WO2006114858A1 - Liquid crystal display unit and orientation processing method - Google Patents

Liquid crystal display unit and orientation processing method Download PDF

Info

Publication number
WO2006114858A1
WO2006114858A1 PCT/JP2005/007409 JP2005007409W WO2006114858A1 WO 2006114858 A1 WO2006114858 A1 WO 2006114858A1 JP 2005007409 W JP2005007409 W JP 2005007409W WO 2006114858 A1 WO2006114858 A1 WO 2006114858A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid crystal
crystal display
display device
alignment
Prior art date
Application number
PCT/JP2005/007409
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Tadaki
Yoshinori Kiyota
Toshiaki Yoshihara
Hironori Shiroto
Tetsuya Makino
Keiichi Betsui
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2005/007409 priority Critical patent/WO2006114858A1/en
Priority to JP2007514374A priority patent/JPWO2006114858A1/en
Publication of WO2006114858A1 publication Critical patent/WO2006114858A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals

Definitions

  • the present invention relates to a liquid crystal display device that displays an image by controlling the transmittance of liquid crystal by applying a voltage.
  • Liquid crystal display devices are roughly classified into a reflection type and a transmission type.
  • the reflective type reflects light incident from the front of the liquid crystal panel on the back of the liquid crystal panel and the reflected light is used to view the image.
  • the transmissive type is a light source (backlight) provided on the back of the liquid crystal panel. The image is visually recognized with transmitted light from).
  • the reflective type is inferior in visibility because the amount of reflected light is not constant depending on the environmental conditions. Therefore, in particular, as a display device such as a personal computer for performing multi-color or full-color display, a transmission type using a color filter is generally used. Color liquid crystal display devices are used.
  • a field 'sequential liquid crystal display device In order to solve such a problem, a field 'sequential liquid crystal display device has been developed.
  • the field 'sequential display the R, G, and B lights of the knocklights are turned on, and the image is displayed by turning the pixels on and off according to the lighting timing.
  • This field 'sequential liquid crystal display device does not require sub-pixels compared to a color filter type liquid crystal display device, so it is possible to easily realize a display with higher definition and use a color filter.
  • the color of the light source can be used as it is for display, and the display color purity is excellent.
  • the light utilization efficiency is high, which has the advantage that less power consumption is required.
  • high-speed response (less than 2 ms) of the liquid crystal is essential.
  • a liquid crystal panel sandwiching a ferroelectric liquid crystal is sandwiched between two polarizing plates whose polarization axes are orthogonal to each other, and the transmittance is changed by utilizing birefringence due to a change in the major axis direction of liquid crystal molecules.
  • Patent Document 1 JP-A-11 119189
  • the liquid crystal display device is a liquid crystal display device in which a first substrate and a second substrate having a rubbed alignment film are opposed to each other, and liquid crystal is sealed between the first substrate and the second substrate.
  • a common electrode is formed on the first substrate, a switching element for supplying a voltage applied to the liquid crystal, a pixel electrode, and a plurality of wirings are formed on the second substrate.
  • the orientation state of the liquid crystal is controlled by applying a DC voltage using the first substrate as an anode and the second substrate as a cathode.
  • the flat first substrate on which the common electrode is formed is formed with an anode, a switching element, a pixel electrode, a plurality of wirings, and the like to form an uneven structure.
  • the second substrate is used as a cathode, and a DC voltage is applied to control the alignment state of the liquid crystal. Therefore, alignment defects that occur during the alignment process are suppressed, and display quality does not deteriorate.
  • the spacer is formed on the second substrate having a concavo-convex structure and serving as a cathode during the alignment treatment. Therefore, the occurrence of alignment defects accompanying the formation of the spacer is suppressed.
  • the spacer is formed on the second substrate having the concavo-convex structure. Therefore, the occurrence of alignment defects accompanying the formation of the spacer is suppressed.
  • the liquid crystal display device is characterized in that the spacer is formed on the upstream side in the rubbing direction with respect to the wiring on the downstream side in the rubbing direction among the plurality of wirings.
  • a spacer is formed on the upstream side in the rubbing direction from the wiring on the downstream side in the rubbing direction. Therefore, since the alignment defect in which the spacer is generated is stopped by the wiring on the downstream side in the rubbing direction, it is localized in the light shielding area without entering the display area, and the display quality is not deteriorated.
  • the liquid crystal display device according to the present invention is characterized in that the second substrate is covered with a flat film.
  • the liquid crystal display device is characterized in that color display is performed by a field “sequential method”.
  • color display is performed by a field-sequential method in which light of a plurality of colors is switched over time. Therefore, color display having high definition, high color purity, and high speed response is possible.
  • the liquid crystal display device is characterized in that the liquid crystal sealed between the first substrate and the second substrate is a monostable ferroelectric liquid crystal.
  • the alignment treatment method according to the present invention includes a first substrate having a common electrode and an alignment film, Suites A liquid crystal is sealed between the first substrate and the second substrate facing each other, and a liquid crystal is sealed between the facing first substrate and the second substrate.
  • the alignment processing method for controlling the alignment state of the liquid crystal by applying a DC voltage to the liquid crystal the DC voltage is applied using the first substrate as an anode and the second substrate as a cathode.
  • the common substrate is formed and the flat first substrate is formed with an anode, a switching element, a pixel electrode, a plurality of wirings, and the like to form an uneven structure.
  • the second substrate is used as a cathode, and a DC voltage is applied to control the alignment state of the liquid crystal. Therefore, alignment defects that occur during the alignment process are suppressed.
  • the second substrate having a concavo-convex structure is formed by forming a common electrode and forming a flat first substrate with an anode, a switching element, a pixel electrode, and a plurality of wirings. Since the cathode is used to control the alignment state of the liquid crystal by applying a DC voltage, alignment defects that occur during the alignment process can be suppressed, and display quality deterioration due to the alignment defects can be prevented. .
  • the spacer for maintaining the distance between the first substrate and the second substrate facing each other is formed on the second substrate. Alignment defects can be suppressed.
  • the spacer since the spacer is formed on the upstream side in the rubbing direction from the wiring, the alignment defect generated by the spacer force is stopped by this wiring and enters the display area. Therefore, it is possible to prevent the display quality from being deteriorated due to the alignment defect.
  • the switching substrate, the pixel electrode, the plurality of wirings, and the like are formed and the second substrate having the concavo-convex structure is covered with the flat film, the concave portion on the second substrate is formed. The occurrence of alignment defects on the convex surface can be further reduced.
  • color display is performed by the field 'sequential method', a black matrix and a color filter are not required, and cost reduction can be achieved and high definition and high color can be achieved. Color display having purity and high-speed response can be performed.
  • FIG. 1 is a schematic cross-sectional view of a liquid crystal panel of a liquid crystal display device of the present invention.
  • FIG. 3 is a schematic diagram showing an example of the overall configuration of a liquid crystal display device.
  • FIG. 4 is an enlarged view showing a position where a spacer is formed.
  • FIG. 6 is a diagram showing an example of occurrence of alignment defects in the liquid crystal display device of the present invention.
  • FIG. 7 is a diagram showing an example of occurrence of alignment defects in the liquid crystal display device of the first comparative example. Explanation of symbols
  • FIG. 1 is a schematic cross-sectional view of a liquid crystal panel of a liquid crystal display device of the present invention
  • FIG. 2 is a block diagram showing a circuit configuration of the liquid crystal display device of the present invention
  • FIG. It is a schematic diagram showing a configuration example.
  • Reference numeral 21 denotes a liquid crystal panel whose sectional structure is shown in FIG. As shown in Fig. 3, the liquid crystal panel 21 has a polarizing film 1, a glass substrate as the first substrate 2, a common electrode 3, and a second substrate as shown in FIG. The glass substrate 4 and the polarizing film 5 are laminated in this order.
  • the glass substrate 4 is provided with TFT 41 and wiring such as signal lines 42 and scanning lines 43.
  • a flat resin film 8 made of resin is formed on the glass substrate 4 so as to cover the TFT 41 and the wiring group.
  • pixel electrodes 40, 40,... Arranged in a matrix are formed.
  • the alignment film 12 is disposed on the upper surface of the pixel electrodes 40, 40...
  • the alignment film 11 is disposed on the lower surface of the common electrode 3, and a monostable type is disposed between the alignment films 11 and 12.
  • a liquid crystal layer 13 is formed by filling the ferroelectric liquid crystal.
  • the pixel electrode 40 is formed on the glass substrate 2 on the alignment film 12 on the glass substrate 4 side corresponding to the region, in other words, the region where the TFT 41 and the wiring group are formed.
  • 4 is formed with a spacer 9 for maintaining a uniform gap in the surface.
  • FIG. 4 is an enlarged view showing the position where the spacer 9 is formed.
  • a spacer 9 is formed above the TFT 41 located upstream of the rubbing direction signal line 42 and upstream of the rubbing direction.
  • Alignment treatment is performed by applying a DC voltage between the glass substrate 4 on which the substrate 9 and the alignment film 12 are formed, and the alignment state of the monostable ferroelectric liquid crystal in the liquid crystal layer 13 is controlled.
  • a DC voltage is applied using the glass substrate 4 as a cathode and the glass substrate 2 as an anode.
  • the electric field direction during this orientation process is indicated by arrows in FIG.
  • a drive unit 50 including a data driver 32 and a scan driver 33 is connected.
  • the data driver 32 is connected to the TFT 41 via the signal line 42
  • the scan driver 33 is connected to the TFT 41 via the scanning line 43.
  • the TFT 41 is on / off controlled by the scan driver 33.
  • Individual images The elementary electrode 40 is connected to the TFT 41. Therefore, the transmittance of each pixel is controlled by a signal from the data driver 32 given via the signal line 42 and the TFT 41.
  • the backlight 22 is positioned on the lower layer (rear) side of the liquid crystal panel 21, and the LED 22 faces the end face of the light guide and light diffusing plate 6 constituting the light emitting region.
  • Array 7 is provided. This LED array 7 has one or a plurality of LEDs on the surface facing the light guide and light diffusion plate 6 with LED elements emitting three primary colors, that is, red, green, and blue, as one chip. Then, red, green, and blue LED elements are turned on in the red, green, and blue subframes, respectively.
  • the light guide and light diffusing plate 6 functions as a light emitting region by guiding the light of each LED power of the LED array 7 to the entire surface of the LED array 7 and diffusing it to the upper surface.
  • the liquid crystal panel 21 and a backlight 22 capable of time division light emission of red, green, and blue are overlapped.
  • the lighting timing and emission color of the backlight 22 are controlled in synchronization with the data writing scan based on the display data for the liquid crystal panel 21.
  • reference numeral 31 denotes a control signal generation circuit that receives a synchronization signal SYN from a personal computer and generates various control signals CS necessary for display.
  • Pixel data PD is output from the image memory unit 30 to the data driver 32.
  • a voltage is applied to the liquid crystal panel 21 via the data driver 32 based on the pixel data PD and a control signal CS for changing the polarity of the applied voltage.
  • control signal CS is output from the control signal generation circuit 31 to the reference voltage generation circuit 34, the data drain 32, the scan driver 33, and the backlight control circuit 35, respectively.
  • the reference voltage generation circuit 34 generates reference voltages VR1 and VR2, and outputs the generated reference voltage VR1 to the data driver 32 and the reference voltage VR2 to the scan driver 33, respectively.
  • the data driver 32 outputs a signal to the signal line 42 of the pixel electrode 40 based on the pixel data PD from the image memory unit 30 and the control signal CS from the control signal generation circuit 31.
  • the scan driver 33 sequentially scans the scanning lines 43 of the pixel electrodes 40 line by line.
  • the backlight control circuit 35 applies a drive voltage to the backlight 22 to emit red light, green light, and blue light from the backlight 22, respectively.
  • a 2.5 m thick resin flattening film 8 is formed on the glass substrate 4 on which the TFT 41, signal line 42, scanning line 43, etc. are formed, contact holes are formed, and then ITO is patterned. Then, the pixel electrode 40 was formed, and the alignment film 12 was formed by further applying polyimide and baking. On the other hand, on the glass substrate 2, a black matrix was formed with Cr, ITO was formed into a common electrode 3, and polyimide was applied and baked to form an alignment film 11. Both glass substrates 2 and 4 were rubbed with a rayon puff.
  • the glass substrate 4 diameter 1.8 and silica beads of m, the linear expansion coefficient of 61 X 10- 6 / ° C, compression modulus 256MPa, the glass transition temperature of 100 ° C, average particle size of about
  • the spacer 9 was formed by spraying about 100 pieces of Zmm 2 each with 4 ⁇ m adhesive beads.
  • a seal was formed on the glass substrate 2. Both glass substrates 2 and 4 were overlapped and sealed in a vacuum pack so that the rubbing directions were parallel, and baked at 135 ° C for 90 minutes to produce an empty panel.
  • monostable ferroelectric liquid crystal is heated in a chiral nematic state (about 110 ° C) and pressurized and sealed to form a liquid crystal layer 13. Seal seal Stopped. Warm this panel to a chiral nematic state and apply a DC voltage with the glass substrate 4 side grounded (cathode) and the glass substrate 2 side 12V (anode) before and after the N * —Sc * transition temperature. Then, the orientation treatment was performed. After the phase transition, both glass substrates 2 and 4 were grounded and gradually cooled to room temperature.
  • the glass substrate 4 having a concavo-convex structure is substantially flattened by a flattening film, Edge force A number of alignment defects were generated, and the generated alignment defects penetrated into the display area. As a result, the image quality deteriorated greatly.
  • the glass substrate 4 side formed with a flattened film and substantially flattened is set to 12V (anode), and the glass substrate 2 side is set to ground (cathode).
  • alignment defects are generated from the edges of the flattened uneven surface, alignment defects are reduced depending on the degree of planarization, compared to the case where a DC voltage is applied with the glass substrate 2 side set to 12 V (anode).
  • monostable ferroelectric liquid crystal is used as the liquid crystal, but the present invention can be similarly applied to other types of liquid crystal.
  • a spacer for maintaining a facing distance between the first substrate and the second substrate is provided in the second group.
  • a common electrode is formed on the first substrate.
  • a switching element for supplying a voltage applied to the ferroelectric liquid crystal, a pixel electrode, and a plurality of wirings are formed on the second substrate, and a facing distance between the first substrate and the second substrate is set.
  • liquid crystal display device according to any one of appendices 1 to 4, wherein the second substrate is covered with a flat film.
  • the liquid crystal display device according to any one of appendices 1 to 5, characterized in that color display is performed by a field 'sequential method.
  • liquid crystal display device according to any one of appendices 1 to 6, wherein the liquid crystal sealed between the first substrate and the second substrate is a monostable ferroelectric liquid crystal.
  • a first substrate having a common electrode and an alignment film is opposed to a second substrate having a switching element, a pixel electrode, a plurality of wirings and an alignment film, and a liquid crystal is provided between the first substrate and the second substrate facing each other.
  • An alignment treatment method for controlling the alignment state of the liquid crystal by applying a DC voltage between the first substrate and the second substrate the first substrate as an anode and the second substrate as a cathode.
  • An alignment treatment method comprising applying a DC voltage.
  • the liquid crystal sealed between the first substrate and the second substrate is a monostable ferroelectric liquid crystal.
  • Item 8 The alignment treatment method according to appendix 8, wherein

