WO2006120922A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2006120922A1
WO2006120922A1 PCT/JP2006/308875 JP2006308875W WO2006120922A1 WO 2006120922 A1 WO2006120922 A1 WO 2006120922A1 JP 2006308875 W JP2006308875 W JP 2006308875W WO 2006120922 A1 WO2006120922 A1 WO 2006120922A1
Authority
WO
WIPO (PCT)
Prior art keywords
expander
compressor
refrigerant
refrigeration cycle
valve
Prior art date
Application number
PCT/JP2006/308875
Other languages
English (en)
French (fr)
Inventor
Tomoichiro Tamura
Masaya Honma
Kou Komori
Tetsuya Saito
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2007528230A priority Critical patent/JP4912308B2/ja
Priority to US11/913,400 priority patent/US7886550B2/en
Publication of WO2006120922A1 publication Critical patent/WO2006120922A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • F25B2400/141Power generation using energy from the expansion of the refrigerant the extracted power is not recycled back in the refrigerant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/27Problems to be solved characterised by the stop of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator

Definitions

  • the present invention relates to a refrigeration cycle apparatus that effectively recovers energy generated by expansion of a refrigerant.
  • FIG. 10 shows a conventional refrigeration cycle apparatus described in Patent Document 1.
  • the compressor 1 is driven by driving means (not shown) such as an electric motor or a traveling engine to suck and compress the refrigerant.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 1 is cooled by the radiator 2.
  • the refrigerant flowing out of the radiator 2 is decompressed and expanded by the expander 3.
  • the expander 3 converts the expansion energy of the refrigerant that has flowed into mechanical energy (rotational energy) and supplies the converted mechanical energy (rotational energy) to the generator 4 to generate electric power.
  • the refrigerant expanded under reduced pressure in the expander 3 is evaporated and evaporated in the evaporator 5 and then sucked into the compressor 1 again.
  • Such a refrigeration cycle apparatus converts expansion energy into mechanical energy, and decompresses the refrigerant while causing the expander 3 to perform expansion work. Therefore, the refrigerant flowing out of the radiator 2 is shown in FIG. Thus, the enthalpy is lowered while changing the phase along the isentropic line ( c ⁇ d). Therefore, as compared with the case of simply adiabatic expansion without causing expansion work when the refrigerant is decompressed (when changing isenthalpy), the refrigerant at the refrigerant inlet side and the refrigerant outlet side of the evaporator 5 is increased by the amount of expansion work Aiexp. Since the specific enthalpy difference can be increased, the refrigeration capacity can be increased.
  • the generator 4 can generate electric power of (Aiexp portion X power generation efficiency). And the generated power compressor 1 , The input of electric power necessary for driving the compressor 1 can be reduced, and the coefficient of performance (COP) of the refrigeration cycle can be improved.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-329416
  • the present invention has been made in view of such problems of the prior art, and reduces the amount of refrigerant flowing into the expander shell when the compressor is stopped, so that the refrigerant can be converted into oil in the expander shell.
  • the purpose is to achieve a more stable start-up of the refrigeration cycle system by reducing the amount of dissolved!
  • a refrigeration cycle apparatus includes a compressor that compresses a refrigerant, a radiator that dissipates the refrigerant discharged from the compressor, and a refrigerant that uses this radiator force.
  • An expander that expands the refrigerant and an evaporator that evaporates the refrigerant of the expander power are serially connected in series.
  • a refrigerant flow rate adjusting means for adjusting the amount of refrigerant flowing into the expander, and a controller for controlling the compressor and the refrigerant flow rate adjusting means. When the compressor is stopped, the controller is The refrigerant flow rate adjusting means is controlled to reduce the amount of refrigerant flowing into the expander.
  • the amount of refrigerant flowing into the expander when the compressor is stopped is reduced, and the amount of refrigerant dissolved in the oil in the expander is reduced. Stable start-up can be realized.
  • FIG. 4 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • Figure 10 shows the configuration of a conventional refrigeration cycle system
  • FIG. 1 shows a schematic diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • symbol is attached
  • a refrigeration cycle apparatus includes a compressor 1, a radiator 2, an on-off valve 6, an expander 3 that recovers refrigerant expansion energy, and an evaporator. Are connected in series via a pipe, and carbon dioxide is sealed as a refrigerant.
  • the refrigeration cycle apparatus also includes a controller 21 that controls the compressor 1 and the opening / closing valve 6, and the opening / closing valve 6 functions as a refrigerant flow rate adjusting unit that adjusts the amount of refrigerant flowing into the expander 3.
  • an internal high-pressure type expander is used as the expander 3.
  • the expansion energy of the refrigerant is converted into mechanical energy (rotational energy). Electric power is generated by supplying the converted mechanical energy (rotational energy) to the generator 4, and the generated electric power is used as a drive source for the compressor 1.
  • the change in the energy state of the refrigerant during normal operation is based on the Mollier diagram shown in FIG. explain.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 1 to become a high-temperature and high-pressure refrigerant, and is discharged from the compressor 1 (a ⁇ b).
  • the refrigerant discharged from the compressor 1 exchanges heat with tap water in the radiator 2, heats the tap water to a high temperature of about 80 ° C, and flows into the expander 3 (b ⁇ c;).
  • the electric power generated by the generator 4 is used as the compressor 1 Efficiency can be improved because the power input of the compressor 1 can be reduced compared to the refrigeration cycle equipment that uses the expansion valve and the cylindrical tube to perform isentropic expansion. To do.
  • the evaporator 5 when used as a cooling source for a household refrigerator, commercial refrigerator, air conditioner, ice maker, vending machine, etc., the electric power generated by the generator 4 is used as a drive source for the compressor 1.
  • the power input of the compressor 1 is reduced and the refrigeration effect (evaporator) is reduced. 5), the efficiency of the refrigerant is further improved.
  • a stop signal of the refrigeration cycle device is input to the controller 21, and the controller 21 stops the operation of the compressor 1,
  • the on-off valve 6 is closed.
  • the refrigerant flowing into the expander 3 from the radiator 2 side can be shut off after the operation of the compressor 1 is stopped.
  • an internal high-pressure expander as the expander 3
  • the amount of refrigerant flowing into the expander 3 from the evaporator 5 side can be reduced.
  • high-pressure refrigerant is sucked into the sealed container 31 through the inlet side pipe 30.
  • the high-pressure refrigerant flows into the first cylinder 33 through the suction hole 32 and expands in the first cylinder 33.
  • the first roller 34 is rotated by the expansion force of the refrigerant.
  • the refrigerant expanded in the first cylinder 33 flows into the second cylinder 36 through the communication hole 35, further expands in the second cylinder 36, and the second inlet 37 rotates by the expansion force of the refrigerant.
  • the low-pressure refrigerant expanded in the second cylinder 36 is discharged from the outlet side pipe 40 through the discharge hole 38 and the discharge hole 39.
  • the sealed container 31 is filled with the high-pressure refrigerant, and the outlet side pipe 40 communicating with the evaporator 5 is substantially the same as the high-pressure refrigerant due to the mechanism of the expander. Because it is in the shut-off state, the amount of refrigerant flowing into the expander 3 can be reduced by closing the on-off valve 6 when the compressor 1 is stopped, resulting in insufficient refrigerant circulation when the refrigeration cycle unit is restarted And damage to the expander sliding surface can be prevented.
  • the on-off valve 6 is most preferably a valve that can be quickly closed, such as an electromagnetic valve, but is also effective in a slow-closing type such as an expansion valve.
  • the expansion energy of the refrigerant is converted into mechanical energy (rotational energy) by the expander 3, and the converted mechanical energy (rotational energy) is supplied to the generator 4 to generate electric power.
  • the same effect can be obtained even when the shafts of the compressor 1 and the expander 3 are directly connected to each other and the expansion energy is directly recovered as mechanical energy (rotational energy).
  • Embodiment 1 although carbon dioxide is used as the refrigerant, the same effect can be obtained even when a natural refrigerant other than carbon dioxide (for example, ammonia refrigerant or HC refrigerant) or HFC refrigerant is used. Needless to say, you can get it.
  • a natural refrigerant other than carbon dioxide for example, ammonia refrigerant or HC refrigerant
  • HFC refrigerant HFC refrigerant
  • the internal high pressure type expander is used as the expander 3 to reduce the amount of refrigerant flowing into the expander 3 on the side of the evaporator 5, but it is shown in FIG.
  • the on-off valve 15 is further arranged on the low pressure side of the expander 3, that is, between the expander 3 and the evaporator 5, the two on-off valves 6 and 15 before and after the expander 3 are closed when the compressor 1 is stopped. By controlling, the refrigerant flowing into the expander 3 can be completely shut off.
  • the inlet side pipe 30 and the first cylinder 33 are directly connected, and the low-pressure refrigerant is discharged into the sealed container 31 from the discharge hole 39.
  • 31 is filled with a low-pressure refrigerant, and the inlet-side piping 30 communicating with the radiator 2 is substantially cut off from the low-pressure refrigerant due to the mechanism of the expander. Therefore, the on-off valve 15 is disposed between the expander 3 and the evaporator 5, and the on-off valve 15 is closed when the compressor 1 is stopped, whereby the amount of refrigerant flowing into the expander 3 can be reduced, and the refrigeration cycle. Insufficient refrigerant circulation at the time of restarting the device and damage to the expander sliding surface can be prevented.
