WO2006109408A1 - Total-reflection attenuation optical probe and far-ultraviolet spectrophotometer - Google Patents

Total-reflection attenuation optical probe and far-ultraviolet spectrophotometer Download PDF

Info

Publication number
WO2006109408A1
WO2006109408A1 PCT/JP2006/305262 JP2006305262W WO2006109408A1 WO 2006109408 A1 WO2006109408 A1 WO 2006109408A1 JP 2006305262 W JP2006305262 W JP 2006305262W WO 2006109408 A1 WO2006109408 A1 WO 2006109408A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical probe
optical
total reflection
refractive index
light
Prior art date
Application number
PCT/JP2006/305262
Other languages
French (fr)
Japanese (ja)
Inventor
Noboru Higashi
Yukihiro Ozaki
Akifumi Ikehata
Original Assignee
Kurashiki Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Boseki Kabushiki Kaisha filed Critical Kurashiki Boseki Kabushiki Kaisha
Publication of WO2006109408A1 publication Critical patent/WO2006109408A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light

Definitions

  • the present invention relates to spectroscopic analysis in the far ultraviolet region.
  • spectroscopic analysis is widely used as a very effective means.
  • the spectroscopic analysis methods are roughly classified into ultraviolet-visible spectroscopy, near-infrared spectroscopy, and infrared spectroscopy depending on the measurement wavelength region.
  • the present invention focuses on the attenuated total reflection (Attenuated Total Reflectance) method as a method for measuring the absorption spectrum of a substance having very large absorption.
  • the total reflection attenuation method can measure the amount of light absorbed in the sample by the soaking of light of the wavelength order (evanescent wave) that is formed when light is totally reflected on the surface of the optical probe. Theoretically, an absorption spectrum similar to the transmission spectrum due to the cell length in the wavelength order can be obtained.
  • Japanese Patent Application Laid-Open No. 62-75230 proposes a method for measuring concentrated solutions by attenuated total reflection using an optical probe.
  • the optical system for optical analysis described in US Pat. No. 5,703,366 uses a probe that totally reflects incident light at the surface in contact with the sample substance in the infrared optical system.
  • the disadvantages of probes made of a single crystal member corrosion resistance, mechanical properties, high price, etc.
  • the probe is assembled from the first crystal member and the second crystal member in contact with the first crystal member.
  • the second crystal member has a surface that contacts the sample material.
  • the two crystal members have substantially the same refractive index.
  • the first crystal member is, for example, selenium zinc (ZnSe).
  • ZnSe selenium zinc
  • a diamond is used as an optical probe having a minute surface that causes total reflection of incident light and contacts the sample.
  • a ZnSe crystal is used as a condensing lens that guides light to the diamond crystal.
  • ZnSe is an optical material having substantially the same refractive index as diamond.
  • a second layer for example, zinc oxide, tin dioxide
  • a transparent first layer for example, silicon
  • the second layer is a layer in contact with the sample.
  • an optical material having a high refractive index is used as the first layer
  • an optical material having a low refractive index is used as the second layer.
  • the incident light on the first layer is totally reflected at the interface between the first layer and the second layer at the end face angle and the incident angle, and is opposite to the second layer. Do not enter the sample located on the side.
  • the idea of this invention is unknown.
  • an infrared transmitting optical device such as SiO 2 ZnSe is used.
  • a diamond thin film or a carbon (DLC) thin film containing a diamond structure (for example, a thickness of 600 nm) is formed on the surface of an optical element having a material strength in order to improve surface strength and moisture resistance.
  • an optical element is the multiple reflection prism of the total reflection attenuation absorption measurement accessory.
  • Patent Document 1 JP-A-62-75230
  • Patent Document 2 JP-A-7-12716
  • Patent Document 3 US Pat. No. 5,703,366
  • Patent Document 4 US Patent No. 6907390B1
  • Patent Document 5 JP 2001-91710 A
  • Patent Document 6 JP-A-64-56401
  • An object of the invention is to make it possible to easily perform spectroscopic measurement in the far ultraviolet region for a substance having a large absorption.
