WO2006129407A1 - 回転霧化頭型塗装機 - Google Patents

回転霧化頭型塗装機 Download PDF

Info

Publication number
WO2006129407A1
WO2006129407A1 PCT/JP2006/305192 JP2006305192W WO2006129407A1 WO 2006129407 A1 WO2006129407 A1 WO 2006129407A1 JP 2006305192 W JP2006305192 W JP 2006305192W WO 2006129407 A1 WO2006129407 A1 WO 2006129407A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
air
housing
motor
turbine
Prior art date
Application number
PCT/JP2006/305192
Other languages
English (en)
French (fr)
Inventor
Shinichi Yasuda
Original Assignee
Abb K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb K.K. filed Critical Abb K.K.
Priority to CA002586573A priority Critical patent/CA2586573A1/en
Priority to US11/814,090 priority patent/US7703700B2/en
Priority to JP2007518866A priority patent/JP4705100B2/ja
Priority to EP06715683A priority patent/EP1886734B1/en
Publication of WO2006129407A1 publication Critical patent/WO2006129407A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/04Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/001Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements incorporating means for heating or cooling, e.g. the material to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces
    • B05B3/1064Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces the liquid or other fluent material to be sprayed being axially supplied to the rotating member through a hollow rotating shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/001Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means incorporating means for heating or cooling, e.g. the material to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/04Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces
    • B05B5/0415Driving means; Parts thereof, e.g. turbine, shaft, bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • B05B13/0431Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation with spray heads moved by robots or articulated arms, e.g. for applying liquid or other fluent material to 3D-surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/04Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces
    • B05B5/0403Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces characterised by the rotating member
    • B05B5/0407Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces characterised by the rotating member with a spraying edge, e.g. like a cup or a bell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/04Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces
    • B05B5/0426Means for supplying shaping gas