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

A dc voltage is applied to between a glass substrate (2) formed with a common electrode (3) and an orientation film (11) only and a glass substrate (4) formed with a pixel electrode (40), a TFT (41), a signal line (42), a scanning line (43), a spacer (9), an orientation film (12) and the like to perform orientation processing to thereby control the orientation condition of a monostable ferroelectric liquid crystal in a liquid crystal layer (13). A dc voltage is applied, in this case, with the glass substrate (4) as a cathode and the glass substrate (2) as an anode. An orientation defect due to an unevenness structure is prevented at orientation processing to thereby provide a good display image quantity.

Description

明 細 書  Specification
液晶表示装置及び配向処理方法  Liquid crystal display device and alignment treatment method
技術分野  Technical field
[0001] 本発明は、電圧印加により液晶の透過率を制御して画像表示を行う液晶表示装置 The present invention relates to a liquid crystal display device that displays an image by controlling the transmittance of liquid crystal by applying a voltage.
、及び液晶表示装置での配向処理方法に関し、特に、配向欠陥の表示領域への侵 入を抑制する液晶表示装置及び配向処理方法に関する。 In particular, the present invention relates to an alignment treatment method in a liquid crystal display device, and more particularly to a liquid crystal display device and an alignment treatment method that suppress the entry of alignment defects into a display region.
背景技術  Background art
[0002] 近年のいわゆる情報化社会の進展に伴って、パーソナルコンピュータ, PDA ( [0002] With the progress of the so-called information society in recent years, personal computers, PDAs (
Personal Digital Assistants)等に代表される電子機器が広く使用されるようになってい る。このような電子機器の普及によって、オフィスでも屋外でも使用可能な携帯型の 需要が発生しており、それらの小型 ·軽量ィ匕が要望されている。そのような目的を達 成するための手段の一つとして液晶表示装置が広く使用されている。液晶表示装置 は、単に小型 ·軽量ィ匕のみならず、バッテリ駆動される携帯型の電子機器の低消費 電力化のためには必要不可欠な技術である。 Electronic devices such as Personal Digital Assistants) have been widely used. With the spread of such electronic devices, there is a demand for portable devices that can be used both in the office and outdoors, and there is a demand for these small and light weight devices. Liquid crystal display devices are widely used as one of means for achieving such an object. A liquid crystal display device is an indispensable technology for reducing power consumption of not only small and light weight but also battery-powered portable electronic devices.
[0003] 液晶表示装置は大別すると反射型と透過型とに分類される。反射型は液晶パネル の前面カゝら入射した光線を液晶パネルの背面で反射させてその反射光で画像を視 認させる構成であり、透過型は液晶パネルの背面に備えられた光源 (バックライト)か らの透過光で画像を視認させる構成である。反射型は環境条件によって反射光量が 一定しなくて視認性に劣るため、特に、マルチカラーまたはフルカラー表示を行うパ 一ソナルコンピュータ等の表示装置としては一般的に、カラーフィルタを用いた透過 型のカラー液晶表示装置が使用されている。  [0003] Liquid crystal display devices are roughly classified into a reflection type and a transmission type. The reflective type reflects light incident from the front of the liquid crystal panel on the back of the liquid crystal panel and the reflected light is used to view the image. The transmissive type is a light source (backlight) provided on the back of the liquid crystal panel. The image is visually recognized with transmitted light from). The reflective type is inferior in visibility because the amount of reflected light is not constant depending on the environmental conditions. Therefore, in particular, as a display device such as a personal computer for performing multi-color or full-color display, a transmission type using a color filter is generally used. Color liquid crystal display devices are used.
[0004] カラー液晶表示装置は、現在、 TFT (Thin Film Transistor)などのスイッチング素子 を用いたアクティブ駆動型のものが広く使用されて 、る。この TFT駆動の液晶表示装 置は、表示品質は高いものの、液晶パネルの光透過率が現状では数%程度しかな いので、高い画面輝度を得るためには高輝度のバックライトが必要になる。このため、 ノ ックライトによる消費電力が大きくなつてしまう。また、カラーフィルタを用いたカラー 表示であるため、 1画素を 3個の副画素で構成しなければならず、高精細化が困難で あり、その表示色純度も十分ではない。 [0004] Currently, active liquid crystal display devices using switching elements such as TFT (Thin Film Transistor) are widely used as color liquid crystal display devices. Although this TFT-driven liquid crystal display device has high display quality, the light transmittance of the liquid crystal panel is currently only a few percent, so a high-brightness backlight is required to obtain high screen brightness. . For this reason, the power consumption of the knocklight increases. In addition, since color display using a color filter, one pixel must be composed of three sub-pixels, and high definition is difficult. And the display color purity is not sufficient.
[0005] このような問題を解決するために、フィールド 'シーケンシャル方式の液晶表示装置 が開発されている。フィールド 'シーケンシャル方式の表示では、ノ ックライトの R, G, Bをそれぞれ点灯して、その点灯タイミングに応じて画素をオン Zオフすることで画像 を表示する。このフィールド 'シーケンシャル方式の液晶表示装置は、カラーフィルタ 方式の液晶表示装置と比べて、副画素を必要としないため、より精細度が高い表示 が容易に実現可能であり、また、カラーフィルタを使わずに光源の発光色をそのまま 表示に利用できるため、表示色純度にも優れる。更に光利用効率も高いので、消費 電力が少なくて済むという利点も有している。しかしながら、フィールド'シーケンシャ ル方式の液晶表示装置を実現するためには、液晶の高速応答性(2ms以下)が必須 である。  [0005] In order to solve such a problem, a field 'sequential liquid crystal display device has been developed. In the field 'sequential display, the R, G, and B lights of the knocklights are turned on, and the image is displayed by turning the pixels on and off according to the lighting timing. This field 'sequential liquid crystal display device does not require sub-pixels compared to a color filter type liquid crystal display device, so it is possible to easily realize a display with higher definition and use a color filter. In addition, the color of the light source can be used as it is for display, and the display color purity is excellent. In addition, the light utilization efficiency is high, which has the advantage that less power consumption is required. However, in order to realize a field-sequential liquid crystal display device, high-speed response (less than 2 ms) of the liquid crystal is essential.
[0006] そこで、上述したような優れた利点を有するフィールド 'シーケンシャル方式の液晶 表示装置の高速応答化を図るベぐ従来に比べて 100〜1000倍の高速応答を期待 できる自発分極を有する強誘電性液晶等の液晶の TFT等のスイッチング素子による 駆動が研究開発されている (例えば、特許文献 1参照)。強誘電性液晶は、電圧印加 によってその液晶分子の長軸方向がチルトする。強誘電性液晶を挟持した液晶パネ ルを偏光軸が直交した 2枚の偏光板で挾み、液晶分子の長軸方向の変化による複 屈折を利用して、透過率を変化させる。  [0006] Therefore, a ferroelectric having a spontaneous polarization that can expect a high-speed response of 100 to 1000 times that of a conventional field-sequential-type liquid crystal display device having excellent advantages as described above. Research has been conducted on driving a switching element such as a TFT of a liquid crystal such as a conductive liquid crystal (see, for example, Patent Document 1). In the ferroelectric liquid crystal, the major axis direction of the liquid crystal molecules is tilted by voltage application. A liquid crystal panel sandwiching a ferroelectric liquid crystal is sandwiched between two polarizing plates whose polarization axes are orthogonal to each other, and the transmittance is changed by utilizing birefringence due to a change in the major axis direction of liquid crystal molecules.
特許文献 1 :特開平 11 119189号公報  Patent Document 1: JP-A-11 119189
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 強誘電性液晶の表示に用いられる相は、カイラルスメタティック相(SmA*または S mC * )であるが、ネマティック液晶と比較して流動性が乏しいため、他部材との物性 値の差または構造に起因するストレスが局在し、配向欠陥が発生する。配向欠陥は、 対向する基板間距離を維持するためのスぺーサ、画素に電圧を供給するための配 線、 TFTなどの凹凸構造をなす部分で発生して表示領域に侵入することがあり、表 示品質上大きな問題となっている。  [0007] The phase used for the display of the ferroelectric liquid crystal is a chiral metastic phase (SmA * or S mC *), but it has poor fluidity compared to the nematic liquid crystal, so it has physical properties with other members. Stress due to the difference or structure is localized, and alignment defects are generated. Alignment defects may occur in areas that have uneven structures such as spacers to maintain the distance between opposing substrates, wiring to supply voltage to pixels, and TFTs, and may enter the display area. This is a major problem in display quality.
[0008] 本発明は斯力る事情に鑑みてなされたものであり、配向処理時に発生する配向欠 陥を大幅に抑制できる液晶表示装置及び配向処理方法を提供することを目的とする 課題を解決するための手段 [0008] The present invention has been made in view of such circumstances, and the alignment defect generated during the alignment treatment. Means for solving the problems with the object of providing a liquid crystal display device and an alignment treatment method capable of greatly suppressing depressions
