WO2006134654A1 - Sound absorbing structure - Google Patents

Sound absorbing structure Download PDF

Info

Publication number
WO2006134654A1
WO2006134654A1 PCT/JP2005/011051 JP2005011051W WO2006134654A1 WO 2006134654 A1 WO2006134654 A1 WO 2006134654A1 JP 2005011051 W JP2005011051 W JP 2005011051W WO 2006134654 A1 WO2006134654 A1 WO 2006134654A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
wave
sound absorbing
absorbing material
configuration
Prior art date
Application number
PCT/JP2005/011051
Other languages
French (fr)
Japanese (ja)
Inventor
Yutaka Kataoka
Original Assignee
Yutaka Kataoka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37532026&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006134654(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Yutaka Kataoka filed Critical Yutaka Kataoka
Priority to PCT/JP2005/011051 priority Critical patent/WO2006134654A1/en
Priority to JP2007521043A priority patent/JP4728331B2/en
Publication of WO2006134654A1 publication Critical patent/WO2006134654A1/en

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general

Definitions

  • the present invention relates to a wide-band sound wave, particularly in a space where sound absorption and modulation are required, such as audio visual, concert hall, living room, classroom, office / factory, vehicle, road noise barrier, and building wall.
  • the present invention relates to a sound absorbing structure capable of absorbing or insulating sound waves in a low frequency range.
  • a sound absorbing material that can cut off or absorb the sound of the band corresponding to it is also required in consideration of the surrounding environment that emits sound.
  • the frequency range of sound waves to be played is determined internationally (for example, in Dolby Digital, the minimum frequency is 20 Hz).
  • the lowest frequency that can be played is determined by the speed of sound (approx. 340 mZs) ⁇ longest side length (m) of the playback environment (sound speed Z longest side length).
  • the lowest frequency (internationally determined) cannot be played.
  • an existing sound absorbing material can only absorb sound waves having a frequency equal to a wavelength twice as long as its thickness (if the half wavelength is the thickness of the sound absorbing material, the sound waves are emitted and reflected).
  • the reflected sound in the frequency band and the transmitted sound in the wide frequency band that leaks outside reduce the working environment and cause noise pollution to the surroundings.
  • highway noise cannot be sound-insulated at low frequencies, and has become an environmental problem along with low-frequency pollution generated in buildings.
  • the present invention has been devised in view of the above-described problems.
  • the present invention makes it possible to reproduce a target bass sound in a small room without absorbing broadband sound waves and leaking them outside, and to prevent noise. It is intended to provide a sound absorbing structure that can prevent harm.
  • the present invention has been created by reconstructing the theory of sound absorption based on new knowledge to be described later, which is different from the conventional wave theory.
  • the process starts with the explanation of the conventional wave theory, describes the general properties of the sound absorbing material with the conventional structure, then presents new knowledge, and finally explains the structure of the present invention based on the new knowledge. .
  • Fig. 37 shows the positions of silent air molecules (indicated by circles) and the positions of air molecules of one-wavelength sound waves when only the first wave is oscillated. It is a drawing showing the contrast with the figure (resonance has occurred! /, What !, state).
  • the vertical and horizontal lines in the upper schematic diagram showing the position of air molecules in the silent state indicate that the range in which the molecules are bound and moved is limited. In this state, each air molecule is attracted to each other by the intermolecular force and is held in the state where it is bound by the panel.
  • the lower schematic diagram showing the position of the air molecules of the sound wave of one wavelength when the sound wave is oscillated only for the first wave below is the case where the wall 40 is on the left side and the sound wave is oscillated.
  • the sound waves are longitudinal dense waves, and the air molecules that mediate them are attracted to each other by the intermolecular force as described above and are bound together in the panel.
  • the part where the molecular density is coarse is the negative pressure region, and there is a point where there is no atmospheric pressure fluctuation after that, and the part where the air molecules on the right side are dense is the positive pressure region. It becomes a state that there is a point of nothing.
  • the air molecules on the left wall 40 side (the molecules in contact with the wall always do not move) and the air molecules on the right side move and show as! .
  • FIG. 38 is a graph (FIG. 38) showing the pressure change at a certain point when there is such a sound wave oscillation. 37 shows the pressure change at one point when sound waves are oscillated as shown in the lower figure.
  • the moving distance of the air molecules in the sound wave is about 0.1 mm even at a wavelength lm (assuming 360 Hz) and a large volume. In other words, it moves only about 1 / 10,000 of the wavelength. As the wavelength is longer, neighboring molecules move together, so the distance variation between the two molecules is less than when the wavelength is short. Therefore, the power to shake things is weakened. For this reason, low sounds can only be heard when they are loud.
  • FIG. 39 and FIG. 40 are a schematic diagram showing the position of air molecules when one wave of sound wave is emitted only in the first wave when there are parallel walls 40 and 41, and one piece of air. It is the figure which shows the pressure of a molecule
  • the negative pressure region indicated by arrows at both ends is the movement range of a certain air molecule. Since the air molecules in contact with the walls cannot move (the molecules in contact with both wall surfaces 40 and 41 do not move as shown in the figure), there is eventually one between the walls. Only a mountain and one valley (a mountain-valley pair) can be done. Therefore, the minimum resonance frequency is determined by the distance between the walls 40 and 41. If there is only one mountain or only one valley between walls (unpaired state), it cannot be made (depending on the fact that it cannot move to create such vibrations) .
  • a sound wave having a frequency lower than the minimum resonance frequency cannot be emitted. If the reflection-side wall 41 absorbs sound waves as shown in FIG. 42, reflection does not occur, and sound waves of low V and frequency can be emitted as much as possible.
  • a typical sound-absorbing material has a sponge-like shape (foam-like shape) in which air is dispersed and injected into plastic or the like, and soap bubbles are gathered together. Some of them are shaped by collecting and entwining fibers.
  • the former sound absorbing material is used for explanation. If the sound-absorbing material 50 is installed near one side with both wall surfaces 40 and 41 as shown in Fig. 39, it will be exactly as shown in Fig. 45.
  • the transmission efficiency increases if the pressure difference between the films is large (the same applies to the fiber type sound absorbing material). However, if the distance between the membranes is increased (that is, the bubble diameter is increased), the transmission medium (intervening between them) is reduced, so that the attenuation efficiency is deteriorated. On the other hand, when the film thickness is increased, the pressure difference can be increased before and after the film.
  • the film itself becomes a rigid body and the film itself does not shake due to air molecules (the film molecules Since there is no effect of being converted to heat by viscosity), the transmission efficiency is reduced (the same applies to fiber type sound absorbing materials).
  • the thinner the film thickness the more efficiently the vibrations of air molecules can be caught.
  • the ability to convert the vibrations of the film into heat is reduced and effective sound absorption is not possible.
  • the wave that passes through the sound absorbing material 50 and hits the wall 41 on the other side bounces off as it is.
  • the return wave (the bounce wave) No interference.
  • the lowest reproducible frequency in a specific room is determined by the length of the longest side of the room. However, if the sound wave is absorbed by the wall surface 41, reflection does not occur, and as a result, no resonance occurs, so that the lowest resonance frequency of the room can be lowered.
  • a longitudinal sound wave is converted into an air flow (transverse wave) by passing through a narrowed sound path in which the reduction rate of the opening area gradually decreases, and the sound is muted without depending on the wavelength. This is the knowledge that this is possible.
  • the volume of the molecule is not considered in the ideal gas handled by the wave theory formula, but in the actual air molecule, this phenomenon occurs because the nitrogen and oxygen molecules have a volume (excluded volume). To do.
  • the sound wave is compressed by the traveling direction and the central force of the sound path 12 (the reflection angle is gradually increased in the traveling direction).
  • the movement vector gathers in the direction of travel due to the viscosity of the air molecules, and the molecules are pushed out and compressed).
  • the position (vibration center) where there is a high pressure but there is no place for the molecule has to move (the intersection of the vertical line and the horizontal line on the drawing is the position that the molecule should originally be.
  • the travel direction is slightly smaller than that position, and further shifted toward the center of the sound path 12). This is a phenomenon that occurs because air is attracted to each other by intermolecular forces (high viscosity between molecules).
  • the dark colored molecules show that the binding positions (vibration centers) themselves of the air molecules are moving more greatly, while the light colored molecules are the binding positions of the air molecules ( Vibration center) itself moving force Less than dark colored molecules. That is, molecules closer to the constricted portion 11 wall surface 10 are compressed and shifted in the traveling direction and further toward the center of the sound path 12. In fact, the number of molecules is so large that it moves a distance much larger than the vibrational width of the molecule. On the other hand, such a shift is small at a position close to the center position of the sound path 12 of the constricted portion 11 (middle portion).
  • the air molecules are pulled backward, but the pulling force also weakens the shape force of the sound path as described above (because the cross-sectional area of the constricted part 11 of the sound path 12 is smaller than the entrance part) This is because the number of force molecules to be pulled back is small, so it is weaker than the entrance.)
  • the transverse wave continues to move to the right in Fig. 4 above.
  • the sound wave is compressed by the traveling direction and the central force of the sound path 12, that is, the reflection angle is gradually directed in the traveling direction. If the angle is changed, the movement vector gathers in the traveling direction due to the viscosity of the air molecule, and the molecule is pushed out and compressed. At that time, the wall 10 of the sound path 12 is high in pressure but has high molecular viscosity with no molecular destination (air is attracted to each other by intermolecular force and high in viscosity), so the vibration position has to move. .
  • Such movement of the vibrating position is converted into wind (transverse wave) (the vibrational force of each oscillating molecule shifts its original vibrational position force in the traveling direction of the center of the sound path 12,
  • the movement of the entire molecular group, ie, wind is applied to the dense wave, which is a longitudinal wave.
  • the narrower the narrowed portion 11 the greater the effect of converting the acoustic wave that is the longitudinal wave into the wind that is the transverse wave.
  • the sound wave with vibration is reflected to be dispersed on the wall surface 10 of the constriction 11 and is weakened during the reflection. End up.
  • the vertical line indicates the wavefront of the sound wave
  • the arrow line indicates the direction of the reflected sound.
  • the narrowed sound path has a fixed length and thus functions as a resonance tube. In other words, it greatly prevents the passage of sound waves with a wavelength equal to or longer than twice the length from the opening of the sound path to the center of the constriction.
  • the resonance phenomenon is intensified when the resonating frequency of sound waves continues, but strong resonance does not occur in the sound path where the reduction rate of the aperture area gradually decreases. Therefore, the sound wave that passes through the constriction becomes a sound wave having a wavelength shorter than the length of the sound path, and attenuates the sound wave having a frequency lower than that without passing through it.
  • the present inventor has further conceived of filling the sound absorbing material 20 into the sound path 12 configured as described above, as shown in FIG.
  • the function of the sound absorbing material 20 in this case is fundamentally different from the function of the sound absorbing material used as the conventional configuration described above.
  • the cross-sectional configuration is at least a configuration in which a sound absorbing material is filled in the sound path 12 in which the narrowed portion 11 is configured so that the reduction rate of the opening area gradually decreases on the entry side
  • the sound wave passing through the sound path 12 is gathered in the traveling direction as the air molecules constituting it gradually approach the narrowest constriction 11 from the entrance, and the molecules are pushed out and compressed.
  • the pressure of the molecule is high, but there is no place for molecules, and the viscosity of the molecule is high.Therefore, the vibration position moves and loses force, and this movement of the vibration position causes wind (transverse wave).
  • each oscillating molecule is its original
  • the vibrational position force of the sound path 12 also shifts in the traveling direction of the center position of the sound path 12, so that the coarse wave, which is a longitudinal wave, is moved into the entire molecular group, that is, converted into wind.
  • the configuration of the present invention is as described above.
  • the present inventor is not limited to the above-described configuration in which the reduction rate of the opening area gradually decreases on the entry side of the configuration of the constricted portion 11 of the sound path 12.
  • the increase rate of the opening area behind the narrowed portion 11 gradually increases. (Because it is formed in a curved surface), it has both the longitudinal and transverse wave characteristics that come out behind it. The wave was damped by causing the pressure (sound pressure) to drop and the speed to drop.
  • the first principle is that when the above-mentioned wave-like object passes through a rapidly expanding part, it is pulled by the attractive force between molecules of air, and the amplitude of molecules is hindered, rather than inversely proportional to the square of the distance. In other words, the sound pressure (sound volume) decreases, and this sound pressure decreases, so that the sound can be muted.
  • the second principle is that, as described above, the wind with non-uniform wind speed as shown by the thick line in FIG. Therefore, the sound can be muted without returning to the longitudinal wave (sound wave).
  • FIG. 6 is an explanatory diagram for explaining the principle of the decrease in the sound pressure. As shown in the figure, the positive pressure region from the shape in which the decrease rate of the opening area gradually decreases to the central constriction part 11 and the second half force of this constriction part 11 gradually increases the increase rate of the opening area. A reduced pressure region is formed.
  • the cross-sectional area through which the sound wave passes rapidly increases in an R shape, so that the sound pressure decreases. If the rate of increase of the opening area increases rapidly, as shown in the figure, the sound wave is not amplified (ie, the sound does not increase like a rat). Sounds below the frequency determined by the opening area and shape (sounds in the low frequency range) are reduced in sound pressure due to the properties of the rear horn as described above, and do not come out of the opening. Therefore, the bass cannot pass. That is, in the shape where the increase rate of the opening area gradually increases, the opening diameter rapidly increases toward the outer side, and the sound pressure decreases toward the lower sound side, so that it is attenuated.
  • the transverse wave that is, the wind itself
  • the longitudinal wave that is, the sound wave
  • FIG. 7 is an explanatory diagram for explaining the principle of the decrease in speed at a portion where the increase rate of the opening area gradually increases.
  • a deceleration region is formed from the second half of the central constricted portion 11 to a portion where the increase rate of the opening area gradually increases.
  • the sound wave is radiated like a point sound source from the narrowest point. As shown, it becomes spherical.
  • the sound wave is bent toward the opening at the right end. Similarly, the wind direction is also bent. At this stage, waves with both longitudinal and transverse properties are decelerated.
  • the present inventor has repeatedly studied the configuration for further increasing the attenuation efficiency of the waves having both the longitudinal wave and the transverse waves, and decided to use the following configuration.
  • a rear wall 30 parallel to the exit opening is provided at a position away from the exit rear of the portion where the increase rate of the opening area gradually increases.
  • the force of depressurizing and decelerating is expected. Furthermore, with the configuration substantially the same as the first configuration of the present invention, even a slight sound wave is completely converted into an air flow, and the wavelength is changed. It is muted without depending. Further, the fine sound wave is reflected so as to be dispersed between the wall surface 10 and the rear wall surface 30 of the constriction 11 and is weakened during the reflection. That is, at the same time as the sound pressure is lowered, the tip of the wavefront is almost spherical and hits the rear wall 30 little by little, so that the force that pushes the rear wall 30 of the converted sound wave weakens. Therefore, the rear wall surface 30 is located behind the exit side where the increase rate of the opening area is large. As long as it is installed parallel to the mouth, it does not work even if it is a wall of the room (no need to make a special wall).
  • the above configuration is further provided with a plurality of constrictions 11 parallel to each other so that the entrance side opening force of the constrictions 11 is arranged in a plane.
  • a sound absorbing structure having a constricted portion configured such that the rate of decrease in the opening area gradually decreases on the entry side, and conversely the rate of increase in the opening area gradually increases on the exit side.
  • the rear opening 30 has a parallel rear wall 30 (see Fig. 10).
  • the wind that flows along the wall 10 that spreads behind, and that flows along the flow sideways crosses the cross-section side by side. Therefore, both wind pressure and speed are almost zero. At this time, even if the wind contains vibration components, they collide with each other in the opposite direction, and the vibration and wind cancel each other.