  • an on-off valve 6 is further provided on the high-pressure side of the expander 3, that is, between the expander 3 and the radiator 2.
  • the refrigerant flowing into the expander 3 can be completely shut off by closing the two on-off valves 6 and 15 before and after the expander 3 when the compressor 1 is stopped.
  • the stop operation of the compressor 1 has been described as the case where the user selects the stop of the refrigeration cycle apparatus.
  • the indoor temperature detector is set to a set temperature. Based on the control rules for compressor 1, such as when compressor 1 is stopped when the above is detected. The same applies when V and the compressor 1 are stopped.
  • FIG. 4 shows a schematic diagram of a refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • symbol is attached
  • the description of components common to those in Fig. 1 is omitted.
  • the radiator 2 that radiates the refrigerant discharged from the compressor 1, the expander 3 that recovers the expansion energy of the refrigerant, and the expander 3
  • the evaporator 5 that evaporates the refrigerant is sequentially connected in series via a pipe, and the bypass circuit 7 that bypasses the expander 3 and the on-off valve 8 disposed in the bypass circuit 7 flow into the expander 3.
  • coolant flow rate adjustment means which adjusts the refrigerant
  • carbon dioxide is enclosed as a refrigerant.
  • the compressor 1 is started by the controller 22 in step S2 with the on-off valve 8 closed in step S1.
  • the room temperature is detected by the room temperature detector (ambient temperature detector) 16 installed in the vicinity of the radiator 2, and the room temperature detected by the room temperature detector 16 in step S4.
  • set temperature Ta If it is determined that the detected room temperature is lower than the set temperature Ta, the process returns to step S3.On the other hand, if the detected room temperature is determined to be higher than the set temperature Ta, the process proceeds to step S5, where In order to adjust the heating capacity of the radiator 2 arranged, the compressor 1 is stopped by the controller 22. At the same time, the opening / closing valve 8 is controlled by the controller 22 at the same time.
  • the refrigerant preferentially flows into the bypass circuit 7 side.
  • the bypass circuit 7 side since the circuit on the expander 3 side has a larger flow path resistance than the bypass circuit 7, the refrigerant preferentially flows into the bypass circuit 7 side.
  • a small amount of refrigerant flows into the expander 3 most of the refrigerant passes through the bypass circuit 7 side, so if the amount of refrigerant flowing into the expander 3 can be reduced, the heat radiation side pressure reduced by force is reduced. And the safety of the refrigeration cycle apparatus can be improved.
  • FIG. 6 shows a schematic diagram of a refrigeration cycle apparatus according to Embodiment 3 of the present invention.
  • symbol is attached
  • the description of components common to those in Fig. 1 is omitted.
  • the radiator 2 that dissipates the refrigerant discharged from the compressor, the expander 3 that recovers the expansion energy of the refrigerant, and the expander 3
  • the evaporator 5 that evaporates the refrigerant is connected in series via a pipe, and a bypass circuit 10 that bypasses the expander 3 and a flow path that passes through the bypass circuit 10 and a flow path that passes through the expander 3 are connected.
  • the switching three-way valve 9 is provided as a refrigerant flow rate adjusting means for adjusting the amount of refrigerant flowing into the expander 3. Further, carbon dioxide as a refrigerant is enclosed.
  • step S13 If it is determined that the detected internal temperature is equal to or higher than the set temperature Tb, the process returns to step S13.On the other hand, if the detected internal temperature is determined to be lower than the set temperature Tb, the process proceeds to step S15, and the interior The compressor 1 is stopped by the controller 23 in order to adjust the cooling capacity of the evaporator 5 arranged in the above. At the same time, the controller 23 controls the three-way valve 9 to switch the three-way valve 9 so that the flow path on the bypass circuit 10 side is opened and the flow path on the expander 3 side is closed.
  • the circuit on the expander 3 side is shut off and the refrigerant is controlled to pass through the bypass circuit 10 side.
  • the amount of refrigerant that dissolves in the oil in the expander 3 can be greatly reduced, and the pressure on the radiator side can be reduced, making the refrigeration cycle equipment safer. Can increase the sex.
  • step S16 the internal temperature detector 17 detects the internal temperature, and in step S17, the internal temperature detected by the internal temperature detector 17 is compared with the set temperature Tb. If it is determined that the detected chamber temperature is lower than the set temperature Tb, the process returns to step S16.On the other hand, if the detected chamber temperature is determined to be equal to or higher than the set temperature Tb, the process returns to step S11 and the three-way valve 9 is turned on. Control.
  • the refrigeration cycle apparatus when used as a refrigerator, the refrigeration cycle apparatus is restarted even when the start / stop of the compressor 1 is repeated in order to converge the internal temperature near the set temperature. Insufficient refrigerant circulation and damage to the sliding surface of the expander 3 can be avoided.
  • an evaporation temperature detector for detecting the evaporation temperature of the refrigerant in the evaporator 5 is provided to replace the internal temperature detector. Is also possible.
  • Embodiment 3 the stop operation of the compressor 1 has been described as the case where the internal temperature detector detects a temperature lower than the set temperature. However, the case where the user selects the stop of the refrigeration cycle apparatus. Is the same.
  • FIG. 8 shows a schematic diagram of a refrigeration cycle apparatus according to Embodiment 4 of the present invention.
  • symbol is attached
  • the description of components common to those in Fig. 1 is omitted.
  • a compressor 1 that compresses the refrigerant, a radiator 2 that radiates the refrigerant discharged from the compressor 1, a first on-off valve 11, and an expander that recovers the expansion energy of the refrigerant 3 and an evaporator 5 for evaporating the refrigerant from the expander 3 are sequentially connected in series via a pipe, and a bypass circuit 13 for bypassing the expander 3 is provided, and a second on-off valve is provided in the bypass circuit 13
  • the first on-off valve 11, the second on-off valve 12, and the bypass circuit 13 function as refrigerant flow rate adjusting means for adjusting the amount of refrigerant flowing into the expander 3.
  • a compressor discharge temperature detector 14 is provided between the compressor 1 and the radiator 2 to detect the discharge temperature of the compressor 1. Carbon dioxide is enclosed as a refrigerant.
  • step S21 With the first on-off valve 11 opened and the second on-off valve 12 closed in step S21, the compressor 1 is started by the controller 22 in step S22. In the next step S23, the discharge temperature of the compressor 1 is detected by the compressor discharge temperature detector 14, and in step S24, the discharge temperature detected by the compressor discharge temperature detector 14 and the set temperature Tc are compared. . If it is determined that the detected discharge temperature is lower than the set temperature Tc, the process returns to step S23.On the other hand, if the detected discharge temperature is determined to be equal to or higher than the set temperature Tc, the process proceeds to step S25, and compressor protection is performed. Therefore, the compressor 1 is stopped by the controller 24. At this time, close control of the first on-off valve 11 and open control of the second on-off valve 12 are performed almost simultaneously.
  • the flow path of the refrigerant flowing into the expander 3 is blocked, and the refrigerant passes through the bypass circuit 13 and flows into the evaporator 5. Therefore, since the refrigerant flowing into the expander 3 can be shut off when the compressor 1 is stopped, the amount of refrigerant dissolved in the oil in the expander 3 can be greatly reduced as compared with the conventional example.
  • step S26 the discharge temperature of the compressor 1 is detected by the compressor discharge temperature detector 14, and in step S27, the discharge temperature detected by the compressor discharge temperature detector 14 is compared with the set temperature Tc. To do. It is judged that the detected discharge temperature is higher than the set temperature Tc. If it is determined that the detected discharge temperature is lower than the set temperature Tc, the process returns to step S21 to control the first on-off valve 11 and the second on-off valve 12.
  • the stop operation of the compressor 1 has been described as a case where the compressor discharge temperature detector 14 detects a set temperature or higher. However, when the user selects the stop of the refrigeration cycle apparatus. The same is true even if you enter.
  • a compressor discharge temperature detector 14 is provided between the compressor 1 and the radiator 2, and based on the discharge temperature of the compressor 1 detected by the compressor discharge temperature detector 14.
  • the compressor 1 and the first and second on-off valves 11 and 12 are controlled, but instead of the compressor discharge temperature detector 14, the compressor discharge pressure is connected between the compressor 1 and the radiator 2. It is also possible to provide a detector and control the compressor 1 and the first and second on-off valves 11 and 12 based on the discharge pressure of the compressor 1 detected by the compressor discharge pressure detector.
  • the refrigerant flowing into the expander 3 based on the discharge temperature of the compressor 1 detected by the compressor discharge temperature detector 14 or the discharge pressure of the compressor 1 detected by the compressor discharge pressure detector.
  • each of these detectors reduces the amount of refrigerant flowing into the expander 3 using a plurality of detectors connected by force if applicable to any of the second to fourth embodiments. Can be reduced.
  • the refrigeration cycle apparatus can reduce the amount of refrigerant that flows into the expander and dissolves in oil when the compressor is stopped, as compared with the conventional example. Insufficient amount of cooling medium and damage to expander sliding surface can be avoided, so it can be used for a wide range of equipment such as water heaters, air conditioners, vending machines, household refrigerators, commercial refrigerators, freezers, ice makers, etc. Applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