[0009] 本発明者は、配向膜が形成された 2枚の基板を対向させ、その隙間に単安定型の 強誘電性液晶を封入し、直流電圧を印加して強誘電性液晶の配向状態を制御する 際に、スイッチング素子、画素電極、配線などが形成されている凹凸構造をなす一方 の基板を陽極とし、平坦な共通電極が形成されている他方の基板を陰極として、直 流電圧を印カロした場合には、一方の基板側力も表示領域内に多数の配向欠陥が発 生し、その陰極,陽極を逆にして直流電圧を印加した場合には、発生する配向欠陥 が著しく減少することを知見した。また、共通電極が形成されている他方の基板にブ ラックマトリクスなどの凹凸構造を有する場合には、その凹凸構造力 配向欠陥が発 生することを知見した。  [0009] The present inventor makes two substrates on which an alignment film is formed face each other, encloses a monostable ferroelectric liquid crystal in the gap, and applies a DC voltage to align the ferroelectric liquid crystal. When controlling the direct current voltage, one substrate having a concavo-convex structure on which switching elements, pixel electrodes, wirings and the like are formed is used as an anode, and the other substrate on which a flat common electrode is formed is used as a cathode. In the case of imprinting, a large number of alignment defects are generated in the display area of one substrate side force, and when a DC voltage is applied with the cathode and anode reversed, the generated alignment defects are remarkably reduced. I found out. It was also found that when the other substrate on which the common electrode is formed has a concavo-convex structure such as a black matrix, the concavo-convex structure force alignment defect occurs.
[0010] 本発明に係る液晶表示装置は、ラビングされた配向膜を有する第 1基板及び第 2基 板を対向させ、該第 1基板及び第 2基板間に液晶を封入してある液晶表示装置にお いて、前記第 1基板に共通電極を形成しており、前記液晶に印加される電圧を供給 するためのスイッチング素子、画素電極及び複数の配線を前記第 2基板に形成して おり、前記第 1基板を陽極、前記第 2基板を陰極とした直流電圧の印加により前記液 晶の配向状態を制御してあることを特徴とする。  The liquid crystal display device according to the present invention is a liquid crystal display device in which a first substrate and a second substrate having a rubbed alignment film are opposed to each other, and liquid crystal is sealed between the first substrate and the second substrate. In this case, a common electrode is formed on the first substrate, a switching element for supplying a voltage applied to the liquid crystal, a pixel electrode, and a plurality of wirings are formed on the second substrate. The orientation state of the liquid crystal is controlled by applying a DC voltage using the first substrate as an anode and the second substrate as a cathode.
[0011] 本発明の液晶表示装置にあっては、共通電極が形成されていて平坦である第 1基 板を陽極、スイッチング素子、画素電極及び複数の配線などが形成されていて凹凸 構造をなす第 2基板を陰極とし、直流電圧を印加して液晶の配向状態を制御してあ る。よって、配向処理時に発生する配向欠陥が抑制され、表示品質が劣化しない。  [0011] In the liquid crystal display device of the present invention, the flat first substrate on which the common electrode is formed is formed with an anode, a switching element, a pixel electrode, a plurality of wirings, and the like to form an uneven structure. The second substrate is used as a cathode, and a DC voltage is applied to control the alignment state of the liquid crystal. Therefore, alignment defects that occur during the alignment process are suppressed, and display quality does not deteriorate.
[0012] 本発明に係る液晶表示装置は、前記第 1基板及び第 2基板間の対向距離を維持 するためのスぺーサを前記第 2基板に形成してあることを特徴とする。  [0012] The liquid crystal display device according to the present invention is characterized in that a spacer for maintaining a facing distance between the first substrate and the second substrate is formed on the second substrate.
[0013] 本発明の液晶表示装置にあっては、凹凸構造をなして配向処理時に陰極とする第 2基板にスぺーサを形成している。よって、スぺーサの形成に伴う配向欠陥の発生が 抑制される。  In the liquid crystal display device of the present invention, the spacer is formed on the second substrate having a concavo-convex structure and serving as a cathode during the alignment treatment. Therefore, the occurrence of alignment defects accompanying the formation of the spacer is suppressed.
[0014] 本発明に係る液晶表示装置は、ラビングされた配向膜を有する第 1基板及び第 2基 板を対向させ、該第 1基板及び第 2基板間に液晶を封入してある液晶表示装置にお いて、前記第 1基板に共通電極を形成しており、前記強誘電性液晶に印加される電 圧を供給するためのスイッチング素子、画素電極及び複数の配線を前記第 2基板に 形成しており、前記第 1基板及び第 2基板間の対向距離を維持するためのスぺーサ を前記第 2基板に形成してあることを特徴とする。 The liquid crystal display device according to the present invention includes a first substrate and a second substrate having a rubbed alignment film. In a liquid crystal display device in which liquid crystals are sealed between the first substrate and the second substrate with the plates facing each other, a common electrode is formed on the first substrate and applied to the ferroelectric liquid crystal A switching element for supplying voltage, a pixel electrode, and a plurality of wirings are formed on the second substrate, and a spacer for maintaining a facing distance between the first substrate and the second substrate is provided on the second substrate. It is formed on two substrates.
[0015] 本発明の液晶表示装置にあっては、凹凸構造をなす第 2基板にスぺーサを形成し ている。よって、スぺーサの形成に伴う配向欠陥の発生が抑制される。  [0015] In the liquid crystal display device of the present invention, the spacer is formed on the second substrate having the concavo-convex structure. Therefore, the occurrence of alignment defects accompanying the formation of the spacer is suppressed.
[0016] 本発明に係る液晶表示装置は、前記複数の配線の中のラビング方向下流側の配 線よりラビング方向上流側に前記スぺーサを形成してあることを特徴とする。  The liquid crystal display device according to the present invention is characterized in that the spacer is formed on the upstream side in the rubbing direction with respect to the wiring on the downstream side in the rubbing direction among the plurality of wirings.
[0017] 本発明の液晶表示装置にあっては、ラビング方向下流側の配線よりラビング方向上 流側にスぺーサを形成してある。よって、スぺーサカも発生した配向欠陥は、このラビ ング方向下流側の配線で止められるため、表示領域内に入ることなく遮光領域内に 局在するので、表示品質は劣化しない。  In the liquid crystal display device of the present invention, a spacer is formed on the upstream side in the rubbing direction from the wiring on the downstream side in the rubbing direction. Therefore, since the alignment defect in which the spacer is generated is stopped by the wiring on the downstream side in the rubbing direction, it is localized in the light shielding area without entering the display area, and the display quality is not deteriorated.
[0018] 本発明に係る液晶表示装置は、前記第 2基板が平坦ィ匕膜で覆われて ヽることを特 徴とする。  The liquid crystal display device according to the present invention is characterized in that the second substrate is covered with a flat film.
[0019] 本発明の液晶表示装置にあっては、スイッチング素子、画素電極及び複数の配線 などが形成されていて凹凸構造をなす第 2基板が平坦化膜で平坦化されている。よ つて、第 2基板力もの配向欠陥の発生がさらに抑制される。  In the liquid crystal display device of the present invention, the second substrate having a concavo-convex structure on which switching elements, pixel electrodes, a plurality of wirings, and the like are formed is planarized with a planarizing film. Therefore, the occurrence of alignment defects with the strength of the second substrate is further suppressed.
[0020] 本発明に係る液晶表示装置は、フィールド 'シーケンシャル方式にてカラー表示を 行うことを特徴とする。  The liquid crystal display device according to the present invention is characterized in that color display is performed by a field “sequential method”.
[0021] 本発明の液晶表示装置にあっては、複数色の光を経時的に切り換えるフィールド' シーケンシャル方式にてカラー表示を行う。よって、高精細、高色純度、高速応答性 を有するカラー表示が可能である。  In the liquid crystal display device of the present invention, color display is performed by a field-sequential method in which light of a plurality of colors is switched over time. Therefore, color display having high definition, high color purity, and high speed response is possible.
[0022] 本発明に係る液晶表示装置は、前記第 1基板及び第 2基板間に封入してある液晶 が単安定型の強誘電性液晶であることを特徴とする。  The liquid crystal display device according to the present invention is characterized in that the liquid crystal sealed between the first substrate and the second substrate is a monostable ferroelectric liquid crystal.
[0023] 本発明の液晶表示装置にあっては、液晶として単安定型の強誘電性液晶を用いる [0024] 本発明に係る配向処理方法は、共通電極及び配向膜を有する第 1基板と、スイツ チング素子、画素電極、複数の配線及び配向膜を有する第 2基板とを対向させ、対 向させた前記第 1基板及び第 2基板間に液晶を封入し、前記第 1基板及び第 2基板 間に直流電圧を印加して前記液晶の配向状態を制御する配向処理方法において、 前記第 1基板を陽極、前記第 2基板を陰極として前記直流電圧を印加することを特徴 とする。 [0023] In the liquid crystal display device of the present invention, monostable ferroelectric liquid crystal is used as the liquid crystal. [0024] The alignment treatment method according to the present invention includes a first substrate having a common electrode and an alignment film, Suites A liquid crystal is sealed between the first substrate and the second substrate facing each other, and a liquid crystal is sealed between the facing first substrate and the second substrate. In the alignment processing method for controlling the alignment state of the liquid crystal by applying a DC voltage to the liquid crystal, the DC voltage is applied using the first substrate as an anode and the second substrate as a cathode.
