WO2006112119A1 - Ferromagnetic dual tunnel junction element and magnetic device - Google Patents

Ferromagnetic dual tunnel junction element and magnetic device Download PDF

Info

Publication number
WO2006112119A1
WO2006112119A1 PCT/JP2006/302545 JP2006302545W WO2006112119A1 WO 2006112119 A1 WO2006112119 A1 WO 2006112119A1 JP 2006302545 W JP2006302545 W JP 2006302545W WO 2006112119 A1 WO2006112119 A1 WO 2006112119A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferromagnetic
layer
ferromagnetic layer
tunnel junction
double tunnel
Prior art date
Application number
PCT/JP2006/302545
Other languages
French (fr)
Japanese (ja)
Inventor
Kouichiro Inomata
Nobuki Tezuka
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to JP2007521094A priority Critical patent/JPWO2006112119A1/en
Publication of WO2006112119A1 publication Critical patent/WO2006112119A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Definitions

  • the present invention relates to a ferromagnetic double tunnel junction element capable of obtaining a tunnel magnetoresistance (TMR) effect of 100% or more at room temperature, and a magnetic device having the ferromagnetic double tunnel junction.
  • TMR tunnel magnetoresistance
  • GMR giant magnetoresistive
  • MTJ ferromagnetic tunnel junction
  • TMR Magnetoresistive
  • TMR 2P P / (1 -P P) (1)
  • the spin polarizability P of the ferromagnet takes a value of 0 ⁇ P ⁇ 1.
  • Non-Patent Documents 2 and 3 in an MTJ element, an epitaxial structure in which Fe, MgO, and Fe (hereinafter referred to as FeZMgOZFe) having a (100) plane are sequentially stacked is calculated by theoretical calculation. It was reported that a large TMR could be obtained.
  • Non-Patent Document 4 reported an MTJ element with a FeZMgOZFe structure that can increase the TMR at room temperature to 88%. Furthermore, it was reported in Non-Patent Document 5 that the TMR value can be improved to 180% at room temperature, and that the TMR vibrates when the tunnel barrier thickness is changed.
  • Non-Patent Documents 6 and 7 the MTJ element is replaced with CoFeZMgOZCoFe or CoFeBZMg. It was reported that 220-230% TMR at room temperature was obtained by using the OZCoFeB structure.
  • the TMR values reported in Non-Patent Documents 4 to 7 above are the values of conventional oxide films.
  • Non-Patent Document 8 by the present inventors reports a ferromagnetic double tunnel junction element capable of obtaining a large TMR exceeding 100% and minimizing a decrease in TMR due to a bias voltage. Has been.
  • Non-patent literature 1 T. Miyazaki and N. Tezuka, bpin polarized tunneling in ferromagnet / insulator / ferromagnet junctions ", 1995, J. Magn. Magn. Mater, L39, p.1231
  • Non-patent literature 2 WH Butler , X.-G.Zhang, TC Schulthess, and JM MacLaren, 2
  • Non-Patent Document 3 J. Mathon and A. Umerski, 2001, Phys. Rev. B 63, R220403
  • Non-Patent Document 4 S. Yuasa, A. Fukushima, T. Nagahama, K. Ando, and Y. Suzuki, 2003
  • Non-Patent Document 5 S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, 2004, Nature Materials, Vol. 3, p. 868
  • Non-Patent Document 6 S. S. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S.-H. Yang, 2004, Nature Materials, Vol.3, p.868
  • Non-Patent Document 7 DD Djayaprawira et al, 2005, Appl. Phys. Lett., Vol.86, p.092502
  • Non-Patent Document 8 T. Nozaki, A. Hirohata, N. Tezuka, S. Sugimoto, and K. Inomata, published online in Appl. Phys. Lett, on 15 February, 2005, Vol.86, p.082501 Disclosure of the invention
  • MTJ elements are currently put to practical use in magnetic heads for hard disks, and are expected to be applied to nonvolatile random access magnetic memory (MRAM).
  • MRAM nonvolatile random access magnetic memory
  • MTJ elements are arranged in a matrix, and a magnetic field is applied by passing a current through a separately provided wiring, thereby controlling the two magnetic layers constituting each MTJ element in parallel or antiparallel to each other.
  • "1" and "0" are recorded. Reading is performed using the TMR effect.
  • MRAM if the element size is reduced to increase the density, noise caused by element variations There is a problem that the TMR value is insufficient at present. Therefore, it is a challenge to realize an MTJ element that exhibits a larger TMR.
  • the bias voltage of about 300 mmV can be applied to the MTJ element.
  • This bias voltage greatly reduces the TMR. Therefore, a MTJ element with a low TMR drop due to bias voltage is desirable.
  • One method for solving this problem is a ferromagnetic double tunnel junction.
  • the TMR of the conventional ferromagnetic double tunnel junction is less than 50%, and a sufficiently large TMR that can be used for large-capacity MRAM could not be obtained.
  • the present invention provides a ferromagnetic double tunnel junction device that can obtain a TMR effect of 100% or more at room temperature and that is less susceptible to a decrease in TMR bias voltage.
  • the purpose of 1 is.
  • the present invention also provides a TMR effect of 100% or more at room temperature, a decrease in TMR due to a bias voltage is small, and a tunnel conductance or a tunnel current oscillates.
  • a second object is to provide a magnetic device, and a third object is to provide a magnetic device having this ferromagnetic double tunnel junction.
  • the ferromagnetic double tunnel junction device of the present invention includes a first ferromagnetic layer, a first insulating layer serving as a tunnel electron noria, and a second strong layer.
  • a magnetic layer, a second insulating layer serving as a barrier for tunneling electrons, and a third ferromagnetic layer are sequentially stacked on the substrate, and at least the first and second insulating layers, and the first and second insulating layers are stacked.
  • the second ferromagnetic layer inserted between the two insulating layers is a crystal having the same crystal plane.
  • the second ferromagnetic layer is preferably a layered continuous film.
  • the first and second insulating layers have MgO force
  • the first to third ferromagnetic layers are made of Fe.
  • a part of this Fe may be formed to have a bcc structure substituted with Co, Ni, or both.
  • the substrate also has MgO force.
  • the second ferromagnetic layer is inserted between the first and second insulating layers, particularly over the ferromagnetic double tunnel junction device.
  • the thickness of the film and the epitaxial growth force so that the entire stacked film has the same crystal plane, or the two insulating layers have a crystal phase with the same crystal plane, and are sandwiched between the two insulating layers.
  • the central ferromagnetic layer is made of amorphous alloy, a ferromagnetic layer with a uniform film thickness and low roughness can be obtained.
  • a quantum level depending on the spin is formed, and the tunnel magnetoresistance through the ferromagnetic layer is formed. Obtaining the knowledge that the effect is obtained, the present invention has been completed.
  • the ferromagnetic double tunnel junction device includes a first ferromagnetic layer and a first insulating layer serving as a barrier for tunnel electrons And a second ferromagnetic layer, a second insulating layer serving as a tunnel electron noria, and a third ferromagnetic layer are sequentially stacked on the substrate, and at least the first and second insulating layers are stacked. And the second ferromagnetic layer inserted between the first and second insulating layers are crystals having the same crystal plane, and the thickness of the second ferromagnetic layer is set to the second A feature is that a plurality of quantum levels depending on spin are formed in the ferromagnetic layer.
  • the ferromagnetic double tunnel junction device of the present invention includes a first ferromagnetic layer, a first insulating layer serving as a tunnel electron barrier, a second ferromagnetic layer, and a tunnel electron noria.
  • a second insulating layer and a third ferromagnetic layer are sequentially stacked on the substrate, and at least the first and second insulating layers are crystals having the same crystal plane,
  • the second ferromagnetic layer inserted between the second insulating layers is an amorphous alloy, and the thickness of the second ferromagnetic layer is set to a plurality of quantum quasi-quads depending on the spin in the second ferromagnetic layer. It is characterized in that a position is formed.
  • the second ferromagnetic layer is a layered continuous film.
  • the second ferromagnetic layers are arranged in an island shape.
  • the first and second insulating layers may have MgO force, and the first to third ferromagnetic layers may be made of Fe.
  • a bcc structural force in which a part of Fe is replaced with Co, Ni, or both may be formed.
  • the substrate is made of MgO and the amorphous alloy is CoFeB or CoFe Constructed by SiB.
  • the tunnel conductance or the tunnel current oscillates with respect to the bias voltage applied to the ferromagnetic double tunnel junction device.
  • the ferromagnetic double tunnel junction device of the present invention it is possible to suppress a decrease in TMR due to the bias voltage. Therefore, according to the ferromagnetic double tunnel junction device of the present invention, a large signal voltage can be obtained when reading from the MRAM. Also, conductance or tunnel current oscillates with respect to the bias voltage. Therefore, if the ferromagnetic double tunnel junction device of the present invention is used for a memory cell of MRAM, the cell can be selected, and it becomes unnecessary to use a MOS transistor.
  • the present invention provides a first ferromagnetic layer, a first insulating layer serving as a tunnel electron barrier, a second ferromagnetic layer, and a tunnel electron A three-terminal element using a ferromagnetic double tunnel junction in which a second insulating layer serving as a noria, a third ferromagnetic layer, and a stack are sequentially stacked, and includes a first ferromagnetic layer and a third strong layer.
  • a three-terminal element having a ferromagnetic double tunnel junction whose conductance can be controlled by voltage can be obtained. If this three-terminal element is used in place of the conventional MRAM MTJ element, a large TMR can be obtained. By using the resonant tunneling effect, a large voltage flows only when a voltage is applied to the MTJ element, enabling cell selection. At the same time, the cell can be selected, so that an MRAM memory cell that does not require a MOS transistor can be configured. Furthermore, in addition to memories such as MRAM, it can also be used for logic circuits, for example.
  • the nonvolatile random access magnetic memory includes a first ferromagnetic layer, a first insulating layer serving as a tunnel electron noria, a second ferromagnetic layer, and a tunnel electron.
  • a ferromagnetic double tunnel junction in which the second insulating layer and the third ferromagnetic layer are sequentially stacked is arranged in a matrix at each position where the two bit lines intersect.
  • Second ferromagnetic layer inserted between at least the first and second insulating layers and the first and second insulating layers. And the second ferromagnetic layer is formed with a plurality of spin-dependent quantum levels in the second ferromagnetic layer.
  • a large TMR can be obtained by using a ferromagnetic double tunnel junction instead of the conventional MRAM MTJ element.
  • a ferromagnetic double tunnel junction instead of the conventional MRAM MTJ element.
  • a large voltage flows only when a voltage is applied to the MTJ element, enabling cell selection.
  • cell selection becomes possible, eliminating the need for MOS transistors used in conventional MRAM memory cells.
  • the nonvolatile random access magnetic memory includes a first ferromagnetic layer, a first insulating layer serving as a tunnel electron noria, a second ferromagnetic layer, and a tunnel electron.
  • a word line and a bit line cross a three-terminal device using a ferromagnetic double tunnel junction in which a second insulating layer and a third ferromagnetic layer are sequentially stacked.
  • At least the first and second insulating layers and the second ferromagnetic layer inserted between the first and second insulating layers are made of the same crystal.
  • a large TMR can be obtained by using a three-terminal element having a ferromagnetic double tunnel junction instead of the conventional MR AM MTJ element.
  • a large voltage flows only when a voltage is applied to the MTJ element, enabling cell selection.
  • the MOS transistor used in the conventional MRAM memory cell becomes unnecessary.
  • it can also be used for logic circuits, for example.
  • the epitaxial growth can be performed while maintaining the crystal orientation. Therefore, a large TMR exceeding 100% can be obtained, and the decrease in TMR due to the bias voltage can be minimized. For example, a larger signal voltage can be obtained by using it for MRAM.
  • the ferromagnetic double tunnel junction device of the second configuration of the present invention two tunnels By appropriately controlling the thickness of the second ferromagnetic layer inserted between the insulating layers, it is possible to grow epitaxially while maintaining the crystal orientation, and a large TMR exceeding 100% can be obtained. It is possible to minimize the decrease in TMR due to the bias voltage. Also, tunnel conductance or tunnel current oscillates with respect to the bias voltage. As a result, for example, a larger signal voltage can be obtained by using it for MRAM, and an MRAM that does not require a MOS transistor in the memory cell can be configured. Furthermore, it can be used not only for memory but also for logic, for example.
  • a three-terminal element using the ferromagnetic double tunnel junction of the present invention a three-terminal element capable of controlling the conductance of the double tunnel junction with a voltage can be provided.
  • MRAM nonvolatile random access magnetic memory
  • FIG. 1 is a cross-sectional view schematically showing a ferromagnetic double tunnel junction device of the present invention.
  • FIG. 2 is a diagram showing a TMR curve at room temperature at a low bias voltage of the ferromagnetic double tunnel junction device of Example 1.
  • FIG. 3 is a view showing a TMR curve at room temperature at a low bias voltage of the ferromagnetic single tunnel junction device of Comparative Example 1.
  • FIG. 4 is a diagram showing the noise voltage dependence of normalized TMR of the ferromagnetic double tunnel junction device of Example 1 and the ferromagnetic single tunnel junction device of Comparative Example 1.
  • FIG. 5 is a cross-sectional view schematically showing a ferromagnetic double tunnel junction device of the present invention.
  • FIG. 6 is a cross-sectional view schematically showing a modification of the ferromagnetic double tunnel junction device of the present invention.
  • FIG. 7 is a diagram schematically showing the operation of the ferromagnetic double tunnel junction device of the present invention.
  • FIG. 8 is a diagram schematically showing bias voltage dependence of transmission probability of tunnel injection in the ferromagnetic double tunnel junction device of the present invention.
  • (A) and (B) are diagrams for explaining parallelism and antiparallelism in the magnetic domain of the ferromagnetic double tunnel junction device of the present invention, respectively.
  • FIG. 10 is a diagram showing the bias voltage dependence of the tunnel transmittance in FIGS. 9 (A) and (B).
  • FIG. 11 is a partial cross-sectional view schematically showing the structure of still another modified example of the ferromagnetic double tunnel junction device of the present invention.
  • FIG. 12 is a schematic diagram for explaining the operation of the three-terminal element using the ferromagnetic double tunnel junction device according to the third embodiment of the present invention.
  • FIG. 13 (A) and (B) are a schematic perspective view of an MRAM using a ferromagnetic double tunnel junction element and a circuit diagram for explaining the operation thereof.
  • (A) and (B) are a schematic perspective view of an MRAM using a three-terminal device using a ferromagnetic double tunnel junction device, and a circuit diagram for explaining the operation.
  • FIGS. 15A and 15B are diagrams showing TMR curves at room temperature at a low bias voltage of the ferromagnetic double tunnel junction device of Example 2 and the ferromagnetic single tunnel junction device of Comparative Example 2, respectively. It is.
  • FIG. 16 is a diagram showing the bias voltage dependence of normalized TMR in the ferromagnetic double tunnel junction device of Example 2 and the ferromagnetic single tunnel junction device of Comparative Example 2.
  • FIG. 17 (A) to (E) and (F) are diagrams showing the bias voltage dependence of the differential tunnel conductance in Example 2 and Comparative Example 2, respectively.
  • FIG. 18 is a diagram showing a tunnel conductance difference ⁇ G between Example 2 and Comparative Example 2.
  • FIG. 19 is a diagram showing the bias voltage dependence of differential tunnel conductance in a ferromagnetic double tunnel junction device having a second ferromagnetic layer thickness t of 1.2 nm in Example 2.
  • FIG. 20 is a view showing a transmission electron microscope image when the second ferromagnetic layer has an island shape in the growth film cross section of Example 2.
  • FIG. 21 is a view showing a reflection type high-energy electron diffraction image observed in situ during the film formation of Example 3.
  • FIG. 22 is a diagram schematically showing a crystal arrangement of deposited Fe and MgO.
  • FIG. 23 The ferromagnetic double tunnel junction device of Example 3 at room temperature at a low bias voltage.
  • FIG. 24 is a graph showing the thickness dependence of the second ferromagnetic layer on the differential tunnel conductance in Example 3.
  • Example 3 the temperature dependence on the differential tunnel conductance is shown.
  • (A) shows the thickness of the second ferromagnetic layer being 1.2 nm, and (B) is about 1.5 nm. Show the case.
  • FIG. 26 shows a band diagram of the ferromagnetic double tunnel junction device of Example 3.
  • FIG. 27 In the band diagram of the second ferromagnetic layer, (A) shows the case of upward spin electrons, and (B) shows the case of downward spin electrons (down spin).
  • 15A, 15B, 15C, 15D Island-like second ferromagnetic layer
  • 16A, 16B, 16C, 16D Island-like second insulating layer
  • MRAM Nonvolatile random access magnetic memory
  • FIG. 1 is a cross-sectional view schematically showing a ferromagnetic double tunnel junction device of the present invention.
  • the ferromagnetic double tunnel junction device 1 of the present invention includes a first ferromagnetic layer 3, a first insulating layer 4 serving as a tunnel electron noria, a first The second ferromagnetic layer 5, the second insulating layer 6 serving as the tunnel electron noria, the third ferromagnetic layer 7, and the force layer are sequentially stacked.
  • the first and second insulating layers 4 and 6 and the second ferromagnetic layer 5 inserted between the first and second insulating layers 4 and 6 have the same crystal plane. It is a crystal having In this case, if the thickness of the second ferromagnetic layer 5 is appropriately controlled to maintain the crystal orientation, the TMR of the ferromagnetic double tunnel junction device 1 of the present invention can be increased.
  • the other ferromagnetic layers 3 and 7 may be formed of a crystal layer having the same crystal plane as the first and second insulating layers 4 and 6 and the second ferromagnetic layer 5.
  • the ferromagnetic double tunnel junction device 1 of the present invention can be formed by epitaxial growth on the substrate 2 having the same crystal plane as each of the layers 2 to 7 on the substrate.
  • (100) face MgO is used as the substrate, and (100) face Fe is used as the first to third ferromagnetic layers 3, 5, and 7,
  • (100) plane MgO can be used as the first and second insulating layers 4 and 5, respectively.
  • This ferromagnetic double tunnel junction device 1 is formed by using, for example, molecular beam epitaxy (MBE) (100 The first ferromagnetic layer 3, the first insulating layer 4, the second ferromagnetic layer 5, the second insulating layer 6, and the third ferromagnetic layer 7 It can be produced by growing it in an epic order. Between the substrate 2 and the first ferromagnetic layer 3, a so-called seed layer made of the same material as that of the nother layer or the substrate may be inserted. An electrode layer may be formed on the surface of the uppermost third ferromagnetic layer 7.
  • the crystal orientation Can be maintained for epitaxic growth.
  • the TMR can be increased by making the second ferromagnetic layer 5 a layered continuous film.
  • the ferromagnetic double tunnel junction device 1 of the present invention According to the ferromagnetic double tunnel junction device 1 of the present invention, a large TMR exceeding 100% can be obtained. In addition, it is possible to minimize the decrease in TMR due to the noise voltage. Therefore, a larger signal voltage can be obtained by using the ferromagnetic double tunnel junction device 1 of the present invention for MRAM.
  • MBE molecular beam epitaxy
  • the first 10 nm MgO layer is a seed layer, and the thickness of the Fe layer, which is the second intermediate ferromagnetic layer 5, is varied from 1 to 2.5 nm, so it is expressed as Fe (t).
  • the diffraction pattern of reflection type high-energy electron diffraction (RHEED) was measured during crystal growth, and it was confirmed that each of the above layers was epitaxially grown.
  • the above epitaxially grown film is formed by photolithography and Ar ion milling 1
  • OX lO ⁇ is finely processed to a size of m 2, and produced the ferromagnetic double tunnel junction element 1 of Example 1.
  • Example 1 For comparison with Example 1, except that each layer of MgO (10) ZFe (50) ZMgO (2) Z Fe (l. 5) ZCo (10) was sequentially epitaxially grown on the MgO substrate.
  • the ferromagnetic single tunnel junction device of Comparative Example 1 was manufactured.
  • FIG. 2 is a diagram showing a TMR curve at room temperature at a low bias voltage of the ferromagnetic double tunnel junction device 1 of Example 1.
  • the thickness of Fe as the second ferromagnetic layer 5 is 1.5 nm.
  • the bias voltage is 5mV when the upper electrode side is positive.
  • the resistance changes greatly at a low magnetic field, a large TMR of 110% is obtained at room temperature, and the TMR is larger than that of the ferromagnetic single tunnel junction device of Comparative Example 1.
  • FIG. 3 is a diagram showing a TMR curve at room temperature at a low bias voltage of the ferromagnetic single tunnel junction device of Comparative Example 1.
  • the horizontal and vertical axes and the bias voltage in the figure are the same as in Figure 2.
  • the TMR was 88%.
  • FIG. 4 is a diagram showing the bias voltage dependence of the normalized TMR of the ferromagnetic double tunnel junction device 1 of Example 1 and the ferromagnetic single tunnel junction device of Comparative Example 1.
  • the horizontal axis shows the bias voltage (V) with the upper electrode as the positive side
  • the vertical axis is the normalized TMR.
  • the ferromagnetic double tunnel junction element 1 indicated by the black circle ( ⁇ ) is more positive than the ferromagnetic single tunnel junction element indicated by the white circle ( ⁇ ) on the positive bias side. It can be seen that the decrease in is small.
  • both bias voltage (V) dependencies are almost the same.
  • FIG. 5 is a cross-sectional view schematically showing a ferromagnetic double tunnel junction device according to the second configuration of the present invention.
  • the ferromagnetic double tunnel junction device 10 of the present invention includes a first ferromagnetic layer 13, a first insulating layer 14 serving as a tunnel electron noria, and a first ferromagnetic layer 13 on a substrate 12.
  • the second ferromagnetic layer 15, the second insulating layer 16 serving as a tunnel electron noria, the third ferromagnetic layer 17, and the like are sequentially stacked. In this case, the thickness of the second ferromagnetic layer 15 is reduced to form a quantum level therein.
  • At least the first and second insulating layers 14, 16 and the second ferromagnetic layer 15 inserted between the first and second insulating layers 14, 16 are crystals having the same crystal plane. .
  • FIG. 6 is a cross-sectional view schematically showing Modification 20 of the ferromagnetic double tunnel junction device of the present invention.
  • the ferromagnetic double tunnel junction device 20 of this modification is different from the ferromagnetic double tunnel junction device 10 shown in FIG.
  • the ferromagnetic layer 15 is replaced with a ferromagnetic layer 18 having an amorphous alloy force. Since the second ferromagnetic layer is the same as the ferromagnetic double tunnel junction device 10 except that the second ferromagnetic layer is a ferromagnetic layer 18 made of an amorphous alloy, the description thereof will be omitted.
  • the thickness of the second ferromagnetic layers 15 and 18 is reduced to form quantum levels therein.
  • At least the first and second insulating layers 14 and 16 and the second ferromagnetic layer 15 inserted between the first and second insulating layers 14 and 16 have the same crystal plane.
  • the force that is crystalline or the second ferromagnetic layer 18 is an amorphous alloy.
  • the second ferromagnetic layer 18 having the amorphous alloy force may be inserted between the first and second insulating layers as a crystal phase having the same crystal plane.
  • the ferromagnetic double tunnel junction devices 10 and 20 of the present invention operate in the same manner, the ferromagnetic double tunnel junction device 10 will be described except for different portions.
  • the other ferromagnetic layers 13 and 17 may be formed of a crystal layer having the same crystal plane as the first and second insulating layers 14 and 16 and the second ferromagnetic layer 15.
  • the ferromagnetic double tunnel junction device 10 of the present invention can be formed by epitaxial growth on the substrate 12 having the same crystal plane as the layers 12 to 17 on the substrate.
  • FIG. 7 schematically shows the operation of the ferromagnetic double tunnel junction device 10 of the present invention.
  • FIGS. 7 (A) to (C) are band diagrams, and FIG. 7 (D) is obtained. It is a figure which shows JV characteristic.
  • Figures 7 (A) to (C) are band diagrams when the bias voltage is increased from 0 when the upper part of the element, that is, the third ferromagnetic layer 17 is set to the positive side, and the bias at that time
  • the current density with respect to voltage (JV) is shown as a, b, and c in Fig. 7 (D).
  • the third ferromagnetic layer 17 (hereinafter referred to as the ferromagnetic layer 13, the insulating layer 14, the ferromagnetic layer 15, the insulating layer 16, and the ferromagnetic layer 17 as appropriate)
  • the central second ferromagnetic layer 15 is thin, the energy level is quantized.
  • a bias voltage is applied to the ferromagnetic double tunnel junction device 10 and the energy becomes the same as the quantum level, electrons easily tunnel, and the tunnel conductance or tunnel current oscillates as shown in FIG. This is the resonant tunneling effect.
  • FIG. 8 is a diagram schematically showing the bias voltage dependence of the transmission probability of the tunnel current in the ferromagnetic double tunnel junction device 10 of the present invention.
