WO2006131679A2 - Dispositif planaire avec adressage de puits automatise par electromouillage dynamique - Google Patents

Dispositif planaire avec adressage de puits automatise par electromouillage dynamique Download PDF

Info

Publication number
WO2006131679A2
WO2006131679A2 PCT/FR2006/050534 FR2006050534W WO2006131679A2 WO 2006131679 A2 WO2006131679 A2 WO 2006131679A2 FR 2006050534 W FR2006050534 W FR 2006050534W WO 2006131679 A2 WO2006131679 A2 WO 2006131679A2
Authority
WO
WIPO (PCT)
Prior art keywords
drop
measurement
electrical activity
layer
substrate
Prior art date
Application number
PCT/FR2006/050534
Other languages
English (en)
Other versions
WO2006131679A3 (fr
Inventor
Fabien Sauter-Starace
Yves Fouillet
Nathalie Picollet-D'hahan
François Chatelain
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to US11/916,751 priority Critical patent/US20080185296A1/en
Priority to EP06764854A priority patent/EP1889053A2/fr
Publication of WO2006131679A2 publication Critical patent/WO2006131679A2/fr
Publication of WO2006131679A3 publication Critical patent/WO2006131679A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48728Investigating individual cells, e.g. by patch clamp, voltage clamp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/089Virtual walls for guiding liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0427Electrowetting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1022Measurement of deformation of individual particles by non-optical means