  • this configuration has a configuration having the narrowed portion 11 that configures the sound path 12, and the configuration of the narrowed portion 11 has a reduction rate of the opening area at least on the entry side as a cross-sectional configuration.
  • Force that is configured to gradually decrease, or conversely on the exit side, the increase rate of the opening area is gradually increased, for example, two or more cylinders in parallel at regular intervals When it is provided and the plane force is also seen, such a configuration is formed between the cylinders.
  • the rear wall 30 may also be provided on the rear side.
  • the constricted portion 11 (of course has an entrance side opening and an exit side opening) on two planes facing a cylinder or a prism (including a polygonal column), and at least the entrance side is included.
  • the opening may be provided with a structure in which the opening area needs to be configured so that the reduction rate of the opening area gradually decreases), and it is easy to create a block shape with a mold. ).
  • a plurality of the constricted portions 11 can be provided continuously in the direction of the sound path 12 so as to be assembled in a flat shape or to communicate with the sound path 12.
  • the sound absorbing / muffling effect of the sound absorbing structure according to the present invention is enhanced.
  • the absorption structure according to the present invention described above, there is no constant reflection distance between the structure and the wall (including the rear wall surface 30) facing the structure, so that a resonance node cannot be created. Since resonance does not occur, resonance in a closed space can be prevented.
  • the present invention enables uniform sound absorption independent of thickness, size, and frequency, and at the same time, the sound wave attenuation rate on the exit side of this structure takes a large value regardless of frequency. .
  • the sound absorbing structure according to claim 1 is configured so that the reduction ratio of the opening area gradually decreases at least on the entrance side of the sound path through which the sound wave passes, which is composed of wall surfaces.
  • the basic feature is that it has a stenosis part.
  • the sound absorbing structure of claim 3 has a cross-sectional configuration of a sound path through which sound waves pass, which is constituted by a wall surface, and the reduction rate of the opening area gradually decreases on the entry side, and reverses on the exit side. It has a narrowed portion configured such that the increase rate of the opening area gradually increases.
  • the sound absorbing structure according to claim 5 is characterized in that a rear wall surface parallel to the exit opening is provided at a position away from the exit side of the sound path of the structure according to claim 3.
  • a sound absorbing structure according to claim 7 is characterized in that a plurality of the sound absorbing structures according to claim 3 are provided in parallel so as to be arranged in a plane.
  • the sound absorbing structure according to claim 9 is provided with a plurality of the sound absorbing structures according to claim 3 arranged in parallel so as to be arranged in a plane, and has a rear wall surface parallel to the outlet opening. It features.
  • FIG. 1 is a schematic explanatory diagram showing a basic configuration of the present invention.
  • FIG. 2 is a diagram illustrating the principle of the above configuration.
  • FIG. 3 is also an explanatory diagram of the principle of the configuration of the present invention.
  • FIG. 4 is an explanatory diagram showing the direction of sound wave reflection in the present invention.
  • FIG. 5 is a configuration explanatory view of the present invention in which a sound absorbing material 20 is filled in a sound path 12.
  • FIG. 6 is an explanatory diagram for explaining the principle of sound pressure reduction according to the configuration of the present invention.
  • FIG. 7 is an explanatory diagram for explaining the principle of the decrease in speed at a portion where the increase rate of the opening area gradually increases.
  • FIG. 8 is a diagram illustrating the configuration of the present invention having a rear wall surface 30 parallel to the outlet opening.
  • FIG. 9 is a structural explanatory view of the present invention in which a plurality of sound absorbing structures having the narrowed portion are provided in parallel so as to be arranged in a plane.
  • FIG. 10 is a structural explanatory view of the present invention further having a rear wall surface 30 parallel to the outlet opening.
  • FIG. 11 is a plan sectional view showing the internal structure of an anechoic chamber 60 used in the example of the present invention.
  • FIG. 12 is an explanatory diagram showing a schematic configuration of an internal structure of an anechoic chamber 60 used for comparison in each example.
  • FIG. 13 is an explanatory diagram showing a configuration in which the configuration of the constricted portion 11 is used inside the anechoic chamber 60 as Example 1.
  • FIG. 14 is a schematic diagram schematically showing the sound wave measurement state of FIG.
  • FIG. 15 is a schematic diagram schematically showing the sound wave measurement state of FIG.
  • FIG. 16 is a graph of measurement results obtained by obtaining the reflectance and transmittance in the case of FIG. 15 based on FIG.
  • FIG. 17 is a schematic diagram of a configuration in which the fibrous sound absorbing material 20 is filled in the constricted portion 11 in FIG.
  • FIG. 18 is a graph of measurement results obtained by obtaining the reflectance and transmittance in the case of FIG. 17 based on FIG.
  • FIG. 19 is an explanatory diagram showing a configuration according to Example 3.
  • FIG. 20 is a graph of measurement results obtained by obtaining the reflectance and transmittance in the case of FIG. 19 based on FIG.
  • FIG. 22 is a graph of measurement results obtained by obtaining the reflectance and transmittance in the case of FIG. 21 based on FIG.
  • FIG. 24 is a graph of measurement results obtained by obtaining the reflectance and transmittance in the case of FIG. 23 based on FIG.
  • FIG. 26 is a graph of measurement results obtained by obtaining the reflectance and transmittance in the case of FIG. 25 based on FIG.
  • FIG. 28 is a graph of measurement results obtained by obtaining the reflectance and transmittance in the case of FIG. 27 based on FIG.
  • FIG. 29 is an explanatory diagram showing the configuration according to the eighth embodiment.
  • FIG. 30 is a graph of measurement results obtained by obtaining the reflectance and transmittance in the case of FIG. 29 based on FIG.
  • FIG. 31 is an explanatory diagram showing a configuration according to the ninth embodiment.
  • FIG. 33 is an explanatory diagram showing a configuration according to Example 10.
  • FIG. 34 is a graph of measurement results obtained by obtaining the reflectance and transmittance in the case of FIG. 33 based on FIG.
  • FIG. 35 is a perspective view showing a configuration in which the narrowed portion 11 of the present invention is drilled in two planes facing a quadrangular column 64.
  • FIG. 36 is a perspective view showing a configuration in which the sound absorbing material 20 is provided in the sound path of FIG.
  • FIG.37 A diagram showing the position of silent air molecules, and the sound wave oscillated only for the first wave.
  • FIG. 39 is a schematic diagram showing the positions of air molecules when a sound wave of one wavelength is emitted only for the first wave when there are parallel wall surfaces 40 and 41.
  • ⁇ 41 It is an explanatory view showing a state when sound waves are reflected on the wall surface 41.
  • FIG. 42 is an explanatory view showing a state where the sound wave is absorbed and no reflection occurs.
  • FIG. 43 is an explanatory view showing that resonance occurs between the wall surfaces 41 that are not parallel to the wall surfaces 40. [44] It is an explanatory diagram showing a state where the sound disappears due to the overlapping of waves with slightly different phases.
  • FIG. 45 is an explanatory diagram showing a state in which the sound absorbing material 50 is installed between the wall surfaces 40 and 41 near one side.
  • a speaker 70 is installed in the center of the front of the drawing so that it can output toward the interior of the room, and a wall 61 is formed in the shape of a barrel in the cross section on the left and right around the center.
  • the bottom wall 62 is formed in a single section in a state of protruding into the barrel-shaped enclosure wall 61, and is formed into a cone shape by these enclosure walls 61, 62.
  • a foaming sound absorbing material 50 is filled between the anechoic chamber 60 and the inner surface.
  • the enclosure wall 61 has a structure in which a perforated board that is damped is covered with a high-density fibrous sound-absorbing material.
  • the ultra-low frequency special anechoic chamber 60 has a lm-thickness sound absorbing material (foaming sound-absorbing material) with no parallel part to the floor at the ceiling, and a 60cm-thick sound absorbing material at the floor.
  • a sound absorbing material (same material) with a quadrangular pyramid structure (same material) and a height of lm is attached.
  • this special low-frequency anechoic chamber 60 is installed on a base isolation table.
  • the minimum resonance frequency of the ultra-low frequency special anechoic chamber 60 is set to 4.2 Hz, and the minimum vibration resonance frequency of the floor surface is about 7.6 Hz.
  • the anechoic chamber 60 is installed in an anechoic chamber, and is in a state of 35 (1 ⁇ / ⁇ V or less) in a measurement range of 40 KHz to 17 GHz.
  • the speaker 70 is a Dunlavy custom-made sealed speaker and has the following characteristics.
  • an ultra-low frequency special anechoic chamber 60 is installed.
  • the sound insulation walls 63a and 63b are installed so as to protrude inwardly from the left and right sides of the enclosure wall 61, whereby the anechoic chamber 60 is divided into a front chamber and a rear chamber. It was like that.
  • a sound absorbing material 50 made of the same material as above was attached to the front indoor side of the sound insulation walls 63a and 63b.
  • FIG. 13 shows the configuration according to claim 1 of the present invention, that is, the cross-sectional configuration force thereof, and the sound path having the constricted portion 11 configured so that the reduction rate of the opening area gradually decreases on the entry side.
  • a cylinder with a diameter of 11 cm was cut into a cross section of 1Z4, and a cylinder with a cross section of 1Z4 was provided between the sound insulation walls 63a and 63b with a 8 mm gap between the narrowest portions 11 (opening side force).
  • S speaker 70 side
  • the ldB is 7 Hz to the output side of the speaker 70 in the front chamber of the anechoic chamber 60 and the character-shaped bottom wall surrounding the cross section of the rear chamber in the vicinity of the wall 62.
  • the Earthworks custom microphones 80 and 81 with 36KHz characteristics are installed, respectively.
  • the pulse sound wave emitted from the speaker 70 is picked up by the microphones 80 and 81, and the pulse type frequency analyzer (not shown) can record the PCM with 22BitZ96KHz linear. ). Since the pulse sound wave includes all frequencies, the frequency and its intensity can be known by FFT.
  • FIG. 14 schematically shows the sound wave measurement state of FIG. 12, and FIG. 15 schematically shows the sound wave measurement state of FIG.
  • the above measurement was performed, and the reflectance and transmittance in the case of FIG. 15 were obtained with reference to FIG. 14, and the measurement result of FIG. 16 was obtained. From the figure, the transmittance varies around 600Hz, but even above that ( ⁇ 20KHz), the transmittance in the state of Fig. 15 is less than 10% of Fig. 14, and the transmittance is reduced. Sound absorption effect was confirmed.
  • the reflectance is 1% in the case of Fig. 14 in any frequency band. Less than and low. Furthermore, with a slight supplement to the above diffraction, the sound path formed by the constriction 11 in FIG.
  • Fig. 15 has a reverse horn structure, so that low frequencies cannot pass.
  • the sound that can be passed is much less than the opening area of Fig. 15 (effective opening area is about 50%).
  • Fig. 16 the value of 40Hz or less increases due to vibration transmitted through the floor.
  • FIG. 17 shows a schematic diagram of the state in which the fibrous sound-absorbing material 20 is filled with 140 kgZm 3 in the constricted portion 11 in FIG. 13 (configuration of claim 2).
  • the above measurement was performed, and the reflectance and transmittance in the case of FIG. 17 were obtained with reference to FIG. 14, and the measurement results shown in FIG. 18 were obtained.
  • the transmittance is clearly lower in the state of FIG. 17 than in the state of FIG. 14, confirming the sound absorption effect.
  • the reflectivity is suppressed to be lower than that shown in FIG. 16 in any frequency band.
  • the thickness of the sound absorbing material 20 is 5.5 cm at the maximum, and when it is filled, sound is absorbed to 1Z10 or less than in the case of FIG. If sound was absorbed only with a fibrous sound absorbing material with a maximum thickness of 5.5 cm, it was not so much absorbed.
  • FIG. 19 shows a configuration according to claim 3 of the present invention, that is, its cross-sectional configuration, in which the decreasing rate of the opening area gradually decreases on the entry side, and conversely, the increasing rate of the opening area on the exit side.
  • a sound path having a constriction 11 configured to gradually increase is constructed. Specifically, a cylinder with a diameter of 11 cm was cut into a cross section of 1Z2, and a cylinder with a cross section of 1/2 was provided between the sound insulation walls 63a and 63b with an interval of 8 mm between the narrowest portions of the narrowed portion 11 (opening). (Side cap is facing 70).
  • FIG. 19 A state in which the fibrous sound-absorbing material 20 is filled in the constricted portion 11 in Fig. 19 at 140kgZm 3 (contract).
  • a schematic diagram of the configuration of claim 4 is shown in FIG.
  • the above measurement was performed, and the reflectance and transmittance in the case of FIG. 21 were obtained with reference to FIG. 14, and the measurement results shown in FIG. 22 were obtained. From the figure, the transmittance is clearly lower in the state of FIG. 19 than in the state of FIG. 14, confirming the sound absorbing effect. Also, the reflectivity is kept low in any frequency band as in FIGS. 16, 18, and 20.
  • the configuration of claim 6 is created (see Fig. 25) having a rear wall 30 parallel to the exit opening at a position away from the exit side of the sound path (see Fig. 25). Measurement was performed. With reference to Fig. 14, the reflectance and transmittance in the case of Fig. 25 were obtained, and the measurement results shown in Fig. 26 were obtained. From the figure, the transmittance was clearly lower in the state of FIG. 25 than in the state of FIG. 14, confirming the sound absorbing effect. Also, the reflectivity is kept low in any frequency band as in FIGS. 16, 18, 20, 20, 22, and 24.
  • FIG. 27 shows a configuration according to claim 7 of the present invention, that is, its cross-sectional configuration, in which the decreasing rate of the opening area gradually decreases on the entry side, and conversely, the increasing rate of the opening area on the exit side.
  • a sound path having a constricted portion 11 configured to gradually increase is created, and three sound path structures are provided in parallel so as to be arranged in a plane. Specifically, two cylinders with a diameter of 11 cm are provided in the center, with the narrowest part interval 8 mm between the two constrictions 11 formed between them, and are continuous with these cylinders as seen in cross section.
  • the semi-circular cylinders with the same cross-section as above are arranged in parallel (a structure between the central cylinder and the semi-cylinders at both ends. Between the sound insulation walls 63a and 63b, with these cylinders and semi-cylinders, there is a configuration with three constrictions 11 (all open sides) Force S-speech force 70)
  • FIG. 29 shows a schematic diagram of the state in which the fibrous sound-absorbing material 20 is filled with 140 kgZm 3 in the narrowed portion 11 of FIG. 27 (configuration of claim 8).
  • the above measurement was performed, the reflectance and transmittance in the case of FIG. 29 were obtained with reference to FIG. 14, and the measurement results shown in FIG. 30 were obtained. From the figure, the transmittance is clearly lower in the state of FIG. 29 than in the state of FIG. 14, and a remarkable sound absorbing effect was confirmed.
  • the reflectivity can be kept low in any frequency band, as in FIGS. 16, 18, 20, 20, 22, 24, 26, and 28.
  • the configuration of claim 9 is created (see Fig. 31) having a rear wall 30 parallel to the exit opening at a position away from the exit side of the sound path (see Fig. 31). Measurement was performed. Based on Fig. 14, the reflectance and transmittance in the case of Fig. 31 were obtained, and the measurement results shown in Fig. 32 were obtained. From the figure, the transmittance is clearly lower in the state of FIG. 31 than in the state of FIG. 14, and a remarkable sound absorbing effect was confirmed. Also, the reflectance is kept low in any frequency band, as in FIGS. 16, 18, 20, 20, 22, 24, 26, 28, and 30.
  • FIG. 33 shows a schematic view of the narrowed portion 11 of FIG. 31 filled with the fibrous sound absorbing material 20 at 140 kgZm 3 (configuration of claim 10).
  • the above measurement was performed, and the reflectance and transmittance in the case of FIG. 33 with respect to FIG. 14 were obtained, and the measurement result shown in FIG. 34 was obtained. From the figure, the transmittance is clearly lower in the state of FIG. 33 than in the state of FIG. As a result, a remarkable sound absorbing effect was confirmed. Also, the reflectivity is kept low in any frequency band as in FIGS. 16, 18, 20, 20, 22, 24, 26, 28, 30, and 32.
  • the LO has the cross-sectional configuration of two columns (in a state of being cut into 1Z4 and 1Z2) arranged in parallel, and each of the present invention described above.
  • the experimental results in the case of this state are shown.
  • the constricted portion 11 having the above shape is formed in two planes facing the quadrangular prism 64, or as shown in FIG.
  • the sound path 12 including 11 is preferably filled with the sound absorbing material 20.
  • it has an entrance-side opening and an exit-side opening, and at least the entrance-side opening needs to be configured so that the reduction rate of the opening area gradually decreases. Therefore, it is preferable that the increase rate of the opening area gradually increases.
  • Such a configuration can be created in a block shape with various materials.
  • a plurality of the constricted portions 11 are continuously provided in the direction of the sound path 12 so as to be assembled in a planar shape or to communicate with the sound path 12, so that the sound absorption according to the present invention is achieved. Sound absorption and silencing effect of the structure can be expected to increase easily.
  • the sound absorbing structure of the present invention absorbs sound uniformly over a wide range of sound wave frequencies, so that it can be tuned at audio visuals, concert halls, theaters, cinemas, classrooms and offices, etc. It can be used to generate low frequencies from vehicles and buildings, to prevent noise in vehicles, and to insulate buildings and rooms. Broadband in spaces that require sound absorption and tuning, such as road insulation walls and building walls. It is possible to absorb or sound-insulate sound waves, particularly low-frequency sound waves. / vD / O IsonosooifcId900iAV