Definitions

  • the present invention relates to, for example, a rotary atomizing head type machine suitable for use in painting automobile bodies, tools, electrical appliances, etc.
  • the rotary atomizing head type sprayer is a cylindrical housing with a motor housing, an air motor housed in the motor housing of the housing and rotating the rotational shaft by a turbine, and a front side of the housing.
  • a bell-shaped or screw-shaped rotary atomizing head mounted on the tip side of the rotary shaft of the air motor, and a paint passage through which the paint to be supplied to the rotary atomizing head flows.
  • the rotary atomizing head type sprayer supplies the rotary atomizing head
  • the applied paint is applied with an intermediate pressure (there is a system provided with a voltage generator, whereby the paint particles charged to a high voltage are formed between the paint and the paint). It can fly along the lines of force, and it can be applied to the object efficiently.
  • the above-mentioned prior art rotary atomizing head type sprayer supplies a sufficiently dried dryer as a turbine air to the heater.
  • a divination paint can be atomized in a finely atomized state from a rotary atomizing head 5 so that a large flow of paint can be atomized, It is required to increase the number of revolutions of one bin to 3 0 0 0 to 1 0 0 0 0 0 rpm. Therefore, it is necessary to increase the pressure to approximately 3 to 6 kg / cm 2, and the flow rate to approximately 100 to 600 NL / min, and the temperature of the turbine air is also high.
  • Example X For example, when painting the body of a car, the temperature is 2 0
  • the present invention has been made in view of the problems of the prior art described above, and the object of the present invention is to prevent the generation of dew on the surface of the housing even if the heat is in a low temperature condition by the action of adiabatic expansion of turbine air. It is to provide a rotary atomizing head type sprayer that can be prevented to obtain a good paint finish.
  • the atomizing head type coating machine comprises a cylindrical housing having a motor housing portion, a motor housing portion of the housing, and a rotational shaft taken by a turbine.
  • Eye bin U a bin of the air motor provided in the storage It comprises a turbine air passage through which driving turbine air flows, and an exhaust air passage provided in the housing and discharging exhaust air which is discharged by driving the turbine of the motor toward the outside.
  • the feature of the configuration adopted by the present invention is that in the housing, the extended portion blindly covers the outer periphery of the outlet passage.
  • the adiabatic air passage extends around the exhaust air passage around the exhaust air passage, the exhaust air passage is opened by circulating the adiabatic air in the heat insulation passage. It is possible to prevent the cooling of the housing from being hit by the circulating exhaust air o
  • the housing is composed of a cylindrical portion positioned on the eye U side and the inner peripheral side being the motor housing portion, and a bottom portion provided on the rear side of the cylindrical portion.
  • the bin air passage, the discharge air passage, and the adiabatic air passage communicate with the outside through the bottom portion.
  • the turbine air passage, the exhaust air passage, and the adiabatic passage can be connected to external piping at the bottom of the housing.
  • the housing is provided with a double passage extending from the turbine chamber of the air motor as described above, in which the inner side passage on the center side and the outer side passage on the outer side are arranged in a double structure.
  • the discharge air passage HU is formed by the inner passage of the double passage, and the eye ij adiabatic air passage is formed by the outer passage of the double passage.
  • this inner passage By extending the inner passage of the double passage to the turbine chamber of the air motor, this inner passage can be used as an exhaust air passage through which the exhaust air flows. .
  • the outer passage of the double passage can prevent the housing from being cooled by the exhaust air flowing through the exhaust air passage by flowing the heat insulator.
  • the outer periphery of the turbine air passage is provided with an insulation air supply passage which forms a part of the insulation air passage and extends around the turbine air passage.
  • a space is provided around the air motor to surround the heat pump, and the space is a part of the adiabatic air passage through which the damper flows. In the present invention, it is attempted to reduce the temperature of the heater by the adiabatic expansion of the turbine air, and to transfer the cold heat at this time to the no-zeroing.
  • a space is provided around the air motor, the space surrounding the heat motor, and the space is a mutter pattern of the paint sprayed from the rotating head.
  • the space is a mutter pattern of the paint sprayed from the rotating head.
  • the adiabatic expansion of the turbine air causes the temperature of the motor to decrease, and the cold heat at this time is also transmitted to the nozing, and in the present invention, around the heat motor. Surrounds the motor.
  • the space between the space can prevent condensation from being generated on the outer circumferential surface of the dressing. This makes it possible for you to Good paint finish can be achieved by preventing voltage build-up and coating defects due to condensation etc. o
  • the space is formed between the inner periphery of the motor housing portion of the eye housing and the outer periphery of the motor which constitutes the light motor.
  • the space part is ax between the inner peripheral side of the motor housing of the housing and the outer peripheral side of the motor case of the motor, this space part can be damaged by the air motor. To prevent it from being cooled o
  • the housing is composed of a housing main body provided with an IU motor housing and a cover for covering the outer peripheral side of the housing main body, and the space is iii-t.
  • It is configured to be formed between the outer peripheral side of the eye IJ and the inner body of the housing.
  • the housing is constituted by the housing and the force, the space can be easily formed when the housing is covered with the cover.
  • the space can prevent condensation on the surface of the cover.
  • Fig. 1 is an entire configuration diagram showing a rotary atomizing head type spray machine etc. according to the first embodiment of the present invention o
  • Fig. 2 is a longitudinal sectional view showing the rotary atomizing head type sprayer in Fig. 1 in an enlarged manner.
  • Figure 3 illustrates the dual aisle, the exhaust aisle, the thermal insulation aisle
  • FIG. 2 is an enlarged cross-sectional view of a part in the direction of arrows III-III.
  • FIG. 4 shows a rotary atomizing head according to a second embodiment of the present invention It is a longitudinal section showing a mold coating machine
  • FIG. 5 is a longitudinal sectional view showing a rotary atomizing head type 'painter' according to a third embodiment of the present invention.
  • FIG. 6 is an entire configuration diagram of a rotary atomizing head type sprayer etc. having X. heat generation according to the fourth embodiment of the present invention.
  • FIG. 7 is a view showing the fifth embodiment of the present invention. It is a longitudinal sectional view showing a rotary mist type and a paint machine according to a form.
  • Figure 8 is a cross-sectional view of the sprayer as seen in the direction of arrows in Figure 7 from the direction of the arrows o
  • FIG. 9 is a cross-sectional view schematically showing the heat insulation air passage in FIG. 7 in an expanded state.
  • FIG. 10 is a perspective view schematically showing the structure of the adiabatic air passage in FIG.
  • FIG. 11 is a longitudinal sectional view showing a rotary atomizer head type sprayer according to a sixth embodiment of the present invention.
  • Figure 1 2 is a cross-sectional view of the sprayer as seen from the direction of arrows in Figure 1 1
  • FIG. 13 is a cross-sectional view schematically showing the adiabatic air passage in FIG. 11 in an expanded state.
  • Fig. 14 is a perspective view schematically showing the structure of the heat insulation air passage in Fig. 1 1
  • Fig. 15 is a longitudinal sectional view showing a rotary atomizing head type sprayer according to a seventh embodiment of the present invention.
  • Figure 16 shows the eighth embodiment of the present invention Installation of a rotary atomizing head type machine on a coating robot applied to the
  • Figure 1 7 shows a rotating atomizing head type for the bent type arm in Figure 1 6
  • FIG. 1 is a drawing, and FIG. 3 shows a first embodiment of the present invention.
  • 1 is a rotary atomizing head type coating machine according to the first embodiment
  • the sprayer 1 is configured as a direct electrostatic sprayer that applies a high voltage directly to the paint by means of a voltage generator 10 described later, and the sprayer 1 is For example, it is attached to the tip of the arm 2 such as a mouth box device for painting work and a recipe mouth glass.
  • the rotary atomizing head type sprayer 1 includes a housing 3 and an air motor 7, a rotary atomizing head 8, a paint passage 1 1 and a turbine air passage 1 4 and a double passage 1 7 which will be described later. It is roughly configured by the air passage 1 8, the disconnected air passage 1 9, and so on.
  • the housing 3 shows a housing forming the outer shape of the coating machine 1.
  • the housing 3 is roughly constituted by a housing body 4 and a force par 5 which will be described later. Then, the housing 3 has an air motor 7 housed inside.
  • a reference numeral 4 designates a nosing body which forms a main body of the housing 3, and the housing main body 4 is attached to the tip of the arm 2 at the rear side.
  • the housing body 4 is made of an insulating resin material, such as polyethylene, polyethylene terephthalate (PTF E), poly ether ether core (
  • the housing body 4 is formed of an insulating resin material together with a cover 5 and a sealing air ring 6 described later. By doing this, it is possible to insulate between the power supply 7 charged at 3 ⁇ 41 pressure by the voltage generator 10 and the power supply 2 and to recover the high voltage that is printed on the paint. Prevent it! / ⁇ ⁇
  • the housing body 4 is formed in a cylindrical shape with a cylindrical portion 4A located on the front side and a cylindrical bottom portion 4B provided on the rear side of the cylindrical portion 4A.
  • the inner circumference side of the cylinder 4A is a motor housing 4C that houses the air motor 7 in a fitted state, and the bottom 4B will be described later.
  • 5 is a housing body so as to cover the housing body 4
  • a cover o attached to the outer side of 4 is a cylindrical body having a smooth outer peripheral surface 5 A, for example, made of an insulating resin material substantially similar to the housing 4 and showing a cover 5 attached to the outer side Also formed o Re, o
  • a shed ping relief 6 described later will be installed on the front side of the cover 5.
  • an o-shape material 6 is an insulating resin material substantially similar to that of the example X.
  • an od pump which is formed into a stepped tubular shape, and a hinge 6 are mounted on the front side of the force bar 5 'in a state of facing the front of the housing 4 and
  • a large number (only two shown) of the air jets 6 A are opened in the circumferential direction at the front end of the shear ring V ring 6.
  • a support step 6 B supporting the side of the motor 7 described later is formed by being recessed o
  • the ping pingering 6 is a part of the shepherd supplied via the Passing Passion 2 1 etc. to be described later. Squeeze the gas from the nozzle 6A.
  • the shower is designed to adjust the paint spray pattern, which is sprayed from the 8 nozzles of the rotary atomizing head described later, to the desired spray pattern.
  • the air motor 7 has a rotary atomizing head 8 with a compression source as a power source, for example, 3 0 0 0 to 1 0 0 0 0 0 rpm. It is what makes it rotate at high speed.
  • the heat motor 7 includes a cylindrical motor cylinder 7 A and a motor cylinder 7 A accommodated in the motor housing portion 4 C of the nozzle body 4 that constitutes the nozzle 3.
  • the tubin 7 C which is located on the rear side and is accommodated in the tub chamber 7 B, is axially proximal to the tubin 7 C.
  • the tip portion extending integrally with the center of 7 C and extending to the eye IJ side is a hollow rotary shaft 7 D projecting from the motor case 7 A, and the motor shaft 7 A is provided with the rotary shaft 7 D It is roughly configured with an air bearing 7 E that rotatably supports the motor.
  • the motor case 7 A, the rotary shaft 7 D, etc. are made of a conductive metal material such as aluminum 2 um alloy, for example.
  • the rotor atomizing head 8 is directly connected to the paint discharged from the feed tube 9 by applying a high voltage to the rotary atomizing head 8 by electrically connecting to the source 7A. It is possible to apply a high voltage.
  • Reference numeral 8 denotes a rotary atomizing head attached to the tip of the rotary shaft 7D of the air motor 7 which is located on the front side of the shedding gear 6.
  • the rotary atomizing head 8 is formed in, for example, a bent form or a conductive form using a conductive metal material. Then, the rotary atomizing head 8 is supplied with paint from the after-mentioned feed tube 9 in a state of being rotated at high speed by the feed motor 7. As a result, the paint is sprayed as innumerable paint particles which are atomized by IS force.
  • Reference numeral 9 is a feed tube provided through the rotation shaft 7D of the motor 7, and the tip end side of the feed tube 9 protrudes from the tip of the rotation shaft 7D to be inside the rotary atomizing head 8 It is spread all over Japan. Also, the proximal end of the feed tube 9 is fixed to the bottom 4 B of the housing body 4, and the paint passage described later is
  • the paint supplied through the paint passage 1 1 etc. is discharged to the rotary atomizing head 8.
  • the high voltage generator 10 is, for example, constituted by a 1-clock clock circuit, and is connected to a power supply (not shown) via a voltage cable 10. Be connected to the The high voltage generator 10 boosts the voltage supplied from the power supply unit, for example, to 30 to 150 kV, and rotates the rotation shaft 7 D of the motor 7 and the rotary atomizing head 8. It directly applies high voltage to the paint.
  • a paint passage 11 is provided at the bottom 4 B of the housing body 4, and the paint passage 1 1 extends in the axial direction at the center of the bottom 4 B.
  • the external paint piping 1 2 is connected to the inflow side of this paint passage 1 1 by means of a pipe fitting 1 2 A, and the outflow side of the material passage 1 1 is connected to a buoy or tube 9. I see. Then, the paint passage 1 1 has a plurality of colors of paint, cleaning fluid, etc. via the material pipe 1 2, gear pump (not shown), etc.
  • Reference numeral 1 4 denotes a turbine air passage provided at the bottom 4 of the housing body 4.
  • This turbine air passage 1 4 In the case of the turbine air channel 1 4, the inflow side passes through from the bottom 4 B to the outside, and the outflow side discharges. 7 Mo (7 H) (The HX tank is open to the chamber 7 B.
  • the pipeline 1 4 is a pipe connection using the pipe joint 15 A) 1 5 is connected, and the turbine channel 1 4 is connected to the air source 1 6 via the heat pipe 1, control valve (not shown), etc. o Note that the turbine 1 is connected ,
  • the pressure is 3 to 6 kg / cm 2 , the flow rate is 100 to 6
  • the a-binder is adiabatically expanded in the chamber 7 B and becomes an exhaust gas ⁇ and ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ and this exhaust gas has a rapid decrease in ⁇ ⁇ .
  • 1 7 is a single passage provided at the bottom 4 B of the housing body 4, and the double passage 1 7 is a tub chamber of the motor 7.
  • the heavy passage 1 7 is an outer passage formed between the bottom of motor housing 4 C and the rear end face
  • a concentric single-layer structure is formed by a hole 1 7 A and an inner pipe 1 7 B having a cylindrical gap (see FIG. 3) penetrated in the outer passage hole 1 7 A.
  • the double passage 1 7 is the bottom 4 of the housing 4
  • the welding passage 1 7 can be easily formed simply by making a hole in the bottom 4 B of the nodging body 4. It is possible to It is possible to easily provide the aisle 1 8 and the adiabatic air discharge passage 1 9 C of the adiabatic air passage 1 9.
  • the exhaust passage 18 is a gx-level discharge path shown at the bottom 4 o of the housing 4.
  • the exhaust passage 18 is formed as an inner passage in the inner pipe 17 B of the double passage 17 0 and the exhaust air passage 18 has an inlet side of the air motor 7 which is an inlet of the air motor 7. It communicates with the chamber 7 B, and the outflow side communicates with the outside through the bottom 4 B. Then, the exhaust air passage 18 is discharged from the turbine chamber 7 B to the turbine air discharged from the turbine passage 14 to the turbine 7 C of the air motor 7 as exhaust air. It will be distributed when it is done
  • the numeral 19 indicates a heat insulation channel provided at the bottom 4 B of the housing body 4.
  • the heat insulation passage 19 is formed in a U-shape by the heat insulation supply passage 19 A, the heat insulation air communication passage 19 B, the heat insulation air discharge passage 19 C, and the discharge opening 19 D. It communicates with the outside through the bottom 4 B.
  • a passage 19 is an exhaust air passage 18 and the exhaust air passing through the passage 18 is a high temperature insulated air from the heat insulation air supply passage 19 A, an insulation air communication passage 1 9 B, Insulated air discharge channel 1 9 C Distributes and discharges from discharge open 19 D. At this time, itf ift air discharge path
  • 19 C is to prevent the cold heat from coming to the side of the housing 3 when the discharge air cooled by the adiabatic expansion flows in the discharge air passage 18.
  • the adiabatic air supply channel 1 9 A has an outflow side It is connected to the adiabatic junction 1 19 B at a position close to the air motor 7.
  • an air pipe 20 is connected to the heat insulation air supply path 19 A using a pipe fitting 2 OA, and the heat insulation air supply path 19 A is an air pipe 20 and a control valve (not shown).
  • Air source through 1
  • A is to circulate the adiabatic air supplied from the air source 16 via the air pipe 20 etc. to the adiabatic air discharge path 19 C side through the adiabatic air communication path 19 B.
  • the heat insulation air flowing through the heat insulation air passage 1 9 is a compression air supplied from the heat source 1 6 and is heated to a high temperature by the air compression action.
  • the exhaust gas is cooled by adiabatic expansion and has a lower temperature than the turbine air supplied from the turbine passage 14. Because of this, the heat insulating air flowing in the thermal air passage 1 9 is the exhaust air passage 1
  • the heat insulation air can provide sufficient insulation effect even with the compressed air itself supplied from the heat source 16 .
  • the adiabatic air discharge passage 19 C is HX through the bottom 4 B of the human body 4, and the adiabatic communication passage 1 9 B is in contact with the air motor 7 at a position where the inflow side is close to the air motor 7.
  • the exhaust opening 19 D is open to the outside o
  • the heat insulation discharge path 19 C is in the lower pipe 17 B
  • the axially extending exhaust air passage 18 surrounding the blocked exhaust air passage 18 is designed to conduct heat from the exhaust air passage 18 to the noising body 4.
  • the adiabatic air discharge passage 1 9 C is the adiabatic air supply passage 1
  • the shedding air passage 2 1 shows a shaping air passage provided so as to penetrate the outer peripheral side of the housing body 4 in the axial direction ⁇ ⁇
  • the shedding air passage 2 1 is an air outlet 6 of each of the casing 6 and the casing 6. It is a distribution of the chain ping supply to A. ⁇ 3. In addition, there is only one shed ping aisle 2
  • the rotary atomizing head type coating machine 1 has the configuration as described above. Next, an operation when the coating operation is performed by using the coating machine 1 will be described o
  • a high pressure turbine is injected into the turbine chamber 7B of the air motor 7, and the turbine 7C is driven to rotate by this turbine.
  • the rotary atomizing head 8 rotates at high speed along with the rotary shaft 7D.
  • the paint selected by the color changing valve device 1 3 is supplied from the paint tube 9 to the rotary atomizing head 8 via the paint pipe 1 2 and the paint passage 1 1. This paint can be sprayed from the rotary atomizing head 8 as finely divided paint particles.
  • high voltage generator 1 is used for the paint (paint particles). A high voltage is applied by 0 and the
  • Paint particles that have been charged to voltage can fly to the object that is in contact with the face and efficiency can be applied.
  • the high pressure turbine supplied from the turbine air passage 14 to the turbine chamber 7 B of the motor chamber is lowered in temperature by adiabatic expansion when it is ejected to the turbine chamber 7 B.
  • the temperature and humidity are kept constant so that the finish of the painting is good, for example, the temperature in the painting bowl is 20 to 25 in the painting process.
  • the heat insulation discharge passage 1 9 C is configured to constantly circulate the heat insulation wire.
  • the discharge passage 1 8 is low
  • the cold X. heat that is transmitted to the side of the housing 3 is put on the insulated air and released to the outside. Therefore, the housing 3 is cooled by the exhaust air flowing through the exhaust air passage 18. You can prevent
  • the heat insulation air is always circulated in the heat insulation passage 19 so that the temperature decrease of the housing 3 is suppressed by the heat insulation air discharge passage 19 C. Do be able to. As a result, even in the case of applying a high voltage to the material, it is possible to prevent the high voltage from leaking by the m path.
  • M 3 ⁇ 4 s efficiency can be improved.
  • the compressed air is heated to a high temperature by the heat of compression ⁇ and so on, the heat insulating air flowing through the heat insulating passage 1 9 is an air source 1
  • the inner passage 1 7 in the double passage 1 7 forms an exhaust air passage 1 8 by the inner passage in the pipe, and in the outer passage between the outer passage hole 1 7 A and the inner pipe 1 7 7 More insulation air passage 1
  • This double passage 1 7 forming the 9 thermal insulation discharge passage 1 9 C has an outer passage hole 1 7 A in the back of the housing 3
  • FIG. 4 shows a second embodiment of the present invention.
  • a feature of the present embodiment is that a heat insulation air supply passage which is a part of the heat insulation passage and extends around the water passage is provided on the outer periphery of the turbine air passage.
  • the same components as those of the first embodiment described above are denoted by the same reference numerals, and the description thereof is omitted. To be abbreviated
  • 31 denotes a first single passage provided at the bottom 4 B of the housing 4 constituting the housing 3. It extends in the axial direction from the outer peripheral side of the chamber 7B. 7, the first double passage 31 is substantially the same as the double passage 17 according to the first embodiment, in the outer passage hole 31A and in the outer passage hole 31A.
  • a double structure is formed by the inner side piping 31 B, which is pierced with an annular gap.
  • the first double passage 3.1 is the inlet side of the turbine air and the adiabatic air, a double pipe joint 3 2 described later is provided on the inlet side of the first double passage 31. Is attached.
  • an inner air passage 34 as an inner passage, and an outer passage hole of the first double passage 31 is provided.
  • a heat insulating air supply passage 3 6 A of a heat insulation passage 3 6, which will be described later, is provided as a cylindrical outer passage.
  • the first double passage 31 is provided with an outer passage hole 31A in the bottom 4B of the body 4 of the No. 4 body, as in the case of the two passages 17 according to the first embodiment. Since only the inner piping 31 B is welded to the inside, it can be easily formed into the housing 3.
  • This double pipe joint 3 2 shows a double pipe joint mounted on the bottom 4 B of the housing 4 located on the inflow side of the first double passage 31 1