 冷媒を圧縮する圧縮機1と、この圧縮機1から吐出される冷媒を放熱させる放熱器2と、この放熱器2からの冷媒を膨張させる膨張機3と、この膨張機3からの冷媒を蒸発させる蒸発器5とを順次直列に接続するとともに、膨張機3に流入する冷媒量を調節する冷媒流量調節手段と、圧縮機1と冷媒流量調節手段を制御する制御器を設け、圧縮機1の停止時において、制御器が冷媒流量調節手段を制御して、膨張機3へ流入する冷媒量を低減させるようにした。

Description

明 細 書
冷凍サイクル装置
技術分野
[0001] 本発明は、冷媒の膨張により発生するエネルギーを有効に回収する冷凍サイクル 装置に関するものである。 背景技術
[0002] 近年、冷凍サイクル装置の更なる高効率化を図る手段として、膨張弁に代えて膨張 機を備え、冷媒が膨張する過程でその膨張エネルギーを膨張機によって電力又は 動力の形で回収し、その回収分だけ圧縮機の入力を低減する動力回収型冷凍サイ クルが提案されている(例えば、特許文献 1参照)。
[0003] 図 10に、特許文献 1に記載された従来の冷凍サイクル装置を示す。圧縮機 1は、電 動機や走行用エンジン等の駆動手段(図示せず)により駆動されて冷媒を吸入圧縮 する。この圧縮機 1から吐出された高温高圧の冷媒は、放熱器 2にて冷却される。そ して、放熱器 2から流出した冷媒は、膨張機 3で減圧膨張される。この膨張機 3は、流 入した冷媒の膨張エネルギーを機械エネルギー(回転エネルギー)に変換し、変換し た機械エネルギー(回転エネルギー)を発電機 4に供給することにより電力を発生さ せる。膨張機 3にて減圧膨張された冷媒は、蒸発器 5で蒸発気化された後に、再び 圧縮機 1へと吸入される。
[0004] このような冷凍サイクル装置は、膨張エネルギーを機械エネルギーに変換して、膨 張機 3に膨張仕事をさせながら冷媒を減圧するので、放熱器 2から流出した冷媒は、 図 11に示すように、等エントロピ線 (c→d)に沿って相変化しながらェンタルピを低下 させる。したがって、冷媒の減圧時に膨張仕事をさせることなく単純に断熱膨張させ る場合 (等ェンタルピ変化させる場合)と比較して、膨張仕事 Aiexp分だけ蒸発器 5 の冷媒入口側と冷媒出口側における冷媒の比ェンタルピ差を増大させることができ るので、冷凍能力を増大させることが可能となる。また、膨張仕事 Aiexp分だけ発電 機 4に機械エネルギー(回転エネルギー)を供給できるので、発電機 4にて(Aiexp分 X発電効率)の電力を発生することが可能となる。そして発生させた電力を圧縮機 1 へ供給することにより、圧縮機 1の駆動に必要な電力の入力を低減することができ、 冷凍サイクルの成績係数 (COP)を向上させることができる。
特許文献 1:特開 2000— 329416号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、圧縮機 1停止時には、圧縮機 1の運転中に生じている冷凍サイクル 中の圧力差によって、冷媒が放熱器 2側から蒸発器 5側に移動する。上記従来の構 成では、放熱器 2側カゝら移動する冷媒が膨張機 3内に流入し、膨張機 3内のオイル溜 まりに存在するオイルと接触する。膨張機 3停止時には大量のオイルがオイル溜まり に貯留されるとともに、特に低温状態では、オイル中に冷媒が大量に溶解する。その ため、冷凍サイクル装置を再起動した際に、冷凍サイクル装置内の冷媒循環量が不 足する。また大量の冷媒の寝込みによって膨張機 3内のオイル粘度が低下する。
[0006] 冷媒循環量が不足すると、蒸発器 5における冷媒圧力が低下することにより、蒸発 器 5の配管及びフィン温度が低下する。そして、温度が 0°C以下になった場合、蒸発 器 5の配管及びフィンに着霜が生じるため、蒸発器 5の通風抵抗が増大し、最悪の場 合、閉塞する恐れがある。蒸発器 5が閉塞した場合、蒸発器 5における風量が大幅に 低下し、熱交換量が極端に低下する。その結果、蒸発器 5における液冷媒を圧縮機 1が吸入、圧縮し、圧縮機 1が損傷する恐れが生じる。また、膨張機 3内のオイルの粘 度が低下することにより、膨張機 3の摺動面に損傷が発生し、膨張機 3の信頼性を低 下させる恐れがある。
[0007] 本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、圧縮 機停止時に膨張機シェル内に流入する冷媒量を低減させ、冷媒の膨張機シェル内 オイルへの溶解量を減少させることにより、より安定した冷凍サイクル装置の起動を実 現させることを目的として!/ヽる。
課題を解決するための手段
[0008] 上記目的を達成するため、本発明に係る冷凍サイクル装置は、冷媒を圧縮する圧 縮機と、この圧縮機力 吐出される冷媒を放熱させる放熱器と、この放熱器力 の冷 媒を膨張させる膨張機と、この膨張機力ゝらの冷媒を蒸発させる蒸発器とを順次直列 に接続するとともに、膨張機に流入する冷媒量を調節する冷媒流量調節手段と、圧 縮機と冷媒流量調節手段を制御する制御器とをさらに備え、圧縮機の停止時におい て、制御器が冷媒流量調節手段を制御して、膨張機へ流入する冷媒量を低減させる ようにしたことを特徴とする。
発明の効果
[0009] 本発明の冷凍サイクル装置によれば、圧縮機停止時に膨張機内に流入する冷媒 量を低減させ、膨張機内のオイルへの冷媒の溶解量を減少させることにより、冷凍サ イタル装置のより安定した起動を実現することができる。
図面の簡単な説明
[0010] [図 1]図 1は本発明の実施の形態 1における冷凍サイクル装置の構成図
[図 2]図 2は図 1の冷凍サイクル装置に使用される内部高圧型膨張機の縦断面図
[図 3]図 3は図 1の冷凍サイクル装置の変形例の構成図
[図 4]図 4は本発明の実施の形態 2における冷凍サイクル装置の構成図
[図 5]図 5は本発明の実施の形態 2における制御フローチャート
[図 6]図 6は本発明の実施の形態 3における冷凍サイクル装置の構成図
[図 7]図 7は本発明の実施の形態 3における制御フローチャート
[図 8]図 8は本発明の実施の形態 4における冷凍サイクル装置の構成図
[図 9]図 9は本発明の実施の形態 4における制御フローチャート
[図 10]図 10は従来の冷凍サイクル装置の構成図
[図 11]図 11は冷凍サイクル装置のモリエル線図
符号の説明
[0011] 1 圧縮機
2 放熱器
3 膨張機
4 発電機
5 蒸発器
6 開閉弁
7 バイパス回路 8 開閉弁
9 三方弁
10 バイパス回路
11 第一の開閉弁
12 第二の開閉弁
13 バイパス回路
14 圧縮機吐出温度検出器
15 開閉弁
16 室内温度検出器
17 庫内温度検出器
21, 22, 23, 24 制御器
発明を実施するための最良の形態
[0012] 以下、本発明の実施の形態について、図面を参照しながら説明する。