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Building Environments (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

[PROBLEMS] To provide a sound absorbing structure capable of preventing sound wave in a wide band from leaking to the outside by absorbing it, reproducing an intended undertone in a restricted room, and preventing noise from occurring. [MEANS FOR SOLVING PROBLEMS] This sound absorbing structure comprises a sound channel formed of wall surfaces and allowing sound wave to pass therethrough. The sound channel comprises a constricted part, in its cross section, so formed that the rate of decrease of its area is gradually decreased at least on its inlet side.

Description

吸音構造  Sound absorption structure
技術分野  Technical field
[0001] 本発明は、オーディオ 'ビジュアル、コンサートホール、居間、教室、事務所 ·工場、 乗り物、道路遮音壁、建築物の壁面等の、吸音及び調音が必要な空間における、広 帯域の音波、特に低音域の音波を、吸収乃至遮音できる吸音構造に関する。  [0001] The present invention relates to a wide-band sound wave, particularly in a space where sound absorption and modulation are required, such as audio visual, concert hall, living room, classroom, office / factory, vehicle, road noise barrier, and building wall. The present invention relates to a sound absorbing structure capable of absorbing or insulating sound waves in a low frequency range.
背景技術  Background art
[0002] オーディオやマルチメディアの分野では、広帯域の音の再生が必要とされ、特に重 低音とされる低周波数帯域では、音の振動が、可聴範囲だけではなぐ体全体で感 じることもあり、その部分が再生されないと、リアルな音を聴くことはできない。  [0002] In the field of audio and multimedia, it is necessary to play a wide band of sounds. Especially in the low frequency band, which is considered to be a heavy bass, the vibration of the sound can be felt not only in the audible range but in the entire body. Yes, if that part is not played back, you will not be able to hear realistic sounds.
[0003] またそれに見合った、帯域の音を遮断又は吸音できる吸音材も、音を発する周りの 環境への配慮から、必要とされている。  [0003] In addition, a sound absorbing material that can cut off or absorb the sound of the band corresponding to it is also required in consideration of the surrounding environment that emits sound.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] オーディオやマルチメディアでは、再生される音波の周波数範囲が国際的に決め られている(例えば、ドルビーデジタルでは、最低周波数が 20Hzである)。再生可能 な最低周波数は、音速 (約 340mZs) ÷再生環境の最長辺長 (m)で決定され (音速 Z最長辺長)、狭い部屋では必要とされる最低音 (例えば上記オーディオやマルチメ ディアで国際的に決められている最低の周波数)を再生できない。  [0004] In audio and multimedia, the frequency range of sound waves to be played is determined internationally (for example, in Dolby Digital, the minimum frequency is 20 Hz). The lowest frequency that can be played is determined by the speed of sound (approx. 340 mZs) ÷ longest side length (m) of the playback environment (sound speed Z longest side length). The lowest frequency (internationally determined) cannot be played.
[0005] 他方、既存の吸音材は、その厚みの 2倍長の波長に等しい周波数の音波までしか 吸音できず (半波長が吸音材の厚みであれば、その音波が発射され反射されるまで に半波長分、また反射して元の位置に戻るまでにまた半波長分、吸音材の中を通る ことから)、低音の再生には、多大な厚みを要し、低音域の拡張は不可能である。吸 音されな!、まま部屋の内側へ戻る広!、周波数帯域の反射音と、外に漏れ出た広 ヽ 周波数帯域の透過音は、労働環境を低下させ、周辺への騒音公害となる。特に高速 道路の騒音は、低周波に関しては遮音できず、建築物で発生する低周波公害と共に 、環境問題となっている。 [0006] 従って、低 、周波数からの広!、周波数帯域の音波を吸収して騒音公害を防止し、 狭 ヽ部屋にぉ 、て目的とする低音の再生を可能とし、同時に広!、周波数帯域の音 波を外部に漏洩させな 、、吸音と遮音のできる構成が求められて 、る。 [0005] On the other hand, an existing sound absorbing material can only absorb sound waves having a frequency equal to a wavelength twice as long as its thickness (if the half wavelength is the thickness of the sound absorbing material, the sound waves are emitted and reflected). Half-wavelength, and half-wavelength before being reflected and returned to the original position, it passes through the sound-absorbing material). Is possible. The sound that is not absorbed! Widely returned to the inside of the room! The reflected sound in the frequency band and the transmitted sound in the wide frequency band that leaks outside reduce the working environment and cause noise pollution to the surroundings. In particular, highway noise cannot be sound-insulated at low frequencies, and has become an environmental problem along with low-frequency pollution generated in buildings. [0006] Therefore, it is possible to absorb low-frequency and wide-frequency sound waves and prevent sound pollution by absorbing sound waves in the frequency band, and to reproduce the desired low-frequency sound in a narrow room, while simultaneously widening the frequency band. Therefore, there is a need for a structure that can absorb and block sound without leaking the sound waves to the outside.
[0007] 本発明は、以上のような問題に鑑み創案されたもので、広帯域の音波を吸収して外 部に漏洩させず、狭い部屋において目的とする低音の再生を可能にし、且つ騒音公 害も防止できる吸音構造を提供せんとするものである。  [0007] The present invention has been devised in view of the above-described problems. The present invention makes it possible to reproduce a target bass sound in a small room without absorbing broadband sound waves and leaking them outside, and to prevent noise. It is intended to provide a sound absorbing structure that can prevent harm.
課題を解決するための手段  Means for solving the problem
[0008] 本発明は、従来の波動理論とは異なる、後述する新しい知見に基づき、吸音につ いての理論の再構成を行って、創案するに至ったもので、以下に、それに至った過 程を、従来の波動理論の説明から始まり、従来構成の吸音材の一般的な性質を述べ 、次に新たな知見を示し、そして、最後に新たな知見に基づく本発明の構成につい て説明する。 [0008] The present invention has been created by reconstructing the theory of sound absorption based on new knowledge to be described later, which is different from the conventional wave theory. The process starts with the explanation of the conventional wave theory, describes the general properties of the sound absorbing material with the conventional structure, then presents new knowledge, and finally explains the structure of the present invention based on the new knowledge. .
[0009] まず、図 37は、無音状態の空気分子 (丸で示される)の位置を示す図と、 1波目だ け音波を発振した場合の、 1波長の音波の空気分子の位置を示す図との対比を示す 図面である (共鳴は起きて!/、な!、状態)。無音状態の空気分子の位置を示す上段の 模式図の縦横線は、分子が互いに束縛されて動く範囲が限定されることを示している 。この状態では各空気分子は、分子間力により互いに引き合いパネで結合されたよう な状態で、各間が保たれている。  [0009] First, Fig. 37 shows the positions of silent air molecules (indicated by circles) and the positions of air molecules of one-wavelength sound waves when only the first wave is oscillated. It is a drawing showing the contrast with the figure (resonance has occurred! /, What !, state). The vertical and horizontal lines in the upper schematic diagram showing the position of air molecules in the silent state indicate that the range in which the molecules are bound and moved is limited. In this state, each air molecule is attracted to each other by the intermolecular force and is held in the state where it is bound by the panel.
[0010] 次にその下の 1波目だけ音波を発振した時の 1波長の音波の空気分子の位置を示 す下段の模式図は、左側に壁面 40があり、音波が発振されたとした場合、音波は縦 波の粗密波であり、それを媒介する各空気分子は、上述のように分子間力により互い に引き合いパネで結合されたような状態であるから、ここに示すように、空気分子の密 度が粗い部分が負圧領域であり、それを過ぎたところに、気圧変動無しの点があり、 さらにその右側の空気分子が密の部分が、正圧領域であり、再び気圧変動無しの点 があるような状態となる。尚、図 37で、左側の壁面 40面側の空気分子 (壁に接してい る分子は常に動かな 、)と一番右側の空気分子は移動して 、な 、ものとして示して!/ヽ る。  [0010] Next, the lower schematic diagram showing the position of the air molecules of the sound wave of one wavelength when the sound wave is oscillated only for the first wave below is the case where the wall 40 is on the left side and the sound wave is oscillated. The sound waves are longitudinal dense waves, and the air molecules that mediate them are attracted to each other by the intermolecular force as described above and are bound together in the panel. The part where the molecular density is coarse is the negative pressure region, and there is a point where there is no atmospheric pressure fluctuation after that, and the part where the air molecules on the right side are dense is the positive pressure region. It becomes a state that there is a point of nothing. In FIG. 37, the air molecules on the left wall 40 side (the molecules in contact with the wall always do not move) and the air molecules on the right side move and show as! .
[0011] 図 38は、そのような音波の発振がある場合の、ある点の圧力変化を示すグラフ(図 37下段の図のような音波が発振された場合のある 1点における圧力変化を経時的に 示したもの)である。 FIG. 38 is a graph (FIG. 38) showing the pressure change at a certain point when there is such a sound wave oscillation. 37 shows the pressure change at one point when sound waves are oscillated as shown in the lower figure.
[0012] ここで音波での空気分子の移動距離は、波長 lm (360Hzとして)、大音量でも、 0 . 1mm程度である。つまり、波長の 1万分の 1程度しか動かないことになる。波長が長 いと隣接する分子も一緒に動くので、 2分子間の距離変動は、波長が短いときより少 なくなる。従って物を揺らす力は弱くなる。そのため、低い音は、大きい音でないと聴 こえない。  Here, the moving distance of the air molecules in the sound wave is about 0.1 mm even at a wavelength lm (assuming 360 Hz) and a large volume. In other words, it moves only about 1 / 10,000 of the wavelength. As the wavelength is longer, neighboring molecules move together, so the distance variation between the two molecules is less than when the wavelength is short. Therefore, the power to shake things is weakened. For this reason, low sounds can only be heard when they are loud.
[0013] 図 39及び図 40は、平行壁面 40及び 41がある場合に、 1波長の音波が 1波目だけ 発せられた時の、空気分子の位置を示す模式図と、ある 1個の空気分子の圧力を示 した図(便宜上波長を示すために使用する)である。この図 39において負圧領域に 両端が矢印で示されたものは、ある空気分子の移動範囲である。壁に接した空気分 子は移動できな ヽ(両壁面 40及び 41に接して 、る分子は同図に示すように動かな い)ので、結局、壁と壁の間では、夫々 1個の山と 1個の谷(山と谷の対)しかできない 。従って壁面間 40及び 41の距離で、最低共振周波数が決まってしまう。壁と壁の間 に、 1個の山だけ、または、 1個の谷だけという状態 (対になっていない状態)は、作れ な 、 (そのような振動を作り出す動きができな 、ことによる)。  FIG. 39 and FIG. 40 are a schematic diagram showing the position of air molecules when one wave of sound wave is emitted only in the first wave when there are parallel walls 40 and 41, and one piece of air. It is the figure which shows the pressure of a molecule | numerator (it uses in order to show a wavelength for convenience). In FIG. 39, the negative pressure region indicated by arrows at both ends is the movement range of a certain air molecule. Since the air molecules in contact with the walls cannot move (the molecules in contact with both wall surfaces 40 and 41 do not move as shown in the figure), there is eventually one between the walls. Only a mountain and one valley (a mountain-valley pair) can be done. Therefore, the minimum resonance frequency is determined by the distance between the walls 40 and 41. If there is only one mountain or only one valley between walls (unpaired state), it cannot be made (depending on the fact that it cannot move to create such vibrations) .
[0014] 従って低い周波数の音を室内で出す時には、壁間距離を増加させるしかな力つた 。尚、図 40と図 39とを見比べると分かるが、実際には、 1回のみの圧縮振動では、最 低気圧位置と、最高気圧位置が、分子がその分子の大きさによる排除体積と粘性を 持って移動するために、図 40の最小値と最大値の位置とは、ずれていることになる。  [0014] Therefore, when a low-frequency sound is produced indoors, it has only been able to increase the distance between the walls. As can be seen from a comparison of Fig. 40 and Fig. 39, in fact, with only one compression vibration, the lowest pressure position and the highest pressure position indicate that the molecule has an excluded volume and viscosity depending on the size of the molecule. In order to move it, the position of the minimum value and the maximum value in FIG. 40 is shifted.
[0015] 壁面 41で音波 (発射された時往の波の時)が反射される時 (復の波の時)は、図 41 に示すように、山は谷となって戻る。この時、復の波が、再度発射された側の壁で反 射される時、再び山となるため、往の波(山)と重なり、強め合う現象が起きる。これが 最低共振周波数である。  [0015] When a sound wave (when the wave is fired) is reflected by the wall surface 41 (when it is a backward wave), the mountain returns as a valley as shown in FIG. At this time, when the return wave is reflected on the relaunched side wall, it becomes a mountain again, so that it overlaps with the forward wave (mountain) and strengthens. This is the lowest resonance frequency.
[0016] そして最低共振周波数以下の音波を出すことはできない。仮に反射側の壁面 41が 、図 42に示すように、音波を吸収してしまえば、反射は起こらないので、いくらでも低 V、周波数の音波を出すことができる。  [0016] A sound wave having a frequency lower than the minimum resonance frequency cannot be emitted. If the reflection-side wall 41 absorbs sound waves as shown in FIG. 42, reflection does not occur, and sound waves of low V and frequency can be emitted as much as possible.
[0017] また図 43に示すように、壁面 41が平行でなくても、壁面間 40及び 41距離の平均 距離で共鳴が起きる (壁が平行ではないと、共鳴が起きないというのは間違い)。ただ し、壁面 41が非平行だと、共鳴の鋭さ [これを Q (キュー)と言う]が違う。 Further, as shown in FIG. 43, even if the wall surface 41 is not parallel, the average of the 40 and 41 distances between the wall surfaces Resonance occurs at distance (it is wrong that if the walls are not parallel, resonance does not occur). However, if the wall 41 is not parallel, the sharpness of resonance [this is called Q (cue)] is different.
[0018] 他方、図 44に示すように、僅かに位置 (位相;波の開始点の位置)が違う波が重な ると、打ち消しあって音が消えてしまう。  On the other hand, as shown in FIG. 44, when waves with slightly different positions (phase; the position of the start point of the wave) overlap, they cancel each other and the sound disappears.
[0019] 次に、通常の吸音材の基本性質を説明する。一般的な吸音材は、プラスチックなど に空気が分散注入され、シャボン玉が集まってくっついたようなスポンジ状の形状 (発 泡状のもの)をしている。また繊維を集めて絡めた形状をしているものもある。ここでは 前者の吸音材を使用して説明する。前図 39のような両壁面 40及び 41のある状態で 、一方の側に近いところに吸音材 50を設置すると、丁度図 45のようになる。  Next, basic properties of a normal sound absorbing material will be described. A typical sound-absorbing material has a sponge-like shape (foam-like shape) in which air is dispersed and injected into plastic or the like, and soap bubbles are gathered together. Some of them are shaped by collecting and entwining fibers. Here, the former sound absorbing material is used for explanation. If the sound-absorbing material 50 is installed near one side with both wall surfaces 40 and 41 as shown in Fig. 39, it will be exactly as shown in Fig. 45.
[0020] 音波(波の性質を持つ)としての空気分子の流れは、図 39と同じである。ところが、 このように、吸音材 50が途中に設置されると、吸音材 50の中の気泡の薄膜 (上記吸 音材に内包される気泡を形成するシャボン玉状部分の薄膜)が、空気分子によって、 僅かに揺れる。該空気分子は、その空気分子の持つ振動のエネルギを、極僅かに、 上記気泡の薄膜に伝達し、振動が弱まる、すなわち吸音する。この時揺れた薄膜は 、それ自身の分子の歪を熱に変換することで、振動が弱まることになる。  [0020] The flow of air molecules as sound waves (having wave properties) is the same as in FIG. However, as described above, when the sound absorbing material 50 is installed on the way, the thin film of bubbles in the sound absorbing material 50 (the thin film of the bubble-shaped portion forming the bubbles included in the sound absorbing material) becomes air molecules. Sway slightly. The air molecules transmit the vibration energy of the air molecules to the bubble thin film very slightly, and the vibration is weakened, that is, the sound is absorbed. At this time, the swaying thin film transforms its own molecular strain into heat, which reduces the vibration.
[0021] 一般的な吸音材の性質を述べると、薄膜式の吸音材では、膜間での気圧差が大き ければ伝達効率が増す (それは繊維式の吸音材でも同じ)。しかし、膜間を離せば( すなわち気泡の径を大きくすれば)、伝達する(その間に介在する)媒体が減るので、 減衰効率が悪くなる。他方膜厚を厚くすると、気圧差を、膜の前後で大きくできるが、 そのような厚膜状態では、膜自身が剛性体となり、空気分子によって膜自身が揺れな くなるため (膜の分子の粘性で熱に変換される作用がなくなるので)、伝達効率が下 力 ¾ことになる(それは繊維式の吸音材でも同じ)。これに対し、膜厚が薄ければ薄い ほど、空気分子の振動を高効率でキャッチできるが、膜が薄いと膜の振動を熱に変 換させる能力が下がり、効果的な吸音が出来なくなる。  [0021] Describing the properties of a general sound absorbing material, in the case of a thin film type sound absorbing material, the transmission efficiency increases if the pressure difference between the films is large (the same applies to the fiber type sound absorbing material). However, if the distance between the membranes is increased (that is, the bubble diameter is increased), the transmission medium (intervening between them) is reduced, so that the attenuation efficiency is deteriorated. On the other hand, when the film thickness is increased, the pressure difference can be increased before and after the film. However, in such a thick film state, the film itself becomes a rigid body and the film itself does not shake due to air molecules (the film molecules Since there is no effect of being converted to heat by viscosity), the transmission efficiency is reduced (the same applies to fiber type sound absorbing materials). On the other hand, the thinner the film thickness, the more efficiently the vibrations of air molecules can be caught. However, if the film is thin, the ability to convert the vibrations of the film into heat is reduced and effective sound absorption is not possible.
[0022] それでも、このような閉じた気泡状の吸音材が最も効果があり、通常使われる繊維 を多数集合させた後者の吸音材では、気泡のようなクッションの役割を果たす伝達媒 体がなぐ振動自身は繊維に伝わり、空気分子のエネルギの伝達効率が悪い。  [0022] Nonetheless, such a closed bubble-shaped sound absorbing material is most effective, and the latter sound absorbing material in which many commonly used fibers are gathered has a transmission medium acting as a cushion such as bubbles. Vibration itself is transmitted to the fiber, and the energy transfer efficiency of air molecules is poor.
[0023] このような性質を持つ吸音材が使用された場合でも、空気分子の振動は、上述のよ うに極僅かし力なく、また高 ヽ吸音性能を持つ気泡状の吸音材の場合であったとして も、気泡を形成する膜は薄膜なので、低い周波数の音波では波長が長いので、単位 長さ当たりの気圧差が少なくなり、このような膜厚での膜内外での気圧差は少ない状 態であるから、エネルギの伝達は僅かしかな!/、。 [0023] Even when a sound-absorbing material having such properties is used, the vibration of air molecules is as described above. Even in the case of a bubble-shaped sound absorbing material with very little force and high sound absorption performance, since the film that forms bubbles is a thin film, the wavelength of a low-frequency sound wave is long. The pressure difference between the inside and outside of the film with such a film thickness is small, so there is little energy transfer!
