を抑制して気筒内の圧力変ィ匕を抑制しクランク軸の回転抵抗を抑制して もよい。 この様にしても、 エンジン 8のポンビングロスが低減される。 或いはま た、 エンジン 8はクランク軸とピストン間の機械的な連結が切り離され得る構成 とされ、 ビストンの往復運動が停止されることにより筒内圧力変化抑制状態とさ れてもよい。  Further, the engine 8 of the above-described embodiment decompresses the cylinder by opening the intake valve or the exhaust valve or shifting the timing of the intake valve or the exhaust valve in the compression stroke of the 4-cycle engine. In-cylinder pressure change suppression state was established by setting this state, but instead of or in addition to the decompression state, when the cylinder volume expansion other than the compression stroke of 4-cycle engine, for example, the throttle opening is positive in the intake stroke It may be possible to suppress the rotation resistance of the crankshaft by suppressing the pressure variation in the cylinder by suppressing the generation of the negative pressure by opening it to the open. Even in this case, the engine 8's bombing loss is reduced. Alternatively, the engine 8 may be configured such that the mechanical connection between the crankshaft and the piston can be disconnected, and the in-cylinder pressure change suppression state may be established by stopping the reciprocating motion of the viston.
また、 前述の実施例ではハイブリツド制御手段 5 2は、 回生時に電動機とし て第 2電動機を用いたが、 差動部 1 1が非無段変速状態とされているときにはェ ンジン 8から駆動輪 3 8への動力伝達経路が機械的に連結されて駆動輪 3 8によ つて第 1電動機 M 1も回転させられるので、非差動状態のとき (有段時) には第 1電動機 M lおよび/または第 2電動機 M 2を回生に用いてもよい。 また、 1電 動機 M 1や第 2電動機 M 2以外に、 車輪によって回転させられ得る電動機例えば 第 3電動機 M 3を更に備え、 ハイブリッド制御手段 5 2は、 回生時には第 1電動 機 M 1および/または第 2電動機 M 2に替えて或いは加えて、 電動機としてその 第 3電動機 M 3を用いて回生を行っても良い。 この電動機 M 3としては、 ェンジ ン 8に作動的に連結されるスター夕一や、 出力軸 2 2に作動的に設けられる電動 機や、駆動輪 3 8とは異なる車輪 (第 2駆動輪) を駆動する電動機などである。 また、 前述の実施例では、 差動部 1 1すなわち動力分配機構 1 6の出力部材 である伝達部材 1 8と駆動輪 3 8との間の動力伝達経路に、 自動変速部 2 0、 7 2が介挿されていたが、 例えば自動変速機の一種である無段変速機(C VT) 、 手動変速機としてよく知られた常時嚙合式平行 2軸型ではあるがセレクトシリン ダおよびシフトシリンダによりギヤ段が自動的に切り換えられることが可能な自 動変速機、 手動操作により変速段が切り換えられる同期嚙み合い式の手動変速機 等の他の形式の動力伝達装置 (変速機) が設けられていてもよい。 その無段変速 機 (C VT) の場合には、 動力分配機構 1 6が定変速状態とされることで全体と して有段変速状態とされる。 有段変速状態とは、電気パスを用いないで専ら機械 的伝達経路で動力伝達することである。 或いは、上記無段変速機は有段変速機に おける変速段に対応するように予め複数の固定された変速比が記憶され、 その複 数の固定された変速比を用いて自動変速部 2 0、 7 2の変速が実行されてもよい 。 或いは、 自動変速部 2 0、 7 2は必ずしも備えられてなくとも本発明は適用さ れ得る。 In the above-described embodiment, the hybrid control means 52 used the second motor as the motor during regeneration. However, when the differential unit 11 is in the continuously variable transmission state, the engine 8 starts to drive wheels 3. Since the power transmission path to 8 is mechanically connected and the first motor M 1 is also rotated by the drive wheels 3 8, the first motor M l and the non-differential state (in the stepped state) Alternatively, the second electric motor M 2 may be used for regeneration. Further, in addition to 1 motor M 1 and 2nd motor M 2, there is further provided an electric motor that can be rotated by a wheel, for example, 3rd motor M 3, and hybrid control means 5 2 is provided with first motor M 1 and / or Alternatively, instead of or in addition to the second electric motor M2, regeneration may be performed using the third electric motor M3 as the electric motor. As this motor M3, Such as an electric motor that is operatively connected to the motor 8, an electric motor that is operatively provided on the output shaft 22, and an electric motor that drives a wheel (second driving wheel) different from the driving wheel 38. Further, in