  • a first total reflection attenuation optical probe includes a first portion having a first optical material force having light transmission characteristics in a far ultraviolet region, an interface in contact with the first portion, and a sample substance. And a second portion that also has a second optical material power having a refractive index higher than that of the first portion.
  • the light that has passed through the first part enters the second part and can enter the plane of the second part that contacts the sample material at an angle of incidence greater than the critical angle. With a unique shape. If the refractive index of the sample material is smaller than that of the second optical material, total reflection occurs on the plane in contact with the sample material.
  • a plane of the second portion in contact with the sample material and an interface between the first portion and the second portion are parallel to each other.
  • the interface is semicircular.
  • the plane of the second portion and the interface are perpendicular to each other.
  • light transmission characteristics in the far ultraviolet region Preferably, further, light transmission characteristics in the far ultraviolet region.
  • a third portion that also has a third optical material force having a property, and the third portion is located on the opposite side of the second portion with respect to the second portion.
  • the first optical material is any one of magnesium fluoride, lithium fluoride, calcium fluoride, and barium fluoride,
  • the optical material is synthetic silica, quartz, sapphire, zinc selenide, and diamond!
  • the interface between the first part and the second part is such that light transmitted through the first part can enter the second part perpendicularly. Yes, and has a shape that allows the light that is totally reflected by the surface force to be incident vertically when entering the first portion.
  • the second total reflection attenuating optical probe according to the present invention is made of an optical material having light transmission characteristics in the far ultraviolet region, and the refractive index continuously changes at least partially.
  • This probe has a plane that totally reflects light having an incident angle greater than the critical angle on the side in contact with the sample substance, and the refractive index in the far ultraviolet region in the first portion including a part of the plane. Is higher than the rest.
  • the optical material is, for example, magnesium fluoride, and the portion where the refractive index continuously changes is formed by ion plating.
  • the first or second total reflection attenuating optical probe includes a coating layer (for example, a quartz or quartz thin film) having a thickness sufficiently thinner than a measurement wavelength on a surface in contact with water.
  • a coating layer for example, a quartz or quartz thin film
  • the far-ultraviolet spectroscopic measurement device includes a far-total ultraviolet light beam that is disposed in contact with water or an aqueous solution.
  • a light source for irradiating light a light receiving element for detecting the total reflection light of the total reflection attenuation type optical probe force, and a spectroscopic element for dispersing far ultraviolet light in the optical path from the light source to the light receiving element.
  • FIG.3 Diagram showing the configuration of a general reflection-absorption optical probe.
  • FIG.4 Diagram showing the configuration of a two-layer optical probe
  • FIG. 6 Diagram of a variation of the optical probe in Fig. 4.
  • FIG. 7 Diagram showing the configuration of an optical probe with a vertical three-layer structure
  • FIG. 8 is a diagram showing a configuration of a modification of the optical probe in FIG.
  • FIG. 9 is a diagram showing the configuration of another modification of the optical probe in FIG.
  • FIG. 11 is a graph showing the wavelength dependence of the refractive index of each optical material in the far ultraviolet region.
  • FIG. 16 is a graph showing the change in absorbance due to solute concentration with an optical probe whose surface is modified by ion plating.
  • the absorption spectrum of water that appears in the near-infrared region cannot measure the concentration of trace components that are inherently forbidden transitions and weakly absorbed. Therefore, the inventor conducted research focusing on the far ultraviolet spectrum, and pure water has a very large sharp absorption peak near 160 nm in the far ultraviolet region, and changes in the bottom of the sharp absorption. By measuring, it was found that the concentration of a very small amount of dissolved component hydrated in an aqueous solution can be measured. In other words, water itself shows a very steep decrease in absorption spectrum from the absorption peak near 160 nm to the absorption bottom near 200 nm, and the peak position and bandwidth of this absorption band are very small. It also changes with hydration of the minute.