Definitions

  • the present invention relates to a method and a device for measuring the electrical activity of one or more biological cells and in particular to a device for measuring in parallel the electrical activity of a plurality of biological cells.
  • WO04 / 038409 discloses a device for performing such measurements.
  • This device is of the planar type, made of silicon.
  • the chip implemented implements a system of conduits for the suction of fluids. More precisely, this device comprises channels intended to be connected to capillaries themselves connected to liquid suction means located outside the chip.
  • the system is therefore complex, not compact.
  • the aspirated volumes are difficult to control, and are important, of the order of a few microliters.
  • the fluid volumes are conditioned by cavities, made for example of silicon or by the polymers forming the tightness of the lower and upper chambers.
  • Each measurement site must therefore be individually filled with a solution suitable for measuring the electrical activity of the ion channels and comprising a cell suspension.
  • the volume of fluid is, again, important and the miniaturization limited by the standards of dispensing equipment. This constraint also limits the possibilities of integration because each site must be accessible to means of macroscopic dispensation.
  • WO 02/03058 discloses a device in which liquid samples are continuously transported in a channel and fed to a patch clamp measurement site. This site is itself equipped with suction ducts and pumps to position the volumes of fluid to be analyzed. All of these devices use channels and capillaries.
  • fluid volumes are high, which is particularly disadvantageous when using very expensive products such as toxins or drugs or other active ingredients.
  • connection difficulties problems of electrical insulation of the chambers, problems of sealing, and even of fragility in the case of capillaries.
  • problems of clogging during aggregation or cell sedimentation There is therefore the problem of producing a more compact device, making it possible to work on smaller volumes of fluid, in particular of the order of a picoliter.
  • transport type functions fluid volumes to be analyzed with the means for analyzing these fluids.
  • the invention firstly relates to a method for analyzing a drop of a liquid medium comprising:
  • the electrical activity measurement site is free of hydrophobic layer, and has a hydrophilic layer, as well as first and second means of measuring electrical activity, the first means of measuring electrical activity being arranged on the hydrophilic layer.
  • the drop may be confined, at least during its displacement, between said hydrophobic surface and an upper substrate. Before deformation, the drop can be, or not, confined by the upper substrate.
  • the displacement is obtained by activating a plurality of electrodes, located under the hydrophobic layer.
  • the drops of liquid to be analyzed can be formed from one or more tanks.
  • the invention also relates to a device for analyzing a drop of a liquid medium comprising:
  • a first substrate comprising a hydrophobic layer
  • a second substrate may be arranged opposite the hydrophobic layer, making it possible to form a closed configuration.
  • This second substrate may further comprise a superficial hydrophobic layer, and optionally an electrode.
  • the means for moving a drop, on the hydrophobic layer, by electrowetting advantageously comprise a plurality of electrodes under this hydrophobic layer.
  • At least one site of analysis or measurement of electrical activity is free of hydrophobic layer, and has a hydrophilic layer, as well as means for measuring electrical activity.
  • the first means of measurement of electrical activity are then arranged on the hydrophilic layer.
  • a cover or a substrate may form with the device a chamber, in communication, through an orifice of the hydrophilic layer, with the surface of the hydrophobic layer.
  • At least one of the sites for analyzing or measuring electrical activity may be surrounded by a portion of the hydrophobic layer.
  • the drops may have a volume of between, for example, 1 ⁇ l and 10 ⁇ l.
  • the measurement of electrical activity can be performed on a single cell contained in the drop. It can be a measurement on a cell channel.
  • the drop may contain cells of different types or at least one type of cell and one type of toxin.
  • At least one substance for example an active agent such as a drug, lyophilized is disposed in the path of the drop towards a measurement site.
  • a mixture of the substance with the liquid of the drop can thus take place when the drop comes into contact with said substance. This mixture can then be taken to the measurement site.
  • At least one reservoir may be provided for storing a liquid to be analyzed or whose electrical activity is to be measured. Means make it possible to form a drop of liquid from such a reservoir.
  • at least one reservoir common to this plurality of analysis or measurement sites may be provided, to form drops that can be brought to different analysis sites. of this plurality of analysis sites.
  • the invention also relates to a device comprising a matrix of electrophysiology measuring sites on a substrate provided with means for bringing to the measurement sites drops of liquid to be analyzed, for example drops of physiological buffer containing cells or drugs.
  • the method of dispensing fluids implements a displacement of drops by dynamic electrowetting on a dielectric, as opposed to continuous flow displacements in discrete microfluidic channels.
  • the invention relates to a method and a device for performing electrophysiological measurements, using a dynamic electrowetting of a very small quantity of reagents. Two to several tanks can be made.
  • the pitch of these tanks may be that of a well plate. From these reservoirs, series of drops can be generated and routed, in a controlled way, to bring the cell suspensions to the measurement wells, in a first step and, secondly, the drugs whose impact is to be measured. on the behavior of ion channels.
  • FIGS. 1A-1C represent the principle of displacement of drops, by electrowetting
  • FIG. 2 represents a closed configuration of a device for moving drops
  • FIGS. 3A and 3B show a mixed configuration of a device for moving drops
  • FIGS. 4 and 5A-5B show a device for displacing drops, in which the upper cover is provided with an electrode,
  • FIG. 6 represents a view from above of a device according to the invention, with several measurement sites,
  • FIG. 7 represents a detailed view of a measuring site of a device according to the invention.
  • FIGS. 8A-8D represent a well or a reservoir of liquid
  • FIGS. 9A-9C represent steps of a process with freeze-dried drug.
  • a device implements a device for moving or handling drops of liquid, by electrowetting, and means for measuring the electrical activity of the liquid, contained in these drops or cells contained in these drops.
  • These means comprise a site, or a well, in which a measurement of this activity, using means of the electrodes type, will be achieved.
  • a device according to the invention is shown schematically in plan view in FIG. 6. Measuring sites 24, 26, 28 are shown therein, arranged on or integrated in a plate 250 for handling and transporting drops by electro-jigging.
  • the resulting device is compact, allowing the formation and delivery of small volumes of liquid to measurement sites therefore do not require means such as fluid suction ducts.
  • FIGS. 1A-1C A first embodiment of a device for moving and handling drops implemented in the context of the invention, of the open system type, is illustrated in FIGS. 1A-1C.
  • This embodiment implements a device for moving or handling drops of liquid based on the principle of 1 electrowetting on a dielectric. Examples of such devices are described in the article by MG Pollack, AD Shendorov, RB Fair, entitled “Electro-wetting-based actuation of droplets for integrated microfluidics", Lab Chip 2 (1) (2002) 96-101.
  • Document FR-2 841 063 describes a device implementing, in addition, a catenary facing electrodes activated for displacement. The principle of this type of displacement is synthesized in FIGS. 1A-1C.
  • a drop 2 rests on a network 4 of electrodes, from which it is isolated by a dielectric layer 6 and a hydrophobic layer 8 ( Figure IA). There is therefore a hydrophobic and insulating stack.
  • hydrophobic nature of this layer means that the drop has a contact angle, on this layer, greater than 90 °.
  • the electrodes 4 are themselves formed on the surface of a substrate 1.
  • the counter-electrode 10 allows a possible displacement by electrowetting on the surface of the hydrophobic surface; it maintains an electrical contact with the drop during such a displacement.
  • This counter-electrode can be either a catenary as in FR-2 841 063, or a buried wire or a planar electrode in the hood of a confined system (such a confined system is described below).
  • a confined system such a confined system is described below.
  • the electrodes 4-1, 4-2 serving only to spread or deform the drop where it has been deposited. .
  • the drop may thus be optionally displaced step by step (FIG. 1C) on the hydrophobic surface 8 by successive activation of the electrodes 4-1, 4-2, etc., along the catenary 10.
  • FIG. 2 represents another embodiment of a device for moving or handling drops that can be used in the context of the invention, of the closed or confined system type.
  • reference numerals identical to those of Figures IA-IC y designate the same elements.
  • This device further comprises an upper substrate 100, preferably also covered with a hydrophobic layer 108.
  • This set may be optionally transparent, allowing observation from above.
  • FIGS. 3A and 3B in which numerical references identical to those of FIG. 2 denote identical or similar elements, represent a mixed system for moving or handling drops, in which a drop 2 is initially in an open medium (FIG. 3A), the activation of electrodes 4-1, 4-2, 4-3 allowing a flattening of the drop (FIG. 3B), in a closed system, in an area where the system is provided with a hood, as illustrated above in connection with Figure 2.
  • FIG. 4 represents a variant of the closed system, with a conductive cover 100, comprising an electrode or an array of electrodes 112, as well as a possible insulating layer 106 (the latter being optional) and a hydrophobic layer 108.
  • the catenary 10 of the preceding figures is replaced, in this embodiment, by the electrode 112.
  • the activation of this electrode 112 and the electrodes 4 makes it possible to move the droplet into the desired position and then to stretch or deform it .
  • FIGS. 5A and 5B in which identical reference numerals to those of FIG. 4 designate identical or similar elements, represent a mixed system, in which a drop 2 is initially in open medium (FIG. 5A), the activation of electrodes 4-1, 4-2, 4-3 allowing flattening of the droplet (FIG. 5B), in a system closed, in an area where the system is provided with a hood, as illustrated above in connection with Figure 4.
  • a device according to the invention may further comprise means which will make it possible to control or activate the electrodes 4, for example a PC-type computer and a relay system connected to the device or the chip, such as the relays 14 of the FIG. 1A, these relays being controlled by the PC type means.
  • a PC-type computer for example a PC-type computer and a relay system connected to the device or the chip, such as the relays 14 of the FIG. 1A, these relays being controlled by the PC type means.
  • the distance between a possible conductor 10 (FIGS. 1A-5B) on the one hand and the hydrophobic surface 8 on the other hand is, for example, between 1 ⁇ m and 10 ⁇ m or between 1 ⁇ m and 50 ⁇ m.
  • This conductor 10 may be for example in the form of a wire diameter between 10 microns and a few hundred microns, for example 200 microns.
  • This wire may be a gold or aluminum wire or tungsten or other conductive materials.
  • two substrates 1, 100 are used (FIGS. 2-5B), they are separated by a distance between, for example, 10 ⁇ m and 100 ⁇ m or 500 ⁇ m.
  • a drop of liquid 2 may have a volume between, for example, 1 picolitre and a few microliters, for example between 1 and 100 ⁇ l or 1 ⁇ l or 5 ⁇ l or 10 ⁇ l.
