WO2006112315A1 - 外観検査装置及び方法 - Google Patents

外観検査装置及び方法 Download PDF

Info

Publication number
WO2006112315A1
WO2006112315A1 PCT/JP2006/307722 JP2006307722W WO2006112315A1 WO 2006112315 A1 WO2006112315 A1 WO 2006112315A1 JP 2006307722 W JP2006307722 W JP 2006307722W WO 2006112315 A1 WO2006112315 A1 WO 2006112315A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection object
mirror
scanning
inspection
condensing point
Prior art date
Application number
PCT/JP2006/307722
Other languages
English (en)
French (fr)
Inventor
Yuji Ono
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to DE112006000841T priority Critical patent/DE112006000841T5/de
Priority to KR1020077013254A priority patent/KR101204585B1/ko
Priority to JP2006528335A priority patent/JP4874103B2/ja
Publication of WO2006112315A1 publication Critical patent/WO2006112315A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • G01N21/8903Optical details; Scanning details using a multiple detector array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces

Definitions

  • the present invention relates to a visual inspection apparatus and method for an inspection object, and more specifically, spot light (irradiation light) such as a laser, a polygon mirror (hereinafter referred to as a rotating polygon mirror), and a scanning condenser lens.
  • spot light irradiation light
  • the focus position forming optical system having the illuminating position irradiates and linearly travels on the inspection target, and is reflected by the inspection target and reflected to the mirror surface of the rotary polygon mirror via the focus position forming optical system
  • the present invention relates to an apparatus for inspecting the appearance of an object to be inspected by photoelectrically converting the light intensity of incident reflected light and obtaining the position coordinates of the appearance by the principle of confocal method.
  • the confocal relationship of the inspection object can be changed during a linear scanning operation by rotation of a rotary polygon mirror, so that the optical system and the inspection object are heightened. It is a simple configuration that does not need to be moved in the direction.
  • the former is further classified into various categories depending on the light projection method, the type of photodetector, and the positional relationship between them, and the confocal light shown in FIG.
  • the irradiation light emitted from the light source 101 is emitted toward the inspection object 103, that is, in the irradiation direction as indicated by a dotted line, passes through the light separation mirror 104, and is inspected by the condenser lens 121. Light is collected at a light condensing point Pa on the object 103.
  • the reflected light reflected at the condensing point Pa on the surface of the inspection object 103 the reflected light reflected in the direction opposite to the irradiation direction (falling light) (Reflected light) again enters the condensing lens 121, is reflected by the light separating mirror 104 in a direction orthogonal to the irradiation direction, enters the reflected light condensing lens 105, and is then shielded by the reflected light condensing lens 105.
  • a condensing point Qa is formed in the minute hole 106, passes through the minute hole in the shielding plate 106, enters the photodetector 107, and the light intensity is photoelectrically converted to the photoelectric conversion signal output la by the photodetector 107.
  • the condensing point Pa of the irradiation light condensing lens 121 and the condensing point Qa of the reflected light condensing lens 105 (that is, a minute hole in the shielding plate 106) are in an optically confocal relationship.
  • the inspection object 103 moves from the irradiation light condensing point Pa by the movement amount z in the irradiation direction and is located at the position of the inspection object 103-1, it is reflected on the surface of the inspection object 103-1.
  • the reflected light is indicated by a broken line, and the condensing point of the reflected light moves from the point Qa to a point Qa-1 which is separated in a direction approaching the reflected light condensing lens 105.
  • the size of the image of the reflected light on the shielding plate 106 is increased, the amount of reflected light collected by the reflected light condensing lens 105 is reduced through the minute holes of the shielding plate 106, and the photoelectric of the photodetector 107 is reduced.
  • the conversion signal output la decreases.
  • FIG. 11B shows the relationship between the movement amount za of the inspection object 103 and the photoelectric conversion signal output la of the photodetector 107.
  • the appearance can be inspected by obtaining height information at the light condensing point Pa.
  • FIG. 11A shows an example of a method of moving only the inspection object 103, but if the condensing point Pa of irradiation light and the position of the inspection object 103 in the Z direction are changed (hereinafter referred to as Z scanning).
  • Z scanning the condensing point Pa of irradiation light and the position of the inspection object 103 in the Z direction are changed.
  • Z scanning methods other than those methods are shown in FIGS. 12A and 12B.
  • FIG. 12A shows a method for realizing Z scanning by moving only the irradiation light condensing lens 121 in the optical system in the Z direction to move the irradiation light condensing point Pa to the point Pa-1.
  • This method is effective when the incident light incident on the irradiation light condensing lens 121 is close to parallel light, and the moving animal is only the irradiation light condensing lens 121, and the irradiation light condensing lens 121 is usually lightweight. of Thus, high-speed measurement and mechanism simplification can be achieved (see, for example, Patent Document 1).
  • FIG. 12B shows that the irradiation light condensing lens 121 and the inspection object 103 are inserted by inserting a parallel glass 110 having a thickness ta and a refractive index n between the irradiation light condensing lens 121 and the inspection object 103.
  • This shows a method of realizing Z-scanning by changing the optical distance da between and, and moving the irradiation light focusing point Pa to point Pa-2.
  • the disk in which the plurality of parallel glasses are arranged is rotated at high speed so that a plurality of parallel glasses having different thicknesses or refractive indexes are sequentially inserted between the irradiation light condensing lens 121 and the inspection object 103.
  • it is possible to achieve high-speed scanning of Z scanning see, for example, Patent Document 2).
  • the reflected light from the inspection object 103 is branched into a plurality of light by a plurality of light separation mirrors 104, and each branched reflected light is installed at a position where the distance from the reflected light collecting lens 105 is different.
  • a plurality of shielding plates 106 and photodetectors 107 By simultaneously measuring the photoelectric conversion signal output Ia of each branched reflected light by a plurality of shielding plates 106 and photodetectors 107, an optical system equivalent to the Z scanning method is formed, and the time required for Z scanning ( For example, it is possible to realize faster Z-scanning by omitting the time for moving the inspection object 103 or moving the irradiation light condensing lens 121 (see, for example, Patent Document 3).
  • the inspection object 103 is moved in the X direction and the Y direction orthogonal to each other and orthogonal to the Z direction, and the position of the irradiation light condensing point Pa with respect to the inspection object 103 is changed to the X direction ( (Hereinafter referred to as “X scanning”), and the position of the irradiation light condensing point Pa with respect to the inspection object 103 is changed in the Y direction (hereinafter referred to as “Y scanning”). ) And the appearance can be inspected (see, for example, Patent Document 1).
  • the entire optical system is moved in the X and Y directions, or the inspection object 103 is moved in the X or Y direction, the entire optical system is moved in the X or Y direction. Even if it is moved in the direction, it is possible to inspect the appearance by obtaining the position coordinates of the inspection object 103 in the same manner.
  • Patent Document 1 Japanese Patent Laid-Open No. 62-245949
  • Patent Document 2 Japanese Patent Laid-Open No. 9-126739
  • Patent Document 3 Japanese Patent Laid-Open No. 5-40035
  • Patent Document 4 JP-A-3-231105
  • Patent Document 5 Japanese Patent Laid-Open No. 9-257440
  • the present invention provides an appearance inspection apparatus and method that realizes a high-speed appearance inspection by a simple mechanism by incorporating Z scanning in an XY scanning mechanism. With the goal.
  • the present invention is configured as follows.
  • a light source that emits a luminous flux
  • the light beam emitted from the light source is deflected toward the inspection object by the respective mirror surfaces, and is rotated by the rotation.
  • a rotating polygon mirror capable of scanning the light beam linearly in the main scanning direction;
  • the light beam deflected and scanned by the respective mirror surfaces of the rotating polygon mirror is condensed at the condensing point, and the condensing point is orthogonal to the main scanning direction of the inspection object.
  • a condensing point position forming optical system that moves the inspection range in the height direction and the condensing point position forming optical system that is reflected by the inspection object after passing through the condensing point position forming optical system Via the mirror surface of the rotary polygon mirror
  • a photodetector that photoelectrically converts a light intensity of reflected light that depends on a distance between the condensing point and a reflection point of the light flux on the inspection object into a photoelectric conversion signal output; and
  • An inspection object moving device that moves the inspection object in a sub-scanning direction perpendicular to the main traveling direction and the height direction in synchronization with the rotation of the equiangular velocity of a polygon mirror;
  • a calculation unit that obtains position coordinates of the appearance of the inspection object based on the photoelectric conversion signal output of the reflected light photoelectrically converted by the photodetector, and inspects the appearance of the inspection object; Prepared,
  • the rotating polygon mirror is a mirror surface angle that is an angle formed by a rotation axis of the rotating polygon mirror and the mirror surface so that the condensing point of the light beam is shifted in the sub-scanning direction with the rotation of the equiangular velocity.
  • the rotating polygon mirror is a mirror surface angle that is an angle formed by a rotation axis of the rotating polygon mirror and the mirror surface so that the condensing point of the light beam is shifted in the sub-scanning direction with the rotation of the equiangular velocity.
  • the inspection object moving device is moved in the inspection range in the height direction by the focusing point position forming optical system while the rotary polygon mirror makes one rotation at the equiangular velocity, and the And moving the inspection object in the sub-scanning direction so that the condensing point shifted in the sub-scanning direction by the mirror surface is linearly scanned in the height direction of the inspection object Before the rotating polygon mirror starts one more rotation at the equiangular speed, the inspection object is moved in the sub-scanning direction, and the linear scanning in the main scanning direction and the height in the height direction are performed. Appearance inspection by moving the condensing point in the inspection range is configured to perform appearance inspection at the one rotation of the rotary polygon mirror and at different parts on the inspection object! A feature visual inspection apparatus is provided.
  • the condensing point position forming optical system is disposed such that an optical axis is inclined with respect to a direction orthogonal to the rotational axis of the rotary polygon mirror, A scanning condensing lens that condenses the light beam deflected and scanned by the respective mirror surfaces of the rotary polygon mirror at the condensing point, and the condensing point moves linearly in the main scanning direction;
  • the appearance inspection apparatus according to the first aspect is provided, wherein the inspection range in the height direction is moved.
  • the condensing point position forming optical system comprises:
  • the optical axis is arranged so as to be parallel to the direction orthogonal to the rotation axis of the rotary polygon mirror.
  • a scanning condensing lens that condenses the light beam deflected and scanned by the respective mirror surfaces of the rotating polygon mirror at the condensing point;
  • An entrance surface and an exit surface are arranged between the scanning condenser lens and the inspection object so as to be parallel to the main scanning direction, and the exit surface force is refracted by the incident light from the entrance surface.
  • the light beam that has passed through the scanning condensing lens is incident from the incident surface of the prism, bent and emitted from the exit surface, and the condensing point moves linearly in the main scanning direction.
  • the appearance inspection apparatus according to the first aspect is provided, wherein the inspection range in the height direction is moved.
  • the data storage further stores the photoelectric conversion signal output of the reflected light output from the photodetector during at least one rotation of the rotary polygon mirror.
  • the arithmetic unit obtains a position coordinate of an appearance of the inspection object by obtaining a position in the height direction of the inspection object based on the photoelectric conversion signal output stored in the data storage unit, and the inspection An appearance inspection apparatus according to the first aspect, characterized in that the appearance of an object is inspected.
  • the rotating polyhedron has at least three mirror surfaces on the outer peripheral portion, and has a mirror surface angle that is an angle formed between the rotation axis and the mirror surface, and is different for each mirror surface.
  • the mirror is rotated at an equiangular speed around the rotation axis, and the light beam emitted from the light source to the mirror surface is deflected toward the inspection object while being linearly scanned in the main scanning direction.
  • the main scanning of the inspection object is performed by condensing the light beam deflected and scanned by the respective mirror surfaces of the rotary polygon mirror at the condensing point by the condensing point position forming optical system.
  • the inspection object is moved in the sub-scanning direction so as to be scanned in a straight line in the direction, and reflected by the inspection object moving in the sub-scanning direction, and the condensing point position forming optical system Via the light intensity of the reflected light deflected to the mirror surface of the rotary polygon mirror
  • the light intensity depending on the distance between the condensing point and the reflection point of the inspection object of the light beam is photoelectrically converted into a photoelectric conversion signal output, and based on the photoelectric conversion signal output, the inspection is performed.
  • an appearance inspection by the linear scan in the main scanning direction and a movement of the condensing point in the inspection range in the height direction, an appearance inspection in the one rotation of the rotary polygon mirror and the inspection object Provide a visual inspection method characterized by being performed in different parts above
  • the optical system for forming the condensing point position is configured and the optical axis is perpendicular to the rotational axis of the rotary polygon mirror.
  • the condensing point is as described above while the light beam deflected and scanned by the respective mirror surfaces of the rotary polygon mirror is condensed on the condensing point by the scanning condensing lens arranged to be inclined.
  • the visual inspection method according to the fifth aspect characterized in that the light is condensed so as to move in the inspection range in the height direction while moving linearly in the main scanning direction.
  • the condensing point position forming optical system in the deflection scanning, is configured and an optical axis is parallel to a direction orthogonal to the rotational axis of the rotary polygon mirror.
  • the light beam deflected and scanned by the respective mirror surfaces of the rotary polygon mirror is condensed at the light condensing point by the scanning condensing lens arranged to be
  • the visual inspection apparatus according to the fifth aspect is characterized in that the light is condensed so as to move in the inspection range in the height direction.
  • the rotating polygon mirror is moved at an angle formed by the rotation axis and the mirror surface so that the condensing point of the scanning light flux is displaced in the sub-scanning direction as the angular velocity is rotated.
  • a specular angle Is configured to be different for each mirror surface, and the condensing point position forming optical system is configured so that the condensing point moves in the inspection range in the height direction, so that the rotating polygon mirror can rotate at an equal angular velocity.
  • the condensing point that has been moved in the inspection range in the height direction and shifted in the sub-scanning direction is scanned linearly in the height direction of the inspection object.
  • the position coordinates of the appearance of the inspection object are set, for example, by two points in the main scanning direction (three-dimensional). At least two points are required to determine the position coordinates of the appearance. Three points or more are preferable for increasing the X resolution), and two points in the sub-scanning direction (to obtain the position coordinates of the three-dimensional appearance) A force that requires two points is recommended.
  • Patent Document 1 in order to perform Z scanning, the irradiation light condensing lens is moved in the height direction (Z direction) separately from the driving mechanism for performing XY scanning. In addition, if the irradiation light condensing lens is moved in the height direction, vibration or the like may occur when the lens is stopped, which may reduce the inspection accuracy. According to the first or fifth aspect of the present invention, since a drive mechanism for moving the irradiation light collecting lens or the like in the height direction is not required, it is possible to prevent the inspection accuracy from being lowered.
  • Patent Document 3 in order to perform Z scanning, it is necessary to arrange a plurality of light separating mirrors, shielding plates, and photodetectors. According to the first or fifth aspect of the present invention, since only one light separation mirror, one shielding plate, and one light detector are required, an increase in the number of components is suppressed to prevent an increase in cost and an increase in size. be able to.
  • FIG. 1A is a schematic perspective view showing configurations of an optical system and a mechanism system of an appearance inspection apparatus according to a first embodiment of the present invention.
  • FIG. 1B is a partially enlarged perspective view of FIG.
  • FIG. 2 is a schematic view of the configuration of the optical system of the appearance inspection apparatus and method according to the first embodiment of the present invention as viewed from the sub-scanning direction;
  • FIG. 3A is a diagram for explaining the effect of the mirror angle of the rotary polygon mirror of the visual inspection apparatus and method according to the first embodiment of the present invention