  • This double pipe joint 3 2 is an inner joint part 3 2 A and outer joint part 3 2 B and inner joint part
  • Reference numeral 3 3 denotes a second double aisle which is the bottom 4 B of the housing body 4 and which is HX divided into two, and the single aisle 33 is a center chamber 7 B of the motor chamber 7 B from the center I axial direction I FIJ
  • the second double passage 3 3 is formed in the same manner as the first double passage 3 1 in the outer passage hole 3 3 A and the inner piping 3 3 B. O is configured o
  • 3 4 is the bottom of the housing 4 4 B ru ru
  • a turbine that drives the air bin 7 C of the air motor 7 is circulated.
  • the turbine channel 3 4 is formed as an inner channel in the inner pipe 3 1 B of the first double channel 3 1. Further, the inlet side of the turbine passage 34 is in contact with the inner joint portion 32A of the double joint 32 and the outlet side is open on the outer peripheral side of the turbine 7 B of the motor 7. ⁇ o
  • 3 6 is the bottom 4 B s of the housing 4
  • Fig. 8 shows an adiabatic passage according to a second embodiment of SX.
  • the heat insulation passage 36 is a heat insulation passage 36 6 A, an insulation passage T 6 36 B, an insulation passage 36 6 C, and a discharge opening 36 It is arranged in a U-shape by D and connected to the outside through the bottom 4 B.
  • the heat insulation passage 6 6 A is an outer passage hole 3 of the first heavy passage 3 1.
  • the adiabatic air exhaust passage 3 6 C constituting the outflow side of the adiabatic passage 3 6 is an adiabatic passage according to the first embodiment.
  • the heat-insulated air discharge path 36 C extends in the axial direction so as to surround the exhaust gas discharge passage 3 5.
  • the adiabatic air discharge passage 36 C is disposed through the bottom 4 B of the housing body 4 at a position close to the inflow side force s air motor 7 via the adiabatic air communication passage 36 B. It is connected to the supply passage 3 6 A, and the outflow side is the rear end face of the bottom 4 B of the housing body 4 and the discharge opening 3 6 D is opened to the outside.
  • the inlet side of the thermal insulation is also used as the first double passage 31 according to the second embodiment, and the first heavy passage 31 is used as the first double passage 31.
  • FIG. 5 shows a third embodiment of the present invention.
  • a feature of this embodiment is that two exhaust air passages are provided, and two adiabatic air passages are provided so as to surround the outer periphery of each passage.
  • the same components as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.
  • 4 1 is formed to extend axially from the center of the turbine chamber 7 B of the air motor 7.
  • the first heavy passage 4 1 consists of an outer passage hole 4 1 A and an inner piping 4 1 B, and a double pipe joint 4 2 is attached to the inflow side.
  • the joint 4 2 is located at the rear end side in the axial direction, and is opened inside the pipe of the first double passage 4 1 to open the inside of the pipe 4 1 B to the outside.
  • a P portion 4 2 A and an outer joint portion 4 2 B located on the outer peripheral side and communicated between the outer passage hole 4 1 A and the inner pipe 4 1 B are provided.
  • This double passage 4 3 shows a second double passage provided at the bottom 4 B of the housing 4.
  • This double passage 4 3 is substantially the same as the first single-passage 4 1, and the air motor 7 has a single chamber.
  • Reference numeral 4 4 denotes a first exhaust air passage provided at the bottom 4 B of the housing 4.
  • the exhaust passage 4 4 is an inner passage in the inner pipe 4 1 B of the first double passage 4 1 substantially the same as the discharge air passage 1 8 according to the first embodiment.
  • the chamber 7 B of the motor 7 is opened from the inner opening 4 2 A of the double pipe joint 4 2 to the outside of the housing 3.
  • This exhaust passage 4 5 shows a second discharge passage located at the bottom 4 of the Nocking body 4.
  • This exhaust passage 4 5 is an inner passage within the inner piping 4 3 of the first embodiment * exhaust air passage 1 8 according to the first embodiment and substantially 1 side of the second single passage 4 3
  • the chamber 7 B of the motor 7 is open to the outside of the housing 3.
  • Reference numeral 4 6 denotes a heat insulation passage according to the third embodiment in which the bottom 4 of the housing 4 is lost.
  • This heat transfer passage 4 6 is a heat insulation air supply passage 4 6 A, a heat insulation air connection 4 6 B, a heat insulation air discharge passage 4 6 C and a discharge opening 4 6
  • the heat insulation supply passage 4 6 A constituting the inflow side of the heat insulation passage 4 6 is an outer passage hole 4 of the first double passage 4 1.
  • the adiabatic material supply passage 4 6 A surrounds the first exhaust air passage 4 4 It extends in the axial direction. Furthermore, the 'insulated air supply path 46 A is provided through the bottom 4 B of the housing body 4 and the inflow side is connected to the outer joint part 4 2 B of the single pipe joint 4 2 at the rear end face of the bottom 4 B, Insulated air communication channel 4 6 at a position where the outflow side is close to the motor 7
  • the adiabatic air discharge channel 4 6 C constituting the outflow side of the thermal insulation air channel 4 6 is a second two ⁇ outside channel hole 4 3 of the channel 4 3 It is a cylindrical passage formed by the outer passage of A and the inner piping 4 3 B, and the adiabatic air discharge passage 4 6 C is
  • the heat insulation air exhaust passage 4 6 C is provided through the bottom 4 B of the housing 4 and the inflow side approaches the light motor 7. In the position, the connection is made to the supply path 4 6 A via the heat insulation communication path 4 6 B, and the outflow side is opened to the outside at the rear end face of the bottom 4 B of the housing 4.
  • the exhaust route of the turbine is divided into the first exhaust passage 4 4 and the fourth passage.
  • FIG. 6 shows a fourth embodiment of the present invention.
  • the feature of this embodiment is that the adiabatic air is supplied to the adiabatic passage in a state of being warmed by the heater device.
  • the same components as those in the first embodiment described above are designated by the same reference numerals, and the description thereof is omitted.
  • 5 1 shows a heater device provided in the middle of the heat pipe 20 connected to the heat insulation supply passage 1 9 A of the heat insulation air passage 19. This heating device 5 1 is turned off The heat device 19 is used to heat the adiabatic air supplied to the heat passage. Further, the heater device 51 has an explosion-proof structure which does not cause a fire even when used in an atmosphere of an organic solvent. ing
  • the adiabatic heat exchanger is constantly receiving the cold heat of the exhaust air and discharging it outside the nocking 3, thereby preventing the cooling of the nodging 3.
  • heat insulation is not necessary to have a large flow rate as in Tabina, since it is sufficient to discharge the cold heat received from the discharge to the outside of Noging 3. . Therefore, the output (heat quantity) of the heating device 5 1 is small ⁇ , and it does not require high-precision temperature control.
  • the temperature of the air supplied from the air source 16 is low, and a high-power type that supplies a large amount of bottled air.
  • FIG. 7 shows a diagram 10 showing a fifth embodiment of the present invention.
  • a feature of the present embodiment is that a space for surrounding the air motor is provided around the heat motor, and the space is configured as a part of the heat insulation air passage through which the heat insulation flows.
  • the space portion 6 1 is a cylindrical portion 4 of the housing main body 4 that constitutes the knowing 3.
  • the space portion 61 has a substantially rectangular shape in the unfolded state, and is curved such that the upstream side 61 A and the downstream side 61 B approach each other. As shown in Fig. 8 and Fig. 10, it is formed as a C-shaped space in the cross section, covering almost the entire circumference of the turbine 7 C side of the feed motor 7 and the space 6 1 will be described later.
  • the heavy passage 6 2 is substantially the same as the double passage 1 7 according to the first embodiment. It is formed to extend in the axial direction from the center of the turbin chamber 7 B. Also, the first single-passage passage 6 2 consists of an outer passage hole 6 2 A and an inner pipe 6 2 B.
  • This double pipe joint 6 3 is a double pipe joint.
  • This double pipe joint 6 3 has an inner opening portion 6 3 A for opening the inside of the inner pipe 6 2 B of the first heavy passage 6 2 to the outside, and an outer peripheral side Located outside passage hole 6 2
  • 6 4 shows a second double passage provided at the bottom 4 B of the housing 4.
  • This double passage 6 4 is substantially the same as the first double passage 6 2. It consists of 6 4 A and the downside piping 6 4 B.
  • 6 5 shows the first exhaust air passage provided at the bottom 4 B of the housing body 4-the exhaust air passage 6 5 is • 6
  • Bin chamber 7 B is opened to the outside of the housing 3 from the inner opening P portion 6 3 A of the double pipe joint 6 3 ⁇
  • the second outlet aisle is shown at the bottom 4 B of the main body 4 o
  • the outlet e-aisle 6 6 is almost identical to the first outlet are 6 5 Heavy aisle
  • thermometer 7 inner piping 6 4 B is formed as an inner passage in 4 B, and the chamber 7 B of the thermometer 7 is open to the outside of the housing 3 o
  • Reference numeral 6 7 denotes a heat insulation passage according to the fifth embodiment, which is cast on the bottom 4 B of the housing body 4.
  • This insulation path 6 7 is a heat insulation air supply path 6 7 A, a supply side communication path 6 7 B, a heat insulation air middle path 6 7 C, a discharge side communication path 6 7 D, an insulation air discharge path 6 7 E and
  • the discharge opening 6 7 F is configured, and the discharge opening 6 7 F is open to the outside.
  • thermal insulation air supply channel 6 7 A constituting the inflow side of the thermal insulation air channel 6 7 is the outer channel hole 6 of the first double channel 6 2.
  • O 3 is connected to the outer joint part 6 3 B and connected to the air source 1 6 via the air piping 6 8 etc. o
  • the supply side communication path 6 7 B is connected to the outflow side of the adiabatic heat supply path 6 7 A, and the supply side communication path 6 7 B is as shown in FIG. 9 and FIG. In the radial direction from the adiabatic air supply path 6 7 A, the circumferentially upstream side of the space portion 6 1 6 1 A. Thus, the supply side communication path 6 7 B is connected to the heat insulation intermediate path 6 7 C.
  • the adiabatic air intermediate passage 6 7 C is formed into a ring shape that is SX charged by using the space portion 61, and the outer circumferential side of the heat motor 7 is covered with the heat.
  • This adiabatic air intermediate passage 6 7 C is to block the cold heat that is transmitted from the air motor 7 force to the cooling force 3 side by the circulation of the heat insulation ⁇ ⁇
  • a discharge side communication path 6 7 D is connected to the circumferential downstream side 6 1 B of 1.
  • the discharge side communication path 6 7 D extends to the rear side of the cylindrical portion 4 A of the welding main body 4 and the heat insulation discharge path 6 7
  • thermal insulation exhaust channel 6 7 E constituting the outflow side of the thermal insulation air channel 6 7 is the outer channel hole 6 of the second dual channel 6 4.
  • the housing body 4 of the No. 3 is provided with a space 6 1 surrounding the periphery of the heat motor 7, and the space 6 1 is used as the adiabatic air passage 6 7. It is used as intermediate passage 6 7 C, and is configured to circulate insulation air in this heat insulation intermediate passage 6 7 C ⁇
  • FIGS. 11 to 14 show a sixth embodiment of the present invention.
  • the feature of the present embodiment is that the space portion is the inner periphery of the motor housing portion of the housing.
  • the sixth embodiment there is a configuration formed between the motor side and the outer peripheral side of the motor which constitutes the air motor.
  • one of the same as the first embodiment described above is used.
  • the same reference numerals are given to constituent elements, and the description thereof is omitted.
  • reference numeral 71 denotes a housing according to the sixth embodiment.
  • the housing 71 accommodates an air motor 7 therein, and includes a housing body 72 and a cover 71 which will be described later.
  • the hoWing body 7 2 forms a main body portion of the no knoWing 7 1, and the hoWing body is an insulating resin material substantially similar to the noWing body 4 according to the? Rst embodiment, for example. It is formed by
  • the housing body 7 2 comprises a cylindrical portion 7 2 A at the base side and a bottom portion 7 2 2 at the rear side, and the inner peripheral side of the cylindrical portion 7 2 A is a motor accommodating portion 7 for accommodating the motor 7. C and C.
  • motor housing 7 2 C A plurality of (for example, five) supports 7 2 D for supporting the motor 7 are formed at the bottom of the support 6 and the support step 6 B of the shaping air ring 6.
  • the motor housing 7 2 C of the housing 7 2 has a diameter and an axial dimension (depth) from the motor housing 4 C of the housing 4 according to the first embodiment.
  • the housing body is made large by both
  • Reference numeral 7 3 denotes a cane attached to the outer peripheral side of the housing 7 2.
  • This force nod ing 7 3 is formed, for example, as a cylindrical body having an outer peripheral surface 7 3 A made of an insulating resin material substantially similar to the above-mentioned sheeting main body 4.
  • a space portion 7 4 is provided to surround the motor case 7 A of the motor 7. In the space portion 7 4, an insulation heat is distributed. In addition, the space portion 7 4 is formed by the inner peripheral side of the motor accommodating portion 7 2 C of the housing body 7 2 and the air motor 7.
  • the space 7 4 is an overall circumferential space defined between the inner peripheral surface of the motor housing 7 2 C and the outer peripheral surface of the motor housing 7 A. It is composed of 4 A and a bottom portion 7.4 B defined between the bottom of the motor housing 7 2 C and the rear end face of the motor 7 A.
  • the entire circumference 7 4 A of the is section 7 4 is a figure 1 2, a figure
  • the cross-sectional C-shaped cylindrical space is formed, and the space portion 7 4 has a bottom space 7 4 B
  • the upstream side is 7 4 A 1 and the opposite side is the downstream side 7 4 A 2.
  • the bottom space 7 4 B is formed as a substantially disc-like space.
  • a cutaway portion 7 4 B 1 extending radially from the upstream side 7 4 A 1 to the downstream side 7 4 A 2 of the entire circumferential space 7 4 A is provided.
  • the cutaway portion 7 4 B 1 is a supply side connection P 8 1 B from the supply side connection P 8 1 B of the heat insulation air passage 8 1 described later to the discharge side communication path 8 1 D To prevent the flow
  • This double passage 75 is the
  • an outer passage hole 7 5 A and an inner pipe 7 5 B are provided substantially in the same manner as the double passage joint 7 6 described later. ing.
  • Reference numeral 7 6 denotes a double pipe joint mounted on the housing 7 2 on the inflow side of the first double passage 7 5.
  • Double pipe fitting 7 6 is the inner pipe of the first double passage 7 5
  • This dual passage 7 7 is substantially the same as the first double passage 7 5 ′, with the outer passage hole 7 7
  • Reference numeral 7 8 denotes a turbine air passage provided at the bottom 7 2 B of the housing 7 2. This turbine air passage
  • the inflow side of the turbine air passage 7 8 is the inner joint portion 7 6 A of the double pipe joint 7 6. It is connected to the air source 16 via the piping 7 9 etc., and the outlet side is open to the outer peripheral side of the turbine chamber 7 B of the heat motor 7.
  • Reference numeral 80 denotes an exhaust passage provided at the bottom 7 2 B of the housing body 7 2.
  • the discharge air passage 80 is formed as an inner passage in the ⁇ side pipe 7 B of the second double passage 7 7 and is communicated with the outside to discharge the discharge air.
  • the heat insulation air passage 81 is connected to the heat insulation air supply passage 8 1 A, the supply side connection port 8 1 B, the heat insulation air passage 8 1 C, the discharge side communication.
  • Passage 8 1 D Insulated Air Discharge Passage 8
  • Exhaust opening 8 1 F is configured. Discharge open P 8 1 F open to the outside and write down.
  • the outer passage hole 7 of the first double passage 7 5 is provided.
  • the inflow side of the insulated air supply channel 8 1 A is a double pipe joint
  • the air source 16 It is connected to the air source 16 via the 7 6 outer joint part 7 6 B, air piping 8 2 and so on.
  • the outflow side of the adiabatic air supply passage 8 1 A is the supply side connection port 8 1 B, and the supply side connection port
  • the heat insulation air supply channel 8 1 A is connected to the upstream side of the heat insulation air intermediate channel 8 1 C provided using the space portion 7 4.
  • discharge side communication path 8 1 D is connected to the downstream side 7 4 A 2 of the whole circumferential space 7 4 A which is the downstream side of the adiabatic air intermediate path 8 1 C, and this discharge side communication path 8 1 D
  • the tube 7 2 A of the housing body 7 2 extends to the rear side, and the heat insulation discharge path 8 1
  • the adiabatic exhaust passage 8 1 E constituting the outflow side of the insulating passage 8 1 is an outer passage hole 7 of the second single passage 7 7.
  • the insulated air discharge passage 81 E extends axially in the axial direction so as to surround the second discharge passage 80, and its open end is a discharge opening 81 F opened to the outside.
  • the heat insulation intermediate passage 8 1 C of the heat insulation air passage 8 1 can surround the air motor 7 from the outer peripheral side and the rear end side, When 1 motor temperature of motor 7 decreases, it is possible to reliably prevent the motor temperature of housing 7 1 from decreasing due to motor 7 of the 6th implementation. Can achieve the same effect as the fifth embodiment.
  • FIG. 15 shows a seventh embodiment of the present invention.
  • the feature of the present embodiment is that an is section is provided between the outer peripheral side of the housing and the inner peripheral side of the force / one.
  • the intermediate part is made as a part of the shipping passage through which the shipping flow for adjusting the spray pattern of the paint sprayed from the rotary atomizing head flows.
  • the form of the seventh implementation In the state, it is assumed that the same components as those in the first embodiment described above are denoted by the same reference numerals and the description thereof is omitted.
  • numeral 91 is a housing according to the seventh embodiment, and the housing 91 accommodates the air motor 7 therein, so a housing main body 92 and a cover 9 described later will be described.
  • the housing body 9 2 is a housing body forming the body portion of the housing 9 1, the housing body 9 2 being formed of, for example, an insulating resin material substantially similar to the housing body 4 according to the first embodiment. ⁇ ⁇
  • the housing body 9 2 accommodates the heat pump 7 by force with the front cylindrical portion 9 2 A and the rear bottom portion 9 2 B, and the inner peripheral side of the cylindrical portion 9 2 A.
  • the diameter reduction of the front portion corresponding to the motor housing 9 2 C is made, and the diameter reduced step 9 2 D is It is formed. This diameter reducing step 9
  • 2D defines the space portion 9 4 described later with the spacecraft 1 9 3.
  • This force indicator 93 is made of, for example, an insulating resin material substantially similar to the housing 4, and the outer peripheral surface
  • It is formed as a cylindrical body having 93 A.
  • the space 9 4 is formed between the outer peripheral side of the housing body 9 2 and the inner peripheral side of the force pare 9 3-in the interspace, in the space portion 9 4, the paint spray pattern is adjusted.
  • the space for shaving air flows o
  • the space 9 4 is a cylindrical shape defined between the reduced diameter step 9 2 D of the housing body 9 2 and the inner circumferential surface of the force plate 9 3
  • the space portion 9 4 is formed as a space of the air motor 7, and the space portion 9 4 is formed as follows: in the shaping air of the shaping passage 9 5 described later. It is what constitutes between 9 5 B
  • 9 5 is an o v « ⁇ ⁇ — which is composed of the shaping pipeline 9 5 A and the shaping pipeline 9 5 B, and the inflow side of the shaping air supply channel 9 5 A is the air piping 9 6 Feet to air source 1 6 via control valve (not shown) etc. 0 ⁇ ' ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ middle path 9 5 B is between is
  • the covering body 9 2 is covered by a cover 9 3
  • Part 94 can be easily installed, and productivity can be improved.
  • the space part 9 4 serves as a heat sink by being used as the intermediate path 9 5 B. It is possible to use a shaping solution as an option, and it is possible to simplify the configuration without the need to separately install a separate aperture pipe.
  • FIGS. 16 and 17 show the eighth embodiment of the present invention.
  • True The characteristic of the form of la is that the rotary atomizing head type machine is attached to the bending type arm whose tip part is bent at a predetermined angle.
  • the same components as those in the first embodiment described above are designated by the same reference numerals, and the description thereof will be omitted.
  • the robot apparatus 101 shown in Fig. 16 and Fig. 16 shows a robot for painting work to be used in the eighth embodiment of the present invention.
  • B3 ⁇ 4 Allowing the coated object 1 0 2 to follow the object 1 0 2 following the object 1 0 2 to be coated by means of the rotary atomizing head type sprayer 1 which has been turned over.
  • the port device 101 has a pedestal 101 A, a vertical column 101 B rotatably and pivotally mounted on the pedestal 101 A, and the suspension & column 10 A horizontal support 10 1 C that is rotatably mounted at the tip of 1 B, and a wrist 10 1 D that is provided rotatably at the end of the horizontal support 1 0 1 C, and the wrist 1 It is composed of a bent-type arm 1 0 1 E that is provided at the end of 0 1 D and to which the rotary atomizing head type sprayer 1 is attached.
  • the mouth box device 1 0 1 arm 1 0 1 E is a figure
  • the inside is formed as a cylindrical body through which piping and wiring pass, and the tip side of the face 1 0 1 E is, for example, an angle of about 1 to 90 °
  • the main body 4 of the coating machine 1 is screwed to the tip of the main body.
  • the bending type arm 1 0 1 E in which the tip end side is bent is used to make the coating machine 1 face 3 ⁇ 4 of a complex painted surface, a painted surface in the back, etc.
  • a double passage 17 is provided in the bottom 4B of the packaging body 4 using the material of the housing body 4, and the double passage 17 is an outer passage.
  • the present invention is not limited thereto.
  • the double passage may have a double pipe structure by the outer pipe and the inner pipe penetrated in the outer pipe. If the outer piping is welded to the bottom 4 B of the housing 4, be careful. This configuration can be applied to the other embodiments.
  • the heat insulation passage 1 9 is provided to the heat insulation passage 13 A, the heat insulation air passage 19 B, the heat radiation passage 19 C, and the discharge opening 19 D.
  • the case where the system is configured is described as an example.
  • the present invention is not limited thereto.
  • the adiabatic air communication path 19 B may be omitted, and the outflow side of the adiabatic air supply path 19 A may be directly connected to the inflow side of the adiabatic air discharge path 19 C. It may be connected to This configuration can also be applied to the second, third and fourth embodiments.
  • the heater device 5 1 is provided in the middle of the air piping 20 connected to the heat insulation air supply passage 19 of the heat insulation passage 1 9. It is configured to heat the insulation air supplied to the
  • the present invention is not limited to this, and the heater device 5 1 may be provided for other embodiments.
  • the shaving air ring 6 is the force S described as being formed of an insulating resin material
  • the shaving air ring 6 may be formed using a conductive metal material. In this case, the shaving air ring 6 is held at the same potential as the air motor 7.