the above-described embodiment, the automatic transmission units 20, 7 2 are provided in the power transmission path between the transmission member 18, which is the differential member 11, that is, the output member of the power distribution mechanism 16, and the drive wheels 38. For example, a continuously variable transmission (CVT), which is a kind of automatic transmission, is a constant-combination parallel two-shaft type well known as a manual transmission, but with a select cylinder and a shift cylinder. Other types of power transmission devices (transmissions) are provided, such as an automatic transmission that can automatically switch gears, and a synchronous mesh type manual transmission that switches gears by manual operation. It may be. In the case of the continuously variable transmission (C VT), the power distribution mechanism 16 is brought into a constant speed change state as a whole so as to be in a stepped speed change state. The stepped speed change state means that power is transmitted exclusively through a mechanical transmission path without using an electric path. Alternatively, in the continuously variable transmission, a plurality of fixed gear ratios are stored in advance so as to correspond to the gear positions in the stepped transmission, and the automatic transmission unit 20 uses the plurality of fixed gear ratios. , 72 2 may be executed. Alternatively, the present invention can be applied even if the automatic transmission units 20 and 72 are not necessarily provided.
また、 前述の実施例の切換装置 4 6は、複数種類のシフトポジションを選択 するために操作されるシフトレバ一 4 8を備えていたが、 そのシフトレバ一 4 8 に替えて、 例えば押しポタン式のスィッチゃスライド式スィッチ等の複数種類の シフトポジションを選択可能なスィツチ、 或いは手動操作に因らず運転者の音声 に反応して複数種類のシフトポジションを切り換えられる装置や足の操作により 複数種類のシフトポジションを切り換えられる装置等であつてもよい。 また、 シ フトレバー 4 8が 「M」 ポジションへ操作されることにより、 変速レンジが設定 されるものであつたが変速段が設定されることすなわち各変速レンジの最高速変 速段が変速段として設定されてもよい。 この場合、 自動変速部 2 0、 7 2では変 速段が切り換えられて変速が実行される。 例えば、 シフトレバ一 4 8が 「M」 ポ ジシヨンにおけるアップシフト位置 「十」 またはダウンシフト位置 「一」 へ手動 操作されると、 自動変速部 2 0では第 1速ギヤ段乃至第 4速ギヤ段の何れかがシ フトレバー 4 8の操作に応じて設定される。 In addition, the switching device 46 of the above-described embodiment includes a shift lever 48 that is operated to select a plurality of types of shift positions. Instead of the shift lever 48, for example, a push button type can be used. A switch that can select multiple types of shift positions, such as a slide switch, or a device that can switch between multiple types of shift positions in response to the driver's voice regardless of manual operation A device that can switch the shift position may be used. In addition, when the shift lever 48 is operated to the “M” position, the shift range is set, but the shift stage is set, that is, the highest speed shift stage of each shift range is set as the shift stage. It may be set. In this case, in the automatic transmission units 20 and 72, the speed change stage is switched and the shift is executed. For example, the shift lever 4 8 is manually moved to the upshift position “10” or downshift position “1” in the “M” position. When operated, the automatic transmission unit 20 sets one of the first to fourth gears according to the operation of the shift lever 48.
なお、 上述したのはあくまでも一実施形態であり、本発明は当業者の知識に 基づいて種々の変更、 改良を加えた態様で実施することができる。  The above description is only an embodiment, and the present invention can be carried out in various modifications and improvements based on the knowledge of those skilled in the art.