[0025] 本発明の配向処理方法にあっては、共通電極が形成されていて平坦である第 1基 板を陽極、スイッチング素子、画素電極及び複数の配線などが形成されていて凹凸 構造をなす第 2基板を陰極とし、直流電圧を印加して液晶の配向状態を制御する。よ つて、配向処理時に発生する配向欠陥が抑制される。  In the alignment treatment method of the present invention, the common substrate is formed and the flat first substrate is formed with an anode, a switching element, a pixel electrode, a plurality of wirings, and the like to form an uneven structure. The second substrate is used as a cathode, and a DC voltage is applied to control the alignment state of the liquid crystal. Therefore, alignment defects that occur during the alignment process are suppressed.
発明の効果  The invention's effect
[0026] 本発明では、共通電極が形成されて!、て平坦である第 1基板を陽極、スイッチング 素子、画素電極及び複数の配線などが形成されて!ヽて凹凸構造をなす第 2基板を 陰極とし、直流電圧を印加して液晶の配向状態を制御するようにしたので、配向処理 時に発生する配向欠陥を抑制することができ、配向欠陥に起因する表示品質の劣化 を防止することができる。  [0026] In the present invention, the second substrate having a concavo-convex structure is formed by forming a common electrode and forming a flat first substrate with an anode, a switching element, a pixel electrode, and a plurality of wirings. Since the cathode is used to control the alignment state of the liquid crystal by applying a DC voltage, alignment defects that occur during the alignment process can be suppressed, and display quality deterioration due to the alignment defects can be prevented. .
[0027] また、本発明では、対向する第 1基板及び第 2基板間の間隔を維持するためのスぺ 一サを第 2基板に形成するようにして ヽるので、スぺーサカゝら発生する配向欠陥を抑 ff¾することができる。  [0027] Further, in the present invention, the spacer for maintaining the distance between the first substrate and the second substrate facing each other is formed on the second substrate. Alignment defects can be suppressed.
[0028] また、本発明では、スぺーサを配線よりラビング方向上流側に形成するようにしてい るので、スぺーサ力 発生した配向欠陥は、この配線で止められて、表示領域内に 入ることなく遮光領域に局在するため、配向欠陥に起因する表示品質の劣化を防止 することができる。  In the present invention, since the spacer is formed on the upstream side in the rubbing direction from the wiring, the alignment defect generated by the spacer force is stopped by this wiring and enters the display area. Therefore, it is possible to prevent the display quality from being deteriorated due to the alignment defect.
[0029] また、本発明では、スイッチング素子、画素電極及び複数の配線などが形成されて いて凹凸構造をなす第 2基板を平坦ィ匕膜で覆うようにしているので、第 2基板での凹 凸面での配向欠陥の発生をさらに低減することができる。  [0029] In the present invention, since the switching substrate, the pixel electrode, the plurality of wirings, and the like are formed and the second substrate having the concavo-convex structure is covered with the flat film, the concave portion on the second substrate is formed. The occurrence of alignment defects on the convex surface can be further reduced.
[0030] また、本発明では、フィールド 'シーケンシャル方式にてカラー表示を行うようにした ので、ブラックマトリクス、カラーフィルタが不要となってコストの低減ィ匕を図れるととも に、高精細、高色純度、高速応答性を有するカラー表示を行うことができる。 図面の簡単な説明 [0030] Further, in the present invention, since color display is performed by the field 'sequential method', a black matrix and a color filter are not required, and cost reduction can be achieved and high definition and high color can be achieved. Color display having purity and high-speed response can be performed. Brief Description of Drawings
[0031] [図 1]本発明の液晶表示装置の液晶パネルの模式的断面図である。  FIG. 1 is a schematic cross-sectional view of a liquid crystal panel of a liquid crystal display device of the present invention.
[図 2]本発明の液晶表示装置の回路構成を示すブロック図である。  FIG. 2 is a block diagram showing a circuit configuration of a liquid crystal display device of the present invention.
[図 3]液晶表示装置の全体の構成例を示す模式図である。  FIG. 3 is a schematic diagram showing an example of the overall configuration of a liquid crystal display device.
[図 4]スぺーサの形成位置を示す拡大図である。  FIG. 4 is an enlarged view showing a position where a spacer is formed.
[図 5]フィールド 'シーケンシャル方式における駆動シーケンスの一例を示す図である  FIG. 5 is a diagram showing an example of a drive sequence in a field 'sequential method.
[図 6]本発明の液晶表示装置における配向欠陥の発生例を示す図である。 FIG. 6 is a diagram showing an example of occurrence of alignment defects in the liquid crystal display device of the present invention.
[図 7]第 1比較例の液晶表示装置における配向欠陥の発生例を示す図である。 符号の説明  FIG. 7 is a diagram showing an example of occurrence of alignment defects in the liquid crystal display device of the first comparative example. Explanation of symbols
[0032] 2 ガラス基板 (第 1基板) [0032] 2 Glass substrate (first substrate)
3 共通電極  3 Common electrode
4 ガラス基板 (第 2基板)  4 Glass substrate (second substrate)
8 平坦化膜  8 Flattened film
9 スぺーサ  9 Spacer
11 配向膜  11 Alignment film
12 配向膜  12 Alignment film
13 液晶層  13 Liquid crystal layer
21 液晶パネル  21 LCD panel
22 ノ ックライ卜  22 Nokrai Samurai
40 画素電極  40 pixel electrodes
41 TFT  41 TFT
42 信号線  42 Signal line
43 走査線  43 scan lines
A 配向欠陥  A orientation defect
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0033] 本発明をその実施の形態を示す図面を参照して具体的に説明する。なお、本発明 は以下の実施の形態に限定されるものではない。 [0034] 図 1は本発明の液晶表示装置の液晶パネルの模式的断面図、図 2は本発明の液 晶表示装置の回路構成を示すブロック図、及び、図 3は液晶表示装置の全体の構成 例を示す模式図である。 [0033] The present invention will be specifically described with reference to the drawings illustrating embodiments thereof. The present invention is not limited to the following embodiment. FIG. 1 is a schematic cross-sectional view of a liquid crystal panel of a liquid crystal display device of the present invention, FIG. 2 is a block diagram showing a circuit configuration of the liquid crystal display device of the present invention, and FIG. It is a schematic diagram showing a configuration example.
[0035] 21は図 1に断面構造が示されている液晶パネルを示している。図 3に示されている ように、液晶パネル 21は上層(表面)側から下層(背面)側に、偏光フィルム 1,第 1基 板としてのガラス基板 2,共通電極 3,第 2基板としてのガラス基板 4,偏光フィルム 5 をこの順に積層して構成されて 、る。  [0035] Reference numeral 21 denotes a liquid crystal panel whose sectional structure is shown in FIG. As shown in Fig. 3, the liquid crystal panel 21 has a polarizing film 1, a glass substrate as the first substrate 2, a common electrode 3, and a second substrate as shown in FIG. The glass substrate 4 and the polarizing film 5 are laminated in this order.
[0036] ガラス基板 4には、 TFT41、並びに、信号線 42及び走査線 43などの配線が形成さ れている。これらの TFT41及び配線群を覆うように榭脂製の平坦ィ匕膜 8が、ガラス基 板 4に形成されている。平坦ィ匕膜 8上には、マトリクス状に配列された画素電極 40, 4 0…が形成されている。ガラス基板 4上の画素電極 40, 40· ··の上面には配向膜 12が 、共通電極 3の下面には配向膜 11が夫々配置され、これらの配向膜 11, 12間に単 安定型の強誘電性液晶が充填されて液晶層 13が形成される。  The glass substrate 4 is provided with TFT 41 and wiring such as signal lines 42 and scanning lines 43. A flat resin film 8 made of resin is formed on the glass substrate 4 so as to cover the TFT 41 and the wiring group. On the flat film 8, pixel electrodes 40, 40,... Arranged in a matrix are formed. The alignment film 12 is disposed on the upper surface of the pixel electrodes 40, 40... On the glass substrate 4, and the alignment film 11 is disposed on the lower surface of the common electrode 3, and a monostable type is disposed between the alignment films 11 and 12. A liquid crystal layer 13 is formed by filling the ferroelectric liquid crystal.
[0037] 画素電極 40が形成されて 、な 、領域、言 、換えると上記 TFT41及び配線群が形 成されている領域に対応して、ガラス基板 4側の配向膜 12上に、ガラス基板 2, 4間 に面内均一のギャップを保持するためのスぺーサ 9が形成されている。図 4は、スぺ ーサ 9の形成位置を示す拡大図である。ラビング方向下流側の信号線 42よりラビン グ方向上流側に位置する TFT41の上方に、スぺーサ 9が形成されて!、る。  [0037] The pixel electrode 40 is formed on the glass substrate 2 on the alignment film 12 on the glass substrate 4 side corresponding to the region, in other words, the region where the TFT 41 and the wiring group are formed. , 4 is formed with a spacer 9 for maintaining a uniform gap in the surface. FIG. 4 is an enlarged view showing the position where the spacer 9 is formed. A spacer 9 is formed above the TFT 41 located upstream of the rubbing direction signal line 42 and upstream of the rubbing direction.