Landscapes

  • Electrostatic Spraying Apparatus (AREA)

Abstract

ハウジング(3)を構成するハウジング本体(4)の底部(4B)には回転霧化頭(8)に向け塗料が流通する塗料通路(11)とエアモータ(7)のタービン(7C)に向けタービンエアが流通するタービンエア通路(14)と、タービン(7C)を駆動したタービンエアが排出エアとして外部に向け流通する排出エア通路(18)と、この排出エア通路(18)を取囲んで軸方向に延び、高温な断熱エアが流通する断熱エア通路(19)の断熱エア排出路(19C)とを設ける。これにより、断熱状態で膨張して温度低下したタービンエアが排出エア通路(18)を流通しても、この排出エアよりも高温な断熱エアを断熱エア排出路(19C)で流通させることにより、排出エアによりハウジング(3)が冷却されるのを防止することができる。

Description

明 細 回転霧化頭型塗装機 技術分野
本発明は 、 例えば自動車の車体、 具 、 電化製品等を 塗装するのに用いて好適な回転霧化頭型 装機に関する 背景技術
一般に 自動車の車体、 家具 、 電化製 P
ΠΡ等を塗装する 場合には 、 塗料の塗着効率、 塗装仕上り が良好な回転霧 化頭型塗装機を用いて塗装している。 の回転霧化頭型 塗装機は モータ収容部を有する筒状のノヽウジングと、 該ノヽゥジングのモータ収容部内に収容され 、 タービンに よ り 回転軸を回転駆動するエアモータ と 前記ハウジン グの前側に位置して該エアモータの回転軸の先端側に取 付けられたベル形ないし力 ップ形の回転霧化頭と、 該回 転霧化頭に供給する塗料が流通する塗料通路と を備えて ゝ
いる (例 X.ば、 特開昭 6 0 — 1 4 9 5 9号公報、 特開平
8 - 1 0 4 6 号公報参照)。
、 回転霧化頭型塗装機のハゥジングに ίま、 目 IJ SGェ ァモータのター ビンを駆動する タ一 ビンェァが流通する ター ビンェァ通路と 、 前記エアモータのタ一 ビンを駆動 して排出される排出エアが外部に向けて流通する排出ェ ァ通路とが設けられている。 こ こで、 ェァモータを駆動 するタービンエアには、 清浄で十分に乾燥した ドライエ ァが用いられ、 所定の圧力、 流量をもつて適宜に供給さ れる。
さ らに 、 回転霧化頭型塗装機には、 回転霧化頭に供給 される塗料に间 ¾圧を印加する(¾電圧発生器を備えたあ のがある。 これによ り 、 高電圧に帯電した塗料粒子はヽ 被 、塗物との間に形成される電 ¼力線に沿つて飛行する とがでさ、 被塗物に効率よ く 塗着する こ とができる。
·
と ろで 、 上述した従来技術によ る回転霧化頭型塗装 機はヽ 十分に乾燥した ドライェァをタ一 ビンエアと して ェァモ一タに供給している。 しかし、 昨今の塗装機では、 例 ば ϊ¾) 占度な塗料でも回転霧化頭から微粒化状態で噴 霧でさ る よ 5 に、 また.大流量の塗料を霧化でき る よ う に、 タ一ビンの回転数を 3 0 0 0 〜 1 0 0 0 0 0 r p mまで 高速にする こ とが要求されている 。 従つて、 エアモータ に供給する タ一 ビンエアは、 圧力を 3 ~ 6 k g / c m 2 程度 流量を 1 0 0 〜 6 0 0 N L / m i n程度まで上げ る必要が り 、 タ一 ビンエアの温度も高温と なっている ο このよ う にタ一 ビンエアの圧力を高めた'場合には、 高 曰で 、 高圧なタ一 ビンエアはタ一ビン室に噴出したと さ に 、 断熱膨張の作用によ り 温度が急激に低下し、 タービ ンを回転駆動した後の排出ヱァは低温状態と なる。 この ため 、 ェァモ一タ とその周辺の /ヽゥジング等は常に冷却 される こ と になる 。 また、 排出ェァが流通する排出ェァ 通路も低温状態にな り 、 排出ェァ通路の周囲に位置する ノヽクジングの後側部分も排出ェァ通路を流通する排出ェ ァによ り 冷却される こ とになる。
· ·
で、 塗装作業を行う塗装プ ―ス内は、 塗装仕上り が良好になる よ う に温度と湿度が管理されている。 例 X. ば 、 自動車のボティ を塗装するプ ―ス内は、 温度が 2 0
〜 2 5 °C程度 、 湿度力 S 7 0 〜 9 0 %程度に保持されてレヽ る ο 従つて 、 排出エアによつてハゥジングが冷却される と 曰
ヽ 高肌 湿なブース內ではハゥジングの表面に結露が 生じて しま う。
そ して、 ハウジングの表面に結露が生じる と 、 、塗料に 印加するための高電圧がァ一ス側に リ ーク してしまうか ら、 静電塗装を行う こ と ができなく なる と レ、 問題がめ o。 まに、 結露によつてハゥジングがァース側に接 さ れる と、 高電圧に帯電した塗料粒子がノヽゥジング側に飛 行してその表面に付着するから、 ノヽゥジング表面の電 絶縁性の低下を促進する要因と もな Ό o
さ らに、 ハウジング表面の結露が進行する と 、 結露し
- た水分が水滴となるから 、 の状態で塗装機を動作させ たと きには、 水滴が飛散して塗装面に付着して しま 5 o この場合、 極めて粒径が小さな霧状の水滴であつても 、 量の多少に拘らず塗装 P
面に付着したと きには塗装 PP質が 著しく 低下してしま う とい 5 問題がめ O 0 発明の開不
本発明は上述した従来技術の問題に鑑みなされたもの で 、 本発明の目的は、 タービンエアの断熱膨張の作用で ェァモ一タが低温状態になつても、 ハウジングの表面に 露が生じるのを防止して、 良好な塗装仕上り を得る とがでさ る よ う に した回転霧化頭型塗装機を提供する こ と にある ο
( 1 ) · 本発明によ る回転;霧化頭型塗装機は 、 モ一タ 収容部を有する筒状のハウジングと、 該ハゥジングのモ 一タ収容部に収容されタービンによ り 回転軸を回転駆動 するェァモータ と、 前記ハウジングの前側に位置して該 ェァモ一タの回転軸の先端部に取付けられた回転霧化頭 と 該回転霧化頭に供給する塗料が流通する塗料通路と、
目 U,-記ノヽクジングに設け られ前記エアモ一タのタ一ビンを 駆動する タービンエアが流通するタ ビンェァ通路と 前記ハウジングに設けられ前記ェァモ一タのター ビンを 駆動して排出される排出エアが外部に向けて流通する排 出エア通路と を備えてなる。
そ して、 上述した課題を解決するために 、 本発明が採 用する構成の特徴は、 刖記ハウジングには 、 lu記排出ェ ァ通路の外周を取囲んで延ぴ內部を盲 U記排出エアよ り も 高温な断熱エアが流通する断熱ェァ通路を grtl
BXける構成と したこ と にある。
こ の よ う に構成したこ と によ り 、 タ一 ビンエア通路を 介してエアモータのタ ビンにタ一ビンェァを供給する と、 回転軸と一緒に回転霧化頭が回転駆動される。 この 状態で塗料通路を通じて塗料を回転霧化頭に供給する こ と によ り 、 回転霧化頭から被塗物に向けて塗料を嘖霧す る。 一方、 タ ー ビンに供給されたタ ビン工ァは、 タ ビン室に噴出されたと さに断熱膨張による■in曰n.度低下を生 じ、 低温状態の排出ェァ と なって排出ェァ通路を通じて 外部に排出される。
こ こ で、 排出エア通路の外周には 、 該排出エア通路を 取囲んで断熱エア通路が延びているから、 の断熱ェァ 通路に断熱エアを流通させる こ と によ り 、 排出エア通路 を流通する排出エアにぶ り /、ウジングが冷却されるのを 防止する こ とができ る o
この結果、 断熱エア通路を流れるェァによ り ハウジン
- グの温度低下を抑制する こ とがでさ る O v "~れによ り 、 塗 料に高電圧を印加する静電塗装を行 場合でも、 結露に よって高電圧が リ ークする事態を未然に防ぐこ とがでさ、 塗装効率を向上する こ とができ る o また、 ノヽウジングの 表面に塗料が付着するのを防止する とがでさ る。 さ ら に、 塗装面に結露による水滴が付着して給壮不良が発生 するのを防止でき、 塗装品質を良好に保つこ とができ る。
( 2 ) . 本発明では、 前記ハウジングは、 目 U側に位置 して内周側が前記モータ収容部と なった筒部と 、 該筒部 の後側に設けられた底部と によ り構成し 、 記タ一 ビン エア通路 、 排出エア通路、 断熱エア通路は前記底部を通 つて外部に連通する構成と している。
これによ り 、 ハウジングの前側を筒部 - とする と によ り 、 該筒部の内周側をモータ収容部とする こ とができ る。 一方、 タ一 ビンエア通路、 排出エア通路 、 断熱ェァ通路 は、 ノヽゥジングの底部の位置で外部の配管を接 する こ とができ る。
( 3 ) . 本発明では、 前記ハウジングにはヽ 目 IJ記エア モータ のター ビン室から延び中心側の内側通路と外周側 の外側通路と が二重構造に配置された二重通路を設け、
HU記排出エア通路は前記二重通路の内側通路によ り 形成 し、 目 ij 断熱エア通路は前記二重通路の外側通路によ り 形成する構成と している。
これによ り 、 ハウジングに設けた.二重通路の内側通路 をエアモータのタービン室まで延ばすこ と によ 、 この 内側通路を排出エアが流通する排出エア通路と して用い る こ とができ る。 また、 二重通路の外側通路は 、 断熱ヱ ァを流通する こ と によ り'、 排出エア通路を流通する排出 エアによつてハウジングが冷却されるのを防止する こ と ができ る。
( 4 ) . 本発明では、 前記ター ビンエア通路の外周に は、 前記断熱エア通路の一部をな し該ター ビンエア通路 を取囲んで延びる断熱エア供給路を設ける構成と し'てい る。 - れによ り 、 ター ビンェァ通路と断熱ェァ供給路と を 二重通路と して一箇所にま と めているからヽ タ一ビンェ ァ通路と断熱ヱァ供給路と を容易に HXける こ とがでさヽ 生産性を向上する こ とができ る。
( 5 ) . 本発明では、 前記エアモ一タの周囲にはゝ 該 ェァモ一タを取囲む空間部を設け、 該空間部は 、 断 ェ ァが流通する前記断熱エア通路の一部と して構成してレ、 - で 、 タ一 ビンエアの断熱膨張によつてェァモ一タ の温度が低下し 、 このと きの冷熱がノヽクジングにも伝わ ろ う とす 0 しかし、 本発明では、 ェァモ一タの周囲に
- は、 該ェァモータを取囲む空間部を け 、 の 間部に は断熱ェァが流通しているから、 この 間部によ ノヽク ジングの外周面に結露が発生するのを防止する とがで きる れによ り 、 静電塗装を行つたと さの高 m圧の リ 一ク 結 によ る塗装不良等を防止して 、 塗装仕上 り を 良好にする こ とができ る。
( 6 ) . 本発明では、 前記エアモ タの 囲には 、 該 ェァモ一タを取囲む空間部を設け、 該空間部は 、 m記回 転霧化頭から噴霧された塗料の嘖霧パタ一ンを整 X.るた めのシェ一 ピングエアが流通する シェ一 ピングェァ通路 の一部と して構成している
こで 、 タ一ビンエアの断熱膨張によつてェァモ一タ の温度が低下し 、 このと きの冷熱がノヽクジングにも伝わ ろ う とす し力 し、 本発明では、 ェァモ一タの周囲に は、 該ェァモータ を取囲む き
空間部を BXけ 、 の 間部に はシェ一ピングエアが流通しているから 、 の 間部に よ り ノヽゥジングの外周面に結露が発生するのを防止十る こ と ができ る。 これによ り 、 静電塗装を行つたと さの高 電圧の y ーク、 結露によ る塗装不良等を防止して 塗装 仕上 り を良好にする こ と ができ る o
( 7 ) . 本発明では、 前記空間:部は 目 U記ハゥジング のモ タ収容部の内周側と前記ェァモ タを構成するモ タケ スの外周側と の間に形成する構成と している これによ り 、 空間部をハウジングのモ タ収容部の内 周側とェァモータのモータケースの外周側との間に axけ ているから、 この空間部は、 エアモ一タによ り ハゥジン グが冷却されるのを防止する こ とがでぎ る o
( 8 ) . 本発明では、. 前記ハウジングは IU記モ タ 収容部が設け られたハウジング本体と 該ハゥジング本 体の外周側を覆う カバーと によ り構成し 前記空間部は、 iii-t
目 IJ目己ハクジング本体の外周側と 力ノく の内周側との間に 形成する構成と している。
これによ り 、 ノヽウジングをノヽゥジング本体と力 ど によ り 構成しているから、 こ のハゥジング本体を力ノ で覆 と きに空間部を容易に形成する とができ る ο ま た、 空間部は、 カバーの表面が結露するのを防止する こ とがでさ る。 図面の簡単な説明
台匕
図 1 は、 本発明の第 1 の実施の形 によ る回転霧化頭 型塗装機等を示す全体構成図である o
図 2 は、 図 1 中の回転霧化頭型塗装機を拡大して示す 縦断面図である。
図 3 は、 二重通路、 排出ェァ通路 断熱ェァ通路を図
2 中の矢示 I I I— I I I方向からみた 部拡大横断面図であ る。
図 4 は、 本発明の第 2 の実施の形態によ る回転霧化頭 型塗装機を示す縦断面図である
図 5 は 、 本発明の第 3 の実施の形態によ る回転霧化頭 型 '塗装機を示す縦断面図である
図 6 は 、 本発明の第 4 の実施の形態によ る ヒ一タ を備 X.た回転霧化頭型塗装機等の全体構成図である 図 7 は 、 本発明の第 5 の実施の形態によ る回転霧 型 、塗装機を示す縦断面図である
図 8 は、 図 7 中の矢示 V I I I— V I I I方向からみた塗装機 の横断面図である o
図 9 は、 図 7 中の断熱エア通路を展開 した状態で模式 的に示す断面図である。
図 1 0 は、 図 7 中の断熱エア通路の構造を模式的に示 す斜視図である。
図 1 1 は、 本発明の第 6 の実施の形態によ る回転霧化 頭型塗装機を示す縦断面図である。
図 1 2 は、 図 1 1 中の矢示 X I I— X I I方向からみた塗装 機の横断面図である o
図 1 3 は、 図 1 1 中の断熱エア通路を展開 した状態で 模式的に示す断面図である。
図 1 4 は、 図 1 1 中の断熱エア通路の構造を模式的に 示す斜視図である
図 1 5 は、 本発明の第 7 の実施の形態による回転霧化 頭型塗装機を示す縦断面図である 0
図 1 6 は、 本発明の第 8 の実施の
Figure imgf000010_0001
態に適用される塗 装用のロボッ ト装置に回転霧化頭型 装機を取付けた状
•S匕 示す正面図であ Ό。
図 1 7 は、 図 1 6 中の屈曲型のァ一ムに回転霧化頭型
、塗装機を取付けた状態を拡大して示す縦断面図である。 発明を実施するための最良
以下 本発明の実施の形態によ る回転霧化頭型 '塗装機 を、 添付図面に従つて詳細に説明する o
まず 、 図 1 なレ、し図 3 は本発明の第 1 の実施の形態を 示している o 図 1 におレヽて , 1 は第 1 の実施の形態によ る回転霧化頭型塗装機で、 該塗装機 1 は、 後述の 電圧 発生器 1 0 によ り 塗料に高電圧を直接的に印加する直接 の静電塗装機と して構成されている ο プし 、 塗装 機 1 は 、 例えば塗 作業用の口ボッ 卜装置 、 レシプ口ケ ータ等のァ一ム 2 の先端に取付けられている。 そ して、 回転霧化頭型塗装機 1 は、 後述のハウジング 3 ヽ エアモ ータ 7 、 回転霧化頭 8 、 塗料通路 1 1 、 タ一ビンエア通 路 1 4 、 二重通路 1 7 、 排出エア通路 1 8 、 断 エア通 路 1 9 等によつて大略構成されている。
3 は塗装機 1 の外形を形成するハウジングを示してい る。 このノヽゥジング 3 は、 後述のハウジング本体 4 と力 パー 5 とによ り 大略構成されている。 そ して 、 ハゥジン グ 3 は、 内部にエアモータ 7 を収容する ものでめ
4 はハウジング 3 の本体部分を形成するノヽクジング本 体で、 該ハウジング本体 4 は、 その後部側がァ一ム 2 の 先端に取付け られている。 また、 ハウジング本体 4 は、 絶縁性を有する樹脂材料、 例えばポリ テ ト ラフ口ォロェ チ レ ン ( P T F E )、 ポ リ エーテルエ ーテルケ 卜 ン ( Ρ
Ε Ε Κ)、 ポリ エーテルイ ミ ド ( Ρ Ε Ι )、 ポリ オキシメ チ レン ( Ρ Ο Μ)、 ポ リ イ ミ ド ( Ρ Ι )、 ポ リ エチ レンテ レフ タ レー ト ( P E T ) 等の高機能樹脂材料 (ェンジニ ァ リ ングプラ スチ ッ ク ) を用いて形成されている。 こ の よ う に、 ハウジング本体 4 は、 後述のカバー 5 、 シエ ー ビングエア リ ング 6 と共に絶縁性樹脂材料を用いて形成 する こ と によ り 、 咼電圧発生器 1 0 による ¾1圧に帯電 するェァモ一タ 7 と ァ一ム 2 と の間を絶縁し 、 塗料に印 カロされる高電圧が リ 一クするのを防止して!/、る ο
そ してヽ ハゥジング本体 4 は、 図 2 に示す如 < 、 前側 に位置して円筒状に形成され 筒部 4 Aと、 該筒部 4 A の後側に設け られた円柱状の底部 4 B と によ り構成され ている ο また、 筒部 4 Aの内周側は、 エアモ一タ 7 を嵌 合状態で収容するモ一タ収容部 4 C と な り 、 底部 4 B に は、 後述のタ一ビンェァ通路 1 4 、 排出エア通路 1 8 、 断熱ヱァ通路 1 9等が設けられている o
5 はノヽゥジング本体 4 を覆う よ う に該ハゥジング本体
4 の外 側に取付けられたカバーを示している o の力 ノ ー 5 は 例えばノヽゥジング本体 4 と ほぼ同様の絶縁性 樹脂材料からな り 、 滑らかな外周面 5 Aを有する円筒体 と して形成されてレ、る o また、 カバー 5 の前側には 、 後 述のシェ一ピングェァ リ ング 6 が取付けられてレ、る ο
6 はノヽクジング 3 の前側に設けられたシェ一 ピングェ ア リ ングを示 してレ、る o のシエ ー ピングェァ ング 6 は、 例 X.ばハゥジング本体 4 と ほぼ同様の絶縁性樹脂材 料を用レ、て段付筒状に形成されている o d プ 、 シェ 一ピ ングェァ y ング 6 はヽ ノヽクジング本体 4 の前部に対面し た状態で 力バ一 5 'の前側に取付け られてレヽる o さ らに、 シエ ー ピングェァ V ング 6 の前端部には、 多数個 ( 2個 のみ図示 ) のェァ噴出口 6 Aが周方向に列設して開口 し ている o また、 シェ一ピングエア リ ング 6 の後部には、 ェ 、