  • Figure 1 shows the far-ultraviolet spectrum of an HC1 aqueous solution with 11 concentrations (1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20 ppm) in the range of 0-20 ppm.
  • the model correlation coefficient R and standard deviation ⁇ were 0.9987 and 0.18 ppm. It was possible to measure a very small amount of HC1 at least up to lOOppm with high accuracy.
  • the detection limit of HC1 in the aqueous solution in this measurement example was 0.5 ppm.
  • the measurement wavelength was limited to the bottom portion of the water absorption band at 180 to 210 nm.
  • the absorption cell with a peak near 160 nm of water has a very large extinction coefficient.
  • the measurement cell length must be reduced to several hundred nm. It is difficult to realize This is because of However, in order to carry out more sensitive component analysis, the change in spectrum absorption appears to be more significant 160 ⁇ ! It is necessary to measure the strong absorption slope of ⁇ 180nm.
  • ATR method total reflection attenuation absorption method
  • the spectral change force of the solvent, water is measured by the optical probe using the total reflection attenuation absorption method described below (hereinafter referred to as the total reflection attenuation optical probe) and the far ultraviolet spectrometer.
  • the measurement wavelength range is 160 ⁇ ! High sensitivity can be achieved by extending to ⁇ 180nm.
  • the refractive index is higher V
  • the medium 14 for example, synthetic quartz
  • the refractive index are lower
  • the medium sample material to be measured.
  • the medium 16 force with higher refractive index hits the interface between 18 (for example, water)
  • the ray 16 is totally reflected if the incident angle ⁇ is larger than the critical angle.
  • the light beam 16 enters a medium 18 having a lower refractive index into the wavelength order by a certain distance, travels toward the interface, and is then reflected.
  • the light rays that enter the medium 18 having a lower refractive index are called evanescent waves.
  • the electric field strength of the evanescent wave is maximum at the reflection point, and decays as soon as it is directed in the direction of the interface and the direction perpendicular to the interface.
  • the force evanescent wave electric field strength is shown schematically in the direction perpendicular to the interface of the evanescent wave above the surface 20 in Fig. 3. penetration depth).
  • the absorption of light with respect to the subduction (evanescent wave) of the wavelength order formed when the light is totally reflected can be measured from the reflected light. Since the penetration depth of this light corresponds to the optical path length of a normal transmission spectrum, an absorption spectrum similar to the transmission spectrum by the cell length of the wavelength order can be obtained theoretically.
  • optical probe total reflection attenuating optical probe
  • the refractive index of the material of the optical probe is larger than the refractive index of the sample substance.
  • optical transmittance of the optical probe material is sufficiently high (transparent) in the measurement wavelength region.
  • the optical probe and the spectroscopic measurement apparatus can also perform spectroscopic measurement using the attenuated total reflection method even for substances having large absorption in the far ultraviolet region other than water.
  • the total reflection attenuating optical probe has, for example, a combined force of the first part and the second part.
  • the first portion is made of a first optical material having light transmission characteristics in the far ultraviolet region.
  • the second part is a second optical material force having an interface in contact with the first part and a plane in contact with the sample substance, and having a refractive index higher than the refractive index of the sample in the far ultraviolet region.
  • the second optical material has a higher refractive index than the first optical material.
  • the second optical material generally cannot constitute an optical probe only with the second optical material having a lower transmittance than the first optical material.
  • the light ray enters the first part, passes through the first part, is refracted at the interface between the first part and the second part, enters the second part, and is totally reflected by the plane.
  • This interface has a shape that allows light rays to enter the plane at an incident angle greater than the critical angle. At this time, a part of the light beam is reflected as an evanescent wave after passing through the sample.
  • the two-layer structure optical probe of the first embodiment includes a holding material 10 and a high refractive index optical material layer 14 in close contact with the first surface 12 thereof.
  • the thickness of the high refractive index optical material layer 14 is preferably about several meters, which is sufficiently longer than the measurement wavelength. Also generally far ultraviolet Because the transmittance is low!