  • the horizontal axis is the bias voltage
  • the vertical axis is the transmission probability at the tunnel current, that is, the tunnel probability.
  • FIGS. 9 (A) and 9 (B) are diagrams for explaining parallelism and antiparallelity in the magnetization direction of the ferromagnetic double tunnel junction device 10 of the present invention.
  • FIG. It is a figure which shows the bias voltage dependence of the tunnel transmittance of A) and (B).
  • FIG. 9 (A) when the magnetic fields indicated by the upward arrows ( ⁇ ) are parallel to each other, the magnetization of the first and third ferromagnetic layers 13, 17 and the second ferromagnetic The magnetization of layer 15 is in the same direction.
  • antiparallel means that the direction ( ⁇ ) of the magnetic layer in the second ferromagnetic layer 15 is the first and third as shown by the downward arrow in FIG.
  • the quantum level depending on the spin is formed by making the second ferromagnetic layer 15 thin.
  • the spin-dependent resonant tunneling effect occurs when the magnetic layers of the ferromagnetic layers 13 and 17 and the magnetic layer of the second ferromagnetic layer 15 at the center are parallel to each other and antiparallel. For this reason, the dependence of the resonant tunneling effect on the noise voltage shifts depending on the direction of the magnetic field of the second ferromagnetic layer 15 as shown in FIG.
  • the film thickness is more uniform, the surface roughness (roughness) is smaller, the magnetic ultrathin film Since a quantum well that is a spin-dependent quantum level can be formed, a spin-dependent resonant tunneling effect occurs.
  • a spin-dependent resonant tunneling effect was first discovered in the world by the inventors of the present invention.
  • the ferromagnetic layers 15 and 18 are preferably flat layers in the atomic layer order.
  • the second ferromagnetic layers 15 and 18 are preferably layered continuous films.
  • the second ferromagnetic layer 18 is made of an amorphous alloy like the ferromagnetic double tunnel junction element 20, the film thickness is more uniform and the roughness is smaller! Can be produced.
  • FIG. 11 is a partial cross-sectional view schematically showing the structure of still another modification 25 in the ferromagnetic double tunnel junction device of the present invention.
  • the first insulating layer 14 on the first insulating layer 14, island-shaped second ferromagnetic layers 15A, 15B, 15C and second insulating layers 16A, 16C formed on these ferromagnetic layers are formed. 16B and 16C are formed.
  • the second insulating layer 16D is directly formed on the surface of the first insulating layer 4 where the second ferromagnetic layers 15A, 15B, 15C are not formed.
  • a third ferromagnetic layer 17 is formed on the second insulating layer.
  • the second ferromagnetic layer 15 and the second insulating layer 16 that are formed in an island shape have atomic atoms. If the layers are flat on the order of layers and the crystal orientation is maintained, each operates as a ferromagnetic double tunnel junction element 26.
  • the region where the island-shaped portion is not formed includes the first ferromagnetic layer 13, the insulating layer composed of the first and second insulating layers 14, 16D, the third ferromagnetic layer 17, and the cover.
  • the second ferromagnetic layer 15 formed in an island shape may be formed of an amorphous alloy layer.
  • (100) plane MgO is used as the substrate, and (100) plane Fe is used as the first to third ferromagnetic layers 13, 15, and 17.
  • (100) plane MgO can be used as the first and second insulating layers 14 and 15, respectively.
  • the ferromagnetic double tunnel junction elements 10 and 25 are formed on a MgO substrate 12 having a (100) plane as a main surface by using, for example, molecular beam epitaxy (MBE) or sputtering in an ultrahigh vacuum.
  • MBE molecular beam epitaxy
  • the magnetic layer 13, the insulating layer 14, the ferromagnetic layer 15, the insulating layer 16, and the ferromagnetic layer 17 can be manufactured by epitaxial growth in this order.
  • a notch layer or a so-called seed layer having the same material force as the substrate may be inserted between the substrate 12 and the first ferromagnetic layer 13.
  • an electrode layer may be formed on the surface of the third ferromagnetic layer 17 which is the uppermost layer.
  • the ferromagnetic double tunnel junction element 20 in which the second ferromagnetic layer 15 has an amorphous alloy layer force it can be manufactured in the same manner as described above except for the formation of the second ferromagnetic layer 15. .
  • the thickness of the second ferromagnetic layer 15 inserted between the two tunnel insulating layers 14 and 16 is appropriately controlled, The epitaxial growth can be performed while maintaining the crystal orientation.
  • the thickness of the ferromagnetic layer 18 made of the second amorphous alloy cover may be appropriately controlled.
  • the second ferromagnetic layers 15 and 18 are formed as layered continuous films or islands, so that spin-dependent tunneling and spin-dependent resonant tunneling are effective. Can get to.
  • the ferromagnetic double tunnel junction devices 10, 20, and 25 of the present invention it is possible to suppress a decrease in TMR due to a large TMR exceeding 100% and a bias voltage. Therefore, for example, by using it for MRAM A larger signal voltage can be obtained.
  • FIG. 12 is a schematic diagram for explaining the operation of the three-terminal element using the ferromagnetic double tunnel junction device according to the third embodiment of the present invention.
  • the first and third ferromagnetic layers 13 and 17 are provided with electrodes 31 and 32 which are main electrodes, respectively.
  • the second ferromagnetic layer 15 is provided with an electrode 33 serving as a control electrode.
  • One main electrode 31 is connected to the negative electrode of a DC power supply 35, and the positive electrode is connected to the other main electrode 32 via an ammeter.
  • the control electrode 33 is connected to the negative electrode of the control DC power supply 36, and the positive electrode thereof is connected to the positive electrode of the DC power supply 35.
  • the three-terminal device 30 using the ferromagnetic double tunnel junction device configured as described above has the following. Controlled by a control DC power supply 36 applied to 33. In this case, the spin-dependent resonant tunneling effect can be changed by controlling the voltage applied to the second ferromagnetic layer 15. Therefore, according to the three-terminal element 30 using the ferromagnetic double tunnel junction element of the present invention, the tunnel conductance between the main electrodes 31 and 32 can be controlled by the voltage. Therefore, the tunnel conductance vibration between the main electrodes 31 and 32 can be changed by the voltage applied to the control electrode 33.
  • the magnetizations of the first and third ferromagnetic layers 13 and 17 at both ends of the element and the second ferromagnetic layer 15 When the magnetization and are parallel and antiparallel to each other, the tunnel probabilities are different. For this reason, the bias voltage dependence of the resonant tunneling effect can be shifted by the direction of the magnetic field of the second ferromagnetic layer 15.
  • the second ferromagnetic layer 15 may be a ferromagnetic layer 18 made of an amorphous alloy. Further, the second ferromagnetic layers 15 and 18 may be layered or island-shaped.
  • the conductor A three-terminal element that can control the voltage with voltage can be obtained. If this three-terminal element is used in place of the conventional MRAM MTJ element, a large TMR can be obtained. By using the resonant tunneling effect, a large voltage flows only when a voltage is applied to the MTJ element, so cell selection becomes possible. At the same time, cells can be selected, so that MRAM memory cells that do not require MOS transistors can be configured. Furthermore, in addition to MRAM memory cells, it can also be used for, for example, three-terminal elements for logic circuits.
  • MRAM nonvolatile random access magnetic memory
  • FIGS. 13A and 13B are a schematic perspective view of an MRAM using a ferromagnetic double tunnel junction device and a circuit diagram for explaining the operation.
  • the MRAM 40 has a configuration in which the ferromagnetic double tunnel junction elements 10 are arranged in a matrix at each position where the bit line 41 in the X direction intersects with the bit line 42 in the Y direction.
  • the first and third ferromagnetic layers 13 and 17 of the ferromagnetic double tunnel junction device 1 are provided with electrodes 10A and 10B, which are respectively connected to the bit line 42 in the Y direction and the bit line 41 in the X direction. ing.
  • writing can be performed by applying a current directly to each ferromagnetic double tunnel junction element 10 constituting the matrix to perform spin inversion.
  • the magnetic field of the second ferromagnetic layer 15 is controlled to be parallel or antiparallel to the magnetic fields of the first and third ferromagnetic layers 13 and 17 by “: T , "0" recording, that is, writing is possible.
  • reading is performed using the TMR effect.
  • the TMR measurement should be performed at a current different from the current at the time of writing so that the magnetization reversal of the second magnetic layer 15 does not occur. Therefore, in the MRAM 40 of the present embodiment, it is possible to define information of “1” and “0” depending on whether the magnetic field of the second magnetic layer 15 is antiparallel to the parallel force, and the magnetic field of the second magnetic layer 15 Even if it is turned off, the memory that is held can also be made into a non-volatile memory, which makes it possible to obtain a large TMR with the MRAM 40 of the present invention. At the same time, it is possible to configure a new MRAM cell that eliminates the need for MOS transistors connected to the MTJ element required by conventional MRAM!
  • MRAM magnetic memory
  • FIGS. 14A and 14B are a schematic perspective view of an MRAM using a three-terminal element by a ferromagnetic double tunnel junction element and a circuit diagram for explaining the operation.
  • the MRAM 50 has a configuration in which a three-terminal element 30 using a ferromagnetic double tunnel junction element is arranged in a matrix at each position where the word line 52 and the bit line 51 intersect. Since the three-terminal element 30 has a switching action by controlling current and voltage, a MOS transistor connected to the MTJ element is not required for the conventional MRAM.
  • the magnetic field of the second magnetic layer 15 constituting each three-terminal element 30 is changed to flow through a separately provided wiring to apply a magnetic field to the first and third ferromagnetic layers 13. , 17 can be controlled to be parallel or anti-parallel to each other to record “1” and “0”.
  • reading is performed using the TMR effect.
  • the MRAM 50 of the present embodiment it is possible to define information of “1", “0” depending on whether the magnetization of the second magnetic layer 15 is parallel or antiparallel, and the magnetic field of the second magnetic layer 15 Since it is retained even if it is turned off, it can be made into MRAM50 of nonvolatile memory.
  • the tri-terminal element 30 using a ferromagnetic double tunnel junction element has a large TMR exceeding 100%, and can suppress a decrease in TMR due to a bias voltage. It is. Therefore, it is possible to obtain a larger signal voltage than the conventional MTJ element. By using the resonant tunneling effect, a large voltage flows only when a voltage is applied to the MTJ element, so cell selection becomes possible. At the same time, it is possible to configure a memory cell that does not use a MOS transistor, which is necessary for conventional MRAM. Magnetic devices such as the three-terminal element 30 using the ferromagnetic double tunnel junction element of the present invention having the above-described configuration and the nonvolatile random access magnetic memories 40 and 50 using the same can be manufactured as follows. .
  • a second insulating layer 16 serving as an electron noria and a third ferromagnetic layer 17 are sequentially deposited by an epitaxial growth method such as the MBE method.
  • an MgO substrate or a substrate obtained by depositing MgO on a Si substrate coated with an insulating layer can be used.
  • Second strong magnet with amorphous alloy power The conductive layer 18 may be inserted between the first and second insulating layers 14 and 16 having a crystal phase having the same crystal plane.
  • the magnetic ultrathin film that becomes the amorphous alloy layer can be formed by a sputtering method in an ultrahigh vacuum.
  • An electrode layer may be formed on the third ferromagnetic layer 17. Then, an insulating film having a predetermined thickness is deposited by sputtering or CVD.
  • the first and third ferromagnetic layers 13 and 17 serving as the main electrode and the third ferromagnetic layer 17 serving as the control electrode are opened in areas where electrodes are to be formed. Etching is performed to expose regions where the electrodes 31, 32, 33 are formed.
  • the three-terminal element 30 using the ferromagnetic double tunnel junction element can be manufactured.
  • the ferromagnetic double tunnel junction element 30 manufactured in the above process is further covered with an insulating film, and the ferromagnetic double tunnel junction element 30 After opening the window only at the portion to be wired, the bit lines 41, 42, 51 and the word line 52 may be wired.
  • the MRAM peripheral circuit is formed of Si MOS transistors
  • the Si peripheral circuit may be formed first, and then the memory cells of the MRAM 40 and 50 may be formed.
  • an ordinary thin film forming method such as an evaporation method, a laser ablation method, or an MBE method can be used.
  • Light exposure, EB exposure, or the like can be used for a mask process for forming a predetermined-shaped electrode or integrated circuit wiring.
  • MBE molecular beam epitaxy
  • the first 10 nm MgO layer is a seed layer, and the thickness of the Fe layer, which is the second intermediate ferromagnetic layer 15, is varied from 1 to 2.5 nm, so it is expressed as Fe (t).
  • This second ferromagnetic layer 1 The deposition rate of 5 was about 0.02 AZ seconds.
  • the uppermost 5 nm thick Ta is an electrode layer.
  • reflection high-energy electron diffraction (RHEED) diffraction pattern measurement is performed.
  • the above epitaxially grown film is formed by photolithography and Ar ion milling 1
  • Example 2 except that each layer of MgO (10) ZFe (50) ZMgO (2.5) / Fe (l.5) / Co (10) / Ta (5) was epitaxially grown in order on the MgO substrate.
  • the ferromagnetic single tunnel junction element of Comparative Example 2 was manufactured.
  • 15A and 15B show the TMR curves at room temperature at a low bias voltage of the ferromagnetic double tunnel junction device 10 of Example 2 and the ferromagnetic single tunnel junction device of Comparative Example 2, respectively. It is a figure which shows a line. In the figure, the horizontal axis represents the external magnetic field (Oersted, Oe), and the vertical axis represents the resistance X area / zm 2 ). In the case of Example 2, the thickness t of Fe as the second ferromagnetic layer 15 is 1.5 nm. The bias voltage is 5mV when the upper electrode side is positive. As can be seen from FIG. 15, the TMRs of Example 2 and Comparative Example 2 are 110% and 128%, respectively, exceeding 100%, indicating that they are growing epitaxially.
  • FIG. 16 is a diagram showing the bias voltage dependence of normalized TMR in the ferromagnetic double tunnel junction device 10 of Example 2 and the ferromagnetic single tunnel junction device of Comparative Example 2.
  • the horizontal axis shows the bias voltage (V) with the upper electrode on the positive side
  • the vertical axis shows the normalized TMR.
  • the direction of the ferromagnetic double tunnel junction device 10 indicated by the black circle ( ⁇ ) is lower on the positive bias side than the ferromagnetic single tunnel junction device indicated by the white circle ( ⁇ ). I understand that it is small.
  • the negative bias side both The bias voltage (V) dependence is almost the same. This is because the interface state of one junction in the double tunnel junction of Example 2 is poor, and essentially the same bias voltage dependence as that on the positive bias side can be obtained on the negative bias side.
  • FIGS. 17A to 17E are diagrams showing the bias voltage dependence of the differential tunnel conductance of Example 2 and Comparative Example 2, respectively.
  • the horizontal axis represents the bias voltage (V) to the upper electrode and the positive side
  • the vertical axis shows the differential tunneling conductance (X 10- 3 ⁇ _1).
  • the thickness of the Fe layer which is the second ferromagnetic layer 15 is 1. Onm, 1.2 nm, 1.3 nm, 1.5 nm and 2 nm, respectively.
  • the magnetic field of the second ferromagnetic layer 15 is parallel to the magnetization of the first and third ferromagnetic layers 15 and 17.
  • the tunnel conductance oscillates with respect to the bias voltage.
  • Figure 17 (F) also shows the results for a ferromagnetic single tunnel junction device for comparison. In this comparative example 2, no vibration was observed.
  • Figure 18 shows the tunnels of Example 2 and Comparative Example 2.
  • FIG. 19 is a diagram showing the bias voltage dependence of the differential tunnel conductance in the ferromagnetic double tunnel junction device 10 in which the thickness t of the second ferromagnetic layer 5 of Example 2 is 1.2 nm.
  • the horizontal axis shows the bias voltage (V) with the upper electrode on the positive side
  • the right and left vertical axes show the case where the magnetic layers of the ferromagnetic layers 13, 15 and 17 are parallel to each other and shows ⁇ - differential tunnel conductance (X 10- 3 in the case of parallel.
  • the position of the peak indicated by the upward arrow of the differential tunneling conductance of both persons ( ⁇ ) is located in slight This indicates that a quantum level depending on spin is formed in the second thin ferromagnetic layer 15 at the center.
  • Example 2 and Comparative Example 2 were observed with a transmission electron microscope.
  • the second ferromagnetic layer 15 was observed both when a continuous thin film was formed and when it was island-shaped.
  • FIG. 20 is a transmission electron microscope image when the second ferromagnetic layer 15 has an island shape in the growth film cross section of Example 2.
  • FIG. 20 As shown in the figure, a second ferromagnetic layer 15 that is an island-like crystal is formed on the first insulating layer 14, and the size of the island is about 20 to 60 nm.
  • Example 3
  • MgO (10) was formed on the MgO substrate 12 by molecular beam epitaxy.
  • epitaxial growth is performed in the order of thickness in Katsuko and unit is nm
  • An epitaxially grown film to be the ferromagnetic double tunnel junction element 10 of Example 3 was fabricated. Since the thickness of the Fe layer, which is the second ferromagnetic layer 15, was changed to 1, 1, 2, 1.5 nm, it is expressed as Fe (t).
  • Back pressure of the molecular beam Epitakisharu growth apparatus was 5 X 10- 8 Pa. After the first ferromagnetic layer 13 is formed, heat treatment is performed at 300 ° C. for 60 minutes, and the second and third ferromagnetic layers After the film formation, heat treatment was performed at 200 ° C for 60 minutes.
  • FIG. 21 shows a reflection type high-energy electron diffraction image observed in situ during the film formation of Example 3, and FIG. 22 is a diagram schematically showing the crystal arrangement of the formed Fe and MgO. .
  • Figures 21 (A) to (F) are electron diffraction images of each layer force in the order of deposition of the substrate, and (A) shows the [110] direction after heat treatment of Fe, which is the first ferromagnetic layer 13, (B) shows the [100] direction after deposition of MgO, which is the first insulating layer 14, (C) shows just after deposition of Fe, which is the second ferromagnetic layer 15, and (D) shows the first After heat treatment of Fe, which is the second ferromagnetic layer 15, (E) is after deposition of MgO, which is the second insulating layer 16, and (F) is after heat treatment of Fe, which is the third ferromagnetic layer 17. The electron diffraction images are shown respectively.
  • FIG. 21C shows the Fe of the second ferromagnetic layer 15 .
  • FIG. 21 (D) shows that after the heat treatment of Fe of the second ferromagnetic layer 15, streak-like electron diffraction was obtained, the lattice plane directions were uniform, and so-called epitaxial growth was achieved.
  • FIG. 22 shows the crystal arrangement of Fe, Mg, and O of the epitaxially grown film thus formed.
  • the lattice constant of Fe is 4.05A and the lattice constant of MgO is 4.21A.
  • the above epitaxially grown film is formed using electron beam lithography and Ar ion milling.
  • the ferromagnetic double tunnel junction device 10 of Example 3 was fabricated by microfabrication to a size of X 10 m 2 .
  • a ferromagnetic double tunnel junction device of Comparative Example 3 was fabricated in the same manner as Example 3 except that no heat treatment was performed after the first to third ferromagnetic layers were formed.
  • FIG. 23 is a view showing a TMR curve at room temperature at a low bias voltage of the ferromagnetic double tunnel junction device 10 of Example 3.
  • the horizontal axis represents the external magnetic field (Oersted, Oe), and the vertical axis represents the resistance & ⁇ ).
  • the thickness t of Fe as the second ferromagnetic layer 15 is 1.5 nm.
  • the bias voltage is 5mV when the upper electrode side is positive. in this case,
  • the second ferromagnetic layer 15 of the ferromagnetic double tunnel junction element 10 has an island shape, and the magnetic field of the second ferromagnetic layer 15 is in a random direction.
  • the TMR of Example 3 was 110% at room temperature.
  • the TMR at 4.5K was 128%. At any temperature, the TMR exceeds 100%, indicating that each layer of the ferromagnetic double tunnel junction device 10 is growing epitaxially. As for the bias voltage dependence of the normalized TMR of Example 3, the decrease in TMR is smaller than that of the ferromagnetic single tunnel junction element of Comparative Example 2, as is the case with the ferromagnetic double tunnel junction element 10 of Example 2. It has been found.
  • FIG. 24 is a diagram showing the film thickness dependence of the second ferromagnetic layer 15 in the bias voltage change of the differential tunnel conductance in the ferromagnetic double tunnel junction device 10 of the third embodiment.
  • the horizontal axis indicates the bias voltage (V) with the upper electrode as the positive side
  • the vertical axis indicates the minute tunnel conductance (dlZdV) (arbitrary scale).
  • the measurement temperature is 4.5K.
  • the thicknesses of the Fe layers of the second ferromagnetic layer 15 are 1. Onm, 1.2 nm, 1.3 nm, and 1.5 nm, respectively.
  • the magnetization is parallel to the magnetization of the first and third ferromagnetic layers 15 and 17.
  • the tunnel conductance oscillates with respect to the bias voltage.
  • the observed vibration is that a quantum well is formed in the second ferromagnetic layer 15 composed of Fe sandwiched between MgO noria, which is the first and second insulating layers 14, 16, and its energy level is It is thought that it became discontinuous. That is, this vibration is due to the resonant tunneling effect. For this reason, as the thickness t of the second ferromagnetic layer 15 decreases, the interval between the quantum levels increases, so that the position of the peak of vibration shifts to a larger voltage side as the thickness t decreases. .
  • FIG. 25 is a diagram showing the temperature dependence of the bias voltage change of the differential tunnel conductance in the ferromagnetic double tunnel junction device 10 of Example 3.
  • FIG. 25 (A) shows the second ferromagnetic layer. The case where the thickness is 1.2 nm and (B) is 1.5 nm is shown.
  • the horizontal axis shows the bias voltage (V) with the upper electrode on the positive side
  • the vertical axis shows the differential tunnel conductance (dlZdV) (arbitrary scale).
  • the measurement temperature is 4.5K, 100K, 200K, 300K.
  • the magnetic field of the second ferromagnetic layer 15 is parallel to the magnetization of the first and third ferromagnetic layers 15 and 17. As can be seen in Fig. 25, the vibration force in differential tunnel conductance can be observed even at room temperature. I was divided.
  • the ⁇ 1 band forms a quantum level and thus
  • FIG. 26 shows a band diagram of the ferromagnetic double tunnel junction device of Example 3.
  • Figures 26 (A) and (B) correspond to Figures 7 (B) and 7 (C), respectively, and the thin second ferromagnetic layer 15 has a quantum band of ⁇ 1 due to upward spin. It shows that a level is formed.
  • a bias voltage is applied to the ferromagnetic double tunnel junction device 10 and the energy becomes the same as that of the quantum level, electrons easily tunnel and the tunnel conductance oscillates due to the resonant tunneling effect.
  • FIG. 27 is a band diagram of the second ferromagnetic layer, where (A) shows the case of upward spin electrons, and (B) shows the case of downward spin electrons (down spin).
  • the horizontal axis represents the wave number, and the vertical axis represents the energy.
  • a ⁇ 1 band is formed in the case of upward spin electrons.
  • a large TMR can be obtained by using the ferromagnetic double tunnel junction devices 10 and 25 of the present invention.
  • the thickness t of the second ferromagnetic layer 15 was appropriately controlled, a spin-dependent quantum well could be formed, and oscillation of the tunnel conductance due to the bias voltage could be observed.
  • the second ferromagnetic layer 15 is a continuous film that does not have to be an island shape if it is epitaxially grown, a clearer oscillation of tunnel conductance could be observed.
  • Such a continuous film is possible by changing the second ferromagnetic layer 15.
  • a continuous film can be produced by using an amorphous magnetic layer such as Co 2 FeB.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

A ferromagnetic dual tunnel junction element (10) which can provide at least 100% of TMR effect at room temperature and is small in TMR lowering due to a bias voltage, and which comprises, laminated sequentially on a substrate (2), a first ferromagnetic layer (13), a first insulation layer (14) serving as a tunnel electron barrier, a second ferromagnetic layer (15), a second insulation layer (16) serving as a tunnel electron barrier, and a third ferromagnetic layer (17), wherein at least the first and second insulation layers (14, 16) and the second ferromagnetic layer (15) inserted between the first and second insulation layers (14, 16) are crystals having the same crystal plane, and the thickness of the second ferromagnetic layer (15) is set such that a plurality of spin-dependent quantum levels are formed in the second ferromagnetic layer (15). A differential tunnel conductance vibrates due to a resonance tunnel effect caused by a change in bias voltage; and a magnetic device using the junction element.