[0038] そして、本発明の液晶表示装置にあっては、共通電極 3及び配向膜 11のみが形成 されたガラス基板 2と、画素電極 40、 TFT41、信号線 42、走査線 43、スぺーサ 9及 び配向膜 12などが形成されているガラス基板 4との間に直流電圧を印加して配向処 理を行 、、液晶層 13内の単安定型の強誘電性液晶の配向状態を制御して 、るが、 この際、ガラス基板 4を陰極、ガラス基板 2を陽極として直流電圧を印加する。この配 向処理時の電場方向を図 1に矢符で示して 、る。  In the liquid crystal display device of the present invention, the glass substrate 2 on which only the common electrode 3 and the alignment film 11 are formed, the pixel electrode 40, the TFT 41, the signal line 42, the scanning line 43, and the spacer. Alignment treatment is performed by applying a DC voltage between the glass substrate 4 on which the substrate 9 and the alignment film 12 are formed, and the alignment state of the monostable ferroelectric liquid crystal in the liquid crystal layer 13 is controlled. At this time, however, a DC voltage is applied using the glass substrate 4 as a cathode and the glass substrate 2 as an anode. The electric field direction during this orientation process is indicated by arrows in FIG.
[0039] 共通電極 3及び画素電極 40, 40· ··間にはデータドライバ 32及びスキャンドライバ 3 3等よりなる駆動部 50が接続されている。データドライバ 32は、信号線 42を介して T FT41と接続されており、スキャンドライバ 33は、走査線 43を介して TFT41と接続さ れている。 TFT41はスキャンドライバ 33によりオン Zオフ制御される。また個々の画 素電極 40は、 TFT41に接続されている。そのため、信号線 42及び TFT41を介して 与えられるデータドライバ 32からの信号により、個々の画素の透過率が制御される。 Between the common electrode 3 and the pixel electrodes 40, 40..., A drive unit 50 including a data driver 32 and a scan driver 33 is connected. The data driver 32 is connected to the TFT 41 via the signal line 42, and the scan driver 33 is connected to the TFT 41 via the scanning line 43. The TFT 41 is on / off controlled by the scan driver 33. Individual images The elementary electrode 40 is connected to the TFT 41. Therefore, the transmittance of each pixel is controlled by a signal from the data driver 32 given via the signal line 42 and the TFT 41.
[0040] バックライト 22は、図 3に示すように、液晶パネル 21の下層(背面)側に位置し、発 光領域を構成する導光及び光拡散板 6の端面に臨ませた状態で LEDアレイ 7が備 えられている。この LEDアレイ 7は、導光及び光拡散板 6と対向する面に 3原色、即ち 赤,緑,青の各色を発光する LED素子を 1チップとした 1または複数個の LEDを有 する。そして、赤,緑,青の各サブフレームにおいては赤,緑,青の LED素子を夫々 点灯させる。導光及び光拡散板 6はこの LEDアレイ 7の各 LED力もの光を自身の表 面全体に導光すると共に上面へ拡散することにより、発光領域として機能する。  [0040] As shown in FIG. 3, the backlight 22 is positioned on the lower layer (rear) side of the liquid crystal panel 21, and the LED 22 faces the end face of the light guide and light diffusing plate 6 constituting the light emitting region. Array 7 is provided. This LED array 7 has one or a plurality of LEDs on the surface facing the light guide and light diffusion plate 6 with LED elements emitting three primary colors, that is, red, green, and blue, as one chip. Then, red, green, and blue LED elements are turned on in the red, green, and blue subframes, respectively. The light guide and light diffusing plate 6 functions as a light emitting region by guiding the light of each LED power of the LED array 7 to the entire surface of the LED array 7 and diffusing it to the upper surface.
[0041] この液晶パネル 21と、赤,緑,青の時分割発光が可能であるバックライト 22とを重 ね合わせる。このバックライト 22の点灯タイミング及び発光色は、液晶パネル 21に対 する表示データに基づくデータ書込み走査に同期して制御される。  [0041] The liquid crystal panel 21 and a backlight 22 capable of time division light emission of red, green, and blue are overlapped. The lighting timing and emission color of the backlight 22 are controlled in synchronization with the data writing scan based on the display data for the liquid crystal panel 21.
[0042] 図 2において、 31は、パーソナルコンピュータから同期信号 SYNが入力され、表示 に必要な各種の制御信号 CSを生成する制御信号発生回路である。画像メモリ部 30 からは画素データ PDが、データドライバ 32へ出力される。画素データ PD、及び、印 加電圧の極性を変えるための制御信号 CSに基づき、データドライバ 32を介して液晶 パネル 21には電圧が印加される。  In FIG. 2, reference numeral 31 denotes a control signal generation circuit that receives a synchronization signal SYN from a personal computer and generates various control signals CS necessary for display. Pixel data PD is output from the image memory unit 30 to the data driver 32. A voltage is applied to the liquid crystal panel 21 via the data driver 32 based on the pixel data PD and a control signal CS for changing the polarity of the applied voltage.
[0043] また制御信号発生回路 31からは制御信号 CSが、基準電圧発生回路 34,データド ライノく 32,スキャンドライバ 33及びバックライト制御回路 35へ夫々出力される。基準 電圧発生回路 34は、基準電圧 VR1及び VR2を生成し、生成した基準電圧 VR1を データドライバ 32へ、基準電圧 VR2をスキャンドライバ 33へ夫々出力する。データド ライバ 32は、画像メモリ部 30からの画素データ PDと制御信号発生回路 31からの制 御信号 CSとに基づいて、画素電極 40の信号線 42に対して信号を出力する。この信 号の出力に同期して、スキャンドライバ 33は、画素電極 40の走査線 43をライン毎に 順次的に走査する。またバックライト制御回路 35は、駆動電圧をバックライト 22に与 えて、バックライト 22から赤色光,緑色光,青色光を夫々発光させる。  Further, the control signal CS is output from the control signal generation circuit 31 to the reference voltage generation circuit 34, the data drain 32, the scan driver 33, and the backlight control circuit 35, respectively. The reference voltage generation circuit 34 generates reference voltages VR1 and VR2, and outputs the generated reference voltage VR1 to the data driver 32 and the reference voltage VR2 to the scan driver 33, respectively. The data driver 32 outputs a signal to the signal line 42 of the pixel electrode 40 based on the pixel data PD from the image memory unit 30 and the control signal CS from the control signal generation circuit 31. In synchronization with the output of this signal, the scan driver 33 sequentially scans the scanning lines 43 of the pixel electrodes 40 line by line. Further, the backlight control circuit 35 applies a drive voltage to the backlight 22 to emit red light, green light, and blue light from the backlight 22, respectively.
[0044] データドライバ 32からの信号の出力及びスキャンドライバ 33の走査に従って TFT4 1が駆動し、画素電極 40に電圧が印加され、画素の透過率が制御される。バックライ ト制御回路 35は、制御信号 CSを受けた場合に駆動電圧をバックライト 22に与えてバ ックライト 22の LEDアレイ 7が有している赤,緑,青の各色の LED素子を時分割して 発光させて、経時的に赤色光,緑色光,青色光を順次発光させる。このように、バック ライト 22の各色の点灯制御と液晶パネル 21に対するデータ書込み走査とを同期させ てフィールド ·シーケンシャル方式によるカラー表示を行って 、る。 The TFT 41 is driven in accordance with the output of the signal from the data driver 32 and the scan of the scan driver 33, a voltage is applied to the pixel electrode 40, and the transmittance of the pixel is controlled. Back lie The control circuit 35 applies a drive voltage to the backlight 22 when receiving the control signal CS, and time-divides the red, green, and blue LED elements of the LED array 7 of the backlight 22. Light is emitted, and red light, green light, and blue light are sequentially emitted over time. In this way, color display by the field sequential method is performed by synchronizing the lighting control of each color of the backlight 22 and the data writing scan with respect to the liquid crystal panel 21.
[0045] 図 5は、フィールド 'シーケンシャル方式における駆動シーケンスの一例を示してお り、図 5 (a)は液晶パネル 21の各ラインの走査タイミング、図 5 (b)はバックライト 22の 赤,緑,青各色の点灯タイミングを表している。  [0045] Fig. 5 shows an example of the drive sequence in the field 'sequential method. Fig. 5 (a) shows the scanning timing of each line of the liquid crystal panel 21, and Fig. 5 (b) shows the red of the backlight 22. It represents the lighting timing of green and blue colors.
[0046] フレーム周波数を 60Hzとして、 1つのフレーム(期間: lZ60s)を 3つのサブフレー ム (期間: 1Z180S)に分割し、図 5 (a)に示すように、例えば 1フレーム内の第 1番目 のサブフレームにおいて赤色の画像データの 2回の書込み走査を行い、次の第 2番 目のサブフレームにおいて緑色の画像データの 2回の書込み走査を行い、最後の第 3番目のサブフレームにおいて青色の画像データの 2回の書込み走査を行う。なお、 各サブフレームにあって、 1回目(前半)のデータ書込み走査時においては、表示デ ータに応じて明るい表示が得られる極性の電圧を各画素の液晶に印加し、 2回目(後 半)のデータ書込み走査時においては、 1回目のデータ書込み走査と同じ表示デー タに基づき、 1回目のデータ書込み走査とは極性が異なって大きさが等しい電圧を各 画素の液晶に印加する。  [0046] Assuming that the frame frequency is 60 Hz, one frame (period: lZ60s) is divided into three subframes (period: 1Z180S), and as shown in Fig. 5 (a), for example, the first frame in one frame In the subframe, the red image data is scanned twice, the next second subframe is scanned in green image data twice, and the last third subframe is scanned in blue. Perform two writing scans of image data. In each subframe, during the first (first half) data write scan, a voltage having a polarity that provides a bright display is applied to the liquid crystal of each pixel according to the display data, and the second (rear) In the (half) data write scan, based on the same display data as the first data write scan, a voltage that is different in polarity and equal in magnitude to the first data write scan is applied to the liquid crystal of each pixel.