  • FIG. 3B is a diagram for explaining the effect of the installation angle of the scanning condensing lens of the appearance inspection apparatus and method according to the first embodiment of the present invention
  • FIG. 4A is a side view showing a change in the mirror angle of the rotary polygon mirror of the visual inspection apparatus according to the first embodiment of the present invention
  • FIG. 4B is a cross-sectional view showing a change in the mirror angle of the rotary polygon mirror of the visual inspection apparatus according to the first embodiment of the present invention
  • FIG. 4C is a perspective view showing an example of the shape of the rotary polygon mirror of the appearance inspection apparatus according to the first embodiment of the present invention.
  • FIG. 5A is a side view showing a change of the irradiated light condensing point by the mirror surface of the appearance inspection apparatus and method in the first embodiment of the present invention
  • FIG. 5B is a perspective view showing a change of the irradiated light collecting point by the mirror surface of the appearance inspection apparatus and method according to the first embodiment of the present invention
  • FIG. 6A is a schematic perspective view showing a configuration for explaining a sending operation and data processing in the sub-scanning direction of the appearance inspection apparatus according to the first embodiment of the present invention.
  • Figure 6B is a partially enlarged view of Figure 6A.
  • FIG. 7A is a diagram showing the control of the feed amount of the inspection object to the position in the sub-scanning direction by the table feeding device of the appearance inspection apparatus and method according to the first embodiment of the present invention.
  • FIG. 7B is an inspection target of the visual inspection apparatus and method according to the first embodiment of the present invention. It is a diagram showing the principle of YZ scanning for objects,
  • FIG. 8 (b) is a schematic diagram of the storage contents of the data storage unit of the appearance inspection apparatus and method according to the first embodiment of the present invention.
  • FIG. 8A is a diagram showing the principle of the calculation method of the appearance position coordinate calculation unit of the appearance inspection apparatus and method according to the first embodiment of the present invention.
  • FIG. 8C is a diagram showing an example of eyelid scanning on an inspection object of the appearance inspection apparatus and method according to the first embodiment of the present invention
  • FIG. 8D is a schematic diagram showing an example of the contents stored in the data storage unit of the visual inspection apparatus and method according to the first embodiment of the present invention.
  • FIG. 8A is a diagram showing an example of a calculation method of the appearance position coordinate calculation unit of the appearance inspection apparatus and method according to the first embodiment of the present invention.
  • FIG. 9B is a schematic view of the configuration of the optical system of the visual inspection apparatus and method according to the second embodiment of the present invention viewed from the sub-scanning direction.
  • FIG. 9B is a schematic view of the configuration of the optical system of the visual inspection apparatus and method according to the second embodiment of the present invention as seen from the main scanning direction.
  • FIG. 10A is a diagram for explaining the action of the long prism of the appearance inspection apparatus and method according to the second embodiment of the present invention.
  • FIG. 10B is a diagram for explaining the movement of the light collection point by the long prism of the visual inspection apparatus and method according to the second embodiment of the present invention.
  • FIG. 11A is a configuration diagram of an optical system of a conventional confocal appearance inspection apparatus.
  • FIG. 11B is a schematic diagram of the photoelectric detector 7 in the conventional confocal appearance inspection apparatus. It is a diagram showing the positional relationship between the conversion signal output I and the inspection object,
  • FIG. 12A is a diagram showing eyelid scanning example 1 (movement of a condensing lens) in a conventional confocal appearance inspection apparatus.
  • FIG. 12B is a diagram showing eyelid scanning example 2 (insertion of parallel glass) in a conventional confocal appearance inspection apparatus.
  • FIG. 1A is a schematic perspective view showing a configuration of an optical system and a mechanism system of an appearance inspection apparatus according to the first embodiment of the present invention
  • FIG. 1B is a partially enlarged view of FIG. It is a perspective view
  • FIG. 2 is a schematic view of the same optical system as viewed from the sub-scanning direction.
  • the appearance inspection apparatus includes a light source 1, a rotating polygon mirror 11, a motor 11a, a scanning condensing lens 2 that constitutes an example of a condensing point position forming optical system, Separating mirror 4, reflected light collecting lens 5, shielding plate 6, photodetector 7, table feeding device 12 as an example of an inspection object moving device, and data storage unit 13 as an example of a storage unit A calculation unit 14, an output unit 15, and a control unit 16.
  • the light source 1 emits a light beam such as a laser toward the rotary polygon mirror 11 as irradiation light.
  • the rotating polygonal mirror 11 is formed in the shape of a polygonal cylinder (eg, hexagonal prism) and has a plurality of mirror surfaces 1 lc (reflective surfaces) with different mirror angles on the outer periphery, and is rotated at a constant angular velocity in one direction by a motor 1 la. It is configured to be possible.
  • the rotating polygonal mirror 11 directs the irradiation light of the light source 1 to the inspection object 3 (for example, an electronic component mounted on the substrate or a cream solder that joins the substrate and the electronic component) with each mirror surface 11c (height). It can be deflected in the direction Z (upward and downward in Fig. 1) and in the opposite direction (downward and downward in Fig. 1).
  • the scanning condensing lens 2 is disposed between the rotating polygonal mirror 11 and the inspection object 3, and condenses the irradiation light deflected by the rotating polygonal mirror 11 at a nearby point P on the inspection object 3 (hereinafter referred to as “scanning focusing lens”).
  • the condensing point where the irradiation light deflected by the rotating polygonal mirror 11 is condensed by the scanning condenser lens 2 is referred to as an irradiation light condensing point).
  • the light separation mirror 4 has a rectangular plate shape, is disposed between the light source 1 and the rotary polygon mirror 11, and is condensed near the inspection object 3 by the scanning condenser lens 2. Reflected in height direction Z in 3 The reflected light that travels in the reverse path to the irradiation light and returns to the light source 1 is separated from the irradiation light of the light source 1, that is, the force on the irradiation path of the irradiation light of the light source 1 is also separated, and the disk-shaped reflected light collection is performed. The light is incident on the lens 5.
  • the reflected light condensing lens 5 condenses the reflected light separated by the light separating mirror 4 in the vicinity of a minute hole formed in the shielding plate 6 having a rectangular plate shape.
  • the light detector 7 photoelectrically converts the light intensity of the reflected light incident through the minute hole of the shielding plate 6 into a photoelectric conversion signal output I.
  • the table feeder 12 includes a drive shaft 12a arranged to extend in the height direction Z and the sub-scanning direction Y orthogonal to the main scanning direction X, and the drive shaft 12a screwed to the drive shaft 12a.
  • the nut member 12b that can move forward and backward on the drive shaft 12a by rotating forward and backward, and the rectangular plate-shaped tape 12c that is fixed to the nut member 12b and can hold the substrate 3A on which the inspection object 3 is placed
  • a drive motor 12d for rotating the drive shaft 12a in the forward and reverse directions.
  • the drive motor 12d is driven by the control unit 16, the drive shaft 12a rotates forward and backward, and the nut member 12b and the table 12c fixed to the nut member 12b move forward and backward in the Y direction.
  • the inspection object 3 is configured to be movable back and forth in the Y direction.
  • the control unit 16 is connected to the light source 1, the photodetector 7, the motor lla, the drive motor 12 d, and the data storage unit 13, and based on an operation program stored in advance in the data storage unit 13 1. Controls the driving of the photodetector 7, the motor 11a, and the driving motor 12d.
  • the data storage unit 13 stores the operation program of each device and also stores the photoelectric conversion signal output I of the reflected light that has been photoelectrically converted by the photodetector 7 and output.
  • the calculation unit 14 includes an extraction unit 14a connected to the data storage unit 13 and an appearance position coordinate calculation unit 14b connected to the extraction unit 14a, and outputs a photoelectric conversion signal of reflected light stored in the data storage unit 13. It is configured to obtain the position coordinates of the appearance of the inspection object 3 based on the I-axis.
  • the output unit 15 is configured by, for example, a display, is connected to the appearance position coordinate calculation unit 14b, and outputs and displays the position coordinates of the appearance of the inspection object 3 calculated by the appearance position coordinate calculation unit 14b.
  • the visual inspection apparatus according to the first embodiment of the present invention has a basic configuration as described above. It is.
  • the controller 16 controls the drive so that a light beam is emitted from the light source 1.
  • the light beam emitted as the irradiation light from the light source 1 is deflected by one mirror surface 11c of the rotary polygon mirror (polygon mirror) 11, enters the scanning condenser lens 2, is emitted as a convergent light beam, and is inspected 3 It becomes the scanning beam that is focused at the point P near the top.
  • the light beam emitted from the light source 1 is driven by the control unit 16 and the rotation of the rotary polygonal mirror 11 changes the angle of the scanning light beam incident on the scanning condensing lens 2, thereby collecting the irradiated light.
  • the light spot P moves continuously from point P1 to point P2 to point P3, and scans the inspection object 3 linearly in the main scanning direction X (hereinafter referred to as X scanning).
  • X scanning the main scanning direction X
  • the reflected light epi-reflection light
  • the same confocal optical system reflected light lens 5 and shield
  • the photodetector 7 via the plate 6). In this way, by rotating the rotating polygonal mirror 11, the photoelectric conversion signal output I obtained by the photodetector 7 can be obtained from the light intensity of the epi-reflection light on the scanning line of the inspection object 3. .
  • control unit 16 controls the driving of the driving motor 12d of the table feeding device 12 in synchronization with the rotation of the rotary polygon mirror 11, and the inspection object 3 held on the table 12c is the main object.
  • Move in the direction perpendicular to both scanning direction X and height direction Z hereinafter referred to as sub-scanning direction Y).
  • the rotational speed of the rotary polygon mirror 11 is generally constant, and in order to make the moving speed (scanning speed) of the scanning light flux in the main scanning direction X constant, the scanning condenser lens 2 is shown in FIG.
  • F 0 lens is generally used.
  • the scanning condenser lens 2 is an f ⁇ lens.
  • FIG. 3A and FIG. 3B are views of the optical system in the first embodiment, viewed from the main scanning direction X, and explain the effects of the optical system.
  • a point P— 1 that is shifted from Z by z f X a X tan (j8)
  • the mirror angle of the rotating polygonal mirror 11 is almost constant even if the rotation angle of the rotating polygonal mirror 11 changes during scanning with the same mirror surface 1 1c.
  • the entire scanning line formed by the trajectory of the irradiation light condensing point P of the scanning light beam can be shifted in the height direction Z with respect to the inspection object 3.
  • FIGS. 4A to 4C show the effects of changing the angle of each mirror surface of the rotating polygon mirror 11.
  • FIG. 4A if the mirror surface angle of the rotating polygon mirror 11 having n mirror surfaces 11c is changed for each mirror surface 11c, the height of the irradiation light focal point P is increased during one rotation of the rotating polygon mirror 11.
  • the z-direction position z can be changed n times.
  • the case where the mirror angle of the rotating polygon mirror l lz is all 0 that is, a hexagonal column because it is parallel to the rotation axis
  • the rotating polygonal mirror 11 gradually mirrors the first mirror surface 11c force through the sixth mirror surface 11c.
  • the angle of lc is changing, and in Fig. 4C, the first mirror surface 11c to the third mirror surface 11c are downward.
  • each mirror surface 11c is a plane
  • the angle difference of 16 is the largest, so the boundary cross section is also the largest. In other words, when the angle difference between adjacent mirror surfaces excluding between the first mirror surface 11c and the sixth mirror surface 11c is taken,
  • the timing is as follows.
  • i is the mirror surface number and is an integer between 1 and 6, and the mirror surface angle of the first mirror surface 11c is 2.5 X d
  • the mirror surface angle of the sixth mirror surface 11c is +2.5 X d, and the first mirror surface 11c and the sixth mirror surface 11c
  • the rotating polygon mirror 11 will be described as having the shape shown in FIG. 4C (the number of mirror surfaces is 6, and the angle change d ⁇ between adjacent surfaces is constant).
  • the number of mirror surfaces of the rotating polygon mirror 11 should be at least three. However, the larger the number of mirror surfaces, the more the number of mirror surfaces increases, so that the irradiation light condensing point ⁇ ⁇ is shifted in the main driving direction X and the appearance inspection of the inspection object 3 is performed. This is preferable because it can increase the number of sample points of the position coordinates and improve the appearance inspection accuracy.
  • the angle of the mirror surface 11c gradually increases from the first mirror surface 11c force to the sixth mirror surface 11c.
  • the rotating polygonal mirror 11 is configured so that the angle of the mirror surface 11c changes as follows: + 1 °, + 0.5 °, 0 °, —0.5 ° —1 °. Is not limited to this. For example, even if the mirror surface angle is randomly changed to + 1 °, -0.5 °, 0 °, -1 °, + 0.5 °, the same effect as the above configuration can be obtained. it can.
  • FIG. 5A is a view from the same main scanning direction X as FIG. 3B.
  • the rotating polygon mirror 11 starts the deflection operation of the light beam of the light source 1 from the first mirror surface 11c.
  • the rotational drive is controlled by the controller 16.
  • the rotating polygon mirror 11 deflects the light beam from the light source 1 in the order of the first mirror surface 11c force and the sixth mirror surface 11c by rotating once.
  • Point Px to Point Px and Point P are on a plane that makes an angle
  • the plane 31 is a plane (virtual inspection reference plane) passing through the middle (for example, the center) of the inspection range Zr in the height direction Z preset for the inspection object 3.
  • the inspection range Zr in the height direction Z is higher than the uppermost part of the inspection object 3 in order to inspect the entire inspection object 3, from the same position as the lowermost part of the inspection object 3, or from the lowermost part. Low, preferably set to span the position.
  • the mirror surface angle of the rotating mirror 11 increases in proportion to the mirror surface number i.
  • FIG. 5B shows a state similar to FIG. 5A in a perspective view.
  • the irradiation light condensing point at the start of scanning is P1
  • the irradiation light condensing point at the end of scanning is P3 (i is the surface number).
  • I l ⁇ 6). That is, the point Px in FIG. 5A indicates the entire locus of the irradiation light collecting point in the linear scan between the points P1 and P3 in FIG. 5B, and the same applies to the point Px to the point Px (however, the point Px As mentioned above
  • the irradiation light condensing point is also point P1.
  • the point P1 force indicated by the solid arrow is also point P3, and the point P1 force is also from point P3 and point P1.
  • Point P3 indicates a linear scan by moving the irradiation light condensing point. Dotted arrows in Figure 5B
  • 3 4 4 5 5 6 shows a state in which the irradiation light condensing point does not exist, that is, a state in which linear scanning is not performed.
  • the rotating polygon mirror 11 makes one rotation, and the sixth mirror surface 11c force the light of the light source 1 on the first mirror surface 11c.
  • f X ⁇ .
  • 2 ⁇ .
  • the angle of each mirror surface 11c of the rotary polygon mirror 11 as shown in Fig. 4C is configured to be different from each other.
  • Linear scanning (X scanning) is performed by changing the position X in the main scanning direction of the irradiation light condensing point by reflecting the light beam.
  • FIG. 6A is a schematic perspective view showing a configuration for explaining the feeding operation and data processing of the inspection object 3 in the sub-scanning direction Y of the appearance inspection apparatus according to the first embodiment of the present invention.
  • FIG. 6B is a partially enlarged perspective view of FIG. 6A showing the inspection object 3.
  • the control unit 16 controls the drive of the drive motor 12a of the table feeder 12, and rotates the drive shaft 12a in synchronism with the start of scanning of each mirror surface 11c of the rotary polygon mirror 11, thereby causing the nut member to rotate. 1
  • the table 12c fixed to 2b and the nut member 12b is moved in the sub-scanning direction Y, and the inspection object 3 on the substrate 3A held by the table 12c is moved in the sub-scanning direction Y.
  • the control unit 16 performs the main scanning direction position X of the scanning light beam while the scanning light beam linearly scans the inspection object 3.
  • the photoelectric conversion signal output I of the photodetector 7 is changed for one rotation or more of the rotary polygon mirror 11 (that is, the point P1
  • the control unit 16 extracts the photoelectric conversion signal output I of the photodetector 7 stored in the data storage unit 13 by the extraction unit 14a, and outputs the photoelectric conversion signal output I of the photodetector 7 extracted by the extraction unit 12a.
  • the appearance position coordinate calculation unit 14b calculates the position coordinates of the appearance of the object 3 to be detected.
  • FIG. 7A the control of the feed amount Yt of the inspection object 3 in the sub-scanning direction Y by the table feeder 12 and the principle of YZ scanning for the inspection object 3 will be described. I will explain.
  • FIG. 7A during one rotation of the rotary polygonal mirror 11 having six mirror surfaces 11c, the position y of the scanning line in the sub-scanning direction changes y, y,. At this time,
  • the feed amount Yt of the table feeder 12 is synchronized with the scanning operation of each mirror surface 11c of the rotary polygon mirror 11 in the sub-scanning direction position y of the scanning line.
  • the scanning line always scans the same position with respect to the position y in the sub-scanning direction.