  • each of the electrodes 4 will for example have a surface of the order of a few tens of ⁇ m 2 (for example 10 ⁇ m 2 ) up to 1 mm 2 , depending on the size of the drops to be transported, the spacing between adjacent electrodes being for example between 1 .mu.m and 10 .mu.m.
  • the structuring of the electrodes 4 can be obtained by conventional methods of micro ⁇ technologies, for example by photolithography. Methods for producing chips incorporating a device according to the invention may be directly derived from the processes described in document FR-2 841 063.
  • Conductors, and in particular conductors 110 may be made by depositing a conductive layer and etching of this layer in the appropriate pattern of conductors, before deposition of the hydrophobic layer 108.
  • the electrodes may be made by deposition of a metal layer (for example a metal selected from Au, Al, ITO, Pt, Cr, Cu) by photolithography.
  • a metal layer for example a metal selected from Au, Al, ITO, Pt, Cr, Cu
  • the substrate is then covered with a dielectric layer, for example Si 3 N 4 or SiO 2 .
  • a deposit of a hydrophobic layer is performed, such as a teflon deposit made by spinning.
  • Such a device for moving drops can implement a two-dimensional array of electrodes that will allow, step by step, to move liquids in or on a plane, to mix them, to achieve complex protocols.
  • a two-dimensional set (2D) of these catenaries can be realized above the 2D set of electrodes 4.
  • this counter electrode can also have a two-dimensional structure.
  • FIG. 6 represents a device according to the invention, with sites or measuring chambers.
  • This device comprises firstly a two-dimensional device for moving and handling drops, for example of the type as explained above, and of which only the electrodes of the lower substrate are shown schematically and designated, again, by the reference 4 .
  • References 22 and 21 denote several reservoirs, for example a cell reservoir 22 and one or more reservoir of drugs or active agents 21.
  • active agent is used to designate a toxin or a drug.
  • a single tank may in some cases be sufficient. It is also possible not to use a reservoir and to bring the volumes of liquid to be analyzed by other means, for example a pipette.
  • the system may further comprise a single measurement site 26 or a plurality of sites 24, 26,
  • the reservoirs 21, 22 are advantageously compatible with a format of well plates (8, 96, 384, 1586 wells). They are advantageously integrated into the device. An embodiment of these reservoirs will be given later in connection with FIGS. 8A-8D.
  • Figure 7 shows a portion of the device of Figure 6, in the vicinity of a measuring well 26, in section along an axis AA '.
  • the lower substrate is provided with its activation electrodes 4, while the upper substrate 100 is shown in a simplified manner, without its counter-electrode.
  • the drop displacement structure described above is based on a substrate or a hydrophilic layer having a thickness of between 0.1 ⁇ m and 20 ⁇ m, for example a dielectric such as SiO 2 or Si 3 N 4.
  • the electrodes for the movement by electrowetting may be performed on this layer 30.
  • This substrate or this layer comprises an opening 31 with a diameter of a few ⁇ m, for example between 1 ⁇ m and 2 ⁇ m or 5 ⁇ m.
  • This opening is for example made by lithography and selective etching.
  • This substrate or this layer 30 rests on a substrate 32 of thickness for example between 100 ⁇ m and 1 mm, for example silicon or glass or in a polymer, which itself comprises an opening 33 wider than the opening 31.
  • a substrate or a lower cover 34 for example polycarbonate or epoxy or a printed circuit defines with the substrate 32 a chamber 40 which may contain a liquid 42, in particular a conductive solution such as PBS ("phosphate buffered saline").
  • a liquid 42 in particular a conductive solution such as PBS ("phosphate buffered saline").
  • This liquid 42 may have been previously brought drop by electrowetting, as the drops 2 are thereafter in a measurement.
  • a measuring electrode 261 on the rear face may be placed against the substrate 32 or against the substrate 30, so as to be in contact with a liquid 42 present in the cavity 40.
  • This electrode will make it possible to apply, with the electrode 260 , a potential difference in the liquid medium 42 present in the cavity.
  • Conductors not shown in the figure, used to apply the desired voltage between the two electrodes 260, 261. This voltage is for example driven or controlled by the means that can control or activate the electrodes 4, for example a PC-type computer with appropriate interfaces. These conductors will also make it possible to measure the voltage variation between the electrodes 260, 261 when a drop 2 of liquid is brought by electrowetting to the measurement site and is mixed with the liquid 42. This variation may be stored in storage means a device that will then allow process and analyze the data thus collected during the measurements.
  • Patch clamp it is rather cells that are brought into a drop in a measurement site, the electrodes 260, 261 for measuring on an individual cell.
  • calibrated drops 2 are made by dynamic electrowetting, in configuration
  • the drops 2 move in a non-conductive medium 16, for example oil or air.
  • the chambers or measurement sites 24, 26, 28 are first filled with physiological conductive solutions containing cells brought for example from the reservoir
  • nano-drops of drugs are created, for example from the tanks 21, which is conveyed by electrowetting to the sites 240, 260, 280 measurement.
  • the drops moved or brought may be composed of a conductive solution (buffer solution for the cells) or not.
  • the drugs, or the active agents can be diluted in solutions of low conductivity (order of magnitude of a few mS / m, for example 1 mS / m) but the liquid of gout at the measuring site is a conductivity of magnitude 1 Siemens / m or between 0.5 Siemens / m and 2 Siemens / m.
  • the electrodes 4 used for electrowetting, as well as the electrodes 260 used for the electrophysiology measurement, are on a dielectric membrane 1, the coating 6, 8 of which is hydrophobic and passive in the zones of displacement of the drops.
  • the coating in fact: the layer 30 is hydrophilic and non-passive, the measurement electrode 260 being in contact with the liquid of the conductive solution 42. 2, brought to the measurement site 26, will modify the properties of the liquid located on this site.
  • one or more measurement chambers are made or integrated in a device for transporting drops by electrowetting.
  • the electrowetting allows to bring drops in these rooms.
  • Pumping means provide a vacuum between the upper chamber and the lower chamber to capture a cell on the port 31.
  • the cells are electro-washed in a droplet in one of the measurement chambers. While the cells sediment, the pressures between the chamber 40 and the part of the device located on the side of the electrodes 260 are modified; a Depression is thus created between the lower and upper chambers.
  • the cells are then drawn to the (single) hole 31 of the dielectric membrane 30. Only one cell will finally be studied. Once the membrane of the cell on the hole 31, it deforms and then invaginates in the hole.
  • the electrical resistance measured at the cell / dielectric contact 30 can then be of the order of Giga-Ohm. This resistance makes it possible to visualize, for example on a "patch" amplifier, currents of the order of the pico-ampere. These currents result from the passage of ions through the channel proteins of the cell.
  • FIGS. 8A-8D show how a reservoir such as tanks 21 or reservoir 22 can be made.
  • a liquid 200 to be dispensed is deposited in a well 120 of this device (FIG. 8A).
  • This well is for example made in the upper cover 100 of the device.
  • the lower part, shown schematically in FIGS. 8A-8D, is for example similar to the structure of FIGS. 1A-1C. If you do not use a configuration with a top cover, the open configuration allows the possibility of pouring a liquid such as oil over the entire surface. One can then dispense a drop and then move it by electrowetting.
  • Electrodes 4-1, 4-2, 4-3 similar to the electrodes 4 for moving liquid drops, are shown in Figures 8A-8D.
  • Activation of this series of electrodes 4-1, 4-2, 4-3 results in the spreading of a drop from well 120, and thus to a liquid segment 201 as shown in FIG. 8C.
  • this liquid segment is cut off by deactivating one of the activated electrodes (electrode 4-2 in FIG. 8C). A drop 2 is thus obtained, as illustrated in FIG. 8D.
  • a series of electrodes 4-1, 4-2, 4-3 are thus used to stretch liquid from the reservoir 120 into a finger 201 (FIGS. 8B and 8C) and then to cut this finger 201 of liquid (FIG. 8D) and form a drop 2 that can be taken to any measurement site as described above.
  • This method can be applied by inserting electrodes such as the electrodes 4-1 between the reservoir 120 and one or more electrode 4-2 called the breaking electrode.
  • the invention offers multiple advantages. It first allows for a single dispensing, from a reservoir, of drugs and cells, or any active agent, instead of a well-by-well dispensing as in the known planar patch clamp devices. It also allows the use of extremely small volumes of reagents, of the picoliter order (for example between 0.5 ⁇ l and 1 ⁇ l or 2 ⁇ l or 5 ⁇ l), with no dead volume, and control of the concentrations. In addition there is no evaporation which could influence the viability of the cells.
  • the measurement zones are electrically isolated in the upper chamber and the lower chamber. There is electrical independence of the wells, which makes the test conditions (drugs, buffer and cells) strictly independent.
  • buffer 42 and / or electrodes to study other channels than BK on wild or diseased cells.
  • BKs are potassium channels, which can be over-expressed in genetically modified cells.
  • the optimal conductive solution 42 results from taking into account the type of channels and the set of electrodes 260, 261 used.
  • the toxins of interest will have an inhibitory or activating effect on the channel proteins. This effect can be reversible; for example, by decreasing the concentration of toxin in the conductive solution will progressively regain a channel activity (the number of inhibited channels will decrease).
  • Another example of application consists of the possibility of loading on the chip lyophilized toxins stored in oil.
  • a drop of buffer solution 2 will be brought on the lyophilized toxin to put it in solution.
  • the drop of toxin thus created will be fused to another drop 2 containing the cells. So far the toxins were "brought" to the measuring chamber in drops from a fluid reservoir.
  • Figures 9A-9C show steps of a process with freeze-dried drug.
  • a lyophilized drug 39 is disposed in the path of a drop 2 towards a measurement site (FIG. 9A).
  • a single lyophilized drug 39 is shown, but there may be several freeze-dried lozenges, of different natures.
  • the drop will be oriented, for example by its path by electrowetting, to the selected pellet.
  • the invention makes it possible to carry out a "patch-clamp" type measurement on a volume of the order of a picoliter (for example between 0.5 ⁇ l and 5 ⁇ l, for example 1 ⁇ l or 2 ⁇ l. pi), which is, by orders of magnitude, less than the volume required in known devices.
  • a picoliter for example between 0.5 ⁇ l and 5 ⁇ l, for example 1 ⁇ l or 2 ⁇ l. pi
  • Electrophysiological measurements according to the invention can be performed on cells such as oocytes, but also on biological particles in suspension or on lipid vesicles (such as liposomes) or on globules or bacteria or viruses or cell nuclei , or a mixture of these.
  • the transportable active agents include strands of DNA / RNA or nucleotides or enzymes or proteins or parasites or bacteria or viruses or pollens or polymers or insoluble solid particles such as dielectric particles or conductive or magnetic or pigments or dyes or powders or polymer structures or insoluble pharmaceutical substances.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Food Science & Technology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