Claims

請求の範囲 The scope of the claims
1 . エンジンの出力を第 1電動機およぴ伝達部材へ分配する差動機構と該伝達部材 から駆動輪への動力伝達経路に設けられた第 電動機とを有して電気的な無段変1. An electric stepless motor having a differential mechanism that distributes engine output to the first motor and the transmission member, and a first motor provided in a power transmission path from the transmission member to the drive wheels.
5 速機として作動可能な無段変速部と、 前記動力伝達経路の一部を構成する変速部 とを備えた車両用駆動装置の制御装置であつて、 A control device for a vehicle drive device, comprising: a continuously variable transmission that can operate as a 5-speed machine; and a transmission that forms part of the power transmission path,
前記差動機構に備えられ、 前記無段変速部を電気的な無段変速作動可能な無段 変速状態と前記無段変速部を電気的な無段変速作動しない非無段変速状態とに選 択的に切り換えるための差動状態切換装置と、 The differential mechanism includes a continuously variable transmission state in which the continuously variable transmission unit can be operated with an electrical continuously variable transmission, and a continuously variable transmission state in which the continuously variable transmission unit is not operated with an electrical continuously variable transmission. A differential state switching device for selectively switching;
0 所定の車両走行時に比較して大きな車両駆動力或いは駆動力源ブレーキが必要 なときには、前記無段変速部と前記変速部とで形成される総合変速比を所定の車 雨走行時に比較して低車速側に言 する変速制御手段と、  0 When a large vehicle driving force or driving force source brake is required as compared with a predetermined vehicle traveling time, an overall transmission ratio formed by the continuously variable transmission unit and the transmission unit is compared with a predetermined vehicle raining traveling time. Shift control means for speaking to the low vehicle speed side;
前記変速制御手段により総合変速比が所定の車両走行時に比較して低車速側に 設定されたときに、必要な車両駆動力或いは駆動力源ブレーキが得られない場合 5 には、 前記無段変速部を無段変速状態から ^無段変速状態へ切り換える切換制御 手段と  In the case where the required vehicle driving force or driving force source brake cannot be obtained when the overall speed ratio is set to a low vehicle speed side compared to when the vehicle is traveling a predetermined vehicle by the speed change control means, Switching control means for switching the section from a continuously variable transmission state to a continuously variable transmission state
' を、 含むことを特徴とする車両用駆動装置の制御装置。  A control device for a vehicle drive device, comprising:
2 . エンジンの出力を第 1電動機および伝達部材へ分配する差動機構と該伝達部材 から駆動輪への動力伝達経路に設けられた第 1電動機とを有して電気的な無段変0 ' 速機として作動可能な無段変速部と、前記動力伝達経路の一部を構成する変速部 とを備えた車両用駆動装置の制御装置であつて、  2. It has an electric stepless transmission mechanism having a differential mechanism that distributes engine output to the first motor and the transmission member, and a first motor provided in the power transmission path from the transmission member to the drive wheel. A control device for a vehicle drive device comprising: a continuously variable transmission that can operate as a speed machine; and a transmission that forms part of the power transmission path,
前記差動機構に備えられ、 前記無段変速部を電気的な無段変速作動可能な無段 変速状態と前記無段変速部を電気的な無段変速作動しない非無段変速状態とに選 択的に切り換えるための差動状態切換装置と、 The differential mechanism includes a continuously variable transmission state in which the continuously variable transmission unit can be operated with an electrical continuously variable transmission, and a continuously variable transmission state in which the continuously variable transmission unit is not operated with an electrical continuously variable transmission. A differential state switching device for selectively switching;