  • the high refractive index optical material layer 14 having a refractive index larger than that of the sample material is provided with a surface 20 in contact with the sample material 18, and the surface 20 enables total reflection.
  • the surface 20 is preferably substantially parallel to the interface 12, but it need not be parallel.
  • the holding material 10 also has an optical material force such as magnesium fluoride, lithium fluoride, and barium fluoride.
  • the shape of the holding member 10 is a triangular prism in this example, but is not limited thereto.
  • the light beam 16 incident on the holding material 10 passes through the holding material 10, is refracted at the interface 12, and enters the high refractive index material layer 14.
  • the light beam 16 transmitted through the high refractive index optical material layer 14 is incident on the surface 20 at an incident angle greater than the critical angle and is totally reflected.
  • the reflected light is refracted at the interface 12 and enters the holding material 10, passes through the holding material 10, and goes out.
  • the reflected light is measured, and the absorbance of the sample substance 18 is measured.
  • the two-layer structure optical probe according to the first embodiment will be further described.
  • the second optical material 14 in contact with water as the sample material needs to have a refractive index larger than the refractive index of water in the wavelength region reaching the far ultraviolet region near its refractive power of 60 nm.
  • materials that satisfy this requirement are quartz (or quartz) and sapphire.
  • the transmittance of quartz and sapphire in the far ultraviolet region near 160 nm is less than 50% at lmm thickness.
  • the second optical material has a sufficiently thin thickness of several hundreds of zm or less, the transmittance is 90% or more even near 160 nm, so that it can function as a total reflection attenuation probe.
  • optical materials such as magnesium fluoride (see Fig.
  • lithium fluoride, and barium fluoride have a refractive index lower than that of quartz up to the vacuum ultraviolet region and have a thickness of several millimeters or more.
  • the light transmittance is not impaired. Therefore, for example, in the ultraviolet region of 150 nm or more, these optical materials having a refractive index smaller than that of the second optical material and having sufficient transmission characteristics are used as the probe holding material 10, and the second optical material is totally reflected on the optical material.
  • a two-layer structure that forms a thin film 14 that is thicker than it can function as a probe (for example, 1 m or more for a wavelength range of 160 to 250 nm) is used.
  • the refractive index of each material is about 1 in the far ultraviolet region near 160 nm. 5, about 2.2 and about 1.6. This makes it possible to realize an optical probe that can measure the attenuated total reflection of water and aqueous solutions near 160 nm. Using this optical probe, measurement of trace component concentrations in aqueous solution Can be provided.
  • the optical probe having the two-layer structure described above has the first portion (holding) of the first optical material having light transmission characteristics in the far ultraviolet region to be measured (for example, the far ultraviolet wavelength region longer than 15 Onm).
  • the second optical material has a higher refractive index than the sample substance and the first optical material in the far ultraviolet region, and the second portion 14 has a thickness sufficiently longer than the measurement wavelength.
  • a surface 20 that totally reflects light having an incident angle greater than the critical angle is provided on the side in contact with the sample material 18.
  • the optical probe of the second embodiment as shown in FIG. 5, at least a part of the optical probe 14 ′ having an optical material (magnesium fluoride, etc.) having light transmission characteristics in the far ultraviolet region is also present.
  • the refractive index changes continuously.
  • the vicinity of the surface 20 in contact with the sample substance 18 is modified so that the refractive index is continuously increased as shown in the upper right of FIG.
  • the refractive index in the vicinity of the surface is higher than the refractive index in other portions, and finally higher in the plane 20 than the refractive index of the sample material 18.
  • the light reaches the surface in a circular arc or elliptical orbit.
  • ion plating is used for example.
  • metal ions such as aluminum, magnesium, argon, and sodium are distributed by ion plating on the surface of a vacuum ultraviolet transmission optical material such as magnesium fluoride, lithium fluoride, calcium fluoride, and barium fluoride with an energy of about 100 KWV. .
  • a vacuum ultraviolet transmission optical material such as magnesium fluoride, lithium fluoride, calcium fluoride, and barium fluoride with an energy of about 100 KWV. .