L'invention concerne un procédé d'analyse d'un liquide d'une goutte (2) comportant : la mise en contact d'une goutte de ce liquide avec une surface hydrophobe (8), le déplacement de la goutte sur cette surface par électromouillage, afin de l'amener en un site (24, 26, 28) de mesure d'activité électrique, dans lequel est disposée une solution conductrice (42), la mesure de ladite activité électrique.

Description

DISPOSITIF PLANAIRE AVEC ADRESSAGE DE PUITS AUTOMATISE PAR ELECTROMOUILLAGE DYNAMIQUE
DESCRIPTION
DOMAINE TECHNIQUE ET ART ANTÉRIEUR
La présente invention se rapporte à un procédé et un dispositif de mesure de l'activité électrique d'une ou plusieurs cellules biologiques et notamment à un dispositif permettant de mesurer en parallèle l'activité électrique d'une pluralité de cellules biologiques.
Pour étudier les activités électriques des cellules, la technique du « patch-clamp » a été proposée par Sakmann et Neher en 1981. Mais, récemment, des alternatives ont été recherchées pour augmenter le taux de réussite de cette mesure et augmenter le nombre de données accessibles.
Le document WO04/038409 décrit un dispositif pour réaliser de telles mesures. Ce dispositif est de type planaire, en silicium.
La puce réalisée met en œuvre un système de conduits permettant l'aspiration de fluides. Plus précisément ce dispositif comporte des canaux destinés à être connectés à des capillaires eux-mêmes connectés à des moyens d'aspiration de liquide situés en dehors de la puce. Le système est donc complexe, non compact.
Par ailleurs, les volumes aspirés sont difficilement contrôlables, et sont importants, de l'ordre de quelques microlitres. Dans ce type de dispositif, les volumes de fluide sont conditionnés par des cavités, réalisées par exemple en silicium ou par les polymères réalisant l'étanchéité des chambres inférieures et supérieures. II faut donc remplir individuellement chaque site de mesure d'une solution adaptée à la mesure d'activité électrique des canaux ioniques et comportant une suspension cellulaire. Le volume de fluide est, là encore, important et la miniaturisation limitée par les standards des équipements de dispense. Cette contrainte limite aussi les possibilités d'intégration car chaque site doit être accessible à des moyens de dispense macroscopique .
Le document WO 02/03058 décrit un dispositif dans lequel des échantillons de liquide sont transportés de manière continue dans un canal et amenés à un site de mesure de type « patch clamp ». Ce site est lui-même muni de conduits d'aspiration et de pompes pour y positionner les volumes de fluide à analyser. Tous ces dispositifs utilisent des canaux et des capillaires.
Or ces éléments posent certains problèmes techniques: les volumes de fluide sont élevés, ce qui est particulièrement pénalisant lorsque l'on utilise des produits très onéreux telles que des toxines ou des médicaments ou autres principes actifs. Se posent en outre des difficultés de connexion, des problèmes d'isolation électrique des chambres, des problèmes d' étanchéité, et même de fragilité dans le cas des capillaires. Il existe également un risque de bouchage lors d'agrégats ou de sédimentation des cellules. II se pose donc le problème de réaliser un dispositif plus compact, permettant de travailler sur des volumes de fluide plus petits, en particulier de l'ordre du picolitre. II se pose également le problème d' intégrer des fonctions de type transport des volumes de fluide à analyser avec les moyens permettant d' analyser ces fluides .
EXPOSÉ DE L'INVENTION
L'invention concerne d'abord un procédé d'analyse d'une goutte d'un milieu liquide comportant :
- la mise en contact d'une goutte de liquide avec une surface hydrophobe,
- le déplacement de la goutte sur cette surface par électromouillage, afin de l'amener en un site de mesure d'activité électrique, dans lequel est disposée une solution conductrice,
- la mesure de ladite activité électrique. Selon un mode de réalisation, le site de mesure d'activité électrique est exempt de couche hydrophobe, et présente une couche hydrophile, ainsi que des premiers et deuxième moyens de mesure d'activité électrique, les premiers moyens de mesure d' activité électrique étant disposés sur la couche hydrophile.
Selon un mode de réalisation, la goutte peut être confinée, au moins lors de son déplacement, entre ladite surface hydrophobe et un substrat supérieur . Avant déformation, la goutte peut être, ou pas, confinée par le substrat supérieur.
Avantageusement, le déplacement est obtenu par activation d'une pluralité d'électrodes, situées sous la couche hydrophobe .
Les gouttes de liquide à analyser peuvent être formés à partir d'un ou de plusieurs réservoirs.
L'invention concerne également un dispositif d'analyse d'une goutte d'un milieu liquide comportant :
- un premier substrat comportant une couche hydrophobe,
- des moyens formant au moins un site d'analyse ou de mesure d'activité électrique, - des moyens pour déplacer une goutte, sur cette surface, par électromouillage, afin de l'amener sur ledit site d'analyse.
Un deuxième substrat peut être disposé en regard de la couche hydrophobe, permettant de former une configuration fermée.
Ce deuxième substrat peut comporter en outre une couche hydrophobe superficielle, et éventuellement une électrode.
Les moyens pour déplacer une goutte, sur la couche hydrophobe, par électromouillage, comportent avantageusement une pluralité d'électrodes sous cette couche hydrophobe .
Au moins un site d' analyse ou de mesure d'activité électrique est exempt de couche hydrophobe, et présente une couche hydrophile, ainsi que des moyens de mesure d'activité électrique. Les premiers moyens de mesure d' activité électrique sont alors disposés sur la couche hydrophile.
Un capot ou un substrat peut former avec le dispositif une chambre, en communication, par un orifice de la couche hydrophile, avec la surface de la couche hydrophobe .
Au moins un des sites d' analyse ou de mesure d'activité électrique peut être entouré d'une portion de la couche hydrophobe. Les gouttes peuvent avoir un volume compris entre par exemple 1 pi et 10 μl .
La mesure d' activité électrique peut être réalisée sur une cellule unique contenue dans la goutte. Ce peut être une mesure sur un canal de cellule.
La goutte peut contenir des cellules de types différents ou au moins un type de cellule et un type de toxine.
Selon un mode de réalisation particulier, au moins une substance, par exemple un agent actif tel qu'une drogue, lyophilisée est disposée sur le trajet de la goutte vers un site de mesure. Un mélange de la substance avec le liquide de la goutte peut donc avoir lieu lorsque la goutte arrive en contact avec ladite substance. Ce mélange peut ensuite être emmené ers le site de mesure.
Au moins un réservoir peut être prévu pour stocker un liquide à analyser ou dont l'activité électrique est à mesurer. Des moyens permettent de former une goutte de liquide à partir d'un tel réservoir. Dans le cas d'une pluralité de sites d'analyse ou de mesure, au moins un réservoir commun à cette pluralité de sites d' analyse ou de mesure peut être prévu, pour former des gouttes pouvant être amenées à des sites d'analyse différents de cette pluralité de sites d'analyse.
L'invention concerne également un dispositif comportant une matrice de sites de mesure d' électrophysiologie sur un substrat muni de moyens pour amener aux sites de mesure des gouttes de liquides à analyser, par exemple des gouttes de tampon physiologique contenant des cellules ou des médicaments .
Ces gouttes peuvent donc être amenées de manière automatique à partir d'un ou plusieurs réservoirs .
Selon la présente invention, le procédé de dispense des fluides (suspensions cellulaires, drogues, liquide de vidange) met en œuvre un déplacement de gouttes par électromouillage dynamique sur un diélectrique, par opposition à des déplacements de flux continus dans des canaux en microfluidique discrète.
L' invention concerne un procédé et un dispositif permettant de réaliser des mesures d' électrophysiologie, mettant en œuvre un électromouillage dynamique de très faible quantité de réactifs. Deux à plusieurs réservoirs peuvent être réalisés .
Le pas de ces réservoirs pourra être celui d'une plaque à puits. A partir de ces réservoirs, des séries de gouttes peuvent être générées et acheminées, de façon contrôlée, pour amener aux puits de mesure les suspensions cellulaires, dans un premier temps et, dans un second temps, les drogues dont on veut mesurer l'impact sur le comportement des canaux ioniques.
BRÈVE DESCRIPTION DES FIGURES
- Les figures IA-IC représentent le principe de déplacement de gouttes, par électromouillage,
- la figure 2 représente une configuration fermée de dispositif de déplacement de gouttes,
- les figures 3A et 3B représentent une configuration mixte de dispositif de déplacement de gouttes,
- les figures 4 et 5A-5B représentent un dispositif de déplacement de gouttes, dans lequel le capot supérieur est muni d'une électrode,
- la figure 6 représente une vue de dessus d'un dispositif selon l'invention, avec plusieurs sites de mesure,
- la figure 7 représente une vue détaillée d'un site de mesure d'un dispositif selon l'invention.
- les figures 8A-8D représentent un puits ou un réservoir de liquide,
- les figures 9A-9C représentent des étapes d'un procédé avec drogue lyophilisée. EXPOSE DETAILLE DE MODES DE REALISATION PARTICULIERS
Un dispositif selon l'invention met en œuvre un dispositif de déplacement ou de manipulation de gouttes de liquide, par électromouillage, et des moyens de mesure d'activité électrique du liquide, contenu dans ces gouttes ou de cellules contenues dans ces gouttes.
Ces moyens comportent un site, ou un puits, dans lequel une mesure de cette activité, à l'aide de moyens de type électrodes, va pouvoir être réalisée.
Un dispositif selon l'invention est représenté schématiquement en vue de dessus en figure 6. Des sites de mesure 24, 26, 28 y sont représentés, disposés sur, ou intégrés dans, une plaque 250 de manipulation et de transport de gouttes par électromouilllage .
Le dispositif obtenu est donc compact, permettant la formation et l'acheminement de faibles volumes de liquide à des sites de mesure ne nécessitant donc pas de moyens tels que des conduits d'aspiration de fluide .
Un premier mode de réalisation d'un dispositif de déplacement et de manipulation de gouttes mis en œuvre dans le cadre de l'invention, de type système ouvert, est illustré sur les figures 1A-1C.
Ce mode de réalisation met en œuvre un dispositif de déplacement ou de manipulation de gouttes de liquide reposant sur le principe de 1' électromouillage sur un diélectrique. Des exemples de tels dispositifs sont décrits dans l'article de M. G. Pollack, A. D. Shendorov, R. B. Fair, intitulé « Electro-wetting-based actuation of droplets for integrated microfluidics », Lab Chip 2 (1) (2002) 96-101.
