WO2006117447A1 - Procede de realisation d'une paroi, en particulier d'un micro-echangeur thermique, et micro-echangeur thermique, comprenant en particulier des nanotubes - Google Patents

Procede de realisation d'une paroi, en particulier d'un micro-echangeur thermique, et micro-echangeur thermique, comprenant en particulier des nanotubes Download PDF

Info

Publication number
WO2006117447A1
WO2006117447A1 PCT/FR2006/000862 FR2006000862W WO2006117447A1 WO 2006117447 A1 WO2006117447 A1 WO 2006117447A1 FR 2006000862 W FR2006000862 W FR 2006000862W WO 2006117447 A1 WO2006117447 A1 WO 2006117447A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
particles
wall
substrate
heat exchanger
Prior art date
Application number
PCT/FR2006/000862
Other languages
English (en)
Inventor
André Bontemps
Frédéric Ayela
Alain Marechal
Thierry Fournier
Original Assignee
Universite Joseph Fourier
Commissariat A L'energie Atomique
Centre National De La Recherche Scientifique (Cnrs(
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Joseph Fourier, Commissariat A L'energie Atomique, Centre National De La Recherche Scientifique (Cnrs( filed Critical Universite Joseph Fourier
Priority to US11/919,536 priority Critical patent/US20100018686A1/en
Priority to EP06755426A priority patent/EP1875502A1/fr
Publication of WO2006117447A1 publication Critical patent/WO2006117447A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • Process for producing a wall in particular a micro-heat exchanger, and a micro-heat exchanger, in particular comprising nanotubes
  • the present invention relates to the field of semiconductor devices or micro-systems.
  • the solution generally proposed to evacuate the heat released is the use of fans installed near the devices and systems for the purpose of cooling them overall.
  • the present invention firstly relates to a method of producing a wall, in particular a micro-heat exchanger for semiconductor devices or micro-systems.
  • this method consists in: choosing a matrix material capable of passing from a non-solid state to a hardened state under the effect of a state change treatment and, in this hardened state, be altered by the effect of an alteration treatment; and selecting particles of material substantially insensitive to said change of state process and said alteration treatment
  • the process according to the invention comprises: mixing a quantity of particles with a quantity of the matrix material in the non-solid state; depositing said mixture, at least in part, on a surface of a substrate; applying said change of state treatment to the deposited mixture to its cured state; applying said alteration treatment to a portion of the volume of the deposited mixture hardened and remove this part of volume or the complementary volume part.
  • the wall of the remaining volume portion of the hardened deposited mixture corresponding to the interface between the remaining volume portion and the removed volume portion, is advantageously provided with particles partially anchored in this remaining volume portion. and constituting asperities.
  • said mixture is preferably obtained by stirring or stirring.
  • said matrix material is preferably a photosensitive thermosetting resin.
  • said particles are preferably nanotubes.
  • this method preferably consists of: depositing a layer of the mixture on a surface of a substrate; applying said state change processing to said layer to become cured; and applying said weathering treatment to at least one zone of said hardened layer and removing the volume of that zone or complementary zone.
  • the method may advantageously consist in applying said alteration treatment to the surface of said substrate.
  • the method may advantageously consist in applying said alteration treatment to a superficial portion of said layer.
  • the present invention is also obj and a micro-heat exchanger,
  • this micro-heat exchanger may advantageously comprise a substrate to be cooled at least locally, a layer formed on at least a portion of a surface of the substrate and particles embedded in said layer, some of which have a portion anchored in a wall of said layer and a portion projecting from said wall.
  • this micro-heat exchanger can advantageously comprise a substrate to be cooled at least locally, a layer formed on at least a portion of a surface of the substrate and having at least one trench, at least one cover covering said trench, so as to constitute at least one channel and particles embedded in said layer, some of which present parts anchored in the wall of this channel and projecting parts in this channel.
  • FIG. 1 represents a section of a first semiconductor device or micro-system according to FIG. invention
  • FIG. 1 shows an enlarged local section of the device of Figure 1;