[0024] しかし、このような吸音材が吸音のために使用された場合は、吸音材の厚さが吸音 しょうとする音波の半波長分あれば、気圧差の全体を使ってエネルギ変換できるので 、吸音材厚の 2倍以下の波長の音波までは、一般的に吸音効果があるとされている。  [0024] However, when such a sound absorbing material is used for sound absorption, if the thickness of the sound absorbing material is half the wavelength of the sound wave to be absorbed, energy conversion can be performed using the entire pressure difference. The sound absorption effect is generally accepted up to sound waves with a wavelength less than twice the thickness of the sound absorbing material.
[0025] 尚、図面上には示されていないが、吸音材 50を通過して他側の壁面 41に当たった 波は、そのまま跳ね返る力 往の波に、復の波 (跳ね返った波)は、干渉しない。  [0025] Although not shown in the drawing, the wave that passes through the sound absorbing material 50 and hits the wall 41 on the other side bounces off as it is. The return wave (the bounce wave) No interference.
[0026] 上述のように、特定の部屋での再生可能な最低周波数は、部屋の最長辺の長さで 決定される。しかし、壁面 41で音波が吸収されれば、反射が起こらず、その結果、共 鳴が生じないため、部屋の最低共振周波数を低下させることが可能である。  [0026] As described above, the lowest reproducible frequency in a specific room is determined by the length of the longest side of the room. However, if the sound wave is absorbed by the wall surface 41, reflection does not occur, and as a result, no resonance occurs, so that the lowest resonance frequency of the room can be lowered.
[0027] 本発明者は、この点に立脚すると共に、次のような新たな知見を得ることで、本発明 の構成の創案に至った。  [0027] The inventor has been based on this point and has obtained the following new knowledge, thereby leading to the creation of the configuration of the present invention.
[0028] すなわち、縦波である音波を、開口面積の減少率が徐々に小さくなる狭窄した音道 を通すことで、空気の流れ (横波)に変換し、波長に依存せずに、消音することが可 能であるという知見である。  [0028] That is, a longitudinal sound wave is converted into an air flow (transverse wave) by passing through a narrowed sound path in which the reduction rate of the opening area gradually decreases, and the sound is muted without depending on the wavelength. This is the knowledge that this is possible.
[0029] 例えば図 1に示すような構造の吸音構成があった場合(12は音が通過する音道)、 音波は、入り側から徐々に最狭窄部 11に近づくにつれて、孔の中央部方向に向か つて進行方向が変えられ、さらには、上記音道 12の狭窄部 11の奥では、進行方向 の孔の中央部に向けて圧縮される。  [0029] For example, when there is a sound absorption structure having a structure as shown in Fig. 1 (12 is a sound path through which sound passes), the sound wave gradually approaches the narrowest part 11 from the entrance side, toward the center of the hole. The direction of travel is changed toward the center of the sound path 12, and further, the back of the narrow portion 11 of the sound path 12 is compressed toward the center of the hole in the direction of travel.
[0030] 以下は、上述したような現代の波動理論の式には無い現象である力 開口面積の 減少率が徐々に小さくなる狭窄部 11の壁面 10に沿って、徐々に進行すると、空気分 子の分子間力による粘性によって移動ベクトルがその進行方向に集まり、該分子が 排除体積によって押し出されて、粗密波 (縦波)から、分子群全体の移動 (横波:つまり 風)になってしまう現象力 本発明者の実験力も推認されることになつた。  [0030] The following is a force that is a phenomenon that is not in the equation of the modern wave theory as described above. As the rate of decrease in the opening area gradually decreases along the wall surface 10 of the constricted portion 11, The movement vector gathers in the direction of travel due to the viscosity due to the intermolecular force of the child, the molecule is pushed out by the excluded volume, and it becomes a movement of the entire molecular group (transverse wave: wind) from the dense wave (longitudinal wave) Phenomenological power The inventor's experimental power was also inferred.
[0031] 分子の体積は、波動理論の式で扱う理想気体では考慮されないが、実際の空気分 子では、窒素分子と酸素分子が体積 (排除体積)を持っているので、この現象が発生 する。 [0031] The volume of the molecule is not considered in the ideal gas handled by the wave theory formula, but in the actual air molecule, this phenomenon occurs because the nitrogen and oxygen molecules have a volume (excluded volume). To do.
[0032] 徐々に開口面積の減少率が小さくなる壁面 10内では、図 2に示すように、音波が進 行方向と音道 12の中心向力つて圧縮される(反射角を徐々に進行方向に向けて角 度を変えると、空気分子の粘性によって移動ベクトルがその進行方向に集まり、該分 子が押し出されて圧縮される)。しかし、音道 12の壁面 10では高圧になるが分子の 行き場が無ぐ振動する位置 (振動中心)が移動するしかない(図面上縦線'横線の 交差点が本来その分子のあるべき位置であるが、上記高圧部分ではその位置より少 し、進行方向であってさらに音道 12の中心方向にずれている)。これは、空気が互い に分子間力で引き合つている(分子同士粘性が高い)ので、起こる現象である。  [0032] In the wall 10 where the reduction rate of the opening area gradually decreases, as shown in Fig. 2, the sound wave is compressed by the traveling direction and the central force of the sound path 12 (the reflection angle is gradually increased in the traveling direction). When the angle is changed toward, the movement vector gathers in the direction of travel due to the viscosity of the air molecules, and the molecules are pushed out and compressed). However, on the wall 10 of the sound path 12, the position (vibration center) where there is a high pressure but there is no place for the molecule has to move (the intersection of the vertical line and the horizontal line on the drawing is the position that the molecule should originally be. However, in the high-pressure part, the travel direction is slightly smaller than that position, and further shifted toward the center of the sound path 12). This is a phenomenon that occurs because air is attracted to each other by intermolecular forces (high viscosity between molecules).
[0033] この図では、濃い色の分子は、空気分子の束縛位置 (振動中心)そのものがより大 きく移動していることが示されており、薄い色の分子は、空気分子の束縛位置 (振動 中心)そのもの移動力 濃い色の分子より少ない。すなわち、狭窄部 11壁面 10により 近い部分の分子が圧縮され、進行方向であってさらに音道 12の中心方向にずれる。 実際には、分子の数が非常に多いので、分子の振動幅よりはるかに大きな距離を移 動する事になる。これに対し、狭窄部 11の音道 12中心位置に近いところ (真ん中の 部分)では、そのようなずれが少ない。  [0033] In this figure, the dark colored molecules show that the binding positions (vibration centers) themselves of the air molecules are moving more greatly, while the light colored molecules are the binding positions of the air molecules ( Vibration center) itself moving force Less than dark colored molecules. That is, molecules closer to the constricted portion 11 wall surface 10 are compressed and shifted in the traveling direction and further toward the center of the sound path 12. In fact, the number of molecules is so large that it moves a distance much larger than the vibrational width of the molecule. On the other hand, such a shift is small at a position close to the center position of the sound path 12 of the constricted portion 11 (middle portion).
[0034] 束縛中心位置の移動の速度は、音速より遅いので、物理学的には矛盾しない。そ して束縛中心位置の移動は、即ち、風 (横波)になったことを示している。  [0034] Since the speed of movement of the binding center position is slower than the speed of sound, there is no physical contradiction. And the movement of the binding center position indicates that it has become a wind (transverse wave).
[0035] このような現象を、海の波の現象に例えるなら (あくまで例え)、波は、行って戻るた め、波の上に在る浮遊物などは、本来、ある範囲を、一点を中心に動くだけ (上下方 向に往復運動するのみ)である。ところが、直線状の防波堤にぶつ力る波になると、 斜めに防波堤の壁面に当たった波は、上に押し上げられ、戻らない移動をしている のが判る。この部分が縦波力も横波に変換される部分に相当することになる。斜めに 防波堤の壁面に当たった波であると、縦波と横波の混ざった状態であるが、さらに、 その先の防波堤の壁のところでは、波が壁の途中まで登り、そこで、流れとなって、下 がっていく。これは、波の上に浮いていた浮遊物力 そこで、波としての動きで、動か されていたものから、波の動きによらない、流れとして横方向に移動していく状態に変 ィ匕することになる。この浮遊物が流れ移動するという現象は、横波に変化しているとい うことの証である。 [0035] If this phenomenon can be compared to the phenomenon of ocean waves (for example), the waves go back and go, so the floating objects on the waves are essentially a certain range. It only moves to the center (only reciprocates up and down). However, when a wave hits a straight breakwater, it can be seen that the wave that hits the wall of the breakwater is pushed upward and moves without returning. This portion corresponds to a portion where the longitudinal wave force is also converted into a transverse wave. If the wave hits the wall of the breakwater diagonally, it is a state where the longitudinal wave and the transverse wave are mixed, but further, at the wall of the breakwater ahead, the wave climbs to the middle of the wall, where it flows. And go down. This is the floating force that floats on the waves. So, the movement as a wave changes from what was moved to a state that moves laterally as a flow, regardless of the movement of the wave. become. The phenomenon that this floating material flows and moves is said to have changed to a transverse wave. It is a proof of that.
[0036] 次に図 3として示したものでは、徐々に開口面積の減少率が小さくなる音道 12の狭 窄部 11における、本来空気分子が存在すべき位置である振動中心力 の移動した 距離を、太い波形線で示している。この移動が、即ち、横波 (風)の強さ(風速)になる  [0036] Next, in the case shown in Fig. 3, the distance traveled by the vibrational center force, which is the position where the air molecule should originally exist, in the narrow portion 11 of the sound path 12 where the decreasing rate of the opening area gradually decreases. Is indicated by a thick waveform line. This movement is the strength (wind speed) of the transverse wave (wind).
[0037] 上記図 3では、上述のように、狭窄部 11壁面 10により近い部分の分子が圧縮され、 進行方向であってさらに音道の中心方向にずれるが、狭窄部 11の音道 12中心位置 に近い所 (所謂真ん中部分)では、そのようなずれが少ないため、狭窄部 11壁面 10 により近!、部分 (ずれて!/、る部分)での圧力が高!、状態になって!/、る。この縦波の圧 縮時の状態で、この状態から、その先において減圧に移る時 (元々狭窄部 11の音道 12中心位置は圧力が高くなつておらず、その部分を過ぎた辺りから減圧に移行する )に、空気分子は、後ろに引っ張られるが、引く力は、上記のような音道の形状力も弱 められるので (音道 12の狭窄部 11の断面積が入り口部より小さいということは、後ろ に引く力分子数が少ないことなので、入り口部より弱い)、横波は、上記図 4では、右 に進み続ける。 [0037] In Fig. 3, as described above, the molecules in the portion closer to the wall surface 10 of the constriction 11 are compressed and shifted in the traveling direction and further toward the center of the sound path. In the place close to the position (so-called middle part), since such a shift is small, it is closer to the wall surface 10 of the narrowed part 11 and the pressure in the part (the part that is shifted! /) Is high! / When this longitudinal wave is compressed, when the pressure is reduced from this state to the next point (originally, the central position of the sound path 12 of the constricted part 11 is not high, and the pressure is reduced from around that part. The air molecules are pulled backward, but the pulling force also weakens the shape force of the sound path as described above (because the cross-sectional area of the constricted part 11 of the sound path 12 is smaller than the entrance part) This is because the number of force molecules to be pulled back is small, so it is weaker than the entrance.) The transverse wave continues to move to the right in Fig. 4 above.
[0038] このように、徐々に開口面積の減少率が小さくなる壁面内において、音波が進行方 向と音道 12の中心向力つて圧縮される、すなわち、反射角を徐々に進行方向に向け て角度を変えると、空気分子の粘性によって移動ベクトルがその進行方向に集まり、 該分子が押し出されて圧縮されることになる。その際、音道 12の壁面 10では高圧に なるが分子の行き場が無ぐ分子同士粘性が高い (空気が互いに分子間力で引き合 つて粘性が高い)ので、振動する位置が移動するしかない。このような振動する位置 の移動は、すなわち、風 (横波)に変換されることになる(振動する分子一つ一つがそ の本来の振動位置力も音道 12中心位置進行方向にずれることで、縦波である粗密 波から分子群全体の移動、すなわち、風に変換される)。このような狭窄部 11が狭い ほど、縦波である音波を横波である風に変換する効果が大きくなる。  [0038] In this way, in the wall surface where the reduction rate of the opening area gradually decreases, the sound wave is compressed by the traveling direction and the central force of the sound path 12, that is, the reflection angle is gradually directed in the traveling direction. If the angle is changed, the movement vector gathers in the traveling direction due to the viscosity of the air molecule, and the molecule is pushed out and compressed. At that time, the wall 10 of the sound path 12 is high in pressure but has high molecular viscosity with no molecular destination (air is attracted to each other by intermolecular force and high in viscosity), so the vibration position has to move. . Such movement of the vibrating position is converted into wind (transverse wave) (the vibrational force of each oscillating molecule shifts its original vibrational position force in the traveling direction of the center of the sound path 12, The movement of the entire molecular group, ie, wind, is applied to the dense wave, which is a longitudinal wave. The narrower the narrowed portion 11, the greater the effect of converting the acoustic wave that is the longitudinal wave into the wind that is the transverse wave.
[0039] 一方振動を伴う音波は、図 4に示すように(図では、左への動き)、狭窄部 11の壁面 10で分散されるように反射される力 その反射の間に、弱まってしまう。図 4で、縦線 は、音波の波面を、また矢印線は、反射音の方向を示す。音道 12を通過する時、何 度も位相が少しずつズレながら、山と山、谷と谷が重なるので、波形が崩れ、波として の性質を失い、粗密波ではなぐ空気の流れになってしまう(上記の振動する位置の 移動による、風への変換現象とは異なる)。 On the other hand, as shown in FIG. 4 (the movement to the left in the figure), the sound wave with vibration is reflected to be dispersed on the wall surface 10 of the constriction 11 and is weakened during the reflection. End up. In Fig. 4, the vertical line indicates the wavefront of the sound wave, and the arrow line indicates the direction of the reflected sound. What is going through the sound path 12 Although the phases are shifted slightly, the mountains and mountains and the valleys and valleys overlap, so the waveform collapses and loses its properties as a wave, resulting in an air flow that is not as close to the dense waves (the movement of the vibration position described above). This is different from the phenomenon of conversion to wind.
[0040] ここで、上記の挙動の説明に必要な、一般的な音波の反射の現象を、屈折と 、う現 象と共に、説明する。一般に、固い物質に音波が当たり、音波の進む方向(粗密の伝 達方向)が変わることを反射と言う。また、音波が物質内を通過する時に、この通過の 際に媒体内での音速が空気より遅いか速いと、進行方向が変わり、これを、屈折と言 う。尚、通常図面などに表される音波に関しての波面先端とは、同時刻に発生した平 行音波の、一定時間経過後の到達位置を言う。  [0040] Here, a general phenomenon of sound wave reflection necessary for the explanation of the behavior will be described together with refraction and phenomenon. In general, a sound wave hits a hard substance, and the direction in which the sound wave travels (the direction of transmission / dense) changes is called reflection. Also, when a sound wave passes through a substance, the traveling direction changes if the speed of sound in the medium is slower or faster than air during this passage, and this is called refraction. Note that the wavefront tip for a sound wave represented in a normal drawing or the like means a position where a parallel sound wave generated at the same time arrives after a certain period of time.
[0041] 狭窄した音道は、固定的な長さをもっため、共鳴管としての機能を持つ。即ち、音 道の開口部から狭窄部中央までの長さの 2倍に等しい波長以上の音波の通過を大き く妨げる。共鳴現象は、共鳴する周波数の音波が連続する時、強めてしまうが、開口 面積の減少率が徐々に小さくなる音道では、強い共鳴は起きない。従って、狭窄部 を通過する音波は、音道の長さより波長が短い音波となり、それより低周波の音波を ほとんど通過させずに減衰させてしまう。  [0041] The narrowed sound path has a fixed length and thus functions as a resonance tube. In other words, it greatly prevents the passage of sound waves with a wavelength equal to or longer than twice the length from the opening of the sound path to the center of the constriction. The resonance phenomenon is intensified when the resonating frequency of sound waves continues, but strong resonance does not occur in the sound path where the reduction rate of the aperture area gradually decreases. Therefore, the sound wave that passes through the constriction becomes a sound wave having a wavelength shorter than the length of the sound path, and attenuates the sound wave having a frequency lower than that without passing through it.
[0042] 以上が基本となる本発明に係る吸音原理である(以上のように 3つが大きな基本原 理である)。本発明の構成により、縦波である音波が、横波である風に変換されたとし ても、気流による縦波 (音波)への逆変換 (風切り音を含む)が発生する。  [0042] The above is the basic sound absorption principle according to the present invention (as described above, three are the basic principles). According to the configuration of the present invention, even if a sound wave that is a longitudinal wave is converted into a wind that is a transverse wave, reverse conversion (including wind noise) to the longitudinal wave (sound wave) due to the airflow occurs.
[0043] そこで本発明者は、図 5に示すように、上記のような形状に構成された音道 12中に 吸音材 20を充填することをさらに考えついた。この場合の吸音材 20の機能は、上述 した従来構成として用いられる吸音材の機能とは、根本的にその役割が異なる。  Therefore, the present inventor has further conceived of filling the sound absorbing material 20 into the sound path 12 configured as described above, as shown in FIG. The function of the sound absorbing material 20 in this case is fundamentally different from the function of the sound absorbing material used as the conventional configuration described above.
[0044] 上述のように、断面構成が、少なくとも、その入り側で開口面積の減少率が徐々に 小さくなる狭窄部 11の構成された音道 12中に、吸音材を充填した構成の場合、該音 道 12を通過する音波は、それを構成する空気分子が、入り口から徐々に最狭窄部 1 1に近づくにつれて、移動ベクトルがその進行方向に集まり、該分子が押し出されて 圧縮されるので、音道 12の壁面 10では高圧になるが分子の行き場が無ぐ分子同 士粘性が高いので、振動する位置が移動するし力なくなり、このような振動する位置 の移動により、風 (横波)に変換されることになる (振動する分子一つ一つがその本来 の振動位置力も音道 12中心位置進行方向にずれることで、縦波である粗密波から 分子群全体の移動、すなわち、風に変換される)。ここまでは本発明の構成として、上 述したとおりである。 [0044] As described above, in the case where the cross-sectional configuration is at least a configuration in which a sound absorbing material is filled in the sound path 12 in which the narrowed portion 11 is configured so that the reduction rate of the opening area gradually decreases on the entry side, The sound wave passing through the sound path 12 is gathered in the traveling direction as the air molecules constituting it gradually approach the narrowest constriction 11 from the entrance, and the molecules are pushed out and compressed. On the wall 10 of the sound path 12, the pressure of the molecule is high, but there is no place for molecules, and the viscosity of the molecule is high.Therefore, the vibration position moves and loses force, and this movement of the vibration position causes wind (transverse wave). (Each oscillating molecule is its original The vibrational position force of the sound path 12 also shifts in the traveling direction of the center position of the sound path 12, so that the coarse wave, which is a longitudinal wave, is moved into the entire molecular group, that is, converted into wind. Up to this point, the configuration of the present invention is as described above.