Les forces utilisées pour le déplacement de gouttes de liquide sont alors des forces électrostatiques .
Le document FR-2 841 063 décrit un dispositif mettant en œuvre, en outre, un caténaire en regard des électrodes activées pour le déplacement. Le principe de ce type de déplacement est synthétisé sur les figures 1A-1C.
Une goutte 2 repose sur un réseau 4 d'électrodes, dont elle est isolée par une couche diélectrique 6 et une couche hydrophobe 8 (figure IA) . On a donc un empilement hydrophobe et isolant.
Le caractère hydrophobe de cette couche signifie que la goutte a un angle de contact, sur cette couche, supérieur à 90°.
Les électrodes 4 sont elles-mêmes formées en surface d'un substrat 1.
Lorsque l'électrode 4-1 située à proximité de la goutte 2 est activée, à l'aide de moyens 14 de commutation, dont la fermeture établit un contact entre cette électrode et une source de tension 13 via un conducteur commun 16, la couche diélectrique 6 et la couche hydrophobe 8 entre cette électrode activée et la goutte sous tension agissent comme une capacité.
La contre-électrode 10 permet un éventuel déplacement par électromouillage à la surface de la surface hydrophobe ; elle maintient un contact électrique avec la goutte pendant un tel déplacement. Cette contre-électrode peut être soit un caténaire comme dans FR-2 841 063, soit un fil enterré soit une électrode planaire dans le capot d'un système confiné (un tel système confiné est décrit plus loin) . En système ouvert, si il n'y a pas de déplacement, il est possible d'étaler la goutte sur la surface hydrophobe, sans contre-électrode. C'est par exemple le cas si la goutte peut être amenée sur la surface hydrophobe par un système de dispense classique, les électrodes 4-1, 4-2 servant uniquement à étaler ou déformer la goutte à l'endroit où elle a été déposée .
La goutte peut ainsi être éventuellement déplacée de proche en proche (figure IC) , sur la surface hydrophobe 8, par activation successive des électrodes 4-1, 4-2,... etc, le long du caténaire 10.
Il est donc possible de déplacer des liquides, mais aussi de les mélanger (en faisant s'approcher des gouttes de liquides différents), et de réaliser des protocoles complexes.
Les documents cités ci-dessus donnent des exemples de mises en œuvre de séries d'électrodes adjacentes pour la manipulation d'une goutte dans un plan, les électrodes pouvant en effet être disposées de manière linéaire, mais aussi en deux dimensions, définissant ainsi un plan de déplacement des gouttes.
La figure 2 représente un autre mode de réalisation d'un dispositif de déplacement ou de manipulation de gouttes pouvant être mis en oeuvre dans le cadre de l'invention, de type système fermé ou confiné . Sur cette figure, des références numériques identiques à celles des figures IA-IC y désignent des mêmes éléments.
Ce dispositif comporte en outre un substrat supérieur 100, de préférence également recouvert d'une couche hydrophobe 108. Cet ensemble peut être éventuellement transparent, permettant une observation par le haut .
Les figures 3A et 3B, sur lesquelles des références numériques identiques à celles de la figure 2 y désignent des éléments identiques ou similaires, représentent un système mixte de déplacement ou de manipulation de gouttes, dans lequel une goutte 2 est initialement en milieu ouvert (figure 3A), l'activation d'électrodes 4-1, 4-2, 4-3 permettant un aplatissement de la goutte (figure 3B) , en système fermé, dans une zone où le système est muni d'un capot, comme illustré ci-dessus en liaison avec la figure 2.
La figure 4 représente une variante du système fermé, avec un capot conducteur 100, comportant une électrode ou un réseau d'électrodes 112, ainsi qu'une éventuelle couche isolante 106 (cette dernière est optionnelle) et une couche hydrophobe 108.
Le caténaire 10 des figures précédentes est remplacé, dans ce mode de réalisation, par l'électrode 112. L'activation de cette électrode 112 et des électrodes 4 permet de déplacer la goutte dans la position voulue puis de l'étirer ou de la déformer.
Les figures 5A et 5B, sur lesquelles des références numériques identiques à celles de la figure 4 y désignent des éléments identiques ou similaires, représentent un système mixte, dans lequel une goutte 2 est initialement en milieu ouvert (figure 5A), l'activation d'électrodes 4-1, 4-2, 4-3 permettant un aplatissement de la goutte (figure 5B) , en système fermé, dans une zone où le système est muni d'un capot, comme illustré ci-dessus en liaison avec la figure 4.
Un dispositif selon l'invention peut en outre comporter des moyens qui vont permettre de commander ou d'activer les électrodes 4, par exemple un ordinateur type PC et un système de relais connectés au dispositif ou à la puce, tels les relais 14 de la figure IA, ces relais étant pilotés par les moyens de type PC.
Typiquement, la distance entre un éventuel conducteur 10 (figures 1A-5B) d'une part et la surface hydrophobe 8 d' autre part est par exemple comprise entre 1 μm et 10 μm ou entre 1 μm et 50 μm.
Ce conducteur 10 peut se présenter par exemple sous la forme d'un fil de diamètre compris entre 10 μm et quelques centaines de μm, par exemple 200 μm. Ce fil peut être un fil d'or ou d'aluminium ou de tungstène ou d'autres matériaux conducteurs.
Lorsque deux substrats 1, 100 sont utilisés (figures 2-5B), ils sont distants d'une distance comprise entre, par exemple, 10 μm et 100 μm ou 500 μm.
Quel que soit le mode de réalisation considéré, une goutte de liquide 2 pourra avoir un volume compris entre, par exemple, 1 picolitre et quelques microlitres, par exemple entre 1 pi et 100 pi ou 1 μl ou 5 μl ou 10 μl . En outre chacune des électrodes 4 aura par exemple une surface de l'ordre de quelques dizaines de μm2 (par exemple 10 μm2) jusqu'à 1 mm2, selon la taille des gouttes à transporter, l'espacement entre électrodes voisines étant par exemple compris entre 1 μm et 10 μm.
La structuration des électrodes 4 peut être obtenue par des méthodes classiques des micro¬ technologies, par exemple par photolithographie. Des procédés de réalisation de puces incorporant un dispositif selon l'invention peuvent être directement dérivés des procédés décrits dans le document FR-2 841 063.
Des conducteurs, et notamment des conducteurs 110 peuvent être réalisés par dépôt d'une couche conductrice et gravure de cette couche suivant le motif approprié de conducteurs, avant dépôt de la couche hydrophobe 108.
Les électrodes peuvent être réalisées par dépôts d'une couche métallique (par exemple en un métal choisi parmi Au, Al, ITO, Pt, Cr, Cu) par photolithographie. Le substrat est ensuite recouvert d'une couche diélectrique, par exemple en Si3N4 ou en SiO2. Enfin un dépôt d'une couche hydrophobe est effectué, comme par exemple un dépôt de téflon réalisé à la tournette.
Un tel dispositif de déplacement de gouttes peut mettre en œuvre un réseau bidimensionnel d'électrodes qui vont permettre, de proche en proche, de déplacer des liquides dans ou sur un plan, de les mélanger, afin de réaliser des protocoles complexes. Dans le cas du mode de réalisation avec caténaires 10 (figures 1A-3B) , un ensemble bidimensionnel (2D) de ces caténaires peut être réalisé au-dessus de l'ensemble 2D d'électrodes 4. Dans le cas du mode de réalisation avec contre-électrode 112 incorporée dans le capot 100 (figures 4-5B) , cette contre-électrode peut aussi avoir une structure bidimensionnelle .
La figure 6 représente un dispositif selon l'invention, avec sites ou chambres de mesure.
Ce dispositif comporte d' abord un dispositif bidimensionnel de déplacement et de manipulation de gouttes, par exemple du type tel qu'exposé ci-dessus, et dont seules les électrodes du substrat inférieur sont représentées schématiquement et désignées, là encore, par la référence 4.
Les références 22 et 21 désignent plusieurs réservoirs, par exemple un réservoir de cellules 22 et un ou plusieurs réservoir de drogues ou d'agents actifs 21. On utilise le terme « agent actif » pour désigner une toxine ou une drogue.
Un seul réservoir peut dans certains cas être suffisant. Il est également possible de ne pas utiliser de réservoir et d' amener les volumes de liquide à analyser par d'autres moyens, par exemple une pipette .
Le système peut en outre comporter un site 26 de mesure unique ou une pluralité de sites 24, 26,
Δ O Qo . Les réservoirs 21, 22 sont avantageusement compatibles avec un format de plaques à puits (8, 96, 384, 1586 puits). Ils sont avantageusement intégrés au dispositif. Un exemple de réalisation de ces réservoirs sera donné plus loin en liaison avec les figures 8A-8D . La figure 7 représente une portion du dispositif de la figure 6, au voisinage d'un puit de mesure 26, en coupe le long d'un axe AA' .
Le substrat inférieur est muni de ses électrodes d' activation 4, tandis que le substrat supérieur 100 est représenté de manière simplifiée, sans sa contre-électrode.
La structure de déplacement de gouttes décrite ci-dessus repose sur un substrat ou une couche 30 hydrophile d'épaisseur comprise entre 0,1 μm et 20 μm, par exemple un diélectrique tel que SiO2 ou Si3N4
Les électrodes pour le déplacement par électromouillage peuvent être réalisées sur cette couche 30.
Ce substrat ou cette couche comporte une ouverture 31, d'un diamètre de quelques μm, compris par exemple entre 1 μm et 2 μm ou 5 μm. Cette ouverture est par exemple réalisée par lithographie et gravure sélective. En fonction des diamètres et des profondeurs à graver on pourra utiliser la gravure humide sèche (attaque par gaz (SF5 par exemple) dans un plasma) ou la gravure humide (avec par exemple une solution de HF ou de H3PO4) .
Ce substrat ou cette couche 30 repose sur un substrat 32 d'épaisseur par exemple comprise entre 100 μm et 1 mm, par exemple en silicium ou en verre ou en un polymère, qui comporte lui-même une ouverture 33 plus large que l'ouverture 31.
Un substrat ou un capot inférieur 34, par exemple en polycarbonate ou en époxy ou un circuit imprimé définit avec le substrat 32 une chambre 40 pouvant contenir un liquide 42, en particulier une solution conductrice telle que du PBS (« phosphate buffered saline ») .
Ce liquide 42 peut avoir été préalablement amené goutte à goutte, par électromouillage, comme les gouttes 2 le sont par la suite lors d'une mesure.
Une électrode de mesure 261 en face arrière peut être placée contre le substrat 32 ou contre le substrat 30, de manière à être en contact avec un liquide 42 présent dans la cavité 40. Cette électrode va permettre d'appliquer, avec l'électrode 260, une différence de potentiel dans le milieu liquide 42 présent dans la cavité. Des conducteurs, non représentés sur la figure, permettent d'appliquer la tension voulue entre les deux électrodes 260, 261. Cette tension est par exemple pilotée ou commandée par les moyens qui permettent de commander ou d' activer les électrodes 4, par exemple un ordinateur de type PC disposant des interfaces appropriées. Ces conducteurs vont permettre également de mesurer la variation de tension entre les électrodes 260, 261 lorsqu'une goutte 2 de liquide est amenée par électromouillage sur le site de mesure et est mélangée au liquide 42. Cette variation peut être mémorisée dans des moyens de mémorisation d'un dispositif qui permettra ensuite de traiter et d' analyser les données ainsi prélevées lors des mesures.