  • FIG. 8 shows a section of a second semiconductor device or micro-system according to the invention.
  • a semiconductor device or micro-system 1 which comprises a support consisting for example of a substrate 2 incorporating electronic and / or optical components or other.
  • a layer 4 On one side 3 of this substrate 2, is formed a layer 4 in which is formed a trench 5 with side walls 6 perpendicular to the face 3, or several trenches, so that the layer 4 has areas 4a covering the substrate 2 .
  • the trench 5 is covered with an attached cover 7 fixed on the outer face of the layer 4, so as to transform this trench 5 into a channel 8.
  • one or more covers may be provided.
  • the parts 9a of the particles 9 constitute asperities forming extensions of the surfaces of the walls 6 and contribute to a better heat transfer between the layer 4 and the fluid flowing in the channel 8.
  • the layer 4 provided with the cover 7 constitutes a micro-exchanger. reported on the substrate 2.
  • a matrix material which is capable of passing from a non-solid state to a hardened state under the effect of a change of state treatment and, in this hardened state, to be altered under the effect of an alteration treatment.
  • This matrix material may advantageously be a photosensitive thermosetting resin 10.
  • nanoparticles are chosen, for example carbon nanotubes, which are substantially insensitive to said state change treatment and to said alteration treatment.
  • a quantity of nanotubes 9 in a liquid or solvent 12, physically and chemically neutral vis-à-vis these nanotubes 9 and resin 10, is dispersed in a container 11.
  • This step is performed by ensuring mechanical or ultrasonic agitation by any known means.
  • a quantity of resin 10 is gradually added in the non-solid state.
  • This step is performed by ensuring mechanical mixing by any known means.
  • a mixture 13 is then obtained in which the nanotubes 9 are preferably distributed homogeneously in the resin 10 in the non-solid state.
  • the mixture 13 is spread on the face 3 of the substrate 2, for example using the centrifugal force, so as to obtain a substantially uniform layer 4, in which are substantially substantially distributed and oriented randomly nanotubes 9.
  • the layer 4 is cured by a suitable heat treatment.
  • a fourth step shown in FIGS. 6 and 7 local insolation of the portion 4a of the layer 4 is carried out through a mask 14, in the zones that do not correspond to the trench 5 to be produced.
  • the volume of the part 4b of the layer 4 corresponding to the trench 5 is removed, for example by immersion in a chemical developer, forming the zones 4a of the remaining volume of the layer 4 and the trench 5.
  • the matrix material is a positive resin, it would precede the opposite way.
  • the walls 6 of the remaining part 4a of the layer 4 remain, as indicated above, nanotubes 9 oriented randomly, these nanotubes 9 having parts 9a anchored in the material constituting this layer and exposed parts 9b projecting from these walls 6.
  • the cover 7 can then be installed.
  • the layer 4 could have a thickness equal to about 200 microns and the trench 5 could have a width equal to about a few microns to several millimeters.
  • the nanotubes could have a length of about equal to a few micrometers and a diameter approximately equal to a few nanometers.
  • FIG. 8 it can be seen that there is shown another semiconductor device or micro-system 100 which comprises a support consisting for example of a substrate 101 incorporating electronic components and / or optical or other.
  • a layer 103 for example a resin, in which are embedded microparticles, for example carbon nanotubes 104.
  • the wall 105 of the layer 103 consisting of its opposite outer face and parallel at the face 102 of the substrate 101, is provided with some of the nanotubes 104, which, as in the previous example, have parts anchored in the layer 103 and parts protruding from the wall 105, which constitute asperities forming extensions of this wall.
  • the heat generated in the substrate 101 can then be discharged through the layer 103, which could be produced locally on areas of this substrate and which constitutes a heat exchanger.
  • a mixture 13 is spread on the face 102 of the substrate 101 to form a layer 106 thicker than the layer 103 to obtain. Then, this layer 106 is insulated up to a depth corresponding to the surface 105 of the layer 103 to be obtained. Finally, the volume of the superficial portion of the layer 106 is removed, leaving only the remaining volume of the layer 103.
  • the present invention is not limited to the examples described above.
  • the materials used for the matrix material and the added micro-particles may be chosen differently.
  • the form of the mixture deposited on a substrate can be adapted to the desired heat exchange.