実施の形態 1.
図 1は、本発明の実施の形態 1における冷凍サイクル装置の概略図を示すものであ る。なお、背景技術と同一構成については同一符号を付す。
[0013] 図 1に示すように、実施の形態 1に係る冷凍サイクル装置は、圧縮機 1と、放熱器 2と 、開閉弁 6と、冷媒の膨張エネルギーを回収する膨張機 3と、蒸発器 5とを順次直列 に配管を介して接続して構成され、冷媒として二酸化炭素が封入されている。また、 この冷凍サイクル装置は、圧縮機 1と開閉弁 6を制御する制御器 21を備えており、開 閉弁 6は膨張機 3に流入する冷媒量を調節する冷媒流量調節手段として作用する。 なお、本実施の形態では、膨張機 3として内部高圧型の膨張機を用いる。
[0014] 膨張機 3では、冷媒の膨張エネルギーが機械エネルギー(回転エネルギー)に変換 される。変換された機械エネルギー(回転エネルギー)を発電機 4に供給することによ り電力を発生させ、この発生した電力は圧縮機 1の駆動源等に利用される。
[0015] 以上のように構成される冷凍サイクル装置を、家庭用給湯機に適用した場合につ V、て、通常運転時の冷媒のエネルギー状態変化を図 11に示すモリエル線図に基づ いて説明する。 [0016] 低温低圧の冷媒は、圧縮機 1により圧縮されて高温高圧の冷媒となり、圧縮機 1か ら吐出される (a→b)。圧縮機 1から吐出された冷媒は、放熱器 2にて水道水と熱交換 し、水道水を約 80°Cの高温となるまで加熱し、膨張機 3へ流入する (b→c;)。膨張機 3 にお 、て等エントロピ膨張を行 、、機械エネルギーを発生しながら減圧されて蒸発器 5に至る(c→d)。この時、制御器 21により開閉弁 6は全開状態としている。その後、 蒸発器 5内で、屋外の空気と熱交換した冷媒は、ガス状態となり、その後吸込配管を 通って圧縮機 1へと吸 、込まれる(d→a)。
[0017] このような冷媒の状態変化により、放熱器 2を給湯機のみならず、暖房機、自動販 売機等の加熱源として使用する場合は、発電機 4で発生した電力を圧縮機 1の駆動 源として利用することができ、従来の膨張弁やキヤビラリチューブを用いて等ェンタル ピ膨張させる冷凍サイクル装置と比較して、圧縮機 1の動力の入力を低減できるため 、効率が向上する。
[0018] 一方、蒸発器 5を家庭用冷蔵庫、業務用冷蔵庫、冷房機、製氷機、自動販売機等 の冷却源で使用する場合も、発電機 4で発生した電力を圧縮機 1の駆動源として利 用することができ、従来の膨張弁やキヤビラリチューブを用いて等ェンタルピ膨張さ せる冷凍サイクル装置と比較して、圧縮機 1の動力の入力を低減し、且つ冷凍効果( 蒸発器 5の冷媒入口側と冷媒出口側における冷媒の比ェンタルピ差)が増加するた め、さらに効率が向上する。
[0019] また、本実施の形態 1では、冷媒として二酸ィ匕炭素を用いているため、 HFC冷媒を 用いた冷凍サイクルと比較して、冷凍サイクル内での高低圧力差が大きくなり、膨張 機 3における回収エネルギー量を増加させることが可能となり、省エネ効果が大きい。
[0020] 次に、圧縮機 1の停止時の制御方法について説明する。
冷凍サイクル装置の用途を問わず、ユーザが冷凍サイクル装置の停止を選択した 場合、冷凍サイクル装置の停止信号が制御器 21に入力され、制御器 21は、圧縮機 1の運転を停止するとともに、開閉弁 6を閉制御する。開閉弁 6の閉制御によって、圧 縮機 1の運転停止後に、膨張機 3に放熱器 2側から流入する冷媒を遮断することがで きる。また、膨張機 3として内部高圧型膨張機を用いることで、膨張機 3内に蒸発器 5 側から流入する冷媒量を低減することができる。 [0021] 次に、内部高圧型膨張機の 1例を図 2を参照しながら以下説明する。 図 2に示すように、内部高圧型膨張機では、入口側配管 30を通じて密閉容器 31内 に高圧冷媒が吸入される。この高圧冷媒は、吸入孔 32を通じて第 1シリンダ 33内に 流入し、第 1シリンダ 33内において膨張する。この際、冷媒の膨張力によって第 1口 ーラ 34が回転する。第 1シリンダ 33内で膨張した冷媒は、連通孔 35を通じて第 2シリ ンダ 36内に流れ込み、第 2シリンダ 36内で更に膨張し、冷媒の膨張力によって第 2口 ーラ 37が回転する。そして、第 2シリンダ 36内で膨張した低圧冷媒は、吐出孔 38及 び吐出孔 39を経て、出口側配管 40から吐出される。
[0022] 上述したように第 1ローラ 34及び第 2ローラ 37が回転すると、第 1ローラ 34内及び 第 2ローラ 37内の第 1偏心部 41及び第 2偏心部 42が回転し、それに従ってシャフト 4 3も回転する。その結果、発電機 4の回転子 4aが回転して発電が行われる。すなわち 、冷媒の膨張エネルギーが電力として回収される。
[0023] すなわち、上記構成の内部高圧型膨張機の場合、密閉容器 31は高圧冷媒により 満たされており、蒸発器 5と連通する出口側配管 40は、膨張機の機構上高圧冷媒と はほぼ遮断された状態にあるため、圧縮機 1の停止時に開閉弁 6を閉制御することに より膨張機 3内に流入する冷媒量を低減でき、冷凍サイクル装置再起動時の冷媒循 環量の不足及び膨張機摺動面の損傷を防止することができる。
[0024] 特に、冷凍サイクル装置の停止時間が長!、場合には、冷媒はオイル中に飽和する まで溶解するため、冷凍サイクル装置を長時間にわたって停止させる場合において 、その効果は顕著になる。
[0025] 圧縮機 1は、電流停止時点で、瞬間的に停止するため、圧縮機 1に停止信号を与 えると同時に、開閉弁 6の始動命令を出しても、圧縮機 1の吐出圧力が異常上昇する などの、安全性に関わる問題が発生する恐れはない。したがって、圧縮機 1の停止制 御と開閉弁 6の閉制御を同時に行うことが望ましいが、開閉弁 6の閉動作開始が、圧 縮機 1への電流停止力 膨張機 3内のオイルへの冷媒の溶解が飽和するまでの間で あれば、冷媒のオイルへの溶解量を低減する効果がある。したがって、開閉弁 6とし ては、例えば電磁弁などの急閉可能な弁が最も望ましいが、例えば膨張弁などの緩 閉タイプでも効果がある。 [0026] なお、本実施の形態 1では膨張機 3で冷媒の膨張エネルギーを機械エネルギー( 回転エネルギー)に変換し、その変換した機械エネルギー(回転エネルギー)を発電 機 4に供給して電力を発生させる構成としたが、圧縮機 1と膨張機 3のシャフトを一軸 で直結し、膨張エネルギーを機械エネルギー(回転エネルギー)として直接的に回収 する構成とした場合でも同様の効果が得られる。
[0027] また、本実施の形態 1では冷媒として二酸ィ匕炭素を用いたが、二酸化炭素以外の 自然冷媒 (例えば、アンモニア冷媒ゃ HC冷媒)や HFC冷媒を用いた場合でも同様 の効果が得られることは言うまでもな 、。