Description

明 細 書  Specification
強磁性二重トンネル接合素子及び磁気デバイス  Ferromagnetic double tunnel junction element and magnetic device
技術分野  Technical field
[0001] 本発明は、室温で 100%以上のトンネル磁気抵抗 (TMR)効果が得られる強磁性 二重トンネル接合素子とこの強磁性二重トンネル接合を有する磁気デバイスに関す る。  [0001] The present invention relates to a ferromagnetic double tunnel junction element capable of obtaining a tunnel magnetoresistance (TMR) effect of 100% or more at room temperature, and a magnetic device having the ferromagnetic double tunnel junction.
背景技術  Background art
[0002] 近年、強磁性層と非磁性金属層の多層膜からなる巨大磁気抵抗 (GMR)効果素子 、及び強磁性層と絶縁体層と強磁性層カゝらなる強磁性トンネル接合 (MTJ)素子が、 新し 、磁界センサーや不揮発性ランダムアクセス磁気メモリ(MRAM)素子として注 目されている。  In recent years, a giant magnetoresistive (GMR) effect element composed of a multilayer film of a ferromagnetic layer and a nonmagnetic metal layer, and a ferromagnetic tunnel junction (MTJ) composed of a ferromagnetic layer, an insulator layer, and a ferromagnetic layer Devices are attracting attention as magnetic field sensors and non-volatile random access magnetic memory (MRAM) devices.
[0003] MTJ素子では、外部磁界によって 2つの強磁性層の磁ィ匕を互いに平行あるいは反 平行に制御することにより、膜面垂直方向のトンネル電流の大きさが互いに異なる、 V、わゆるトンネル磁気抵抗 (TMR)効果が室温で得られる(非特許文献 1参照)。この TMRは、用いる強磁性体と絶縁体との界面におけるスピン分極率 Pに依存し、二つ の強磁性体のスピン分極率をそれぞれ P , P  [0003] In MTJ elements, the magnitudes of tunnel currents in the direction perpendicular to the film surface are different from each other by controlling the magnetic fields of two ferromagnetic layers in parallel or antiparallel to each other by an external magnetic field. Magnetoresistive (TMR) effect can be obtained at room temperature (see Non-Patent Document 1). This TMR depends on the spin polarizability P at the interface between the ferromagnet and the insulator used, and the spin polarizabilities of the two ferromagnets are P and P, respectively.
1 2とすると、一般に下記(1)式で与えら れることが知られている。  Assuming 1 2 is generally given by the following equation (1).
TMR = 2P P / (1 -P P ) (1)  TMR = 2P P / (1 -P P) (1)
1 2 1 2  1 2 1 2
ここで、強磁性体のスピン分極率 Pは、 0< P≤1の値をとる。  Here, the spin polarizability P of the ferromagnet takes a value of 0 <P≤1.
[0004] 最近、非特許文献 2及び 3により、 MTJ素子において、 (100)面を有する Fe、 MgO 、 Fe (以下、 FeZMgOZFeと表記する)を順に積層したェピタキシャル構造におい ては、理論計算により大きな TMRが得られることが報告された。  [0004] Recently, according to Non-Patent Documents 2 and 3, in an MTJ element, an epitaxial structure in which Fe, MgO, and Fe (hereinafter referred to as FeZMgOZFe) having a (100) plane are sequentially stacked is calculated by theoretical calculation. It was reported that a large TMR could be obtained.
[0005] 非特許文献 4では、室温における TMRが 88%と大きくできる FeZMgOZFe構造 の MTJ素子が報告された。さらに、 TMR値が室温で 180%に改良することができ、ト ンネルバリアの厚さを変化させると、 TMRが振動することが非特許文献 5で報告され た。  [0005] Non-Patent Document 4 reported an MTJ element with a FeZMgOZFe structure that can increase the TMR at room temperature to 88%. Furthermore, it was reported in Non-Patent Document 5 that the TMR value can be improved to 180% at room temperature, and that the TMR vibrates when the tunnel barrier thickness is changed.
[0006] 非特許文献 6及び 7では、 MTJ素子を CoFeZMgOZCoFeまたは CoFeBZMg OZCoFeB構造とすることにより、室温における TMRとして 220〜230%が得られた ことが報告された。上記非特許文献 4〜7で報告された TMR値は、従来の酸化膜を[0006] In Non-Patent Documents 6 and 7, the MTJ element is replaced with CoFeZMgOZCoFe or CoFeBZMg. It was reported that 220-230% TMR at room temperature was obtained by using the OZCoFeB structure. The TMR values reported in Non-Patent Documents 4 to 7 above are the values of conventional oxide films.
AlOxとした MTJ素子の TMRである 75 %を凌 、だ値である。 The value exceeds the 75% TMR of MTJ elements made of AlOx.
[0007] 本発明者等による非特許文献 8には、 100%を超える大きな TMRが得られ、また、 バイアス電圧による TMRの低下を小さく抑えることが可能な強磁性二重トンネル接 合素子が報告されている。 [0007] Non-Patent Document 8 by the present inventors reports a ferromagnetic double tunnel junction element capable of obtaining a large TMR exceeding 100% and minimizing a decrease in TMR due to a bias voltage. Has been.
[0008] 非特千文献 1 : T. Miyazaki and N. Tezuka, bpin polarized tunneling in ferromagnet/ insulator/ ferromagnet junctions", 1995, J. Magn. Magn. Mater, L39, p.1231 非特許文献 2 : W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. MacLaren, 2[0008] Non-patent literature 1: T. Miyazaki and N. Tezuka, bpin polarized tunneling in ferromagnet / insulator / ferromagnet junctions ", 1995, J. Magn. Magn. Mater, L39, p.1231 Non-patent literature 2: WH Butler , X.-G.Zhang, TC Schulthess, and JM MacLaren, 2
001, Phys. Rev. B 63, 054416 001, Phys. Rev. B 63, 054416
非特許文献 3 : J. Mathon and A. Umerski, 2001, Phys. Rev. B 63, R220403 非特許文献 4 : S. Yuasa, A. Fukushima, T. Nagahama, K. Ando, and Y. Suzuki, 2003 Non-Patent Document 3: J. Mathon and A. Umerski, 2001, Phys. Rev. B 63, R220403 Non-Patent Document 4: S. Yuasa, A. Fukushima, T. Nagahama, K. Ando, and Y. Suzuki, 2003
, Jap. J. Appl. Phys. 43, L588 , Jap. J. Appl. Phys. 43, L588
非特許文献 5 : S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, 2004 , Nature Materials, Vol.3, p.868  Non-Patent Document 5: S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, 2004, Nature Materials, Vol. 3, p. 868
非特許文献 6 : S. S. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Sama nt, and S.-H. Yang, 2004, Nature Materials, Vol.3, p.868  Non-Patent Document 6: S. S. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S.-H. Yang, 2004, Nature Materials, Vol.3, p.868
非特許文献 7 : D. D. Djayaprawira et al, 2005, Appl. Phys. Lett., Vol.86, p.092502 非特許文献 8 : T. Nozaki, A. Hirohata, N. Tezuka, S. Sugimoto, and K. Inomata, pub lished online in Appl. Phys. Lett, on 15 February, 2005, Vol.86, p.082501 発明の開示  Non-Patent Document 7: DD Djayaprawira et al, 2005, Appl. Phys. Lett., Vol.86, p.092502 Non-Patent Document 8: T. Nozaki, A. Hirohata, N. Tezuka, S. Sugimoto, and K. Inomata, published online in Appl. Phys. Lett, on 15 February, 2005, Vol.86, p.082501 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] MTJ素子は現在、ハードディスク用磁気ヘッドに実用化され、さらに不揮発性ラン ダムアクセス磁気メモリ(MRAM)への応用が期待されている。この MRAMでは、 M TJ素子をマトリックス状に配置し、別に設けた配線に電流を流して磁界を印加するこ とで、各 MTJ素子を構成する二つの磁性層を互いに平行又は反平行に制御すること により、 "1" , "0"を記録させる。読み出しは、 TMR効果を利用して行う。しかし、 M RAMでは高密度化のために素子サイズを小さくすると、素子のバラツキに伴うノイズ が増大し、 TMRの値が現状では不足するという問題がある。したがって、より大きな T MRを示す MTJ素子を実現することが課題である。 [0009] MTJ elements are currently put to practical use in magnetic heads for hard disks, and are expected to be applied to nonvolatile random access magnetic memory (MRAM). In this MRAM, MTJ elements are arranged in a matrix, and a magnetic field is applied by passing a current through a separately provided wiring, thereby controlling the two magnetic layers constituting each MTJ element in parallel or antiparallel to each other. As a result, "1" and "0" are recorded. Reading is performed using the TMR effect. However, in MRAM, if the element size is reduced to increase the density, noise caused by element variations There is a problem that the TMR value is insufficient at present. Therefore, it is a challenge to realize an MTJ element that exhibits a larger TMR.
[0010] MRAMでは読み出す際に、 MTJ素子へ 300mmV程度のバイアス電圧をカ卩える 力 このバイアス電圧によって TMRが大きく低下する。従って、バイアス電圧による T MR低下の小さ ヽ MTJ素子が望ま ヽ。これを解決する方法の一つとして強磁性二 重トンネル接合が知られている。しカゝしながら、従来の強磁性二重トンネル接合の T MRは 50%以下であり、大容量 MRAMに使えるような十分大きな TMRを得ることが できなかった。また、従来の MRAMにおいては、メモリセルとして MTJ素子と MOSト ランジスタとを用いる必要があり、 MTJ素子と MOSトランジスタとを集積するためにェ 程が複雑である。 [0010] When reading from the MRAM, the bias voltage of about 300 mmV can be applied to the MTJ element. This bias voltage greatly reduces the TMR. Therefore, a MTJ element with a low TMR drop due to bias voltage is desirable. One method for solving this problem is a ferromagnetic double tunnel junction. However, the TMR of the conventional ferromagnetic double tunnel junction is less than 50%, and a sufficiently large TMR that can be used for large-capacity MRAM could not be obtained. In addition, in the conventional MRAM, it is necessary to use an MTJ element and a MOS transistor as memory cells, and the process is complicated to integrate the MTJ element and the MOS transistor.
[0011] 本発明は、上記課題に鑑み、室温で 100%以上の TMR効果が得られ、かつ、 TM Rのバイアス電圧による低下が小さ ヽ、強磁性二重トンネル接合素子を提供すること を第 1の目的としている。  [0011] In view of the above problems, the present invention provides a ferromagnetic double tunnel junction device that can obtain a TMR effect of 100% or more at room temperature and that is less susceptible to a decrease in TMR bias voltage. The purpose of 1 is.
[0012] 本発明は、また、室温で 100%以上の TMR効果が得られ、かつ、 TMRのバイアス 電圧による低下が小さぐかつ、トンネルコンダクタンス又はトンネル電流が振動する 、強磁性二重トンネル接合素子を提供することを第 2の目的とし、この強磁性二重トン ネル接合を有する磁気デバイスを提供することを第3の目的としている。 [0012] The present invention also provides a TMR effect of 100% or more at room temperature, a decrease in TMR due to a bias voltage is small, and a tunnel conductance or a tunnel current oscillates. A second object is to provide a magnetic device, and a third object is to provide a magnetic device having this ferromagnetic double tunnel junction.
課題を解決するための手段  Means for solving the problem
[0013] 上記第 1の目的を達成するため、本発明の強磁性二重トンネル接合素子は、第 1の 強磁性層と、トンネル電子のノリアとなる第 1の絶縁層と、第 2の強磁性層と、トンネル 電子のバリアとなる第 2の絶縁層と、第 3の強磁性層と、が基板上に順次積層されて なり、少なくとも第 1及び第 2の絶縁層と、第 1及び第 2の絶縁層の間に挿入される第 2の強磁性層と、が同一の結晶面を有する結晶であることを特徴とする。 In order to achieve the first object, the ferromagnetic double tunnel junction device of the present invention includes a first ferromagnetic layer, a first insulating layer serving as a tunnel electron noria, and a second strong layer. A magnetic layer, a second insulating layer serving as a barrier for tunneling electrons, and a third ferromagnetic layer are sequentially stacked on the substrate, and at least the first and second insulating layers, and the first and second insulating layers are stacked. The second ferromagnetic layer inserted between the two insulating layers is a crystal having the same crystal plane.
上記構成において、好ましくは、第 2の強磁性層は、層状の連続膜である。 好ましくは、第 1及び第 2の絶縁層は MgO力もなり、第 1〜第 3の強磁性層は Feか らなる。この Feの一部を、 Co又は Ni、あるいは、その両方で置換した bcc構造からな るように形成してもよい。また、好ましくは、基板が MgO力もなる。  In the above structure, the second ferromagnetic layer is preferably a layered continuous film. Preferably, the first and second insulating layers have MgO force, and the first to third ferromagnetic layers are made of Fe. A part of this Fe may be formed to have a bcc structure substituted with Co, Ni, or both. Preferably, the substrate also has MgO force.
上記構成によれば、室温にお!、て強磁性一重トンネル接合素子よりも大き ヽ TMR が得られる。また、バイアス電圧による TMRの低下を小さく抑えることができる。した がって、本発明の強磁性二重トンネル接合素子によれば、 MRAMの読み出し時に 大きな信号電圧が得られる。 According to the above configuration, it is larger than the ferromagnetic single tunnel junction device at room temperature! Is obtained. In addition, the decrease in TMR due to the bias voltage can be minimized. Therefore, according to the ferromagnetic double tunnel junction device of the present invention, a large signal voltage can be obtained when reading from the MRAM.
[0014] 本発明者らは鋭意研究を重ねた結果、強磁性二重トンネル接合素子にぉ ヽて、特 に、第 1及び第 2の絶縁層の間に挿入される第 2の強磁層の厚さを薄くし、かつ、積 層膜全体が同じ結晶面をもつようにェピタキシャル成長させる力、または二つの絶縁 層を同じ結晶面をもつ結晶相とし、二つの絶縁層に挟まれた中央の強磁性層をァモ ルファス合金にすれば、膜厚が均一でラフネスの小さい強磁性層が得られ、その結 果スピンに依存した量子準位が形成され、それを介したトンネル磁気抵抗効果が得 られるという知見を得て、本発明を完成するに至った。  As a result of intensive studies, the present inventors have found that the second ferromagnetic layer is inserted between the first and second insulating layers, particularly over the ferromagnetic double tunnel junction device. The thickness of the film and the epitaxial growth force so that the entire stacked film has the same crystal plane, or the two insulating layers have a crystal phase with the same crystal plane, and are sandwiched between the two insulating layers. If the central ferromagnetic layer is made of amorphous alloy, a ferromagnetic layer with a uniform film thickness and low roughness can be obtained. As a result, a quantum level depending on the spin is formed, and the tunnel magnetoresistance through the ferromagnetic layer is formed. Obtaining the knowledge that the effect is obtained, the present invention has been completed.
[0015] 上記第 2の目的を達成するため、本発明の第 2の構成による強磁性二重トンネル接 合素子は、第 1の強磁性層と、トンネル電子のバリアとなる第 1の絶縁層と、第 2の強 磁性層と、トンネル電子のノリアとなる第 2の絶縁層と、第 3の強磁性層と、が基板上 に順次積層されてなり、少なくとも第 1及び第 2の絶縁層と、第 1及び第 2の絶縁層の 間に挿入される第 2の強磁性層と、が同一の結晶面を有する結晶であり、第 2の強磁 性層の厚さを、第 2の強磁性層中にスピンに依存した複数の量子準位が形成される ようにしたことを特徴とする。  In order to achieve the second object described above, the ferromagnetic double tunnel junction device according to the second configuration of the present invention includes a first ferromagnetic layer and a first insulating layer serving as a barrier for tunnel electrons And a second ferromagnetic layer, a second insulating layer serving as a tunnel electron noria, and a third ferromagnetic layer are sequentially stacked on the substrate, and at least the first and second insulating layers are stacked. And the second ferromagnetic layer inserted between the first and second insulating layers are crystals having the same crystal plane, and the thickness of the second ferromagnetic layer is set to the second A feature is that a plurality of quantum levels depending on spin are formed in the ferromagnetic layer.
[0016] 本発明の強磁性二重トンネル接合素子は、第 1の強磁性層と、トンネル電子のバリ ァとなる第 1の絶縁層と、第 2の強磁性層と、トンネル電子のノリアとなる第 2の絶縁層 と、第 3の強磁性層と、が基板上に順次積層されてなり、少なくとも第 1及び第 2の絶 縁層が同一の結晶面を有する結晶であり、第 1及び第 2の絶縁層の間に挿入される 第 2の強磁性層はアモルファス合金であり、第 2の強磁性層の厚さを、第 2の強磁性 層中にスピンに依存した複数の量子準位が形成されるようにしたことを特徴とする。  [0016] The ferromagnetic double tunnel junction device of the present invention includes a first ferromagnetic layer, a first insulating layer serving as a tunnel electron barrier, a second ferromagnetic layer, and a tunnel electron noria. A second insulating layer and a third ferromagnetic layer are sequentially stacked on the substrate, and at least the first and second insulating layers are crystals having the same crystal plane, The second ferromagnetic layer inserted between the second insulating layers is an amorphous alloy, and the thickness of the second ferromagnetic layer is set to a plurality of quantum quasi-quads depending on the spin in the second ferromagnetic layer. It is characterized in that a position is formed.
[0017] 上記構成において、好ましくは、第 2の強磁性層は層状の連続膜である。また、第 2 の強磁性層は島状に配列している。  [0017] In the above configuration, preferably, the second ferromagnetic layer is a layered continuous film. The second ferromagnetic layers are arranged in an island shape.
第 1及び第 2の絶縁層は MgO力 なり、第 1〜第 3の強磁性層は Feからなつていて よい。 Feの一部を、 Co又は Ni、あるいは、その両方で置換した bcc構造力 構成し てもよい。好ましくは、基板は MgOからなり、アモルファス合金は CoFeBまたは CoFe SiBカゝら成る。好ましくは、強磁性二重トンネル接合素子に印加されるバイアス電圧 に対して、トンネルコンダクタンス又はトンネル電流が振動する。 The first and second insulating layers may have MgO force, and the first to third ferromagnetic layers may be made of Fe. A bcc structural force in which a part of Fe is replaced with Co, Ni, or both may be formed. Preferably, the substrate is made of MgO and the amorphous alloy is CoFeB or CoFe Constructed by SiB. Preferably, the tunnel conductance or the tunnel current oscillates with respect to the bias voltage applied to the ferromagnetic double tunnel junction device.
上記構成によれば、バイアス電圧による TMRの低下を小さく抑えることができる。し たがって、本発明の強磁性二重トンネル接合素子によれば、 MRAMの読み出し時 に大きな信号電圧が得られる。また、コンダクタンス又はトンネル電流がバイアス電圧 に対して振動する。従って、本発明の強磁性二重トンネル接合素子を、 MRAMのメ モリセルに用いれば、セルの選択が可能となり、 MOSトランジスタを用いる必要がな くなる。  According to the above configuration, it is possible to suppress a decrease in TMR due to the bias voltage. Therefore, according to the ferromagnetic double tunnel junction device of the present invention, a large signal voltage can be obtained when reading from the MRAM. Also, conductance or tunnel current oscillates with respect to the bias voltage. Therefore, if the ferromagnetic double tunnel junction device of the present invention is used for a memory cell of MRAM, the cell can be selected, and it becomes unnecessary to use a MOS transistor.
[0018] 上記第 3の目的を達成するため、本発明は、第 1の強磁性層と、トンネル電子のバリ ァとなる第 1の絶縁層と、第 2の強磁性層と、トンネル電子のノリアとなる第 2の絶縁層 と、第 3の強磁性層と、順次積層されてなる強磁性二重トンネル接合を用いた三端子 素子であって、第 1の強磁性層及び第 3の強磁性層を主電極とし、第 2の強磁性層を 制御電極とし、少なくとも第 1及び第 2の絶縁層と、第 1及び第 2の絶縁層の間に挿入 される第 2の強磁性層と、が同一の結晶面を有する結晶であり、第 2の強磁性層の厚 さを、第 2の強磁性層中にスピンに依存した複数の量子準位が形成されるようにした ことを特徴とする。  [0018] In order to achieve the third object, the present invention provides a first ferromagnetic layer, a first insulating layer serving as a tunnel electron barrier, a second ferromagnetic layer, and a tunnel electron A three-terminal element using a ferromagnetic double tunnel junction in which a second insulating layer serving as a noria, a third ferromagnetic layer, and a stack are sequentially stacked, and includes a first ferromagnetic layer and a third strong layer. A magnetic layer as a main electrode, a second ferromagnetic layer as a control electrode, at least a first and second insulating layer, and a second ferromagnetic layer inserted between the first and second insulating layers; Are crystals having the same crystal plane, and the thickness of the second ferromagnetic layer is such that a plurality of quantum levels depending on the spin are formed in the second ferromagnetic layer. And
上記構成によれば、コンダクタンスを電圧で制御できる強磁性二重トンネル接合を 有する三端子素子が得られる。この三端子素子を従来の MRAMの MTJ素子の代わ りに用いれば、大きな TMRが得られる。共鳴トンネル効果を利用することで、 MTJ素 子に電圧を印加した場合のみ大きな電圧が流れるのでセル選択が可能となる。それ と同時にセルの選択が可能になるので、 MOSトランジスタを必要としない MRAMの メモリセルを構成できる。さらには、 MRAMなどのメモリ以外に、例えばロジック回路 などにも使用することができる。  According to the above configuration, a three-terminal element having a ferromagnetic double tunnel junction whose conductance can be controlled by voltage can be obtained. If this three-terminal element is used in place of the conventional MRAM MTJ element, a large TMR can be obtained. By using the resonant tunneling effect, a large voltage flows only when a voltage is applied to the MTJ element, enabling cell selection. At the same time, the cell can be selected, so that an MRAM memory cell that does not require a MOS transistor can be configured. Furthermore, in addition to memories such as MRAM, it can also be used for logic circuits, for example.
[0019] 本発明の第 2の構成による不揮発性ランダムアクセス磁気メモリは、第 1の強磁性層 と、トンネル電子のノリアとなる第 1の絶縁層と、第 2の強磁性層と、トンネル電子のバ リアとなる第 2の絶縁層と、第 3の強磁性層と、が順次積層されてなる強磁性二重トン ネル接合を、二つのビット線が交差する各位置にマトリックス状に配設して成り、少な くとも第 1及び第 2の絶縁層と、第 1及び第 2の絶縁層の間に挿入される第 2の強磁性 層と、が同一の結晶面を有する結晶であり、第 2の強磁性層の厚さを第 2の強磁性層 中にスピンに依存した複数の量子準位が形成されるようにしたことを特徴とする。 上記構成によれば、強磁性二重トンネル接合を、従来の MRAMの MTJ素子の代 わりに用いれば、大きな TMRが得られる。共鳴トンネル効果を利用することで、 MTJ 素子に電圧を印加した場合のみ大きな電圧が流れるのでセル選択が可能となる。そ れと同時に、セルの選択が可能になるので、従来の MRAMのメモリセルに用いられ て!、た MOSトランジスタが不要となる。 [0019] The nonvolatile random access magnetic memory according to the second configuration of the present invention includes a first ferromagnetic layer, a first insulating layer serving as a tunnel electron noria, a second ferromagnetic layer, and a tunnel electron. A ferromagnetic double tunnel junction in which the second insulating layer and the third ferromagnetic layer are sequentially stacked is arranged in a matrix at each position where the two bit lines intersect. Second ferromagnetic layer inserted between at least the first and second insulating layers and the first and second insulating layers. And the second ferromagnetic layer is formed with a plurality of spin-dependent quantum levels in the second ferromagnetic layer. Features. According to the above configuration, a large TMR can be obtained by using a ferromagnetic double tunnel junction instead of the conventional MRAM MTJ element. By using the resonant tunneling effect, a large voltage flows only when a voltage is applied to the MTJ element, enabling cell selection. At the same time, cell selection becomes possible, eliminating the need for MOS transistors used in conventional MRAM memory cells.