[0047] バックライト 22の赤,緑,青各色の点灯制御は、図 5 (b)に示すように、第 1番目の サブフレームにおいて赤色を発光させ、第 2番目のサブフレームにおいて緑色を発 光させ、第 3番目のサブフレームにおいて青色を発光させる。なお、サブフレーム中 ずっとバックライト 22を点灯させておくのではなぐ 1回目のデータ書込み走査の開始 タイミングに同期してバックライト 22を点灯させて 2回目のデータ書込み走査の終了 タイミングに同期してバックライト 22を消灯させる。  [0047] As shown in Fig. 5 (b), the lighting control of the red, green, and blue colors of the backlight 22 causes red light to be emitted in the first subframe and green to be emitted in the second subframe. Illuminate and emit blue light in the third subframe. It is not necessary to keep the backlight 22 lit throughout the subframe. The backlight 22 is lit in synchronization with the start timing of the first data write scan and in synchronization with the end timing of the second data write scan. Turn off the backlight 22.
[0048] 以下、本発明の液晶表示装置の具体例について説明する。 TFT41、信号線 42、 走査線 43などを形成したガラス基板 4に、厚さ 2. 5 /z mの榭脂製の平坦ィ匕膜 8を形 成し、コンタクトホールを形成した後、 ITO (Indium Tin Oxide)をパターン成膜して画 素電極 40を形成し、さらにポリイミドを塗布して焼成することにより配向膜 12を形成し た。一方、ガラス基板 2には、 ITOを成膜して共通電極 3を形成し、さらにポリイミドを 塗布して焼成することにより配向膜 11を形成した。両ガラス基板 2, 4に、レーヨンの ノ フによりラビング処理を施した。 Hereinafter, specific examples of the liquid crystal display device of the present invention will be described. On the glass substrate 4 on which the TFT 41, the signal line 42, the scanning line 43, etc. are formed, a 2.5 mm / zm thick resin flat film 8 is formed, contact holes are formed, and then ITO (Indium Tin Oxide) is formed into a pattern to form the pixel electrode 40, and polyimide is applied and baked to form the alignment film 12. It was. On the other hand, an ITO film was formed on the glass substrate 2 to form the common electrode 3, and polyimide was further applied and baked to form the alignment film 11. Both glass substrates 2 and 4 were rubbed with a rayon knife.
[0049] ガラス基板 4側に、径 1. 8 mのシリカビーズと、線膨張係数が 61 X 10— 6/。C、圧 縮弾性率が 256MPa、ガラス転移温度 100°C、平均粒径約 4 μ mの接着ビーズとを 、各約 100個 Zmm2散布して、スぺーサ 9を形成した。一方、ガラス基板 2には、シ ールを形成した。ラビング方向が平行になるように両ガラス基板 2, 4を重ね合わせて 真空パックに封入し、 135°C、 90分の焼成を行って空パネルを作製した。 [0049] the glass substrate 4, diameter 1. silica beads 8 m, a coefficient of linear expansion 61 X 10- 6 /. Spacer 9 was formed by spraying about 100 pieces of Zmm 2 each of C, adhesive beads having a compression modulus of 256 MPa, a glass transition temperature of 100 ° C., and an average particle diameter of about 4 μm. On the other hand, a seal was formed on the glass substrate 2. Both glass substrates 2 and 4 were overlapped and sealed in a vacuum pack so that the rubbing directions were parallel, and baked at 135 ° C for 90 minutes to produce an empty panel.
[0050] この空パネルに、単安定型の強誘電性液晶をカイラルネマティック状態に加温 (約 110°C)して加圧封入して液晶層 13とし、注入完了後、室温に戻して力もシールを封 止した。このパネルをカイラルネマティック状態まで加温し、 N *—Sc *転移温度前 後にわたって、ガラス基板 4側を接地(陰極)、ガラス基板 2側を 12V (陽極)として、直 流電圧を印加することにより配向処理を行った。相転移後には両ガラス基板 2, 4を接 地して、室温まで徐冷した。  [0050] In this empty panel, monostable ferroelectric liquid crystal is heated in a chiral nematic state (about 110 ° C) and sealed under pressure to form a liquid crystal layer 13. The seal was sealed. Warm this panel to a chiral nematic state and apply a DC voltage with the glass substrate 4 side grounded (cathode) and the glass substrate 2 side 12V (anode) before and after the N * —Sc * transition temperature. Then, the orientation treatment was performed. After the phase transition, both glass substrates 2 and 4 were grounded and gradually cooled to room temperature.
[0051] この結果、図 6に示すように、スぺーサ 9から配向欠陥 A (図 6の太線)は発生したが 、後述の第 2比較例より配向欠陥が著しく減少している。また、発生したその配向欠 陥 Aは、ラビング方向下流側の信号線 42で止められて、表示領域には侵入せず、遮 光領域内に局在した。よって、画質劣化が生じることはな力つた。ここで、スイッチング 素子、画素電極及び複数の配線などが形成されて ヽて凹凸構造をなすガラス基板 4 を平坦ィ匕膜で平坦ィ匕することにより、ガラス基板 4からの配向欠陥の発生がさらに抑 制される。  As a result, as shown in FIG. 6, alignment defect A (thick line in FIG. 6) occurred from spacer 9, but the alignment defect was significantly reduced as compared with the second comparative example described later. The generated alignment defect A was stopped by the signal line 42 on the downstream side in the rubbing direction, and did not enter the display area, but was localized in the light shielding area. Therefore, it was hard to cause image quality degradation. Here, the occurrence of alignment defects from the glass substrate 4 is further increased by flattening the glass substrate 4 having a concavo-convex structure formed with switching elements, pixel electrodes, and a plurality of wirings with a flat film. Suppressed.
[0052] (第 1比較例)  [0052] (First comparative example)
TFT41、信号線 42、走査線 43などを形成したガラス基板 4に、厚さ 2. 5 mの榭 脂製の平坦化膜 8を形成し、コンタクトホールを形成した後、 ITOをパターン成膜して 画素電極 40を形成し、さらにポリイミドを塗布して焼成することにより配向膜 12を形成 した。一方、ガラス基板 2には、 ITOを成膜して共通電極 3を形成し、さらにポリイミド を塗布して焼成することにより配向膜 11を形成した。両ガラス基板 2, 4に、レーヨン のパフによりラビング処理を施した。 [0053] ガラス基板 4側に、径 1. 8 mのシリカビーズと、線膨張係数が 61 X 10— 6/°C、圧 縮弾性率が 256MPa、ガラス転移温度 100°C、平均粒径約 4 μ mの接着ビーズとを 、各約 100個 Zmm2散布して、スぺーサ 9を形成した。一方、ガラス基板 2には、シ ールを形成した。ラビング方向が平行になるように両ガラス基板 2, 4を重ね合わせて 真空パックに封入し、 135°C、 90分の焼成を行って空パネルを作製した。 A 2.5 m thick resin flattening film 8 is formed on the glass substrate 4 on which the TFT 41, signal line 42, scanning line 43, etc. are formed, contact holes are formed, and then ITO is patterned. Then, the pixel electrode 40 was formed, and the alignment film 12 was formed by further applying polyimide and baking. On the other hand, on the glass substrate 2, a common electrode 3 was formed by depositing ITO, and then an alignment film 11 was formed by applying polyimide and baking. Both glass substrates 2 and 4 were rubbed with a rayon puff. [0053] the glass substrate 4, diameter 1.8 and silica beads of m, the linear expansion coefficient of 61 X 10- 6 / ° C, compression modulus 256MPa, the glass transition temperature of 100 ° C, average particle size of about The spacer 9 was formed by spraying about 100 pieces of Zmm 2 each with 4 μm adhesive beads. On the other hand, a seal was formed on the glass substrate 2. Both glass substrates 2 and 4 were overlapped and sealed in a vacuum pack so that the rubbing directions were parallel, and baked at 135 ° C for 90 minutes to produce an empty panel.
[0054] この空パネルに、単安定型の強誘電性液晶をカイラルネマティック状態に加温 (約 110°C)して加圧封入して液晶層 13とし、注入完了後、室温に戻して力もシールを封 止した。このパネルをカイラルネマティック状態まで加温し、 N *—Sc *転移温度前 後にわたって、ガラス基板 4側を 12V (陽極)、ガラス基板 2側を接地(陰極)として、直 流電圧を印加することにより配向処理を行った。相転移後には両ガラス基板 2, 4を接 地して、室温まで徐冷した。  [0054] In this empty panel, monostable ferroelectric liquid crystal is heated in a chiral nematic state (about 110 ° C) and sealed under pressure to form a liquid crystal layer 13. The seal was sealed. Warm this panel to the chiral nematic state and apply a DC voltage with the glass substrate 4 side at 12V (anode) and the glass substrate 2 side at ground (cathode) before and after the N * -Sc * transition temperature. Then, the orientation treatment was performed. After the phase transition, both glass substrates 2 and 4 were grounded and gradually cooled to room temperature.
[0055] この結果、図 7に示すように、スぺーサ 9の形成位置を含むガラス基板 4の凹凸部分 力 多数の配向欠陥 A (図 7太線)が発生し、発生したその配向欠陥 Aは表示領域内 にまで侵入した。そして、大きな画質劣化が生じた。  As a result, as shown in FIG. 7, the uneven portion of the glass substrate 4 including the positions where the spacers 9 are formed. Many alignment defects A (thick line in FIG. 7) are generated, and the generated alignment defects A are Intruded into the display area. As a result, the image quality deteriorated greatly.
[0056] (第 2比較例)  [0056] (Second comparative example)
TFT41、信号線 42、走査線 43などを形成したガラス基板 4に、厚さ 2. 5 mの榭 脂製の平坦化膜 8を形成し、コンタクトホールを形成した後、 ITOをパターン成膜して 画素電極 40を形成し、さらにポリイミドを塗布して焼成することにより配向膜 12を形成 した。一方、ガラス基板 2には、 Crによってブラックマトリクスを形成し、 ITOを成膜し て共通電極 3を形成し、さらにポリイミドを塗布して焼成することにより配向膜 11を形 成した。両ガラス基板 2, 4に、レーヨンのパフによりラビング処理を施した。  A 2.5 m thick resin flattening film 8 is formed on the glass substrate 4 on which the TFT 41, signal line 42, scanning line 43, etc. are formed, contact holes are formed, and then ITO is patterned. Then, the pixel electrode 40 was formed, and the alignment film 12 was formed by further applying polyimide and baking. On the other hand, on the glass substrate 2, a black matrix was formed with Cr, ITO was formed into a common electrode 3, and polyimide was applied and baked to form an alignment film 11. Both glass substrates 2 and 4 were rubbed with a rayon puff.