[0028] また、本実施の形態 1では膨張機 3として内部高圧型膨張機を用いることで、膨張 機 3内に蒸発器 5側力 流入する冷媒量を低減しているが、図 3に示すように、膨張 機 3の低圧側、すなわち膨張機 3と蒸発器 5との間に開閉弁 15をさらに配置すると、 圧縮機 1の停止時に膨張機 3前後の二つの開閉弁 6, 15を閉制御することにより膨 張機 3内に流入する冷媒を完全に遮断することができる。
[0029] 本発明においては、膨張機 3として内部低圧型膨張機を用いることも可能である。
内部低圧型膨張機の場合、図 2の構成において、入口側配管 30と第 1シリンダ 33が 直結されており、吐出孔 39から密閉容器 31内に低圧冷媒が吐出されることから、密 閉容器 31は低圧冷媒により満たされており、放熱器 2と連通する入口側配管 30は、 膨張機の機構上低圧冷媒とはほぼ遮断された状態にある。したがって、開閉弁 15を 膨張機 3と蒸発器 5との間に配置し、圧縮機 1の停止時に開閉弁 15を閉制御すること により膨張機 3内に流入する冷媒量を低減でき、冷凍サイクル装置再起動時の冷媒 循環量の不足及び膨張機摺動面の損傷を防止することができる。
[0030] 当然のことながら、内部低圧型膨張機を用いた場合でも、図 3に示すように、膨張 機 3の高圧側、すなわち膨張機 3と放熱器 2との間に開閉弁 6をさらに配置すると、圧 縮機 1の停止時に膨張機 3前後の二つの開閉弁 6, 15を閉制御することにより膨張 機 3内に流入する冷媒を完全に遮断することができる。
[0031] また、本実施の形態 1では圧縮機 1の停止動作を、ユーザが冷凍サイクル装置の停 止を選択した場合として説明したが、例えば暖房機の場合に室内温度検出器が設 定温度以上を検出して圧縮機 1を停止する場合など、圧縮機 1の制御ルールに基づ V、て圧縮機 1を停止する場合にっ 、ても同様である。
[0032] 実施の形態 2.
図 4は、本発明の実施の形態 2における冷凍サイクル装置の概略図を示すものであ る。なお、背景技術と同一構成については同一符号を付す。また、図 1と共通の構成 要素については説明を省略する。
[0033] 図 4において、冷媒を圧縮する圧縮機 1と、この圧縮機 1から吐出される冷媒を放熱 させる放熱器 2と、冷媒の膨張エネルギーを回収する膨張機 3と、この膨張機 3からの 冷媒を蒸発させる蒸発器 5とを順次直列に配管を介して接続し、膨張機 3をバイパス するバイパス回路 7と、このバイパス回路 7に配設された開閉弁 8を、膨張機 3に流入 する冷媒量を調節する冷媒流量調節手段として備えた構成である。また、冷媒として 二酸化炭素が封入されて ヽる。
[0034] 次に、圧縮機 1の停止時の制御方法について、図 5の制御フローチャートを参照し ながら説明する。
[0035] 例えば、暖房機の場合、ステップ S1において開閉弁 8を閉止した状態で、ステップ S 2にお 、て制御器 22により圧縮機 1を起動する。次のステップ S 3にお 、て放熱器 2 の近傍に取り付けられた室内温度検出器 (周囲温度検出器) 16により室内温度を検 出し、ステップ S4において室内温度検出器 16により検出された室内温度と設定温度 Taとを比較する。検出された室内温度が設定温度 Taより低いと判断されると、ステツ プ S3に戻る一方、検出された室内温度が設定温度 Ta以上と判断されると、ステップ S5に移行して、室内側に配置された放熱器 2の加熱能力を調整するために、制御器 22により圧縮機 1を停止させる。また、このときほぼ同時に、制御器 22により開閉弁 8 の開制御を行う。
[0036] バイパス回路 7と比較して膨張機 3側の回路は流路抵抗が大きいため、冷媒はバイ パス回路 7側に優先的に流入する。つまり、膨張機 3内に少量の冷媒は流入するもの の、ほとんどの冷媒はバイパス回路 7側を通過するため、膨張機 3に流入する冷媒量 を低減できるば力りでなぐ放熱側圧力を低下させることができ、冷凍サイクル装置の 安全性を高めることができる。
[0037] その後、ステップ S6において室内温度検出器 16により室内温度を検出し、ステツ プ S7において室内温度検出器 16により検出された室内温度と設定温度 Taとを比較 する。検出された室内温度が設定温度 Ta以上と判断されると、ステップ S6に戻る一 方、検出された室内温度が設定温度 Taより低いと判断されると、ステップ S1に戻って 開閉弁 8を閉制御する。
[0038] 本構成によって、冷凍サイクル装置を暖房機として用いた場合、室内温度を設定温 度近傍に収束させるために、圧縮機 1の起動 ·停止を繰り返したときでも、冷凍サイク ル装置再起動時の冷媒循環量不足及び膨張機 3の摺動面の損傷を回避できる。ま た、本構成によって、最適冷媒循環量を維持できることから、冷凍サイクル装置の効 率低下を回避でき、従来例と比較して省エネの効果もある。
[0039] なお、本実施の形態 2では、圧縮機 1の停止動作を、室内温度検出器 16が設定温 度 Ta以上を検出して圧縮機 1を停止する場合として説明したが、ユーザが冷凍サイ クル装置の停止を選択した場合にっ 、ても同様である。
[0040] 実施の形態 3.
図 6は、本発明の実施の形態 3における冷凍サイクル装置の概略図を示すものであ る。なお、背景技術と同一構成については同一符号を付す。また、図 1と共通の構成 要素については説明を省略する。
[0041] 図 6において、冷媒を圧縮する圧縮機 1と、この圧縮機から吐出される冷媒を放熱さ せる放熱器 2と、冷媒の膨張エネルギーを回収する膨張機 3と、この膨張機 3からの 冷媒を蒸発させる蒸発器 5とを順次直列に配管を介して接続し、膨張機 3をバイパス するバイパス回路 10と、バイパス回路 10を経由する流路と膨張機 3を経由する流路 とを切り換える三方弁 9とを、膨張機 3に流入する冷媒量を調節する冷媒流量調節手 段として備えた構成である。また、冷媒として二酸ィ匕炭素が封入されている。
[0042] 次に、圧縮機 1の停止時の制御方法について、図 7の制御フローチャートを参照し ながら説明する。
[0043] 例えば、冷凍機の場合、ステップ S11において、バイパス回路 10側の流路を閉止 し膨張機 3側の流路を開放するように三方弁 9を制御した状態で、ステップ S12にお V、て制御器 23により圧縮機 1を起動する。ステップ S 13にお 、て蒸発器 5の近傍に 取り付けられた庫内温度検出器 (周囲温度検出器) 17により庫内温度を検出し、ステ ップ S14において庫内温度検出器 17により検出された庫内温度と設定温度 Tbとを 比較する。検出された庫内温度が設定温度 Tb以上と判断されると、ステップ S13に 戻る一方、検出された庫内温度が設定温度 Tbより低いと判断されると、ステップ S15 に移行して、庫内側に配置された蒸発器 5の冷却能力を調整するために、制御器 23 により圧縮機 1を停止させる。また、このときほぼ同時に、制御器 23により三方弁 9を 制御して、バイパス回路 10側の流路を開放し膨張機 3側の流路を閉止するように三 方弁 9を切り換える。