後述する ァモ一タ 7 の 側を支持する支持段部 6 Bが 凹陥して形成されている o
そ して 、 シェ一ピングェァ リ ング 6 は、 後述のシェ ' ^ ピングェァ通路 2 1 等を介して供給されるシェ ピング ェァをェァ噴出口 6 Aから噴出する。 のシェ一ビング ェァは、 後述の回転霧化頭 8 力 ら噴霧された 、塗料の嘖霧 パタ ―ンを 、 所望の噴霧ノ ターンになる うに整える も のである
7 はハゥジング 3 に けられたェァモ一タで 、 該エア モ―タ 7 は 、 圧縮ェァを動力源と して回転霧化頭 8 を例 えば 3 0 0 0 〜 1 0 0 0 0 0 r p mの高速で回転させる ものである 。 またヽ ェァモータ 7 は、 ノヽクジング 3 を構 成するノヽクジング本体 4 のモータ収容部 4 C内に収容さ れた円筒状のモ一タケ一ス 7 Aと 、 該モ一タケ —ス 7 A の後側寄り に位置してタ一ビン室 7 B内に回 is可能に収 容されたタ一ビン 7 C と 、 軸方向の基端側が該ター ビン
7 C の中心部に一体的に取付けられ、 目 IJ側に延びた先端 部がモータケース 7 Aから突出した中空な回転軸 7 D と、 前記モータケース 7 Aに設け られ該回転軸- 7 Dを回転可 能に支持するエア軸受 7 E と によ り 大略構成されている。
こ こで、 モータケース 7 A、 回転軸 7 D等は、 例えば アルミ 二クム合金等の導電性を有する金属材料から形成 されている プし 、 後 $の高電圧発生器 1 0 をモ一タケ ース 7 Aに電気的に接続する こ と によ り 、 回転霧化頭 8 に高電圧を印加する これによ り 、 回転霧化頭 8 は、 フ イー ドチュープ 9 から吐出される塗料に直接的に高電圧 を印加する こ とがでぎ る。
8 はシェ一ピングェァ リ ング 6 の前側に位置してエア モータ 7 の回転軸 7 D先端部に取付けられた回転霧化頭 を示している。 の回転霧化頭 8 は 、 例えば導電性金属 材料を用いてべノレ形ないし力 ップ形に形成されている。 そ して、 回転霧化頭 8 は、 ェァモータ 7 によって高速回 転された状態で後述のフィ一 ドチュ一ブ 9 から塗料が供 される こ と によ り 、 その塗料を IS心力によつて微粒化 した無数の塗料粒子と して噴霧する ものである。
9 はェァモータ 7 の回転軸 7 D内に揷通して設け られ たフィー ドチューブで、 該フィ一ド、チュ一ブ 9 の先端側 は 、 回転軸 7 Dの先端から突出して回転霧化頭 8 内に延 在してレ、る。 また、 フ ィー ドチュ一ブ 9 の基端側は、 ハ クジング本体 4 の底部 4 B に固中され、 後述の塗料通路
1 1 と接続されている。 そ して 、 フィ一 チユーブ 9 は、
、塗料通路 1 1 等を介して供給される塗料を回転霧化頭 8 に吐出するものである。
1 0 はハウジング本体 4 の底部 4 B にき H
Pスけ られた高電 圧発生器で、 該高電圧発生器 1 0 は 、 例 ば =1 ック ク ロ フ ト回路によって構成され、 電圧ケープル 1 0 Αを介 して電源装置 (図示せず) に接 されてレ、る 。 そして、 高電圧発生器 1 0 は、 電源装置から供給される電圧を例. ば一 3 0〜一 1 5 0 k Vに昇圧し 、 ェァモータ 7 の回 転軸 7 D 、 回転霧化頭 8 を介して塗料に高電圧を直接的 に印加する ものである。
1 1 はハウジング本体 4 の底部 4 B に け られた塗料 通路で、 該塗料通路 1 1 は、 底部 4 B の中央に位置して 軸方向に延びている。 この塗料通路 1 1 の流入側には管 継手 1 2 Aを用いて外部の塗料配管 1 2 が接糸冗 し、 料通路 1 1 の流出側はブイ一ド、チュ一プ 9 に接続されて レ、る。 そ して、 塗料通路 1 1 は 、 料配管 1 2 、 ギヤポ ンプ (図示せず) 等を介 して複数色の塗料、 洗浄流体
(シンナ、 エア) を選択的に供給する色替弁装置 1 3 に 接続されている。
1 4 はハウジング本体 4 の底部 4 Β に設けられたター ビンエア通路を示している。 このタービンエア通路 1 4 は、 エアモ一タ 7 のタ一 ビン 7 C を駆 する タ一ビンェ ァが流通する ものである のタ一ビンエア通路 1 4 は、 流入側が底部 4 B から外部に 3¾通し、 流出側がェァモ一 タ 7 のモ一タケ一ス 7 A (し HXけられたタ一ビン室 7 B に 開口 している。 また 、 タ一ビンェァ通路 1 4 には、 管継 手 1 5 Aを用いてェァ配管 1 5 が接続され、 タ一 ビンェ ァ通路 1 4 は、 ェァ配管 1 、 制御弁 (図示せず) 等を 介してェァ源 1 6 に接 1¾されている o なお、 タ一ビンェ ァは、 圧力が 3 〜 6 k g / c m 2で、 流量が 1 0 0 〜 6
0 0 N L / m i n と なる高圧なェァである o
ここで 、 タ一ビンェァ通路 1 4 からェァモータ 7 のタ
―ビン室 7 B にタ一 ビンェァを噴出する と、 タ一ビン 7
Cは、 タ一ビンェァによつて高速で回転する。 この ム π 、 タ ―ビンェァは 、 タ一ビン室 7 Bで断熱膨張して排出ェ ァとなる ο そ してヽ この排出ェァ と なつたタービンェァ は 、 ίππ. /スが急激に低下し 、 冷気と なつて しま う ο
1 7 はハゥジング本体 4 の底部 4 B に設け られた一重 通路で、 該二重通路 1 7 は、 ェァモ一タ 7 のタ一ビン室
7 Β中央寄 り から軸方向に延びて形成されている o また、 重通路 1 7 は モ一タ収容部 4 C の穴底面と底部 4 B の後端面と の間に つて形成された外側通路穴 1 7 Aと、 該外側通路穴 1 7 A内に円筒状の隙間 (図 3参照) をあ つて揷通された内側配管 1 7 B と によ 同心円状の一重 構造に形成されてレ、る。
こ こで 、 二重通路 1 7 は、 ハゥジング本体 4 の底部 4
B に穴加ェを施して its = u
外側通路穴 1 7 Aを l
し 、 その内 部に内側配管 1 7 B を揷嵌 "3 る構造であ のためゝ 重通路 1 7 は 、 ノヽゥジング本体 4 の底部 4 B に 1 の 穴加工を施すだけで容易に形成する こ とができ 、 排出ェ ァ通路 1 8 と断熱エア通路 1 9 の断熱エア排出路 1 9 C と を簡単に設ける こ とができ る。
1 8 はノヽウジング本体 4 の底部 4 o に gxけられた排出 ェァ 路を示してレヽる。 この排出ェァ通路 1 8 は、 二重 通路 1 7 の内側配管 1 7 B 内に内側通路と して形成され ている 0 また、 排出エア通路 1 8 は 、 流入側がエアモー タ 7 のタ一 ビン室 7 B に連通し、 流出側が底部 4 B を通 つて外部に連通している 。 そ して、 排出エア通路 1 8 は タ 一 ビンェァ通路 1 4 からエアモータ 7 のタ一 ビン 7 C に向けて嘖出 したタービンエアが、 排出エアと なってタ 一 ビン室 7 Bから外部に排出される と きに流通する も の である
1 9 はノヽウジング本体 4 の底部 4 B に設けられた断熱 工ァ通路を示している。 この断熱ェァ通路 1 9 は、 断熱 ェァ供給路 1 9 A、 断熱エア連絡路 1 9 B 、 断熱エア排 出路 1 9 Cおよび排出開口 1 9 Dによ り U字状に構成さ れ 、 底部 4 B を通って外部に連通している。 そ して、 断 埶、、ェァ通路 1 9 は、 排出エア通路 1 8 を流通する排、出ェ ァよ り ち高温な断熱エアを断熱エア供給路 1 9 A、 断熱 ェァ連絡路 1 9 B、 断熱エア排出路 1 9 Cで流通し、 排 出開 1 9 Dから排出する。 このと き、 itf iftエア排出路
1 9 Cはヽ 断熱膨張によつて冷えた排出エアが排出エア 通路 1 8 内を流れる と き に、 こ の冷熱がハゥジング 3側 に わるのを防止する ものである。
>- で 、 断熱エア通路 1 9 の断熱エア供給路 1 9 Aに つレヽて しく 述べる。 この断熱エア供給路 1 9 Aは、 断 、、ェァ通路 1 9 の流入側を構成する も ので、 二重通路 1
7 と並行する よ う にノヽゥジング本体 4 の底部 4 Bに設け られてレ、る 。 また、 断熱エア供給路 1 9 Aは 、 流出側が エアモータ 7 に近接する位置で断熱ェァ連絡路 1 9 B に 接続されて.いる。
そ して、 断熱エア供給路 1 9 Aには管継手 2 O Aを用 いてエア配管 2 0 が接続され、 断熱ェァ供給路 1 9 Aは、 エア配管 2 0 、 制御弁 (図示せず) を介してエア源 1
6 に接続されている。 これによ り 、 断熱エア供給路 1 9
Aは、 エア源 1 6 からェァ配管 2 0等を介して供給され る断熱エアを断熱エア連絡路 1 9 B を介して断熱ェァ排 出路 1 9 C側に流通させる ものである ο
なお、 断熱エア通路 1 9 を流通する断熱エアは、 ェァ 源 1 6 から供給される圧縮ェァで、 気の圧縮作用によ. つて高温と なつてレヽる。 一方、 排出ェァは、 断熱膨張に よ り冷却され 、 タービンェァ通路 1 4 から供給されるタ 一ビンエアよ り も低い温度になつている 。 このため 、 断 熱エア通路 1 9 内を流れる断熱ェァは 、 排出エア通路 1
8 内を流れる排出エアよ り も高温と なつているから 、 断 熱エアは、 ェァ源 1 6 から供給される圧縮エア自体であ つ て も十分な断熱効果を る こ とがでさ る。
次に、 断熱エア排出路 1 9 Cにつレ、て説明する。 の 断熱エア排出路 1 9 Cは 、 二重通路 1 7 の外側通路穴 1
7 Aと 内側配管 1 7 B と の間の外側通路によ り形成され た円筒状通路である。 また 、 断熱ェァ排出路 1 9 Cは 、 人ゥジング本体 4 の底部 4 B を介して HXけられ、 流入側 がエアモータ 7 に近接する位置で断熱ェァ連絡路 1 9 B 接 れ、 流出側はハクジング本体 4 の底部 4 B の後 端面で排出開 口 1 9 D と なつて外部に開 口 している o そ して、 断熱ェァ排出路 1 9 Cは 、 內側配管 1 7 B内に けられた排出エア通路 1 8 を取囲んで軸方向に延び 、 排 出エア通路 1 8 力 らノヽゥジング本体 4 に熱伝導するのを 遮断してい Ό o
ここで、 断熱ヱァ排出路 1 9 Cは 、 断熱ェァ供給路 1
9 A力ゝらの断熱ヱァを流通させる。 この際 、 断熱膨張に よって温度が低下した排出ェァが排出ェァ通路 1 8 内を 流れる と きに、 該排出ヱァ通路 1 8 からノヽクジング 3側 に伝わろ う とする冷熱を断熱エアで取囲み 、 排出開口 1
9 Dからハゥジング 3 の外部に放出する とができ る ο このよ う に 、 断熱エアは 、 排気エアによつてノヽクジング
3 が冷却するのを防止する こ とができ る 0
2 1 はハゥジング本体 4 の外周側を軸方向に貫通する よ う に設けられたシエ ーピングエア通路を示している ο このシェ一ピングエア通路 2 1 は、 シェ一ピングェァ y ング 6 の各エア噴出口 6 Aに供給するシェ一ピングェァ が流通する ものでめ <3 。 またゝ シェ一ピングェァ通路 2
1 には、 管継手 2 2 Αを用いてエア配管 2 2 が接 ίχ れ、 該エア配管 2 2 はエア源 1 6 に接 cされている 0
第 1 の実施の形態によ る回転霧化頭型 衣機 1 は上述 の如き構成を有する もので、 次に、 この塗衣機 1 を用レヽ て塗装作業を行う と きの動作について説明する o
まず、 ェァ配管 1 5 、 タ一ビンェァ通路 1 4 を通じて
1
エアモータ 7 のタ一ビン室 7 Bに高圧なタ ―ビンェァを 噴射し、 このタービンェァによ り タ一ビン 7 Cを回転駆 動する。 これによ り 、 回転軸 7 D と一緒に回転霧化頭 8 が高速で回転する 。 この状態で、 色替弁装置 1 3 で選択 された塗料を塗料配管 1 2 、 塗料通路 1 1 を介してフ ィ 一 ドチュープ 9 から回転霧化頭 8 に ·>- 供給する と によ り 、 この塗料を回転霧化頭 8 から微粒化した塗料粒子と して 噴霧する こ とがでさ る。
このと きに、 ύ 料 (塗料粒子) には、 高電圧発生器 1 0 によつて高電圧が印加されてレ、る れによつ
電圧に帯電した塗料粒子は 、 ァ ―スに接 fee れた被塗物 に向けて飛行して効率よ < 塗着する とができる
一方 、 タ一ビンエア通路 1 4 からェァモ一タ Ί のター ビン室 7 B に供給される高圧なタ一ビンェァは、 該ター ビン室 7 B に噴出されたと きに断熱膨張によ る温度低下
- を生じ のター ビンェァは低温のまま排出ェァ通路 1
8 を流通して外部に排出される
- こでヽ 塗装作業を行う塗装プ一ス内は、 塗装仕上り が良好になる よ う に温度と湿度が一定に保持され 、 例え ば塗装ブ一ス内の温度は 2 0〜 2 5 。C程度、 湿度は 7 0
〜 9 0 %程度に保持されている 。 従つて 、 低温のまま排 出される排出エアによつてハゥジング 3 が冷却される と、 高狐曰多湿のために該ハゥジング 3 を構成する力ノ 一 5 の 外周面 5 A (表面) には結露が生じ易 < なる
然るに 、 第 1 の実施の形態によれば 、 ハゥジング 3 を 構成するハウジング本体 4 の底部 4 B には、 低温な排出 ェァが流 する排出エア通路 1 8 の外周を取囲んで延ぴ る断熱ェァ通路 1 9 の断熱ェァ排出路 1 9 C ■ar Β け、 こ の断熱ェァ排出路 1 9 C内には断熱ェァを常時流通する 構成と している。 これによ り 、 排出ェァ通路 1 8 内を低 皿曰
1 な排出ェァが流れる と さに、 該排出ェァ通路 1 8 から
·
ハクジング 3側に伝わろ とする冷 X.た熱を断熱エアに 乗せて外部に放出する こ とがでさる 従つて 、 排出エア 通路 1 8 を流通する排出ェァによ り ハゥジング 3 が冷却 されるのを防止する こ と ができ る
- の結果 、 第 1 の実施の形態では 、 断 ェァ通路 1 9 に常時断熱エアを流通させる こ と によ 、 その断熱エア 排出路 1 9 Cによ り ハウジング 3 の慨曰度低下を抑制する こ とができ る。 これによ "9 、 料に高電圧を印加する静 装を行う場合でも 、 m路によって高電圧が リ ークす る事態を未然に防ぐこ とがでさ >¾5壮
、 m ¾s効率を向上する こ と がでさ る 。 また、 回転霧化頭 8 力 ら 霧した塗料がハ ゥジング 3 のカノ 一 5 の外周面 5 Aに付着するのを防止 するこ と あできる。 さ らに、 被塗物の塗装面 ί ¾· Ϊ る水滴が付着して塗装不良が発生するのを防止でき、 塗 ¾ ¾bロ口ロ質を良好に保つこ とがでさ る 0
また 、 圧縮エアは圧縮熱によつて高温となつてレヽる力 ^ ら、 断熱ェァ通路 1 9 を流通する断熱ェァは 、 エア源 1
6 から供給される圧縮ェァでよ く 、 ヒ 一タ等を用いて温 める必要がない。 これによ り 、 塗装システム全体を小型 ィ匕でさ き Πι
、■ ΗΧ備、 メ ンテナンス等に要する ス トを低減す る こ とがでさ る。
さ らに、 二重通路 1 7 の内側配管 1 7 Β内の内側通路 によ り 排出エア通路 1 8 を形成し、 外側通路穴 1 7 Aと 内側配管 1 7 Β と の間の外側通路によ り 断熱エア通路 1
9 の断熱ェァ排出路 1 9 Cを形成している ο こ の二重通 路 1 7 は、 ハウジング 3 の後側に外側通路穴 1 7 Aを穿
BX し 、 その内部に内側配管 1 7 B を揷着するだけでよい。 このため、 二重構造の排出ェァ通路 1 8 と断熱エア排出 路 1 9 C と 簡単に ける こ と ができ 、 生産性を向上す る こ とができ る。
次に 、 図 4 は本発明の第 2 の実施の形態を示している。 本実施の形態の特徴は 、 タ一 ビンエア通路の外周には、 断熱ェァ通路の一部をな しタ一ビンェァ通路を取囲んで 延びる断熱エア供給路を設ける構成と したこ と にある。 なお 、 第 2 の実施の形態では 、 刖述した第 1 の実施'の形 態と 一の構成要素に同一の符号を付し 、 その説明を省 略する のとす
図 4 において 、 3 1 はハウジング 3 を構成するハゥジ ング本体 4 の底部 4 B に設けられた第 1 の一重通路を示 している こ の二重通路 3 1 は、 エアモータ 7 のタ一ビ ン室 7 Bの外周側から軸方向に延びて形成されている。 よ 7 、 第 1 の二重通路 3 1 は、 第 1 の実施の形態によ る 二重通路 1 7 と ほぼ同様に、 外側通路穴 3 1 Aと 、 該外 側通路穴 3 1 A内に円環状の隙間をもって揷通された内 側配管 3 1 B と によ り 二重構造に形成されている 。 しか し、 第 1 の二重通路 3 .1 は、 ター ビンエア 断熱エアの 流入側となる ものであるから、 第 1 の二重通路 3 1 の流 入側には後述の二重管継手 3 2 が取付けられている。
そして 第 1 の二重通路 3 1 の内側配管 3 1 B内には 内側通路と して後述のタ一ビンエア通路 3 4 が設けられ ている 一方、 第 1 の二重通路 3 1 の外側通路穴 3 1 A と 内側配管 3 1 B と の間には、 円筒状の外側通路と して 後述する断熱ェァ通路 3 6 の断熱エア供給路 3 6 Aが設 けられている。 こ こで、 第 1 の二重通路 3 1 は 、 第 1 の 実施の形 による二 通路 1 7 と 同様に、 ノヽクジング本 体 4 の底部 4 B に外側通路穴 3 1 Aを穿設し 、 その内部 に内側配管 3 1 B を揷着するだけであるから 、 ハゥジン グ 3 に簡単に形成する こ とができ る。
3 2 は第 1 の二重通路 3 1 の流入側に位置してハゥシ ング本体 4 の底部 4 B に取付けられた二重管継手を示し ている この二重管継手 3 2 は、 内側継手部 3 2 Aと外 側継手部 3 2 B と によつて構成されている 内側継手部