[0020] 本発明の第 3の構成による不揮発性ランダムアクセス磁気メモリは、第 1の強磁性層 と、トンネル電子のノリアとなる第 1の絶縁層と、第 2の強磁性層と、トンネル電子のバ リアとなる第 2の絶縁層と、第 3の強磁性層と、が順次積層されてなる強磁性二重トン ネル接合を用いた三端子素子を、ワード線とビット線とが交差する各位置にマトリック ス状に配設して成り、少なくとも第 1及び第 2の絶縁層と、第 1及び第 2の絶縁層の間 に挿入される第 2の強磁性層と、が同一の結晶面を有する結晶であり、第 2の強磁性 層の厚さを第 2の強磁性層中にスピンに依存した複数の量子準位が形成されるよう にしたことを特徴とする。 [0020] The nonvolatile random access magnetic memory according to the third configuration of the present invention includes a first ferromagnetic layer, a first insulating layer serving as a tunnel electron noria, a second ferromagnetic layer, and a tunnel electron. A word line and a bit line cross a three-terminal device using a ferromagnetic double tunnel junction in which a second insulating layer and a third ferromagnetic layer are sequentially stacked. At least the first and second insulating layers and the second ferromagnetic layer inserted between the first and second insulating layers are made of the same crystal. A crystal having a plane, wherein the second ferromagnetic layer has a thickness in which a plurality of quantum levels depending on spin are formed in the second ferromagnetic layer.
上記構成によれば、強磁性二重トンネル接合を有する三端子素子を、従来の MR AMの MTJ素子の代わりに用いれば、大きな TMRが得られる。共鳴トンネル効果を 利用することで、 MTJ素子に電圧を印加した場合のみ大きな電圧が流れるのでセル 選択が可能となる。それと同時に、従来の MRAMのメモリセルに用いられていた M OSトランジスタが不要となる。さらには、 MRAMなどのメモリ以外に、例えばロジック 回路などにも使用することができる。  According to the above configuration, a large TMR can be obtained by using a three-terminal element having a ferromagnetic double tunnel junction instead of the conventional MR AM MTJ element. By using the resonant tunneling effect, a large voltage flows only when a voltage is applied to the MTJ element, enabling cell selection. At the same time, the MOS transistor used in the conventional MRAM memory cell becomes unnecessary. Furthermore, in addition to memories such as MRAM, it can also be used for logic circuits, for example.
発明の効果  The invention's effect
[0021] 本発明によれば、二つのトンネル絶縁層の間に挿入される第 2の強磁性層の厚さを 適当に制御すれば、結晶配向性を保持してェピタキシャル成長させることができ、 10 0%を超える大きな TMRが得られ、バイアス電圧による TMRの低下を小さく抑えるこ とが可能である。例えば、 MRAMに用いることでより大きな信号電圧を得ることがで きる。  [0021] According to the present invention, if the thickness of the second ferromagnetic layer inserted between the two tunnel insulating layers is appropriately controlled, the epitaxial growth can be performed while maintaining the crystal orientation. Therefore, a large TMR exceeding 100% can be obtained, and the decrease in TMR due to the bias voltage can be minimized. For example, a larger signal voltage can be obtained by using it for MRAM.
[0022] 本発明の第 2の構成による強磁性二重トンネル接合素子によれば、二つのトンネル 絶縁層の間に挿入される第 2の強磁性層の厚さを適当に制御すれば、結晶配向性 を保持してェピタキシャル成長させることができ、 100%を超える大きな TMRが得ら れ、バイアス電圧による TMRの低下を小さく抑えることが可能である。また、トンネル コンダクタンス又はトンネル電流がバイアス電圧に対して振動する。これによつて、例 えば、 MRAMに用いることでより大きな信号電圧を得ることができるとともに、メモリセ ルに MOSトランジスタを必要としない MRAMを構成できる。さらには、メモリ以外に、 例えばロジックなどにも使用することができる。 [0022] According to the ferromagnetic double tunnel junction device of the second configuration of the present invention, two tunnels By appropriately controlling the thickness of the second ferromagnetic layer inserted between the insulating layers, it is possible to grow epitaxially while maintaining the crystal orientation, and a large TMR exceeding 100% can be obtained. It is possible to minimize the decrease in TMR due to the bias voltage. Also, tunnel conductance or tunnel current oscillates with respect to the bias voltage. As a result, for example, a larger signal voltage can be obtained by using it for MRAM, and an MRAM that does not require a MOS transistor in the memory cell can be configured. Furthermore, it can be used not only for memory but also for logic, for example.
[0023] また、本発明の強磁性二重トンネル接合を用いた三端子素子によれば、二重トンネ ル接合のコンダクタンスを電圧で制御できる三端子素子を提供することができる。  [0023] Further, according to the three-terminal element using the ferromagnetic double tunnel junction of the present invention, a three-terminal element capable of controlling the conductance of the double tunnel junction with a voltage can be provided.
[0024] この三端子素子を従来の MRAMの MTJ素子の代わりに用いれば、大きな TMRが 得られる。それと同時に、従来の MRAMで必要であった MTJ素子に接続していた MOSトランジスタを用いない、新規な不揮発性ランダムアクセス磁気メモリ(MRAM )セルを構成することができる。さらには、メモリ以外に、例えばロジックなどにも使用 することができる。  If this three-terminal element is used in place of the conventional MRAM MTJ element, a large TMR can be obtained. At the same time, a novel nonvolatile random access magnetic memory (MRAM) cell can be constructed that does not use the MOS transistor connected to the MTJ element required in the conventional MRAM. Furthermore, it can be used for, for example, logic as well as memory.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]本発明の強磁性二重トンネル接合素子を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing a ferromagnetic double tunnel junction device of the present invention.
[図 2]実施例 1の強磁性二重トンネル接合素子の低バイアス電圧における室温での T MR曲線を示す図である。  FIG. 2 is a diagram showing a TMR curve at room temperature at a low bias voltage of the ferromagnetic double tunnel junction device of Example 1.
[図 3]比較例 1の強磁性一重トンネル接合素子の低バイアス電圧における室温での T MR曲線を示す図である。  FIG. 3 is a view showing a TMR curve at room temperature at a low bias voltage of the ferromagnetic single tunnel junction device of Comparative Example 1.
[図 4]実施例 1の強磁性二重トンネル接合素子及び比較例 1の強磁性一重トンネル 接合素子の規格化 TMRのノ ィァス電圧依存性を示す図である。  FIG. 4 is a diagram showing the noise voltage dependence of normalized TMR of the ferromagnetic double tunnel junction device of Example 1 and the ferromagnetic single tunnel junction device of Comparative Example 1.
[図 5]本発明の強磁性二重トンネル接合素子を模式的に示す断面図である。  FIG. 5 is a cross-sectional view schematically showing a ferromagnetic double tunnel junction device of the present invention.
[図 6]本発明の強磁性二重トンネル接合素子の変形例を模式的に示す断面図である  FIG. 6 is a cross-sectional view schematically showing a modification of the ferromagnetic double tunnel junction device of the present invention.
[図 7]本発明の強磁性二重トンネル接合素子の動作を模式的に示す図である。 FIG. 7 is a diagram schematically showing the operation of the ferromagnetic double tunnel junction device of the present invention.
[図 8]本発明の強磁性二重トンネル接合素子における、トンネル注入の透過確率の バイアス電圧依存性を模式的に示す図である。 圆 9] (A) , (B)は、それぞれ、本発明の強磁性 2重トンネル接合素子の磁ィ匕におい て、平行及び反平行を説明する図である。 FIG. 8 is a diagram schematically showing bias voltage dependence of transmission probability of tunnel injection in the ferromagnetic double tunnel junction device of the present invention. [9] (A) and (B) are diagrams for explaining parallelism and antiparallelism in the magnetic domain of the ferromagnetic double tunnel junction device of the present invention, respectively.
[図 10]図 9 (A)及び (B)のトンネル透過率のバイアス電圧依存性を示す図である。 圆 11]本発明の強磁性二重トンネル接合素子において、さらに、別の変形例の構造 を模式的に示す部分断面図である。  FIG. 10 is a diagram showing the bias voltage dependence of the tunnel transmittance in FIGS. 9 (A) and (B). [11] FIG. 11 is a partial cross-sectional view schematically showing the structure of still another modified example of the ferromagnetic double tunnel junction device of the present invention.
圆 12]本発明の第 3の実施形態による強磁性二重トンネル接合素子を用いた三端子 素子の動作を説明する模式的な図である。 [12] FIG. 12 is a schematic diagram for explaining the operation of the three-terminal element using the ferromagnetic double tunnel junction device according to the third embodiment of the present invention.
[図 13] (A) , (B)はそれぞれ、強磁性二重トンネル接合素子を用いた MRAMの模式 的な斜視図と、その動作を説明する回路図である。  [FIG. 13] (A) and (B) are a schematic perspective view of an MRAM using a ferromagnetic double tunnel junction element and a circuit diagram for explaining the operation thereof.
圆 14] (A) , (B)はそれぞれ、強磁性二重トンネル接合素子を用いた三端子素子を 用いた MRAMの模式的な斜視図と、その動作を説明する回路図である。 [14] (A) and (B) are a schematic perspective view of an MRAM using a three-terminal device using a ferromagnetic double tunnel junction device, and a circuit diagram for explaining the operation.
[図 15] (A) , (B)は、それぞれ、実施例 2の強磁性二重トンネル接合素子及び比較例 2の強磁性一重トンネル接合素子の低バイアス電圧における室温での TMR曲線を 示す図である。 FIGS. 15A and 15B are diagrams showing TMR curves at room temperature at a low bias voltage of the ferromagnetic double tunnel junction device of Example 2 and the ferromagnetic single tunnel junction device of Comparative Example 2, respectively. It is.
[図 16]実施例 2の強磁性二重トンネル接合素子及び比較例 2の強磁性一重トンネル 接合素子における、規格化 TMRのバイアス電圧依存性を示す図である。  FIG. 16 is a diagram showing the bias voltage dependence of normalized TMR in the ferromagnetic double tunnel junction device of Example 2 and the ferromagnetic single tunnel junction device of Comparative Example 2.
[図 17] (A)〜 (E)及び (F)は、それぞれ、実施例 2及び比較例 2の微分トンネルコン ダクタンスのバイアス電圧依存性を示す図である。 FIG. 17 (A) to (E) and (F) are diagrams showing the bias voltage dependence of the differential tunnel conductance in Example 2 and Comparative Example 2, respectively.
[図 18]実施例 2及び比較例 2のトンネルコンダクタンスの差分 Δ Gを示す図である。  FIG. 18 is a diagram showing a tunnel conductance difference ΔG between Example 2 and Comparative Example 2.
[図 19]実施例 2の第 2の強磁性層の厚さ tが 1. 2nmの強磁性二重トンネル接合素子 における、微分トンネルコンダクタンスのバイアス電圧依存性を示す図である。 FIG. 19 is a diagram showing the bias voltage dependence of differential tunnel conductance in a ferromagnetic double tunnel junction device having a second ferromagnetic layer thickness t of 1.2 nm in Example 2.
圆 20]実施例 2の成長膜断面において、第 2の強磁性層が島状となった場合の透過 型電子顕微鏡像を示す図である。 FIG. 20 is a view showing a transmission electron microscope image when the second ferromagnetic layer has an island shape in the growth film cross section of Example 2.
圆 21]実施例 3の成膜中にその場観察した反射型高速電子線回折像を示す図であ る。 FIG. 21 is a view showing a reflection type high-energy electron diffraction image observed in situ during the film formation of Example 3.
[図 22]成膜した Fe及び MgOの結晶配列を模式的に示す図である。  FIG. 22 is a diagram schematically showing a crystal arrangement of deposited Fe and MgO.
[図 23]実施例 3の強磁性二重トンネル接合素子の低バイアス電圧における室温での [FIG. 23] The ferromagnetic double tunnel junction device of Example 3 at room temperature at a low bias voltage.
TMR曲線を示す図である。 [図 24]実施例 3において、微分トンネルコンダクタンスに対する第 2の強磁性層の膜 厚依存性を示す図である。 It is a figure which shows a TMR curve. FIG. 24 is a graph showing the thickness dependence of the second ferromagnetic layer on the differential tunnel conductance in Example 3.
[図 25]実施例 3にお ヽて、微分トンネルコンダクタンスに対する温度依存性を示すも ので、 (A)は第 2の強磁性層の厚さが 1. 2nm、(B)は 1. 5nmの場合を示す。  [FIG. 25] In Example 3, the temperature dependence on the differential tunnel conductance is shown. (A) shows the thickness of the second ferromagnetic layer being 1.2 nm, and (B) is about 1.5 nm. Show the case.
[図 26]実施例 3の強磁性二重トンネル接合素子のバンドダイアグラムを示す図である  FIG. 26 shows a band diagram of the ferromagnetic double tunnel junction device of Example 3.
[図 27]第 2の強磁性層のバンドダイヤグラムで、(A)は上向きスピン電子の場合を、 ( B)は下向きスピン電子(ダウンスピン)の場合を示して 、る。 [FIG. 27] In the band diagram of the second ferromagnetic layer, (A) shows the case of upward spin electrons, and (B) shows the case of downward spin electrons (down spin).
符号の説明 Explanation of symbols
1, 10, 20, 25 :強磁性二重トンネル接合素子 1, 10, 20, 25: Ferromagnetic double tunnel junction device
2, 12 :基板 2, 12: Board
3, 13 :第 1の強磁性層 3, 13: First ferromagnetic layer
4:第 1の絶縁層 4: First insulation layer
5 :第 2の強磁性層 5: Second ferromagnetic layer
6 :第 2の絶縁層  6: Second insulation layer
7 :第 3の強磁性層  7: Third ferromagnetic layer
10A, 10B :電極 10A, 10B: Electrode
13A: (電極)主電極 13A: (Electrode) Main electrode
14 :第 1の絶縁層 14: First insulation layer
15, 18 :第 2の強磁性層 15, 18: Second ferromagnetic layer
15A, 15B, 15C, 15D:島状の第 2の強磁性層  15A, 15B, 15C, 15D: Island-like second ferromagnetic layer
16 :第 2の絶縁層 16: Second insulation layer
16A, 16B, 16C, 16D:島状の第 2の絶縁層  16A, 16B, 16C, 16D: Island-like second insulating layer
17 :第 3の強磁性層  17: Third ferromagnetic layer
22:強磁性一重トンネル接合素子  22: Ferromagnetic single tunnel junction device
26:島状の強磁性二重トンネル接合素子  26: Island-shaped ferromagnetic double tunnel junction device
30:強磁性二重トンネル接合素子を用いた三端子素子  30: Three-terminal device using a ferromagnetic double tunnel junction device
31, 32 :主電極 33 :制御電極 31, 32: Main electrode 33: Control electrode
35 :直流電源  35: DC power supply
36 :制御用直流電源  36: DC power supply for control
38:第 3の強磁性層を通過する電子  38: Electrons passing through the third ferromagnetic layer
40, 50 :不揮発性ランダムアクセス磁気メモリ(MRAM)  40, 50: Nonvolatile random access magnetic memory (MRAM)
41 :X方向のビット線  41: Bit line in X direction
42 :Y方向のビット線  42: Y direction bit line
51 :ビット線  51: Bit line
52 :ワード線  52: Word line
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 以下、図面に示した実施の形態に基づいて本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail based on the embodiments shown in the drawings.
図 1は、本発明の強磁性二重トンネル接合素子を模式的に示す断面図である。図 1 に示すように、本発明の強磁性二重トンネル接合素子 1は、基板 2上に、第 1の強磁 性層 3と、トンネル電子のノリアとなる第 1の絶縁層 4と、第 2の強磁性層 5と、トンネル 電子のノリアとなる第 2の絶縁層 6と、第 3の強磁性層 7と、力 なる層が順次積層さ れて構成されている。  FIG. 1 is a cross-sectional view schematically showing a ferromagnetic double tunnel junction device of the present invention. As shown in FIG. 1, the ferromagnetic double tunnel junction device 1 of the present invention includes a first ferromagnetic layer 3, a first insulating layer 4 serving as a tunnel electron noria, a first The second ferromagnetic layer 5, the second insulating layer 6 serving as the tunnel electron noria, the third ferromagnetic layer 7, and the force layer are sequentially stacked.
[0028] ここで、少なくとも、第 1及び第 2の絶縁層 4, 6と第 1及び第 2の絶縁層 4, 6の間に 挿入される第 2の強磁性層 5とは同一の結晶面を有する結晶である。この場合、第 2 の強磁性層 5の厚さを適当に制御し、結晶配向性を保持していれば、本発明の強磁 性二重トンネル接合素子 1の TMRを大きくすることができる。他の強磁性層 3, 7は、 第 1及び第 2の絶縁層 4, 6及び第 2の強磁性層 5と同じ結晶面を有する結晶層から 形成されてもよい。  [0028] Here, at least the first and second insulating layers 4 and 6 and the second ferromagnetic layer 5 inserted between the first and second insulating layers 4 and 6 have the same crystal plane. It is a crystal having In this case, if the thickness of the second ferromagnetic layer 5 is appropriately controlled to maintain the crystal orientation, the TMR of the ferromagnetic double tunnel junction device 1 of the present invention can be increased. The other ferromagnetic layers 3 and 7 may be formed of a crystal layer having the same crystal plane as the first and second insulating layers 4 and 6 and the second ferromagnetic layer 5.
本発明の強磁性二重トンネル接合素子 1は、上記基板上の各層 2〜7と同じ結晶面 を有する基板 2上に、ェピタキシャル成長により形成することができる。  The ferromagnetic double tunnel junction device 1 of the present invention can be formed by epitaxial growth on the substrate 2 having the same crystal plane as each of the layers 2 to 7 on the substrate.
[0029] 本発明の強磁性二重トンネル接合素子 1において、基板としては(100)面の MgO を用い、第 1〜3の強磁性層 3, 5, 7として(100)面の Feを、そして、第 1及び第 2の 絶縁層 4, 5として(100)面の MgOを、それぞれ用いることができる。この強磁性二重 トンネル接合素子 1は、例えば分子線ェピタキシャル成長法 (MBE)を用いて、(100 )面を主表面とする MgO基板 2に、第 1の強磁性層 3、第 1の絶縁層 4、第 2の強磁性 層 5、第 2の絶縁層 6、第 3の強磁性層 7の順にェピキシャル成長させることで、製作 することができる。上記基板 2と第 1の強磁性層 3との間には、ノ ッファ層や基板と同じ 材料カゝらなる所謂シード層を挿入してもよい。最上層の第 3の強磁性層 7の表面には 電極層を形成してもよい。 [0029] In the ferromagnetic double tunnel junction device 1 of the present invention, (100) face MgO is used as the substrate, and (100) face Fe is used as the first to third ferromagnetic layers 3, 5, and 7, In addition, (100) plane MgO can be used as the first and second insulating layers 4 and 5, respectively. This ferromagnetic double tunnel junction device 1 is formed by using, for example, molecular beam epitaxy (MBE) (100 The first ferromagnetic layer 3, the first insulating layer 4, the second ferromagnetic layer 5, the second insulating layer 6, and the third ferromagnetic layer 7 It can be produced by growing it in an epic order. Between the substrate 2 and the first ferromagnetic layer 3, a so-called seed layer made of the same material as that of the nother layer or the substrate may be inserted. An electrode layer may be formed on the surface of the uppermost third ferromagnetic layer 7.
[0030] 第 1〜第 3の強磁性層 3, 5, 7において、 Feの一部を、 Co又は Ni、あるいは、その 両方で置換した bcc (体心立方格子)構造カゝら構成してもよ!/ヽ。  [0030] In the first to third ferromagnetic layers 3, 5, and 7, a bcc (body-centered cubic lattice) structure in which a part of Fe is replaced with Co, Ni, or both is formed. Moyo! / ヽ.
[0031] 本発明の強磁性二重トンネル接合素子 1において、二つのトンネル絶縁層 4, 6の 間に挿入される第 2の強磁性層 5の厚さを適当に制御すれば、結晶配向性を保持し て、ェピタキシャル成長をさせることができる。この場合、第 2の強磁性層 5を、層状の 連続膜とすることにより TMRを大きくすることができる。  In the ferromagnetic double tunnel junction device 1 of the present invention, if the thickness of the second ferromagnetic layer 5 inserted between the two tunnel insulating layers 4 and 6 is appropriately controlled, the crystal orientation Can be maintained for epitaxic growth. In this case, the TMR can be increased by making the second ferromagnetic layer 5 a layered continuous film.
[0032] 本発明の強磁性二重トンネル接合素子 1によれば、 100%を超える大きな TMRが 得られる。また、ノィァス電圧による TMRの低下を小さく抑えることが可能である。し たがって、本発明の強磁性二重トンネル接合素子 1を MRAMに用いることでより大き な信号電圧を得ることができる。  [0032] According to the ferromagnetic double tunnel junction device 1 of the present invention, a large TMR exceeding 100% can be obtained. In addition, it is possible to minimize the decrease in TMR due to the noise voltage. Therefore, a larger signal voltage can be obtained by using the ferromagnetic double tunnel junction device 1 of the present invention for MRAM.
実施例 1  Example 1
[0033] 次に、実施例 1により本発明をさらに詳しく説明する。  [0033] Next, the present invention will be described in more detail with reference to Example 1.
分子線ェピタキシャル成長法(MBE)を用いて MgO基板 2上に、 MgO (10) /Fe ( Using molecular beam epitaxy (MBE), MgO (10) / Fe (
50) /MgO (2) /Fe (t) /MgO (2) /Fe (20) (カツコ内は膜厚、単位は nm)の順 にェピタキシャル成長を行な ヽ、実施例の強磁性二重トンネル接合素子 1となるェピ タキシャル成長膜を作製した。 50) / MgO (2) / Fe (t) / MgO (2) / Fe (20) (The thickness in Katsuko is the thickness, the unit is nm). An epitaxially grown film to be the heavy tunnel junction element 1 was fabricated.
最初の 10nmの MgO層はシード層であり、中間の第 2の強磁性層 5である Fe層の 厚さは 1〜2. 5nmまで変化させたので Fe (t)と表記している。結晶成長中に反射型 高速電子線回折 (RHEED)の回折パターン測定を行な 、、上記各層がェピタキシャ ル成長して 、ることを確認した。  The first 10 nm MgO layer is a seed layer, and the thickness of the Fe layer, which is the second intermediate ferromagnetic layer 5, is varied from 1 to 2.5 nm, so it is expressed as Fe (t). The diffraction pattern of reflection type high-energy electron diffraction (RHEED) was measured during crystal growth, and it was confirmed that each of the above layers was epitaxially grown.
[0034] 次に、上記ェピタキシャル成長膜を、フォトリソグラフィと Arイオンミリングを用いて 1[0034] Next, the above epitaxially grown film is formed by photolithography and Ar ion milling 1
O X lO ^ m2の大きさに微細加工して、実施例 1の強磁性二重トンネル接合素子 1を 製作した。 [0035] 実施例 1と対比するために、 MgO基板上に、 MgO (10) ZFe (50) ZMgO (2) Z Fe (l. 5) ZCo (10)の各層を順にェピタキシャル成長した以外は、実施例 1と同様 にして、比較例 1の強磁性一重トンネル接合素子を製作した。 OX lO ^ is finely processed to a size of m 2, and produced the ferromagnetic double tunnel junction element 1 of Example 1. [0035] For comparison with Example 1, except that each layer of MgO (10) ZFe (50) ZMgO (2) Z Fe (l. 5) ZCo (10) was sequentially epitaxially grown on the MgO substrate. In the same manner as in Example 1, the ferromagnetic single tunnel junction device of Comparative Example 1 was manufactured.
[0036] 実施例 1の強磁性二重トンネル接合素子 1及び比較例の強磁性一重トンネル接合 素子につ 、て、 4端子法を用いてコンダクタンス及びトンネル磁気抵抗 (TMR)の印 加電圧依存性を測定した。  [0036] For the ferromagnetic double tunnel junction device 1 of Example 1 and the ferromagnetic single tunnel junction device of the comparative example, the dependence of the conductance and tunnel magnetoresistance (TMR) on the applied voltage using the four-terminal method. Was measured.
[0037] 図 2は、実施例 1の強磁性二重トンネル接合素子 1の低バイアス電圧における室温 での TMR曲線を示す図である。図において、横軸は外部磁界(エルステッド、 Oe)を 、縦軸は抵抗 X面積 m2 )を示す。第 2の強磁性層 5である Feの厚さは 1. 5n mである。また、バイアス電圧は、上部電極側を正としたときの 5mVである。図から明 らかなように、低磁界で抵抗が大きく変化し、室温で 110%という大きな TMRが得ら れ、比較例 1の強磁性一重トンネル接合素子よりも大きな TMRであることが分力ゝつた FIG. 2 is a diagram showing a TMR curve at room temperature at a low bias voltage of the ferromagnetic double tunnel junction device 1 of Example 1. FIG. In the figure, the horizontal axis represents the external magnetic field (Oersted, Oe), and the vertical axis represents the resistance X area m 2 ). The thickness of Fe as the second ferromagnetic layer 5 is 1.5 nm. The bias voltage is 5mV when the upper electrode side is positive. As is clear from the figure, the resistance changes greatly at a low magnetic field, a large TMR of 110% is obtained at room temperature, and the TMR is larger than that of the ferromagnetic single tunnel junction device of Comparative Example 1. Ivy