[0045] 粗密波では、空気分子は、互いにパネで接続された状態にあり、その振幅は少な い。そして、狭窄部 11の孔の中に充填された吸音材が、一緒に振動できるほど軽い 場合は、その振動エネルギを受け取り、熱に変換される。しかし、吸音材が振動可能 な距離に比べて、空気分子群の密度変化が小さぐつまり、空気分子群の移動距離 が極めて小さいため、変換効率が低ぐかつ、音波の波長が長いほど、厚い吸音材 が必要になる。ここまでは、上述した従来の吸音材の性質を示している。  In the close-packed wave, air molecules are connected to each other through a panel, and the amplitude thereof is small. When the sound absorbing material filled in the hole of the constricted portion 11 is light enough to vibrate together, the vibration energy is received and converted into heat. However, the density change of the air molecule group is small compared to the distance that the sound absorbing material can vibrate, that is, the moving distance of the air molecule group is extremely small, so the conversion efficiency is low and the longer the wavelength of the sound wave, the thicker Sound absorbing material is required. Up to this point, the properties of the conventional sound absorbing material described above are shown.
[0046] これに対し、パネで連結された空気分子群全体が動く時 (すなわち、本発明の構成 によって変換された空気の流れの場合)、空気分子群全体の移動距離は上述よりは るかに大きぐ充填された吸音材 20が振動可能な距離より大きく動くため、吸音材と の間に摩擦が生じ、熱に変換されることになる。横波は単純な風だから、摩擦で熱に 変えられる。従って、本発明の構成では、音波の周波数の大小に拘わらず、横波で ある風は、一様に摩擦で熱に変換されることになる。  [0046] On the other hand, when the entire air molecule group connected by the panel moves (that is, in the case of the air flow converted by the configuration of the present invention), is the movement distance of the entire air molecule group larger than the above? Since the sound-absorbing material 20 filled to a large distance moves more than the distance that can be vibrated, friction is generated between the sound-absorbing material and the sound-absorbing material, which is converted into heat. Since the shear wave is a simple wind, it can be converted into heat by friction. Therefore, in the configuration of the present invention, the wind which is a transverse wave is uniformly converted into heat by friction regardless of the frequency of the sound wave.
[0047] これが、本発明構成において、音道に上記吸音材 20を充填した場合に、該吸音材 の機能が異なって 、る部分である。  [0047] This is the portion of the configuration of the present invention in which the sound absorbing material functions differently when the sound absorbing material 20 is filled in the sound path.
[0048] 他方、上記の構造では、完全には横波に変換できない場合もある。縦波と横波が 合わさつたような特殊な波(波動方程式では出てこない)になっている状態の時には 、吸音材 20が孔を塞いでも、それを抜けた段階で再び音に戻ってしまうので吸音で きない。このような縦波と横波の両方の性質を持つ波は、各空気分子が独立している ボールのようなものではなぐ互いに分子間力で引き合いパネで結合しているような 状態であるので、過渡的に生じる波である。  [0048] On the other hand, in the above structure, there is a case where it cannot be completely converted into a transverse wave. When it is in the state of a special wave (not coming out in the wave equation) where the longitudinal wave and the transverse wave are combined, even if the sound absorbing material 20 blocks the hole, it will return to the sound again when it passes through it. Sound absorption is not possible. Such waves with both longitudinal and transverse properties are in a state where each air molecule is attracted to each other by an intermolecular force rather than being an independent ball, and is bound by a panel. This is a transient wave.
[0049] そこで、本発明者は、音道 12の狭窄部 11の構成につき、その断面構成が、その入 り側で開口面積の減少率が徐々に小さくなるようにする上記構成だけではなぐその 出側で逆に開口面積の増大率が徐々に大きくなるようにする構成を付加することで( 上記狭窄部 11後方の開口面積の増大率が徐々に大きくなる、断面で見た場合カー ブ状曲面に形成されることで)、その後方側に出てくる縦波と横波の両方の性質を持 つ波は、その圧力(音圧)の低下と、速度の低下を引き起こし、減衰してしまう構成と した。 [0049] Therefore, the present inventor is not limited to the above-described configuration in which the reduction rate of the opening area gradually decreases on the entry side of the configuration of the constricted portion 11 of the sound path 12. On the other hand, by adding a configuration that gradually increases the increase rate of the opening area on the exit side (the increase rate of the opening area behind the narrowed portion 11 gradually increases. (Because it is formed in a curved surface), it has both the longitudinal and transverse wave characteristics that come out behind it. The wave was damped by causing the pressure (sound pressure) to drop and the speed to drop.
[0050] ここでも、 2つの新しい吸音 ·消音原理が作用し、そのような縦波と横波の両方の性 質を持つ波を減衰させることになる。  [0050] Again, two new sound absorption and muffling principles act and attenuate waves with both longitudinal and transverse properties.
[0051] 1つ目の原理は、急速に径が広がる部分を上記波状のものが通過すると、距離の 2 乗に反比例する以上に、空気の分子間の引力で引っ張られて分子の振幅が妨げら れ、音の圧力(音の大きさ)が下がり、この音圧が下がることで、消音が可能となるとい うものである。 [0051] The first principle is that when the above-mentioned wave-like object passes through a rapidly expanding part, it is pulled by the attractive force between molecules of air, and the amplitude of molecules is hindered, rather than inversely proportional to the square of the distance. In other words, the sound pressure (sound volume) decreases, and this sound pressure decreases, so that the sound can be muted.
[0052] 2つめの原理は、上記のように、上記図 3に太線で示したような非一様な風速の風 は、急速に径が広がる部分の中では、急速に速度を失い、それによつて、縦波(音波 )に戻らず、消音できるというものである。  [0052] The second principle is that, as described above, the wind with non-uniform wind speed as shown by the thick line in FIG. Therefore, the sound can be muted without returning to the longitudinal wave (sound wave).
[0053] 以上の 2つの原理につき、図 6及び図 7を夫々使用して説明する。  [0053] The above two principles will be described with reference to FIGS. 6 and 7, respectively.
[0054] まず、図 6は、上記音圧の低下の原理を説明するための説明図である。図に示すよ うに、開口面積の減少率が徐々に小さくなる形状から中央狭窄部 11にかけて正圧領 域が、またこの狭窄部 11後半力 徐々に開口面積の増加率が大きくなる部分にかけ ては、減圧領域が、形成される。  First, FIG. 6 is an explanatory diagram for explaining the principle of the decrease in the sound pressure. As shown in the figure, the positive pressure region from the shape in which the decrease rate of the opening area gradually decreases to the central constriction part 11 and the second half force of this constriction part 11 gradually increases the increase rate of the opening area. A reduced pressure region is formed.
[0055] このように徐々に開口面積の増加率が大きくなる形状内では、音波の通過する断 面積が R状に急速に広くなるので、音圧が低下する。開口面積の増加率が、図に示 すように円周形状に近ぐ急速に大きくなる場合には、音波は増幅されない (即ち、ラ ツバのように、音が大きくなることは無い)。開口面積と開口形状で決まる周波数以下 の音 (低音域の音)は、以上のような後方側のホーンの性質によって、音圧が低下さ れ、開口部から出てこない。故に、低音は通過できない。すなわち徐々に開口面積 の増加率が大きくなる形状では、外側ほど急速に開口径が広がり、低音域側ほど、 音圧が低下されるため、減衰される。  [0055] Within the shape in which the increase rate of the opening area gradually increases in this way, the cross-sectional area through which the sound wave passes rapidly increases in an R shape, so that the sound pressure decreases. If the rate of increase of the opening area increases rapidly, as shown in the figure, the sound wave is not amplified (ie, the sound does not increase like a rat). Sounds below the frequency determined by the opening area and shape (sounds in the low frequency range) are reduced in sound pressure due to the properties of the rear horn as described above, and do not come out of the opening. Therefore, the bass cannot pass. That is, in the shape where the increase rate of the opening area gradually increases, the opening diameter rapidly increases toward the outer side, and the sound pressure decreases toward the lower sound side, so that it is attenuated.
[0056] 他方、それ以上の高音は、徐々に開口面積の増加率が大きくなる形状で減衰され ると言うよりも、上記のような徐々に開口面積の減少率が小さくなる構成によって、風 となって減衰してしまう。  [0056] On the other hand, rather than being attenuated in a shape in which the increase rate of the opening area gradually increases, the configuration in which the decrease rate of the opening area gradually decreases as described above, It will be attenuated.
[0057] また横波、即ち風自身は、縦波、即ち音波に、その後に再度変換されることはない 。特に吸音材 20と風との摩擦で風速を減速した後では、急速に音圧が下がるので、 再変換されることはない。 [0057] Further, the transverse wave, that is, the wind itself, is not converted again into the longitudinal wave, that is, the sound wave, after that. . In particular, after the wind speed is decelerated due to friction between the sound-absorbing material 20 and the wind, the sound pressure decreases rapidly, so that it is not reconverted.
[0058] 次に、図 7は、徐々に開口面積の増加率が大きくなる部分での上記速度の低下の 原理を説明するための説明図である。図に示すように、中央狭窄部 11の後半から徐 々に開口面積の増加率が大きくなる部分にかけては、減速領域が形成される。すな わち、狭窄部 11後半から徐々に開口面積の増加率が大きくなる部分にかけては、最 も狭まったところから、点音源のように音波が放射されるので、波面先端は、同図に示 すように、球状になる。さらに、開口面積の増加率が大きくなるため、右端の開口部に 向かって音波が曲げられる。同様に、風の方向も曲げられる。この段階で、縦波と横 波の両方の性質を持つ波には、減速が生ずる。  [0058] Next, FIG. 7 is an explanatory diagram for explaining the principle of the decrease in speed at a portion where the increase rate of the opening area gradually increases. As shown in the figure, a deceleration region is formed from the second half of the central constricted portion 11 to a portion where the increase rate of the opening area gradually increases. In other words, from the second half of the constricted part 11 to the part where the increase rate of the opening area gradually increases, the sound wave is radiated like a point sound source from the narrowest point. As shown, it becomes spherical. Furthermore, since the increasing rate of the opening area is increased, the sound wave is bent toward the opening at the right end. Similarly, the wind direction is also bent. At this stage, waves with both longitudinal and transverse properties are decelerated.
[0059] さらに音波及び風の進行方向が曲げられる時、位相がずれることによつても、より音 波と風速は減衰してしまう。つまり、風に変換されな力つた音波は、位相のずれが生 ずることによつても、さらに減衰してしまう。  [0059] Further, when the traveling direction of the sound wave and the wind is bent, the sound wave and the wind speed are further attenuated due to the phase shift. In other words, a strong sound wave that is not converted into wind is further attenuated by the occurrence of a phase shift.
[0060] 本発明者は、縦波と横波の両方の性質を持つ波の減衰効率をさらに高める構成に っ 、て検討を重ね、以下に示すような構成を用いることにした。  [0060] The present inventor has repeatedly studied the configuration for further increasing the attenuation efficiency of the waves having both the longitudinal wave and the transverse waves, and decided to use the following configuration.
[0061] すなわち、図 8に示すように、徐々に開口面積の増加率が大きくなる部分の出側後 方の離れた位置に、該出側開口に平行な後方壁面 30を有するというものである。  That is, as shown in FIG. 8, a rear wall 30 parallel to the exit opening is provided at a position away from the exit rear of the portion where the increase rate of the opening area gradually increases. .
[0062] これは、徐々に開口面積の増加率が大きくなる部分と後方壁面 30の間で、丁度、 その壁面 10構成が徐々に開口面積の減少率を小さくした、最初の構成 (入り側の構 成)における断面真ん中より半分の構成を、広がった部分の両側で夫々構成してい ることになる。  [0062] This is just between the portion where the increase rate of the opening area gradually increases and the rear wall surface 30, and the first configuration in which the wall surface 10 configuration gradually decreases the decrease rate of the opening area (on the entry side) The half of the configuration in the middle of the cross section in the configuration) is configured on both sides of the expanded part.
[0063] この領域ではさすがに減圧 '減速がすすんでいる力 さらに、本発明の最初の構成 と略同様な構成により、仮に微かにある音波でも、空気の流れに完全に変換され、波 長に依存せずに、消音される。また狭窄部 11の壁面 10と後方壁面 30との間で上記 微かな音波は分散されるように反射され、その反射の間に、弱まってしまう。すなわち 、音圧を下げると同時に、波面先端がほぼ球形であり、後方壁面 30に少しずつ当た るため、変換されな力つた音波の後方壁面 30を押す力が、弱まることになる。従って 、この後方壁面 30は、開口面積の増加率が大きくなる部分の出側後方に、該出側開 口に平行にさえ設置されてさえいれば、部屋の壁であっても力まわない(特別な壁を 作る必要はない)。 [0063] In this region, the force of depressurizing and decelerating is expected. Furthermore, with the configuration substantially the same as the first configuration of the present invention, even a slight sound wave is completely converted into an air flow, and the wavelength is changed. It is muted without depending. Further, the fine sound wave is reflected so as to be dispersed between the wall surface 10 and the rear wall surface 30 of the constriction 11 and is weakened during the reflection. That is, at the same time as the sound pressure is lowered, the tip of the wavefront is almost spherical and hits the rear wall 30 little by little, so that the force that pushes the rear wall 30 of the converted sound wave weakens. Therefore, the rear wall surface 30 is located behind the exit side where the increase rate of the opening area is large. As long as it is installed parallel to the mouth, it does not work even if it is a wall of the room (no need to make a special wall).
[0064] 以上の構成を、さらに図 9及び図 10に示すように、上記狭窄部 11の入り側開口力 平面状に並ぶように、該狭窄部 11を複数平行に設けたり、すなわち、上記音道の断 面構成が、その入り側で開口面積の減少率が徐々に小さくなり、その出側で逆に開 口面積の増大率が徐々に大きくなるように構成された狭窄部を有する吸音構造を、 平面状に並ぶように、複数個平行に設けたり(図 9参照)、さらに、その出側開口に平 行な後方壁面 30を有する構成(図 10参照)とすると、上記作用効果以外に、後方で 広がる壁面 10を伝わって流れ、またその流れと共に、断面側方に広がって流れる風 は、隣接する同様な構成によって、同様に音波力も風に変換されてきた流れとぶつ 力り合い、そこで風圧 ·速度とも、両方略ゼロになる。この際、たとえその風に振動成 分が含まれていても、互いに向かい合う方向でぶっかりあい、その振動 ·風は相殺さ れること〖こなる。  [0064] As shown in FIG. 9 and FIG. 10, the above configuration is further provided with a plurality of constrictions 11 parallel to each other so that the entrance side opening force of the constrictions 11 is arranged in a plane. A sound absorbing structure having a constricted portion configured such that the rate of decrease in the opening area gradually decreases on the entry side, and conversely the rate of increase in the opening area gradually increases on the exit side. Are arranged in parallel so that they are arranged in a plane (see Fig. 9), and the rear opening 30 has a parallel rear wall 30 (see Fig. 10). The wind that flows along the wall 10 that spreads behind, and that flows along the flow sideways crosses the cross-section side by side. Therefore, both wind pressure and speed are almost zero. At this time, even if the wind contains vibration components, they collide with each other in the opposite direction, and the vibration and wind cancel each other.
[0065] 図 10に示すように、出側開口の後方で広がる壁面 10同士が交わり、さらにその後 方の離れた位置に、後方壁面 30が設けられていれば、振動成分を含むような風が互 いに 180度の方向でぶっかりあうようになるため、 2つの振動の位相の山と山、谷と谷 が反対にぶつ力ることになり、相殺されるようになる(同じ方向で重なり合うのなら、山 と山、谷と谷は強めあうことになる)。  [0065] As shown in FIG. 10, if the wall surfaces 10 that spread behind the exit opening intersect each other and a rear wall surface 30 is provided at a further distant position, a wind that includes a vibration component is generated. Since they collide with each other in the direction of 180 degrees, the peaks and peaks of the two vibrations and the valleys and valleys collide in the opposite direction and cancel each other out (overlapping in the same direction) In that case, mountains and mountains, valleys and valleys will strengthen each other).
[0066] 以上、本構成では、音道 12を構成する狭窄部 11を有する構成を持ち、且つその 狭窄部 11の構成が、その断面構成として、少なくとも、その入り側で開口面積の減少 率が徐々に小さくなるように構成されるようにしたり、またその出側で逆に開口面積の 増大率が徐々に大きくなるように構成されるとしている力 例えば 2本以上の円柱を 一定間隔で平行に設け、それらの平面力も見た場合円柱間で、このような構成になる 。後方壁面 30もその後方側に設ければ良い。  [0066] As described above, this configuration has a configuration having the narrowed portion 11 that configures the sound path 12, and the configuration of the narrowed portion 11 has a reduction rate of the opening area at least on the entry side as a cross-sectional configuration. Force that is configured to gradually decrease, or conversely on the exit side, the increase rate of the opening area is gradually increased, for example, two or more cylinders in parallel at regular intervals When it is provided and the plane force is also seen, such a configuration is formed between the cylinders. The rear wall 30 may also be provided on the rear side.
[0067] さらに、円柱や角柱 (多角形の柱を含む)の向かい合う 2平面に、以上の形状の狭 窄部 11 (当然入り側開口と出側開口を有しており、そのうち、少なくとも入り側開口は 、該開口面積の減少率が徐々に小さくなるような構成である必要がある)を穿設する 構成を設けるようにしても良 、 (金型でブロック状に作成することが容易になる)。特に 四角柱のような構成で以上の形状が作られている場合、平面状に組み上げたり、音 道 12を連通するように、音道 12方向に、上記狭窄部 11を複数連続して設けることで 、本発明に係る吸音構造の吸音 ·消音効果が高まることになる。 [0067] Further, the constricted portion 11 (of course has an entrance side opening and an exit side opening) on two planes facing a cylinder or a prism (including a polygonal column), and at least the entrance side is included. The opening may be provided with a structure in which the opening area needs to be configured so that the reduction rate of the opening area gradually decreases), and it is easy to create a block shape with a mold. ). In particular When the above shape is made with a structure such as a quadrangular prism, a plurality of the constricted portions 11 can be provided continuously in the direction of the sound path 12 so as to be assembled in a flat shape or to communicate with the sound path 12. Thus, the sound absorbing / muffling effect of the sound absorbing structure according to the present invention is enhanced.
[0068] 以上の本発明に係る吸収構造とすることで、本構造と対向する壁 (後方壁面 30の 場合を含む)との間で一定の反射距離が存在しないため、共鳴の節を作れず、共鳴 を起こさないので、閉鎖空間での共鳴を防止することができる。本発明は、この構造 により、厚みや大きさ、周波数に依存しない均一な吸音が可能となると同時に、本構 造の出側での音波の減衰率は、周波数に依存せずに大きな値となる。  [0068] With the absorption structure according to the present invention described above, there is no constant reflection distance between the structure and the wall (including the rear wall surface 30) facing the structure, so that a resonance node cannot be created. Since resonance does not occur, resonance in a closed space can be prevented. With this structure, the present invention enables uniform sound absorption independent of thickness, size, and frequency, and at the same time, the sound wave attenuation rate on the exit side of this structure takes a large value regardless of frequency. .
[0069] 以上説明した構成は、本発明に係る吸音構造として、以下に示すような構成を有す るものとして各請求項で請求する。  [0069] The configuration described above is claimed in each claim as having the following configuration as the sound absorbing structure according to the present invention.