[0044] このように、圧縮機 1の停止時は膨張機 3側の回路を遮断し、バイパス回路 10側に 冷媒を通過させるように制御することにより、圧縮機 1の停止時に膨張機 3内に流入 する冷媒を遮断できるので、従来例と比較して、膨張機 3内のオイルに溶解する冷媒 量を大幅に低減できるとともに、放熱器側圧力も低下させることでき、冷凍サイクル装 置の安全性を高めることができる。
[0045] その後、ステップ S16において庫内温度検出器 17により庫内温度を検出し、ステツ プ S17において庫内温度検出器 17により検出された庫内温度と設定温度 Tbとを比 較する。検出された庫内温度が設定温度 Tbより低いと判断されると、ステップ S16に 戻る一方、検出された庫内温度が設定温度 Tb以上と判断されると、ステップ S11に 戻って三方弁 9を制御する。
[0046] したがって、冷凍サイクル装置を冷凍機として用いた場合、庫内温度を設定温度近 傍に収束させるために、圧縮機 1の起動 ·停止を繰り返したときでも、冷凍サイクル装 置再起動時の冷媒循環量不足及び膨張機 3の摺動面の損傷を回避できる。
[0047] なお、本実施の形態 3では、庫内温度を検出しているが、蒸発器 5における冷媒の 蒸発温度を検出する蒸発温度検出器を設け、庫内温度検出器の代用とすることも可 能である。
[0048] また、本実施の形態 3では圧縮機 1の停止動作を、庫内温度検出器が設定温度以 下を検出した場合として説明したが、ユーザが冷凍サイクル装置の停止を選択した 場合についても同様である。
[0049] 実施の形態 4.
図 8は、本発明の実施の形態 4における冷凍サイクル装置の概略図を示すものであ る。なお、背景技術と同一構成については同一符号を付す。また、図 1と共通の構成 要素については説明を省略する。
[0050] 図 8において、冷媒を圧縮する圧縮機 1と、この圧縮機 1から吐出される冷媒を放熱 させる放熱器 2と、第一の開閉弁 11と、冷媒の膨張エネルギーを回収する膨張機 3と 、この膨張機 3からの冷媒を蒸発させる蒸発器 5とを順次直列に配管を介して接続し 、膨張機 3をバイパスするバイパス回路 13を設けるとともに、バイパス回路 13に第二 の開閉弁 12を備えた構成である。本実施の形態においては、第一の開閉弁 11と第 二の開閉弁 12とバイパス回路 13が、膨張機 3に流入する冷媒量を調節する冷媒流 量調節手段として作用する。また、圧縮機吐出温度検出器 14を圧縮機 1と放熱器 2 間に設け、圧縮機 1の吐出温度を検出する。また、冷媒として二酸化炭素が封入され ている。
[0051] 次に、圧縮機 1の停止時の制御方法について、図 9の制御フローチャートを参照し ながら説明する。
[0052] ステップ S21において第一の開閉弁 11を開放し第二の開閉弁 12を閉止した状態 で、ステップ S22において制御器 22により圧縮機 1を起動する。次のステップ S23に おいて圧縮機吐出温度検出器 14により圧縮機 1の吐出温度を検出し、ステップ S24 において圧縮機吐出温度検出器 14により検出された吐出温度と設定温度 Tcとを比 較する。検出された吐出温度が設定温度 Tcより低いと判断されると、ステップ S23に 戻る一方、検出された吐出温度が設定温度 Tc以上と判断されると、ステップ S25に 移行して、圧縮機保護のため、制御器 24により圧縮機 1を停止させる。また、このとき ほぼ同時に、第一の開閉弁 11の閉制御と、第二の開閉弁 12の開制御を行う。
[0053] これにより、膨張機 3に流入する冷媒の流路が遮断され、冷媒はバイパス回路 13を 通過し、蒸発器 5に流入する。したがって、圧縮機 1の停止時に膨張機 3内に流入す る冷媒を遮断できるので、従来例と比較して、膨張機 3内のオイルに溶解する冷媒量 を大幅に低減できる。
[0054] その後、ステップ S26において圧縮機吐出温度検出器 14により圧縮機 1の吐出温 度を検出し、ステップ S27において圧縮機吐出温度検出器 14により検出された吐出 温度と設定温度 Tcとを比較する。検出された吐出温度が設定温度 Tc以上と判断さ れると、ステップ S26に戻る一方、検出された吐出温度が設定温度 Tcより低いと判断 されると、ステップ S21に戻って第一の開閉弁 11及び第二の開閉弁 12を制御する。
[0055] 本構成によって、冷凍サイクル装置が圧縮機 1の保護制御を行ったときでも、冷凍 サイクル装置再起動時の冷媒循環量不足及び膨張機 3の摺動面の損傷を回避でき る。
[0056] なお、本実施の形態 4では圧縮機 1の停止動作を、圧縮機吐出温度検出器 14が 設定温度以上を検出した場合として説明したが、ユーザが冷凍サイクル装置の停止 を選択した場合にっ ヽても同様である。
[0057] また、本実施の形態 4において、圧縮機 1と放熱器 2間に圧縮機吐出温度検出器 1 4を設け、圧縮機吐出温度検出器 14により検出した圧縮機 1の吐出温度に基づいて 、圧縮機 1と第一及び第二の開閉弁 11, 12を制御するようにしたが、圧縮機吐出温 度検出器 14に代えて、圧縮機 1と放熱器 2間に圧縮機吐出圧力検出器を設け、圧 縮機吐出圧力検出器により検出した圧縮機 1の吐出圧力に基づいて、圧縮機 1と第 一及び第二の開閉弁 11, 12を制御することもできる。
[0058] また、上記実施の形態 2においては室内温度検出器 16により検出した室内温度に 基づいて、上記実施の形態 3においては庫内温度検出器 17により検出した庫内温 度に基づいて、上記実施の形態 4においては圧縮機吐出温度検出器 14により検出 した圧縮機 1の吐出温度あるいは圧縮機吐出圧力検出器により検出した圧縮機 1の 吐出圧力に基づいて、膨張機 3に流入する冷媒量を低減するようにしたが、これらの 検出器の各々は実施の形態 2乃至 4のいずれにも適用できるば力りでなぐ複数の検 出器を用いて膨張機 3に流入する冷媒量を低減することができる。
産業上の利用可能性
[0059] 以上のように、本発明に係る冷凍サイクル装置は、圧縮機停止時に膨張機内に流 入してオイルに溶解する冷媒量を従来例と比較して低減でき、圧縮機再起動時の冷 媒循環量不足及び膨張機摺動面の損傷を回避できるので、給湯機、冷暖房空調機 器、自動販売機、家庭用冷蔵庫、業務用冷蔵庫、冷凍庫、製氷機等、幅広い機器へ の用途に適用できる。