[0057] ガラス基板 4側に、径 1. 8 mのシリカビーズと、線膨張係数が 61 X 10— 6/°C、圧 縮弾性率が 256MPa、ガラス転移温度 100°C、平均粒径約 4 μ mの接着ビーズとを 、各約 100個 Zmm2散布して、スぺーサ 9を形成した。一方、ガラス基板 2には、シ ールを形成した。ラビング方向が平行になるように両ガラス基板 2, 4を重ね合わせて 真空パックに封入し、 135°C、 90分の焼成を行って空パネルを作製した。 [0057] the glass substrate 4, diameter 1.8 and silica beads of m, the linear expansion coefficient of 61 X 10- 6 / ° C, compression modulus 256MPa, the glass transition temperature of 100 ° C, average particle size of about The spacer 9 was formed by spraying about 100 pieces of Zmm 2 each with 4 μm adhesive beads. On the other hand, a seal was formed on the glass substrate 2. Both glass substrates 2 and 4 were overlapped and sealed in a vacuum pack so that the rubbing directions were parallel, and baked at 135 ° C for 90 minutes to produce an empty panel.
[0058] この空パネルに、単安定型の強誘電性液晶をカイラルネマティック状態に加温 (約 110°C)して加圧封入して液晶層 13とし、注入完了後、室温に戻して力もシールを封 止した。このパネルをカイラルネマティック状態まで加温し、 N *—Sc *転移温度前 後にわたって、ガラス基板 4側を接地(陰極)、ガラス基板 2側を 12V (陽極)として、直 流電圧を印加することにより配向処理を行った。相転移後には両ガラス基板 2, 4を接 地して、室温まで徐冷した。 [0058] In this empty panel, monostable ferroelectric liquid crystal is heated in a chiral nematic state (about 110 ° C) and pressurized and sealed to form a liquid crystal layer 13. Seal seal Stopped. Warm this panel to a chiral nematic state and apply a DC voltage with the glass substrate 4 side grounded (cathode) and the glass substrate 2 side 12V (anode) before and after the N * —Sc * transition temperature. Then, the orientation treatment was performed. After the phase transition, both glass substrates 2 and 4 were grounded and gradually cooled to room temperature.
[0059] この結果、スイッチング素子、画素電極及び複数の配線などが形成されて!ヽて凹凸 構造をなすガラス基板 4を平坦化膜で略平坦化して ヽるものの、ガラス基板 2のブラッ クマトリタスのエッジ力 多数の配向欠陥が発生し、発生したその配向欠陥は表示領 域内にまで侵入した。そして、大きな画質劣化が生じた。ここで、平坦化膜を形成して 略平坦ィ匕したガラス基板 4側を 12V (陽極)とし、ガラス基板 2側を接地(陰極)として、 直流電圧を印加することにより、ガラス基板 4の略平坦ィ匕された凹凸面のエッジから 配向欠陥が生じるが、上述のガラス基板 2側を 12V (陽極)として直流電圧を印加し た場合より、平坦化の程度に応じて配向欠陥が減少する。  As a result, a switching element, a pixel electrode, a plurality of wirings, and the like are formed! Although the glass substrate 4 having a concavo-convex structure is substantially flattened by a flattening film, Edge force A number of alignment defects were generated, and the generated alignment defects penetrated into the display area. As a result, the image quality deteriorated greatly. Here, the glass substrate 4 side formed with a flattened film and substantially flattened is set to 12V (anode), and the glass substrate 2 side is set to ground (cathode). Although alignment defects are generated from the edges of the flattened uneven surface, alignment defects are reduced depending on the degree of planarization, compared to the case where a DC voltage is applied with the glass substrate 2 side set to 12 V (anode).
[0060] なお、上述した例では、 TFT41の上方にスぺーサ 9を形成するようにした力 ラビン グ方向下流側の配線 (信号線 42または走査線 43)よりラビング方向上流側の位置で あれば、他の配線 (信号線 42または走査線 43)上または配線交差部にスぺーサ 9を 形成するようにしても、同様の効果を奏する。  [0060] In the above-described example, the force that forms the spacer 9 above the TFT 41 is located on the upstream side in the rubbing direction from the wiring on the downstream side in the rubbing direction (signal line 42 or scanning line 43). For example, even if the spacer 9 is formed on another wiring (the signal line 42 or the scanning line 43) or at the wiring intersection, the same effect can be obtained.
[0061] また、上述した例では、液晶として単安定型の強誘電性液晶を用いるようにしたが、 他の種類の液晶であっても、本発明を同様に適用できることは勿論である。  In the above-described example, monostable ferroelectric liquid crystal is used as the liquid crystal, but the present invention can be similarly applied to other types of liquid crystal.
[0062] 上述の実施例を含む実施形態に関し、更に以下の付記を開示する。  [0062] The following appendices are further disclosed with respect to the embodiments including the above-described examples.
(付記 1)  (Appendix 1)
ラビングされた配向膜を有する第 1基板及び第 2基板を対向させ、該第 1基板及び 第 2基板間に液晶を封入してある液晶表示装置において、前記第 1基板に共通電極 を形成しており、前記液晶に印加される電圧を供給するためのスイッチング素子、画 素電極及び複数の配線を前記第 2基板に形成しており、前記第 1基板を陽極、前記 第 2基板を陰極とした直流電圧の印加により前記液晶の配向状態を制御してあること を特徴とする液晶表示装置。  In a liquid crystal display device in which a first substrate and a second substrate having a rubbed alignment film are opposed to each other and liquid crystal is sealed between the first substrate and the second substrate, a common electrode is formed on the first substrate. A switching element for supplying a voltage applied to the liquid crystal, a pixel electrode, and a plurality of wirings are formed on the second substrate, the first substrate being an anode, and the second substrate being a cathode. A liquid crystal display device, wherein the alignment state of the liquid crystal is controlled by applying a DC voltage.
(付記 2)  (Appendix 2)
前記第 1基板及び第 2基板間の対向距離を維持するためのスぺーサを前記第 2基 板に形成してあることを特徴とする付記 1記載の液晶表示装置。 A spacer for maintaining a facing distance between the first substrate and the second substrate is provided in the second group. The liquid crystal display device according to appendix 1, wherein the liquid crystal display device is formed on a plate.
(付記 3) (Appendix 3)
ラビングされた配向膜を有する第 1基板及び第 2基板を対向させ、該第 1基板及び 第 2基板間に液晶を封入してある液晶表示装置において、前記第 1基板に共通電極 を形成しており、前記強誘電性液晶に印加される電圧を供給するためのスイッチング 素子、画素電極及び複数の配線を前記第 2基板に形成しており、前記第 1基板及び 第 2基板間の対向距離を維持するためのスぺーサを前記第 2基板に形成してあるこ とを特徴とする液晶表示装置。  In a liquid crystal display device in which a first substrate and a second substrate having a rubbed alignment film are opposed to each other and liquid crystal is sealed between the first substrate and the second substrate, a common electrode is formed on the first substrate. A switching element for supplying a voltage applied to the ferroelectric liquid crystal, a pixel electrode, and a plurality of wirings are formed on the second substrate, and a facing distance between the first substrate and the second substrate is set. A liquid crystal display device, wherein a spacer for maintaining is formed on the second substrate.
(付記 4) (Appendix 4)
前記複数の配線の中のラビング方向下流側の配線よりラビング方向上流側に前記 スぺーサを形成してあることを特徴とする付記 2又は 3記載の液晶表示装置。  4. The liquid crystal display device according to claim 2, wherein the spacer is formed on the upstream side in the rubbing direction with respect to the wiring on the downstream side in the rubbing direction among the plurality of wirings.
(付記 5) (Appendix 5)
前記第 2基板が平坦ィ匕膜で覆われていることを特徴とする付記 1乃至 4のいずれか 一つに記載の液晶表示装置。  5. The liquid crystal display device according to any one of appendices 1 to 4, wherein the second substrate is covered with a flat film.
(付記 6) (Appendix 6)
フィールド 'シーケンシャル方式にてカラー表示を行うことを特徴とする付記 1乃至 5 の!、ずれか一つに記載の液晶表示装置。  The liquid crystal display device according to any one of appendices 1 to 5, characterized in that color display is performed by a field 'sequential method.
(付記 7) (Appendix 7)
前記第 1基板及び第 2基板間に封入してある液晶が単安定型の強誘電性液晶であ ることを特徴とする付記 1乃至 6のいずれか一つに記載の液晶表示装置。  The liquid crystal display device according to any one of appendices 1 to 6, wherein the liquid crystal sealed between the first substrate and the second substrate is a monostable ferroelectric liquid crystal.
(付記 8) (Appendix 8)
共通電極及び配向膜を有する第 1基板と、スイッチング素子、画素電極、複数の配 線及び配向膜を有する第 2基板とを対向させ、対向させた前記第 1基板及び第 2基 板間に液晶を封入し、前記第 1基板及び第 2基板間に直流電圧を印加して前記液 晶の配向状態を制御する配向処理方法において、前記第 1基板を陽極、前記第 2基 板を陰極として前記直流電圧を印加することを特徴とする配向処理方法。  A first substrate having a common electrode and an alignment film is opposed to a second substrate having a switching element, a pixel electrode, a plurality of wirings and an alignment film, and a liquid crystal is provided between the first substrate and the second substrate facing each other. In an alignment treatment method for controlling the alignment state of the liquid crystal by applying a DC voltage between the first substrate and the second substrate, the first substrate as an anode and the second substrate as a cathode. An alignment treatment method comprising applying a DC voltage.
(付記 9) (Appendix 9)
前記第 1基板及び第 2基板間に封入してある液晶が単安定型の強誘電性液晶であ ることを特徴とする付記 8記載の配向処理方法。 The liquid crystal sealed between the first substrate and the second substrate is a monostable ferroelectric liquid crystal. Item 8. The alignment treatment method according to appendix 8, wherein