[0070] すなわち、請求項 1に係る吸音構造は、壁面で構成される、音波の通る音道につき 、その断面構成が、少なくとも、その入り側で開口面積の減少率が徐々に小さくなる ように構成された狭窄部を有することを基本的特徴として ヽる。  [0070] That is, the sound absorbing structure according to claim 1 is configured so that the reduction ratio of the opening area gradually decreases at least on the entrance side of the sound path through which the sound wave passes, which is composed of wall surfaces. The basic feature is that it has a stenosis part.
[0071] また請求項 3の吸音構造は、壁面で構成される、音波の通る音道につき、その断面 構成が、その入り側で開口面積の減少率が徐々に小さくなり、その出側で逆に開口 面積の増大率が徐々に大きくなるように構成された狭窄部を有することを特徴として いる。  [0071] Further, the sound absorbing structure of claim 3 has a cross-sectional configuration of a sound path through which sound waves pass, which is constituted by a wall surface, and the reduction rate of the opening area gradually decreases on the entry side, and reverses on the exit side. It has a narrowed portion configured such that the increase rate of the opening area gradually increases.
[0072] さらに請求項 5に係る吸音構造は、請求項 3の構造の上記音道の出側の離れた位 置に、該出側開口に平行な後方壁面を有することを特徴としている。  [0072] Further, the sound absorbing structure according to claim 5 is characterized in that a rear wall surface parallel to the exit opening is provided at a position away from the exit side of the sound path of the structure according to claim 3.
[0073] 請求項 7に係る吸音構造は、上記請求項 3記載の吸音構造を、平面状に並ぶよう に、複数個平行に設けたことを特徴としている。 [0073] A sound absorbing structure according to claim 7 is characterized in that a plurality of the sound absorbing structures according to claim 3 are provided in parallel so as to be arranged in a plane.
[0074] 請求項 9に係る吸音構造は、同じく上記請求項 3記載の吸音構造を、平面状に並 ぶように、複数個平行に設けると共に、該出側開口に平行な後方壁面を有することを 特徴としている。 [0074] The sound absorbing structure according to claim 9 is provided with a plurality of the sound absorbing structures according to claim 3 arranged in parallel so as to be arranged in a plane, and has a rear wall surface parallel to the outlet opening. It features.
[0075] 上記いずれの構成においても、上記音道 12中に吸音材を充填すると、上述のよう に、空気の流れに変換されたものとの間に摩擦が生じ、熱エネルギに変換されて、吸 音され、その効果が高まることになる。そのような吸音材の素材としては、既存の綿状 構造や海綿状構造のものが使用可能であり、吸音材として普通に用いられる発泡状 のものより、摩擦によって、熱エネルギに変換され、吸音される効果が高い。 [0075] In any of the above configurations, when the sound path 12 is filled with the sound absorbing material, as described above, friction is generated between the sound path 12 and the sound path 12, and the sound path 12 is converted into heat energy. The sound is absorbed and the effect is enhanced. As a material for such a sound absorbing material, an existing cotton-like structure or a sponge-like structure can be used. The effect of being converted into thermal energy by friction and absorbing sound is higher than that.
発明の効果  The invention's effect
[0076] 本発明の請求項 1〜請求項 10記載の吸音構造によれば、これまでの波動理論とは 異なる理論構成に基づき、可聴周波数帯を超える超低音力 超高音までの音波をほ ぼ一様に吸収し (広帯域の音波を吸収し)、部屋の最長辺を超える長さの音響空間 を作ることが可能 (狭い部屋において目的とする低音の再生を可能にする)であり、さ らに、低周波を外部に漏洩させない壁の構築が可能となるという優れた効果を奏し得 る。さらに本発明は、低周波を吸収する外壁の作成を可能とし、低周波公害を防止し うることになる。  [0076] According to the sound-absorbing structure of claims 1 to 10 of the present invention, based on a theoretical configuration different from the conventional wave theory, an extremely low sound force exceeding an audible frequency band and almost all sound waves up to an ultra-high frequency are obtained. It absorbs uniformly (absorbs broadband sound waves) and can create an acoustic space with a length that exceeds the longest side of the room (allows the desired bass to be reproduced in a narrow room). In addition, it is possible to produce an excellent effect that it is possible to construct a wall that does not leak low frequencies to the outside. Furthermore, the present invention makes it possible to create an outer wall that absorbs low frequencies, thereby preventing low frequency pollution.
図面の簡単な説明  Brief Description of Drawings
[0077] [図 1]本発明の基本構成を示す概略説明図である。 FIG. 1 is a schematic explanatory diagram showing a basic configuration of the present invention.
[図 2]上記構成の原理説明図である。  FIG. 2 is a diagram illustrating the principle of the above configuration.
[図 3]同じく本発明構成の原理説明図である。  FIG. 3 is also an explanatory diagram of the principle of the configuration of the present invention.
[図 4]本発明における音波の反射方向を示す説明図である。  FIG. 4 is an explanatory diagram showing the direction of sound wave reflection in the present invention.
[図 5]音道 12中に吸音材 20を充填する本発明の構成説明図である。  FIG. 5 is a configuration explanatory view of the present invention in which a sound absorbing material 20 is filled in a sound path 12.
[図 6]本発明構成による音圧の低下の原理を説明するための説明図である。  FIG. 6 is an explanatory diagram for explaining the principle of sound pressure reduction according to the configuration of the present invention.
[図 7]徐々に開口面積の増加率が大きくなる部分での上記速度の低下の原理を説明 するための説明図である。  FIG. 7 is an explanatory diagram for explaining the principle of the decrease in speed at a portion where the increase rate of the opening area gradually increases.
[図 8]出側開口に平行な後方壁面 30を有する本発明の構成説明図である。  FIG. 8 is a diagram illustrating the configuration of the present invention having a rear wall surface 30 parallel to the outlet opening.
[図 9]上記狭窄部を有する吸音構造を、平面状に並ぶように、複数個平行に設けた 本発明の構成説明図である。  FIG. 9 is a structural explanatory view of the present invention in which a plurality of sound absorbing structures having the narrowed portion are provided in parallel so as to be arranged in a plane.
[図 10]さらに、出側開口に平行な後方壁面 30を有する本発明の構成説明図である。  FIG. 10 is a structural explanatory view of the present invention further having a rear wall surface 30 parallel to the outlet opening.
[図 11]本発明の実施例に使用される無響室 60の内部構造を示す平面断面図である  FIG. 11 is a plan sectional view showing the internal structure of an anechoic chamber 60 used in the example of the present invention.
[図 12]各実施例での比較のために使用された無響室 60の内部構造の概略構成を示 す説明図である。 FIG. 12 is an explanatory diagram showing a schematic configuration of an internal structure of an anechoic chamber 60 used for comparison in each example.
[図 13]実施例 1として無響室 60の内部に、狭窄部 11の構成が用 ヽられた構成を示 す説明図である。 圆 14]図 12の音波計測状態を模式的に示した概略図である。 FIG. 13 is an explanatory diagram showing a configuration in which the configuration of the constricted portion 11 is used inside the anechoic chamber 60 as Example 1. [14] FIG. 14 is a schematic diagram schematically showing the sound wave measurement state of FIG.
圆 15]図 13の音波計測状態を模式的に示した概略図である。 [15] FIG. 15 is a schematic diagram schematically showing the sound wave measurement state of FIG.
[図 16]図 14を基礎としてそれに対する図 15の場合の反射率と透過率を求めて得ら れた計測結果のグラフである。  FIG. 16 is a graph of measurement results obtained by obtaining the reflectance and transmittance in the case of FIG. 15 based on FIG.
[図 17]図 13の狭窄部 11内に繊維状吸音材 20を充填した状態の構成の模式図であ る。  FIG. 17 is a schematic diagram of a configuration in which the fibrous sound absorbing material 20 is filled in the constricted portion 11 in FIG.
[図 18]図 14を基礎としてそれに対する図 17の場合の反射率と透過率を求めて得ら れた計測結果のグラフである。  FIG. 18 is a graph of measurement results obtained by obtaining the reflectance and transmittance in the case of FIG. 17 based on FIG.
圆 19]実施例 3に係る構成を示す説明図である。 FIG. 19 is an explanatory diagram showing a configuration according to Example 3.
[図 20]図 14を基礎としてそれに対する図 19の場合の反射率と透過率を求めて得ら れた計測結果のグラフである。  FIG. 20 is a graph of measurement results obtained by obtaining the reflectance and transmittance in the case of FIG. 19 based on FIG.
圆 21]実施例 4に係る構成を示す説明図である。 圆 21] It is explanatory drawing which shows the structure based on Example 4. FIG.
[図 22]図 14を基礎としてそれに対する図 21の場合の反射率と透過率を求めて得ら れた計測結果のグラフである。  FIG. 22 is a graph of measurement results obtained by obtaining the reflectance and transmittance in the case of FIG. 21 based on FIG.
圆 23]実施例 5に係る構成を示す説明図である。 圆 23] It is explanatory drawing which shows the structure which concerns on Example 5. FIG.
[図 24]図 14を基礎としてそれに対する図 23の場合の反射率と透過率を求めて得ら れた計測結果のグラフである。  FIG. 24 is a graph of measurement results obtained by obtaining the reflectance and transmittance in the case of FIG. 23 based on FIG.
圆 25]実施例 6に係る構成を示す説明図である。 圆 25] It is explanatory drawing which shows the structure which concerns on Example 6. FIG.
[図 26]図 14を基礎としてそれに対する図 25の場合の反射率と透過率を求めて得ら れた計測結果のグラフである。  FIG. 26 is a graph of measurement results obtained by obtaining the reflectance and transmittance in the case of FIG. 25 based on FIG.
圆 27]実施例 7に係る構成を示す説明図である。 圆 27] It is explanatory drawing which shows the structure which concerns on Example 7. FIG.
[図 28]図 14を基礎としてそれに対する図 27の場合の反射率と透過率を求めて得ら れた計測結果のグラフである。  FIG. 28 is a graph of measurement results obtained by obtaining the reflectance and transmittance in the case of FIG. 27 based on FIG.
圆 29]実施例 8に係る構成を示す説明図である。 FIG. 29 is an explanatory diagram showing the configuration according to the eighth embodiment.
[図 30]図 14を基礎としてそれに対する図 29の場合の反射率と透過率を求めて得ら れた計測結果のグラフである。  FIG. 30 is a graph of measurement results obtained by obtaining the reflectance and transmittance in the case of FIG. 29 based on FIG.
圆 31]実施例 9に係る構成を示す説明図である。 [31] FIG. 31 is an explanatory diagram showing a configuration according to the ninth embodiment.
[図 32]図 14を基礎としてそれに対する図 30の場合の反射率と透過率を求めて得ら れた計測結果のグラフである。 [Fig.32] Based on Fig. 14, the reflectance and transmittance in the case of Fig. 30 are obtained and obtained. It is a graph of the measured result.
圆 33]実施例 10に係る構成を示す説明図である。 FIG. 33 is an explanatory diagram showing a configuration according to Example 10.
[図 34]図 14を基礎としてそれに対する図 33の場合の反射率と透過率を求めて得ら れた計測結果のグラフである。  FIG. 34 is a graph of measurement results obtained by obtaining the reflectance and transmittance in the case of FIG. 33 based on FIG.
[図 35]四角柱 64の向かい合う 2平面において、本発明の狭窄部 11が穿設された構 成を示す斜視図である。  FIG. 35 is a perspective view showing a configuration in which the narrowed portion 11 of the present invention is drilled in two planes facing a quadrangular column 64.
圆 36]図 35の音道中に吸音材 20を備えた構成を示す斜視図である。 36] FIG. 36 is a perspective view showing a configuration in which the sound absorbing material 20 is provided in the sound path of FIG.
[図 37]無音状態の空気分子の位置を示す図と、 1波目だけ音波を発振した場合の、 [Fig.37] A diagram showing the position of silent air molecules, and the sound wave oscillated only for the first wave.
1波長の音波の空気分子の位置を示す図との対比を示す説明図である。 It is explanatory drawing which shows contrast with the figure which shows the position of the air molecule of the sound wave of 1 wavelength.
圆 38]そのような音波の発振がある場合の、ある点の圧力変化を示すグラフである。 [38] This is a graph showing the pressure change at a certain point when there is such a sound wave oscillation.
[図 39]平行壁面 40及び 41がある場合に、 1波長の音波が 1波目だけ発せられた時 の、空気分子の位置を示す模式図である。  FIG. 39 is a schematic diagram showing the positions of air molecules when a sound wave of one wavelength is emitted only for the first wave when there are parallel wall surfaces 40 and 41.
圆 40]その際の、ある 1個の空気分子の圧力を示した説明図である。 [40] It is an explanatory view showing the pressure of one air molecule at that time.
圆 41]壁面 41で音波が反射される時の状態を示す説明図である。 圆 41] It is an explanatory view showing a state when sound waves are reflected on the wall surface 41.
圆 42]音波を吸収してしまって、反射が起こらない状態を示す説明図である。 [42] FIG. 42 is an explanatory view showing a state where the sound wave is absorbed and no reflection occurs.
圆 43]壁面間 40と平行でない壁面 41間で共鳴が起こることを示す説明図である。 圆 44]僅かに位相が違う波が重なることにより、打ち消しあって音が消えてしまう状態 を示す説明図である。 [43] FIG. 43 is an explanatory view showing that resonance occurs between the wall surfaces 41 that are not parallel to the wall surfaces 40. [44] It is an explanatory diagram showing a state where the sound disappears due to the overlapping of waves with slightly different phases.
[図 45]壁面 40及び 41の間で、一方の側に近いところに吸音材 50を設置した状態を 示す説明図である。  FIG. 45 is an explanatory diagram showing a state in which the sound absorbing material 50 is installed between the wall surfaces 40 and 41 near one side.
符号の説明 Explanation of symbols
10 音道壁面  10 sound road wall
11 狭窄部  11 Stenosis
12 音道  12 Sound path
20 吸音材  20 Sound absorbing material
30 後方壁面  30 Rear wall
40、 41 壁面  40, 41 wall surface
50 吸音材 60 無響室 50 Sound absorbing material 60 Anechoic chamber
61、 62 囲い壁  61, 62 Fence wall
63a、 63b 遮音壁  63a, 63b Sound insulation wall
64 四角柱  64 Square pillar
70 スピーカ  70 Speaker
80、 81 マイクロホン  80, 81 microphone
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0079] 以下、本発明の実施の形態を図示例と共に説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0080] 図 11に示す内部断面構造を有する平面縦'横 10mX 11mの大きさで天井高 3. 5 mの超低周波用特殊無響室 60を、間に振動吸収用特殊高分子材を挟んだ層状鉄 筋コンクリートによる制振合板構造で構成した。図面前方中央には、スピーカ 70が室 内部に向けて出力できるように設置されており、それを中心に左右に、平断面樽型に 囲い壁 61が形成され、また図面後方 (スピーカ 70に対向する側)には、樽型囲い壁 6 1内部に突出する状態で、片断面への字型底面囲い壁 62が形成され、これらの囲い 壁 61、 62によってコーン形状に構成されており、上記無響室 60内面との間に発泡 性の吸音材 50が充填されている。囲い壁 61は、制振された有孔ボードを高密度の 繊維状吸音材で覆った構造である。  [0080] A flat vertical and horizontal 10mX 11m size with a cross section shown in Fig. 11 and a ceiling height of 3.5m, a special anechoic chamber 60 for ultra-low frequencies, and a special polymer material for vibration absorption in between. It consists of a vibration-damping plywood structure with sandwiched layered reinforced concrete. A speaker 70 is installed in the center of the front of the drawing so that it can output toward the interior of the room, and a wall 61 is formed in the shape of a barrel in the cross section on the left and right around the center. The bottom wall 62 is formed in a single section in a state of protruding into the barrel-shaped enclosure wall 61, and is formed into a cone shape by these enclosure walls 61, 62. A foaming sound absorbing material 50 is filled between the anechoic chamber 60 and the inner surface. The enclosure wall 61 has a structure in which a perforated board that is damped is covered with a high-density fibrous sound-absorbing material.
[0081] また、この超低周波用特殊無響室 60の天井部には床との平行部が無ぐ厚み lm の吸音材 (発泡性の吸音材)、床部には厚み 60cmの吸音材(同材質)と高さ lmの 四角錐構造の吸音材(同材質)が貼着されている。さらにこの超低周波用特殊無響 室 60は、免震台上に設置されている。それによつて、この超低周波用特殊無響室 60 の最低共振周波数は、 4. 2Hzに設定されることになり、さらに床面の最低振動共振 周波数は、約 7. 6Hzである。無響室 60は、電波暗室内に設置され、 40KHz〜17G Hzの計測範囲で、 35(1Β /ζ V以下の状態にある。  [0081] The ultra-low frequency special anechoic chamber 60 has a lm-thickness sound absorbing material (foaming sound-absorbing material) with no parallel part to the floor at the ceiling, and a 60cm-thick sound absorbing material at the floor. A sound absorbing material (same material) with a quadrangular pyramid structure (same material) and a height of lm is attached. Furthermore, this special low-frequency anechoic chamber 60 is installed on a base isolation table. As a result, the minimum resonance frequency of the ultra-low frequency special anechoic chamber 60 is set to 4.2 Hz, and the minimum vibration resonance frequency of the floor surface is about 7.6 Hz. The anechoic chamber 60 is installed in an anechoic chamber, and is in a state of 35 (1Β / ζ V or less) in a measurement range of 40 KHz to 17 GHz.
[0082] 一方、上記スピーカ 70は、 Dunlavy特注の密閉型スピーカを用い、以下の特性を有 している。  [0082] On the other hand, the speaker 70 is a Dunlavy custom-made sealed speaker and has the following characteristics.
-0. 5dB〜 + 0. 5dB (16Hz〜24KHz)  -0.5 dB to +0.5 dB (16 Hz to 24 KHz)
- 1. OdB〜 + l. 0dB (14Hz〜28KHz) 4. 2dB (10Hz) -1. OdB ~ + l. 0dB (14Hz ~ 28KHz) 4. 2dB (10Hz)
位相誤差: 1Z200000秒以下  Phase error: 1Z200000 seconds or less
[0083] このスピーカ 70には、図示しない信号配線、パワーアンプ、プリアンプが接続され ており、 Dunlavy特注の密閉型該スピーカ 70を含む総合歪率は、 0. 27% (1ΚΗζ)、 位相誤差は、 1Z100000秒となる。 [0083] Signal wiring (not shown), a power amplifier, and a preamplifier are connected to the speaker 70. The total distortion including the custom-made Dunlavy speaker 70 is 0.27% (1ΚΗζ), and the phase error is 1Z100000 seconds.
実施例 1  Example 1
[0084] このような超低周波用特殊無響室 60を設置し、さらに、本発明の請求項 1に係る構 成とその構成の無 、状態での吸音効果を比較するために、図 12及び図 13に示すよ うに、遮音壁 63a、 63bが、囲い壁 61の左右両側から内方に突出する状態に設置さ れ、それによつて無響室 60内部が、前方室と後方室に分けられるようにされた。そし て、遮音壁 63a、 63bの前方室内側には、上記と同様な素材の吸音材 50が貼着され た。上記図のうち図 13は、本発明の請求項 1に係る構成、すなわち、その断面構成 力 その入り側で開口面積の減少率が徐々に小さくなるように構成された狭窄部 11 を有する音道が構成されるようにした。具体的には、直径 11cmの円柱を断面 1Z4 に切断し、遮音壁 63aと 63bとの間に、上記狭窄部 11の最狭部間隔 8mmを開けて、 断面 1Z4の円柱を設けた(開口側力 Sスピーカ 70側に向 、て 、る状態)。  [0084] In order to compare the sound absorption effect in the state of the present invention with the configuration according to claim 1 of the present invention and the configuration according to claim 1 of the present invention, an ultra-low frequency special anechoic chamber 60 is installed. As shown in FIG. 13, the sound insulation walls 63a and 63b are installed so as to protrude inwardly from the left and right sides of the enclosure wall 61, whereby the anechoic chamber 60 is divided into a front chamber and a rear chamber. It was like that. A sound absorbing material 50 made of the same material as above was attached to the front indoor side of the sound insulation walls 63a and 63b. Of the above figures, FIG. 13 shows the configuration according to claim 1 of the present invention, that is, the cross-sectional configuration force thereof, and the sound path having the constricted portion 11 configured so that the reduction rate of the opening area gradually decreases on the entry side. Was configured. Specifically, a cylinder with a diameter of 11 cm was cut into a cross section of 1Z4, and a cylinder with a cross section of 1Z4 was provided between the sound insulation walls 63a and 63b with a 8 mm gap between the narrowest portions 11 (opening side force). S speaker 70 side)