Abstract

Procédé de réalisation d'une paroi, en particulier d'un micro- échangeur thermique pour dispositifs semi-conducteurs ou micro¬ systèmes, et micro-échangeur thermique, dans lesquels des particules (9) sont noyées dans une couche (4), dont certaines présentent une partie (9a) ancrée dans une paroi de ladite couche et une partie (9b) en saillie par rapport à cette paroi (6) après enlèvement de matériau.

Description

Procédé de réalisation d'une paroi, en particulier d'un micro-échangeur thermique, et micro-échangeur thermique, comprenant en particulier des nanotubes
La présente invention concerne le domaine des dispositifs semi-conducteurs ou des micro-systèmes.
L ' accroissement des performances et la réduction croissante des dimensions des composants de tels dispositifs et systèmes engendrent de plus en plus des problèmes liés à des dégagements de chaleur.
La solution généralement proposée pour évacuer la chaleur dégagée consiste en l'utilisation de ventilateurs installés à proximité des dispositifs et systèmes dans le but de les refroidir globalement.
Il apparaît avantageux de concevoir des micro-échangeurs thermiques adaptés pour évacuer la chaleur dégagée localement dans de tels dispositifs et systèmes en créant des micro-canaux de circulation de fluides de transferts thermiques. Néanmoins, les quantités de chaleur évacuées dépendent en particulier des surfaces de contact entre la matière et le fluide. La présente invention a tout d'abord pour objet un procédé de réalisation d'une paroi, en particulier d'un micro-échangeur thermique pour dispositifs semi-conducteurs ou micro-systèmes.
Selon l'invention, ce procédé consiste : à choisir un matériau- matrice susceptible de passer d'un état non solide à un état durci sous l' effet d'un traitement de changement d'état et, dans cet état durci, d' être altéré sous l 'effet d'un traitement d' altération ; et à choisir des particules en un matériau substantiellement insensible audit traitement de changement d'état et audit traitement d' altération
Le procédé selon l'invention consiste : à mélanger une quantité de particules à une quantité du matériau-matrice à l 'état non solide ; à déposer ce mélange, au moins en partie, sur une surface d'un substrat ; à appliquer ledit traitement de changement d' état au mélange déposé de façon qu'il passe à son état durci ; à appliquer ledit traitement d' altération à une partie du volume du mélange déposé durci et à enlever cette partie de volume ou la partie de volume complémentaire.
Selon l'invention, la paroi de la partie de volume restante du mélange déposé durci, correspondant à l 'interface entre la partie de volume restante et la partie de volume enlevée, est avantageusement munie, de particules partiellement ancrées dans cette partie de volume restante et constituant des aspérités.
Selon l'invention, ledit mélange est de préférence obtenu par brassage ou agitation. Selon l'invention, ledit matériau-matrice est de préférence une résine thermodurcissable photosensible.
Selon l'invention, lesdites particules sont de préférence des nanotubes.
Selon l'invention, ce procédé consiste de préférence : à déposer une couche du mélange sur une surface d'un substrat ; à appliquer ledit traitement de changement d' état à cette couche de façon qu'elle passe à son état durci ; et à appliquer ledit traitement d' altération à au moins une zone de cette couche durcie et à enlever le volume de cette zone ou de la zone complémentaire. Selon l'invention, le procédé peut avantageusement consister à appliquer ledit traitement d'altération jusqu' à la surface dudit substrat.
Selon l'invention, le procédé peut avantageusement consister à appliquer ledit traitement d'altération sur une partie superficielle de ladite couche. La présente invention a également pour obj et un micro- échangeur thermique,
Selon l'invention, ce micro-échangeur thermique peut avantageusement comprendre un substrat à refroidir au moins localement, une couche formée sur au moins une partie d 'une surface du substrat et des particules noyées dans ladite couche, dont certaines présentent une partie ancrée dans une paroi de ladite couche et une partie en saillie par rapport à cette paroi.