En fait, dans le cas de mesures de type
« patch clamp », ce sont plutôt des cellules qui sont amenées, dans une goutte, à un site de mesure, les électrodes 260, 261 permettant de faire une mesure sur une cellule individuelle.
A partir du réservoir contenant la drogue à étudier ou le tampon physiologique qui contient les cellules, des gouttes 2 calibrées sont réalisées par électromouillage dynamique, en configuration
« capotée » (figures 2-5B) ou non (figures 1A-1C) .
Comme déjà indiqué, on peut également déposer des gouttes sur le dispositif à l'aide de moyens tels qu'une pipette.
Les gouttes 2 se déplacent dans un milieu non conducteur 16, par exemple de l'huile ou de l'air.
Selon un exemple d'utilisation, les chambres ou sites de mesure 24, 26, 28 sont d'abord remplies de solutions physiologiques conductrices contenant des cellules amenées par exemple du réservoir
22. Puis on créée des nano-gouttes de drogues, par exemple à partir des réservoirs 21, que l'on achemine par électromouillage vers les sites 240, 260, 280 de mesure.
Les gouttes déplacées ou amenées peuvent être composées d'une solution conductrice (solution tampon pour les cellules) ou non. Les drogues, ou les agents actifs, peuvent être diluées dans des solutions de faible conductivité (ordre de grandeur de quelques mS/m, par exemple 1 mS/m) mais le liquide de la goutte au niveau du site de mesure est d'une conductivité d'ordre de grandeur 1 Siemens/m ou comprise entre 0,5 Siemens/m et 2 Siemens/m.
Comme déjà indiqué ci-dessus, les électrodes 4 servant à l' électromouillage, ainsi que les électrodes 260 servant à la mesure d' électrophysiologie, sont sur une membrane diélectrique 1, 30 dont le revêtement 6, 8 est hydrophobe et passive dans les zones de déplacement des gouttes.
Par contre, dans les zones de mesure telle que la zone 26, le revêtement (en fait : la couche 30) est hydrophile et non passive, l'électrode de mesure 260 étant en contact avec le liquide de la solution conductrice 42. Une goutte 2, amenée sur le site de mesure 26, va modifier les propriétés du liquide localisé sur ce site.
Selon l'invention, une ou plusieurs chambres de mesure sont réalisées ou intégrées dans un dispositif de transport de gouttes par électromouillage. L' électromouillage permet d'amener des gouttes dans ces chambres. Des moyens de pompage permettent d'assurer une dépression entre la chambre supérieure et la chambre inférieure, afin de capturer une cellule sur l'orifice 31.
Afin d' isoler électriquement un fragment de membrane, on amène, par électromouillage, les cellules - dans une goutte - dans une des chambres de mesure. Alors que les cellules sédimentent, on modifie les pressions entre la chambre 40 et la partie du dispositif située du côté des électrodes 260 ; une dépression est ainsi créée entre les chambres inférieure et supérieure. Les cellules sont alors attirées sur le trou (unique) 31 de la membrane 30 de diélectrique. Une seule cellule sera finalement étudiée. Une fois la membrane de la cellule sur le trou 31, celle-ci se déforme, puis s'invagine dans le trou. La résistance électrique mesurée au niveau du contact cellule/diélectrique 30 peut être alors de l'ordre du Giga-Ohm. Cette résistance permet de visualiser, par exemple sur un amplificateur de « patch », des courants de l'ordre du pico-ampère. Ces courants résultent du passage des ions au travers des protéines canal de la cellule .
Les figures 8A-8D représentent comment peut être réalisé un réservoir tel que les réservoirs 21 ou le réservoir 22.
Un liquide 200 à dispenser est déposé dans un puits 120 de ce dispositif (figure 8A) . Ce puit est par exemple réalisé dans le capot supérieur 100 du dispositif. La partie inférieure, représentée de manière schématique sur les figures 8A-8D, est par exemple similaire à la structure des figures 1A-1C. Si on n'utilise pas une configuration avec un capot supérieur, la configuration ouverte laisse la possibilité de verser un liquide tel que de l'huile sur toute la surface. On peut ensuite dispenser une goutte et la déplacer ensuite par électromouillage.
3 électrodes 4-1, 4-2, 4-3, similaires aux électrodes 4 de déplacement de gouttes de liquide, sont représentées sur les figures 8A-8D. L'activation de cette série d'électrodes 4-1, 4-2, 4-3 conduit à l'étalement d'une goutte à partir du puits 120, et donc à un segment liquide 201 comme illustré sur la figure 8C. Puis, on coupe ce segment liquide en désactivant une des électrodes activées (électrode 4-2 sur la figure 8C) . On obtient ainsi une goutte 2, comme illustré sur la figure 8D.
On utilise donc une série d'électrodes 4-1, 4-2, 4-3 pour étirer du liquide du réservoir 120 en un doigt 201 (figures 8B et 8C) puis pour couper ce doigt 201 de liquide (figure 8D) et former une goutte 2 qui va pouvoir être emmenée vers tout site de mesure comme décrit ci-dessus. On peut appliquer ce procédé en insérant des électrodes telles que les électrodes 4-1 entre le réservoir 120 et une ou plusieurs électrode 4-2 dite électrode de coupure.
L'invention offre de multiples avantages. Elle permet d'abord une dispense unique, à partir d'un réservoir, des drogues et des cellules, ou de tout agent actif, au lieu d'une dispense puits par puits comme dans les dispositifs connus de patch clamp planaires . Elle permet également l'utilisation de volumes de réactifs extrêmement réduits, de l'ordre du picolitre (par exemple entre 0,5 pi et 1 pi ou 2 pi ou 5 pi) , sans volume mort, et le contrôle des concentrations. En outre il n'y a pas d' évaporation qui risquerait d'influencer la viabilité des cellules. Les zones des mesures sont isolées électriquement dans la chambre supérieure et dans la chambre inférieure. Il y a indépendance électrique des puits, ce qui rend les conditions de test (drogues, tampon et cellules) strictement indépendantes.
Il est possible de prélever des quantités de drogue dans les réservoirs avec un incrément variable, par exemple de l'ordre de 64 nano litres et avec contrôle des concentrations. La concentration est contrôlée par dilutions successives à partir d'un réservoir de concentration connue.
On peut également mentionner la possibilité de changement de tampon 42, et/ou d'électrodes pour étudier d' autres canaux que les BK sur des cellules sauvages ou malades. Les BK sont des canaux potassiques, que l'on peut sur-exprimer dans des cellules génétiquement modifiées. La solution conductrice 42 optimale résulte de la prise en compte du type de canaux et du jeu d'électrodes 260, 261 utilisé.
Il est également possible d'étudier les cycles pour les toxines à effets réversibles. Les toxines d' intérêt vont avoir un effet inhibiteur ou activateur sur les protéines canal. Cet effet peut être réversible ; par exemple, en diminuant la concentration de toxine dans la solution conductrice on va progressivement retrouver une activité des canaux (le nombre de canaux inhibés va diminuer) .
Il est également possible d'étudier les actions combinées des mélange de toxines, afin de vérifier si leurs actions sont, ou pas, compatibles et/ou synergiques.
Selon un autre exemple d'utilisation, il est possible de faire rouler les cellules en fond de goutte 2 pour augmenter la probabilité de « capture». Une des difficultés du « patch clamp » planaire provient de la capture d'une cellule sur le trou 31 dans la membrane cellulaire 30. On accroît cette probabilité de capture par des mouvements ou par l'agitation des gouttes. On maintient une agitation modérée des gouttes, limitant ainsi les problèmes d'adhérence intempestifs.
Un autre exemple d' application consiste en la possibilité d'embarquer sur la puce des toxines lyophilisées stockées dans de l'huile. Une goutte 2 de solution tampon sera amenée sur la toxine lyophilisée afin la mettre en solution. La goutte de toxine ainsi créée sera fusionnée à une autre goutte 2 contenant les cellules. Jusqu'ici les toxines étaient « apportées » à la chambre de mesure dans des gouttes à partir d'un réservoir de fluide. Ici, il s'agit d'apporter les toxines lyophilisées, sous la forme d'une pastille qui serait maintenue dans l'huile, sur la puce, sur un site distinct du site de mesure et remise en solution par mise en contact avec une goutte.
Les figures 9A-9C représentent des étapes d'un procédé avec drogue lyophilisée.
Sur ces figures, des références numériques identiques à celles de la figure 7 y désignent des éléments identiques ou similaires. Une drogue lyophilisée 39 est disposée sur le trajet d'une goutte 2 en direction d'un site de mesure (figure 9A) .
Lorsqu'elle arrive sur la drogue lyophilisée 39, la goutte stationne environ quelques secondes, ce qui va permettre de mettre la drogue en solution dans la goutte (figure 9B) .
Puis, la goutte, contenant la drogue en solution, est amenée vers le site de mesure (figure 9C) .
Sur ces figures 9A-9C, une seule drogue lyophilisée 39 est représentée, mais il peut y avoir plusieurs pastilles lyophilisées, de natures différentes. La goutte sera orientée, par exemple par son trajet par électromouillage, vers la pastille sélectionnée .
Il est ainsi possible de modifier la nature du tampon en place au niveau d'un site de mesure. On peut ainsi, notamment, inhiber ou activer des canaux ioniques de la membrane cellulaire.
On peut, par un procédé adapté, minimiser le collage des cellules sur le diélectrique 30. Par exemple, des greffages de poly (éthylène glycol) permettent de limiter l'adsorption hydrophobe de protéines (voir l'article de B. Balkrishnan et al., Biomaterials, vol. 26, p. 3495-3502) .
D'une manière générale, l'invention permet d'effectuer une mesure de type « patch-clamp » sur un volume de l'ordre du picolitre (par exemple comprise entre 0,5 pi et 5 pi, par exemple 1 pi ou 2 pi), ce qui est, de plusieurs ordres de grandeur, inférieur au volume nécessaires dans les dispositifs connus.
Des mesures électrophysiologiques selon l'invention peuvent être réalisées sur des cellules comme des ovocytes, mais également sur des particules biologiques en suspension ou sur des vésicules lipidiques (tel que des liposomes) ou sur des globules ou des bactéries ou des virus ou des noyaux cellulaires, ou un mélange de ceux-ci. Parmi les agents actifs transportables on peut citer les brins d'ADN/ARN ou des nucléotides ou des enzymes ou des protéines ou des parasites ou des bactéries ou des virus ou des pollens ou des polymères ou encore des particules solides insolubles telles que des particules diélectriques ou conductrices ou magnétiques ou des pigments ou des colorants ou des poudres ou des structures de polymères ou des substances pharmaceutiques insolubles.