[0038] 図 3は、比較例 1の強磁性一重トンネル接合素子の低バイアス電圧における室温で の TMR曲線を示す図である。図の横軸及び縦軸とバイアス電圧とは、図 2と同じであ る。図から明らかなように、 TMRは 88%であった。 FIG. 3 is a diagram showing a TMR curve at room temperature at a low bias voltage of the ferromagnetic single tunnel junction device of Comparative Example 1. The horizontal and vertical axes and the bias voltage in the figure are the same as in Figure 2. As is clear from the figure, the TMR was 88%.
[0039] 以上の実施例 1の強磁性二重トンネル接合素子及び比較例 1の強磁性一重トンネ ル接合素子において、大きな TMRが得られることは、各層がェピタキシャル成長に より形成されて 、ることを示して 、る。  [0039] In the ferromagnetic double tunnel junction device of Example 1 and the ferromagnetic single tunnel junction device of Comparative Example 1, large TMR is obtained because each layer is formed by epitaxial growth. Show that.
[0040] 図 4は、実施例 1の強磁性二重トンネル接合素子 1及び比較例 1の強磁性一重トン ネル接合素子の規格化 TMRのバイアス電圧依存性を示す図である。図にお 、て、 横軸は上部電極を正側とするバイアス電圧 (V)を示し、縦軸は規格化 TMRである。 図から明らかなように、黒丸印(參)で示す強磁性二重トンネル接合素子 1の方が、正 バイアス側にぉ 、て、白丸印(〇)で示す強磁性一重トンネル接合素子よりも TMRの 低下は小さいことが分かる。一方、負バイアス側においては、両者のバイアス電圧 (V )依存性は、殆ど同じである。これは実施例 1の二重トンネル接合における一方の接 合の界面状態が悪いためであり、本質的には負バイアス側においても正バイアス側と 同等のバイアス電圧依存性が得られる。 [0041] 本発明の第 2の構成に係る強磁性 2重トンネル接合素子について図 5〜8を参照し て説明する。 FIG. 4 is a diagram showing the bias voltage dependence of the normalized TMR of the ferromagnetic double tunnel junction device 1 of Example 1 and the ferromagnetic single tunnel junction device of Comparative Example 1. In the figure, the horizontal axis shows the bias voltage (V) with the upper electrode as the positive side, and the vertical axis is the normalized TMR. As is apparent from the figure, the ferromagnetic double tunnel junction element 1 indicated by the black circle (參) is more positive than the ferromagnetic single tunnel junction element indicated by the white circle (◯) on the positive bias side. It can be seen that the decrease in is small. On the other hand, on the negative bias side, both bias voltage (V) dependencies are almost the same. This is because the interface state of one of the junctions in the double tunnel junction of Example 1 is poor, and essentially the same bias voltage dependency as that on the positive bias side can be obtained on the negative bias side. A ferromagnetic double tunnel junction device according to the second configuration of the present invention will be described with reference to FIGS.
図 5は本発明の第 2の構成に係る強磁性二重トンネル接合素子を模式的に示す断 面図である。図 5に示すように、本発明の強磁性二重トンネル接合素子 10は、基板 1 2上に、第 1の強磁性層 13と、トンネル電子のノリアとなる第 1の絶縁層 14と、第 2の 強磁性層 15と、トンネル電子のノリアとなる第 2の絶縁層 16と、第 3の強磁性層 17と 、カゝらなる層が順次積層されて構成されている。この場合、第 2の強磁性層 15の厚さ を薄くして、その内部に量子準位を形成するようにしている。少なくとも、第 1及び第 2 の絶縁層 14, 16と第 1及び第 2の絶縁層 14, 16の間に挿入される第 2の強磁性層 1 5とが同一の結晶面を有する結晶である。  FIG. 5 is a cross-sectional view schematically showing a ferromagnetic double tunnel junction device according to the second configuration of the present invention. As shown in FIG. 5, the ferromagnetic double tunnel junction device 10 of the present invention includes a first ferromagnetic layer 13, a first insulating layer 14 serving as a tunnel electron noria, and a first ferromagnetic layer 13 on a substrate 12. The second ferromagnetic layer 15, the second insulating layer 16 serving as a tunnel electron noria, the third ferromagnetic layer 17, and the like are sequentially stacked. In this case, the thickness of the second ferromagnetic layer 15 is reduced to form a quantum level therein. At least the first and second insulating layers 14, 16 and the second ferromagnetic layer 15 inserted between the first and second insulating layers 14, 16 are crystals having the same crystal plane. .
[0042] 図 6は、本発明の強磁性二重トンネル接合素子の変形例 20を模式的に示す断面 図である。図 6に示すように、この変形例の強磁性二重トンネル接合素子 20が、図 5 に示す強磁性二重トンネル接合素子 10と異なるのは、強磁性二重トンネル接合素子 10の第 2の強磁性層 15を、アモルファス合金力もなる強磁性層 18に代えた点である 。第 2の強磁性層をアモルファス合金カゝらなる強磁性層 18とした点以外の構成は、強 磁性二重トンネル接合素子 10と同じであるので説明は省略する。  FIG. 6 is a cross-sectional view schematically showing Modification 20 of the ferromagnetic double tunnel junction device of the present invention. As shown in FIG. 6, the ferromagnetic double tunnel junction device 20 of this modification is different from the ferromagnetic double tunnel junction device 10 shown in FIG. The ferromagnetic layer 15 is replaced with a ferromagnetic layer 18 having an amorphous alloy force. Since the second ferromagnetic layer is the same as the ferromagnetic double tunnel junction device 10 except that the second ferromagnetic layer is a ferromagnetic layer 18 made of an amorphous alloy, the description thereof will be omitted.
[0043] 上記本発明の強磁性二重トンネル接合素子 10, 20において、第 2の強磁性層 15 , 18の厚さを薄くして、その内部に量子準位を形成するようにしている。そして、少な くとも、第 1及び第 2の絶縁層 14, 16と第 1及び第 2の絶縁層 14, 16の間に挿入され る第 2の強磁性層 15とが同一の結晶面を有する結晶である力、又は、第 2の強磁性 層 18はアモルファス合金である。このアモルファス合金力 なる第 2の強磁性層 18は 、第 1及び第 2の絶縁層が同じ結晶面をもつ結晶相としその間に挿入すればよい。こ の場合、第 2の強磁性層 15, 18の厚さを薄くなるよう制御し、結晶配向性を保持して いれば、本発明の強磁性二重トンネル接合素子 10, 20において、所謂共鳴トンネル 効果が生起する。本発明の強磁性二重トンネル接合素子 10及び 20は同様に動作 するので、異なる部分以外は、強磁性二重トンネル接合素子 10で説明する。  In the ferromagnetic double tunnel junction devices 10 and 20 of the present invention, the thickness of the second ferromagnetic layers 15 and 18 is reduced to form quantum levels therein. At least the first and second insulating layers 14 and 16 and the second ferromagnetic layer 15 inserted between the first and second insulating layers 14 and 16 have the same crystal plane. The force that is crystalline or the second ferromagnetic layer 18 is an amorphous alloy. The second ferromagnetic layer 18 having the amorphous alloy force may be inserted between the first and second insulating layers as a crystal phase having the same crystal plane. In this case, if the thickness of the second ferromagnetic layers 15 and 18 is controlled to be thin and the crystal orientation is maintained, the so-called resonance is achieved in the ferromagnetic double tunnel junction devices 10 and 20 of the present invention. Tunnel effect occurs. Since the ferromagnetic double tunnel junction devices 10 and 20 of the present invention operate in the same manner, the ferromagnetic double tunnel junction device 10 will be described except for different portions.
[0044] 他の強磁性層 13, 17は、第 1及び第 2の絶縁層 14, 16及び第 2の強磁性層 15と 同じ結晶面を有する結晶層から形成されてもょ 、。 本発明の強磁性二重トンネル接合素子 10は、上記基板上の各層 12〜17と同じ結 晶面を有する基板 12上に、ェピタキシャル成長により形成することができる。 The other ferromagnetic layers 13 and 17 may be formed of a crystal layer having the same crystal plane as the first and second insulating layers 14 and 16 and the second ferromagnetic layer 15. The ferromagnetic double tunnel junction device 10 of the present invention can be formed by epitaxial growth on the substrate 12 having the same crystal plane as the layers 12 to 17 on the substrate.
[0045] 図 7は、本発明の強磁性二重トンネル接合素子 10の動作を模式的に示すもので、 図 7 (A)〜(C)はバンドダイアグラムを、図 7 (D)は得られる J—V特性を示す図である 。図 7 (A)〜 (C)は素子上部、すなわち、第 3の強磁性層 17を正側とした場合のバイ ァス電圧を 0から増大させたときのバンドダイアグラムであり、そのときのバイアス電圧 に対する電流密度 (J—V)を図 7 (D)において a, b, cとして示している。図示するよう に、第 1の強磁性層 13と、トンネル注入のノリアとなる第 1の絶縁層 14と、第 2の強磁 性層 15と、トンネル注入のノリアとなる第 2の絶縁層 16と、第 3の強磁性層 17 (以下、 適宜、強磁性層 13,絶縁層 14,強磁性層 15,絶縁層 16,強磁性層 17と呼ぶ) 力もなる強磁性二重トンネル接合素子 10において、中央の第 2の強磁性層 15が薄 い場合、エネルギー準位が量子化される。この強磁性二重トンネル接合素子 10にバ ィァス電圧を印加し、量子準位と同じエネルギーになると電子はトンネルしやすくなり 、トンネルコンダクタンス又はトンネル電流が図 7 (D)のように振動する。これが共鳴ト ンネル効果である。 FIG. 7 schematically shows the operation of the ferromagnetic double tunnel junction device 10 of the present invention. FIGS. 7 (A) to (C) are band diagrams, and FIG. 7 (D) is obtained. It is a figure which shows JV characteristic. Figures 7 (A) to (C) are band diagrams when the bias voltage is increased from 0 when the upper part of the element, that is, the third ferromagnetic layer 17 is set to the positive side, and the bias at that time The current density with respect to voltage (JV) is shown as a, b, and c in Fig. 7 (D). As shown in the figure, the first ferromagnetic layer 13, the first insulating layer 14 serving as a tunnel injection noria, the second ferromagnetic layer 15, and the second insulating layer 16 serving as a tunnel injection noria. And the third ferromagnetic layer 17 (hereinafter referred to as the ferromagnetic layer 13, the insulating layer 14, the ferromagnetic layer 15, the insulating layer 16, and the ferromagnetic layer 17 as appropriate) When the central second ferromagnetic layer 15 is thin, the energy level is quantized. When a bias voltage is applied to the ferromagnetic double tunnel junction device 10 and the energy becomes the same as the quantum level, electrons easily tunnel, and the tunnel conductance or tunnel current oscillates as shown in FIG. This is the resonant tunneling effect.
[0046] 図 8は、本発明の強磁性二重トンネル接合素子 10における、トンネル電流の透過 確率のバイアス電圧依存性を模式的に示す図である。図 8において、横軸はバイァ ス電圧、縦軸はトンネル電流の際の透過確率、すなわちトンネル確率である。図示す るように、第 2の強磁性層 15には複数の量子準位があるので、バイアス電圧を印加 すると、それに応じて共鳴トンネル効果が繰り返し生じるようになる。これにより、本発 明の強磁性二重トンネル接合素子 10においては、ノ ィァス電圧を印加したときに、 バイアス電圧に応じてトンネルコンダクタンスには、振動が生じるようになる。  FIG. 8 is a diagram schematically showing the bias voltage dependence of the transmission probability of the tunnel current in the ferromagnetic double tunnel junction device 10 of the present invention. In Fig. 8, the horizontal axis is the bias voltage, and the vertical axis is the transmission probability at the tunnel current, that is, the tunnel probability. As shown in the figure, since the second ferromagnetic layer 15 has a plurality of quantum levels, when a bias voltage is applied, the resonant tunneling effect is repeatedly generated accordingly. As a result, in the ferromagnetic double tunnel junction device 10 of the present invention, when a noise voltage is applied, oscillation occurs in the tunnel conductance according to the bias voltage.
[0047] 図 9 (A) , (B)は、それぞれ、本発明の強磁性二重トンネル接合素子 10の磁化〖こ おいて、平行及び反平行を説明する図で、図 10は図 9 (A)及び (B)のトンネル透過 率のバイアス電圧依存性を示す図である。図 9 (A)に示すように、上向きの矢印(† ) で示す磁ィ匕が互いに平行である場合とは、第 1及び第 3の強磁性層 13, 17の磁化と 第 2の強磁性層 15の磁化とが、同じ向きである。一方、反平行とは、図 9 (B)に下向 きの矢印で示すように、第 2の強磁性層 15における磁ィ匕の向き(丄)が、第 1及び第 3 の強磁性層 13, 17の磁化(† )とは反対方向に向く場合を示している。 本発明の強磁性二重トンネル接合素子 10の場合には、第 2の強磁性層 15を薄く することにより、スピンに依存した量子準位が形成されるので、両端の第 1及び第 3の 強磁性層 13, 17の磁ィ匕と中央の第 2の強磁性層 15の磁ィ匕とが互 ヽに平行の場合と 反平行の場合とでは、スピン依存共鳴トンネル効果が生じる。このため、第 2の強磁 性層 15の磁ィ匕の向きにより、図 10に示すように、共鳴トンネル効果のノィァス電圧依 存性がシフトする。この場合、強磁性二重トンネル接合素子 20のように、第 2の強磁 性層 18をアモルファス合金とした場合、より膜厚が均一で、表面粗さ(ラフネス)の小 さ 、磁性超薄膜を作製することが可能であり、スピンに依存した量子準位である量子 井戸を形成できるので、スピン依存共鳴トンネル効果が生じる。このようなスピン依存 共鳴トンネル効果はこれまで観測された例がなぐ本発明者らにより、世界で最初に 見出されたものである。 FIGS. 9 (A) and 9 (B) are diagrams for explaining parallelism and antiparallelity in the magnetization direction of the ferromagnetic double tunnel junction device 10 of the present invention. FIG. It is a figure which shows the bias voltage dependence of the tunnel transmittance of A) and (B). As shown in FIG. 9 (A), when the magnetic fields indicated by the upward arrows (†) are parallel to each other, the magnetization of the first and third ferromagnetic layers 13, 17 and the second ferromagnetic The magnetization of layer 15 is in the same direction. On the other hand, antiparallel means that the direction (丄) of the magnetic layer in the second ferromagnetic layer 15 is the first and third as shown by the downward arrow in FIG. This shows the case where the ferromagnetic layers 13 and 17 are oriented in the opposite direction to the magnetization (†). In the case of the ferromagnetic double tunnel junction device 10 of the present invention, the quantum level depending on the spin is formed by making the second ferromagnetic layer 15 thin. The spin-dependent resonant tunneling effect occurs when the magnetic layers of the ferromagnetic layers 13 and 17 and the magnetic layer of the second ferromagnetic layer 15 at the center are parallel to each other and antiparallel. For this reason, the dependence of the resonant tunneling effect on the noise voltage shifts depending on the direction of the magnetic field of the second ferromagnetic layer 15 as shown in FIG. In this case, when the second ferromagnetic layer 18 is made of an amorphous alloy like the ferromagnetic double tunnel junction element 20, the film thickness is more uniform, the surface roughness (roughness) is smaller, the magnetic ultrathin film Since a quantum well that is a spin-dependent quantum level can be formed, a spin-dependent resonant tunneling effect occurs. Such a spin-dependent resonant tunneling effect was first discovered in the world by the inventors of the present invention.
[0048] したがって、本発明の強磁性二重トンネル接合素子 10, 20において、スピン依存 共鳴トンネル効果を効果的に得るためには、第 1及び第 2の絶縁層 14, 16と、第 2の 強磁性層 15, 18とが原子層オーダーで平坦な層であることが好ましい。特に、第 2の 強磁性層 15, 18が層状の連続膜であることが好ましい。一般に絶縁層の上に金属 の超薄膜を原子層オーダーで均一に形成することは困難である。逆に、金属の上に 絶縁層の超薄膜を原子層オーダーで均一に形成することも困難である。このような場 合には、強磁性二重トンネル接合素子 20のように、第 2の強磁性層 18をァモルファ ス合金とすれば、より膜厚が均一でラフネスの小さ!/ヽ磁性超薄膜を作製することがで きる。  Therefore, in the ferromagnetic double tunnel junction devices 10 and 20 of the present invention, in order to effectively obtain the spin-dependent resonant tunneling effect, the first and second insulating layers 14 and 16 and the second insulating layers The ferromagnetic layers 15 and 18 are preferably flat layers in the atomic layer order. In particular, the second ferromagnetic layers 15 and 18 are preferably layered continuous films. In general, it is difficult to uniformly form an ultrathin metal film on the insulating layer in the atomic layer order. On the other hand, it is difficult to form an ultrathin film of an insulating layer uniformly on an atomic layer on a metal. In such a case, if the second ferromagnetic layer 18 is made of an amorphous alloy like the ferromagnetic double tunnel junction element 20, the film thickness is more uniform and the roughness is smaller! Can be produced.
[0049] 図 11は、本発明の強磁性二重トンネル接合素子において、さらに、別の変形例 25 の構造を模式的に示す部分断面図である。図 11に示すように、第 1の絶縁層 14上 には、島状の第 2の強磁性層 15A, 15B, 15Cと、これらの強磁性層上に形成される 第 2の絶縁層 16A, 16B, 16Cとが形成されている。第 1の絶縁層 4上の第 2の強磁 性層 15A, 15B, 15Cが形成されない表面には、直接、第 2の絶縁層 16Dが形成さ れて 、る。第 2の絶縁層上には第 3の強磁性層 17が形成されて 、る。  FIG. 11 is a partial cross-sectional view schematically showing the structure of still another modification 25 in the ferromagnetic double tunnel junction device of the present invention. As shown in FIG. 11, on the first insulating layer 14, island-shaped second ferromagnetic layers 15A, 15B, 15C and second insulating layers 16A, 16C formed on these ferromagnetic layers are formed. 16B and 16C are formed. The second insulating layer 16D is directly formed on the surface of the first insulating layer 4 where the second ferromagnetic layers 15A, 15B, 15C are not formed. A third ferromagnetic layer 17 is formed on the second insulating layer.
上記構造では、島状に形成される第 2の強磁性層 15と第 2の絶縁層 16と、が原子 層オーダーで平坦な層であり、結晶配向性を保持していれば、それぞれ、強磁性二 重トンネル接合素子 26として動作する。そして、島状部が形成されない領域は、第 1 の強磁性層 13と、第 1及び第 2の絶縁層 14, 16Dとからなる絶縁層と、第 3の強磁性 層 17と、カゝらなる強磁性一重トンネル接合 22となっている。なお、島状に形成される 第 2の強磁性層 15はアモルファス合金層で形成してもよ 、。 In the above structure, the second ferromagnetic layer 15 and the second insulating layer 16 that are formed in an island shape have atomic atoms. If the layers are flat on the order of layers and the crystal orientation is maintained, each operates as a ferromagnetic double tunnel junction element 26. The region where the island-shaped portion is not formed includes the first ferromagnetic layer 13, the insulating layer composed of the first and second insulating layers 14, 16D, the third ferromagnetic layer 17, and the cover. The resulting ferromagnetic single tunnel junction 22. The second ferromagnetic layer 15 formed in an island shape may be formed of an amorphous alloy layer.
[0050] 本発明の強磁性二重トンネル接合素子 10, 25において、基板としては(100)面の MgOを、第 1〜3の強磁性層 13, 15, 17として(100)面の Feを、そして、第 1及び 第 2の絶縁層 14, 15として(100)面の MgOを、それぞれ用いることができる。この強 磁性二重トンネル接合素子 10, 25は、例えば分子線ェピタキシャル成長法 (MBE) や超高真空中のスパッタ法を用いて、(100)面を主表面とする MgO基板 12に、強 磁性層 13、絶縁層 14、強磁性層 15、絶縁層 16、強磁性層 17の順にェピキシャル 成長させることで、製作することができる。上記基板 12と第 1の強磁性層 13との間に は、ノ ッファ層や、基板と同じ材料力もなる所謂シード層を挿入してもよい。また、最 上層となる第 3の強磁性層 17の表面には電極層を形成してもよい。 [0050] In the ferromagnetic double tunnel junction devices 10 and 25 of the present invention, (100) plane MgO is used as the substrate, and (100) plane Fe is used as the first to third ferromagnetic layers 13, 15, and 17. In addition, (100) plane MgO can be used as the first and second insulating layers 14 and 15, respectively. The ferromagnetic double tunnel junction elements 10 and 25 are formed on a MgO substrate 12 having a (100) plane as a main surface by using, for example, molecular beam epitaxy (MBE) or sputtering in an ultrahigh vacuum. The magnetic layer 13, the insulating layer 14, the ferromagnetic layer 15, the insulating layer 16, and the ferromagnetic layer 17 can be manufactured by epitaxial growth in this order. A notch layer or a so-called seed layer having the same material force as the substrate may be inserted between the substrate 12 and the first ferromagnetic layer 13. Further, an electrode layer may be formed on the surface of the third ferromagnetic layer 17 which is the uppermost layer.
第 2の強磁性層 15がアモルファス合金層力もなる強磁性二重トンネル接合素子 20 の場合においても、第 2の強磁性層 15の形成以外は、上記と同様にして製作するこ とがでさる。  Even in the case of the ferromagnetic double tunnel junction element 20 in which the second ferromagnetic layer 15 has an amorphous alloy layer force, it can be manufactured in the same manner as described above except for the formation of the second ferromagnetic layer 15. .
[0051] 第 1〜第 3の強磁性層 13, 15, 17において、 Feの一部を、 Co又は Ni、あるいは、 その両方で置換した bcc (体心立方格子)構造力 構成してもよ!/、。  [0051] In the first to third ferromagnetic layers 13, 15, and 17, bcc (body-centered cubic lattice) structural force in which part of Fe is replaced with Co, Ni, or both may be configured. ! /
[0052] 本発明の強磁性二重トンネル接合素子 10, 25において、二つのトンネル絶縁層 1 4, 16の間に挿入される第 2の強磁性層 15の厚さを適当に制御すれば、結晶配向性 を保持して、ェピタキシャル成長をさせることができる。また、本発明の強磁性二重ト ンネル接合素子 20の場合には、第 2のアモルファス合金カゝらなる強磁性層 18の厚さ を適当に制御してもよい。何れの場合も、第 2の強磁性層 15, 18を、層状の連続膜 や島状とすることにより、スピンに依存した量子準位を介したトンネル効果やスピン依 存共鳴トンネル効果を効果的に得ることができる。本発明の強磁性二重トンネル接合 素子 10, 20, 25においては、 100%を超える大きな TMRとバイアス電圧による TM Rの低下を小さく抑えることが可能である。したがって、例えば MRAMに用いることで より大きな信号電圧を得ることができる。 In the ferromagnetic double tunnel junction devices 10 and 25 of the present invention, if the thickness of the second ferromagnetic layer 15 inserted between the two tunnel insulating layers 14 and 16 is appropriately controlled, The epitaxial growth can be performed while maintaining the crystal orientation. In the case of the ferromagnetic double tunnel junction device 20 of the present invention, the thickness of the ferromagnetic layer 18 made of the second amorphous alloy cover may be appropriately controlled. In either case, the second ferromagnetic layers 15 and 18 are formed as layered continuous films or islands, so that spin-dependent tunneling and spin-dependent resonant tunneling are effective. Can get to. In the ferromagnetic double tunnel junction devices 10, 20, and 25 of the present invention, it is possible to suppress a decrease in TMR due to a large TMR exceeding 100% and a bias voltage. Therefore, for example, by using it for MRAM A larger signal voltage can be obtained.