  • the feed amount Yt is also equal.
  • the inspection object 3 When the constant increment f X d a is changed five times from Yt to Yt, the inspection object 3 also becomes the position of the inspection object 3—1.
  • the position changes to the position of the inspection object 3-6.
  • the height direction position z of the irradiation light condensing point of the scanning line changes five times as described above with z, ⁇ , .. ⁇ and a constant interval f X da Xtan (
  • the irradiation light condensing point is parallel to the height direction Z with respect to the inspection object 3 while the rotary polygon mirror 11 is rotated once. Can be changed to achieve Z-scan.
  • the rotary polygon mirror 11 enters the second rotation. That is, the rotating polygonal mirror 11 sequentially reflects the light beam of the light source 1 by the first mirror surface 11c and the sixth mirror surface 11c, and again the first mirror.
  • the table feeder 12 feeds the inspection object 3 in the sub-scanning direction Y at a constant feeding interval f x da.
  • the inspection object 3 is located at the position of the inspection object 3-7, and the irradiation light condensing point is located in the height direction Z at the height direction position z.
  • the irradiation light condensing point is at the height direction position z.
  • the table feeder 12 While changing to d6 and changing again to the height position z, the table feeder 12 moves the inspection object 3 to the sub dl.
  • FIG. 7B shows changes in the height direction Z and the sub-scanning direction Y of the irradiation light condensing point of the scanning line with respect to the inspection object 3 by the control operation of the rotary polygon mirror 11 and the table feeder 12. is doing.
  • FIG. 7B a substrate on which a plurality of electronic components (shaded portions in FIG. 7B) are mounted is shown as the inspection object 3.
  • the inspection range Zr in the height direction Z with respect to the inspection object 3 extends from a position higher than the top surface of the highest electronic component among the plurality of electronic components to a position that is the same as or lower than the substrate. It is preferable to set as follows. Therefore, in Fig. 7B, the point Px and the point Px ... Px are set higher than the electronic parts.
  • the point Px and the point Px ⁇ The point Px is set at a position lower than the board.
  • the black circle indicates the condensing point of the scanning light beam actually collected by the scanning condensing lens 2
  • the dotted white circle indicates the scanning light beam before condensing by the scanning condensing lens 2.
  • a virtual condensing point that is reflected by the surface of the inspection object 3 and is not actually condensed is shown.
  • the first mirror surface 11c force of the rotating polygon mirror 11 starts.
  • the irradiation light condensing point is the same position in the sub-scanning direction Y, from point Px to point Px, in the height direction position z force to z And 5 times
  • the light condensing point changes from Px to ⁇ and ⁇ scans.
  • the sub-scanning direction position y changes at a constant interval Yp.
  • Y-scanning is realized at a constant interval Yp for each rotation of the rotating polygonal mirror 11.
  • the X-scan is performed with one mirror scan while the mirror surface angle ⁇ is varied.
  • Multiple mirror surfaces 1 lc are switched during one rotation of the rotating polygonal mirror 11 ⁇ Scanning is performed. It can be performed.
  • the spot diameter d of the light beam emitted from the light source 1 when it is irradiated onto the inspection object 3 varies depending on the inspection range Zr in the height direction Z of the inspection object 3.
  • the inspection range Zr and the spot diameter d are approximately in the relationship of the following equations.
  • the inspection object 3 is a plurality of tar solders applied to the substrate
  • the inspection range Zr in the height direction Z is higher than the top surface of the highest cream solder among the plurality of cream solders. Therefore, it is preferable to set the position so as to extend over the same position as the substrate or lower than the substrate. In such cases, the thickness of the cream solder Since the maximum diameter is about 0.2 mm, the spot diameter d should be set to 15 ⁇ m and the inspection range Zr should be set to about 0.3 mm.
  • an optimal setting value may be set according to the intensity distribution of the light beam and the reflection state of the inspection object 3.
  • the confocal optical system (reflecting lens 5 and shielding) is obtained by X scanning and Z scanning at the same sub-scanning direction position y of the inspection object 3 during one rotation of the rotary polygon mirror 11.
  • the principle of the calculation method for obtaining the height information of the inspection object 3 from the photoelectric conversion signal output I obtained when the reflected light through the plate 6) enters the photodetector 7 will be described with reference to FIGS. 8A and 8B. .
  • FIG. 8A schematically shows the storage contents of the photoelectric conversion signal output I of the photodetector 7 in the data storage unit 13.
  • the data storage unit 13 performs the height direction position di of the irradiation light condensing point at the same sub-scanning direction position y of the inspection object 3 by one rotation of the rotary polygon mirror 11 having six mirror surfaces 11c.
  • the inspection is performed up to the sub-scanning direction positions Y to Y. dl d6
  • a line graph connecting photoelectric conversion outputs 1 (1, 1) to I (1, m) of the photodetector 7 with a short dotted line indicates the light intensity of the scanning light beam by the first mirror surface 11c.
  • a line graph connecting the photoelectric conversion outputs 1 (2, 1) to I (2, m) of the photodetector 7 with a long dotted line indicates the light intensity at the position X in the main scanning direction of the scanning light beam by the second mirror surface 11c. ing.
  • a line graph connecting the photoelectric conversion outputs 1 (6, 1) to I (6, m) of the detector 7 with solid lines indicates the light intensity at the position X in the main scanning direction of the scanning light beam by the sixth mirror surface 11c.
  • FIG. 8B shows the rotation polygon mirror 11 stored in the data storage unit 13 in the calculation unit 14. This figure schematically shows a processing method for obtaining the dj measurement height Z at each position X in the main scanning direction from 6 X m photoelectric conversion signal outputs I (i, for rotation).
  • Photoelectric conversion signal output I is the maximum curve.
  • the extraction unit 14a of the calculation unit 14 determines the maximum height direction position z as the measurement height d2
  • the height Z2 of the inspection object 3 at the position X in the main scanning direction is d2
  • the extraction unit 14a of the calculation unit 14 converts the maximum height direction position z into the measurement height dl.
  • the main scanning direction position X and the sub-scanning direction position y of the inspection object 3 are the same.
  • the extraction unit 14a of the calculation unit 14 extracts the maximum height direction position z as the measurement height z and d4 m3.
  • the height information on the scanning line of the inspection object 3 can be obtained.
  • FIG. 8D is a schematic diagram illustrating an example of the contents stored in the data storage unit 13
  • FIG. 8E is a diagram illustrating an example of the calculation method of the appearance position coordinate calculation unit 14b.
  • a black circle indicates a condensing point of the scanning light beam actually condensed by the scanning condensing lens 2
  • a dotted white circle indicates a point before condensing by the scanning condensing lens 2.
  • the scanning light beam is reflected on the surface of the inspection object 3 and shows a virtual condensing point that is not actually condensed. That is, in FIG. 8C, the scanning light beam is in the height direction position z, the main scanning direction position X d4 d and X, the height direction position Z, the main scanning direction position X and X, and the height direction.
  • the X scan at the height position z is the first mirror surface dl of the rotating polygon mirror 2.
  • the X scan at the height direction position z ⁇ is performed from the second mirror surface 11c to the sixth mirror surface 11c by d3 d6 2 6.
  • the light intensity of the epi-reflected light received by the photodetector 7 increases as the scanning light beam collected by the scanning condenser lens 2 is reflected by the inspection object 3 near the focal point. Become. In other words, in FIG. 8C, when the received light intensity is 1, the incident light reflected by the light detector 7 has the strongest incident light intensity farther from the received light intensity 1, that is, the received light intensity 2, the received light intensity 3 The light intensity of the epi-reflected light received by the photodetector 7 becomes weaker as
  • the light is condensed at 3 and is collected at the received light intensity 2 at the height direction position z, and is collected at the received light d2 d3 light intensity 1 at the height direction position z to form a condensing point of the scanning light beam.
  • light is collected with received light intensity 1 and at height position Z it is collected with received light intensity 2 and height direction d5
  • each light beam Since each light beam is reflected, it becomes a condensing point of a virtual scanning light beam.
  • FIG. 8D is a graph showing the relationship between the photoelectric conversion signal output I obtained by photoelectric conversion of the received light intensities 1 to 5 shown in FIG. 8C by the photodetector 7 and the position X in the main scanning direction.
  • the light dj is a graph showing the relationship between the photoelectric conversion signal output I obtained by photoelectric conversion of the received light intensities 1 to 5 shown in FIG. 8C by the photodetector 7 and the position X in the main scanning direction.
  • the light dj the light dj
  • a long dotted line connecting the photoelectric conversion signal outputs 1 (1, 1) to I (1, m) of the detector 7 indicates the light intensity at the position X in the main scanning direction of the scanning light beam by the first mirror surface 11c. Also the photodetector The short dotted line connecting the photoelectric conversion signal outputs I (2, 1) to I (2, m) of 7 is due to the second mirror surface 11c.
  • the alternate long and short dash line connecting the electrical conversion signal outputs 1 (3, 1) to I (3, m) is the scanning light from the third mirror surface 11c.
  • the two-dot chain line connecting signal outputs 1 (4, 1) to 1 (4, m) is the main scanning beam of the fourth mirror surface 11c.
  • the light intensity at the scanning position X is shown.
  • the straight line connecting forces 1 (5, 1) to I (5, m) is the position in the main scanning direction of the scanning beam by the fifth mirror surface 11c.
  • the light intensity at device X is shown.
  • the thick straight line connecting (6, m) is at the position X in the main scanning direction of the scanning beam by the sixth mirror surface 11c.
  • FIG. 8E shows the photoelectric conversion signal output dj di at each height direction position z for each main scanning direction position X.
  • Signal outputs 1 (1, 1) to I (6, 1) are indicated by triangular marks in FIG. 8E.
  • the photoelectric conversion signal outputs 1 (3, 1) to (3, 6) at the direction position z are indicated by circular marks in FIG.
  • the maximum value is between the height direction position z and the height direction position Z.
  • the maximum value is between d3 and the height direction position z.
  • the extraction unit 14a of the calculation unit 14 measures the height between the height direction position z and the d4 d3 height direction position z at the measurement height d4 d2 d3 at the position X or X of the inspection object 3 in the main scanning direction. Extract by z or Z. In the same manner, each main scan m2 ml 3
  • the scanning line dj mj of the inspection object 3 is extracted.
  • the extraction unit 14a extracts the height direction position z that becomes the maximum value as described above, the measurement height
  • the interval of the length z is also a discrete value of fXdaXtan (
  • fXdaXtan
  • the resolution can be reduced.
  • the control unit 16 outputs a signal (hereinafter referred to as a rotation synchronization signal) that synchronizes with the rotation of the rotary polygon mirror 11 to the appearance position coordinate calculation unit 14b once per rotation. Further, the control unit 16 causes the appearance position coordinate calculation unit 14b to output a signal (hereinafter referred to as a scanning synchronization signal) that synchronizes with the scanning operation by each mirror surface 11c once for each mirror surface scanning. Then, the appearance position coordinate calculation unit 14b combines the rotation synchronization signal and the scanning synchronization signal to associate the photoelectric conversion signal output I of the photodetector 7 with the mirror surface number i of the rotary polygon mirror 11. Is possible.
  • the data of the photoelectric conversion signal output I of the photodetector 7 in one rotation of the rotary polygon mirror 11 is stored in the data storage unit 13.
  • the control unit 16 converts the feed amount Yt of the table feeder 12 into the rotation of the rotary polygon mirror 11 at the equal angular velocity.
  • each main scanning direction in the XY scanning range of the inspection object 3 Information on the height direction position z at position X and each sub-scanning direction position y (that is,
  • the calculation unit 14 performs inspection pairing.
  • the position coordinates of the appearance of figurine 3 are m points in the main scanning direction (the number of samplings in the main scanning direction X) and 5 points in the sub-scanning direction (the number of rotations of the rotating polygon mirror 11).
  • the method of moving the inspection object 3 in the sub-scanning direction Y by the table feeder 12 has been described.
  • the inspection object 3 is fixed and the entire optical system is sub-running.
  • the scanning condensing lens 2 has been described as an f0 lens.
  • FIG. 9A is a schematic view of the configuration of the optical system of the appearance inspection apparatus and method according to the second embodiment of the present invention viewed from the sub-scanning direction Y.
  • FIG. 9B is a schematic view of the configuration of the optical system of the appearance inspection apparatus according to the second embodiment of the present invention viewed from the main scanning direction X.
  • the visual inspection apparatus and method according to the second embodiment of the present invention is a plane in which the optical axis of the scanning condenser lens 2 is orthogonal to the rotational axis 1 lb of the rotary polygon mirror 11.
  • Force angle ⁇ with a scanning condensing lens 2 ⁇ arranged in parallel to the height direction ⁇ without tilting, and forming a condensing point position between the scanning condensing lens 2 ⁇ and the inspection object 3
  • This is different from the appearance inspection apparatus of the first embodiment of the present invention in that it further includes a wedge-shaped long prism 15 having an entrance surface and an exit surface that are parallel to the main scanning direction X, which constitutes an example of the optical system for use. Since the other points are the same as those of the visual inspection apparatus and method according to the first embodiment of the present invention, the overlapping description is omitted.
  • the scanning beam incident on the long prism 17 has its parallel movement changed from the distance y to the distance y by the action of the long prism 17.
  • the difference of the second embodiment from the first embodiment is that the long prism 17 is newly provided and the point that the inclination ⁇ of the scanning condenser lens 2 is eliminated.
  • the mirror surface angle of the rotating polygonal mirror 11 allows the X-scanning and the saddle scanning to be performed simultaneously on the inspection object 3, and the same effect can be exhibited.
  • FIG. 10A is a diagram for explaining the action of the long prism 17
  • FIG. 10B is a diagram for explaining the movement of the irradiation light condensing point by the long prism 17.
  • the apex angle of the long prism 17 is a
  • the refractive index is n
  • the light beam of the light source 1 is incident from the point A2 on the incident surface 17a of the long prism 17, and the point on the exit surface 17b.
  • the bending angle is as follows: become.
  • ⁇ ⁇ emitted from the scanning condenser lens 2 and incident on the long prism 17 with respect to the incident surface 17a is defined as bl1.
  • the angle formed by the scanning light beam entering the long prism 17 with the incident surface 17a is bl2, and the angle with the exit surface 17b is b21.
  • the angle formed by the scanning light beam (hereinafter referred to as “emitted light”) emitted from the long prism 17 and the exit surface 17b is defined as b22.
  • the bending angle ⁇ is a function fl (a, n, bl l) of the apex angle a, the refractive index ⁇ , and the incident angle bl l. It becomes. Therefore, the scanning light beam that passes through points A1 to C1 translated in the sub-scanning direction Y by the distance y is also the same incident angle bll as the scanning light beam that passes through points A2 to C2, and the bending angle is ⁇ . . In other words, the light emitted from point C1 through point A1 to point C1 is parallel to the light emitted from point C2 through point C2 and emitted from point C2.
  • the distance y between the emitted light emitted from the point C1 and the emitted light emitted from the point C2 is the point A1.
  • the distance y between the incident light and the incident light incident on point A2 is linearly proportional, and the ratio
  • the example coefficient is Snell's law force as shown in the following equation, and eventually becomes a function f2 (a, n, bll) of the apex angle a'refractive index n'incident angle bll.
  • the irradiation light condensing point Pb moves to the irradiation light condensing point Pb-1 by moving the distance y in the traveling direction of the scanning light beam.
  • the incident light incident on point A1 is incident on the point A1 if the incident light is focused at point B1 at a distance of L1 from point A1 unless it passes through the long prism 17.
  • the irradiation light condensing point E1 of the emitted light that passes through the point C1 and is emitted from the point C1 is a point D1 (distance from the point A1 along the path of the scanning light beam bent by the long prism 17 (distance).
  • the scanning light beam is bent by an angle ⁇ by the action of the long prism 17, and from the irradiation light condensing point Pb to the point Pb-1 ′ (to the sub scanning direction ⁇ ).
  • the distance y and the distance z in the height direction Z) move, and the straight line connecting point Pb and point Pb-1 is the dd of the scanning beam
  • the height direction position z and the sub-scanning direction position y with respect to the inspection object 3 are changed.
  • Di di can be designed, and a design with a high degree of freedom becomes possible.
  • the appearance inspection apparatus and method according to the present invention has an effect that the appearance coordinates of the inspection object can be obtained at high speed and with high accuracy by adding a simple function to the linear scanning optical system using the rotary polygon mirror.
  • it is useful as an appearance inspection apparatus for an object spreading on a plane, and specifically, an appearance inspection apparatus and method for inspecting the mounting state of electronic components and the application state of cream solder in a soldering process of a mounting board Useful for.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