Selon l'invention, ce micro-échangeur thermique peut avantageusement comprendre un substrat à refroidir au moins localement, une couche formée sur au moins une partie d' une surface du substrat et présentant au moins une tranchée, au moins un couvercle recouvrant ladite tranchée, de façon à constituer au moins un canal et des particules noyées dans ladite couche, dont certaines présentent des parties ancrées dans la paroi de ce canal et des parties en saillie dans ce canal.
Des modes particuliers de réalisation de la présente invention vont maintenant être décrits à titre d' exemples non limitatifs et illustrés par le dessin, sur lequel : - La figure 1 représente une coupe d'un premier dispositif semi-conducteur ou micro-système selon l' invention ;
- La figure 2 représente une coupe locale agrandie du dispositif de la figure 1 ;
- Les figures 3 à 7 représentent des étapes de fabrication du dispositif de la figure 1 ;
- Et la figure 8 représente une coupe d'un second dispositif semi-conducteur ou micro-système selon l' invention.
En se reportant à la figure 1 , on peut voir qu'on a représenté un dispositif semi-conducteur ou micro-système 1 qui comprend un support constitué par exemple par un substrat 2 intégrant des composants électroniques et/ou optiques ou autres.
Sur une face 3 de ce substrat 2, est formée une couche 4 dans laquelle est ménagée une tranchée 5 à parois latérales 6 perpendiculaires à la face 3, ou plusieurs tranchées, de telle sorte que la couche 4 présente des zones 4a recouvrant le substrat 2.
La tranchée 5 est recouverte d'un couvercle rapporté 7 fixé sur la face extérieure de la couche 4, de façon à transformer cette tranchée 5 en un canal 8. Dans le cas de plusieurs tranchées, un ou plusieurs couvercles peuvent être prévus. En faisant circuler un fluide adapté dans le canal 8, par tout moyens appropriés, on peut alors évacuer la chaleur dégagée dans le substrat 2, dans le voisinage de ce canal, directement par sa surface découverte dans la tranchée 5 et indirectement via la couche 4 par les parois latérales 6. En se reportant à la figure 2, on peut voir que des particules 9, substantiellement réparties, sont noyées dans le matériau constituant la couche 4 et que les parois 6 sont munies de certaines de ces particules, telles qu' elles présentent des parties 9a ancrées dans le matériau constituant la couche 4 et des parties découvertes 9b en saillie par rapport à ces parois.
Les parties 9a des particules 9 constituent des aspérités formant des extensions des surfaces des parois 6 et contribuent à un meilleur transfert de chaleur entre la couche 4 et le fluide circulant dans le canal 8.
Il résulte de ce qui précède que la couche 4 munie du couvercle 7 constitue un micro-échangeur. thermique rapporté sur le substrat 2.
En se reportant aux figures 3 à 7, on va maintenant décrire à titre d' exemple un mode de réalisation du dispositif 1 , mettant en œuvre les moyens largement connus dans le domaine de la microélectronique.
En vue de constituer la couche 4, on choisit un matériau- matrice susceptible de passer d'un état non solide à un état durci sous l ' effet d'un traitement de changement d'état et, dans cet état durci, d'être altéré sous l 'effet d'un traitement d' altération. Ce matériau- matrice peut avantageusement être une résine thermodurcissable photosensible 10. A titre d' exemple, on peut choisir une résine connue sous la référence SU8 négative.
En vue de constituer les particules 9, on choisit des nanoparticules, par exemple des nanotubes de carbone, substantiellement insensibles audit traitement de changement d' état et audit traitement d' altération.
Dans une première étape représentée sur la figure 3 , on disperse dans un récipient 1 1 une quantité de nanotubes 9 dans un liquide ou solvant 12, physiquement et chimiquement neutre vis-à-vis de ces nanotubes 9 et de la résine 10.