[0053] 次に、本発明の強磁性二重トンネル接合素子を用いた磁気デバイスについて説明 する。最初に、本発明の第 3の実施形態に係る強磁性二重トンネル接合素子を用い た三端子素子について説明する。  Next, a magnetic device using the ferromagnetic double tunnel junction device of the present invention will be described. First, a three-terminal element using a ferromagnetic double tunnel junction device according to a third embodiment of the present invention will be described.
図 12は、本発明の第 3の実施形態による強磁性二重トンネル接合素子を用いた三 端子素子の動作を説明する模式図である。図示するように、強磁性二重トンネル接 合素子を用いた三端子素子 30において、第 1及び第 3の強磁性層 13, 17には、そ れぞれ主電極となる電極 31, 32が設けられ、第 2の強磁性層 15には、制御電極とな る電極 33が設けられている。一方の主電極 31には、直流電源 35の負極が接続され 、その正極が電流計を介して他方の主電極 32に接続されている。制御電極 33には 、制御用直流電源 36の負極が接続され、その正極が直流電源 35の正極に接続され ている。  FIG. 12 is a schematic diagram for explaining the operation of the three-terminal element using the ferromagnetic double tunnel junction device according to the third embodiment of the present invention. As shown in the figure, in the three-terminal element 30 using a ferromagnetic double tunnel junction element, the first and third ferromagnetic layers 13 and 17 are provided with electrodes 31 and 32 which are main electrodes, respectively. The second ferromagnetic layer 15 is provided with an electrode 33 serving as a control electrode. One main electrode 31 is connected to the negative electrode of a DC power supply 35, and the positive electrode is connected to the other main electrode 32 via an ammeter. The control electrode 33 is connected to the negative electrode of the control DC power supply 36, and the positive electrode thereof is connected to the positive electrode of the DC power supply 35.
このように構成される強磁性二重トンネル接合素子を用いた三端子素子 30は、第 1 及び第 3の強磁性層 13, 17を通過する電子 38が、第 2の強磁性層 15の電極 33に 印加される制御用直流電源 36で制御される。この場合、第 2の強磁性層 15への電 圧制御により、スピンに依存した共鳴トンネル効果を変化させることができる。このた め、本発明の強磁性二重トンネル接合素子を用いた三端子素子 30によれば、主電 極 31, 32間のトンネルコンダクタンスを電圧で制御できる。したがって、主電極 31及 び 32間のトンネルコンダクタンスの振動を、制御電極 33に印加する電圧により変化さ せることができる。  The three-terminal device 30 using the ferromagnetic double tunnel junction device configured as described above has the following. Controlled by a control DC power supply 36 applied to 33. In this case, the spin-dependent resonant tunneling effect can be changed by controlling the voltage applied to the second ferromagnetic layer 15. Therefore, according to the three-terminal element 30 using the ferromagnetic double tunnel junction element of the present invention, the tunnel conductance between the main electrodes 31 and 32 can be controlled by the voltage. Therefore, the tunnel conductance vibration between the main electrodes 31 and 32 can be changed by the voltage applied to the control electrode 33.
[0054] また本発明の強磁性二重トンネル接合素子を用いた三端子素子 30においては、 素子両端の第 1及び第 3の強磁性層 13, 17の磁化と第 2の強磁性層 15の磁化と、 が互いに平行及び反平行の場合では、トンネル確率が異なる。このため、第 2の強磁 性層 15の磁ィ匕の向きにより、共鳴トンネル効果のバイアス電圧依存性をシフトさせる ことができる。上記の強磁性二重トンネル接合素子を用いた三端子素子 30において 、第 2の強磁性層 15は、アモルファス合金カゝらなる強磁性層 18であってもよい。また 、第 2の強磁性層 15, 18は、層状または島状であってもよい。  In the three-terminal element 30 using the ferromagnetic double tunnel junction element of the present invention, the magnetizations of the first and third ferromagnetic layers 13 and 17 at both ends of the element and the second ferromagnetic layer 15 When the magnetization and are parallel and antiparallel to each other, the tunnel probabilities are different. For this reason, the bias voltage dependence of the resonant tunneling effect can be shifted by the direction of the magnetic field of the second ferromagnetic layer 15. In the three-terminal element 30 using the above-described ferromagnetic double tunnel junction element, the second ferromagnetic layer 15 may be a ferromagnetic layer 18 made of an amorphous alloy. Further, the second ferromagnetic layers 15 and 18 may be layered or island-shaped.
本発明の強磁性二重トンネル接合素子を用いた三端子素子 30によれば、コンダク タンスを電圧で制御できる三端子素子が得られる。この三端子素子を従来の MRA Mの MTJ素子の代わりに用いれば、大きな TMRが得られる。共鳴トンネル効果を利 用することで、 MTJ素子に電圧を印加した場合のみ大きな電圧が流れるのでセル選 択が可能となる。それと同時にセルの選択が可能になるので、 MOSトランジスタを必 要としない MRAMのメモリセルを構成できる。さらには、 MRAMのメモリセル以外に 、例えば、ロジック回路用の三端子素子などにも使用することができる。 According to the three-terminal element 30 using the ferromagnetic double tunnel junction element of the present invention, the conductor A three-terminal element that can control the voltage with voltage can be obtained. If this three-terminal element is used in place of the conventional MRAM MTJ element, a large TMR can be obtained. By using the resonant tunneling effect, a large voltage flows only when a voltage is applied to the MTJ element, so cell selection becomes possible. At the same time, cells can be selected, so that MRAM memory cells that do not require MOS transistors can be configured. Furthermore, in addition to MRAM memory cells, it can also be used for, for example, three-terminal elements for logic circuits.
[0055] 次に、強磁性二重トンネル接合素子を用いた別の構成の不揮発性ランダムァクセ ス磁気メモリ(MRAM)への応用につ 、て説明する。  Next, application to a nonvolatile random access magnetic memory (MRAM) having another configuration using a ferromagnetic double tunnel junction element will be described.
図 13 (A) , (B)はそれぞれ、強磁性二重トンネル接合素子を用いた MRAMの模 式的な斜視図と、その動作を説明する回路図である。図 13において、 MRAM40は 、X方向のビット線 41と Y方向のビット線 42とが交差する各位置にマトリクス状に強磁 性二重トンネル接合素子 10を配設した構成である。強磁性二重トンネル接合素子 1 の第 1及び第 3の強磁性層 13, 17には、電極 10A, 10Bが設けられ、それぞれ、 Y 方向のビット線 42と X方向のビット線 41に接続している。この MRAM40においては 、マトリクスを構成する各強磁性二重トンネル接合素子 10に直接電流を流してスピン 反転を行なうことで書き込みができる。この場合、第 2の強磁性層 15の磁ィ匕を、第 1 及び第 3の強磁性層 13, 17の磁ィ匕に対して、互いに平行又は反平行に制御するこ とにより": T , "0"の記録、つまり、書き込みができる。  FIGS. 13A and 13B are a schematic perspective view of an MRAM using a ferromagnetic double tunnel junction device and a circuit diagram for explaining the operation. In FIG. 13, the MRAM 40 has a configuration in which the ferromagnetic double tunnel junction elements 10 are arranged in a matrix at each position where the bit line 41 in the X direction intersects with the bit line 42 in the Y direction. The first and third ferromagnetic layers 13 and 17 of the ferromagnetic double tunnel junction device 1 are provided with electrodes 10A and 10B, which are respectively connected to the bit line 42 in the Y direction and the bit line 41 in the X direction. ing. In this MRAM 40, writing can be performed by applying a current directly to each ferromagnetic double tunnel junction element 10 constituting the matrix to perform spin inversion. In this case, the magnetic field of the second ferromagnetic layer 15 is controlled to be parallel or antiparallel to the magnetic fields of the first and third ferromagnetic layers 13 and 17 by “: T , "0" recording, that is, writing is possible.
一方、読み出しは、 TMR効果を利用して行なう。 TMRの測定は、第 2磁性層 15の 磁化反転が生じな 、ように、上記書き込み時の電流とは異なる電流で行なえばょ 、。 このため、本実施形態の MRAM40では、第 2磁性層 15の磁ィ匕が平行力反平行か で" 1" , "0〃の情報を規定でき、第 2磁性層 15の磁ィ匕は電源を切っても保持される カも不揮発メモリにできる。これにより、本発明の MRAM40では大きな TMRが得ら れる。共鳴トンネル効果を利用することで、 MTJ素子に電圧を印加した場合のみ大き な電圧が流れるのでセル選択が可能となる。それと同時に、従来の MRAMで必要 であった MTJ素子に接続して!/、た MOSトランジスタを不要とする、新規な MRAMセ ルを構成することができる。  On the other hand, reading is performed using the TMR effect. The TMR measurement should be performed at a current different from the current at the time of writing so that the magnetization reversal of the second magnetic layer 15 does not occur. Therefore, in the MRAM 40 of the present embodiment, it is possible to define information of “1” and “0” depending on whether the magnetic field of the second magnetic layer 15 is antiparallel to the parallel force, and the magnetic field of the second magnetic layer 15 Even if it is turned off, the memory that is held can also be made into a non-volatile memory, which makes it possible to obtain a large TMR with the MRAM 40 of the present invention. At the same time, it is possible to configure a new MRAM cell that eliminates the need for MOS transistors connected to the MTJ element required by conventional MRAM!
[0056] 次に、強磁性二重トンネル接合素子を用いた三端子素子の不揮発性ランダムァク セス磁気メモリ(MRAM)への応用につ 、て説明する。 Next, a non-volatile random arc of a three-terminal element using a ferromagnetic double tunnel junction element The application to the process magnetic memory (MRAM) will be explained.
図 14 (A) , (B)はそれぞれ、強磁性二重トンネル接合素子による三端子素子を用 いた MRAMの模式的な斜視図と、その動作を説明する回路図である。図 14におい て、 MRAM50は、ワード線 52とビット線 51とが交差する各位置に、マトリクス状に強 磁性二重トンネル接合素子を用いた三端子素子 30を配設した構成である。三端子 素子 30は、電流及び電圧の制御によるスィッチ作用があるので、従来の MRAMに 対して、 MTJ素子に接続する MOSトランジスタが不要となる。  FIGS. 14A and 14B are a schematic perspective view of an MRAM using a three-terminal element by a ferromagnetic double tunnel junction element and a circuit diagram for explaining the operation. In FIG. 14, the MRAM 50 has a configuration in which a three-terminal element 30 using a ferromagnetic double tunnel junction element is arranged in a matrix at each position where the word line 52 and the bit line 51 intersect. Since the three-terminal element 30 has a switching action by controlling current and voltage, a MOS transistor connected to the MTJ element is not required for the conventional MRAM.
この MRAM50では、別に設けた配線に電流を流して磁界を印加することで、各三 端子素子 30を構成する第 2の磁性層 15の磁ィ匕を、第 1及び第 3の強磁性層 13, 17 の磁化に対して、互いに平行又は反平行に制御することにより、 "1" , "0"を記録さ せることができる。一方、読み出しは、 TMR効果を利用して行なう。このため、本実施 形態の MRAM50では、第 2の磁性層 15の磁化が平行か反平行かで" 1〃 , "0"の 情報を規定でき、第 2の磁性層 15の磁ィ匕は電源を切っても保持されるから不揮発メ モリの MRAM50にできる。  In this MRAM 50, the magnetic field of the second magnetic layer 15 constituting each three-terminal element 30 is changed to flow through a separately provided wiring to apply a magnetic field to the first and third ferromagnetic layers 13. , 17 can be controlled to be parallel or anti-parallel to each other to record “1” and “0”. On the other hand, reading is performed using the TMR effect. For this reason, in the MRAM 50 of the present embodiment, it is possible to define information of “1", “0” depending on whether the magnetization of the second magnetic layer 15 is parallel or antiparallel, and the magnetic field of the second magnetic layer 15 Since it is retained even if it is turned off, it can be made into MRAM50 of nonvolatile memory.
本発明に係る MRAM50にお ヽては、強磁性二重トンネル接合素子を用いた三端 子素子 30は、 100%を超える大きな TMRを有し、バイアス電圧による TMRの低下を 小さく抑えることが可能である。したがって、従来の MTJ素子より大きな信号電圧を得 ることができる。共鳴トンネル効果を利用することで、 MTJ素子に電圧を印加した場 合のみ大きな電圧が流れるのでセル選択が可能となる。それと同時に、従来の MRA Mで必要であった MOSトランジスタを使用しないメモリセルを構成することができる。 上記構成の本発明の強磁性二重トンネル接合素子を用いた三端子素子 30やそれ を用いた不揮発性ランダムアクセス磁気メモリ 40, 50などの磁気デバイスは、以下の ようにして製作することができる。  In the MRAM 50 according to the present invention, the tri-terminal element 30 using a ferromagnetic double tunnel junction element has a large TMR exceeding 100%, and can suppress a decrease in TMR due to a bias voltage. It is. Therefore, it is possible to obtain a larger signal voltage than the conventional MTJ element. By using the resonant tunneling effect, a large voltage flows only when a voltage is applied to the MTJ element, so cell selection becomes possible. At the same time, it is possible to configure a memory cell that does not use a MOS transistor, which is necessary for conventional MRAM. Magnetic devices such as the three-terminal element 30 using the ferromagnetic double tunnel junction element of the present invention having the above-described configuration and the nonvolatile random access magnetic memories 40 and 50 using the same can be manufactured as follows. .
最初に、基板 12上に、強磁性二重トンネル接合となる第 1の強磁性層 13と、トンネ ル電子のノリアとなる第 1の絶縁層 14と、第 2の強磁性層 15と、トンネル電子のノリア となる第 2の絶縁層 16と、第 3の強磁性層 17と、を順に MBE法などのェピタキシャル 成長法により堆積する。この基板 12として、 MgO基板や、絶縁層で被覆した Si基板 に MgOを堆積した基板を用いることができる。アモルファス合金力もなる第 2の強磁 性層 18は、第 1及び第 2の絶縁層 14, 16を同じ結晶面をもつ結晶相とし、その間に 挿入すればよい。このアモルファス合金層となる磁性超薄膜は、超高真空中のスパッ タ法により形成することができる。第 3の強磁性層 17上には、電極層を形成してもよ い。そして、所定の厚さの絶縁膜を、スパッタ法ゃ CVD法により堆積をする。 First, on a substrate 12, a first ferromagnetic layer 13 that becomes a ferromagnetic double tunnel junction, a first insulating layer 14 that becomes a tunnel electron noria, a second ferromagnetic layer 15, and a tunnel A second insulating layer 16 serving as an electron noria and a third ferromagnetic layer 17 are sequentially deposited by an epitaxial growth method such as the MBE method. As this substrate 12, an MgO substrate or a substrate obtained by depositing MgO on a Si substrate coated with an insulating layer can be used. Second strong magnet with amorphous alloy power The conductive layer 18 may be inserted between the first and second insulating layers 14 and 16 having a crystal phase having the same crystal plane. The magnetic ultrathin film that becomes the amorphous alloy layer can be formed by a sputtering method in an ultrahigh vacuum. An electrode layer may be formed on the third ferromagnetic layer 17. Then, an insulating film having a predetermined thickness is deposited by sputtering or CVD.
次に、主電極となる第 1及び第 3の強磁性層 13, 17と、制御電極となる第 3の強磁 性層 17と、に電極を形成する領域の開口を行ない、必要に応じてエッチングを行な つて各電極 31, 32, 33が形成される領域を露出させる。  Next, the first and third ferromagnetic layers 13 and 17 serving as the main electrode and the third ferromagnetic layer 17 serving as the control electrode are opened in areas where electrodes are to be formed. Etching is performed to expose regions where the electrodes 31, 32, 33 are formed.
続いて、各電極 31, 32, 33を形成する領域の露出部に、所定の厚さの金属膜をス ノッタ法などにより堆積し、余分な金属膜を選択エッチングにより除去する。以上の 工程で、強磁性二重トンネル接合素子を用いた三端子素子 30を製造することができ る。  Subsequently, a metal film having a predetermined thickness is deposited on the exposed portions of the regions where the electrodes 31, 32, and 33 are formed, and the excess metal film is removed by selective etching. Through the above process, the three-terminal element 30 using the ferromagnetic double tunnel junction element can be manufactured.
[0058] MRAM40, 50やロジック用の集積回路の場合には、上記の工程で製作した強磁 性二重トンネル接合素子 30上をさらに絶縁膜で被覆し、強磁性二重トンネル接合素 子 30の配線をする箇所だけに窓開けをした後に、ビット線 41, 42, 51やワード線 52 の配線を行なえばよい。また、 MRAMの周辺回路を Siの MOSトランジスタで形成す る場合には、最初に、 Siの周辺回路を形成し、その後で、 MRAM40, 50のメモリセ ルを形成してもよい。各材料の堆積には、スパッタ法ゃ CVD法以外には、蒸着法、レ 一ザアブレーシヨン法、 MBE法などの通常の薄膜成膜法を用いることができる。所定 の形状の電極や集積回路の配線を形成するためのマスク工程には、光露光や EB露 光などを用いることができる。  [0058] In the case of the MRAM 40, 50 and the logic integrated circuit, the ferromagnetic double tunnel junction element 30 manufactured in the above process is further covered with an insulating film, and the ferromagnetic double tunnel junction element 30 After opening the window only at the portion to be wired, the bit lines 41, 42, 51 and the word line 52 may be wired. When the MRAM peripheral circuit is formed of Si MOS transistors, the Si peripheral circuit may be formed first, and then the memory cells of the MRAM 40 and 50 may be formed. For the deposition of each material, other than the sputtering method and the CVD method, an ordinary thin film forming method such as an evaporation method, a laser ablation method, or an MBE method can be used. Light exposure, EB exposure, or the like can be used for a mask process for forming a predetermined-shaped electrode or integrated circuit wiring.
実施例 2  Example 2
[0059] 実施例 2により本発明をさらに詳しく説明する。  [0059] The present invention will be described in more detail by way of Example 2.
分子線ェピタキシャル成長法(MBE)を用いて MgO基板 12上に、 MgO (10) ZF e (50) /MgO (2) /Fe (t) /MgO (2) /Fe (15) /Ta (5) (カツコ内は膜厚、単位 は nm)の順にェピタキシャル成長を行ない、実施例 2の強磁性二重トンネル接合素 子 10となるェピタキシャル成長膜を作製した。  Using molecular beam epitaxy (MBE), MgO (10) ZF e (50) / MgO (2) / Fe (t) / MgO (2) / Fe (15) / Ta ( 5) Epitaxial growth was performed in the order of (thickness in Katsuko, unit: nm), and an epitaxially grown film to be the ferromagnetic double tunnel junction element 10 of Example 2 was produced.
最初の 10nmの MgO層はシード層であり、中間の第 2の強磁性層 15である Fe層の 厚さは 1〜2. 5nmまで変化させたので Fe (t)と表記している。この第 2の強磁性層 1 5の成膜速度は約 0. 02AZ秒であった。最上層の 5nmの厚さの Taは、電極層であ る。そして、成長中に反射型高速電子線回折 (RHEED)の回折パターン測定を行なThe first 10 nm MgO layer is a seed layer, and the thickness of the Fe layer, which is the second intermediate ferromagnetic layer 15, is varied from 1 to 2.5 nm, so it is expressed as Fe (t). This second ferromagnetic layer 1 The deposition rate of 5 was about 0.02 AZ seconds. The uppermost 5 nm thick Ta is an electrode layer. During the growth, reflection high-energy electron diffraction (RHEED) diffraction pattern measurement is performed.
V、、上記各層がェピタキシャル成長して 、ることを確認した。 V. It was confirmed that each of the above layers grew epitaxially.
[0060] 次に、上記ェピタキシャル成長膜を、フォトリソグラフィと Arイオンミリングを用いて 1[0060] Next, the above epitaxially grown film is formed by photolithography and Ar ion milling 1
O X lO ^ m2の大きさに微細加工して、実施例 2の強磁性二重トンネル接合素子 10 を製作した。 Is finely processed to a size of OX lO ^ m 2, it was manufactured ferromagnetic double tunnel junction element 10 of Example 2.
[0061] 次に、比較例 2について説明する。 Next, Comparative Example 2 will be described.
MgO基板上に、 MgO (10) ZFe (50) ZMgO (2. 5) /Fe (l . 5) /Co (10) /T a (5)の各層を順にェピタキシャル成長した以外は、実施例 2と同様にして、比較例 2 の強磁性一重トンネル接合素子を製作した。  Example except that each layer of MgO (10) ZFe (50) ZMgO (2.5) / Fe (l.5) / Co (10) / Ta (5) was epitaxially grown in order on the MgO substrate. In the same manner as in Example 2, the ferromagnetic single tunnel junction element of Comparative Example 2 was manufactured.
[0062] 実施例 2の強磁性二重トンネル接合素子 10及び比較例 2の強磁性一重トンネル接 合素子の各種測定結果を以下に説明する。 [0062] Various measurement results of the ferromagnetic double tunnel junction device 10 of Example 2 and the ferromagnetic single tunnel junction device of Comparative Example 2 will be described below.
最初に、 4端子法を用いてコンダクタンス及びトンネル磁気抵抗 (TMR)の印加電 圧依存性を測定した。  First, we measured the voltage dependence of conductance and tunneling magnetoresistance (TMR) using the four-terminal method.
[0063] 図 15 (A) , (B)は、それぞれ、実施例 2の強磁性二重トンネル接合素子 10及び比 較例 2の強磁性一重トンネル接合素子の低バイアス電圧における室温での TMR曲 線を示す図である。図において、横軸は外部磁界 (エルステッド、 Oe)を示し、縦軸は 抵抗 X面積 /z m2 )を示す。第 2の強磁性層 15である Feの厚さ tは、実施例 2の 場合、 1. 5nmである。また、バイアス電圧は、上部電極側を正としたときの 5mVであ る。図 15から明らかなように、実施例 2及び比較例 2の TMRは、それぞれ、 110%、 128%であり、何れも 100%を超えており、ェピタキシャル成長していることを示して いる。 15A and 15B show the TMR curves at room temperature at a low bias voltage of the ferromagnetic double tunnel junction device 10 of Example 2 and the ferromagnetic single tunnel junction device of Comparative Example 2, respectively. It is a figure which shows a line. In the figure, the horizontal axis represents the external magnetic field (Oersted, Oe), and the vertical axis represents the resistance X area / zm 2 ). In the case of Example 2, the thickness t of Fe as the second ferromagnetic layer 15 is 1.5 nm. The bias voltage is 5mV when the upper electrode side is positive. As can be seen from FIG. 15, the TMRs of Example 2 and Comparative Example 2 are 110% and 128%, respectively, exceeding 100%, indicating that they are growing epitaxially.
[0064] 図 16は、実施例 2の強磁性二重トンネル接合素子 10及び比較例 2の強磁性一重ト ンネル接合素子における、規格化 TMRのバイアス電圧依存性を示す図である。図 において、横軸は上部電極を正側とするバイアス電圧 (V)を示し、縦軸は規格化 T MRである。図から明らかなように、黒丸印(參)で示す強磁性二重トンネル接合素子 10の方力 正バイアス側において、白丸印(〇)で示す強磁性一重トンネル接合素 子よりも TMRの低下は小さいことが分かる。一方、負バイアス側においては、両者の バイアス電圧 (V)依存性は殆ど同じである。これは実施例 2の二重トンネル接合にお ける一方の接合の界面状態が悪いためであり、本質的には負バイアス側においても 正バイアス側と同等のバイアス電圧依存性が得られる。 FIG. 16 is a diagram showing the bias voltage dependence of normalized TMR in the ferromagnetic double tunnel junction device 10 of Example 2 and the ferromagnetic single tunnel junction device of Comparative Example 2. In the figure, the horizontal axis shows the bias voltage (V) with the upper electrode on the positive side, and the vertical axis shows the normalized TMR. As is clear from the figure, the direction of the ferromagnetic double tunnel junction device 10 indicated by the black circle (參) is lower on the positive bias side than the ferromagnetic single tunnel junction device indicated by the white circle (◯). I understand that it is small. On the other hand, on the negative bias side, both The bias voltage (V) dependence is almost the same. This is because the interface state of one junction in the double tunnel junction of Example 2 is poor, and essentially the same bias voltage dependence as that on the positive bias side can be obtained on the negative bias side.