5 所定の車両走行時に比較して大きな車両駆動力或いは駆動力源ブレーキが必要 なときには、前記無段変速部と前記変速部とで形成される総合変速比を所定の車 両走行時に比較して低車速側に設定する変速制御手段と、  5 When a large vehicle driving force or driving force source brake is required as compared to when the vehicle is traveling, the overall gear ratio formed by the continuously variable transmission unit and the transmission unit is compared with that when the vehicle is traveling. Shift control means for setting on the low vehicle speed side;
前記変速制御手段により総合変速比が所定の車両走行時に比較して低車速側に 設定されたときに、前記第 1電動機および Zまたは第 電動機の負荷トルクが許 容範囲でない場合には、前記無段変速部を無段変速状態から非無段変速状態へ切 り換える切換制御手段と The overall speed ratio is reduced to a lower vehicle speed side than the predetermined vehicle travel time by the speed change control means. When set, if the load torque of the first motor and Z or the first motor is not within an allowable range, a switching control means for switching the continuously variable transmission unit from the continuously variable transmission state to the continuously variable transmission state. When
を、 含むことを特徴とする車両用駆動装置の制御装置。  A control device for a vehicle drive device characterized by comprising:
5 3 . 前記所定の車両走行時に比較して大きな車両駆動力或いは駆動力源ブレーキが 必要なときとは、登坂路走行時或いは降坂路走行時である請求項 1または 2の車 両用駆動装置の制御装置。  5. The time when the vehicle driving force or the driving force source brake is larger than when the predetermined vehicle is traveling is when traveling on an uphill road or traveling on a downhill road. Control device.
4 . エンジンの出力を第.1電動機および伝達部材へ分配する差動機構と該伝達部材 から駆動輪への動力伝達経路に設けられた第 2電動機とを有して電気的な無段変 4. It has a differential mechanism that distributes the engine output to the first motor and the transmission member, and a second electric motor provided in the power transmission path from the transmission member to the drive wheels.
10 速機として作動可能な無段変速部を備えた車両用駆動装置の制御装置であつて、 前記差動機構に備えられて、 該差動機構の差動作用を制限することにより前記 無段変速部の電気的な無段変速機としての作動を制限する差動制限装置と、 減速走行中には、 エンジンブレーキによる制動トルクを得る為に、 l己差動機 構の差動作用を制限するェンジンブレーキ制御手段とA control device for a vehicle drive device including a continuously variable transmission that can operate as a 10-speed machine, the control device being provided in the differential mechanism, and limiting the differential action of the differential mechanism. A differential limiting device that limits the operation of the transmission unit as an electric continuously variable transmission, and in order to obtain braking torque from the engine brake during deceleration, l Limits the differential action of the self-differential mechanism Engine brake control means and
5 を、 含むことを特徴とする車両用駆動装置の制御装置。  5. A control device for a vehicle drive device, comprising:
5 . 前記エンジンブレーキ制御手段は、減速走行中には、前記無段変速部の差動機 ' 構を非差動状態とするものである請求項 4の車両用駆動装置の制御装置。  5. The control device for a vehicle drive device according to claim 4, wherein the engine brake control means sets the differential mechanism of the continuously variable transmission portion to a non-differential state during deceleration traveling.
6 . 前記エンジンブレーキ制御手段は、減速走行中には、前記差動制限装置による 制限量を変化させるものである請求項 4または 5の車両用駆動装置の制御装置。 0 7 . 前記ェンジンは筒内圧力変化抑制運転が可能であり、  6. The control device for a vehicle drive device according to claim 4 or 5, wherein the engine brake control means is configured to change a limit amount by the differential limiting device during traveling at a reduced speed. 0 7. The engine is capable of suppressing in-cylinder pressure change operation,