  • the embedded impurity concentration continuously changes and the refractive index continuously changes.
  • the refractive index of 180 nm to 150 nm can be increased intentionally.
  • an optical probe for total reflection attenuation absorption method can be formed.
  • the sample substance is When it is water, some of the optical material may ionize and elute into the water sample.
  • a third layer is formed of a material (for example, synthetic stone or quartz) on the surface 20 in contact with the sample substance, and does not elute into the sample substance. Since the refractive index of the optical material is larger than that of quartz (quartz), the incident light is totally reflected at the interface 20 between the optical material and the quartz (quartz) coating layer 22. At this time, if the coating layer 22 is sufficiently thinner than the measurement wavelength and has a thickness (about several tens of nm), the penetrating light (evanescent wave) reaches the sample, so that the absorbance of the sample can be measured.
  • the positional relationship between the holding material and the high refractive index optical material layer is made different in order to reduce the incident angle.
  • the surface where the high refractive index optical material layer is in contact with the sample substance and the interface where the high refractive index optical material layer is in contact with the holding material are positioned perpendicular to each other, for example.
  • FIG. 7 shows an optical probe having a vertical three-layer structure according to the fourth embodiment.
  • This optical probe includes a rectangular high refractive index optical material layer 40 and a first holding material 42 and a second holding material 44 which are in contact with both sides thereof.
  • the sample material 46 is in contact with the end face 48 in the longitudinal direction of the high refractive index optical material layer 40 having a higher refractive index than the sample material 46.
  • the thickness of the high-refractive index optical material layer 40 is preferably several hundred ⁇ m or less, but can be barely practical up to about lmm.
  • the light beam 50 incident on the first holding material 42 enters the interface 52 between the first holding material 42 and the high refractive index optical material layer 40 and is refracted. Incident and totally reflected.
  • the reflected light beam is refracted at the second interface 54 between the high refractive index optical material layer 40 and the second holding material 44 and exits from the second holding material 44.
  • the absorbance of the sample substance 46 is measured.
  • the outer shape of the first holding member 42 is preferably designed so that the light beam 50 is incident substantially perpendicularly from the outside.
  • the optical material for the high refractive index optical material layer 40 and the holding materials 42 and 44 the same materials as those in the first embodiment are used.
  • FIG. 8 shows a modification of the optical probe of the fourth embodiment.
  • the second holding material is omitted.
  • the light beam 50 reflected by the end surface 48 of the high refractive index optical material layer 40 is emitted into the air at the interface 54.
  • FIG. 9 shows another modification of the optical probe of the fourth embodiment.
  • the outer shapes 56 and 58 of the first holding material 42 'and the second holding material 44' are semicircular. Therefore, the light beam 50 can be incident substantially perpendicular to the holding material 42 'even if the incident direction is changed.
  • FIG. 10 shows an optical probe according to the fifth embodiment.
  • the high refractive index optical material layer 60 includes an end face 64 in contact with the sample material 62.
  • the side of the high refractive index optical material layer 60 that does not contact the sample material 62 is in contact with the holding material 66 through the interface 68.
  • Both the interface 68 and the outer shape 70 of the retaining material 66 are semicircular. Therefore, the light beam 50 can enter the holding member 66 and the interface 68 almost perpendicularly even if the incident direction changes.
  • FIG. 11 shows various materials, that is, sapphire, synthetic quartz, quartz (SiO 2), glass, and the like.
  • FIG. 12 shows the calculation data of the incident angle dependence of the absorbance of pure water measured by the vertical three-layer structure optical probe according to the fourth embodiment.
  • quartz quartz
  • the absorbance peak decreases as the incident angle ⁇ force 1 ⁇ 28 ° force increases. If the high refractive index optical material layer is also quartz (quartz), the same result is obtained in the first embodiment.
  • FIG. 13 shows quartz (quartz) as a high refractive index optical material in the two-layer structure optical probe according to the first embodiment or the vertical three-layer structure optical probe according to the fourth embodiment.