Claims

REVENDICATIONS
1. Procédé d'analyse d'un liquide d'une goutte (2) comportant : - la mise en contact d'une goutte de ce liquide avec une surface hydrophobe (8),
- le déplacement de la goutte sur cette surface par électromouillage, afin de l'amener en un site (24, 26, 28) de mesure d'activité électrique, dans lequel est disposée une solution conductrice (42),
- la mesure de ladite activité électrique.
2. Procédé selon la revendication 1, la goutte étant confinée, au moins lors de son déplacement, entre ladite surface hydrophobe (8) et un substrat supérieur (100).
3. Procédé selon la revendication 2, la goutte n'étant, avant déformation, pas confinée par le substrat supérieur.
4. Procédé selon la revendication 2, la goutte étant, avant déformation, confinée par le substrat supérieur.
5. Procédé selon l'une des revendications 1 à 4, mettant en œuvre un dispositif d' électromouillage, comportant un premier substrat recouvert de ladite couche hydrophobe (8), et une pluralité d'électrodes (4) disposées sous cette couche hydrophobe, le déplacement étant obtenu par activation de ces électrodes (4) .
6. Procédé selon l'une des revendications 1 à 5, les gouttes étant formés à partir d'un ou de plusieurs réservoirs (21, 22).
7. Procédé selon l'une des revendications 1 à 6, les gouttes ayant un volume compris entre 1 pi et 10 μl.
8. Procédé selon l'une des revendications 1 à 7, la mesure d'activité électrique étant réalisée sur une cellule unique contenue dans la goutte (2) .
9. Procédé selon la revendication 8, la mesure étant une mesure sur un canal de cellule.
10. Procédé selon l'une des revendications 1 à 9, la goutte contenant des cellules de types différents ou au moins un type de cellule et un type de toxine .
11. procédé selon l'une des revendications l à 10, comportant au moins une substance lyophilisée
(39) disposée sur le trajet de la goutte (2) vers un site de mesure.
12. Dispositif d'analyse d'une goutte (2) d'un milieu liquide comportant : - un premier substrat comportant une couche hydrophobe (8) ,
- des moyens (24, 26, 28, 240, 260, 280, 261) formant au moins un site d'analyse ou de mesure d'activité électrique,
- des moyens pour déplacer une goutte, sur cette surface, par électromouillage, afin de l'amener sur ledit site d'analyse.
13. Dispositif selon la revendication 12, comportant en outre un deuxième substrat (100), disposé en regard de la couche hydrophobe.
14. Dispositif selon la revendication 13, le deuxième substrat comportant en outre une couche hydrophobe superficielle (108).
15. Dispositif selon la revendication 13 ou 14, le deuxième substrat comportant en outre une électrode (112) .
16. Dispositif selon l'une des revendications 13 à 15, les moyens pour déplacer une goutte, sur la couche hydrophobe (8), par électromouillage, comportant une pluralité d'électrodes (4) sous cette couche hydrophobe.
17. Dispositif selon l'une des revendications 13 à 16, au moins un site d'analyse ou de mesure d'activité électrique (24, 26, 28) étant exempt de couche hydrophobe, et présentant une couche hydrophile (30), ainsi que des premiers et deuxième moyens (260, 261) de mesure d'activité électrique.
18. Dispositif selon la revendication 17, un capot ou un substrat (34) formant avec le dispositif une chambre (40), en communication, par un orifice de la couche hydrophile (31) , avec la surface de la couche hydrophobe (8) .
19. Dispositif selon l'une des revendications 18, comportant en outre des moyens de pompage pour engendrer une dépression dans la chambre (40) .
20 Dispositif selon l'une des revendications 13 à 19, au moins un des sites d'analyse ou de mesure d'activité électrique (24, 26, 28) étant entouré d'une portion de la couche hydrophobe (8) .
21. Dispositif selon l'une des revendications 13 à 20, comportant en outre au moins un réservoir (21, 22) pour stocker un liquide à analyser ou dont l'activité électrique est à mesurer.
22. Dispositif selon la revendication précédente, comportant des moyens (120, 4-1, 4-2, 4-3) pour former une goutte (2) de liquide à partir d'un réservoir (21, 22) .
23. Dispositif selon l'une des revendications 13 à 22, comportant une pluralité de sites d'analyse ou de mesure (24, 26, 28) .
24. Dispositif selon l'une des revendications 21 ou 22, comportant une pluralité de sites d'analyse ou de mesure (24, 26, 28), et au moins un réservoir (21, 22) commun à cette pluralité de sites d'analyse ou de mesure, pour former des gouttes pouvant être amenées à des sites d'analyse différents de cette pluralité de sites d'analyse.
PCT/FR2006/050534 2005-06-09 2006-06-07 Dispositif planaire avec adressage de puits automatise par electromouillage dynamique WO2006131679A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/916,751 US20080185296A1 (en) 2005-06-09 2006-06-07 Planar Device With Well Addressing Automated By Dynamic Electrowetting
EP06764854A EP1889053A2 (fr) 2005-06-09 2006-06-07 Dispositif planaire avec adressage de puits automatise par electromouillage dynamique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0551557A FR2887030B1 (fr) 2005-06-09 2005-06-09 Dispositif planaire avec adressage de puits automatise par electromouillage dynamique
FR0551557 2005-06-09