[0065] 図 17 (A)〜(E)及び (F)は、それぞれ、実施例 2及び比較例 2の微分トンネルコン ダクタンスのバイアス電圧依存性を示す図である。図において、横軸は上部電極を 正側とするバイアス電圧 (V)を、縦軸は微分トンネルコンダクタンス ( X 10—3 Ω _1)を示 している。図 17 (A)〜(E)において、第 2の強磁性層 15である Fe層の厚さは、それ ぞれ、 1. Onm, 1. 2nm, 1. 3nm, 1. 5nm, 2nmであり、第 2の強磁性層 15の磁ィ匕 は、第 1及び第 3の強磁性層 15, 17の磁化と平行である。図から明ら力ように、トンネ ルコンダクタンスはバイアス電圧に対して振動していることがわかる。図 17 (F)には、 比較のため、強磁性一重トンネル接合素子に対する結果も示している。この比較例 2 では振動が観測されな力つた。 FIGS. 17A to 17E are diagrams showing the bias voltage dependence of the differential tunnel conductance of Example 2 and Comparative Example 2, respectively. In the figure, the horizontal axis represents the bias voltage (V) to the upper electrode and the positive side, and the vertical axis shows the differential tunneling conductance (X 10- 3 Ω _1). In FIGS. 17A to 17E, the thickness of the Fe layer which is the second ferromagnetic layer 15 is 1. Onm, 1.2 nm, 1.3 nm, 1.5 nm and 2 nm, respectively. The magnetic field of the second ferromagnetic layer 15 is parallel to the magnetization of the first and third ferromagnetic layers 15 and 17. As can be seen from the figure, the tunnel conductance oscillates with respect to the bias voltage. Figure 17 (F) also shows the results for a ferromagnetic single tunnel junction device for comparison. In this comparative example 2, no vibration was observed.
[0066] 上記の測定で観測された振動成分を明確化し、真の振動成分のみ取り出すために 、正バイアス側と負バイス側のトンネルコンダクタンス G , G の差分、 A G ( A G = G [0066] In order to clarify the vibration component observed in the above measurement and extract only the true vibration component, the difference between the tunnel conductances G and G on the positive bias side and the negative vice side, A G (A G = G
P N P  P N P
— G )のバイアス電圧依存性を計算した。図 18は、実施例 2及び比較例 2のトンネル — The bias voltage dependence of G) was calculated. Figure 18 shows the tunnels of Example 2 and Comparative Example 2.
N N
コンダクタンスの差分 A Gを示す図である。図において、横軸は上部電極を正側とす るバイアス電圧 (V)を示し、縦軸はトンネルコンダクタンスの差分 Δ G ( X 10— 6Ω— を 示している。図 18から明らかなように、実施例の強磁性二重トンネル接合素子 10に おいては、第 2の強磁性層 15である Fe層の厚さ tが 1. 3nmより薄くなつたときに、振 動が観測されることが分力つた。振動のピークを示すバイアス電圧の間隔 Δ Εは、 20 OmVから 300mVであることが分かった。これに対して、比較例 2の強磁性一重トンネ ル接合素子では、 A Gがほぼ 0であり、振動は観測されな力つた。 It is a figure which shows difference AG of conductance. In the figure, the horizontal axis represents the bias voltage (V) you the upper electrode and the positive side, the vertical axis as apparent from shows the difference Δ G (X 10- 6 Ω- tunnel conductance. Figure 18 In the ferromagnetic double tunnel junction device 10 of the example, the vibration is observed when the thickness t of the Fe layer as the second ferromagnetic layer 15 is thinner than 1.3 nm. The bias voltage interval Δ 示 す indicating the peak of vibration was found to be 20 OmV to 300 mV, whereas in the ferromagnetic single tunnel junction device of Comparative Example 2, AG was almost The vibration was zero and no vibration was observed.
[0067] 上記の第 2の強磁性層 15である Fe層の厚さ tが 1. 3nmより薄くなつたときに観測さ れる振動は、第 1及び第 2の絶縁層 14, 16である MgOノリアで挟まれた Feからなる 第 2の強磁性層 15中に量子井戸が形成され、そのエネルギー準位が不連続になつ たためと考えられる。すなわち、この振動は共鳴トンネル効果によるものである。その ため第 2の強磁性層 15の厚さ tが薄くなるほど、量子準位の間隔が広がるため、振動 の山の位置は、厚さ tが薄くなるほどより大きな電圧側に移行している。 [0068] 上記の不連続な量子準位は、 Feからなる第 2の強磁性層 15が磁性体のため、スピ ンに依存することが考えられる。それを確認するため、中央の第 2の強磁性層 15の磁 ィ匕と両端の第 1及び第 3の強磁性層 13, 17の磁化とが、互いに平行及び反平行な 場合の微分トンネルコンダクタンスのバイアス電圧依存性を調べた。 [0067] The vibration observed when the thickness t of the Fe layer, which is the second ferromagnetic layer 15, is thinner than 1.3 nm is the same as that of the MgO of the first and second insulating layers 14, 16. This is probably because quantum wells were formed in the second ferromagnetic layer 15 composed of Fe sandwiched between noria, and the energy levels became discontinuous. That is, this vibration is due to the resonant tunneling effect. Therefore, as the thickness t of the second ferromagnetic layer 15 is reduced, the interval between the quantum levels is widened. Therefore, the position of the peak of vibration is shifted to a larger voltage side as the thickness t is reduced. [0068] It is conceivable that the above discontinuous quantum levels depend on spin because the second ferromagnetic layer 15 made of Fe is a magnetic substance. In order to confirm this, the differential tunnel conductance in the case where the magnetization of the central second ferromagnetic layer 15 and the magnetization of the first and third ferromagnetic layers 13 and 17 at both ends are parallel and antiparallel to each other. The bias voltage dependence of was investigated.
図 19は、実施例 2の第 2の強磁性層 5の厚さ tが 1. 2nmの強磁性二重トンネル接 合素子 10における、微分トンネルコンダクタンスのバイアス電圧依存性を示す図であ る。図において、横軸は上部電極を正側とするバイアス電圧 (V)を示し、右及び左縦 軸は、それぞれ、各強磁性層 13, 15, 17の磁ィ匕が平行な場合と、反平行の場合の 微分トンネルコンダクタンス(X 10— 3 Ω— を示している。図 19から明らかなように、両 者の微分トンネルコンダクタンスの上向きの矢印( ΐ )で示すピークの位置はわずか ではあるがずれており、これは中央の薄 、第 2の強磁性層 15中にはスピンに依存し た量子準位が形成されて 、ることを示して 、る。 FIG. 19 is a diagram showing the bias voltage dependence of the differential tunnel conductance in the ferromagnetic double tunnel junction device 10 in which the thickness t of the second ferromagnetic layer 5 of Example 2 is 1.2 nm. In the figure, the horizontal axis shows the bias voltage (V) with the upper electrode on the positive side, and the right and left vertical axes show the case where the magnetic layers of the ferromagnetic layers 13, 15 and 17 are parallel to each other and shows Ω- differential tunnel conductance (X 10- 3 in the case of parallel. as from 19 clear, the position of the peak indicated by the upward arrow of the differential tunneling conductance of both persons (ΐ) is located in slight This indicates that a quantum level depending on spin is formed in the second thin ferromagnetic layer 15 at the center.
[0069] 実施例 2及び比較例 2で形成した成長膜の断面を、透過型電子顕微鏡で観察した 。実施例 2及び比較例 2において、第 2の強磁性層 15は、それぞれ、連続薄膜が形 成される場合と、島状になる場合の両方が観測された。  [0069] The cross sections of the growth films formed in Example 2 and Comparative Example 2 were observed with a transmission electron microscope. In Example 2 and Comparative Example 2, the second ferromagnetic layer 15 was observed both when a continuous thin film was formed and when it was island-shaped.
図 20は、実施例 2の成長膜断面において、第 2の強磁性層 15が島状となった場合 の透過型電子顕微鏡像である。図示するように、第 1の絶縁層 14には島状の結晶で ある第 2の強磁性層 15が形成されており、島の大きさは 20〜60nm程度であった。 実施例 3  FIG. 20 is a transmission electron microscope image when the second ferromagnetic layer 15 has an island shape in the growth film cross section of Example 2. FIG. As shown in the figure, a second ferromagnetic layer 15 that is an island-like crystal is formed on the first insulating layer 14, and the size of the island is about 20 to 60 nm. Example 3
[0070] 次に、実施例 3を説明する。 Next, Example 3 will be described.
実施例 2の強磁性二重トンネル接合素子 10における第 3の強磁性層 17である Fe を 20nmとした以外は同様にして、分子線ェピタキシャル成長法で MgO基板 12上に 、 MgO (10) /Fe (50) /MgO (2) /Fe (t) /MgO (2) /Fe (20) /Ta (5) (カツコ 内は膜厚、単位は nm)の順にェピタキシャル成長を行ない、実施例 3の強磁性二重 トンネル接合素子 10となるェピタキシャル成長膜を作製した。第 2の強磁性層 15であ る Fe層の厚さは 1, 1. 2, 1. 5nmまで変化させたので Fe (t)と表記している。分子線 ェピタキシャル成長装置の背圧(Base Pressure)は 5 X 10— 8Paであった。第 1の強 磁性層 13の成膜後には 300°Cで 60分の熱処理を行ない、第 2及び第 3の強磁性層 の成膜後には 200°Cで 60分の熱処理を行なった。 In the same manner except that the third ferromagnetic layer 17 Fe in the ferromagnetic double tunnel junction device 10 of Example 2 was set to 20 nm, MgO (10) was formed on the MgO substrate 12 by molecular beam epitaxy. / Fe (50) / MgO (2) / Fe (t) / MgO (2) / Fe (20) / Ta (5) (Epitaxial growth is performed in the order of thickness in Katsuko and unit is nm) An epitaxially grown film to be the ferromagnetic double tunnel junction element 10 of Example 3 was fabricated. Since the thickness of the Fe layer, which is the second ferromagnetic layer 15, was changed to 1, 1, 2, 1.5 nm, it is expressed as Fe (t). Back pressure of the molecular beam Epitakisharu growth apparatus (Base Pressure) was 5 X 10- 8 Pa. After the first ferromagnetic layer 13 is formed, heat treatment is performed at 300 ° C. for 60 minutes, and the second and third ferromagnetic layers After the film formation, heat treatment was performed at 200 ° C for 60 minutes.
[0071] 図 21は、実施例 3の成膜中にその場観察した反射型高速電子線回折像を示し、図 22は、成膜した Fe及び MgOの結晶配列を模式的に示す図である。 FIG. 21 shows a reflection type high-energy electron diffraction image observed in situ during the film formation of Example 3, and FIG. 22 is a diagram schematically showing the crystal arrangement of the formed Fe and MgO. .
図 21 (A)〜 (F)は基板の成膜順の各層力もの電子線回折像であり、 (A)は第 1の 強磁性層 13である Feの熱処理後の [110]方向を、(B)は第 1の絶縁層 14である M gOの成膜後の [100]方向を、(C)は第 2の強磁性層 15である Feの成膜直後の、(D )は第 2の強磁性層 15である Feの熱処理後の、(E)は第 2の絶縁層 16である MgO の成膜後の、(F)は第 3の強磁性層 17である Feの熱処理後の、電子線回折像をそ れぞれ示している。  Figures 21 (A) to (F) are electron diffraction images of each layer force in the order of deposition of the substrate, and (A) shows the [110] direction after heat treatment of Fe, which is the first ferromagnetic layer 13, (B) shows the [100] direction after deposition of MgO, which is the first insulating layer 14, (C) shows just after deposition of Fe, which is the second ferromagnetic layer 15, and (D) shows the first After heat treatment of Fe, which is the second ferromagnetic layer 15, (E) is after deposition of MgO, which is the second insulating layer 16, and (F) is after heat treatment of Fe, which is the third ferromagnetic layer 17. The electron diffraction images are shown respectively.
図 21 (C)から明らかなように、第 2の強磁性層 15の Feは、成膜直後は結晶方位が 揃ってないことが分かる。図 21 (D)からは、第 2の強磁性層 15の Feの熱処理後には 、ストリーク状の電子線回折となり、格子面方位が揃い、所謂ェピタキシャル成長して いることが確認できた。図 22は、このようにして形成したェピタキシャル成長膜の Fe, Mg, Oの結晶配列を示しており、 Feの格子定数は 4. 05Aで、 MgOの格子定数は 4. 21 Aである。  As is clear from FIG. 21C, it can be seen that the Fe of the second ferromagnetic layer 15 does not have a uniform crystal orientation immediately after film formation. From FIG. 21 (D), it was confirmed that after the heat treatment of Fe of the second ferromagnetic layer 15, streak-like electron diffraction was obtained, the lattice plane directions were uniform, and so-called epitaxial growth was achieved. FIG. 22 shows the crystal arrangement of Fe, Mg, and O of the epitaxially grown film thus formed. The lattice constant of Fe is 4.05A and the lattice constant of MgO is 4.21A.
[0072] 上記ェピタキシャル成長膜を、電子ビームリソグラフィと Arイオンミリングを用いて 10  [0072] The above epitaxially grown film is formed using electron beam lithography and Ar ion milling.
X 10 m2の大きさに微細加工して、実施例 3の強磁性二重トンネル接合素子 10を 製作した。 The ferromagnetic double tunnel junction device 10 of Example 3 was fabricated by microfabrication to a size of X 10 m 2 .
[0073] 次に、比較例 3について説明する。  Next, Comparative Example 3 will be described.
第 1〜第 3の強磁性層の成膜後の熱処理を行なわない以外は、実施例 3と同様に して、比較例 3の強磁性二重トンネル接合素子を製作した。  A ferromagnetic double tunnel junction device of Comparative Example 3 was fabricated in the same manner as Example 3 except that no heat treatment was performed after the first to third ferromagnetic layers were formed.
[0074] 実施例 3及び比較例 3の強磁性二重トンネル接合素子 10の測定結果を下記に説 明する。最初に、 4端子法を用いてコンダクタンス及びトンネル磁気抵抗 (TMR)の印 加電圧依存性を測定した。  The measurement results of the ferromagnetic double tunnel junction device 10 of Example 3 and Comparative Example 3 will be described below. First, the dependence of applied conductance and tunneling magnetoresistance (TMR) on applied voltage was measured using the 4-terminal method.
図 23は、実施例 3の強磁性二重トンネル接合素子 10の低バイアス電圧における室 温での TMR曲線を示す図である。図において、横軸は外部磁界(エルステッド、 Oe )を示し、縦軸は抵抗 &Ω )を示す。第 2の強磁性層 15である Feの厚さ tは、 1. 5nm である。また、バイアス電圧は、上部電極側を正としたときの 5mVである。この場合、 強磁性二重トンネル接合素子 10の第 2の強磁性層 15が島状となっており、第 2の強 磁性層 15の磁ィ匕はランダムな方向を向いている。図 23から明らかなように、実施例 3 の TMRは、室温で 110%であった。図示しないが、 4. 5Kにおける TMRは 128%で あった。何れの温度でも TMRは 100%を超えており、強磁性二重トンネル接合素子 10の各層がェピタキシャル成長していることを示している。実施例 3の規格化 TMR のバイアス電圧依存性についても、実施例 2の強磁性二重トンネル接合素子 10と同 様に、比較例 2の強磁性一重トンネル接合素子よりも TMRの低下は小さ 、ことが判 明した。 FIG. 23 is a view showing a TMR curve at room temperature at a low bias voltage of the ferromagnetic double tunnel junction device 10 of Example 3. FIG. In the figure, the horizontal axis represents the external magnetic field (Oersted, Oe), and the vertical axis represents the resistance & Ω). The thickness t of Fe as the second ferromagnetic layer 15 is 1.5 nm. The bias voltage is 5mV when the upper electrode side is positive. in this case, The second ferromagnetic layer 15 of the ferromagnetic double tunnel junction element 10 has an island shape, and the magnetic field of the second ferromagnetic layer 15 is in a random direction. As is clear from FIG. 23, the TMR of Example 3 was 110% at room temperature. Although not shown, the TMR at 4.5K was 128%. At any temperature, the TMR exceeds 100%, indicating that each layer of the ferromagnetic double tunnel junction device 10 is growing epitaxially. As for the bias voltage dependence of the normalized TMR of Example 3, the decrease in TMR is smaller than that of the ferromagnetic single tunnel junction element of Comparative Example 2, as is the case with the ferromagnetic double tunnel junction element 10 of Example 2. It has been found.
[0075] 図 24は、実施例 3の強磁性二重トンネル接合素子 10において、微分トンネルコン ダクタンスのバイアス電圧変化における第 2の強磁性層 15の膜厚依存性を示す図で ある。図において、横軸は上部電極を正側とするバイアス電圧 (V)を示し、縦軸は微 分トンネルコンダクタンス(dlZdV) (任意目盛)を示している。測定温度は 4. 5Kであ る。図 24において、第 2の強磁性層 15の Fe層の厚さは、それぞれ、 1. Onm, 1. 2n m, 1. 3nm, 1. 5nmの場合を示し、第 2の強磁性層 15の磁化は、第 1及び第 3の強 磁性層 15, 17の磁化と平行である。図から明らかように、トンネルコンダクタンスはバ ィァス電圧に対して振動していることがわかる。観測される振動は、第 1及び第 2の絶 縁層 14, 16である MgOノリアで挟まれた Feからなる第 2の強磁性層 15中に量子井 戸が形成され、そのエネルギー準位が不連続になったためと考えられる。すなわち、 この振動は共鳴トンネル効果によるものである。このため第 2の強磁性層 15の厚さ t が薄くなるほど、量子準位の間隔が広がるため、振動の山の位置は、厚さ tが薄くなる ほどより大きな電圧側に移行して 、る。  FIG. 24 is a diagram showing the film thickness dependence of the second ferromagnetic layer 15 in the bias voltage change of the differential tunnel conductance in the ferromagnetic double tunnel junction device 10 of the third embodiment. In the figure, the horizontal axis indicates the bias voltage (V) with the upper electrode as the positive side, and the vertical axis indicates the minute tunnel conductance (dlZdV) (arbitrary scale). The measurement temperature is 4.5K. In FIG. 24, the thicknesses of the Fe layers of the second ferromagnetic layer 15 are 1. Onm, 1.2 nm, 1.3 nm, and 1.5 nm, respectively. The magnetization is parallel to the magnetization of the first and third ferromagnetic layers 15 and 17. As can be seen, the tunnel conductance oscillates with respect to the bias voltage. The observed vibration is that a quantum well is formed in the second ferromagnetic layer 15 composed of Fe sandwiched between MgO noria, which is the first and second insulating layers 14, 16, and its energy level is It is thought that it became discontinuous. That is, this vibration is due to the resonant tunneling effect. For this reason, as the thickness t of the second ferromagnetic layer 15 decreases, the interval between the quantum levels increases, so that the position of the peak of vibration shifts to a larger voltage side as the thickness t decreases. .
[0076] 図 25は、実施例 3の強磁性二重トンネル接合素子 10において、微分トンネルコン ダクタンスのバイアス電圧変化における温度依存性を示す図で、図 25 (A)は第 2の 強磁性層の厚さが 1. 2nm、(B)が 1. 5nmの場合を示す。図において、横軸は上部 電極を正側とするバイアス電圧 (V)、縦軸は微分トンネルコンダクタンス(dlZdV) ( 任意目盛)を示している。測定温度は、 4. 5K, 100K, 200K, 300Kである。第 2の 強磁性層 15の磁ィ匕は、第 1及び第 3の強磁性層 15, 17の磁化と平行である。図 25 力も明らかなように、微分トンネルコンダクタンスにおける振動力 室温でも観測できる ことが分力つた。 FIG. 25 is a diagram showing the temperature dependence of the bias voltage change of the differential tunnel conductance in the ferromagnetic double tunnel junction device 10 of Example 3. FIG. 25 (A) shows the second ferromagnetic layer. The case where the thickness is 1.2 nm and (B) is 1.5 nm is shown. In the figure, the horizontal axis shows the bias voltage (V) with the upper electrode on the positive side, and the vertical axis shows the differential tunnel conductance (dlZdV) (arbitrary scale). The measurement temperature is 4.5K, 100K, 200K, 300K. The magnetic field of the second ferromagnetic layer 15 is parallel to the magnetization of the first and third ferromagnetic layers 15 and 17. As can be seen in Fig. 25, the vibration force in differential tunnel conductance can be observed even at room temperature. I was divided.
上記の第 2の強磁性層 15である Fe層の厚さ tが 1. 5nmより薄くなつたときに観測さ れる振動は、第 2の強磁性層 15である Feの上向きスピン (アップスピン)の Δ 1バンド が量子準位を形成して 、ることによって 、る。  The vibration observed when the thickness t of the Fe layer, which is the second ferromagnetic layer 15, is less than 1.5 nm is the upward spin (up spin) of the Fe, which is the second ferromagnetic layer 15. The Δ 1 band forms a quantum level and thus
[0077] 図 26は、実施例 3の強磁性二重トンネル接合素子のバンドダイアグラムを示す。図 26 (A)及び (B)は、それぞれ、図 7 (B)、図 7 (C)に相当し、薄い第 2の強磁性層 15 である Feには、上向きスピンによる Δ 1バンドが量子準位を形成していることを示して いる。この強磁性二重トンネル接合素子 10にバイアス電圧を印加し、量子準位と同じ エネルギーになると電子はトンネルしやすくなり、トンネルコンダクタンスが共鳴トンネ ル効果により振動する。  FIG. 26 shows a band diagram of the ferromagnetic double tunnel junction device of Example 3. Figures 26 (A) and (B) correspond to Figures 7 (B) and 7 (C), respectively, and the thin second ferromagnetic layer 15 has a quantum band of Δ 1 due to upward spin. It shows that a level is formed. When a bias voltage is applied to the ferromagnetic double tunnel junction device 10 and the energy becomes the same as that of the quantum level, electrons easily tunnel and the tunnel conductance oscillates due to the resonant tunneling effect.
[0078] 図 27は、第 2の強磁性層のバンドダイヤグラムで、(A)は上向きスピン電子の場合 を、(B)は下向きスピン電子(ダウンスピン)の場合を示している。図 27において、横 軸は波数を示し、縦軸はエネルギーを示している。図から明らかなように、上向きスピ ン電子の場合には、 Δ 1バンドが形成されていることが分かる。  FIG. 27 is a band diagram of the second ferromagnetic layer, where (A) shows the case of upward spin electrons, and (B) shows the case of downward spin electrons (down spin). In Fig. 27, the horizontal axis represents the wave number, and the vertical axis represents the energy. As is clear from the figure, a Δ 1 band is formed in the case of upward spin electrons.
[0079] (比較例 3)  [0079] (Comparative Example 3)
強磁性層の成膜後に熱処理を施さなカゝつた比較例 3の強磁性二重トンネル接合素 子では、実施例 2及び実施例 3で観測された微分トンネルコンダクタンスにおける振 動が全く観測されな力つた。  In the ferromagnetic double tunnel junction device of Comparative Example 3 that was not heat-treated after the formation of the ferromagnetic layer, no vibration in the differential tunnel conductance observed in Examples 2 and 3 was observed. I helped.
[0080] 上記実施例 2及び 3によれば、本発明の強磁性二重トンネル接合素子 10, 25を用 いれば大きな TMRを得ることができる。また、第 2の強磁性層 15の厚さ tを適当に制 御すれば、スピンに依存した量子井戸を形成でき、トンネルコンダクタンスのバイアス 電圧による振動を観測できた。第 2の強磁性層 15は、ェピタキシャル成長していれば 島状でもよぐ連続膜であれば、より明瞭なトンネルコンダクタンスの振動を観測でき た。そのような連続膜は、第 2の強磁性層 15を変えることで可能である。例えば、 Co FeBのようなアモルファス磁性層を用いることで連続膜の作製が可能である。  According to Examples 2 and 3, a large TMR can be obtained by using the ferromagnetic double tunnel junction devices 10 and 25 of the present invention. In addition, if the thickness t of the second ferromagnetic layer 15 was appropriately controlled, a spin-dependent quantum well could be formed, and oscillation of the tunnel conductance due to the bias voltage could be observed. If the second ferromagnetic layer 15 is a continuous film that does not have to be an island shape if it is epitaxially grown, a clearer oscillation of tunnel conductance could be observed. Such a continuous film is possible by changing the second ferromagnetic layer 15. For example, a continuous film can be produced by using an amorphous magnetic layer such as Co 2 FeB.
[0081] 本発明はこれら実施例に限定されるものではなぐ特許請求の範囲に記載した発 明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれることは いうまでもない。  [0081] The present invention is not limited to these examples, and various modifications can be made within the scope of the invention described in the claims, and they are also included in the scope of the present invention. Not too long.