 回転多面鏡(11)を、等角速度の回転に伴い走査光束の集光点が副走査方向(Y)にずれるように、回転軸(11b)と鏡面とのなす角度(γ)が各鏡面ごとに異なるように構成するとともに、前記集光点が高さ方向Zの検査範囲Zrで移動するように集光点位置形成用光学系(2,17)を構成し、回転多面鏡の等角速度の回転に同期して、副走査方向及び高さ方向にずらした前記集光点が検査対象物(3)の高さ方向に直線状に走査されるように、検査対象物を副走査方向に移動させて、XYZ走査を行い、共焦点法により検査対象物の外観の位置座標を求めて外観を検査する。

Description

明 細 書
外観検査装置及び方法
技術分野
[0001] 本発明は検査対象物の外観検査装置及び方法に関するものであり、さらに詳しく はレーザなどのスポット光(照射光)を、ポリゴンミラー(以下、回転多面鏡という)と走 查集光レンズを有する焦点位置形成用光学系により検査対象物に照射及び直線走 查し、検査対象物により反射されて焦点位置形成用光学系を経由して、回転多面鏡 の鏡面に偏向される反射光 (落射反射光)の光強度を光電変換して、共焦点法の原 理で外観の位置座標を求めることにより、検査対象物の外観を検査する装置に関す るものである。
[0002] 特に、高速に検査対象物の外観検査を行うにあたり、回転多面鏡の回転による直 線走査動作中に検査対象物の共焦点関係を変更できるため、光学系や検査対象物 を高さ方向に動かす必要がなぐ簡単な構成で高速に検査対象物の検査を実現す るものである。
背景技術
[0003] 従来、立体形状を幾何光学的に測定し検査する方法として、さまざまな光を物体に 投影して、その反射光を光検出器で測定して検査する方法と、自然光や一般的な照 明下で物体を複数の方向からカメラで測定し複数の画像間の相関により立体形状を 求めて検査する方法の、大きく分けて 2つの方法が存在して 、る。
[0004] そして前者は更に、光の投影方法と光検出器の種類、さらにその間の位置関係な どにより、さまざまに分類され、それらの分類の中に図 11 Aに示すような、共焦点光 学系による反射光の集光状態を検出し、焦点合致位置を探して検査対象物の高さ 情報を得て検査する方式がある。
図 11Aにおいて、光源 101から射出される照射光は、点線で示すように検査対象 物 103に向けて、つまり照射方向に射出され、光分離鏡 104を透過して、集光レンズ 121により検査対象物 103上の集光点 Paにて集光される。検査対象物 103の表面 の集光点 Paで反射された反射光のうち、照射方向と逆方向に反射された反射光 (落 射反射光)は、再び集光レンズ 121に入射し、光分離鏡 104により照射方向と直交す る方向に反射されて反射光集光レンズ 105に入射し、反射光集光レンズ 105により 遮蔽板 106の微***内に集光点 Qaが形成されて遮蔽板 106の微***を通過し、光 検出器 107に入射して、光検出器 107により光強度が光電変換信号出力 laに光電 変換される。ここで、照射光集光レンズ 121の集光点 Paと反射光集光レンズ 105の 集光点 Qa (つまり遮蔽板 106の微***)とは、光学的に共焦点の関係にある。
[0005] 検査対象物 103が、照射光集光点 Paから照射方向に移動量 zで移動して検査対 象物 103— 1の位置に位置する場合、検査対象物 103— 1の表面で反射された反射 光は破線で示すようになり、反射光の集光点は、点 Qaから、反射光集光レンズ 105 に近づく方向に離れた点 Qa—1に移動する。そのため、遮蔽板 106上の反射光の 像のサイズが大きくなり、反射光集光レンズ 105で集光された反射光が遮蔽板 106 の微***を通過する光量が減り、光検出器 107の光電変換信号出力 laが減少する。
[0006] 図 11Bに検査対象物 103の移動量 zaと光検出器 107の光電変換信号出力 laとの 関係を示す。光電変換信号出力 laは、検査対象物 103の反射点が照射光集光点 P aと一致する za = 0の位置で最も大きくなり、 zaが 0から離れると光電変換信号出力 la は小さくなる。つまり、検査対象物 103を、照射方向又は照射方向と逆方向(以下、 Z 方向という)に動力 て、光電変換信号出力 laが最も大きくなる移動量 zaを求めること で、検査対象物 103の照射光集光点 Paにおける高さ情報を得て外観を検査すること ができる。
[0007] 図 11Aでは、検査対象物 103のみを動かす方式の例を示したが、照射光の集光点 Paと検査対象物 103の Z方向の位置を変更(以下、 Z走査という)すれば、同様の効 果が得られる。こうした Z走査方式として、検査対象物 103を固定し、光学系全体を動 かす方式が、検査対象物 103のみを動かす方式と同等の効果があるのは明らかであ る。それらの方式以外の Z走査方式を、図 12A及び図 12Bに示す。
[0008] 図 12Aは、光学系中の照射光集光レンズ 121のみを Z方向に動かすことで、照射 光集光点 Paを点 Pa— 1に移動させ、 Z走査を実現する方式を示している。この方式 は、照射光集光レンズ 121に入射する照射光が平行光に近い場合に有効であり、移 動物が照射光集光レンズ 121のみで、照射光集光レンズ 121が通常、軽量であるの で、高速測定及び機構簡易化が図れる (例えば特許文献 1参照)。
[0009] 図 12Bは、照射光集光レンズ 121と検査対象物 103との間に、厚み ta、屈折率 n の平行ガラス 110を挿入することで、照射光集光レンズ 121と検査対象物 103との間 の光学的距離 daを変化させて照射光集光点 Paを点 Pa— 2に移動させ、 Z走査を実 現する方式を示している。この方式では、照射光集光レンズ 121と検査対象物 103と の間に、厚み又は屈折率の異なる複数の平行ガラスが順次挿入されるように、前記 複数の平行ガラスを配置した円盤を高速回転させることにより、 Z走査の高速ィ匕を図 ることができる(例えば特許文献 2参照)。
[0010] また、検査対象物 103からの反射光を、複数の光分離鏡 104で複数に分岐して、 各分岐反射光ごとに、反射光集光レンズ 105からの距離が異なる位置に設置された 複数の、遮蔽板 106及び光検出器 107により、各分岐反射光の光電変換信号出力 I aを同時測定することで、 Z走査方式と同等な光学系を形成し、 Z走査に要する時間( 例えば、検査対象物 103を移動させたり、照射光集光レンズ 121を移動させる時間) を省いて、より高速な Z走査を実現することもできる(例えば特許文献 3参照)。
[0011] このように、共焦点法において Z走査を行うことで、照射光集光点 Paにおける検査 対象物 103の高さ情報を得ることができる。さらに、検査対象物 103を、 Z方向と直交 し且つ互!、に直交する X方向と Y方向とに移動させて、検査対象物 103に対する照 射光集光点 Paの位置を X方向に変更(以下、 X走査という)するとともに、検査対象物 103に対する照射光集光点 Paの位置を Y方向に変更(以下、 Y走査と 、う)すること で、検査対象物 3の立体座標 (位置座標)を得ることができ、その外観を検査すること ができる (例えば特許文献 1参照)。当然、検査対象物 103を固定して光学系全体を X方向及び Y方向に移動させても、あるいは、検査対象物 103を X方向又は Y方向に 移動させるとともに、光学系全体を X方向又は Y方向に移動させても、同様に、検査 対象物 103の位置座標を得て外観を検査することができる。
[0012] X走査及び Y走査の高速化を図る手段としては、上記光学系内に、照射光を走査 する新たな光学系を設けて、 X走査及び Y走査を実現する方式がある(例えば特許 文献 4参照)。また、測定光学系内に、光源 101〜光検出器 107からなる共焦点光学 系を多数並べて、 XY格子状に多点同時測定する方式もある(例えば特許文献 5参 照)。
[0013] 特許文献 1:特開昭 62— 245949号公報
特許文献 2:特開平 9— 126739号公報
特許文献 3 :特開平 5— 40035号公報
特許文献 4:特開平 3 - 231105号公報
特許文献 5:特開平 9 - 257440号公報
発明の開示
発明が解決しょうとする課題
[0014] し力しながら、従来の構成では、 XY走査と Z走査に対して別個の方式をとつており 、高速ィ匕を図るために XY走査と z走査を同時に実現しょうとすると、部品点数が増加 し構造が複雑になり、コストの上昇、信頼性の低下、サイズの大型化といった課題を 有していた。
[0015] 本発明は、従来の課題を解決するために、 XY走査機構中に Z走査を組み込むこと により、簡単な機構により外観検査の高速化を実現する、外観検査装置及び方法を 提供することを目的とする。
課題を解決するための手段
[0016] 本発明は、上記目的を達成するため、以下のように構成している。
本発明の第 1態様によれば、光束を射出する光源と、
外周部に少なくとも 3つの鏡面を有し、回転軸まわりに等角速度で回転可能に配置 され、前記光源から射出された前記光束を前記夫々の鏡面により検査対象物に向け て偏向し、前記回転により前記光束を主走査方向に直線状に走査可能な回転多面 鏡と、
前記回転多面鏡の回転により、前記回転多面鏡の前記夫々の鏡面により偏向走査 された前記光束を集光点で集光させつつ前記集光点を前記検査対象物の前記主 走査方向と直交する高さ方向の検査範囲を移動させる集光点位置形成用光学系と 前記集光点位置形成用光学系を通過したのち、前記検査対象物により反射されて 、前記集光点位置形成用光学系を経由して、前記回転多面鏡の前記鏡面で偏向さ れる反射光の光強度であって前記集光点と前記光束の前記検査対象物での反射点 との距離に依存する光強度を、光電変換信号出力に光電変換する光検出器と、 前記回転多面鏡の前記等角速度の回転に同期して、前記検査対象物を前記主走 查方向及び前記高さ方向と直交する副走査方向に移動させる検査対象物移動装置 と、
前記光検出器により光電変換された前記反射光の前記光電変換信号出力に基づ いて、前記検査対象物の外観の位置座標を求め、前記検査対象物の外観の検査を 行う演算部と、を備え、
前記回転多面鏡は、前記等角速度の回転に伴い、前記光束の前記集光点を前記 副走査方向にずらすように、当該回転多面鏡の回転軸と前記鏡面とのなす角度であ る鏡面角度が各鏡面ごとに異なるように構成され、
前記検査対象物移動装置は、前記回転多面鏡が前記等角速度で 1回転する間、 前記集光点位置形成用光学系により前記高さ方向の前記検査範囲で移動されるとと もに前記夫々の鏡面により前記副走査方向にずらされた前記集光点が、前記検査 対象物の前記高さ方向に直線状に走査されるように、前記検査対象物を前記副走 查方向に移動させるとともに、前記回転多面鏡が前記等角速度でさらに 1回転を開 始する前に、前記副走査方向に前記検査対象物を移動させて、前記主走査方向の 直線状の走査及び前記高さ方向の前記検査範囲での前記集光点の移動による外 観検査を、前記回転多面鏡の前記 1回転での外観検査と前記検査対象物上の異な る部分で行うように構成されて!ヽることを特徴とする外観検査装置を提供する。
[0017] 本発明の第 2態様によれば、前記集光点位置形成用光学系は、光軸が前記回転 多面鏡の前記回転軸と直交する方向に対して傾斜するように配置され、前記回転多 面鏡の前記夫々の鏡面により偏向走査された前記光束を前記集光点で集光させる 走査集光レンズを備えて、前記集光点が前記主走査方向に直線状に移動しつつ前 記高さ方向の前記検査範囲を移動することを特徴とする第 1態様に記載の外観検査 装置を提供する。
[0018] 本発明の第 3態様によれば、前記集光点位置形成用光学系は、
光軸が前記回転多面鏡の前記回転軸と直交する方向と平行になるように配置され 、前記回転多面鏡の前記夫々の鏡面により偏向走査された前記光束を前記集光点 で集光させる走査集光レンズと、
前記走査集光レンズと前記検査対象物との間に、入射面と射出面とが前記主走査 方向と平行になるように配置され、前記入射面から入射する光束を屈折させて前記 射出面力 射出するプリズムとを備えて、
前記走査集光レンズを通過した光束が、前記プリズムの前記入射面から入射し、屈 折されて前記射出面から射出されて、前記集光点が前記主走査方向に直線状に移 動しつつ前記高さ方向の前記検査範囲を移動することを特徴とする第 1態様に記載 の外観検査装置を提供する。
[0019] 本発明の第 4態様によれば、さらに、前記回転多面鏡が少なくとも 1回転する間の、 前記光検出器から出力された前記反射光の前記光電変換信号出力を記憶するデー タ記憶部を備え、
前記演算部は、前記データ記憶部に記憶された前記光電変換信号出力に基づい て、前記検査対象物の前記高さ方向の位置を求めて前記検査対象物の外観の位置 座標を求め、前記検査対象物の外観の検査を行うことを特徴とする第 1態様に記載 の外観検査装置を提供する。
[0020] 本発明の第 5態様によれば、外周部に少なくとも 3つの鏡面を有するとともに回転軸 と前記鏡面とのなす角度である鏡面角度が各鏡面ごとに異なるように構成された回 転多面鏡を前記回転軸まわりに等角速度で回転させて、光源から前記鏡面へ射出さ れた光束を検査対象物に向けて偏向させつつ主走査方向に直線状に走査させ、前 記偏向走査において、集光点位置形成用光学系により、前記回転多面鏡の前記夫 々の鏡面により偏向走査された前記光束を集光点で集光させつつ前記集光点を前 記検査対象物の前記主走査方向と直交する高さ方向の検査範囲で移動させるととも に、前記鏡面角度が異なる前記夫々の鏡面により前記主走査方向及び前記高さ方 向と直交する副走査方向ずらされた前記集光点が、前記検査対象物の前記高さ方 向に直線状に走査されるように、前記検査対象物を前記副走査方向に移動させ、前 記副走査方向に移動する前記検査対象物により反射されて、前記集光点位置形成 用光学系を経由して、前記回転多面鏡の前記鏡面に偏向される反射光の光強度で あって前記集光点と前記光束の前記検査対象物の反射点との距離に依存する光強 度を光電変換信号出力に光電変換し、前記光電変換信号出力に基づ!、て前記検 查対象物の外観の位置座標を求め、前記検査対象物の外観の検査を行 、、 次いで、前記回転多面鏡が前記等角速度でさらに 1回転を開始する前に、前記副 走査方向に前記検査対象物を移動させ、
次いで、前記主走査方向の直線状の走査及び前記高さ方向の前記検査範囲での 前記集光点の移動による外観検査を、前記回転多面鏡の前記 1回転での外観検査 と前記検査対象物上の異なる部分で行うことを特徴とする外観検査方法を提供する
[0021] 本発明の第 6態様によれば、前記偏向走査において、前記集光点位置形成用光 学系を構成し且つ光軸が前記回転多面鏡の前記回転軸と直交する方向に対して傾 斜されるように配置された走査集光レンズにより、前記回転多面鏡の前記夫々の鏡 面により偏向走査された前記光束が前記集光点に集光されながら、前記集光点が前 記主走査方向に直線状に移動しつつ前記高さ方向の前記検査範囲で移動するよう に集光されることを特徴とする第 5態様に記載の外観検査方法を提供する。
[0022] 本発明の第 7態様によれば、前記偏向走査において、前記集光点位置形成用光 学系を構成し且つ光軸が前記回転多面鏡の前記回転軸と直交する方向と平行にな るように配置された走査集光レンズにより、前記回転多面鏡の前記夫々の鏡面により 偏向走査された前記光束が前記集光点で集光され、
前記集光点位置形成用光学系を構成し且つ前記走査集光レンズと前記検査対象 物との間に入射面と射出面とが前記主走査方向と平行になるように配置されたプリズ ムにより、前記走査集光レンズを通過した前記光束が、前記プリズムの前記入射面か ら入射し、屈折されて前記射出面から射出され、前記集光点が前記主走査方向に直 線状に移動しつつ前記高さ方向の前記検査範囲で移動するように集光されることを 特徴とする第 5態様に記載の外観検査装置を提供する。
発明の効果
[0023] 本発明の第 1又は 5態様によれば、回転多面鏡を、等角速度の回転に伴い走査光 束の集光点が副走査方向にずれるように回転軸と鏡面とのなす角度である鏡面角度 が各鏡面ごとに異なるように構成するとともに、前記集光点が高さ方向の検査範囲を 移動するように集光点位置形成用光学系を構成し、前記回転多面鏡の等角速度の 回転に同期して、前記高さ方向の前記検査範囲を移動されるとともに副走査方向に ずらされた前記集光点が、前記検査対象物の前記高さ方向に直線状に走査されるよ うに、前記検査対象物を前記副走査方向に移動させるようにしたので、前記検査対 象物に対して、回転多面鏡の回転動作中に、 1つの鏡面により主走査方向の走査( X走査)を行い、前記鏡面角度を異ならせた前記夫々の鏡面が前記回転多面鏡の 1 回転中に切り替わることにより高さ方向の走査 (Z走査)を行い、前記検査対象物を副 走査方向に移動させながら前記回転多面鏡を複数回回転させることにより副走査方 向の走査 (Y走査)を行うことができる。つまり、 XY走査機構中に Z走査を組み込むこ とができ、上記のような簡単な機構により外観検査の高速ィ匕を実現することができる。
[0024] なお、本発明の第 1態様により検査対象物の外観検査を行う場合には、前記演算 部により検査対象物の外観の位置座標を、例えば、主走査方向に 2点(立体的な外 観の位置座標を求めるには少なくとも 2点必要である力 X分解能を高める場合には 3点以上が好ましい)、副走査方向に 2点(立体的な外観の位置座標を求めるには少 なくとも 2点必要である力 Y分解能を高めるためには 3点以上が好ましい)、及び高 さ方向に 3点(回転多面鏡の鏡面数によるが最低 3面)の合計(2 X 2 X 3 = ) 12点、 求めることで、検査対象物の外観を立体的に検査することができる。
[0025] これに対して、特許文献 1にお 、て、 Z走査を行うためには、 XY走査を行う駆動機 構とは別に、照射光集光レンズを高さ方向 (Z方向)に移動させる駆動機構が必要と なり、また、照射光集光レンズを高さ方向に移動させると、その停止時に振動等が生 じ、検査精度が低下する恐れがある。本発明の第 1又は 5態様によれば、照射光集 光レンズ等を高さ方向に移動させる駆動機構を必要としないので、検査精度が低下 するのを防ぐことができる。