3 2 Aは 、 軸方向の後端側に位置して第 1 の 重通路 3
1 の内側配管 3 1 B内、 即ちター ビンエア通路 3 4 'に連 通してレ、る 。 また、 外側継手部 3 2 B は、 外周側に位置 して外側通路穴 3 1 Aと 内側配管 3 1 B と の間、 即ち断 熱エア通路 3 6 の断熱エア供給路 3 6 Aに趣通している また、 内側継手部 3 2 Aにはェァ配菅 1 5 が接 れヽ 外側継手部 3 2 B は工ァ配管 2 0 が接! ¾ れている 0
3 3 はノヽゥジング本体 4 の底部 4 B ϊし HXけられた第 2 の二重通路で、 該一重通路 3 3 は 、 ェァモ一タ 7 のタ一 ビン室 7 B 中央 り から軸方 I FIJに延ぴて形成されてレ、る また、 第 2 の二重通路 3 3 は、 第 1 の二重通路 3 1 と ほ ぼ同様に 、 外側通路穴 3 3 Aと 内側配管 3 3 B と によ 構成されている o
3 4 はノヽゥジング本体 4 の底部 4 B ί ョ ru
けられたタ ― ビンエア通路を示している。 このタ ビンェァ通路 3 4 は、 エアモータ 7 のタ — ビン 7 C を駆動する タ ― ビンェ ァが流通する も のである。 * 7こ 、 タ ビンェァ通路 3 4 は、 第 1 の二重通路 3 1 の内側配管 3 1 B内に内側通路 と して形成されてレ、る 。 さ らに 、 タ一ビンェァ通路 3 4 の流入側は二重管継手 3 2 の内側継手部 3 2 Aに接 さ れ 流出側はェァモ一タ 7 のタ ビン 7 B の外周側に 開 P してレヽる o
3 5 はノヽゥジング本体 4 の底部 4 B に設けられた排出 ェァ通路を示している o この排出ェァ通路 3 5 は、 第 1 の実施の形態によ る排出ェァ通路 1 8 と ほぼ同様に 、 第
2 の一重通路 3 3 の内側配管 3 3 B 内の内側通路と して 形成され、 ェァモ一タ 7 のタ一ビン室 7 B をノ、ウジング
3 の外部に開放している o
ru
3 6 はハゥジング本体 4 の底部 4 B s
に SXけられた第 2 の実施の形態に る断熱ェァ通路を示している。 この断 熱ェァ通路 3 6 は 、 断熱ェァ供給路 3 6 A 、 断熱ェ T連 絡路 3 6 B、 断熱ェァ排出路 3 6 C よび排出開口 3 6 Dによ り U字状に構欣されヽ 底部 4 B を介して外部に連 通してレ、る
で 断熱ェァ通路 3 6 の流入側を構,成する断熱ヱ ァ供給路 3 6 Aは 、 第 1 の 重通路 3 1 の外側通路穴 3
1 Aと 内側配管 3 1 B と の間の外側通路によ り形成され た.円筒状通路である。 また 、 断熱エア供給路 3 6 Aは、 ノヽゥジング本体 4 の底部 4 B を通じて設けられ、 流入側 が底部 4 B の後端面で一重管継手 3 2 の外側継手部 3 2
B に接 され 、 流出側がェァモータ 7 に近接する位置で 断熱ヱァ連絡路 3 6 Bに接 eされてレヽる。
また 、 断熱ェァ通路 3 6 の流出側を構成する断熱エア 排出路 3 6 Cは、 第 1 の実施の形態による断熱ェァ通路
1 9 の断 ェァ排出路 1 9 C と ほぼ同様に、 第 2 の二重 通路 3 3 の外側通路穴 3 3 Aと 内側配管 3 3 B との間の 外側通路によ り形成された円筒状通路である。 また、 断 熱エア排出路 3 6 Cはヽ 排出ェァ通路 3 5 を取囲んで軸 方向に延びている 。 さ らに 、 断熱エア排出路 3 6 Cは、 ノヽゥジング本体 4 の底部 4 B を通じて s¾けら 、 流入側 力 sエアモ タ 7 に近接する位置で断熱エア連絡路 3 6 B を介して断熱ェァ供給路 3 6 Aに接続され、 流出側はハ ゥジング本体 4 の底部 4 B の後端面で排出開 口 3 6 D と なって外部に開口 してレ、る
か < して 、 このよ う に構成された第 2 の実施の形態に おいても 、 目 述した第 1 の実施の形態と ほぼ同様の作用
·
効果を得る とができる 特に 、 第 2 の実施の形態によ れば、 タ ビンェァ、 断熱ェァの流入側も第 1 の二重通 路 3 1 と し 、 この第 1 の 重通路 3 1 を利用 してタ ビ ンエア通路 3 4 と断熱ェァ通路 3 6 の断熱エア供給路 3
6 Aと をき; けている これによ り 、 タ ビンエア通路 3 4 と断熱エア供給路 3 6 Aと を容易に設ける こ とができ る。
次に、 図 5 は本発明の第 3 の実施の形態を示している。 本実施の形態の特徴は、 排出エア通路を 2本設け、 それ ぞれの通路の外周を取囲むよ う に断熱エア通路を 2本設 ける is成と した と にある。 なお、 第 3 の実施の形態で は 、 目 IJ述した第 1 の実施の形態と 同一の構成要素に同一 の符号を付し 、 その説明を省略する ものとする
図 5 におレ、て 、 4 1 はハウジング本体 4 の底部 4 B に
Pスけられた第 1 の二重通路を示している。 こ の二重通路
4 1 は、 第 1 の実施の形態による二重通路 1 7 と ほぼ同 様に、 エアモ一タ 7 のタービン室 7 B 中央寄り から軸方 向に延びて形成されている。 また、 第 1 の 重通路 4 1 は 、 外側通路穴 4 1 Aと 内側配管 4 1 B とからな り 、 流 入側には二重管継手 4 2 が取付けられている o こ の二重 管継手 4 2 は 、 軸方向の後端側に位置して第 1 の二重通 路 4 1 の内側配管 4 1 B の管内を外部に開放する内側開
P部 4 2 Aと 、 外周側に位置して外側通路穴 4 1 Aと 内 側配管 4 1 B との間に連通した外側継手部 4 2 B と を備 ている。
4 3 はハクジング本体 4 の底部 4 B に設けられた第 2 の二重通路を示している。 この二重通路 4 3 は 、 第 1 の 一重通路 4 1 と ほぼ同様に、 エアモータ 7 のタ一ビン室
7 B 中央寄り から軸方向に延ぴ、 外側通路穴 4 3 Aと 内 側配管 4 3 B と によ り構成されている。
4 4 はハクジング本体 4 の底部 4 B に設け られた第 1 の排出エア通路を示している。 こ の排出ェァ通路 4 4 は 第 1 の実施の形態による排出エア通路 1 8 と ほぼ同^に 第 1 の二重 路 4 1 の内側配管 4 1 B内の内側通路と し て形成され、 ェァモ タ 7 のタ一ビン室 7 B を二重管継 手 4 2 の内側開口部 4 2 Aからハウジング 3 の外部に開 放してレ、る
4 5 はノヽクジング本体 4 の底部 4 Β にスけ られた第 2 の排出ェァ通路を示してレヽる 。 この排出ェァ通路 4 5 は、 第 1 の実施の形 *匕による排出エア通路 1 8 と ほぼ 1司様〖こ、 第 2 の一重通路 4 3 の内側配管 4 3 Β 内の内側通路と し て形成され 、 ェァモ一タ 7 のタ一ビン室 7 B をハウジン グ 3 の外部に開放している
4 6 はハクジング本体 4 の底部 4 Β にロスけられた第 3 の実施の形態によ る断熱ェァ通路を示している 。 この断 ェァ通路 4 6 は、 断熱ェァ供給路 4 6 A 、 断熱エア連 絡路 4 6 Bヽ 断熱ェァ排出路 4 6 C よび排出開口 4 6
Dによ り U字状に構成され 、 底部 4 Β を通つて外部に連 通している。
こ で、 断熱ェァ通路 4 6 の流入側を構成する断熱ェ ァ供給路 4 6 Aは 、 第 1 の二重通路 4 1 の外側通路穴 4
1 Aと内側配管 4 1 B と の間の外側通路によ り形成され た円筒状通路であ /こ、 断熱ヱァ供給路 4 6 Aは、 第 1 の排出エア通路 4 4 を取囲んで軸方向に延びている。 さ らに 、 '断熱エア供給路 4 6 Aは、 ハウジング本体 4 の 底部 4 B を通じて設け られ、 流入側が底部 4 Bの後端面 で一重管継手 4 2 の外側継手部 4 2 B に接続され、 流出 側がェァモータ 7 に近接する位置で断熱エア連絡路 4 6
B を介して断熱ェァ排出路 4 6 Cに接続されている。 そ して 、 前記外側継手部 4 2 B は、 ェァ配管 4 7 を介して ェァ源 1 6 に接続されている
また 、 断熱エア通路 4 6 の流出側を構成する断熱エア 排出路 4 6 Cは、 第 2 の二《通路 4 3 の外側通路穴 4 3 Aと内側配管 4 3 B との の外側通路によ り形成された 円筒状通路であ Ό また 、 断熱エア排出路 4 6 Cは 、 第
2 の排出ェァ通路 4 5 を取囲んで軸方向に延びている さ らに、 断熱ェァ排出路 4 6 Cは、 ハクジング本体 4 の 底部 4 B を通じて設けられ 、 流入側がェァモータ 7 に近 接する位置で断熱ェァ連絡路 4 6 B を介して断 工ァ供 給路 4 6 Aに接糸冗 < れ 、 流出側はハクジング本体 4 の底 部 4 B の後端面で外部に開口 している
力 く して 、 ν ·~ の よ う に構成された第 3 の実施の形態に おいても 、 目 IJ坯した各実施の形態と ほぼ.同様の作用効果 を得る こ とができ る 特に 、 第 3 の実施の形態によれば、 ター ビンェァの排出経路を第 1 の排出ェァ通路 4 4 と第
2 の排出ェァ通路 4 5 の 2本設ける と によ り タ一ビ ンエアを大量に供給する とができ るから、 r¾出力のェ ァモータ 7 を使用する とができ る しかも、 第 1 の排 出エア通路 4 4 の周囲には断熱エア通路 4 6 の断熱ェァ 供給路 4 6 Aを設け 、 第 2 の排出ェァ通路 4 5 の周囲に は断熱ェァ排出路 4 6 Cを設けているから、 排出ェァ通 路 4 4, 4 5 内を流 mする排出エアによ り ハウジング 3 が冷却されるのを防止する こ とがでさ る
次に、 図 6 は本発明の第 4 の実施の形態を示している。 本実施の形態の特徴は 、 断熱エアは 、 ヒータ装置によつ て温めた状態で断熱ェ 通路に供給する構成と したこ と にある。 な J! 、 第 4 の実施の形態では 、 刖述した第 1 の 実施の形態と 同一の構成要素に同一の符号を付し 、 その 説明を省略する ものとする
図 6 に いて 、 5 1 は断熱エア通路 1 9 の断熱ェァ供 給路 1 9 Aに接続 れたェァ配管 2 0 の途中に設け 'られ たヒータ装置を示している 。 こ の ヒ一タ装置 5 1 は 、 断 熱ェァ 路 1 9 に供給する断熱エアを加温する ものであ る また 、 ヒ 一タ装置 5 1 は、 有機溶剤の雰囲気中で使 用 した場合でも引火の虞がない防爆構造を有している
- >·
こで 、 断熱ェァは、 常に排出エアの冷 た熱を受領 してノヽクジング 3 の外部に排出する こ と によ り 、 該ノヽゥ ジング 3 が冷却されるのを防止している このこ とから、 断熱ェァは、 排出ェァから受領した冷熱をノヽゥジング 3 の外部に排出でき るだけの流量でよいから 、 タ一ビンェ ァのよ 5 に多く の流量を必要とする ものではない。 従つ て 、 ヒ 一タ装置 5 1 の出力 (熱量) は小さいも のでよ < 、 しかも 、 高い精度の温度制御も必要と しない
か < して、 このよ う に構成された第 4 の実施の形態に いても 、 Βϋ述した各実施の形態と ほぼ |PJ様の作用効果 を得る こ とができ る 。 特に、 第 4 の実施の形態によれば、 ェァ配管 2 0 の途中にヒータ装置 5 1 を BXけているから、 断熱ェァ通路 1 9 に供給する断熱エアを加温する こ と が でぎ 、 ハゥジング 3が冷却されるのを効果的に防止する - とができ る
また 、 エア源 1 6 から供給されるエアの温度が低レ、 合や 大量のタ一ビンエアが供給される高出力型のェァ
f
モ一タ 7 を使用する場合でも、 排出エアの冷えた熱をハ クジング 3 の外部に素早く 排出する こ とができる。
次に 、 図 7 なレヽ し図 1 0 は本発明の第 5 の実施の形態 を示している。 本夹 ' 施の形態の特徴は、 ェァモータの周 囲には 、 エアモ一タを取囲む空間部を設けヽ 空間部は 、 断熱ェァが流通する断熱エア通路の一部と して構成した
·>·
と にある。 な 、 第 5 の実施の形態では 述した第
1 の実施の形態と 同一の構成要素に同一の符号を付し 、 その 明を省略する もの とする。 図 7 において、 6 1 はェァモ一タ 7 のモータケース 7
Aを取囲むよ に け られた リ ング状の空間部で、 該空 間部 6 1 には 、 断 ェァが流通する 。 また、 空間部 6 1 は 、 ノヽゥジング 3 を構成するハゥジング本体 4 の筒部 4
Aに軸方向に延びて HXけ られている 。 また、 空間部 6 1 は 、 図 9 に示すよ に展開状態ではほぼ長方形状をな し、 これを上流側 6 1 Aと下流側 6 1 B とが接近する よ う に 湾曲させるこ と によ り 、 図 8 、 図 1 0 に示す如く 、 横断 面 C字状の空間と して形成され、 ェァモータ 7 のタービ ン 7 C側のほぼ全周を覆つている そして、 空間部 6 1 は 、 後述する断熱工ァ通路 6 7 の断熱エア中間路 6 7 C を構成するものである
6 2 はハウジング本体 4 の底部 4 Bに設け られた第 1 の二重通路でヽ 該 重通路 6 2 はヽ 第 1 の実施の形態に よ る二重通路 1 7 と ほぼ同様に、 ェァモータ 7 のタービ ン室 7 B 中央 り から軸方向に延びて形成されている。 また、 第 1 の一重通路 6 2 は 、 外側通路穴 6 2 Aと 内側 配管 6 2 Bからなつてレ、る
6 3 は二重管継手で 、 この二重管継手 6 3 は、 第 1 の 重通路 6 2 の内側配管 6 2 B の管内を外部に開放する 内側開 口部 6 3 A と 、 外周側に位置して外側通路穴 6 2
Aと内側配管 6 2 B と の間に埋 iiした外側継手部 6 3 B と によ り構成されてレ、る
一方、 6 4 はノヽクジング本体 4 の底部 4 B に設けられ た第 2 の二重通路を示している この二重通路 6 4 は、 第 1 の二重通路 6 2 と ほぼ同様に 外側通路穴 6 4 Aと 內側配管 6 4 B と によ り 構成されている。
6 5 はハウジング本体 4 の底部 4 Bに設けられた第 1 の排出エア通路を示している - の排出エア通路 6 5 は、 •6
第 1 の実施の形 Re匕による排出ェァ通路 1 8 と ほぼ同様に、 第 1 の一重通路 6 2 の内側配管 6 2 B内の内側通路と し て形成されゝ ェァモ一タ 7 のタ一ビン室 7 B を二重管継 手 6 3 の内側開 P部 6 3 Aからハクジング 3 の外部に開 放している ο
6 6 はノヽゥジング き Πι
本体 4 の底部 4 B に け られた第 2 の排出ェァ通路を示してい - る o の排出ェァ通路 6 6 は、 第 1 の排出ェァ通路 6 5 と ほぼ 様に、 第 2 の二重通路
6 4 の内側配管 6 4 B内の内側通路と して形成され、 ェ ァモ一タ 7 のタ一ビン室 7 B をノヽゥジング 3 の外部に開 放している o
6 7 はハゥジング本体 4 の底部 4 B に ΗΧけられた第 5 の実施の形態による断熱ェァ通路を示してレ、る。 この断 ェァ 路 6 7 は 、 断熱ェァ供給路 6 7 A 、 供給側連絡 路 6 7 B、 断熱エア中間路 6 7 C、 排出側連絡路 6 7 D、 断熱エア排出路 6 7 Eおよび排出開 口 6 7 F によ り構成 され、 排出開口 6 7 Fは外部に開口 している。
こ こ で、 断熱エア通路 6 7 の流入側を構成する断熱ェ ァ供給路 6 7 Aは、 第 1 の二重通路 6 2 の外側通路穴 6
2 Aと 内側配管 6 2 B との間の外側通路によ り形成され た円筒状通路でめ o 。 また、 断熱エア供給路 6 7 Aは、 第 1 の排出エア通路 6 5 を取囲んで軸方向に延ぴている。 また、 断熱エア供給路 6 7 Aの流入側は、 二重管継手 6
3 の外側継手部 6 3 Bに接続され、 エア配管 6 8等を介 してエア源 1 6 に接続されてレ、る o
一方、 断熱ェァ供給路 6 7 Aの流出側には供給側連絡 路 6 7 Bが接続されてレ、る o 該供給側連絡路 6 7 Bは、 図 9 、 図 1 0 に示すよ ラ に、 断熱エア供給路 6 7 A ら 半径方向の外側に延び空間部 6 1 の周方向の上流側 6 1 Aに れている。 これによ り 、 供給側連絡路 6 7 B は 、 断熱ヱァ中間路 6 7 Cに接続されてい
- こで、 断熱エア中間路 6 7 Cは、 空間部 6 1 を利用 して SXけ oれた リ ング状に形成され、 ェァモータ 7 の外 周側 "覆つてレヽる。 この断熱エア中間路 6 7 Cは、 断熱 ェァが流通する こ と によ り 、 エアモータ 7 力 らノヽゥジン グ 3 のカノく一 5側に伝わろ う とする冷えた熱を遮断する ものである ο
また、 断熱エア中間路 6 7 C の下流側と なる空間部 6
1 の周方向の下流側 6 1 B には、 排出側連絡路 6 7 Dが 接 eされている。 こ の排出側連絡路 6 7 Dは、 ノヽゥジン グ本体 4 の筒部 4 Aを後側に延びて断熱ェァ排出路 6 7
E の流入側に接続されている。
さ らに、 断熱エア通路 6 7 の流出側を構成する断熱ェ ァ排出路 6 7 Eは、 第 2 の二重通路 6 4 の外側通路穴 6
4 Aと 内側配管 6 4 B と の間の外側通路によ り形成され た円筒状通路である。 また、 断熱エア排出路 6 7 Eは、 第 2 の排出エア通路 6 6 を取囲んで軸方向に延び、 その 開 P端は、 底部 4 Bから外部に開口する排出開口 6 7 F となつている。
かく して 、 このよ う に構成された第 5 の実施の形態に いても、 前述した各実施の形態と ほぼ 様の作用効果 を得る こ とができ る。 特に、 第 5 の実施の形態によれば ノヽクジング 3 のハウジング本体 4 には、 ェァモータ 7 の 周囲を取囲む空間部 6 1 を設け、 該空間部 6 1 を断熱ェ ァ通路 6 7 の断熱エア中間路 6 7 C と して用い、 この断 熱ェァ中間路 6 7 Cに断熱エアを流通させる構成と して いる ο