前記エンジンブレーキ制御手段は、減速走行中には、前記エンジンの筒内圧力 変化抑制量を変化させるものである請求項 4乃至 6のいずれかの車両用駆動装置 の制御装置。  The vehicle drive device control device according to any one of claims 4 to 6, wherein the engine brake control means changes an in-cylinder pressure change suppression amount of the engine during deceleration traveling.
8 . 減速走行中には車両の目標減速度が得られるように、前記第 2電動機で回生さ 5 せることが可能であるか否かに応じてェンジンブレーキによる制動トルクを決定 する目標減速度制御手段を更に備え、  8. Target deceleration that determines the braking torque by the engine brake depending on whether or not the second motor can be regenerated so that the target deceleration of the vehicle can be obtained during deceleration. Further comprising control means,
前記ェンジンブレーキ制御手段は、該ェンジンブレーキによる制動トルクが得 られるように前記差動機構の差動作用を制限するものである請求項 4乃至 7のい ずれかの車両用駆動装置の制御装置。 8. The engine brake control means limits the differential action of the differential mechanism so that a braking torque by the engine brake can be obtained. A control device for a vehicle drive device.
9 . エンジンの出力を第 1電動機および伝達部材へ分配する差動機構と該伝達部材 から駆動輪への動力伝達経路に設けられた第 1電動機とを有する差動部を備えた 車両用駆動装置の制御装置であつて、  9. Vehicle drive device including a differential unit having a differential mechanism that distributes engine output to the first motor and the transmission member, and a first motor provided in a power transmission path from the transmission member to the drive wheels. The control device of
5 前記差動機構に備えられて、 該差動機構の差動作用を制限することにより前記 差動部の差動作用を制限する差動制限装置と、 5 A differential limiting device provided in the differential mechanism for limiting the differential action of the differential section by limiting the differential action of the differential mechanism;
減速走行中には、 エンジンブレーキによる制動トルクを得る為に、前記差動部 の差動作用を制限するェンジンブレーキ制御手段と  During deceleration traveling, engine braking control means for limiting the differential action of the differential section in order to obtain braking torque by the engine brake;
を、 含むことを特徴とする車両用駆動装置の制御装置。 A control device for a vehicle drive device characterized by comprising:
0 1 0 . 前記エンジンブレーキ制御手段は、減速走行中には、 前記差動部を差動作用 をしない非差動状態とするものである請求項 9の車両用駆動装置の制御装置。 10. The control device for a vehicle drive device according to claim 9, wherein the engine brake control means sets the differential portion to a non-differential state that does not perform a differential action during deceleration traveling.
1 1 . 前記エンジンブレーキ制御手段は、減速走行中には、 前記差動制限装置によ る制限量を変ィヒさせるものである請求項 9または 1 0の車両用駆動装置の制御装 置。11. The control device for a vehicle drive device according to claim 9 or 10, wherein the engine brake control means changes a limit amount by the differential limiting device during deceleration traveling.
5 1 2 . 前記エンジンは筒内圧力変化抑制運転が可能であり、 5 1 2. The engine is capable of suppressing in-cylinder pressure change operation,
前記エンジンブレーキ制御手段は、減速走行中には、前記エンジンの筒内圧力 ' 変化抑制量を変化させるものである請求項 9乃至 1. 1のいずれかの車両用駆動装 置の制御装置。 '  The control device for a vehicle drive device according to any one of claims 9 to 1.1, wherein the engine brake control means changes an in-cylinder pressure change change amount of the engine during deceleration traveling. '