また、特許文献 3において、 Z走査を行うためには、光分離鏡、遮蔽板及び光検出 器を夫々、複数配置する必要がある。本発明の第 1又は 5態様によれば、光分離鏡、 遮蔽板及び光検出器は夫々、 1つあればよいので、部品点数の増加を抑えて、コスト の上昇、サイズの大型化を防ぐことができる。 図面の簡単な説明
本発明のこれらと他の目的と特徴は、添付された図面についての好ましい実施の 形態に関連した次の記述から明らかになる。この図面においては、
[図 1A]図 1Aは、本発明の第 1実施形態における外観検査装置の光学系および機構 系の構成を示す概略斜視図であり、
[図 1B]図 1Bは、図 1 Aの部分拡大斜視図であり、
[図 2]図 2は、本発明の第 1実施形態における外観検査装置及び方法の光学系の構 成を、副走査方向から見た概略図であり、
[図 3A]図 3Aは、本発明の第 1実施形態における外観検査装置及び方法の回転多 面鏡の鏡面角度の効果を説明する図であり、
[図 3B]図 3Bは、本発明の第 1実施形態における外観検査装置及び方法の走査集光 レンズの設置角度の効果を説明する図であり、
[図 4A]図 4Aは、本発明の第 1実施形態における外観検査装置の回転多面鏡の鏡 面角度の変化を示す側面図であり、
[図 4B]図 4Bは、本発明の第 1実施形態における外観検査装置の回転多面鏡の鏡面 角度の変化を示す断面図であり、
[図 4C]図 4Cは、本発明の第 1実施形態における外観検査装置の回転多面鏡の形 状例を示す斜視図であり、
[図 5A]図 5Aは、本発明の第 1実施形態における外観検査装置及び方法の照射光 集光点の鏡面による変化を示す側面図であり、
[図 5B]図 5Bは、本発明の第 1実施形態における外観検査装置及び方法の照射光集 光点の鏡面による変化を示す斜視図であり、
[図 6A]図 6Aは、本発明の第 1実施形態における外観検査装置の、副走査方向の送 り動作とデータ処理について説明するための、構成を示す概略斜視図であり、 [図 6B]図 6Bは、図 6Aの部分拡大図であり、
[図 7A]図 7Aは、本発明の第 1実施形態における外観検査装置及び方法のテーブル 送り装置による副走査方向位置への検査対象物の送り量の制御を示す図であり、 [図 7B]図 7Bは、本発明の第 1実施形態における外観検査装置及び方法の検査対象 物に対する YZ走査の原理を示す図であり、
[図 8Α]図 8Αは、本発明の第 1実施形態における外観検査装置及び方法のデータ記 憶部の記憶内容の模式図であり、
[図 8Β]図 8Βは、本発明の第 1実施形態における外観検査装置及び方法の外観位置 座標演算部の演算方法の原理を示す図であり、
[図 8C]図 8Cは、本発明の第 1実施形態における外観検査装置及び方法の検査対 象物に対する ΥΖ走査の一例を示す図であり、
[図 8D]図 8Dは、本発明の第 1実施形態における外観検査装置及び方法のデータ記 憶部の記憶内容の一例を示す模式図であり、
[図 8Ε]図 8Εは、本発明の第 1実施形態における外観検査装置及び方法の外観位置 座標演算部の演算方法の一例を示す図であり、
[図 9Α]図 9Αは、本発明の第 2実施形態における外観検査装置及び方法の光学系 の構成を副走査方向から見た概略図であり、
[図 9Β]図 9Βは、本発明の第 2実施形態における外観検査装置及び方法の光学系の 構成を主走査方向から見た概略図であり、
[図 10A]図 10Aは、本発明の第 2実施形態における外観検査装置及び方法の長尺 プリズムの作用を説明する図であり、
[図 10B]図 10Bは、本発明の第 2実施形態における外観検査装置及び方法の長尺 プリズムによる照射光集光点の移動を説明する図であり、
[図 11A]図 11Aは、従来の共焦点法の外観検査装置の光学系の構成図であり、 [図 11B]図 11Bは、従来の共焦点法の外観検査装置における光検出器 7の光電変 換信号出力 Iと検査対象物の位置関係を示す図であり、
[図 12A]図 12Aは、従来の共焦点法の外観検査装置における Ζ走査の例 1 (集光レ ンズの移動)を示す図であり、
[図 12B]図 12Bは、従来の共焦点法の外観検査装置における Ζ走査の例 2 (平行ガラ スの挿入)を示す図である。
発明を実施するための最良の形態
本発明の記述を続ける前に、添付図面において同じ部品については同じ参照符号 を付している。
以下に、本発明の実施形態の外観検査装置及び方法を図面とともに詳細に説明 する。
[0028] 《第 1実施形態》
図 1Aは、本発明の第 1実施形態における外観検査装置の光学系および機構系に ついての構成を示す概略斜視図であり、図 1Bは、検査対象物 3を示す、図 1Aの部 分拡大斜視図である。また、図 2は同じ光学系を副走査方向から見た概略図である。
[0029] まず、本発明の第 1実施形態における外観検査装置の基本構成を、図 1A及び図 1 Bを用いて説明する。
本発明の第 1実施形態における外観検査装置は、光源 1と、回転多面鏡 11と、モ ータ 11aと、集光点位置形成用光学系の一例を構成する走査集光レンズ 2と、光分 離鏡 4と、反射光集光レンズ 5と、遮蔽板 6と、光検出器 7と、検査対象物移動装置の 一例であるテーブル送り装置 12と、記憶部の一例であるデータ記憶部 13と、演算部 14と、出力部 15と、制御部 16とを備えている。
[0030] 光源 1は、例えばレーザなどの光束を照射光として回転多面鏡 11に向けて射出す る。
回転多面鏡 11は、多角柱 (例えば 6角柱)の形状に形成され外周部に鏡面角度が 互いに異なる複数の鏡面 1 lc (反射面)を有し、モータ 1 laにより一方向に等角速度 で回転可能に構成されている。回転多面鏡 11は、各鏡面 11cにより光源 1の照射光 を検査対象物 3 (例えば、基板上に装着される電子部品や、基板と電子部品とを接合 するクリームはんだ)に向けて(高さ方向 Z (図 1の上下方向の上向きの方向)と逆方 向(図 1の上下方向の下向きの方向))に偏向できるように構成されている。
走査集光レンズ 2は、回転多面鏡 11と検査対象物 3との間に配置され、回転多面 鏡 11で偏向された照射光を検査対象物 3上の近傍の点 Pに集光する(以下、回転多 面鏡 11で偏向された照射光が走査集光レンズ 2により集光された集光点を照射光集 光点という)。
[0031] 光分離鏡 4は、矩形板形状を有し、光源 1と回転多面鏡 11との間に配置され、走査 集光レンズ 2で検査対象物 3上の近傍に集光され検査対象物 3に高さ方向 Zに反射 されて前記照射光と逆経路を進んで光源 1へ戻る反射光を、光源 1の照射光から分 離して、つまり光源 1の照射光の照射経路上力も離脱させて、円盤状の反射光集光 レンズ 5に入射させる。
反射光集光レンズ 5は、光分離鏡 4で分離された反射光を矩形板形状の遮蔽板 6 に形成された微***の近傍に集光させる。
光検出器 7は、遮蔽板 6の微***を通過して入射した反射光の光強度を光電変換 信号出力 Iに光電変換する。
[0032] テーブル送り装置 12は、高さ方向 Z及び主走査方向 Xと直交する副走査方向 Yに 延在するように配置される駆動軸 12aと、駆動軸 12aに螺合されて駆動軸 12aが正逆 回転することにより駆動軸 12a上を進退移動可能なナット部材 12bと、ナット部材 12b に固定され、検査対象物 3が載置される基板 3Aを保持可能な矩形板形状のテープ ル 12cと、駆動軸 12aを正逆回転させる駆動用モータ 12dと、を備えている。テープ ル送り装置 12は、制御部 16により駆動用モータ 12dが駆動されて、駆動軸 12aが正 逆回転し、ナット部材 12b及びナット部材 12bに固定されるテーブル 12cが Y方向に 進退移動することで、検査対象物 3を Y方向に進退移動可能に構成されて ヽる。
[0033] 制御部 16は、光源 1、光検出器 7、モータ l la、駆動用モータ 12d及びデータ記憶 部 13と接続され、データ記憶部 13に予め記憶された動作プログラムに基づいて、光 源 1、光検出器 7、モータ 11a及び駆動用モータ 12dの駆動を制御する。
データ記憶部 13は、各装置の動作プログラムを記憶するとともに、光検出器 7で光 電変換されて出力された反射光の光電変換信号出力 Iを記憶する。
演算部 14は、データ記憶部 13に接続される抽出部 14aと、抽出部 14aに接続され る外観位置座標演算部 14bを備え、データ記憶部 13に記憶された反射光の光電変 換信号出力 I〖こ基づいて、検査対象物 3の外観の位置座標を求めるように構成されて いる。
出力部 15は、例えばディスプレイにより構成され、外観位置座標演算部 14bに接 続され、外観位置座標演算部 14bで演算された検査対象物 3の外観の位置座標を 出力して表示する。
[0034] 本発明の第 1実施形態における外観検査装置は、以上のように基本的な構成をさ れている。
以下、本発明の第 1実施形態における外観検査装置の詳細な構成を動作とともに 説明する。
[0035] 図 1A、図 IBおよび図 2において、まず、制御部 16に駆動を制御されて光源 1から 光束が射出される。光源 1から照射光として射出された光束は、回転多面鏡 (ポリゴン ミラー) 11の 1つの鏡面 11cにより偏向されて、走査集光レンズ 2に入射し、集束光束 として射出されて、検査対象物 3上の近傍の点 Pで集光する走査光束となる。ここで、 光源 1から射出された光束は、制御部 16に駆動を制御されて回転多面鏡 11が回転 することにより、走査集光レンズ 2に入射する走査光束の角度が変化し、照射光集光 点 Pは点 P1〜点 P2〜点 P3と連続的に移動し、検査対象物 3を主走査方向 Xに直線 状に走査する(以下、 X走査という)。検査対象物 3に照射されて検査対象物 3により 反射される反射光のうち、高さ方向 Z (走査光束方向とも!、う)の反射光 (落射反射光 )は、走査集光レンズ 2を通過し、回転多面鏡 11へと走査光束と逆向きの経路を迪り 、光分離鏡 4で走査光束と分離された後、従来例と同様の共焦点光学系 (反射光レ ンズ 5及び遮蔽板 6)を経由して光検出器 7に到達する。このようにして、回転多面鏡 11を回転させることにより、検査対象物 3の走査直線上の落射反射光の光強度から 光検出器 7にて求められた光電変換信号出力 Iを得ることができる。
[0036] このとき、制御部 16は、回転多面鏡 11の回転に同期して、テーブル送り装置 12の 駆動用モータ 12dの駆動を制御して、テーブル 12cに保持された検査対象物 3を主 走査方向 Xおよび高さ方向 Zの両方に直交する方向(以下、副走査方向 Yという)に 移動させる。
なお、回転多面鏡 11の回転速度が一般的に一定であり、主走査方向 Xの走査光 束の移動速度(走査速度)を等速にするために、走査集光レンズ 2としては、図 2に示 すように、入射角の変化角度 Θ (回転多面鏡 11による偏向角の変化角度 δの 2倍)と 走査位置変化 Xとの関係が、焦点距離 fを比例係数とする直線比例関係 (X =f X Θ d d
: f 0特性という)となる、 f 0レンズが一般的に用いられる。本第 1実施形態では、以下
、走査集光レンズ 2を f Θレンズとする。なお、図 2においては、一例として、点 P2が点 P1と点 P3との中央付近に位置するように記載した力 点 P2は点 P1から点 P3の走査 範囲上の任意の位置に位置するものである。
[0037] 図 3A及び図 3Bは、本第 1実施形態例における光学系を主走査方向 Xから見た図 であり、光学系による効果を説明している。
[0038] 図 3Aにおいて、回転多面鏡 11の鏡面 11cが回転多面鏡 11の回転軸 l ibとなす 角 λ (以下、鏡面角度えという)が λ = α /2の場合、回転多面鏡 1 1の反射面で偏向 される光源 1の光束は、回転多面鏡 11の回転軸 l ibに垂直な平面となす角が ocに なり、その結果、検査対象物 3における走査光束の集光位置は、走査集光レンズ 2の f Θ特性により、 a = 0の場合の照射光集光点 Pに対して、図 3Aの点線に示すように 、副走査方向 Yに y =f X αずれた点 P— 2となる。さらに、図 3Bに示すように、走査
d
集光レンズ 2の光軸が回転多面鏡 11の回転軸 l ibに直交する平面となす角が βの 場合、走査集光レンズ 2の集光平面が回転多面鏡 11の回転軸 l ibとなす角が βとな るため、走査光束の照射光集光点は、 α = β = 0の場合の照射光集光点 Ρに対して 、副走査方向 Υに y =f X α、高さ方向 Zに z =f X a X tan( j8 )だけずれた点 P— 1と
d d
なる。回転多面鏡 11の鏡面角度えは、同じ鏡面 1 1cで走査中は回転多面鏡 11の回 転角が変化してもほぼ一定であるので、どの主走査方向位置 Xでも高さ方向 Zのず
dj
れ zはほぼ一定になる。つまり、こうした光学系の構成により、回転多面鏡 11の鏡面 d
角度えにより、検査対象物 3に対して、走査光束の照射光集光点 Pの軌跡がなす走 查直線全体を高さ方向 Zにずらすことができる。
[0039] 図 4A〜図 4Cは、回転多面鏡 11の、各鏡面角度えを変更した場合の効果を示し ている。図 4Aに示すように、 n個の鏡面 11cを有する回転多面鏡 11の鏡面角度えを 鏡面 11c毎に変更しておくと、回転多面鏡 11の 1回転中に照射光焦光点 Pの高さ方 向位置 z を n回変更することができる。すなわち、鏡面角度え(= « /2)の第1鏡面1 di i i lc (iは、 n個のうちの任意の鏡面番号であって、 l〜nのうちの整数である)による走 查線の副走査方向位置 yおよび高さ方向位置 z は、それぞれ、 y =f X a , z =f
di di di i di
X a X tai iS )となり、回転多面鏡 11の 1回転により、副走査方向位置 yと高さ方向 i di 位置 z 力 = l〜nまで n回変化する。つまり、回転多面鏡 11の回転により、検査対象 di
物 3に対する、 X走査と YZ走査を同時に実施することが可能になる。
[0040] 図 4Cに、こうした回転多面鏡 11の形状例として、鏡面数が 6面で (言い換えれば鏡 面番号 iが 1〜6の場合で)、各鏡面角度え = α /2)が鏡面番号 iに比例して増加す る場合の斜視図を示す。併せて、比較例として回転多面鏡 l lzの鏡面角度えが全て 0 (つまり回転軸と平行なので、六角柱になる)の場合を、二点鎖線で示す。回転多面 鏡 11は、図 4Cに示すように、第 1鏡面 11c力 第 6鏡面 11cにかけて徐々に鏡面 1
1 6
lcの角度が変化しており、図 4Cにおいて第 1鏡面 11c〜第 3鏡面 11cまでは下向
1 3
き、第 4鏡面 11c力 第 6鏡面 11cが上向きである。各鏡面 11cは平面のため、隣鏡
4 6
面との境界で三角形を二つ組合せた断面があり、特に第 1鏡面 11cと第 6鏡面 11c
1 6 の角度差が最も大きくなつており、そのため、境界の断面も最も大きくなる。つまり、第 1鏡面 11cと第 6鏡面 11cの間を除く隣接鏡面間の角度差を とすると、各鏡面角
1 6
度えは次式のようになる。
[0041] λ = (ί-3.5) Χ ά λ
ここで、 iは鏡面番号で 1〜6の整数で、第 1鏡面 11cの鏡面角度え は 2.5 X d
1 1
、第 6鏡面 11cの鏡面角度え は + 2.5 X d となり、第 1鏡面 11cと第 6鏡面 11cの
6 6 1 6 角度差は 5 X dえとなる。
[0042] 以下、特に断りのない限り、回転多面鏡 11は図 4Cで示す形状 (鏡面数 6、隣接面 間角度変化 d λで一定)として説明を行う。
なお、回転多面鏡 11の鏡面数は、最低 3面あればよいが、鏡面数が多い程、主走 查方向 Xに照射光集光点 Ρをずらして検査対象物 3の外観検査をするための位置座 標のサンプル点数を増やすことができ、外観検査精度を高くすることができるので好 ましい。
また、前記では第 1鏡面 11c力 第 6鏡面 11cにかけて徐々に鏡面 11cの角度が
1 6
変化するように、例えば、鏡面 11cの角度が + 1° 、 +0. 5° 、0° 、—0. 5° —1° と変化するように、回転多面鏡 11を構成したが、本発明はこれに限定されない。例え ば、鏡面角度が + 1° 、 -0. 5° 、0° 、 - 1° 、 +0. 5° とランダムに変化するよう に構成しても、前記構成と同様の効果を得ることができる。
[0043] 図 5A及び図 5Bを用いて、回転多面鏡 11の回転による、走査線の YZ走査の状態 を以下に詳細に示す。図 5Aは、図 3Bと同じ主走査方向 Xから見た図である。なお、 ここで、回転多面鏡 11は、光源 1の光束の偏向動作を第 1鏡面 11cから開始するよ うに制御部 16により回転駆動を制御されている。回転多面鏡 11は、 1回転することに より、第 1鏡面 11c力 第 6鏡面 11cの順で、光源 1からの光束を偏向させる。
1 6
[0044] 回転多面鏡 11の光源 1からの光束を偏向させる鏡面 11cが、回転多面鏡 11の回 転動作により第 1鏡面 11c〜第 6鏡面 11cへと変化すると、照射光集光点の位置が
1 6
点 Px〜点 Pxと 5回変化する(なお、図 5Aに示す点 Pは鏡面角度えが 0° 、つまり
1 6
回転多面鏡 11の鏡面 1 lcが回転軸 1 lbに平行の場合の照射光集光点である)。点 Px〜点 Pxおよび点 Pは、走査光束に垂直な平面 31と角度 |8なす面上にあり、点 P
1 6
は平面 31との交点となっている。ここで、平面 31は、検査対象物 3に対して予め設定 された高さ方向 Zの検査範囲 Zrの中間(例えば中央)を通る平面 (仮想的な検査基 準面)である。高さ方向 Zの検査範囲 Zrは、検査対象物 3の全体を検査するために、 検査対象物 3の最上部よりも高 、位置から、検査対象物 3の最下部と同じか又は最 下部より低 、位置にわたるように設定されるのが好ま 、。