Cette étape est réalisée en assurant une agitation mécanique ou par ultrasons par tous moyens connus. Dans une seconde étape représentée sur la figure 4, on ajoute progressivement une quantité de résine 10 à l 'état non solide.
Cette étape est réalisée en assurant un brassage mécanique par tous moyens connus. On obtient alors un mélange 13 dans lequel les nanotubes 9 sont répartis de préférence de façon homogène dans la résine 10 à l' état non solide.
Dans une troisième étape représentée sur la figure 5 , on étale le mélange 13 sur la face 3 du substrat 2, par exemple utilisant la force centrifuge, de façon à obtenir une couche 4 sensiblement uniforme, dans laquelle sont noyés de façon substantiellement répartis et orientés aléatoirement les nanotubes 9.
Puis, on procède à un durcissement de la couche 4 par un traitement thermique approprié. Dans une quatrième étape représentée sur les figures 6 et 7, on procède à une insolation locale de la partie 4a de la couche 4 au travers d'un masque 14, dans les zones ne correspondant pas à la tranchée 5 à réaliser. Puis, on procède à un enlèvement du volume de la partie 4b de la couche 4 correspondant à la tranchée 5, par exemple par immersion dans un développeur chimique, en formant les zones 4a du volume restant de la couche 4 et la tranchée 5. Dans le cas où le matériau-matrice serait une résine positive, on précéderait de façon inverse.
Les nanotubes 9 étant insensibles aux traitements ci-dessus d'insolation et de développement chimique, les parois 6 de la partie restante 4a de la couche 4 restent munies, comme indiqué plus haut, de nanotubes 9 orientés de façon aléatoire, ces nanotubes 9 présentant des parties 9a ancrées dans le matériau constituant cette couche et des parties découvertes 9b en saillie par rapport à ces parois 6. On peut alors installer le couvercle 7.
A titre d'exemple, la couche 4 pourrait présenter une épaisseur égale à environ 200 micromètres et la tranchée 5 pourrait présenter une largeur égale à environ quelques micromètres à plusieurs millimètres. Les nanotubes pourraient présenter une longueur environ égale à quelques micromètres et un diamètre environ égal à quelques nanomètres.
En se reportant à la figure 8, on peut voir qu'on a représenté un autre dispositif semi-conducteur ou micro-système 100 qui comprend un support constitué par exemple par un substrat 101 intégrant des composants électroniques et/ou optiques ou autres.
Sur une face 102 du substrat 101 est formée une couche 103 , par exemple en une résine, dans laquelle sont noyées des microparticules, par exemple des nanotubes de carbone 104. La paroi 105 de la couche 103, constituée par sa face extérieure opposée et parallèle à la face 102 du substrat 101 , est munie de certains des nanotubes 104, qui, comme dans l 'exemple précédent, présentent des parties ancrées dans la couche 103 et des parties en saillie par rapport à la paroi 105, qui constituent des aspérités formant des extensions de cette paroi.
La chaleur générée dans le substrat 101 peut alors être évacuée au travers de la couche 103, qui pourrait être réalisée localement sur des zones de ce substrat et qui constitue un échangeur thermique.
Pour réaliser le dispositif 100, on peut aussi mettre en œuvre les moyens largement connus dans le domaine de la microélectronique.
Par exemple, on étale un mélange 13 sur la face 102 du substrat 101 pour former une couche 106 plus épaisse que la couche 103 à obtenir. Puis, on insole cette couche 106 jusqu' à une profondeur correspondant à la surface 105 de la couche 103 à obtenir. On procède enfin à l' enlèvement du volume de la partie superficielle de la couche 106, jusqu' à ne laisser que le volume restant de la couche 103.
La présente invention ne se limite pas aux exemples ci-dessus décrits. Les matériaux utilisés pour le matériau-matrice et les micro- particules additionnées peuvent être choisis différemment. La forme du mélange déposé sur un substrat peut être adaptée aux échanges thermiques souhaités.