[0085] そして、図 12及び図 13に示すように、無響室 60の前方室のスピーカ 70の出力側と 後方室の片断面への字型底面囲 、壁 62近傍に、 ldBが 7Hz〜36KHzの特性を 有する Earthworks特注マイクロホン 80及び 81が夫々設置され、スピーカ 70から放出 されたパルス音波を、上記マイクロホン 80、 81で拾って、 22BitZ96KHzリニアで P CM記録できるパルス型周波数分析器(図示無し)で計測した。パルス音波は、あら ゆる周波数を含んで 、るので、 FFTにて周波数とその強度を知ることができる。  [0085] Then, as shown in FIG. 12 and FIG. 13, the ldB is 7 Hz to the output side of the speaker 70 in the front chamber of the anechoic chamber 60 and the character-shaped bottom wall surrounding the cross section of the rear chamber in the vicinity of the wall 62. The Earthworks custom microphones 80 and 81 with 36KHz characteristics are installed, respectively. The pulse sound wave emitted from the speaker 70 is picked up by the microphones 80 and 81, and the pulse type frequency analyzer (not shown) can record the PCM with 22BitZ96KHz linear. ). Since the pulse sound wave includes all frequencies, the frequency and its intensity can be known by FFT.
[0086] この際、図 12の音波計測状態を模式的に示したもの力 図 14であり、また図 13の 音波計測状態を模式的に示したものが、図 15である。上記の計測を行い、図 14を基 準としてそれに対する図 15の場合の反射率と透過率を求め、図 16の計測結果を得 た。同図より、透過率は 600Hz辺りで変化はあるものの、それより上(〜20KHz)でも 、図 15の状態の方は、図 14の場合の 10%以下と、透過率が低下しており、吸音効 果が確認された。また反射率については、どの周波数帯域でも、図 14の場合の 1% 未満と低い。さらに上記回折について、若干の補足をすると、図 15の狭窄部 11で構 成される音道は逆向きのホーン構造であるので、低周波は通過できない。また図 15 の開口面積より(有効開口面積約 50%)、通過できる音は、ずっと少ない。尚、図 16 において、 40Hz以下の値は、床を伝達した振動で増加している。 At this time, FIG. 14 schematically shows the sound wave measurement state of FIG. 12, and FIG. 15 schematically shows the sound wave measurement state of FIG. The above measurement was performed, and the reflectance and transmittance in the case of FIG. 15 were obtained with reference to FIG. 14, and the measurement result of FIG. 16 was obtained. From the figure, the transmittance varies around 600Hz, but even above that (~ 20KHz), the transmittance in the state of Fig. 15 is less than 10% of Fig. 14, and the transmittance is reduced. Sound absorption effect was confirmed. The reflectance is 1% in the case of Fig. 14 in any frequency band. Less than and low. Furthermore, with a slight supplement to the above diffraction, the sound path formed by the constriction 11 in FIG. 15 has a reverse horn structure, so that low frequencies cannot pass. In addition, the sound that can be passed is much less than the opening area of Fig. 15 (effective opening area is about 50%). In Fig. 16, the value of 40Hz or less increases due to vibration transmitted through the floor.
実施例 2  Example 2
[0087] 上記図 13の狭窄部 11内に、 140kgZm3で繊維状吸音材 20を、充填した状態 (請 求項 2の構成)の模式図を、図 17に示す。この時も、上記の計測を行い、図 14を基 準としてそれに対する図 17の場合の反射率と透過率を求め、図 18に示す計測結果 を得た。同図より、透過率は、明らかに図 14の状態よりも図 17の状態の方が低く抑え られており、吸音効果が確認された。また反射率については、どの周波数帯域でも、 図 16に示されたよりも更に低く抑えられている。尚、上記吸音材 20の厚みは、最大 5 . 5cmで、これが充填されることで、図 15の場合よりも、 1Z10以下に吸音されること となった。仮に、最大 5. 5cm厚の繊維状吸音材だけで吸音した場合は、これほど吸 音されなかった。 FIG. 17 shows a schematic diagram of the state in which the fibrous sound-absorbing material 20 is filled with 140 kgZm 3 in the constricted portion 11 in FIG. 13 (configuration of claim 2). At this time, the above measurement was performed, and the reflectance and transmittance in the case of FIG. 17 were obtained with reference to FIG. 14, and the measurement results shown in FIG. 18 were obtained. From the figure, the transmittance is clearly lower in the state of FIG. 17 than in the state of FIG. 14, confirming the sound absorption effect. Also, the reflectivity is suppressed to be lower than that shown in FIG. 16 in any frequency band. The thickness of the sound absorbing material 20 is 5.5 cm at the maximum, and when it is filled, sound is absorbed to 1Z10 or less than in the case of FIG. If sound was absorbed only with a fibrous sound absorbing material with a maximum thickness of 5.5 cm, it was not so much absorbed.
実施例 3  Example 3
[0088] 図 19は、本発明の請求項 3に係る構成、すなわち、その断面構成が、その入り側で 開口面積の減少率が徐々に小さくなり、その出側で逆に開口面積の増大率が徐々 に大きくなるように構成された狭窄部 11を有する音道が構成されるようにした。具体 的には、直径 11cmの円柱を断面 1Z2に切断し、遮音壁 63aと 63bとの間に、上記 狭窄部 11の最狭部間隔 8mmを開けて、断面 1/2の円柱を設けた(開口側カ^ピ一 力 70側に向いている状態)。  FIG. 19 shows a configuration according to claim 3 of the present invention, that is, its cross-sectional configuration, in which the decreasing rate of the opening area gradually decreases on the entry side, and conversely, the increasing rate of the opening area on the exit side. A sound path having a constriction 11 configured to gradually increase is constructed. Specifically, a cylinder with a diameter of 11 cm was cut into a cross section of 1Z2, and a cylinder with a cross section of 1/2 was provided between the sound insulation walls 63a and 63b with an interval of 8 mm between the narrowest portions of the narrowed portion 11 (opening). (Side cap is facing 70).
[0089] この時も、上記の計測を行い、図 14を基準としてそれに対する図 19の場合の反射 率と透過率を求め、図 20に示す計測結果を得た。同図より、透過率は、明らかに図 1 4の状態よりも図 19の状態の方が低く抑えられており、顕著な吸音効果が確認された 。また反射率についても、どの周波数帯域でも、図 16や図 18と同様、低く抑えられて いる。  [0089] Also at this time, the above measurement was performed to obtain the reflectance and transmittance in the case of Fig. 19 with reference to Fig. 14, and the measurement results shown in Fig. 20 were obtained. From the figure, the transmittance is clearly lower in the state of FIG. 19 than in the state of FIG. 14, and a remarkable sound absorbing effect was confirmed. Also, the reflectivity is kept low in any frequency band, as in FIGS.
実施例 4  Example 4
[0090] 上記図 19の狭窄部 11内に、 140kgZm3で繊維状吸音材 20を、充填した状態 (請 求項 4の構成)の模式図を、図 21示す。この時も、上記の計測を行い、図 14を基準と してそれに対する図 21の場合の反射率と透過率を求め、図 22に示す計測結果を得 た。同図より、透過率は、明らかに図 14の状態よりも図 19の状態の方が低く抑えられ ており、吸音効果が確認された。また反射率については、どの周波数帯域でも、図 1 6、図 18、図 20と同様、低く抑えられている。 [0090] A state in which the fibrous sound-absorbing material 20 is filled in the constricted portion 11 in Fig. 19 at 140kgZm 3 (contract). A schematic diagram of the configuration of claim 4 is shown in FIG. At this time, the above measurement was performed, and the reflectance and transmittance in the case of FIG. 21 were obtained with reference to FIG. 14, and the measurement results shown in FIG. 22 were obtained. From the figure, the transmittance is clearly lower in the state of FIG. 19 than in the state of FIG. 14, confirming the sound absorbing effect. Also, the reflectivity is kept low in any frequency band as in FIGS. 16, 18, and 20.
実施例 5  Example 5
[0091] 図 19の構成に対し、上記音道の出側の離れた位置に、該出側開口に平行な後方 壁面 30 (厚さ 24mmの蝦夷松の合板)を有する請求項 4の構成を作成し(図 23参照 )、上記の計測を行った。図 14を基準としてそれに対する図 23の場合の反射率と透 過率を求め、図 24に示す計測結果を得た。同図より、透過率は、明らかに図 14の状 態よりも図 23の状態の方が低く抑えられており、吸音効果が確認された。また反射率 については、どの周波数帯域でも、図 16、図 18、図 20、図 22と同様、低く抑えられ ている。  [0091] The configuration according to claim 4, which has a rear wall surface 30 (24 mm thick plywood plywood) parallel to the exit opening at a position away from the exit side of the sound path, compared to the configuration of FIG. Prepared (see Figure 23) and measured as above. Based on Fig. 14, the reflectance and transmittance in the case of Fig. 23 were obtained, and the measurement results shown in Fig. 24 were obtained. From the figure, the transmittance is clearly lower in the state of FIG. 23 than in the state of FIG. 14, confirming the sound absorption effect. Also, the reflectivity is kept low in any frequency band, as in FIGS. 16, 18, 20, and 22.
実施例 6  Example 6
[0092] 図 21の構成に対し、上記音道の出側の離れた位置に、該出側開口に平行な後方 壁面 30を有する請求項 6の構成を作成し(図 25参照)、上記の計測を行った。図 14 を基準としてそれに対する図 25の場合の反射率と透過率を求め、図 26に示す計測 結果を得た。同図より、透過率は、明らかに図 14の状態よりも図 25の状態の方が低く 抑えられており、吸音効果が確認された。また反射率については、どの周波数帯域 でも、図 16、図 18、図 20、図 22、図 24と同様、低く抑えられている。  [0092] In contrast to the configuration of Fig. 21, the configuration of claim 6 is created (see Fig. 25) having a rear wall 30 parallel to the exit opening at a position away from the exit side of the sound path (see Fig. 25). Measurement was performed. With reference to Fig. 14, the reflectance and transmittance in the case of Fig. 25 were obtained, and the measurement results shown in Fig. 26 were obtained. From the figure, the transmittance was clearly lower in the state of FIG. 25 than in the state of FIG. 14, confirming the sound absorbing effect. Also, the reflectivity is kept low in any frequency band as in FIGS. 16, 18, 20, 20, 22, and 24.
実施例 7  Example 7
[0093] 図 27は、本発明の請求項 7に係る構成、すなわち、その断面構成が、その入り側で 開口面積の減少率が徐々に小さくなり、その出側で逆に開口面積の増大率が徐々 に大きくなるように構成された狭窄部 11を有する音道が作成され、且つそのような音 道の構成を、平面状に並ぶように、 3つ平行に設けた構造とした。具体的には、直径 11cmの円柱を、中央に 2つ、両間で構成される狭窄部 11の最狭部間隔 8mmを開 けて、設けると共に、さらに断面で見てこれらの円柱に連続するように、上記と同様な 断面半円の円柱を平行に並べて(中央の円柱とその両端側の半円柱の間で構成さ れる狭窄部 11の最狭部間隔 8mmを開けて並べた)、遮音壁 63aと 63bとの間に、こ れら円柱と半円柱で 3つの狭窄部 11を有する構成を設けた (全ての開口側力 Sスピー 力 70側に向いている状態)。 [0093] FIG. 27 shows a configuration according to claim 7 of the present invention, that is, its cross-sectional configuration, in which the decreasing rate of the opening area gradually decreases on the entry side, and conversely, the increasing rate of the opening area on the exit side. A sound path having a constricted portion 11 configured to gradually increase is created, and three sound path structures are provided in parallel so as to be arranged in a plane. Specifically, two cylinders with a diameter of 11 cm are provided in the center, with the narrowest part interval 8 mm between the two constrictions 11 formed between them, and are continuous with these cylinders as seen in cross section. As shown above, the semi-circular cylinders with the same cross-section as above are arranged in parallel (a structure between the central cylinder and the semi-cylinders at both ends. Between the sound insulation walls 63a and 63b, with these cylinders and semi-cylinders, there is a configuration with three constrictions 11 (all open sides) Force S-speech force 70)
[0094] この時も、上記の計測を行い、図 14を基準としてそれに対する図 27の場合の反射 率と透過率を求め、図 28に示す計測結果を得た。同図より、透過率は、明らかに図 1 4の状態よりも図 27の状態の方が低く抑えられており、顕著な吸音効果が確認された 。また反射率についても、どの周波数帯域でも、図 16、図 18、図 20、図 22、図 24、 図 26と同様、低く抑えられている。 [0094] Also at this time, the above measurement was performed, the reflectance and transmittance in the case of Fig. 27 were obtained with reference to Fig. 14, and the measurement results shown in Fig. 28 were obtained. From the figure, the transmittance was clearly lower in the state of FIG. 27 than in the state of FIG. 14, and a remarkable sound absorbing effect was confirmed. The reflectance is also kept low in any frequency band, as in FIGS. 16, 18, 20, 20, 22, 24, and 26.
実施例 8  Example 8
[0095] 上記図 27の狭窄部 11内に、 140kgZm3で繊維状吸音材 20を、充填した状態 (請 求項 8の構成)の模式図を、図 29示す。この時も、上記の計測を行い、図 14を基準と してそれに対する図 29の場合の反射率と透過率を求め、図 30に示す計測結果を得 た。同図より、透過率は、明らかに図 14の状態よりも図 29の状態の方が低く抑えられ ており、顕著な吸音効果が確認された。また反射率については、どの周波数帯域で も、図 16、図 18、図 20、図 22、図 24、図 26、図 28と同様、低く抑えられて ヽる。 実施例 9 FIG. 29 shows a schematic diagram of the state in which the fibrous sound-absorbing material 20 is filled with 140 kgZm 3 in the narrowed portion 11 of FIG. 27 (configuration of claim 8). At this time, the above measurement was performed, the reflectance and transmittance in the case of FIG. 29 were obtained with reference to FIG. 14, and the measurement results shown in FIG. 30 were obtained. From the figure, the transmittance is clearly lower in the state of FIG. 29 than in the state of FIG. 14, and a remarkable sound absorbing effect was confirmed. In addition, the reflectivity can be kept low in any frequency band, as in FIGS. 16, 18, 20, 20, 22, 24, 26, and 28. Example 9
[0096] 図 27の構成に対し、上記音道の出側の離れた位置に、該出側開口に平行な後方 壁面 30を有する請求項 9の構成を作成し(図 31参照)、上記の計測を行った。図 14 を基準としてそれに対する図 31の場合の反射率と透過率を求め、図 32に示す計測 結果を得た。同図より、透過率は、明らかに図 14の状態よりも図 31の状態の方が低く 抑えられており、顕著な吸音効果が確認された。また反射率については、どの周波 数帯域でも、図 16、図 18、図 20、図 22、図 24、図 26、図 28、図 30と同様、低く抑え られている。  [0096] In contrast to the configuration of Fig. 27, the configuration of claim 9 is created (see Fig. 31) having a rear wall 30 parallel to the exit opening at a position away from the exit side of the sound path (see Fig. 31). Measurement was performed. Based on Fig. 14, the reflectance and transmittance in the case of Fig. 31 were obtained, and the measurement results shown in Fig. 32 were obtained. From the figure, the transmittance is clearly lower in the state of FIG. 31 than in the state of FIG. 14, and a remarkable sound absorbing effect was confirmed. Also, the reflectance is kept low in any frequency band, as in FIGS. 16, 18, 20, 20, 22, 24, 26, 28, and 30.
実施例 10  Example 10
[0097] 上記図 31の狭窄部 11内に、 140kgZm3で繊維状吸音材 20を、充填した状態 (請 求項 10の構成)の模式図を、図 33示す。この時も、上記の計測を行い、図 14を基準 としてそれに対する図 33の場合の反射率と透過率を求め、図 34に示す計測結果を 得た。同図より、透過率は、明らかに図 14の状態よりも図 33の状態の方が低く抑えら れており、顕著な吸音効果が確認された。また反射率については、どの周波数帯域 でも、図 16、図 18、図 20、図 22、図 24、図 26、図 28、図 30、図 32と同様、低く抑え られている。 FIG. 33 shows a schematic view of the narrowed portion 11 of FIG. 31 filled with the fibrous sound absorbing material 20 at 140 kgZm 3 (configuration of claim 10). At this time, the above measurement was performed, and the reflectance and transmittance in the case of FIG. 33 with respect to FIG. 14 were obtained, and the measurement result shown in FIG. 34 was obtained. From the figure, the transmittance is clearly lower in the state of FIG. 33 than in the state of FIG. As a result, a remarkable sound absorbing effect was confirmed. Also, the reflectivity is kept low in any frequency band as in FIGS. 16, 18, 20, 20, 22, 24, 26, 28, 30, and 32.
[0098] 以上の実施例 1〜10に示されるように、請求項 1〜請求項 10の構成は、これらの構 成の施工されて 、な ヽ図 14の構成よりも高 ヽ吸音効果を得て 、るだけではなぐ実 施例 1〜10の順に、その吸音効果が次第に高くなつており、本発明の構成が、従来 の吸音原理とは異なる原理で、その効果が得られて 、ることが裏付けられることとなつ た。  [0098] As shown in Examples 1 to 10 above, the configurations of claims 1 to 10 have a higher sound absorption effect than the configuration of Fig. 14 when these configurations are applied. Therefore, the sound absorption effect is gradually increased in the order of Examples 1 to 10, which is not just to be achieved, and the configuration of the present invention can be obtained by a principle different from the conventional sound absorption principle. Was supported.
[0099] また、上記実施例 1〜: LOは、平行に立設された 2本の円柱(1Z4や 1Z2に切断さ れて 、る状態)の断面構成にぉ 、て、上記本発明の夫々の構成を備えて 、る状態の 場合の実験結果を示したものである。これを、例えば、図 35に示すように、四角柱 64 の向かい合う 2平面に、以上の形状の狭窄部 11が穿設された状態に形成したり、図 36に示すように、さらにその狭窄部 11を含む音道 12内に、吸音材 20を充填する構 成とすると良い。当然入り側開口と出側開口を有しており、そのうち、少なくとも入り側 開口は、該開口面積の減少率が徐々に小さくなるような構成である必要がある、理想 的にはさらに出側開口について、該開口面積の増大率が徐々に大きくなるような構 成が良い。このような構成は、様々な素材でブロック状に作成することが可能である。 そのような形状で作られている場合、平面状に組み上げたり、音道 12を連通するよう に、音道 12方向に、上記狭窄部 11を複数連続して設けることで、本発明に係る吸音 構造の吸音 ·消音効果が高まることが容易に予想されることになる。  [0099] Further, in the above-described first to fifth embodiments, the LO has the cross-sectional configuration of two columns (in a state of being cut into 1Z4 and 1Z2) arranged in parallel, and each of the present invention described above. The experimental results in the case of this state are shown. For example, as shown in FIG. 35, the constricted portion 11 having the above shape is formed in two planes facing the quadrangular prism 64, or as shown in FIG. The sound path 12 including 11 is preferably filled with the sound absorbing material 20. Of course, it has an entrance-side opening and an exit-side opening, and at least the entrance-side opening needs to be configured so that the reduction rate of the opening area gradually decreases. Therefore, it is preferable that the increase rate of the opening area gradually increases. Such a configuration can be created in a block shape with various materials. When made in such a shape, a plurality of the constricted portions 11 are continuously provided in the direction of the sound path 12 so as to be assembled in a planar shape or to communicate with the sound path 12, so that the sound absorption according to the present invention is achieved. Sound absorption and silencing effect of the structure can be expected to increase easily.
[0100] 尚、本発明の吸音構造は、上述の図示例にのみ限定されるものではなぐ本発明 の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。  [0100] It should be noted that the sound absorbing structure of the present invention is not limited to the illustrated examples described above, and various modifications can be made without departing from the scope of the present invention.
産業上の利用可能性  Industrial applicability
[0101] 本発明の吸音構造は、音波の広範囲の周波数に対し、均一に吸音するため、ォー ディォ 'ビジュアル、コンサートホール、劇場、映画館、教室や事務所'工場等での調 音、乗り物や建築物による低周波の発生、乗り物内の騒音の防止、建物と室内の遮 音に使用することができ、道路遮音壁、建築物の壁面等の、吸音及び調音が必要な 空間における、広帯域の音波、特に低音域の音波を、吸収乃至遮音できることにな /vD/ O IsonosooifcId900iAV [0101] The sound absorbing structure of the present invention absorbs sound uniformly over a wide range of sound wave frequencies, so that it can be tuned at audio visuals, concert halls, theaters, cinemas, classrooms and offices, etc. It can be used to generate low frequencies from vehicles and buildings, to prevent noise in vehicles, and to insulate buildings and rooms. Broadband in spaces that require sound absorption and tuning, such as road insulation walls and building walls. It is possible to absorb or sound-insulate sound waves, particularly low-frequency sound waves. / vD / O IsonosooifcId900iAV