Publications (2)

Publication Number Publication Date
WO2006131679A2 true WO2006131679A2 (fr) 2006-12-14
WO2006131679A3 WO2006131679A3 (fr) 2007-02-01

Family

ID=35709166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/050534 WO2006131679A2 (fr) 2005-06-09 2006-06-07 Dispositif planaire avec adressage de puits automatise par electromouillage dynamique

Country Status (4)

Country Link
US (1) US20080185296A1 (fr)
EP (1) EP1889053A2 (fr)
FR (1) FR2887030B1 (fr)
WO (1) WO2006131679A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100282609A1 (en) * 2007-10-17 2010-11-11 Advanced Liquid Logic, Inc. Reagent Storage and Reconstitution for a Droplet Actuator
US20110147215A1 (en) * 2008-07-11 2011-06-23 Comm.A L'ener.Atom.Et Aux Energies Alt. Method and device for manipulating and observing liquid droplets
CN113090785A (zh) * 2021-03-29 2021-07-09 广州大学 一种基于介电润湿控制的四通道微阀

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2887305B1 (fr) 2005-06-17 2011-05-27 Commissariat Energie Atomique Dispositif de pompage par electromouillage et application aux mesures d'activite electrique
FR2930457B1 (fr) * 2008-04-24 2010-06-25 Commissariat Energie Atomique Procede de fabrication de microcanaux reconfigurables
US8877512B2 (en) * 2009-01-23 2014-11-04 Advanced Liquid Logic, Inc. Bubble formation techniques using physical or chemical features to retain a gas bubble within a droplet actuator
EP2729792A4 (fr) 2011-07-06 2015-03-18 Advanced Liquid Logic Inc Stockage de réactifs sur un actionneur de manipulation de gouttelettes
CN103170383B (zh) * 2013-03-10 2015-05-13 复旦大学 基于纳米材料电极修饰的电化学集成数字微流控芯片
CN103406161A (zh) * 2013-07-05 2013-11-27 复旦大学 一种能产生精确液滴的数字微流芯片
WO2017164253A1 (fr) * 2016-03-24 2017-09-28 シャープ株式会社 Dispositif d'électromouillage et procédé de fabrication d'un dispositif d'électromouillage
US11040345B2 (en) 2016-03-30 2021-06-22 Sharp Life Science (Eu) Limited Microfluidic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002003058A2 (fr) * 2000-07-05 2002-01-10 NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen Dispositif et procede pour mettre en contact electrique des cellules biologiques en suspension dans un liquide
FR2841063A1 (fr) * 2002-06-18 2003-12-19 Commissariat Energie Atomique Dispositif de deplacement de petits volumes de liquide le long d'un micro-catenaire par des forces electrostatiques
US20040055536A1 (en) * 2002-09-24 2004-03-25 Pramod Kolar Method and apparatus for non-contact electrostatic actuation of droplets
US20040055891A1 (en) * 2002-09-24 2004-03-25 Pamula Vamsee K. Methods and apparatus for manipulating droplets by electrowetting-based techniques
WO2004038409A2 (fr) * 2002-08-28 2004-05-06 Commissariat A L'energie Atomique Appareil de mesure de l'activite electrique d'elements biologiques et applications de celui-ci

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040146849A1 (en) * 2002-01-24 2004-07-29 Mingxian Huang Biochips including ion transport detecting structures and methods of use
DE60228685D1 (de) * 2002-05-16 2008-10-16 Micronit Microfluidics Bv Verfahren zur Herstellung eines mikrofluidischen Bauteiles
FR2866493B1 (fr) * 2004-02-16 2010-08-20 Commissariat Energie Atomique Dispositif de controle du deplacement d'une goutte entre deux ou plusieurs substrats solides
EP1789195B1 (fr) * 2004-08-26 2010-10-27 Life Technologies Corporation Distributeurs à électromouillage et procédés associés

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002003058A2 (fr) * 2000-07-05 2002-01-10 NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen Dispositif et procede pour mettre en contact electrique des cellules biologiques en suspension dans un liquide
FR2841063A1 (fr) * 2002-06-18 2003-12-19 Commissariat Energie Atomique Dispositif de deplacement de petits volumes de liquide le long d'un micro-catenaire par des forces electrostatiques
WO2004038409A2 (fr) * 2002-08-28 2004-05-06 Commissariat A L'energie Atomique Appareil de mesure de l'activite electrique d'elements biologiques et applications de celui-ci
US20040055536A1 (en) * 2002-09-24 2004-03-25 Pramod Kolar Method and apparatus for non-contact electrostatic actuation of droplets
US20040055891A1 (en) * 2002-09-24 2004-03-25 Pamula Vamsee K. Methods and apparatus for manipulating droplets by electrowetting-based techniques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1889053A2 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100282609A1 (en) * 2007-10-17 2010-11-11 Advanced Liquid Logic, Inc. Reagent Storage and Reconstitution for a Droplet Actuator
US8460528B2 (en) * 2007-10-17 2013-06-11 Advanced Liquid Logic Inc. Reagent storage and reconstitution for a droplet actuator
US20110147215A1 (en) * 2008-07-11 2011-06-23 Comm.A L'ener.Atom.Et Aux Energies Alt. Method and device for manipulating and observing liquid droplets
CN113090785A (zh) * 2021-03-29 2021-07-09 广州大学 一种基于介电润湿控制的四通道微阀
CN113090785B (zh) * 2021-03-29 2022-12-09 广州大学 一种基于介电润湿控制的四通道微阀

Also Published As

Publication number Publication date
WO2006131679A3 (fr) 2007-02-01
FR2887030B1 (fr) 2008-06-13
FR2887030A1 (fr) 2006-12-15
EP1889053A2 (fr) 2008-02-20
US20080185296A1 (en) 2008-08-07

Similar Documents

Publication Publication Date Title
WO2006131679A2 (fr) Dispositif planaire avec adressage de puits automatise par electromouillage dynamique
EP1891329B1 (fr) Dispositif de pompage par electromouillage et application aux mesures d'activite electrique
EP2318136A1 (fr) Procede et dispositif de manipulation et d'observation de gouttes de liquide
EP2282827B1 (fr) Dispositif de séparation de biomolécules d'un fluide
EP1773497B1 (fr) Dispositif de deplacement et de traitement de volumes de liquide
EP2143948A2 (fr) Dispositif microfluidique de déplacement de liquide
EP2034318B1 (fr) Cellule d'écoulement et son processus de fabrication
FR2865145A1 (fr) Dispositif de dispense de gouttelettes microfluidiques notamment pour la cytometrie.
EP3085444B1 (fr) Dispositif microfluidique de contrôle d'écoulement d'un fluide
EP2442902A2 (fr) Systeme microfluidique et procede correspondant pour le transfert d'elements entre phases liquides et utilisation de ce systeme pour extraire ces elements
EP2589064B1 (fr) Spectrométrie de masse à ionisation
FR2861610A1 (fr) Dispositif de travail comprenant une zone localisee de capture d'une goutte d'un liquide d'interet
FR2887705A1 (fr) Dispositif de pompage ou de centrifugation des gouttes deplacees par electromouillage
EP2182212B1 (fr) Micropompe à actionnement par gouttes
EP3013477B1 (fr) Dispositif de séparation d'une suspension
WO2003033147A1 (fr) Dispositif micro-fluidique pour la manipulation d'un liquide non magnetique.
FR2862239A1 (fr) Dispositif de reception d'un echantillon de fluide, et ses applications
WO2005123257A1 (fr) Microdispositif et procede de separation d’emulsion
FR2853565A1 (fr) Microdispositif de transfert collectif d'une pluralite de liquide
WO2006027532A1 (fr) Dispositif de transfert d'elements contenus dans un liquide
WO2015193329A1 (fr) Particules liquides biomimétiques, procédé et dispositif de mesure en cytométrie en flux

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2006764854

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006764854

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11916751

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2006764854

Country of ref document: EP