Claims

REVENDICATIONS
1. Procédé de réalisation d'une paroi, en particulier d'un micro-échangeur thermique pour dispositifs semi-conducteurs ou micro-systèmes, caractérisé par le fait qu'il consiste : à choisir un matériau-matrice (10) susceptible de passer d'un état non solide à un état durci sous l' effet d'un traitement de changement d'état et, dans cet état durci, d'être altéré sous l'effet d'un traitement d'altération ; à choisir des particules (9) en un matériau substantiellement insensible audit traitement de changement d'état et audit traitement d'altération ; et qu'il consiste à mélanger une quantité de particules à une quantité du matériau-matrice à l'état non solide ; à déposer ce mélange, au moins en partie, sur une surface d'un substrat ; à appliquer ledit traitement de changement d' état au mélange déposé de façon qu'il passe à son état durci ; à appliquer ledit traitement d'altération à une partie du volume du mélange déposé durci et à enlever cette partie de volume ou la partie de volume complémentaire ; de telle sorte que la paroi (6) de la partie de volume restante du mélange déposé durci, correspondant à l 'interface entre la partie de volume restante et la partie de volume enlevée, est munie de particules partiellement ancrées dans cette partie de volume restante et constituant des aspérités (9b).
2. Procédé selon la revendication 1 , caractérisé par le fait que ledit mélange est obtenu par brassage ou agitation.
3. Procédé selon l'une des revendications 1 et 2, caractérisé par le fait que ledit matériau-matrice est une résine thermodurcissable photosensible.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que lesdites particules sont des nanotubes de carbone.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait qu'il consiste à déposer une couche du mélange sur une surface d'un substrat ; à appliquer ledit traitement de changement d'état à cette couche de façon qu'elle passe à son état durci ; à appliquer ledit traitement d'altération à au moins une zone de cette couche durcie et à enlever le volume de cette zone ou de la zone complémentaire.
6. Procédé selon la revendication 5, caractérisé par le fait qu'il consiste à appliquer ledit traitement d'altération jusqu' à la surface dudit substrat.
7. Procédé selon la revendication 5, caractérisé par le fait qu'il consiste à appliquer ledit traitement d'altération sur une partie superficielle de ladite couche.
8. Micro-échangeur thermique, caractérisé par le fait qu'il comprend un substrat (2) à refroidir au moins localement, une couche
(4) formée sur au moins une partie d'une surface du substrat, et des particules (9) noyées dans ladite couche, dont certaines présentent une partie (9a) ancrée dans une paroi de ladite couche et une partie (9b) en saillie par rapport à cette paroi, ladite couche munie de particules étant obtenue par la mise en œuvre du procédé selon l'une quelconque des revendications 1 à 7.
9. Micro-échangeur thermique, caractérisé par le fait qu'il comprend un substrat (2) à refroidir au moins localement, une couche (4) formée sur au moins une partie d'une surface du substrat et présentant au moins une tranchée, au moins un couvercle (7) recouvrant ladite tranchée, de façon à constituer au moins un canal, et des particules noyées dans ladite couche, dont certaines présentent des parties (9a) ancrées dans la paroi de ce canal et des parties (9b) en saillie dans ce canal, ladite couche munie de particules étant obtenue par la mise en œuvre du procédé selon l'une quelconque des revendications 1 à 7.
10. Micro-échangeur thermique selon l'une des revendications 8 et 9, caractérisé par le fait que ladite couche comprend un matériau- matrice en une résine thermodurcissable photosensible et lesdites particules sont des nanotubes.
PCT/FR2006/000862 2005-04-29 2006-04-19 Procede de realisation d'une paroi, en particulier d'un micro-echangeur thermique, et micro-echangeur thermique, comprenant en particulier des nanotubes WO2006117447A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/919,536 US20100018686A1 (en) 2005-04-29 2006-04-19 Method of producing a wall, particularly a wall of a micro heat exchanger, and micro heat exchanger comprising, in particular, nanotubes
EP06755426A EP1875502A1 (fr) 2005-04-29 2006-04-19 Procede de realisation d'une paroi, en particulier d'un micro-echangeur thermique, et micro-echangeur thermique, comprenant en particulier des nanotubes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0504340A FR2885210A1 (fr) 2005-04-29 2005-04-29 Procede de realisation d'une paroi, en particulier d'un micro-echangeur thermique, et micro-echangeur thermique, comprenant en particulier des nanotubes
FR0504340 2005-04-29