1 3 . 減速走行中には車両の目標減速度が得られるように、 前記第 2電動機で回生0 させることが可能であるか否かに応じてエンジンブレーキによる制動トルクを決 定する目標減速度制御手段を更に備え、  1 3. Target deceleration that determines the braking torque by the engine brake depending on whether or not it is possible to regenerate with the second electric motor so that the target deceleration of the vehicle can be obtained during deceleration. Further comprising control means,
前記ェンジンブレーキ制御手段は、該ェンジンブレーキによる制動トルクが得 られるように前記差動部の差動作用を制限するものである請求項 9乃至 1 2のい ずれかの車両用駆動装置の制御装置。 The vehicle engine according to any one of claims 9 to 12, wherein the engine brake control means limits a differential action of the differential section so that a braking torque by the engine brake can be obtained. Control device.
5 1 4 . ェンジンの出力を第 1電動機および伝達部材へ分配する差動t!と該伝達部 材から駆動輪への動力伝達経路に設けられた第 2電動機とを する差動部を備え た車両用駆動装置の制御装置であつて、 5 1 4. A differential unit for distributing the output of the engine to the first motor and the transmission member and a second motor provided in the power transmission path from the transmission member to the drive wheel is provided. A control device for a vehicle drive device,
前記差動機構に備えられ、前記差 ίϋ部を差動作用が働く差動状態と該差動作用 をしない非差動状態とに選択的に切り換えるための差動状態切換装置と、 減速走行中に、 前記差動部が差動状態か否かに基づいて、 回生量を変更する回 生制御手段と The differential mechanism is provided in the differential mechanism, and the differential portion is operated in a differential action and the differential action. A differential state switching device for selectively switching to a non-differential state that does not perform, and a regenerative control means for changing a regenerative amount based on whether or not the differential unit is in a differential state during deceleration traveling When
を、 含むことを特徴とする車両用駆動装置の制御装置。  A control device for a vehicle drive device characterized by comprising:
5 . 前記回生制御手段は、 前記差動部が差動状態にあるときには、非差動状態に あるときに比較して前記回生量を多くするものである請求項 1 4の車両用駆動装 置の制御装置。  5. The vehicle drive apparatus according to claim 14, wherein the regeneration control means increases the regeneration amount when the differential portion is in a differential state as compared with when the differential portion is in a non-differential state. Control device.
6 . 前記エンジンは筒内圧力低減制御が可能であり、 6. The engine is capable of controlling in-cylinder pressure reduction,
前記回生制御手段は、前記ェンジンが筒内圧力低減制御を行つているときの筒 内圧力低減制御量に基づいて、 前記回生量を変更するものである請求項 1 4また は 1 5の車両用駆動装置の制御装置。  The vehicle regeneration apparatus according to claim 14 or 15, wherein the regeneration control means changes the regeneration amount based on an in-cylinder pressure reduction control amount when the engine is performing in-cylinder pressure reduction control. Control device for driving device.
7 . 前記回生制御手段は、前記エンジンへの燃料の供給が停止されているか否か に基づいて、 前記回生量を変更するものである請求項 1 4乃至 1 6のいずれかの 車両用駆動装置の制御装置。 7. The vehicle drive device according to any one of claims 14 to 16, wherein the regenerative control means changes the regenerative amount based on whether or not fuel supply to the engine is stopped. Control device.
PCT/JP2006/312953 2005-06-22 2006-06-22 Controller of drive device for vehicle WO2006137591A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/993,257 US8038571B2 (en) 2005-06-22 2006-06-22 Control device for vehicular drive apparatus
DE112006001718.7T DE112006001718B4 (en) 2005-06-22 2006-06-22 Control device for vehicle drive devices
CN2006800305249A CN101242979B (en) 2005-06-22 2006-06-22 Controller of drive device for vehicle