Claims

請求の範囲
[1] 冷媒を圧縮する圧縮機と、
前記圧縮機から吐出される冷媒を放熱させる放熱器と、
前記放熱器からの冷媒を膨張させる膨張機と、
前記膨張機力ゝらの冷媒を蒸発させる蒸発器とを順次直列に接続するとともに、 前記膨張機に流入する冷媒量を調節する冷媒流量調節手段と、
前記圧縮機と前記冷媒流量調節手段を制御する制御器とをさらに備え、 前記圧縮機の停止時にぉ 、て、前記制御器が前記冷媒流量調節手段を制御して、 前記膨張機へ流入する冷媒量を低減させるようにした冷凍サイクル装置。
[2] 前記膨張機として内部高圧型膨張機を用い、前記冷媒流量調節手段が、前記膨 張機の上流側と前記放熱器の下流側との間に配設された第一の開閉弁を有し、前 記圧縮機の停止時に前記第一の開閉弁を閉制御するようにした請求項 1に記載の 冷凍サイクル装置。
[3] 前記冷媒流量調節手段が、前記蒸発器の上流側と前記膨張機の下流側との間に 配設された第二の開閉弁を有し、前記圧縮機の停止時に前記第二の開閉弁を閉制 御するようにした請求項 2に記載の冷凍サイクル装置。
[4] 前記膨張機として内部低圧型膨張機を用い、前記冷媒流量調節手段が、前記膨 張機の下流側と前記蒸発器の上流側との間に配設された開閉弁を有し、前記圧縮 機の停止時に前記開閉弁を閉制御するようにした請求項 1に記載の冷凍サイクル装 置。
[5] 前記冷媒流量調節手段が、前記膨張機をバイパスするバイパス回路と、前記バイ パス回路に配設された開閉弁を有し、前記圧縮機の停止時に前記開閉弁を開制御 するようにした請求項 1に記載の冷凍サイクル装置。
[6] 前記冷媒流量調節手段が、前記膨張機をバイパスするバイパス回路と、前記バイ ノ ス回路を経由する流路と前記膨張機を経由する流路とを切り換える三方弁を有し 、前記圧縮機の停止時に前記三方弁を制御して、前記バイパス回路側の流路を開 放し前記膨張機側の流路を閉止するようにした請求項 1に記載の冷凍サイクル装置
[7] 前記冷媒流量調節手段が、前記膨張機をバイパスするバイパス回路と、前記バイ パス回路の分岐点と前記膨張機との間に配設された第一の開閉弁と、前記バイパス 回路に配設された第二の開閉弁を有し、前記圧縮機の停止時に前記第一の開閉弁 を閉制御して前記第二の開閉弁を開制御するようにした請求項 1に記載の冷凍サイ クル装置。
[8] 前記放熱器及び前記蒸発器の少なくとも一方に周囲温度を検出する周囲温度検 出器を設け、前記周囲温度検出器が検出した周囲温度に基づいて、前記制御器が 前記冷媒流量調節手段を制御するようにした請求項 5乃至 7の 、ずれか 1項に記載 の冷凍サイクル装置。
[9] 前記圧縮機の吐出温度を検出する圧縮機吐出温度検出器及び前記圧縮機の吐 出圧力を検出する圧縮機吐出圧力検出器の少なくとも一方を設け、前記圧縮機吐 出温度検出器が検出した前記圧縮機の吐出温度あるいは前記圧縮機吐出圧力検 出器が検出した前記圧縮機の吐出圧力に基づいて、前記制御器が前記冷媒流量 調節手段を制御するようにした請求項 5乃至 7の 、ずれか 1項に記載の冷凍サイクル 装置。
PCT/JP2006/308875 2005-05-06 2006-04-27 冷凍サイクル装置 WO2006120922A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007528230A JP4912308B2 (ja) 2005-05-06 2006-04-27 冷凍サイクル装置
US11/913,400 US7886550B2 (en) 2005-05-06 2006-04-27 Refrigerating machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005135060 2005-05-06
JP2005-135060 2005-05-06

Publications (1)

Publication Number Publication Date
WO2006120922A1 true WO2006120922A1 (ja) 2006-11-16

Family

ID=37396431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308875 WO2006120922A1 (ja) 2005-05-06 2006-04-27 冷凍サイクル装置

Country Status (4)

Country Link
US (1) US7886550B2 (ja)
JP (1) JP4912308B2 (ja)
CN (1) CN100575817C (ja)
WO (1) WO2006120922A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261568A (ja) * 2007-04-12 2008-10-30 Daikin Ind Ltd 膨張弁及び膨張弁を備えた動力回収装置
WO2009098900A1 (ja) * 2008-02-06 2009-08-13 Daikin Industries, Ltd. 冷凍装置
WO2009098899A1 (ja) * 2008-02-06 2009-08-13 Daikin Industries, Ltd. 冷凍装置
JP2010065855A (ja) * 2008-09-08 2010-03-25 Kobe Steel Ltd アンモニア冷凍装置
JP2010249457A (ja) * 2009-04-17 2010-11-04 Fuji Electric Retail Systems Co Ltd 冷媒回路装置
WO2011121963A1 (ja) * 2010-03-31 2011-10-06 ダイキン工業株式会社 冷凍装置
WO2012042698A1 (ja) * 2010-09-29 2012-04-05 三菱電機株式会社 冷凍空調装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115359A (ja) * 2007-11-05 2009-05-28 Daikin Ind Ltd 空調制御装置、空気調和装置および空調制御方法
WO2009142067A1 (ja) * 2008-05-22 2009-11-26 三菱電機株式会社 冷凍サイクル装置
JPWO2010073586A1 (ja) * 2008-12-22 2012-06-07 パナソニック株式会社 冷凍サイクル装置
CN102213463B (zh) * 2011-05-26 2013-11-06 广东美的电器股份有限公司 使用可燃冷媒的空调器及其控制方法
US20140075941A1 (en) * 2012-09-14 2014-03-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Power generating apparatus and operation method thereof
CN103838264B (zh) * 2012-11-22 2016-05-18 襄樊新四五印染有限责任公司 一种网带蒸发器液位防堵自控装置
WO2015140873A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 冷凍装置、及び、冷凍装置の制御方法
CN104075522A (zh) * 2014-07-10 2014-10-01 安徽红叶节能电器科技有限公司 一种二氧化碳家用电冰箱循环风机的能量供给方法
CN104061737A (zh) * 2014-07-10 2014-09-24 安徽红叶节能电器科技有限公司 一种二氧化碳家用电冰箱
CN104180585A (zh) * 2014-09-15 2014-12-03 安徽红叶节能电器科技有限公司 一种二氧化碳家用电冰箱循环风机的能量供给方法
CN111829218A (zh) * 2019-04-18 2020-10-27 开利公司 用于防泄漏的制冷剂***操作顺序