Publications (1)

Publication Number Publication Date
WO2006117447A1 true WO2006117447A1 (fr) 2006-11-09

Family

ID=35427640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/000862 WO2006117447A1 (fr) 2005-04-29 2006-04-19 Procede de realisation d'une paroi, en particulier d'un micro-echangeur thermique, et micro-echangeur thermique, comprenant en particulier des nanotubes

Country Status (4)

Country Link
US (1) US20100018686A1 (fr)
EP (1) EP1875502A1 (fr)
FR (1) FR2885210A1 (fr)
WO (1) WO2006117447A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011123262A1 (fr) * 2010-04-02 2011-10-06 GE Lighting Solutions, LLC Dissipateurs thermiques légers et voyants à led les utilisant
US9841175B2 (en) 2012-05-04 2017-12-12 GE Lighting Solutions, LLC Optics system for solid state lighting apparatus
US9951938B2 (en) 2009-10-02 2018-04-24 GE Lighting Solutions, LLC LED lamp
EP3376536A4 (fr) * 2015-12-18 2018-12-05 Kyocera Corporation Élément de passage et module semi-conducteur
US10340424B2 (en) 2002-08-30 2019-07-02 GE Lighting Solutions, LLC Light emitting diode component

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524439A (ja) * 2010-04-02 2013-06-17 ジーイー ライティング ソリューションズ エルエルシー 軽量ヒートシンク及びそれを使用するledランプ
US8640455B2 (en) * 2010-06-02 2014-02-04 GM Global Technology Operations LLC Controlling heat in a system using smart materials

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010006715A1 (en) * 1998-06-24 2001-07-05 Pinter Michael R. Transferrable compliant fibrous thermal interface
US6311769B1 (en) * 1999-11-08 2001-11-06 Space Systems/Loral, Inc. Thermal interface materials using thermally conductive fiber and polymer matrix materials
WO2002093644A2 (fr) * 2001-05-14 2002-11-21 M.Pore Gmbh Echangeur de chaleur
US20040071870A1 (en) * 1999-06-14 2004-04-15 Knowles Timothy R. Fiber adhesive material
DE10253457B3 (de) * 2002-11-16 2004-07-22 Stiebel Eltron Gmbh & Co. Kg Wärmeübertragungswandung
US20050006754A1 (en) * 2003-07-07 2005-01-13 Mehmet Arik Electronic devices and methods for making same using nanotube regions to assist in thermal heat-sinking

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010006715A1 (en) * 1998-06-24 2001-07-05 Pinter Michael R. Transferrable compliant fibrous thermal interface
US20040071870A1 (en) * 1999-06-14 2004-04-15 Knowles Timothy R. Fiber adhesive material
US6311769B1 (en) * 1999-11-08 2001-11-06 Space Systems/Loral, Inc. Thermal interface materials using thermally conductive fiber and polymer matrix materials
WO2002093644A2 (fr) * 2001-05-14 2002-11-21 M.Pore Gmbh Echangeur de chaleur
DE10253457B3 (de) * 2002-11-16 2004-07-22 Stiebel Eltron Gmbh & Co. Kg Wärmeübertragungswandung
US20050006754A1 (en) * 2003-07-07 2005-01-13 Mehmet Arik Electronic devices and methods for making same using nanotube regions to assist in thermal heat-sinking