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-182675 2005-06-22
JP2005182675A JP4244966B2 (en) 2005-06-22 2005-06-22 Control device for vehicle drive device
JP2005-185738 2005-06-24
JP2005185738A JP4723931B2 (en) 2005-06-24 2005-06-24 Control device for vehicle drive device
JP2005184438A JP4274158B2 (en) 2005-06-24 2005-06-24 Control device for vehicle drive device
JP2005-184438 2005-06-24

Publications (1)

Publication Number Publication Date
WO2006137591A1 true WO2006137591A1 (en) 2006-12-28

Family

ID=37570592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312953 WO2006137591A1 (en) 2005-06-22 2006-06-22 Controller of drive device for vehicle

Country Status (2)

Country Link
DE (1) DE112006001718B4 (en)
WO (1) WO2006137591A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090118916A1 (en) * 2007-11-04 2009-05-07 Gm Global Technology Operations, Inc. Method to manage a high voltage system in a hybrid powertrain system
US20090118885A1 (en) * 2007-11-04 2009-05-07 Gm Global Technology Operations, Inc. System architecture for a blended braking system in a hybrid powertrain system
WO2009116418A1 (en) * 2008-03-18 2009-09-24 いすゞ自動車株式会社 Acceleration control apparatus for automobile dual-clutch transmission
CN101327734B (en) * 2007-06-20 2011-07-06 丰田自动车株式会社 Control device for vehicle power transmission device
CN101660605B (en) * 2008-08-29 2013-04-24 本田技研工业株式会社 Transmission of vehicle
CN104057815A (en) * 2013-03-22 2014-09-24 丰田自动车株式会社 Control system, control device, and control method for hybrid vehicle
CN109661339A (en) * 2016-08-24 2019-04-19 日立汽车***株式会社 Controller of vehicle
CN110094474A (en) * 2018-01-29 2019-08-06 丰田自动车株式会社 The control device of power transmission apparatus for vehicle
CN110290991A (en) * 2017-02-22 2019-09-27 日立汽车***株式会社 Vehicle console device
CN110329240A (en) * 2018-03-28 2019-10-15 丰田自动车株式会社 The control device of vehicle
CN111439253A (en) * 2020-03-31 2020-07-24 科力远混合动力技术有限公司 Method for calibrating pure electric drive mode shift point of hybrid electric vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014201352A1 (en) * 2014-01-27 2015-01-08 Schaeffler Technologies Gmbh & Co. Kg Drive arrangement for a motor vehicle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217025A (en) * 1998-02-03 1999-08-10 Fuji Heavy Ind Ltd Hybrid powered automobile
JP2000002327A (en) * 1998-06-16 2000-01-07 Toyota Motor Corp Shift control device for hybrid vehicle
JP2000346187A (en) * 1999-06-04 2000-12-12 Toyota Motor Corp Hybrid vehicle and its control method
JP2002089307A (en) * 2000-09-14 2002-03-27 Toyota Motor Corp Control device for variable cylinder engine and control device for vehicle
JP2003104090A (en) * 2001-09-28 2003-04-09 Jatco Ltd Parallel hybrid vehicle
JP2004050910A (en) * 2002-07-18 2004-02-19 Nissan Motor Co Ltd Hybrid vehicle
JP2004278317A (en) * 2003-03-12 2004-10-07 Toyota Motor Corp Vehicular speed reduction control device
JP2006002913A (en) * 2004-06-21 2006-01-05 Toyota Motor Corp Controller of driving gear for vehicle
JP2006044582A (en) * 2004-08-06 2006-02-16 Toyota Motor Corp Control device of driving device for vehicle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100696743B1 (en) * 1998-09-09 2007-03-19 루크 라멜렌 운트 쿠플룽스바우 베타일리궁스 카게 Drive train
JP3719339B2 (en) * 1998-11-09 2005-11-24 日産自動車株式会社 Variable valve controller for internal combustion engine
JP4244499B2 (en) 2000-05-25 2009-03-25 アイシン・エィ・ダブリュ株式会社 Control device and control method for hybrid vehicle
JP3852321B2 (en) 2001-10-22 2006-11-29 トヨタ自動車株式会社 HV drive structure and method with cranking support torque increasing means
JP3750626B2 (en) 2002-04-09 2006-03-01 トヨタ自動車株式会社 Control device for hybrid vehicle
JP4127157B2 (en) 2003-02-18 2008-07-30 トヨタ自動車株式会社 Control method of variable compression ratio engine
US6945905B2 (en) * 2003-10-22 2005-09-20 General Motors Corporation CVT hybrid powertrain fueling and engine stop-start control method
US7322902B2 (en) * 2004-05-10 2008-01-29 Toyota Jidosha Kabushiki Kaisha Control device for vehicular transmission mechanism

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217025A (en) * 1998-02-03 1999-08-10 Fuji Heavy Ind Ltd Hybrid powered automobile
JP2000002327A (en) * 1998-06-16 2000-01-07 Toyota Motor Corp Shift control device for hybrid vehicle
JP2000346187A (en) * 1999-06-04 2000-12-12 Toyota Motor Corp Hybrid vehicle and its control method
JP2002089307A (en) * 2000-09-14 2002-03-27 Toyota Motor Corp Control device for variable cylinder engine and control device for vehicle
JP2003104090A (en) * 2001-09-28 2003-04-09 Jatco Ltd Parallel hybrid vehicle
JP2004050910A (en) * 2002-07-18 2004-02-19 Nissan Motor Co Ltd Hybrid vehicle
JP2004278317A (en) * 2003-03-12 2004-10-07 Toyota Motor Corp Vehicular speed reduction control device
JP2006002913A (en) * 2004-06-21 2006-01-05 Toyota Motor Corp Controller of driving gear for vehicle
JP2006044582A (en) * 2004-08-06 2006-02-16 Toyota Motor Corp Control device of driving device for vehicle