従つて、 ター ビンェァが断熱膨張による温度低下を生 じ、 れに伴つてェァモータ 7 の温度が低下した場 Π で あ、 断熱ェァ通路 6 7 の一部をなす断熱エア中間路 6 7
Cはェァモ一タ 7 によ り ハウジング 3 が冷却されるのを 防止する こ とができ る o この結果、 ハウジング 3 の力ノく 一 5 の外周面 5 Aに結露が発生するのを確実に防止する こ とができ 高電圧の V ' -""ク 、 /— B (し ょ 塗装不良を防 止して 、 塗装仕上 り を良好にする こ とができ る。
また s 間部 6 1 には 、 断熱エアを流通させる こ とが できる o 、 れによ り 、 空間部 6 1 のために別途エア配管 を設ける必 がなレ、から 、 構成を簡略化する こ とがでさ
Ό o
次に 、 図 1 1 ないし図 1 4 は本発明の第 6 の実施の形 態を示してレ、る 本実施の形態の特徴は、 空間部は 、 ノヽ ゥジングのモ一タ収容部の内周側とエアモータを構成す るモ一タケ一スの外周側との間に形成する構 - 成と した と にある なお 、 第 6 の実施の形態では、 前述した第 1 の実施の形態と 一の構成要素に同一の符号を付し 、 そ の説明を省略する ものとする。
図 1 1 において 、 7 1 は第 6 の実施の形態によるノヽ ゥ ジングで 、 該ノヽクジング 7 1 は、 内部にエアモータ 7 を 収容する もので 後述のハウジング本体 7 2 とカパ一 7
3 とによ 大略構成 δれている。
7 2 はノヽクジング 7 1 の本体部分を形成す 、、、 るハウンン グ本体で 、 該ノヽクジング本体 7 2 は、 例えば第 1 の実施 の形態によるノヽクジング本体 4 と ほぼ同様の絶縁性樹脂 材料によ り形成されている。 また、 ハウジング本体 7 2 は、 刖側の筒部 7 2 Aと後側の底部 7 2 Β とからな り 、 筒部 7 2 Aの内周側はェァモータ 7 を収容するモータ収 容部 7 2 C と なつてレ、る 。 さ らに、 モータ収容部 7 2 C の底部には、 シェ一ピングエア リ ング 6 の支持段部 6 B と の間でェァモ一タ 7 を支持する複数個 (例えば 5個) の支持部 7 2 Dが形成されている。
こ こ で、 ノヽウジング本体 7 2 のモータ収容部 7 2 Cは、 第 1 の実施の形態によ るハウジング本体 4 のモータ収容 部 4 C よ り も直径寸法、 軸方向寸法 (深さ寸法) の両方 で大き く 形成されている これによ り 、 ハウジング本体
7 2 のモータ収容部 7 2 Cにェァモータ 7 を収容したと きには、 該モータ収容部 7 2 C とエアモータ 7 のモータ ケース 7 Aと の間に後述の 間部 7 4 を形成する こ と が でき る。
7 3 はハクジング本体 7 2 の外周側に取付けられたカ ノ ーを示している。 この力ノ 一 7 3 は、 例えば前述した ノ、ゥジング本体 4 と ほぼ 様の絶縁性榭脂材料からな り 外周面 7 3 Aを有する円筒体と して形成されている。
7 4 はェァモータ 7 のモ一タケース 7 Aを取囲むよ う に設け られた空間部で、 該空間部 7 4 には、 断熱ェァが 流通する。 また、 空間部 7 4 は 、 ハウジング本体 7 2 の モータ収容部 7 . 2 Cの内周側とエアモータ 7 のモ一タケ
—ス 7 Aの外周側との間にほぼ有底円筒状の空間と して 形成されている。 即ち、 間部 7 4 は、 図 1 3 、 図 1 4 に示す如く 、 モータ収容部 7 2 C の内周面とモータケ一 ス 7 Aの外周面と の間に画成された全周空間 7 4 Aと、 モータ収容部 7 2 C の底面とモ一タケ一ス 7 Aの後端面 との間に画成された底部 間 7. 4 B と によ り構成されて いる。
こ こで、 is間部 7 4 の全周 間 7 4 Aは、 図 1 2 、 図
1 4 に示すよ う に、 横断面 C字状の円筒空間 と して 成 されている そ して、 空間部 7 4 は、 底部空間 7 4 Bが 上流側 7 4 A 1と な り 、 その反対側が下流側 7 4 A 2と な つている。 また 、 底部空間 7 4 Bは、 ほぼ円板状の空間 と して形成されている。 しかし、 底部空間 7 4 B には、 全周空間 7 4 Aの上流側 7 4 A 1と下流側 7 4 A 2と の間 を起点と して径方向に延びる切離し部 7 4 B 1が設け ら れ 、 該切離し部 7 4 B 1は、 後述する断熱エア通路 8 1 の供給側接続 P 8 1 Bから排出側連絡路 8 1 Dに向け断 エアが断熱ェァ中間路 8 1 Cを近道して流れるのを防 ぐものである
7 5 はハウジング本体 7 2 の底部 7 2 B に設けられた 第 1 の二重通路を示している。 この二重通路 7 5 は 、 第
1 の実施の形態によ る二重通路 1 7 と ほぼ同様に、 外側 通路穴 7 5 Aと 内側配管 7 5 Bからな り 、 流入側には後 述の二重管継手 7 6 が取付けられている。
7 6 は第 1 の二重通路 7 5 の流入側に位置してハゥジ ング本体 7 2 に取付けられた二重管継手を示している。 の二重管継手 7 6 は、 第 1 の二重通路 7 5 の内側配管
7 5 B内に連通した内側継手部 7 6 Aと、 外側通路穴 7
5 Aと 内側配 Ή 7 5 B と の間に連通した外側継手部 7 6
B と を備えてレ、る。
—方、 7 7 はハウジング本体 7 2 の底部 7 2 Bに設け られた第 2 の 重通路を示している。 この二重通路 7 7 は 、 第 1 の二重通路 7 5 'と ほぼ同様に、 外側通路穴 7 7
Aと 内側配管 7 7 B と によ り構成されている。
7 8 はノヽゥジング本体 7 2 の底部 7 2 B に設けられた タ一ビンエア通路を示している。 このタービンエア通路
7 8 は、 第 1 の二重通路 7 5 の内側配管 7 5 B内に内側 通路と して形'成されている。 また、 タービンエア通路 7 8 の流入側は、 二重管継手 7 6 の内側継手部 7 6 A、 ェ ァ配管 7 9等を介してエア源 1 6 に接続され、 流出側は ェァモータ 7 のター ビン室 7 B の外周側に開口 している。
8 0 はハウジング本体 7 2 の底部 7 2 B に設けられた 排出ェァ通路を示している。 この排出エア通路 8 0 は、 第 2 の二重通路 7 7 の ^側配管 7 7 B内に内側通路と し て形成され、 排出エアを排出するために外部に連通して レヽる。
8 1 はハウジング本体 7 2 の底部 7 2 B に設けられた 第 6 の実施の形態による断熱ヱァ通路を示している。 こ の断熱エア通路 8 1 は、 図 1 3 、 図 1 4等に示す如く 、 断熱ェァ供給路 8 1 A、 供給側接続口 8 1 B、 断熱ェァ 中間路 8 1 C、 排出側連絡路 8 1 D、 断熱エア排出路 8
1 Eおょぴ排出開 口 8 1 F によ り 構成されている。 排出 開 P 8 1 Fは、 外部に開口 してレヽる。
で、 断熱エア通路 8 1 の流入側を構成する断熱ェ ァ供給路 8 1 Aは、 第 1 の二重通路 7 5 の外側通路穴 7
5 Aと 内側配管 7 5 B と の間の外側通路によ り形成され た '円筒状通路である。 また、 断熱エア供給路 8 1 Aは、 タ一ビンエア通路 7 8 を取囲んで軸方向に延びている。
また 、 断熱エア供給路 8 1 Aの流入側は、 二重管継手
7 6 の外側継手部 7 6 B、 エア配管 8 2等を介してエア 源 1 6 に接続されている。 一方 、 断熱エア供給路 8 1 A の流出側は供給側接続口 8 1 B と な り 、 該供給側接続口
8 1 B は、 図 1 3 、 図 1 4 に示すよ う に、 空間部 7 4 を 構成する全周空間 7 4 Aの上流側 7 4 A 1側である底部 空間 7 4 B の角隅部位に接続されている。 これによ り 、 断熱エア供給路 8 1 Aは、 空間部 7 4 を利用 して設けら れた断熱エア中間路 8 1 C の上流側に接続されている。
ここで、 断熱エア中間路 8 1 Cは、 エアモータ 7 の外 周側と後端側を覆う と共に断熱エアが流通する こ と によ り 、 エアモータ 7 からノヽウジング 7 1 のカバー 7 3側に 伝わろ う とする冷えた熱を遮断する ものである。
また、 排出側連絡路 8 1 Dは、 断熱エア中間路 8 1 C の下流側 と なる全周空間 7 4 Aの下流側 7 4 A 2に接続 されてレヽる この排出側連絡路 8 1 Dは 、 ハゥジング本 体 7 2 の筒部 7 2 Aを後側に延びて断熱ェァ排出路 8 1
E の流入側に接 feeされている
さ らに 、 断埶ェァ通路 8 1 の流出側を構成する断熱ェ ァ排出路 8 1 Eは 、 第 2 の一重通路 7 7 の外側通路穴 7
7 Aと 内側配管 7 7 B と の間の外側通路によ り形成され た円筒状通路である。 また 断熱エア排出路 8 1 Eは 、 第 2 の排出ェァ通路 8 0 を取囲んで軸方向に延ぴ、 その 開口端は 外部に開口する排出開口 8 1 F と なつている
- かく して 、 のよ う に構成された第 6 の実施の形態に いても U述した各実施の形態と ほぼ 様の作用効果 を得る こ とがでさ る。 特に 、 第 6 の実施の形態によれば、 断熱エア通路 8 1 の断熱ェァ中間路 8 1 Cは、 エアモ一 タ 7 を外周側と後端側から取囲むこ とができ るから、 ェ ァモータ 7 の 1皿曰度が低下したと きに、 こ のェァモータ 7 によ り ハクジング 7 1 の ί皿曰度が低下するのを確実に防止 する こ とがでさ る て 、 第 6 の実施の形態でも第 5 の実施の形 と 同様の効果を得る こ とがでさる
次に、 図 1 5 は本発明の第 7 の実施の形態を示してい る 本実施の形態の特徴は 、 ノヽゥジング本体の外周側と 力 / 一の内周側との間に is間部を設け 、 間部は、 回転 霧化頭から噴霧された塗料の噴霧パタ ンを整えるため のシ ピングェァが流通するシ ピングェァ通路の 一部と して 成したこ と にある 。 なおヽ 第 7 の実施の形 態では、 刖述した第 1 の実施の形態と 同一の構成要素に 同一の符号を付し 、 その説明を省略する も の とする。
図 1 5 において 、 9 1 は第 7 の実施の形態によるハウ ジングで、 該ハクジング 9 1 は、 内部にエアモータ 7 を 収容する も ので 、 後述のハウジング本体 9 2 とカバー 9
3 と によ り 大略構成されてレ、る。
9 2 はハゥジング 9 1 の本体部分を形成するハゥジン グ本体で、 該ハクジング本体 9 2 は、 例えば第 1 の実施 の形態によるハクジング本体 4 と ほぼ同様の絶縁性樹脂 材料によ り形成されている ο また 、 ノヽウジング本体 9 2 は、 前側の筒部 9 2 Aと後側の底部 9 2 B と力、らな り 、 筒部 9 2 Aの内周側は、 ェァモ一タ 7 を収容するモータ 収容部 9 2 C と なつている o さ らに、 筒部 9 2 Aの外周 側には 、 モータ収容部 9 2 Cに対応する前側部分を縮径 して縮径段部 9 2 Dが形成されている。 この縮径段部 9
2 Dは 、 カノく一 9 3 との間に後述の空間部 9 4 を画成す る ものである。
9 3 はハゥジング本体 9 2 の外周側に取付けられたカ ノ ーを示している ο この力パ一 9 3 は、 例えばハゥジン グ本体 4 と ほぼ 様の絶縁性樹脂材料からな り 、 外周面
9 3 Aを有する円筒体と して形成されている。
9 4 はハゥジング本体 9 2 の外周側と力パー 9 3 の内 周側との間に形成されだ -間部で 、 該空間部 9 4 には、 塗料の噴霧パタ一ンを整 X.るためのシェービングエアが 流通す o よ フこ 、 間部 9 4 は、 ハウジング本体 9 2 の 縮径段部 9 2 D と力パ一 9 3 の内周面と の間に画成され た円筒状の空間と して形成され、 エアモータ 7 の外周側 となる部位を取囲んでレ、る 0 そ して、 空間部 9 4 は: 後 述するシェ一 ピングェァ通路 9 5 のシェー ビングエア中 間路 9 5 B を構成する ものであ
9 5 はハウジング 9 1 の外周側に設けられたシェ ピ ングエア通路を示している - ο のシェ ピングェァ is路
9 5 は、 シエー ピングェァ供 路 9 5 Aと シエー ピング ェァ中間路 9 5 B と によ り構成されている o v «~ ^—で シ ェ ピングエア供給路 9 5 Aの流入側は エア配管 9 6 制御弁 (図示せず) 等を介してエア源 1 6 に feeされて レヽる 0 ~ ' ゝ シエー ピングェァ中間路 9 5 B は、 is間部
9 4 を利用 して形成されたもので、 その流出側はシェ ピングエア リ ング 6 の各ェァ噴出口 6 Aに されてい そして シエー ピングェァ通路 9 5 は ェァ源 1 6 か ら供給されるエアをシェ ピングェァ と してシェ ' ピン グェァ ジ ング 6 のエア噴出 P 6 Aに導 < ちのでめ ο ま た 空間部 9 4 に設けたシェ —ピングェァ中間路 9 5 B を流通するシエーピングェァは断熱ェァ と しても機目匕す る o このため 、 この断 ェァは、 ェァモ タ 7 からノヽゥ ンング本体 9 2 に伝わつた冷熱を遮断する こ と によ 力パ 9 3 が冷却されるのを防止する こ とができ る 0
か < して このよ う に構成された第 7 の実施の形 に いてあ 目 U述した各実施の形態と ほぼ 様の作用効果 ·
を得る とができ る。 特に 第 7 の実施の形態によれば、 ノヽクジング本体 9 2 を パ 9 3 で覆 5 こ と によ り 間
- - 部 9 4 を容易に設ける とができ、 生産性を向上する とがでさ る 0 また、 空間部 9 4 によ り シェ ピングェァ 中間路 9 5 B を兼ねる こ と によ り 、 断熱ェァ と してシェ ピングェァを利用する こ とができ 別途ェァ配管を BX ける必要がなく 構成を簡略化する とがでさ る o
次に 図 1 6 および図 1 7 は本発明の 8 の実施の形 第 も匕を 7] している。 本実: laの形態の特徴は、 先端部分が所 定の角度をもつて折り 曲げられた屈曲型のァ一ムに回転 霧化頭型 装機を取付ける構成と したこ と にある。 なお 第 8 の実施の形態では、 述した第 1 の実施の形態と 同 一の構成要素に同一の符号を付し 、 その 明を省略する も のとする
図 1 6 におレ、て、 1 0 1 は第 8 の実施の形態に用いら れる塗装作業用のロボ ';/ 卜装置を示している こ のロボ ッ 卜装置 1 0 1 は、 先端に B¾け Οれた回転霧化頭型塗装 機 1 を被塗物 1 0 2 に追従させて 、 該被 '塗物 1 0 2 に塗 装を施すあのでめ o。
また、 ポ ト装置 1 0 1 は、 台座 1 0 1 Aと、 該台 座 1 0 1 A上に回転可能かつ揺動可能に けられた垂直 支柱 1 0 1 B と 、 該垂 &支柱 1 0 1 Bの先端に摇動可能 に設けられた水平支柱 1 0 1 C と、 該水平支柱 1 0 1 C の先端に回動、 回転自在に設けられた手首 1 0 1 D と、. 該手首 1 0 1 Dの先端に設けられ、 回転霧化頭型塗装機 1 が取付け られる屈曲型のアーム 1 0 1 E と によ り構成 されてレヽる。
こ こで、 口ボク ト装置 1 0 1 のァ ム 1 0 1 Eは、 図
1 7 に示す如 < 、 内部を配管 配線類が通る筒状体と し て形成されてレ、る た、 ァ一ム 1 0 1 E の先端側は、 例えば 1 0〜 9 0 ° 程度の角度をもつて折り 曲げられ、 その先端部には塗装機 1 のノヽクジング本体 4 が螺着され ている。 こ のよ う に、 先端側を折り 曲げた屈曲型のァー ム 1 0 1 Eは 、 複雑な塗装面 、 奥部にある塗装面等に対 して塗装機 1 を的 ¾に対面させる こ とがでさ る
- かく して、 のよ う に構成された第 8 の実施の形態に おいても、 前述した各実施の形態と ほぼ同様の作用効果 を得る こ とができ る
なお 、 第 1 の実施の形態では、 ノヽゥジング本体 4 の材 料を利用 して、 該パクジング本体 4 の底部 4 Bに二重通 路 1 7 を設け、 該ニ重通路 1 7 は、 外側通路穴 1 7 Aと、 該外側通路穴 1 7 A内に揷通された内側配管 1 7 B と に よ り 二重構造に形成した士■¾县 A口 を例に挙げて説明 した。 し かし、 本発明はこれに限らず 、 例えば二重通路は、 外側 配管と 、 該外側配管内に掉通された内側配管と によ り 二 重配管構造と しても よレ、 の場合には 、 外側配管をハ ゥジング本体 4 の底部 4 B に揷着する構成とすればよレ、。 こ の構成は、 他の実施の形態にも適用する こ とができ る もので
また 、 第 1 の実施の形態では、 断熱ェァ通路 1 9 を、 断熱ェァ供給路 1 9 A 、 断熱エア連絡路 1 9 B、 断熱ェ ァ排出路 1 9 Cおよび排出開口 1 9 Dによ り 構成した場 合を例に挙げて説明 した 。 し力 し、 本発明はこれに限ら ず、 例えば断熱エア連絡路 1 9 B を省略し 、 断熱エア供 給路 1 9 Aの流出側を断熱ェァ排出路 1 9 C の流入側に 直接的に接続する構成と しても よい。 この構成は、 第 2 、 第 3 、 第 4 の実施の形態にも適用する こ とができ るもの である
また 、 第 4 の実施の形態では、 断熱ェァ通路 1 9 の断 熱エア供給路 1 9 Aに接.続されたエア配管 2 0 の途中に ヒータ装置 5 1 を設け 、 断熱エア通路 1 9 に供給する断 熱エアを加温する構成と した 。 しカゝし、 本発明はこれに 限らず 、 他の実施の形 に対しヒータ装置 5 1 を設ける 構成と しても よい。
さ らに、 各実施の形態では 、 シエーピングエア リ ング
6 は絶縁性樹脂材料によ り形成する ものと して述べた力 S、 シェービングエア リ ング 6 を導電性金属材料を用いて形 成しても よいものである。 この場合、 シェービングエア リ ング 6 はエアモータ 7 と 同電位に保持される。