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921461U (ja) * 1982-07-30 1984-02-09 株式会社東芝 冷凍サイクル装置
JPH0646260U (ja) * 1992-11-19 1994-06-24 ホシザキ電機株式会社 冷却装置
JPH0719678A (ja) * 1993-06-30 1995-01-20 Toshiba Corp 空気調和機の制御装置
JPH0741359U (ja) * 1993-12-22 1995-07-21 カルソニック株式会社 自動車用空気調和装置
JPH11132577A (ja) * 1997-10-28 1999-05-21 Toshiba Corp 冷蔵庫の冷凍サイクル
JP2001116371A (ja) * 1999-10-20 2001-04-27 Daikin Ind Ltd 空気調和装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2434593A (en) * 1946-02-02 1948-01-13 Carrier Corp Refrigeration system including a load control apparatus
US3934424A (en) * 1973-12-07 1976-01-27 Enserch Corporation Refrigerant expander compressor
JPS6025222B2 (ja) 1982-07-26 1985-06-17 本田技研工業株式会社 繊維強化金属材料の加圧鋳造方法
JPH0448160A (ja) * 1990-06-14 1992-02-18 Hitachi Ltd 冷凍サイクル装置
JPH05106922A (ja) * 1991-10-18 1993-04-27 Hitachi Ltd 冷凍装置の制御方式
JPH0646260A (ja) 1992-07-23 1994-02-18 Fuji Xerox Co Ltd 画像読み取り装置
JPH0741359A (ja) 1993-07-30 1995-02-10 Asahi Glass Co Ltd 静電チャック用セラミックス及びその製造用組成物
JP4207340B2 (ja) * 1999-03-15 2009-01-14 株式会社デンソー 冷凍サイクル
US6272871B1 (en) * 2000-03-30 2001-08-14 Nissan Technical Center North America Air conditioner with energy recovery device
US6595024B1 (en) * 2002-06-25 2003-07-22 Carrier Corporation Expressor capacity control
US6913076B1 (en) * 2002-07-17 2005-07-05 Energent Corporation High temperature heat pump
US6662576B1 (en) * 2002-09-23 2003-12-16 Vai Holdings Llc Refrigeration system with de-superheating bypass
JP4090317B2 (ja) * 2002-09-25 2008-05-28 株式会社テージーケー 電磁弁付膨張弁
EP1607699B1 (en) * 2004-06-10 2008-05-14 Micheletti Impianti S.R.L. Refrigeration plant
NL1026728C2 (nl) * 2004-07-26 2006-01-31 Antonie Bonte Verbetering van koelsystemen.
JP2009052752A (ja) * 2005-12-19 2009-03-12 Panasonic Corp 冷凍サイクル装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921461U (ja) * 1982-07-30 1984-02-09 株式会社東芝 冷凍サイクル装置
JPH0646260U (ja) * 1992-11-19 1994-06-24 ホシザキ電機株式会社 冷却装置
JPH0719678A (ja) * 1993-06-30 1995-01-20 Toshiba Corp 空気調和機の制御装置
JPH0741359U (ja) * 1993-12-22 1995-07-21 カルソニック株式会社 自動車用空気調和装置
JPH11132577A (ja) * 1997-10-28 1999-05-21 Toshiba Corp 冷蔵庫の冷凍サイクル
JP2001116371A (ja) * 1999-10-20 2001-04-27 Daikin Ind Ltd 空気調和装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261568A (ja) * 2007-04-12 2008-10-30 Daikin Ind Ltd 膨張弁及び膨張弁を備えた動力回収装置
WO2009098900A1 (ja) * 2008-02-06 2009-08-13 Daikin Industries, Ltd. 冷凍装置
WO2009098899A1 (ja) * 2008-02-06 2009-08-13 Daikin Industries, Ltd. 冷凍装置
JP2010065855A (ja) * 2008-09-08 2010-03-25 Kobe Steel Ltd アンモニア冷凍装置
JP2010249457A (ja) * 2009-04-17 2010-11-04 Fuji Electric Retail Systems Co Ltd 冷媒回路装置
WO2011121963A1 (ja) * 2010-03-31 2011-10-06 ダイキン工業株式会社 冷凍装置
JP2011214779A (ja) * 2010-03-31 2011-10-27 Daikin Industries Ltd 冷凍装置
US8966920B2 (en) 2010-03-31 2015-03-03 Daikin Industries, Ltd. Refrigeration system
WO2012042698A1 (ja) * 2010-09-29 2012-04-05 三菱電機株式会社 冷凍空調装置
JPWO2012042698A1 (ja) * 2010-09-29 2014-02-03 三菱電機株式会社 冷凍空調装置

Also Published As

Publication number Publication date
CN100575817C (zh) 2009-12-30
CN101171465A (zh) 2008-04-30
JP4912308B2 (ja) 2012-04-11
US20090031738A1 (en) 2009-02-05
JPWO2006120922A1 (ja) 2008-12-18
US7886550B2 (en) 2011-02-15

Similar Documents

Publication Publication Date Title
JP4912308B2 (ja) 冷凍サイクル装置
JP4053082B2 (ja) 冷凍サイクル装置
US9395105B2 (en) Refrigeration cycle device
EP2381180B1 (en) Heat pump type hot water supply apparatus
KR101192346B1 (ko) 히트 펌프식 급탕장치
EP2306120B1 (en) Refrigerating cycle device
KR101155497B1 (ko) 히트펌프식 급탕장치
WO2015045247A1 (ja) ヒートポンプシステム、及び、ヒートポンプ式給湯器
US9222706B2 (en) Refrigeration cycle apparatus and operating method of same
JP4317793B2 (ja) 冷却システム
JP6057871B2 (ja) ヒートポンプシステム、及び、ヒートポンプ式給湯器
WO2006112157A1 (ja) 冷凍サイクル装置及びその運転方法
RU2432532C2 (ru) Способ управления холодильником и холодильник с возможностью временной задержки включения компрессора
JP2005214575A (ja) 冷凍装置
JP2005214444A (ja) 冷凍装置
JP5320382B2 (ja) 空気冷媒式冷凍装置のデフロスト方法及び装置
JP5150300B2 (ja) ヒートポンプ式給湯装置
JP2005214442A (ja) 冷凍装置
JP2006194537A (ja) ヒートポンプ装置
JP2006162186A (ja) 冷凍サイクル装置
JP6029569B2 (ja) ヒートポンプシステム、及び、ヒートポンプ式給湯器
JP2004225928A (ja) 冷凍装置
JP2007285571A (ja) ヒートポンプ装置
JP2008224168A (ja) 冷凍サイクル装置およびその運転方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680015476.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007528230

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11913400

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732426

Country of ref document: EP

Kind code of ref document: A1