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101327734B (en) * 2007-06-20 2011-07-06 丰田自动车株式会社 Control device for vehicle power transmission device
US20090118916A1 (en) * 2007-11-04 2009-05-07 Gm Global Technology Operations, Inc. Method to manage a high voltage system in a hybrid powertrain system
US20090118885A1 (en) * 2007-11-04 2009-05-07 Gm Global Technology Operations, Inc. System architecture for a blended braking system in a hybrid powertrain system
US8214120B2 (en) * 2007-11-04 2012-07-03 GM Global Technology Operations LLC Method to manage a high voltage system in a hybrid powertrain system
US8594867B2 (en) * 2007-11-04 2013-11-26 GM Global Technology Operations LLC System architecture for a blended braking system in a hybrid powertrain system
WO2009116418A1 (en) * 2008-03-18 2009-09-24 いすゞ自動車株式会社 Acceleration control apparatus for automobile dual-clutch transmission
JP2009222190A (en) * 2008-03-18 2009-10-01 Isuzu Motors Ltd Start control device of vehicular dual clutch type transmission
CN101660605B (en) * 2008-08-29 2013-04-24 本田技研工业株式会社 Transmission of vehicle
CN104057815A (en) * 2013-03-22 2014-09-24 丰田自动车株式会社 Control system, control device, and control method for hybrid vehicle
CN109661339A (en) * 2016-08-24 2019-04-19 日立汽车***株式会社 Controller of vehicle
CN109661339B (en) * 2016-08-24 2022-04-05 日立安斯泰莫株式会社 Vehicle control device
CN110290991A (en) * 2017-02-22 2019-09-27 日立汽车***株式会社 Vehicle console device
CN110290991B (en) * 2017-02-22 2022-06-03 日立安斯泰莫株式会社 Vehicle control device
CN110094474A (en) * 2018-01-29 2019-08-06 丰田自动车株式会社 The control device of power transmission apparatus for vehicle
CN110329240A (en) * 2018-03-28 2019-10-15 丰田自动车株式会社 The control device of vehicle
CN111439253A (en) * 2020-03-31 2020-07-24 科力远混合动力技术有限公司 Method for calibrating pure electric drive mode shift point of hybrid electric vehicle

Also Published As

Publication number Publication date
DE112006001718T5 (en) 2008-07-24
DE112006001718B4 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
JP4244966B2 (en) Control device for vehicle drive device
WO2006137591A1 (en) Controller of drive device for vehicle
JP4320650B2 (en) Control device for vehicle drive device
JP4192911B2 (en) Control device for vehicle drive device
JP4320649B2 (en) Control device for vehicle drive device
JP4457981B2 (en) Control device for vehicle drive device
JP4997986B2 (en) Control device for hybrid vehicle
JP4983453B2 (en) Control device for vehicle drive device
JP4973277B2 (en) Electric oil pump control device for vehicle
JP4215032B2 (en) Control device for vehicle drive device
JP4581855B2 (en) Control device for vehicle drive device
WO2006129841A1 (en) Vehicle drive device controller
WO2006093356A1 (en) Control device for vehicle drive device
WO2006046770A1 (en) Controller of drive device for vehicle
WO2006098483A1 (en) Controller of drive device for vehicle
WO2006123841A1 (en) Vehicle drive device controller
WO2005082662A1 (en) Controller of driving apparatus for cars
JP2006240608A (en) Control unit of driving gear for vehicle
JP4274158B2 (en) Control device for vehicle drive device
JP4333636B2 (en) Control device for vehicle drive device
JP4311358B2 (en) Control device for vehicle drive device
JP4251159B2 (en) Control device for vehicle drive device
JP4723931B2 (en) Control device for vehicle drive device
JP4410655B2 (en) Control device for vehicle drive device
JP4222294B2 (en) Control device for vehicle drive device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680030524.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 11993257

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120060017187

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767570

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112006001718

Country of ref document: DE

Date of ref document: 20080724

Kind code of ref document: P