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10340424B2 (en) 2002-08-30 2019-07-02 GE Lighting Solutions, LLC Light emitting diode component
US9951938B2 (en) 2009-10-02 2018-04-24 GE Lighting Solutions, LLC LED lamp
WO2011123262A1 (fr) * 2010-04-02 2011-10-06 GE Lighting Solutions, LLC Dissipateurs thermiques légers et voyants à led les utilisant
CN102939501A (zh) * 2010-04-02 2013-02-20 Ge照明解决方案有限责任公司 轻质热沉及采用该轻质热沉的led灯
US8668356B2 (en) 2010-04-02 2014-03-11 GE Lighting Solutions, LLC Lightweight heat sinks and LED lamps employing same
AU2011233563B2 (en) * 2010-04-02 2015-09-24 GE Lighting Solutions, LLC Lightweight heat sinks and LED lamps employing same
CN102939501B (zh) * 2010-04-02 2016-05-11 Ge照明解决方案有限责任公司 轻质热沉及采用该轻质热沉的led灯
US9841175B2 (en) 2012-05-04 2017-12-12 GE Lighting Solutions, LLC Optics system for solid state lighting apparatus
US10139095B2 (en) 2012-05-04 2018-11-27 GE Lighting Solutions, LLC Reflector and lamp comprised thereof
EP3376536A4 (fr) * 2015-12-18 2018-12-05 Kyocera Corporation Élément de passage et module semi-conducteur

Also Published As

Publication number Publication date
FR2885210A1 (fr) 2006-11-03
EP1875502A1 (fr) 2008-01-09
US20100018686A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
EP1875502A1 (fr) Procede de realisation d'une paroi, en particulier d'un micro-echangeur thermique, et micro-echangeur thermique, comprenant en particulier des nanotubes
EP2311086B1 (fr) Structure d'echange thermique et dispositif de refroidissement comportant une telle structure
US7396477B2 (en) Method for manufacturing a thermal interface material
US7282799B2 (en) Thermal interface with a patterned structure
EP2192635B1 (fr) Procédé de fabrication d'un substrat nanostructuré pour OLED et procédé de fabrication d'une OLED avec le substrat nanostructuré
JP2006190573A (ja) 有機エレクトロルミネッセンス素子およびその製造方法
FR2913109A1 (fr) Procede de fabrication d'un dispositif de type echangeur de chaleur en ceramique et dispositifs obtenus par le procede.
CA2445249C (fr) Joint d'etancheite metallique elastique ferme a parties saillantes desaxees
FR2499726A1 (fr) Procede de formation d'un motif utilise pour la fabrication de dispositifs a semi-conducteurs
EP1947482B1 (fr) Realisation de cavités remplies par un matériau fluidique dans un composé microtechnologique optique
CA2454270C (fr) Joint d'etancheite metallique elastique
EP1707531A1 (fr) Procédé de fabrication de micro-canaux enterrés et micro-dispotif comprenant de tels micro-canaux
JP2005085403A (ja) ディスク状記録媒体の製造方法及びディスク状記録媒体の製造方法に使用可能なスタンパ部材
Xu et al. Long‐term super‐amphiphilic shaped‐fiber with multi‐scale grooved structures: toward spontaneous self‐cleaning
EP1648598B1 (fr) Dispositif de melange de deux fluides et utilisation pour le refroidissement d'un fluide a tres haute temperature
Lai et al. Unidirectional wetting in the hydrophobic Wenzel regime
Kobayashi et al. Photoresponsive wettability switching of TiO2‐coated micropillar arrays with different geometries of overhang roofs
EP3874184B1 (fr) Joint d'étanchéité métallique comportant une couche externe d'étanchéité texturée
EP2376673A1 (fr) Procede de realisation d'un depot de nanoparticules a adherence augmentee et dispositif pour la mise en uvre d'un tel procede
EP3446778B1 (fr) Élément structuré revêtu de manière différenciée et servant de support à l'écoulement de plusieurs fluides
FR2829293A1 (fr) Memoire moleculaire et son procede de fabrication
Bute et al. Benzophenone doped polydimethylsiloxane: Self developable composite resist system for its use in a direct write laser lithography application
Fouckhardt et al. High shape-accuracy of surface roughnesses upon nano-moulding with optical elastomers
EP2924716B1 (fr) Procédé de structuration et de transfert d'un masque dans un substrat
FR3118776A1 (fr) Procédé de collage à basse température et dispositif de substrat ainsi obtenu

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006755426

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006755426

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11919536

Country of ref document: US