Claims

p'n 永 の 範 囲
1 . モ一タ収容部を有する筒状のハゥジングと、 該ノヽ ゥジングのモータ収容部に収容されタ一ビンによ り 回転 軸を回転駆動するエアモ一 - タ と 、 '
、 目 U記ハウジングの前側 に位置して該エアモータの回転軸の先端部に取付けられ た回転霧化頭と、 該回転霧化頭に供給する塗料が流通す る塗料通路と 、 BU言己ハゥジングに け られ前記エアモ一 タのタ一ビンを駆動するタ一ビンェァが流通する ター ビ ンェァ通路と 、 前記ハウジングに スけられ前記エアモ タのタ一ビンを駆動して排出される排出エアが外部に向 ゝ
けて流通する排出エア通路と を備 てなる回転霧化頭型 塗装機に いて、
記ハゥジングには、 刖記排出ェァ通路の外周を取囲 んで延び内部を前記排出ェァよ り も高温な断熱エアが流 通する断熱ェァ通路を設ける構成と したこ と を特徴とす る回転霧化頭型塗装機。
2 . iu記ノヽウジングはヽ 前側に位置して内周側が前記 モ タ収容部と なった筒部と、 該筒部の後側に設けられ に 、 '- た底部と よ り構成し、 刖記タ一ビンェァ通路、 排出ェ ァ通 一、
路 、 断熱エア通路は 記底部を通つ 外部に連通す る構成と してなる請求項 1 に記載の回転霧化頭型塗装機。
3 . 刖記ノヽウジングには 、
、 m記ェァモータのタービン 室から延ぴ中心側の内側通路と外周側の外側通路とが 重構造に配置された二重通路を設け 、 BU記排出エア通路 は前記 重通路の内側通路によ り 形成し 、 前記断熱ェァ ,- 通路は目 記 重通路の外側通路によ り形成する構成と し
てなる 冃求項 1 に記載の回転霧化頭型 装機。 '
4 . ,■ヽム
目 U記タ一ビンエア通路の外周には 、 前記断熱ェァ 通路の 部をなし該タ ビンェァ通路を取囲んで延ぴる 断熱ェァ供給路を ΒΧける構成と してなる請求項 1 に記載 の回転霧化頭型塗装機 ο
5 • 記ェァモ一タの周囲には 、 該エアモータを取囲 む 間部を設けゝ 該空間部は 、 断埶ェァが流通す 目、 U記 断 ェァ通路の 部.と して構成してなる請求項 1 に記载 の回転霧化頭型塗装機 ο
6 • 目 、 IJ記ェァモ一タの周囲には 、 該エアモータを取囲
む 間部を ΗΧけ 、 該空間部は 目 IJ記回転霧化頭から噴霧 された塗料の噴霧パタ ンを整 X.るためのシヱ一ピング ェァ力 s流通するシェ ' ピングェァ通路の一部と して構成 してなる 求項 1 に記載の回転霧化頭型塗装機。
-、 ·.
7 • 目 IJ記 間部は、 記ハクジングのモータ収容部の 内周側と 目 、 IJ記ェァモ一タを構成するモータケース の外周 側と の間に形成する構成と してなる §主
an求項 5 または 6 に 記載の回転霧化頭型塗装機 0
8 • 目 IJ記ノヽクジングは 、 IヽIJ,記モ一タ収容部が設けられ たハゥジング本体と、 該ノヽゥジング本体の外周側を覆う 力ノ 一と によ り構成し 、 記 間部は 、 lu IBハクジング
•本体の外周側と力パ ' ~の内周側と の間に形成する構成と してなるき 求項 5 または 6 に記載の回転霧化頭型塗装機。
PCT/JP2006/305192 2005-06-02 2006-03-09 回転霧化頭型塗装機 WO2006129407A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002586573A CA2586573A1 (en) 2005-06-02 2006-03-09 Rotary atomizing-head type coating machine
US11/814,090 US7703700B2 (en) 2005-06-02 2006-03-09 Rotary atomizing-head type coating machine
JP2007518866A JP4705100B2 (ja) 2005-06-02 2006-03-09 回転霧化頭型塗装機
EP06715683A EP1886734B1 (en) 2005-06-02 2006-03-09 Rotary atomizing-head type coating machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005162986 2005-06-02
JP2005-162986 2005-06-02

Publications (1)

Publication Number Publication Date
WO2006129407A1 true WO2006129407A1 (ja) 2006-12-07

Family

ID=38943729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305192 WO2006129407A1 (ja) 2005-06-02 2006-03-09 回転霧化頭型塗装機

Country Status (7)

Country Link
US (1) US7703700B2 (ja)
EP (1) EP1886734B1 (ja)
JP (1) JP4705100B2 (ja)
KR (1) KR100827343B1 (ja)
CN (1) CN100512975C (ja)
CA (1) CA2586573A1 (ja)
WO (1) WO2006129407A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000751A (ja) * 2005-08-01 2008-01-10 Abb Kk 静電塗装装置
JPWO2007015335A1 (ja) * 2005-08-01 2009-02-19 Abb株式会社 静電塗装装置
JP2012517334A (ja) * 2009-02-09 2012-08-02 サム・テクノロジー 回転速度を検出するための検出デバイスを含む静電式噴霧器
WO2013111427A1 (ja) 2012-01-25 2013-08-01 Abb株式会社 回転霧化頭型塗装機
JP7363108B2 (ja) 2019-06-06 2023-10-18 日本精工株式会社 静電塗装機用スピンドル装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100906256B1 (ko) * 2007-11-09 2009-07-07 권정오 다 색상 페인트 도포장치
JP5619613B2 (ja) 2007-11-09 2014-11-05 オ クォン,チョン 多彩模様塗料塗布装置
DE102008027997A1 (de) * 2008-06-12 2009-12-24 Dürr Systems GmbH Universalzerstäuber
US20140227439A1 (en) * 2009-01-27 2014-08-14 Robert E. Porter Simplified paint applicator and related methods
EP2431098B1 (en) * 2009-05-11 2016-06-29 Abb K.K. Electrostatic coating device
JP5504100B2 (ja) * 2010-08-25 2014-05-28 ランズバーグ・インダストリー株式会社 静電塗装機用の回転霧化頭
JP5602561B2 (ja) * 2010-09-27 2014-10-08 トヨタ自動車株式会社 静電塗装用塗装ガン
JP5489976B2 (ja) * 2010-12-17 2014-05-14 本田技研工業株式会社 複層塗膜形成方法
EP2842634B1 (en) * 2012-04-27 2017-08-09 Abb K.K. Coating machine with rotating spray head
WO2015146970A1 (ja) * 2014-03-25 2015-10-01 本田技研工業株式会社 静電塗装装置
US10576482B2 (en) 2016-02-12 2020-03-03 Honda Motor Co., Ltd. Coating device
JP6582134B2 (ja) 2016-07-28 2019-09-25 株式会社日立システムズ 回転霧化頭、回転霧化頭管理システム、および、回転霧化頭管理方法
WO2018163714A1 (ja) * 2017-03-08 2018-09-13 本田技研工業株式会社 塗装装置及び方法
CN110505924B (zh) 2017-03-30 2021-07-09 本田技研工业株式会社 静电涂装装置
FR3109323B1 (fr) * 2020-04-15 2022-09-23 Exel Ind Support pour pulvérisateur et dispositif de pulvérisation comprenant un tel support
FR3123812A1 (fr) * 2021-06-15 2022-12-16 Exel Industries Pulvérisateur rotatif de produit de revêtement et procédé de contrôle d’une température de surface d’un tel pulvérisateur

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949861A (ja) * 1982-09-13 1984-03-22 Nippon Ranzubaagu Kk 回転噴霧装置
JPS6014959A (ja) * 1983-07-04 1985-01-25 Nippon Ranzubaagu Kk 静電噴霧装置
JPH0672649U (ja) * 1993-03-31 1994-10-11 日新製鋼株式会社 静電塗布装置
JPH081046A (ja) * 1994-06-22 1996-01-09 Abb Ransburg Kk 回転霧化型静電塗装装置
WO2005039782A1 (fr) 2003-10-20 2005-05-06 Sames Technologies Conduit d’echappement d’un projecteur rotatif a turbine pneumatique

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100057A (en) * 1990-03-30 1992-03-31 Nordson Corporation Rotary atomizer with onboard color changer and fluid pressure regulator
US5078321A (en) * 1990-06-22 1992-01-07 Nordson Corporation Rotary atomizer cup
US5397063A (en) * 1992-04-01 1995-03-14 Asahi Sunac Corporation Rotary atomizer coater
JPH0672649A (ja) 1992-08-31 1994-03-15 Toshiba Corp エレベータの情報表示システム
JPH09262509A (ja) * 1996-03-29 1997-10-07 Trinity Ind Corp 多色静電塗装機
US5894993A (en) * 1996-10-01 1999-04-20 Abb Industry K.K. Rotary atomization head
JP3333699B2 (ja) * 1996-11-22 2002-10-15 仲道 山崎 連続水熱反応における原料粒子噴霧方法および装置
US6328224B1 (en) * 1997-02-05 2001-12-11 Illinois Tool Works Inc. Replaceable liner for powder coating apparatus
US5853126A (en) * 1997-02-05 1998-12-29 Illinois Tool Works, Inc. Quick disconnect for powder coating apparatus
US5803372A (en) * 1997-04-03 1998-09-08 Asahi Sunac Corporation Hand held rotary atomizer spray gun
US6187096B1 (en) * 1999-03-02 2001-02-13 Bruno H. Thut Spray assembly for molten metal
KR100473034B1 (ko) * 2000-12-20 2005-03-10 에이비비 가부시키가이샤 회전무화헤드형 도장장치
DE10239517A1 (de) * 2002-08-28 2004-03-11 Dürr Systems GmbH Beschichtungseinrichtung mit einem Rotationszerstäuber und Verfahren zum Steuern ihres Betriebes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949861A (ja) * 1982-09-13 1984-03-22 Nippon Ranzubaagu Kk 回転噴霧装置
JPS6014959A (ja) * 1983-07-04 1985-01-25 Nippon Ranzubaagu Kk 静電噴霧装置
JPH0672649U (ja) * 1993-03-31 1994-10-11 日新製鋼株式会社 静電塗布装置
JPH081046A (ja) * 1994-06-22 1996-01-09 Abb Ransburg Kk 回転霧化型静電塗装装置
WO2005039782A1 (fr) 2003-10-20 2005-05-06 Sames Technologies Conduit d’echappement d’un projecteur rotatif a turbine pneumatique

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000751A (ja) * 2005-08-01 2008-01-10 Abb Kk 静電塗装装置
JPWO2007015335A1 (ja) * 2005-08-01 2009-02-19 Abb株式会社 静電塗装装置
JP4733133B2 (ja) * 2005-08-01 2011-07-27 Abb株式会社 静電塗装装置
JP2012517334A (ja) * 2009-02-09 2012-08-02 サム・テクノロジー 回転速度を検出するための検出デバイスを含む静電式噴霧器
US9138759B2 (en) 2009-02-09 2015-09-22 Sames Technologies Electrostatic projector comprising a rotation speed detection device
WO2013111427A1 (ja) 2012-01-25 2013-08-01 Abb株式会社 回転霧化頭型塗装機
US9399231B2 (en) 2012-01-25 2016-07-26 Abb K.K. Rotary atomizing head type coating machine
US9789500B2 (en) 2012-01-25 2017-10-17 Abb K.K. Rotary atomizing head type coating machine
JP7363108B2 (ja) 2019-06-06 2023-10-18 日本精工株式会社 静電塗装機用スピンドル装置

Also Published As

Publication number Publication date
JPWO2006129407A1 (ja) 2008-12-25
EP1886734A4 (en) 2010-04-14
KR20070084619A (ko) 2007-08-24
EP1886734A1 (en) 2008-02-13
KR100827343B1 (ko) 2008-05-06
EP1886734B1 (en) 2011-08-24
CN101090773A (zh) 2007-12-19
US20090020635A1 (en) 2009-01-22
US7703700B2 (en) 2010-04-27
CN100512975C (zh) 2009-07-15
CA2586573A1 (en) 2006-12-07
JP4705100B2 (ja) 2011-06-22

Similar Documents

Publication Publication Date Title
WO2006129407A1 (ja) 回転霧化頭型塗装機
JP5642893B2 (ja) 回転霧化頭型塗装機
US8784390B2 (en) Skin treatment spray nozzle system for automatic spray gantry
JP5548330B2 (ja) 高温シールド・エア・システム
US6972052B2 (en) Rotational atomizer with external heating system
US6257502B1 (en) Misting systems
JP2005131590A (ja) スプレー塗装装置および塗装方法
KR101590537B1 (ko) 단열 기능을 가지는 볼텍스 튜브
JP4753603B2 (ja) 加熱気体供給装置
CN100453185C (zh) 用于带有气动涡轮机的旋转式喷洒器的排放管
JP2005177607A (ja) 回転霧化塗装装置
JPH03114557A (ja) 回転霧化式静電塗装機
JP2009039682A (ja) 静電塗装装置
JP2506202B2 (ja) 塗装装置
JP2005246290A (ja) 静電塗装装置及び静電塗装方法
JPS5938822B2 (ja) 静電塗装装置
CN207350619U (zh) 一种喷雾空调
JP2001224988A (ja) 水性塗料用ホットエアースプレーガン
CN105202941A (zh) 闭式绝热蒸发冷却器
KR101392242B1 (ko) 증발식 냉각기의 살수장치
JP2568034Y2 (ja) 静電塗装機
JPH10277436A (ja) 中塗り塗装装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007518866

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2586573

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020077012302

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680001606.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11814090

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006715683

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006715683

Country of ref document: EP