Claims

請求の範囲 The scope of the claims
[1] 第 1の強磁性層と、  [1] a first ferromagnetic layer;
トンネル電子のバリアとなる第 1の絶縁層と、  A first insulating layer serving as a barrier for tunnel electrons;
第 2の強磁性層と、  A second ferromagnetic layer;
トンネル電子のバリアとなる第 2の絶縁層と、  A second insulating layer serving as a barrier for tunneling electrons;
第 3の強磁性層と、が基板上に順次積層されてなる強磁性二重トンネル接合素子 であって、  A ferromagnetic double tunnel junction device, wherein a third ferromagnetic layer is sequentially laminated on a substrate,
少なくとも上記第 1及び第 2の絶縁層と、該第 1及び第 2の絶縁層の間に挿入される 上記第 2の強磁性層とが、同一の結晶面を有する結晶であることを特徴とする、強磁 性二重トンネル接合素子。  At least the first and second insulating layers and the second ferromagnetic layer inserted between the first and second insulating layers are crystals having the same crystal plane. A ferromagnetic double tunnel junction element.
[2] 前記第 2の強磁性層が、層状の連続膜であることを特徴とする、請求項 1に記載の 強磁性二重トンネル接合素子。 2. The ferromagnetic double tunnel junction device according to claim 1, wherein the second ferromagnetic layer is a layered continuous film.
[3] 前記第 1及び第 2の絶縁層が MgO力 なり、前記第 1〜第 3の強磁性層が Feから なることを特徴とする、請求項 1又は 2に記載の強磁性二重トンネル接合素子。 [3] The ferromagnetic double tunnel according to claim 1 or 2, wherein the first and second insulating layers have MgO force, and the first to third ferromagnetic layers are made of Fe. Junction element.
[4] 前記 Feの一部を、 Co又は Ni、あるいは、その両方で置換した bcc構造力もなること を特徴とする、請求項 3に記載の強磁性二重トンネル接合素子。 [4] The ferromagnetic double tunnel junction device according to [3], wherein a part of the Fe is also replaced with Co, Ni, or both.
[5] 前記基板が MgO力もなることを特徴とする、請求項 1に記載の強磁性二重トンネル 接合素子。 5. The ferromagnetic double tunnel junction device according to claim 1, wherein the substrate also has MgO force.
[6] 第 1の強磁性層と、 [6] a first ferromagnetic layer;
トンネル電子のバリアとなる第 1の絶縁層と、  A first insulating layer serving as a barrier for tunnel electrons;
第 2の強磁性層と、  A second ferromagnetic layer;
トンネル電子のバリアとなる第 2の絶縁層と、  A second insulating layer serving as a barrier for tunneling electrons;
第 3の強磁性層と、が基板上に順次積層されてなる強磁性二重トンネル接合素子 であって、  A ferromagnetic double tunnel junction device, wherein a third ferromagnetic layer is sequentially laminated on a substrate,
少なくとも上記第 1及び第 2の絶縁層と、該第 1及び第 2の絶縁層の間に挿入される 上記第 2の強磁性層と、が同一の結晶面を有する結晶であり、  At least the first and second insulating layers and the second ferromagnetic layer inserted between the first and second insulating layers are crystals having the same crystal plane,
上記第 2の強磁性層の厚さを、該第 2の強磁性層中にスピンに依存した複数の量 子準位が形成されるようにしたことを特徴とする、強磁性二重トンネル接合素子。 A ferromagnetic double tunnel junction wherein the thickness of the second ferromagnetic layer is such that a plurality of spin-dependent quantum levels are formed in the second ferromagnetic layer. element.
[7] 第 1の強磁性層と、 [7] a first ferromagnetic layer;
トンネル電子のバリアとなる第 1の絶縁層と、  A first insulating layer serving as a barrier for tunnel electrons;
第 2の強磁性層と、  A second ferromagnetic layer;
トンネル電子のバリアとなる第 2の絶縁層と、  A second insulating layer serving as a barrier for tunneling electrons;
第 3の強磁性層と、が基板上に順次積層されてなる強磁性二重トンネル接合素子 であって、  A ferromagnetic double tunnel junction device, wherein a third ferromagnetic layer is sequentially laminated on a substrate,
少なくとも第 1及び第 2の絶縁層が同一の結晶面を有する結晶であり、第 1及び第 2 の絶縁層の間に挿入される第 2の強磁性層はアモルファス合金であり、第 2の強磁性 層の厚さを、第 2の強磁性層中にスピンに依存した複数の量子準位が形成されるよう にしたことを特徴とする、強磁性二重トンネル接合素子。  At least the first and second insulating layers are crystals having the same crystal plane, the second ferromagnetic layer inserted between the first and second insulating layers is an amorphous alloy, and the second strong layer A ferromagnetic double tunnel junction device, characterized in that a plurality of quantum levels depending on spin are formed in the second ferromagnetic layer with a thickness of the magnetic layer.
[8] 前記第 2の強磁性層が、層状の連続膜であることを特徴とする、請求項 6又は 7に 記載の強磁性二重トンネル接合素子。 8. The ferromagnetic double tunnel junction device according to claim 6, wherein the second ferromagnetic layer is a layered continuous film.
[9] 前記第 2の強磁性層が、島状に配列していることを特徴とする、請求項 6又は 7に記 載の強磁性二重トンネル接合素子。 [9] The ferromagnetic double tunnel junction device according to [6] or [7], wherein the second ferromagnetic layers are arranged in an island shape.
[10] 前記第 1及び第 2の絶縁層が MgO力 なり、前記第 1〜第 3の強磁性層が Feから なることを特徴とする、請求項 6に記載の強磁性二重トンネル接合素子。 10. The ferromagnetic double tunnel junction device according to claim 6, wherein the first and second insulating layers have MgO force, and the first to third ferromagnetic layers are made of Fe. .
[11] 前記第 1及び第 2の絶縁層が MgOからなり、前記第 1及び第 3の強磁性層が Feか らなり、前記アモルファス合金力 CoFeB又は CoFeSiB力 なることを特徴とする、 請求項 7に記載の強磁性二重トンネル接合素子。 [11] The first and second insulating layers are made of MgO, and the first and third ferromagnetic layers are made of Fe, and have the amorphous alloy force CoFeB or CoFeSiB force. 7. A ferromagnetic double tunnel junction device according to 7.
[12] 前記 Feの一部を、 Co又は Ni、あるいは、その両方で置換した bcc構造力 なること を特徴とする、請求項 10又 11に記載の強磁性二重トンネル接合素子。 [12] The ferromagnetic double tunnel junction device according to [10] or [11], wherein a part of Fe is bcc structural force in which Co or Ni or both are substituted.
[13] 前記基板が MgO力もなることを特徴とする、請求項 6又は 7に記載の強磁性二重ト ンネル接合素子。 13. The ferromagnetic double tunnel junction device according to claim 6, wherein the substrate also has MgO force.
[14] 前記強磁性二重トンネル接合素子に印加されるバイアス電圧に対して、トンネルコ ンダクタンス又はトンネル電流が振動することを特徴とする、請求項 6又は 7に記載の 強磁性二重トンネル接合素子。  14. The ferromagnetic double tunnel junction device according to claim 6, wherein a tunnel conductance or a tunnel current oscillates with respect to a bias voltage applied to the ferromagnetic double tunnel junction device. .
[15] 第 1の強磁性層と、トンネル電子のバリアとなる第 1の絶縁層と、第 2の強磁性層と、 トンネル電子のバリアとなる第 2の絶縁層と、第 3の強磁性層と、が順次積層されてな る強磁性二重トンネル接合を用いた三端子素子であって、 [15] a first ferromagnetic layer, a first insulating layer serving as a barrier for tunnel electrons, a second ferromagnetic layer, a second insulating layer serving as a barrier for tunnel electrons, and a third ferromagnetic layer Layered one after another A three-terminal device using a ferromagnetic double tunnel junction,
上記第 1の強磁性層及び第 3の強磁性層を主電極とし、上記第 2の強磁性層を制 御電極とし、  The first ferromagnetic layer and the third ferromagnetic layer are used as main electrodes, and the second ferromagnetic layer is used as a control electrode.
少なくとも上記第 1及び第 2の絶縁層と、該第 1及び第 2の絶縁層の間に挿入される 上記第 2の強磁性層と、が同一の結晶面を有する結晶であり、  At least the first and second insulating layers and the second ferromagnetic layer inserted between the first and second insulating layers are crystals having the same crystal plane,
上記第 2の強磁性層の厚さを、該第 2の強磁性層中にスピンに依存した複数の量 子準位が形成されるようにしたことを特徴とする、強磁性二重トンネル接合を用いた 三端子素子。  A ferromagnetic double tunnel junction wherein the thickness of the second ferromagnetic layer is such that a plurality of spin-dependent quantum levels are formed in the second ferromagnetic layer. Three-terminal device using
[16] 第 1の強磁性層と、トンネル電子のバリアとなる第 1の絶縁層と、第 2の強磁性層と、 トンネル電子のバリアとなる第 2の絶縁層と、第 3の強磁性層と、が順次積層されてな る強磁性二重トンネル接合を、二本のビット線が交差する各位置にマトリクス状に配 設した不揮発性ランダムアクセス磁気メモリであって、  [16] The first ferromagnetic layer, the first insulating layer serving as a barrier for tunnel electrons, the second ferromagnetic layer, the second insulating layer serving as a barrier for tunnel electrons, and a third ferromagnetic layer A non-volatile random access magnetic memory in which ferromagnetic double tunnel junctions are sequentially stacked in a matrix at each position where two bit lines intersect,
少なくとも上記第 1及び第 2の絶縁層と、該第 1及び第 2の絶縁層の間に挿入される 上記第 2の強磁性層と、が同一の結晶面を有する結晶であり、  At least the first and second insulating layers and the second ferromagnetic layer inserted between the first and second insulating layers are crystals having the same crystal plane,
上記第 2の強磁性層の厚さを、該第 2の強磁性層中にスピンに依存した複数の量 子準位が形成されるようにしたことを特徴とする、不揮発性ランダムアクセス磁気メモ yQ A nonvolatile random access magnetic memo characterized in that the second ferromagnetic layer has a thickness in which a plurality of spin-dependent quantum levels are formed in the second ferromagnetic layer. y Q
[17] 第 1の強磁性層と、トンネル電子のバリアとなる第 1の絶縁層と、第 2の強磁性層と、 トンネル電子のバリアとなる第 2の絶縁層と、第 3の強磁性層と、が順次積層されてな る強磁性二重トンネル接合を用いた三端子素子を、ワード線とビット線とが交差する 各位置にマトリクス状に配設した不揮発性ランダムアクセス磁気メモリであって、 少なくとも上記第 1及び第 2の絶縁層と、該第 1及び第 2の絶縁層の間に挿入される 上記第 2の強磁性層と、が同一の結晶面を有する結晶であり、  [17] a first ferromagnetic layer, a first insulating layer serving as a barrier for tunnel electrons, a second ferromagnetic layer, a second insulating layer serving as a barrier for tunnel electrons, and a third ferromagnetic layer This is a nonvolatile random access magnetic memory in which three-terminal elements using ferromagnetic double tunnel junctions, in which layers are sequentially stacked, are arranged in a matrix at each position where a word line and a bit line intersect. And at least the first and second insulating layers and the second ferromagnetic layer inserted between the first and second insulating layers are crystals having the same crystal plane,
上記第 2の強磁性層の厚さを、該第 2の強磁性層中にスピンに依存した複数の量 子準位が形成されるようにしたことを特徴とする、不揮発性ランダムアクセス磁気メモ  A nonvolatile random access magnetic memo characterized in that the second ferromagnetic layer has a thickness in which a plurality of spin-dependent quantum levels are formed in the second ferromagnetic layer.
PCT/JP2006/302545 2005-04-01 2006-02-14 Ferromagnetic dual tunnel junction element and magnetic device WO2006112119A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007521094A JPWO2006112119A1 (en) 2005-04-01 2006-02-14 Ferromagnetic double tunnel junction element and magnetic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005106922 2005-04-01
JP2005-106922 2005-04-01
JP2005-111450 2005-04-07
JP2005111450 2005-04-07

Publications (1)

Publication Number Publication Date
WO2006112119A1 true WO2006112119A1 (en) 2006-10-26

Family

ID=37114861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302545 WO2006112119A1 (en) 2005-04-01 2006-02-14 Ferromagnetic dual tunnel junction element and magnetic device

Country Status (2)

Country Link
JP (1) JPWO2006112119A1 (en)
WO (1) WO2006112119A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502354A (en) * 2007-10-31 2011-01-20 ニューヨーク・ユニバーシティ Fast and low-power magnetic devices based on current-induced spin momentum transfer
WO2018100837A1 (en) * 2016-12-02 2018-06-07 Tdk株式会社 Magnetization reversal element, magneto-resistive effect element, integrated element, and method for manufacturing integrated element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318465A (en) * 2002-04-23 2003-11-07 National Institute Of Advanced Industrial & Technology Flattened tunnel magnetoresistance element
JP2004079633A (en) * 2002-08-12 2004-03-11 Toshiba Corp Semiconductor integrated circuit device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3576111B2 (en) * 2001-03-12 2004-10-13 株式会社東芝 Magnetoresistance effect element
JP3837078B2 (en) * 2002-03-08 2006-10-25 独立行政法人科学技術振興機構 Ferromagnetic single electron device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318465A (en) * 2002-04-23 2003-11-07 National Institute Of Advanced Industrial & Technology Flattened tunnel magnetoresistance element
JP2004079633A (en) * 2002-08-12 2004-03-11 Toshiba Corp Semiconductor integrated circuit device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502354A (en) * 2007-10-31 2011-01-20 ニューヨーク・ユニバーシティ Fast and low-power magnetic devices based on current-induced spin momentum transfer
WO2018100837A1 (en) * 2016-12-02 2018-06-07 Tdk株式会社 Magnetization reversal element, magneto-resistive effect element, integrated element, and method for manufacturing integrated element

Also Published As

Publication number Publication date
JPWO2006112119A1 (en) 2008-12-04

Similar Documents

Publication Publication Date Title
US10516103B1 (en) Magnetoresistive stack and method of fabricating same
US7270896B2 (en) High performance magnetic tunnel barriers with amorphous materials
US7351483B2 (en) Magnetic tunnel junctions using amorphous materials as reference and free layers
US7357995B2 (en) Magnetic tunnel barriers and associated magnetic tunnel junctions with high tunneling magnetoresistance
US7443639B2 (en) Magnetic tunnel junctions including crystalline and amorphous tunnel barrier materials
KR100512180B1 (en) Magnetic tunnel junction in magnetic random access memory device and method for forming the same
US7300711B2 (en) Magnetic tunnel junctions with high tunneling magnetoresistance using non-bcc magnetic materials
EP1801895B1 (en) MgO/Nife MTJ for high performance MRAM application
US7276384B2 (en) Magnetic tunnel junctions with improved tunneling magneto-resistance
JP4873338B2 (en) Spin injection device and magnetic apparatus using the same
EP2073285A2 (en) A high performance MTJ element for STT-RAM and method for making the same
KR20050036985A (en) Nanocrystalline layers for improved mram tunnel junctions
EP2705518A1 (en) Multilayers having reduced perpendicular demagnetizing field using moment dilution for spintronic applications
US20060012926A1 (en) Magnetic tunnel barriers and associated magnetic tunnel junctions with high tunneling magnetoresistance
WO2009110119A1 (en) Ferromagnetic tunnel junction element and driving method of ferromagnetic tunnel junction element
JP2011138954A (en) Method of manufacturing magnetic tunnel junction device using perpendicular magnetization of ferromagnetic layer
JP4061590B2 (en) Magnetic thin film, magnetoresistive effect element and magnetic device using the same
KR20210064025A (en) Oxide interlayers containing glass-forming agents
WO2006112119A1 (en) Ferromagnetic dual tunnel junction element and magnetic device
JP5424178B2 (en) Spin injection device and magnetic apparatus using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007521094

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06713686

Country of ref document: EP

Kind code of ref document: A1