回転鏡 11の鏡面角度えは、図 4Cに示したように、鏡面番号 iに比例して増加する ので、点 Pから各照射光集光点の副走査方向位置 y
diと高さ方向位置 z
diは、それぞれ 次式となる。
[0045] y =fX a = (i-3.5) XfXda
di i
z =f X a Xtan(j8)= (i-3.5) Xf Xda Xtan(j8)
di i
なお、 dひ =2Xdえで一定値のため、各照射光集光点の副走査方向位置 yと高さ di 方向位置 Z diは鏡面番号 iに比例して変化し、その変化間隔は一定で、副走査方向 Y 力 Xda、高さ方向 Z力 ¾ Xda Xtan(j8)となる。
[0046] 図 5Bは、図 5Aと同様の状態を斜視図で示している。ただし、回転多面鏡 11の回 転動作による直線走査動作を示すために、走査開始時の照射光集光点を P1とし、 走査終了時の照射光集光点を P3としている(iは面番号で i=l〜6)。つまり、図 5A における点 Pxとは、図 5Bにおける点 P1〜点 P3間の直線走査における照射光集 光点の軌跡全体を示しており、点 Px〜点 Pxも同様である(ただし、点 Pは前述のと
2 6
おり点 P1〜点 P3の直線走査の照射光集光点の軌跡を示している)。
[0047] 次に、回転多面鏡 11の回転による照射光集光点の位置の経時的変化を以下に述 ベる。 まず、回転多面鏡 11の回転により、光源 1の光束が第 1鏡面 11 で反射され始め ると、点 P1で走査開始となり、点 P3まで直線走査する。続いて、回転多面鏡 11の 回転により、光源 1の光束を反射する面が第 2鏡面 11cに切り替ると、点 P1で走査
2 2 開始となり点 P3まで直線走査する。以下、回転多面鏡 11の回転により、光源 1の光
2
束の反射面が第 3鏡面 11c〜第 4鏡面 11cと変化すると、照射光集光点も点 P1か
3 6 3 ら点 P3、点 P1力 点 P3、点 P1力 点 P3、点 P1から点 P3と変化する。ここで、
3 4 4 5 5 6 6
図 5B中では実線矢印で示している点 P1力も点 P3、点 P1力も点 P3、点 P1から
3 3 4 4 5 点 P3は照射光集光点の移動による直線走査を示している。図 5B中では点線矢印
5
で示している点 P3と点 P1との間、点 P3と点 P1との間、及び点 P3と点 P1との間
3 4 4 5 5 6 は、照射光集光点が存在していない状態、つまり直線走査されていない状態を示し ている。
さらに、回転多面鏡 11が 1回転して、第 6鏡面 11c力 第 1鏡面 11cに光源 1の光
6 1
束の反射面が切り替り、光源 1の光束力 再び、第 1鏡面 11cに反射されて、走査が 開始されると、点 P3 点 P1力 点 P3 点 P1 …と変化し、点 P1力もの走査開始か
6、 1 1、 2 1
ら、前記と同様の動作が繰り返される。こうして、回転多面鏡 11による 1回転で点 P1 〜点 P3 1
6まで照射光集光点が移動し、回転多面鏡 1 が連続回転することで、点 P1
1
〜点 P3の同じ径路を繰返し走査することになる。
6
[0048] なお、走査開始点である照射光集光点 P1での回転多面鏡 11の状態から回転多 面鏡 11がさらに回転して、回転多面鏡 11の鏡面 11cの偏向角の変化角度 δが変化 し、つまり同一鏡面 1 lc上における回転多面鏡 11の光源 1の光束を反射する位置が 変化し、照射光集光点 P2になった場合、主走査方向 Xの変化間隔 (例えば点 P1 力 点 P1までの距離) Xは、前記のとおり走査集光レンズ 2の ί θ特性力 X =f X 2
2 d d
X δ =f X Θとなる。なお、 Θは入射角の変化角度を示し、 θ = 2 Χ δである。
[0049] 以上、説明したように、図 4Cに示したような回転多面鏡 11の各鏡面 11cの角度え をお互 、に違えるように構成したことにより、 1つの鏡面 1 lcにより光源 1の光束を反 射することで照射光集光点の主走査方向位置 Xを変化させて直線走査 (X走査)を dj
実施し、回転多面鏡 11を回転させて光源 1の光束を反射する鏡面 1 lcを切替えるこ とで副走査方向位置 yと高さ方向位置 zを変化させて 2つの走査 (YZ走査)を同時 に実施することができる。
[0050] 次に、図 6A及び図 6Bを用いて、本発明の第 1実施形態における外観検査装置の 検査対象物 3の副走査方向 Yの送り動作とデータ処理について説明する。図 6Aは、 本発明の第 1実施形態における外観検査装置の、検査対象物 3の副走査方向 Yの 送り動作とデータ処理について説明するための、構成を示す概略斜視図である。図 6 Bは、検査対象物 3を示す、図 6Aの部分拡大斜視図である。
[0051] 制御部 16は、テーブル送り装置 12の駆動用モータ 12aの駆動を制御して、回転多 面鏡 11の各鏡面 11cの走査開始に同期して、駆動軸 12aを回転させてナット部材 1 2b及びナット部材 12bに固定されたテーブル 12cを副走査方向 Yに移動させ、テー ブル 12cに保持された基板 3A上の検査対象物 3を副走査方向 Yに移動させる。また 、制御部 16は、走査光束が検査対象物 3を直線走査している間、走査光束の主走 查方向位置 X
diが一定間隔になるような時間間隔で、光検出器 7の光電変換信号出 力 Iを、回転多面鏡 11の 1回転分以上の間(つまり、点 P1
1〜点 P3
6の走査の間)、デ ータ記憶部 13に記憶させる。また、制御部 16は、抽出部 14aによりデータ記憶部 13 内に記憶された光検出器 7の光電変換信号出力 Iを抽出し、抽出部 12aが抽出した 光検出器 7の光電変換信号出力 Iに基づいて、外観位置座標演算部 14bにより、検 查対象物 3の外観の位置座標を演算して求める。
[0052] 次に、図 7A及び図 7Bを用いて、テーブル送り装置 12による副走査方向 Yへの検 查対象物 3の送り量 Ytの制御、及び、検査対象物 3に対する YZ走査の原理につい て説明する。図 7Aにおいて、 6個の鏡面 11cを有する回転多面鏡 11の 1回転中に、 走査線の副走査方向位置 yは、前記のように y ,y ,..y と 5回変化する。このとき、
di dl d2 d6
テーブル送り装置 12の送り量 Ytを、回転多面鏡 11の各鏡面 11cによる走査動作に 同期して、走査線の副走査方向位置 y
diの変化量と同じ値変化させると、検査対象物
3に対して走査線は常に副走査方向位置 y に関して、常に同じ位置を走査すること
di
になる。つまり、照射光集光点は、テーブル送り装置 12が停止した状態では、図 7A に示すように、副走査方向 Yに向力うに従 、検査対象物 3に近づく方向に(図 7Aの 右斜め下方向に)走査するが、テーブル送り装置 12により検査対象物 3が副走査方 向 Yに送られると、図 7Bに示すように、高さ方向 Zと逆方向に(図 7Bの下方向)に走 查することになる。前述のとおり回転多面鏡 11の光源 1の光束を偏向する鏡面 l ie が切り替つた時の副走査方向位置 yの増分は f X d aで一定なので、送り量 Ytも一
di
定増分 f X d aで Yt〜Ytと 5回変化させると、検査対象物 3も検査対象物 3— 1の位
1 6
置から検査対象物 3— 6の位置へと変化する。一方、走査線の照射光集光点の高さ 方向位置 z は、前述のように、 z ,ζ ,..ζ と一定間隔 f X d a Xtan( |8 )で 5回変化す di dl d2 d6
る。
[0053] 上記のようにテーブル送り装置 12の送り量 Ytを制御することにより、回転多面鏡 11 を 1回転させる間、検査対象物 3に対して高さ方向 Zと平行に照射光集光点を変化さ せ、 Z走査を実現することができる。
また、テーブル送り装置 12の駆動用モータ 12a及び回転駆動鏡 11のモータ 11aが 同期してさらに駆動されると、回転多面鏡 11が 2回転目に入る。つまり、回転多面鏡 11が光源 1の光束を、第 1鏡面 11c力も第 6鏡面 11cで順次反射し、再び、第 1鏡
1 6
面 11cで反射するとともに、テーブル送り装置 12が一定送り間隔 f x d aで検査対象 物 3を副走査方向 Yに送る。これにより、検査対象物 3は検査対象物 3— 7の位置に 位置し、照射光集光点は高さ方向 Zには高さ方向位置 z 〖こ位置することとなる。すな dl
わち、照射光集光点が、高さ方向位置 z
dl力も高さ方向位置 z
d6まで変化して、再び高 さ方向位置 z に変化するまでの間に、テーブル送り装置 12は、検査対象物 3を、副 dl
走査方向 Yに走査間隔 Υρ ( = Υ分解能) =6 X f X d aだけ移動させて検査対象物 3 1の位置力 検査対象物 3— 7の位置まで移動させる。
[0054] 図 7Bは、こうした回転多面鏡 11とテーブル送り装置 12の制御動作による、検査対 象物 3に対する走査線の照射光集光点の高さ方向 Z及び副走査方向 Yの変化を示 している。
なお、図 7Bにおいては、複数の電子部品(図 7Bの斜線部)を装着した基板を検査 対象物 3として示している。検査対象物 3に対する高さ方向 Zの検査範囲 Zrは、上述 したように、複数の電子部品のうちの最も高い電子部品の最上面よりも高い位置から 、基板と同じか又は基板より低い位置にわたるように設定されるのが好ましい。したが つて、図 7Bにおいては、点 Px 、点 Px · · ·点 Px を電子部品よりも高い位置に設
11 12 15
定し、点 Px 、点 Px · · ·点 Px を基板よりも低い位置に設定している。 また、図 7Bにおいて、黒丸は、走査集光レンズ 2により実際に集光された走査光束 の集光点を示し、点線の白丸は、走査集光レンズ 2により集光される前に走査光束が 検査対象物 3の表面に反射され、実際には集光されていない仮想の集光点を示して いる。
[0055] 回転多面鏡 11の第 1鏡面 11c力 始まる 1回転目においては、照射光集光点が副 走査方向 Yには同じ位置で点 Px 〜点 Px まで、高さ方向位置 z 力 〜z と 5回
11 61 di dl d6 変化して Z走査される。さらに、回転多面鏡 11が回転して、再度、第 1鏡面 11cの走 查が始まると、副走査方向位置 yが副走査方向 Yと逆方向に Ypだけ変化して、照射
di
光集光点が Px 〜Ρχ と変化して Ζ走査する。以下、同様にして、回転多面鏡 11の
12 62
1回転毎に、副走査方向位置 yが一定間隔 Ypで変化する。つまり、検査対象物 3に
di
対しては、回転多面鏡 11の 1回転毎に一定間隔 Ypで Y走査を実現していることにな る。
すなわち、本第 1実施形態の外観検査装置及び方法においては、検査対象物 3に 対して、回転多面鏡 11の回転動作中に、 1つの鏡面走査で X走査を行い、鏡面角度 λを異ならせた複数の鏡面 1 lcが回転多面鏡 11の 1回転中に切り替わることにより Ζ 走査を行い、検査対象物 3を副走査方向 Yに移動させながら回転多面鏡 11を複数 回回転させることにより Y走査を行うことができる。
[0056] なお、光源 1から射出される光束の、検査対象物 3に照射された時点でのスポット径 dは、検査対象物 3の高さ方向 Zの検査範囲 Zrにより変わる。光源 1から射出される光 束の光強度がガウス分布 (正規分布)であり、波長が λ aの場合、検査範囲 Zr及びス ポット径 dは、おおよそ次式の関係にある。
Zr= π /4÷ l a X d2
例えば、波長 λ aが 600nmの場合では、(d、 Zr) = (30 /z m、 1. 2mm)、(10 m 、 131 m)、 (5 m、 32. 7 m)、 (1 m、 1. 31 m)などのスポット径 dと検查範 囲 Zrとの設定例が挙げられる。例えば、検査対象物 3が基板に塗布された複数のタリ ームはんだである場合、高さ方向 Zの検査範囲 Zrは、複数のクリームはんだのうちの 最も高いクリームはんだの最上面よりも高い位置から、基板と同じか又は基板より低 い位置にわたるように設定されるのが好ましい。このような場合、クリームはんだの厚 みは、最大でも 0. 2mm程度であることから、スポット径 dは 15 μ m、検査範囲 Zrは 0 . 3mm程度に設定すればよい。
但し、前記はあくまで理論値であり、光束の強度分布や検査対象物 3の反射状態に 応じて、最適な設定値を設定すればよい。
[0057] 次に、回転多面鏡 11の 1回転中の検査対象物 3の同一の副走査方向位置 y にお di ける、 X走査と Z走査によって、共焦点光学系(反射光レンズ 5及び遮蔽板 6)を介し た反射光が光検出器 7に入射して得られる光電変換信号出力 Iから、検査対象物 3の 高さ情報を求める演算方法の原理を、図 8A及び図 8Bにより説明する。
[0058] 図 8Aは、データ記憶部 13における、光検出器 7の光電変換信号出力 Iの記憶内容 を模式的に示したものである。
データ記憶部 13は、回転多面鏡 11の 1つの鏡面 1 lcの回転による検査対象物 3に 対する X走査中に、主走査方向位置 Xが一定間隔(=X分解能)になるようなサンプ dj
リング間隔で、光検出器 7の光電変換信号出力 I (i, j)を m個だけ、制御部 16の制御 により記憶するよう構成されている。ここで、 jを X方向のサンプリング番号 (j = l〜m、 mは整数)とすると、主走査方向位置 X は X ,χ となる。
dj dl d2 dm
また、データ記憶部 13は、 6個の鏡面 11cを有する回転多面鏡 11の 1回転により、 検査対象物 3の同一の副走査方向位置 y における、照射光集光点の高さ方向位置 di
z を 5回変更して、光検出器 7の光電変換信号出力 I (i, j)を 6 X m個記憶する。言い di
換えれば、鏡面番号 iは 1〜6であるので、副走査方向位置 Y 〜Y まで検査を行う dl d6
と、光検出器 7の光電変換信号出力 I (i, j)を 6 X mX 6個、データ記憶部 13に記憶 する。
[0059] なお、図 8Aにおいて、光検出器 7の光電変換出力 1 (1, 1)〜I (1, m)を短い点線 で結ぶ折れ線グラフは、第 1鏡面 11cによる走査光束の光強度を示している。また、 光検出器 7の光電変換出力 1 (2, 1)〜I (2, m)を長い点線で結ぶ折れ線グラフは、 第 2鏡面 11cによる走査光束の主走査方向位置 X における光強度を示している。光
2 dj
検出器 7の光電変換出力 1 (6, 1)〜I (6, m)を実線で結ぶ折れ線グラフは、第 6鏡面 11cによる走査光束の主走査方向位置 X における光強度を示している。
6 dj
[0060] 図 8Bは、演算部 14における、データ記憶部 13で記憶している回転多面鏡 11の 1 回転分の 6 X m個の光電変換信号出力 I (i, から、各主走査方向位置 X における dj 測定高さ Z を求める処理方法を模式的に示したものである。
mj
主走査方向位置 X における光検出器 7の 6個の光電変換信号出力 1 (1, 1)〜1 (6 dl
, 1)の分布は、検査対象物 3の主走査方向位置 Xと副走査方向位置 yとが同一の
dj di 点における z走査による光電変換信号出力 Iになるので、共焦点法の原理により、図
8Bの長い点線で示すように、主走査方向位置 X における検査対象物 3の高さ Z1に dl
最も近い照射光焦光点の高さ方向位置 z での
d2 光電変換信号出力 Iが最大になる曲 線になる。演算部 14の抽出部 14aは、この最大になる高さ方向位置 z を、測定高さ d2
Z として抽出する。
ml
[0061] また、主走査方向位置 X における光検出器 7の光電変換信号出力 1 (1, 2)〜1 (4 d2
, 2)の分布は、検査対象物 3の主走査方向位置 Xと副走査方向位置 yとが同一の
dj di 点における z走査による光電変換信号出力 Iになるので、共焦点法の原理により、図
8Bの短い点線で示すように、主走査方向位置 X における検査対象物 3の高さ Z2に d2
最も近い照射光焦光点の高さ方向位置 z での
dl 光電変換信号出力 Iが最大になる曲 線になる。演算部 14の抽出部 14aは、この最大になる高さ方向位置 z を、測定高さ dl
Z として抽出する。
また、主走査方向位置 X における光検出器 7の光電変換信号出力 1 (2, 3)〜1 (6 d3
, 3)の分布は、検査対象物 3の主走査方向位置 Xと副走査方向位置 yとが同一の
dj di 点における z走査による光電変換信号出力 Iになるので、共焦点法の原理により、図
8Bの実線で示すように、主走査方向位置 X における検査対象物 3の高さ Z3に最も d3
近い照射光焦光点の高さ方向位置 z での光電変換信号出力 Iが最大になる曲線に d4
なる。演算部 14の抽出部 14aは、この最大になる高さ方向位置 z を、測定高さ z と d4 m3 して抽出する。
以下、同様にして、各主走査方向位置 X における各測定高さ Ζ を抽出することで、 dj mj
検査対象物 3の走査線上の高さ情報を得ることができる。
[0062] 次に、図 2、図 8C〜図 8Eを用いて、検査対象物 3の高さ情報を求める演算方法に ついて、より詳しく説明する。ここでは、図 2に示すように基板 3Aに装着された電子部 品を検査対象物 3として説明する。図 8Cは、検査対象物 3に対する XZ走査の一例を 示す図であり、図 8Dは、データ記憶部 13の記憶内容の一例を示す模式図であり、 図 8Eは、外観位置座標演算部 14bの演算方法の一例を示す図である。
[0063] なお、図 8Cにおいて、黒丸は、走査集光レンズ 2により実際に集光された走査光束 の集光点を示し、点線の白丸は、走査集光レンズ 2により集光される前に走査光束が 検査対象物 3の表面に反射され、実際には集光されていない仮想の集光点を示して いる。すなわち、図 8Cにおいて、走査光束は、高さ方向位置 z ,主走査方向位置 X d4 d 及び X のとき、高さ方向位置 Z ,主走査方向位置 X 及び X のとき、及び高さ方向