Claims

請求の範囲 The scope of the claims
[1] 壁面で構成される、音波の通る音道につき、その断面構成が、少なくとも、その入り 側で開口面積の減少率が徐々に小さくなるように構成された狭窄部を有することを特 徴とする吸音構造。  [1] Characteristic in that the cross-sectional configuration of the sound path through which sound waves are composed of wall surfaces has at least a constricted portion configured so that the decreasing rate of the opening area gradually decreases on the entrance side. Sound absorption structure.
[2] 上記音道中に吸音材を充填した請求項 1記載の吸音構造。  [2] The sound absorbing structure according to claim 1, wherein the sound path is filled with a sound absorbing material.
[3] 壁面で構成される、音波の通る音道につき、その断面構成が、その入り側で開口面 積の減少率が徐々に小さくなり、その出側で逆に開口面積の増大率が徐々に大きく なるように構成された狭窄部を有することを特徴とする吸音構造。  [3] The cross-sectional configuration of the sound path through which the sound wave is composed of the wall surface gradually decreases on the entrance side, and the rate of increase on the exit area gradually decreases on the exit side. A sound absorbing structure characterized by having a constricted portion configured to be large.
[4] 上記音道中に吸音材を充填した請求項 3記載の吸音構造。  [4] The sound absorbing structure according to claim 3, wherein the sound path is filled with a sound absorbing material.
[5] 上記音道の出側の離れた位置に、該出側開口に平行な後方壁面を有することを特 徴とする請求項 3記載の吸音構造。  5. The sound absorbing structure according to claim 3, further comprising a rear wall surface parallel to the exit opening at a position away from the exit side of the sound path.
[6] 上記音道中に吸音材を充填した請求項 5記載の吸音構造。 6. The sound absorbing structure according to claim 5, wherein the sound path is filled with a sound absorbing material.
[7] 上記請求項 3記載の吸音構造を、平面状に並ぶように、複数個平行に設けた吸音 構造。 [7] A sound absorbing structure in which a plurality of the sound absorbing structures according to claim 3 are provided in parallel so as to be arranged in a plane.
[8] 上記音道中に吸音材を充填した請求項 7記載の吸音構造。  8. The sound absorbing structure according to claim 7, wherein the sound path is filled with a sound absorbing material.
[9] 上記請求項 3記載の吸音構造を、平面状に並ぶように、複数個平行に設けると共 に、該出側開口に平行な後方壁面を有することを特徴とする請求項 3記載の吸音構 造。 [9] The sound absorbing structure according to claim 3, wherein a plurality of the sound absorbing structures according to claim 3 are provided in parallel so as to be arranged in a plane and have a rear wall surface parallel to the outlet opening. Sound absorbing structure.
[10] 上記音道中に吸音材を充填した請求項 9記載の吸音構造。  10. The sound absorbing structure according to claim 9, wherein the sound path is filled with a sound absorbing material.
PCT/JP2005/011051 2005-06-16 2005-06-16 Sound absorbing structure WO2006134654A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2005/011051 WO2006134654A1 (en) 2005-06-16 2005-06-16 Sound absorbing structure
JP2007521043A JP4728331B2 (en) 2005-06-16 2005-06-16 Sound absorption structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/011051 WO2006134654A1 (en) 2005-06-16 2005-06-16 Sound absorbing structure

Publications (1)

Publication Number Publication Date
WO2006134654A1 true WO2006134654A1 (en) 2006-12-21

Family

ID=37532026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011051 WO2006134654A1 (en) 2005-06-16 2005-06-16 Sound absorbing structure

Country Status (2)

Country Link
JP (1) JP4728331B2 (en)
WO (1) WO2006134654A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8919048B2 (en) 2012-07-31 2014-12-30 Interman Corporation Mobile terminal booth
WO2015012379A1 (en) 2013-07-25 2015-01-29 インターマン株式会社 Booth for portable terminal

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288301A (en) * 1976-01-19 1977-07-23 Hiroshi Kofujita Surge direction transmissive device
JPS62124106U (en) * 1986-01-30 1987-08-06
JPH0764564A (en) * 1993-08-31 1995-03-10 Nissan Motor Co Ltd Sound isolating structure and sound isolating plate
JPH10254456A (en) * 1997-03-07 1998-09-25 Nissan Motor Co Ltd Acoustic shielding plate construction
JP2004150185A (en) * 2002-10-31 2004-05-27 Takamura Sogyo Kk Construction method for soundproof wall in vehicle traffic zone
JP2004169394A (en) * 2002-11-20 2004-06-17 Takamura Sogyo Kk Sound insulation plate in vehicular carriageway
JP2005031240A (en) * 2003-07-09 2005-02-03 Nakanishi Metal Works Co Ltd Panel and device for sound absorption

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331117Y2 (en) * 1980-09-11 1988-08-19
JPS5754200A (en) * 1980-09-19 1982-03-31 Chugai Pharmaceut Co Ltd Preparation of steroid derivative
JPH0694487B2 (en) * 1985-11-26 1994-11-24 東邦チタニウム株式会社 Catalyst for olefin polymerization

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288301A (en) * 1976-01-19 1977-07-23 Hiroshi Kofujita Surge direction transmissive device
JPS62124106U (en) * 1986-01-30 1987-08-06
JPH0764564A (en) * 1993-08-31 1995-03-10 Nissan Motor Co Ltd Sound isolating structure and sound isolating plate
JPH10254456A (en) * 1997-03-07 1998-09-25 Nissan Motor Co Ltd Acoustic shielding plate construction
JP2004150185A (en) * 2002-10-31 2004-05-27 Takamura Sogyo Kk Construction method for soundproof wall in vehicle traffic zone
JP2004169394A (en) * 2002-11-20 2004-06-17 Takamura Sogyo Kk Sound insulation plate in vehicular carriageway
JP2005031240A (en) * 2003-07-09 2005-02-03 Nakanishi Metal Works Co Ltd Panel and device for sound absorption

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8919048B2 (en) 2012-07-31 2014-12-30 Interman Corporation Mobile terminal booth
US8978314B2 (en) 2012-07-31 2015-03-17 Interman Corporation Mobile terminal booth
WO2015012379A1 (en) 2013-07-25 2015-01-29 インターマン株式会社 Booth for portable terminal

Also Published As

Publication number Publication date
JPWO2006134654A1 (en) 2009-01-08
JP4728331B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
US5512715A (en) Sound absorber
RU2495500C2 (en) Sound-absorbing structure
JP5252699B2 (en) Broadband sound absorbing structure and sound absorbing material
US8906486B2 (en) Flexible sheet materials for tensioned structures, a method of making such materials, and tensioned false ceilings comprising such materials
JP2010085989A (en) Sound structure and sound room
JPH0750960B2 (en) Improvement of loudspeaker enclosure
JP5167751B2 (en) Sound absorption structure
KR20050106027A (en) Sound-absorbing structure body
JP4728331B2 (en) Sound absorption structure
CN101305640A (en) Arrangement for optimizing the frequency response of an electro-acoustic transducer
JP2769448B2 (en) Standing wave or specific wave reduction device
JP2022061512A (en) Design method and production method for acoustic adjustment panel
RU2344488C1 (en) Sound-proof acoustic protection
JP2011058188A (en) Sound room
JP2009145740A (en) Sound absorber, sound absorber group and acoustic room
US20010030079A1 (en) Air-coupled surface wave structures for sound field modification
KR101765993B1 (en) Variable Reverberator with Frequency Selection and Diffusor
Hawkins Studies and research regarding sound reduction materials with the purpose of reducing sound pollution
Bader et al. Metamaterial labyrinth wall for very low and broad-band sound absorption
RU2540177C2 (en) Sound-absorbing structure of factory building
JP3062378B2 (en) Sound absorbing device
Vigran Conical apertures in panels; sound transmission and enhanced absorption in resonator systems
JPH08109687A (en) Sound-insulating triple wall body structure
RU2657543C2 (en) Acoustic enclosure
RU2668685C2 (en) Acoustic enclosure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007521043

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05751447

Country of ref document: EP

Kind code of ref document: A1