Claims

請求の範囲 The scope of the claims
[1] ラビングされた配向膜を有する第 1基板及び第 2基板を対向させ、該第 1基板及び 第 2基板間に液晶を封入してある液晶表示装置において、前記第 1基板に共通電極 を形成しており、前記液晶に印加される電圧を供給するためのスイッチング素子、画 素電極及び複数の配線を前記第 2基板に形成しており、前記第 1基板を陽極、前記 第 2基板を陰極とした直流電圧の印加により前記液晶の配向状態を制御してあること を特徴とする液晶表示装置。  [1] In a liquid crystal display device in which a first substrate and a second substrate having a rubbed alignment film are opposed to each other and liquid crystal is sealed between the first substrate and the second substrate, a common electrode is provided on the first substrate. A switching element for supplying a voltage applied to the liquid crystal, a pixel electrode, and a plurality of wirings are formed on the second substrate, the first substrate is an anode, and the second substrate is A liquid crystal display device characterized in that the alignment state of the liquid crystal is controlled by applying a DC voltage as a cathode.
[2] 前記第 1基板及び第 2基板間の対向距離を維持するためのスぺーサを前記第 2基 板に形成してあることを特徴とする請求項 1記載の液晶表示装置。  2. The liquid crystal display device according to claim 1, wherein a spacer for maintaining a facing distance between the first substrate and the second substrate is formed on the second substrate.
[3] ラビングされた配向膜を有する第 1基板及び第 2基板を対向させ、該第 1基板及び 第 2基板間に液晶を封入してある液晶表示装置において、前記第 1基板に共通電極 を形成しており、前記強誘電性液晶に印加される電圧を供給するためのスイッチング 素子、画素電極及び複数の配線を前記第 2基板に形成しており、前記第 1基板及び 第 2基板間の対向距離を維持するためのスぺーサを前記第 2基板に形成してあるこ とを特徴とする液晶表示装置。  [3] In a liquid crystal display device in which a first substrate and a second substrate having a rubbed alignment film are opposed to each other and liquid crystal is sealed between the first substrate and the second substrate, a common electrode is provided on the first substrate. A switching element for supplying a voltage applied to the ferroelectric liquid crystal, a pixel electrode, and a plurality of wirings are formed on the second substrate, and the first substrate and the second substrate are A liquid crystal display device, wherein a spacer for maintaining a facing distance is formed on the second substrate.
[4] 前記複数の配線の中のラビング方向下流側の配線よりラビング方向上流側に前記 スぺーサを形成してあることを特徴とする請求項 2又は 3記載の液晶表示装置。  4. The liquid crystal display device according to claim 2, wherein the spacer is formed on the upstream side in the rubbing direction with respect to the wiring on the downstream side in the rubbing direction among the plurality of wirings.
[5] 前記第 2基板が平坦ィ匕膜で覆われていることを特徴とする請求項 1乃至 4のいずれ か一つに記載の液晶表示装置。  5. The liquid crystal display device according to any one of claims 1 to 4, wherein the second substrate is covered with a flat film.
[6] フィールド 'シーケンシャル方式にてカラー表示を行うことを特徴とする請求項 1乃 至 5の 、ずれか一つに記載の液晶表示装置。  [6] The liquid crystal display device according to any one of claims 1 to 5, wherein color display is performed by a field 'sequential method.
[7] 前記第 1基板及び第 2基板間に封入してある液晶が単安定型の強誘電性液晶であ ることを特徴とする請求項 1乃至 6のいずれか一つに記載の液晶表示装置。  7. The liquid crystal display according to any one of claims 1 to 6, wherein the liquid crystal sealed between the first substrate and the second substrate is a monostable ferroelectric liquid crystal. apparatus.
[8] 共通電極及び配向膜を有する第 1基板と、スイッチング素子、画素電極、複数の配 線及び配向膜を有する第 2基板とを対向させ、対向させた前記第 1基板及び第 2基 板間に液晶を封入し、前記第 1基板及び第 2基板間に直流電圧を印加して前記液 晶の配向状態を制御する配向処理方法において、前記第 1基板を陽極、前記第 2基 板を陰極として前記直流電圧を印加することを特徴とする配向処理方法。  [8] The first substrate having the common electrode and the alignment film and the second substrate having the switching element, the pixel electrode, the plurality of wirings, and the alignment film are opposed to each other, and the first substrate and the second substrate are opposed to each other. In an alignment processing method in which a liquid crystal is sealed between the first substrate and the second substrate, and a DC voltage is applied between the first substrate and the second substrate to control the alignment state of the liquid crystal, the first substrate is the anode, and the second substrate is the second substrate. An alignment treatment method, wherein the DC voltage is applied as a cathode.
PCT/JP2005/007409 2005-04-18 2005-04-18 Liquid crystal display unit and orientation processing method WO2006114858A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2005/007409 WO2006114858A1 (en) 2005-04-18 2005-04-18 Liquid crystal display unit and orientation processing method
JP2007514374A JPWO2006114858A1 (en) 2005-04-18 2005-04-18 Liquid crystal display device and alignment treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/007409 WO2006114858A1 (en) 2005-04-18 2005-04-18 Liquid crystal display unit and orientation processing method

Publications (1)

Publication Number Publication Date
WO2006114858A1 true WO2006114858A1 (en) 2006-11-02

Family

ID=37214496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007409 WO2006114858A1 (en) 2005-04-18 2005-04-18 Liquid crystal display unit and orientation processing method

Country Status (2)

Country Link
JP (1) JPWO2006114858A1 (en)
WO (1) WO2006114858A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281667A (en) * 2000-03-29 2001-10-10 Toshiba Corp Liquid crystal display device and its manufacturing method
JP2004145258A (en) * 2002-08-30 2004-05-20 Fujitsu Ltd Method for manufacturing liquid crystal display device, and liquid crystal display device
JP2004191924A (en) * 2002-12-12 2004-07-08 Lg Philips Lcd Co Ltd Electric field alignment method for ferroelectric liquid crystal and liquid crystal display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281667A (en) * 2000-03-29 2001-10-10 Toshiba Corp Liquid crystal display device and its manufacturing method
JP2004145258A (en) * 2002-08-30 2004-05-20 Fujitsu Ltd Method for manufacturing liquid crystal display device, and liquid crystal display device
JP2004191924A (en) * 2002-12-12 2004-07-08 Lg Philips Lcd Co Ltd Electric field alignment method for ferroelectric liquid crystal and liquid crystal display

Also Published As

Publication number Publication date
JPWO2006114858A1 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
JP4169589B2 (en) Display device and display method
JP3371200B2 (en) Display control method of liquid crystal display device and liquid crystal display device
JP4493274B2 (en) Display device and display method
JP4772057B2 (en) Liquid crystal display device and display method
JP2004061907A (en) Semitransmissive liquid crystal display
US20110141398A1 (en) Transflective liquid crystal display device
US7006171B1 (en) Light-control device and method of driving
WO2005106576A1 (en) Liquid crystal display
WO2006103746A9 (en) Liquid crystal display
JP3948914B2 (en) Liquid crystal display element
JP3859524B2 (en) Method for driving liquid crystal display element and liquid crystal display device
WO2007032054A1 (en) Displaying method and display
JP4248268B2 (en) Liquid crystal display
JP2004126470A (en) Display device and display method
JP4020928B2 (en) Liquid crystal display
WO2006114859A1 (en) Liquid crystal display device
JP3407698B2 (en) Liquid crystal display
WO2006114858A1 (en) Liquid crystal display unit and orientation processing method
JP4342594B2 (en) Display device
JP5003767B2 (en) Display device and display method
WO2005122127A1 (en) Liquid crystal display
JP2007256390A (en) Liquid crystal display device and its driving method
JP3971378B2 (en) Liquid crystal display
JP3334715B1 (en) Liquid crystal display
WO2007029334A1 (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007514374

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05730681

Country of ref document: EP

Kind code of ref document: A1