2 d3 d2 d2 d3
位置 z ,主走査方向位置 x 〜χ のとき、走査集光レンズ 2により集光される前に検 d6 dl dm
查対象物 3の表面に反射される。
また、図 8Cにおいて、高さ方向位置 z における X走査は回転多面鏡 2の第 1鏡面 dl
11cにより行われ、高さ方向位置 z における X走査は第 2鏡面 11cにより行われ、
1 d2 2
同様にして、高さ方向位置 z 〜 における X走査は第 2鏡面 11c〜第 6鏡面 11cに d3 d6 2 6 より行われている。
[0064] 光検出器 7が受光する落射反射光の光強度は、走査集光レンズ 2により集光される 走査光束が集光点の近くで検査対象物 3に反射されればされるほど強くなる。すなわ ち、図 8Cにおいては、受光強度 1のとき、光検出器 7が受光する落射反射光の光強 度は最も強ぐ受光強度 1から離れるほど、つまり受光強度 2、受光強度 3 · "になる ほど光検出器 7が受光する落射反射光の光強度は弱くなる。
したがって、例えば、主走査方向位置 X において、高さ方向位置 z では受光強度 d3 dl
3で集光され、高さ方向位置 z では受光強度 2で集光され、高さ方向位置 z では受 d2 d3 光強度 1で集光されて走査光束の集光点が形成される。ところが、高さ方向位置 Z d4 では受光強度 1で集光され、高さ方向位置 Z では受光強度 2で集光され、高さ方向 d5
位置 Z では受光強度 3で集光されるはずが、実際には、検査対象物 3の表面に走査 d6
光束がそれぞれ反射されるため、仮想の走査光束の集光点となっている。
[0065] 図 8Dは、図 8Cに示す受光強度 1〜5を光検出器 7で光電変換して得られる光電変 換信号出力 Iと主走査方向位置 Xとの関係を示すグラフである。図 8Dにおいて、光 dj
検出器 7の光電変換信号出力 1 (1, 1)〜I (1, m)を結ぶ長い点線は、第 1鏡面 11c による走査光束の主走査方向位置 X における光強度を示している。また、光検出器 7の光電変換信号出力 I (2, 1)〜I (2, m)を結ぶ短い点線は、第 2鏡面 11cによる
2 走査光束の主走査方向位置 X における光強度を示している。また、光検出器 7の光 dj
電変換信号出力 1 (3, 1)〜I (3, m)を結ぶ一点鎖線は、第 3鏡面 11cによる走査光
3
束の主走査方向位置 X における光強度を示している。また、光検出器 7の光電変換 dj
信号出力 1 (4, 1)〜1 (4、 m)を結ぶ 2点鎖線は、第 4鏡面 11cによる走査光束の主
4
走査方向位置 X における光強度を示している。また、光検出器 7の光電変換信号出 dj
力 1 (5, 1)〜I (5, m)を結ぶ直線は、第 5鏡面 11cによる走査光束の主走査方向位
5
置 X における光強度を示している。また、光検出器 7の光電変換信号出力 1 (6, 1)〜 dj
1 (6, m)を結ぶ太い直線は、第 6鏡面 11cによる走査光束の主走査方向位置 X に
6 dj おける光強度を示している。
[0066] 図 8Eは、各主走査方向位置 X毎に、各高さ方向位置 z における光電変換信号出 dj di
力 Iをマークし、そのマークをなめらかな曲線で結んだグラフである。主走査方向位置
X のときの各高さ方向位置 z (第 1鏡面 11c力 第 6鏡面 11cの走査)の光電変換 dl di 1 6
信号出力 1 (1, 1)〜I (6, 1)を、図 8E中では三角形のマークで示している。同様にし て、主走査方向位置 X のときの各高さ方向位置 z の光電変換信号出力 1 (2, 1)〜工 d2 di
(2, 6)を、図 8E中では四角形のマークで示し、主走査方向位置 X のときの各高さ d3
方向位置 z の光電変換信号出力 1 (3, 1)〜(3, 6)を、図 8E中では円形のマークで di
示している。
[0067] 図 8Eに示すように、主走査方向位置 X (三角形)のとき、光電変換信号出力 Iは、 dl
高さ方向位置 z と高さ方向位置 Z との間で最大値となる。演算部 14の抽出部 14a d5 d6
は、高さ方向位置 z と高さ方向位置 z との間の高さを、検査対象物 3の主走査方向 d5 d6
位置 X における測定高さ Z として抽出する。また、主走査方向位置 X (四角形)又 dl ml d2
は主走査方向位置 χ
d3 (円形)のとき、光電変換信号出力 Iは、高さ方向位置 z
d3と高さ 方向位置 z との間で最大値となる。演算部 14の抽出部 14aは、高さ方向位置 z と d4 d3 高さ方向位置 z との間の高さを、検査対象物 3の主走査方向位置 X 又は X におけ d4 d2 d3 る測定高さ z 又は Z して抽出する。以下、同様にして抽出部 14aにより、各主走査 m2 ml 3
方向位置 χ における測定高さ位置 z を抽出していくことで、検査対象物 3の走査線 dj mj
上の高さ情報を得ることができる。 [0068] なお、高さ方向位置 z は、前述の通り間隔 f x d a X tan( |8 )で離散的に変化するの
di
で、抽出部 14aで、上記の通り、最大値になる高さ方向位置 zを抽出すると、測定高
di
さ z の間隔も f X d a X tan( |8 )の離散値となる(つまり、測定高さ分解能力 ¾ X d a X ta η( ι8 )となる)。しかし、多項式補間などの演算処理を外観位置座標演算部 14aで行う ことにより、各高さ方向位置 z 間の中間点を測定高さ z として求めることができ、高さ
di mi
分解能を小さくすることが可能になる。
[0069] また、こうした演算処理を行うには、データ記憶部 13に記憶された光検出器 7の光 電変換信号出力 Iと回転多面鏡 11の鏡面番号 iとの関連付けが必要になる。そのた めに、制御部 16により、回転多面鏡 11の回転と同期をとる信号 (以下、回転同期信 号という)を 1回転に 1回、外観位置座標演算部 14bに出力させる。また、制御部 16 により、各鏡面 11cによる走査動作と同期を取る信号 (以下、走査同期信号という)を 各鏡面走査毎に 1回、外観位置座標演算部 14bに出力させる。そして、外観位置座 標演算部 14bにより、回転同期信号と走査同期信号とを組合せることで、光検出器 7 の光電変換信号出力 Iと回転多面鏡 11の鏡面番号 iとの関連付けを行うことが可能に なる。
[0070] 以上、本第 1実施形態の外観検査装置及び方法によれば、回転多面鏡 11の 1回 転における光検出器 7の光電変換信号出力 Iのデータをデータ記憶部 13に記憶させ 、演算部 14より、そのデータ記憶部 13が記憶するデータのうち、主走査方向位置 X
dj と副走査方向位置 y
diとが同一の点における光電変換信号出力 Iが最大になる高さ方 向位置 z を求めることで、検査対象物 3の走査直線上の高さ情報(つまりは、 XZ断面 di
形状)を得ることができる。
さらに、本第 1実施形態の外観検査装置及び方法によれば、図 7Bで示したように、 制御部 16により、テーブル送り装置 12の送り量 Ytを、回転多面鏡 11の等角速度の 回転に同期させて、各鏡面による複数の照射光集光点が、検査対象物 3の高さ方向 Zに夫々位置するように制御することにより、検査対象物 3の XY走査範囲における、 各主走査方向位置 Xと各副走査方向位置 yでの高さ方向位置 z の情報(つまりは
dj di mi
、位置座標)を得ることができる。
なお、本第 1実施形態の外観装置及び方法によれば、前記演算部 14により検査対 象物 3の外観の位置座標を、例えば、図 7B及び図 8Aにおいては、主走査方向に m 点(主査走査方向 Xのサンプリング数)、副走査方向に 5点(回転多面鏡 11の回転数 )、及び高さ方向に 6点(回転多面鏡の鏡面数)の合計 (m X 5 X 6 = ) 30 X m点、求 めることで、検査対象物の外観を立体的に検査することができる。
[0071] 以上、本第 1実施形態では、テーブル送り装置 12により検査対象物 3を副走査方 向 Yに移動する方式について述べたが、検査対象物 3は固定で、光学系全体を副走 查方向 Yに移動する方式でも、同様の効果を得ることができる。また、本第 1実施形 態では、走査集光レンズ 2を f 0レンズとして説明したが、主走査方向位置 X と入射 角 Θの関係が直線比例関係にない場合 (たとえば、 X =f X sin( Θ )や X =f X tan( Θ ) d d
など)の場合でも、同様の効果を得ることができる。
[0072] 《第 2実施形態》
図 9Aは、本発明の第 2実施形態における外観検査装置及び方法の光学系の構成 を副走査方向 Yから見た概略図である。図 9Bは、本発明の第 2実施形態における外 観検査装置の光学系の構成を主走査方向 Xから見た概略図である。
[0073] 本発明の第 2実施形態の外観検査装置及び方法は、図 9A及び図 9Bに示すように 、走査集光レンズ 2の光軸を回転多面鏡 11の回転軸 1 lbと直交する平面力 角度 β 、傾斜させることなぐ高さ方向 Ζに平行に配置された走査集光レンズ 2Αを備えるとと もに、走査集光レンズ 2Αと検査対象物 3との間に、集光点位置形成用光学系の一例 を構成する、主走査方向 Xと平行な入射面と射出面を持つ楔形の長尺プリズム 15を さらに備える点で、本発明の第 1実施形態の外観検査装置と異なる。それ以外の点 については、本発明の第 1実施形態の外観検査装置及び方法と同様であるので、重 複する説明は省略する。
[0074] 図 9Α及び図 9Βに示すように、長尺プリズム 17の入射面 17aと射出面 17bとが主走 查方向 Xに平行に配置されているため、走査光束は、長尺プリズム 17を通過し、副 走査方向 Yと垂直な面内では曲がらず、屈折の作用により、主走査方向 Xと垂直な 面内でのみ角度 γで折れ曲がり、照射光集光点 Pbで集光される。そして、集光点 P bで集光された走査光束は、回転多面鏡 11の回転により、検査対象物 3を主走査方 向 Xに直線走査する。回転多面鏡 11の鏡面角度が λ = « Ζ2の場合、走査集光レ ンズ 2から射出される走査光束は、第 1実施形態と同様に、副走査方向 Yに距離 y
in
=f X αだけ平行移動して、長尺プリズム 17に入射する。長尺プリズム 17に入射した 走査光束は、長尺プリズム 17の作用により、平行移動量が距離 yから距離 yに変化
m d し、照射光集光点 Pb— 1の位置が走査集光レンズ 2の光軸中心を通過する際の照 射光集光点 Pbに対して、副走査方向 Yに対して距離 yずれ、高さ方向 Zに距離 zだ
d d けずれる。
[0075] 本第 2実施形態の第 1実施形態との相違点は、長尺プリズム 17を新たに設けた点と 、走査集光レンズ 2の傾き βをなくした点の 2点であるが、第 1及び第 2実施形態とも、 回転多面鏡 11の鏡面角度えにより、検査対象物 3に対して X走査と ΥΖ走査とを同時 に実施でき、同様の効果を発揮することができる。
[0076] 次に、図 10A及び図 10Bを用いて、長尺プリズム 17の作用について、詳細に説明 する。図 10Aは、長尺プリズム 17の作用を説明する図であり、図 10Bは、長尺プリズ ム 17による照射光集光点の移動を説明する図である。
図 10Aに示すように、長尺プリズム 17の頂角を a、屈折率を nとし、光源 1の光束が 長尺プリズム 17の入射面 17a上の点 A2から入射し、射出面 17b上の点 C2から射出 される場合、 snellの法則及び幾何的な関係により、走査集光レンズ 2から射出された 走査光束が長尺プリズム 17により折れ曲がる角度 (以下、折れ曲がり角度という) γ は、次式のようになる。ここで、走査集光レンズ 2から射出され長尺プリズム 17に入射 する走査光束 (以下、入射光と!ヽぅ)が入射面 17aとなす角度 (以下、入射角という)を bl lとする。また、長尺プリズム 17内に入射した走査光束が、入射面 17aとなす角度 を bl2とし、射出面 17bとなす角度を b21とする。また、長尺プリズム 17から射出され た走査光束 (以下、射出光という)が射出面 17bとなす角度を b22とする。
[0077] sin(bl2) = sin(bl l)/n (点 A2における snellの法則)
sin(b22) = sin(b21) X n (点 C2における snellの法則)
a=b21 +bl2 (三角形の幾何的な関係)
γ = (bl l -bl2) - (b21 -b22) (幾何的な関係)
=bl l +b22-a=fl(a, n、 bl l)
つまり、折れ曲がり角度 γは、頂角 a,屈折率 η ,入射角 bl lの関数 fl(a、 n、 bl l) となる。したがって、副走査方向 Yに距離 yだけ平行移動した点 A1〜点 C1を通過 する走査光束も、点 A2〜点 C2を通過する走査光束と同じ入射角 bllであるので、 折れ曲がり角度は γとなる。つまり、点 A1〜点 C1を通過し点 C1から射出された射出 光は、点 Α2〜点 C2を通過し点 C2から射出された射出光と平行になる。
[0078] 点 C1から射出された射出光と点 C2から射出された射出光との距離 yは、点 A1に
d
入射する入射光と点 A2に入射する入射光の距離 yと直線比例関係にあり、その比
m
例係数は、 snellの法則力も次式のようになり、結局、頂角 a'屈折率 n '入射角 bllの 関数 f2(a、 n、 bll)となる。
[0079] y /γ = cos(b 12)/cos(b 11) X cos(b22)/cos(b21) = f 2 (a, n、 bll)
d in n
この作用により、図 9Bに示すように、照射光集光点 Pbは、走査光束の進行方向に 距離 yだけ移動して照射光集光点 Pb— 1に移動する。
d
[0080] 次に、長尺プリズム 17による、照射光集光点 Pbの高さ方向 Zの移動について述べ る。図 10Bに示すように、厚み f屈折率 nの長尺プリズム 17に集束角 Θが小さい走 查光束が入射すると、 snellの法則および近軸近似 (sin( θ)^ Θ )により、照射光集光 点は点 Dから点 Εへ、走査光束の進行方向に dz=tX (l-1/n )だけ移動する。そ のため、図 10Aにおいて、点 A1に入射する入射光力 長尺プリズム 17を通過しなけ れば、点 A1から L1の距離にある点 B1で集光する入射光であった場合、点 A1〜点 C1を通過し点 C1から射出される射出光の照射光集光点 E1は、長尺プリズム 17によ り折れ曲がる走査光束の径路に沿って点 A1から距離 L1をとつた点 D1 (距離 A1B1 =距離 A1C1 +距離 C1D1=L1)に対して、距離 dz =t X (1— lZn )だけ走査光 束の進行方向に移動する (t =距離 A1C1)。
[0081] 同様に、点 A2に入射する入射光の照射光集光点は、距離 =t X (l-1/n )
2 2 n だけ移動し点 E2となる。つまり、長尺プリズム 17を通過しなければ、照射光集光点ま での距離が同じである走査光束でも、長尺プリズム 17の入射面 17aに対する入射位 置が異なる(例えば点 A1と点 A2)と、走査光束の進行方向における照射光集光点 の位置が z =(t— t )X (1-1/n )だけ異なる。ここで、長尺プリズム 17中を通過す
d 2 1 n
る距離の差 (t一 t )は、三角形の幾何的な関係から明らかに、点 A1と点 A2の距離 c
2 1
12と直線比例し、その比例係数は頂角 aと入射角 bl2の関数となる。さらに、 cl2=y Zcos(bl l)の関係があるので、結局、 zは距離 y と直線比例し、その比例係数は頂 n d m
角 a、屈折率 n 入射角 bl lの関数 f3となる。
[0082] z /y =f3 (aゝ n 、 bl l)
d in n
以上の関係により、走査光束は、図 9Bに示すように、長尺プリズム 17の作用により 、角度 γだけ折れ曲がり、照射光集光点の点 Pbから点 Pb— 1'へ(副走査方向 Υへ 距離 y、高さ方向 Zへ距離 z )移動し、点 Pbと点 Pb— 1とを結ぶ直線は走査光束の d d
進行方向に垂直な面に対して、次式の角度 βだけ傾く。
[0083] tan( j8 ) = z /y =f3 (a、 n 、 bl l) /f2 (aゝ n 、 bl l)
d d n n
つまり、長尺プリズム 17の 3つのパラメータ (頂角 a、屈折率 nn、入射角 bl l)を変更 することにより、検査対象物 3に対する高さ方向位置 z と副走査方向位置 yを変更
di di することができ、自由度の高い設計が可能になる。
[0084] なお、前記様々な実施の形態のうち任意の実施の形態を適宜組み合わせることに より、それぞれの有する効果を奏することができる。
[0085] 本発明は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載さ れているが、この技術に熟練した人々にとつては種々の変形や修正は明白である。 そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限 りにおいて、その中に含まれると理解されるべきである。
[0086] 2005年 4月 14曰に出願された曰本国特許出願 No. 2005— 116869号の明細書
、図面、および特許請求の範囲の開示内容は、全体として参照されて本明細書の中 に取り入れられるものである。
産業上の利用可能性
[0087] 本発明にかかる外観検査装置及び方法は、回転多面鏡による直線走査光学系に 簡単な機能を付加することで、高速及び高精度に検査対象物の外観座標を求めら れる効果を有しており、特に平面上に広がる物体の外観検査装置として有用であり、 具体的には、実装基板のはんだ付け工程における電子部品の実装状態やクリーム はんだの塗布状態を検査する外観検査装置及び方法に有用である。

Claims

請求の範囲
光束を射出する光源と、
外周部に少なくとも 3つの鏡面を有し、回転軸まわりに等角速度で回転可能に配置 され、前記光源から射出された前記光束を前記夫々の鏡面により検査対象物に向け て偏向し、前記回転により前記光束を主走査方向に直線状に走査可能な回転多面 鏡と、
前記回転多面鏡の回転により、前記回転多面鏡の前記夫々の鏡面により偏向走査 された前記光束を集光点で集光させつつ前記集光点を前記検査対象物の前記主 走査方向と直交する高さ方向の検査範囲を移動させる集光点位置形成用光学系と 前記集光点位置形成用光学系を通過したのち、前記検査対象物により反射されて 、前記集光点位置形成用光学系を経由して、前記回転多面鏡の前記鏡面で偏向さ れる反射光の光強度であって前記集光点と前記光束の前記検査対象物での反射点 との距離に依存する光強度を、光電変換信号出力に光電変換する光検出器と、 前記回転多面鏡の前記等角速度の回転に同期して、前記検査対象物を前記主走 查方向及び前記高さ方向と直交する副走査方向に移動させる検査対象物移動装置 と、
前記光検出器により光電変換された前記反射光の前記光電変換信号出力に基づ いて、前記検査対象物の外観の位置座標を求め、前記検査対象物の外観の検査を 行う演算部と、を備え、
前記回転多面鏡は、前記等角速度の回転に伴い、前記光束の前記集光点を前記 副走査方向にずらすように、当該回転多面鏡の回転軸と前記鏡面とのなす角度であ る鏡面角度が各鏡面ごとに異なるように構成され、
前記検査対象物移動装置は、前記回転多面鏡が前記等角速度で 1回転する間、 前記集光点位置形成用光学系により前記高さ方向の前記検査範囲で移動されるとと もに前記夫々の鏡面により前記副走査方向にずらされた前記集光点が、前記検査 対象物の前記高さ方向に直線状に走査されるように、前記検査対象物を前記副走 查方向に移動させるとともに、前記回転多面鏡が前記等角速度でさらに 1回転を開 始する前に、前記副走査方向に前記検査対象物を移動させて、前記主走査方向の 直線状の走査及び前記高さ方向の前記検査範囲での前記集光点の移動による外 観検査を、前記回転多面鏡の前記 1回転での外観検査と前記検査対象物上の異な る部分で行うように構成されて!ヽることを特徴とする外観検査装置。
[2] 前記集光点位置形成用光学系は、光軸が前記回転多面鏡の前記回転軸と直交す る方向に対して傾斜するように配置され、前記回転多面鏡の前記夫々の鏡面により 偏向走査された前記光束を前記集光点で集光させる走査集光レンズを備えて、前記 集光点が前記主走査方向に直線状に移動しつつ前記高さ方向の前記検査範囲を 移動することを特徴とする請求項 1に記載の外観検査装置。
[3] 前記集光点位置形成用光学系は、
光軸が前記回転多面鏡の前記回転軸と直交する方向と平行になるように配置され 、前記回転多面鏡の前記夫々の鏡面により偏向走査された前記光束を前記集光点 で集光させる走査集光レンズと、
前記走査集光レンズと前記検査対象物との間に、入射面と射出面とが前記主走査 方向と平行になるように配置され、前記入射面から入射する光束を屈折させて前記 射出面力 射出するプリズムとを備えて、
前記走査集光レンズを通過した光束が、前記プリズムの前記入射面から入射し、屈 折されて前記射出面から射出されて、前記集光点が前記主走査方向に直線状に移 動しつつ前記高さ方向の前記検査範囲を移動することを特徴とする請求項 1に記載 の外観検査装置。
[4] さらに、前記回転多面鏡が少なくとも 1回転する間の、前記光検出器から出力され た前記反射光の前記光電変換信号出力を記憶するデータ記憶部を備え、
前記演算部は、前記データ記憶部に記憶された前記光電変換信号出力に基づい て、前記検査対象物の前記高さ方向の位置を求めて前記検査対象物の外観の位置 座標を求め、前記検査対象物の外観の検査を行うことを特徴とする請求項 1に記載 の外観検査装置。
[5] 外周部に少なくとも 3つの鏡面を有するとともに回転軸と前記鏡面とのなす角度で ある鏡面角度が各鏡面ごとに異なるように構成された回転多面鏡を前記回転軸まわ りに等角速度で回転させて、光源から前記鏡面へ射出された光束を検査対象物に 向けて偏向させつつ主走査方向に直線状に走査させ、前記偏向走査において、集 光点位置形成用光学系により、前記回転多面鏡の前記夫々の鏡面により偏向走査 された前記光束を集光点で集光させつつ前記集光点を前記検査対象物の前記主 走査方向と直交する高さ方向の検査範囲で移動させるとともに、前記鏡面角度が異 なる前記夫々の鏡面により前記主走査方向及び前記高さ方向と直交する副走査方 向ずらされた前記集光点が、前記検査対象物の前記高さ方向に直線状に走査され るように、前記検査対象物を前記副走査方向に移動させ、前記副走査方向に移動 する前記検査対象物により反射されて、前記集光点位置形成用光学系を経由して、 前記回転多面鏡の前記鏡面に偏向される反射光の光強度であって前記集光点と前 記光束の前記検査対象物の反射点との距離に依存する光強度を光電変換信号出 力に光電変換し、前記光電変換信号出力に基づ!ヽて前記検査対象物の外観の位 置座標を求め、前記検査対象物の外観の検査を行い、
次いで、前記回転多面鏡が前記等角速度でさらに 1回転を開始する前に、前記副 走査方向に前記検査対象物を移動させ、
次いで、前記主走査方向の直線状の走査及び前記高さ方向の前記検査範囲での 前記集光点の移動による外観検査を、前記回転多面鏡の前記 1回転での外観検査 と前記検査対象物上の異なる部分で行うことを特徴とする外観検査方法。
[6] 前記偏向走査において、前記集光点位置形成用光学系を構成し且つ光軸が前記 回転多面鏡の前記回転軸と直交する方向に対して傾斜されるように配置された走査 集光レンズにより、前記回転多面鏡の前記夫々の鏡面により偏向走査された前記光 束が前記集光点に集光されながら、前記集光点が前記主走査方向に直線状に移動 しつつ前記高さ方向の前記検査範囲で移動するように集光されることを特徴とする請 求項 5に記載の外観検査方法。
[7] 前記偏向走査において、前記集光点位置形成用光学系を構成し且つ光軸が前記 回転多面鏡の前記回転軸と直交する方向と平行になるように配置された走査集光レ ンズにより、前記回転多面鏡の前記夫々の鏡面により偏向走査された前記光束が前 記集光点で集光され、 前記集光点位置形成用光学系を構成し且つ前記走査集光レンズと前記検査対象 物との間に入射面と射出面とが前記主走査方向と平行になるように配置されたプリズ ムにより、前記走査集光レンズを通過した前記光束が、前記プリズムの前記入射面か ら入射し、屈折されて前記射出面から射出され、前記集光点が前記主走査方向に直 線状に移動しつつ前記高さ方向の前記検査範囲で移動するように集光されることを 特徴とする請求項 5に記載の外観検査方法。
PCT/JP2006/307722 2005-04-14 2006-04-12 外観検査装置及び方法 WO2006112315A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112006000841T DE112006000841T5 (de) 2005-04-14 2006-04-12 Vorrichtung und Verfahren zum Prüfen der äußeren Erscheinung
KR1020077013254A KR101204585B1 (ko) 2005-04-14 2006-04-12 외관 검사 장치 및 방법
JP2006528335A JP4874103B2 (ja) 2005-04-14 2006-04-12 外観検査装置及び方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005116869 2005-04-14
JP2005-116869 2005-04-14

Publications (1)

Publication Number Publication Date
WO2006112315A1 true WO2006112315A1 (ja) 2006-10-26

Family

ID=37115039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307722 WO2006112315A1 (ja) 2005-04-14 2006-04-12 外観検査装置及び方法

Country Status (5)

Country Link
JP (1) JP4874103B2 (ja)
KR (1) KR101204585B1 (ja)
CN (1) CN100541115C (ja)
DE (1) DE112006000841T5 (ja)
WO (1) WO2006112315A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185551A (ja) * 2007-01-31 2008-08-14 V Technology Co Ltd 高さ測定装置
CN101349550B (zh) * 2008-08-26 2010-06-09 浙江大学 在线橡胶栓外形质量检查机
US20220373323A1 (en) * 2019-09-18 2022-11-24 DWFritz Automation, Inc. Non-contact optical measurement devices and exchangeable optical probes

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011083421A1 (de) * 2011-09-26 2013-03-28 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Vermessen homogen reflektierender Oberflächen
WO2017035080A1 (en) * 2015-08-21 2017-03-02 Adcole Corporation Optical profiler and methods of use thereof
KR20180126491A (ko) * 2016-03-30 2018-11-27 가부시키가이샤 니콘 빔 주사 장치 및 패턴 묘화 장치
CN105783778B (zh) * 2016-04-27 2018-04-17 中国科学院云南天文台 基于激光扫描法的非接触光学镜面检测***及其检测方法
CN106705881A (zh) * 2016-12-12 2017-05-24 哈尔滨工业大学 基于共聚焦显微原理的大口径光学元件母线轮廓测量方法
JP6829992B2 (ja) * 2016-12-28 2021-02-17 株式会社キーエンス 光走査高さ測定装置
CN106839978B (zh) * 2016-12-29 2019-04-19 贵州虹轴轴承有限公司 一种轴承套圈外壁加工精度检测装置
CN106767468B (zh) * 2016-12-29 2019-03-01 贵州虹轴轴承有限公司 一种轴承套圈外壁精度检测装置
CN109443243A (zh) * 2018-12-19 2019-03-08 孙志军 一种测量物体形状的设备和测量方法
CN110186391A (zh) * 2019-05-22 2019-08-30 浙江大学 一种三维模型梯度扫描方法
CN113251949B (zh) * 2021-06-18 2021-11-30 三代光学科技(天津)有限公司 一种微透镜阵列面形的单点光学测量路径生成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122462A (en) * 1975-03-31 1976-10-26 Canon Kk Measuring apparatus
JPH1137723A (ja) * 1997-07-23 1999-02-12 Fujitsu Ltd 高さ検査装置
JP2000009422A (ja) * 1998-06-25 2000-01-14 Tech Res & Dev Inst Of Japan Def Agency 走行車両の距離測定装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662219A (en) * 1979-10-26 1981-05-28 Shinko Electric Co Ltd Mirror for laser beam scanning
US4689491A (en) * 1985-04-19 1987-08-25 Datasonics Corp. Semiconductor wafer scanning system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122462A (en) * 1975-03-31 1976-10-26 Canon Kk Measuring apparatus
JPH1137723A (ja) * 1997-07-23 1999-02-12 Fujitsu Ltd 高さ検査装置
JP2000009422A (ja) * 1998-06-25 2000-01-14 Tech Res & Dev Inst Of Japan Def Agency 走行車両の距離測定装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185551A (ja) * 2007-01-31 2008-08-14 V Technology Co Ltd 高さ測定装置
CN101349550B (zh) * 2008-08-26 2010-06-09 浙江大学 在线橡胶栓外形质量检查机
US20220373323A1 (en) * 2019-09-18 2022-11-24 DWFritz Automation, Inc. Non-contact optical measurement devices and exchangeable optical probes

Also Published As

Publication number Publication date
CN101080608A (zh) 2007-11-28
KR101204585B1 (ko) 2012-11-23
CN100541115C (zh) 2009-09-16
JPWO2006112315A1 (ja) 2008-12-11
JP4874103B2 (ja) 2012-02-15
KR20070120086A (ko) 2007-12-21
DE112006000841T5 (de) 2008-02-28

Similar Documents

Publication Publication Date Title
WO2006112315A1 (ja) 外観検査装置及び方法
US7525668B2 (en) Apparatus and method for appearance inspection
KR102141127B1 (ko) 회전 오목 거울과 빔 조향 디바이스들의 조합을 사용한 2D 스캐닝 고정밀 LiDAR
JP2949600B2 (ja) 結像装置
WO2009155924A1 (en) Rotating prism scanning device and method for scanning
JP6662529B2 (ja) 光学機器の連続非同期オートフォーカスのためのシステムおよび方法
CN1712989A (zh) 光波距离测定方法及光波距离测定装置
CN103954598B (zh) 一种基于倏逝波照明的轴向高精度定位方法及装置
KR20180126927A (ko) 8채널형 라이다
TWI486555B (zh) 焦點位置改變裝置及使用其之共焦光學裝置
JP2020076718A (ja) 距離測定装置及び移動体
CN1209653C (zh) 光纤面板共焦显微镜测量三维面形的方法和装置
US20110216401A1 (en) Scanning System With Orbiting Objective
EP2666049B1 (en) Light-scanning systems
JP2006091507A (ja) 共焦点顕微鏡
JP2024012418A (ja) 投受光装置及び測距装置
JP6146965B2 (ja) 光走査装置及び内視鏡装置
KR20180127850A (ko) 16채널형 라이다
CN109506570B (zh) 位移传感器
KR20180126963A (ko) 8채널형 라이다
JP6153460B2 (ja) 光走査装置及び内視鏡装置
CN1945244A (zh) 高稳定度高光谱分辨率干涉成像光谱仪成像方法及光谱仪
JP5726656B2 (ja) ディスク走査型共焦点観察装置
WO2024070999A1 (ja) 測量装置
KR20180126964A (ko) 16채널형 라이다

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2006528335

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680001437.0

Country of ref document: CN

Ref document number: 1020077013254

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11793016

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120060008412

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

RET De translation (de og part 6b)

Ref document number: 112006000841

Country of ref document: DE

Date of ref document: 20080228

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06731668

Country of ref document: EP

Kind code of ref document: A1