  • the wavelength dependence of the penetration depth when using is shown.
  • Incident angle ⁇ force 1 ⁇ 28 ° force
  • the depth of penetration decreases as the force increases.
  • the penetration depth is 50 to lOOnm at a wavelength near 160 nm. This corresponds to the optical path length in a normal optical cell.
  • FIG. 14 shows the absorbance of aqueous solutions having different solute concentrations when quartz (quartz) is used as the optical material of the high refractive index optical material layer in the vertical three-layer structure optical probe according to the fourth embodiment.
  • quartz quartz
  • the incident angle ⁇ was 70 °.
  • Absorbance peaks decrease with increasing solute concentration.
  • the high refractive index optical material layer is also made of quartz ( Crystal), the same result is obtained in the first embodiment.
  • FIG. 15 shows the absorbance spectra of aqueous solutions having different solute concentrations when sapphire is used as the optical material of the high refractive index optical material layer in the vertical three-layer structure optical probe according to the fourth embodiment.
  • the incident angle ⁇ was 60 °.
  • the absorbance peak decreases as the solute concentration increases. If the high refractive index optical material layer is also a sapphire, the same result is obtained in the first embodiment.
  • the absorbance peak decreases as the solute concentration increases.
  • FIG. 17 is a spectrum in the far ultraviolet region when pure water is measured using the quartz-coated optical probe according to the third embodiment.
  • Sapphire was used as the second optical material.
  • the absorbance of water having a huge absorption peak at 160 nm is assumed (in the case of lmm transmission measurement), and the thickness of the quartz coating film is 0, 10, 20, 30, 40 , The spectrum was obtained at 50 nm. (Note that the spectrum was obtained based on the ratio of the reflectance of the sample material to water.) As a result, even if a quartz thin film is present, the evanescent wave reaches the sample water layer. I was divided.
  • FIG. 18 is a spectrum in the far ultraviolet region when aqueous solutions having different solute concentrations are measured using the quartz-coated optical probe according to the third embodiment.
  • Sapphire was used as the second optical material.
  • quartz quartz (quartz) coating film (thickness 20 nm).
  • the far ultraviolet spectrum is calculated.
  • the incident angles are both 60 °.
  • changes in the far-ultraviolet spectrum appear as the solute concentration increases. It can be seen that the concentration can be quantified. This result is exactly the same as in the fourth embodiment even when the quartz coating is applied to the surface in contact with the sample.
  • FIG. 19 shows the configuration and refractive index profile of the optical probe of the 78th embodiment. Similar to the optical probe of the first embodiment, this optical probe is a first optical material (magnesium fluoride, lithium fluoride, barium fluoride, etc.) having light transmission characteristics in the far ultraviolet wavelength region. It consists of a first part 10 'and a second part 14' of a second optical material (synthetic stone, sapphire, etc.) placed in contact with the first part 10 '. The second optical material has a higher refractive index than water in the far ultraviolet region. The difference from the optical probe of the first embodiment is that the interfaces 12 ′ and 12 ′′ between the first portion 10 ′ and the second portion 14 ′ allow the vertical incidence of incident light and reflected light.
  • first optical material magnesium fluoride, lithium fluoride, barium fluoride, etc.
  • the second portion 14 ' is to totally reflect light having an incident angle greater than the critical angle at the interface 20 with the sample substance 18.
  • the thickness of the second portion 14' has sufficient transmission characteristics. The normal incidence described above is to reduce the reflection loss when entering the second portion 14 ', and an anti-reflection coating is applied to the interfaces 22 and 22' having a large refractive index gap. If sapphire is used for the second part 14 ', it is desirable to apply non-reflective coating to the interfaces 12' and 12 ". Further, the surfaces 22 and 22 'of the first portion 10' are also provided with a shape that makes normal incidence. Total reflection occurs at the surface where the second portion 14 ′ contacts the sample material 18.
  • the evanescent wave travels in the direction of the interface between the second portion 14 ′ and the sample material 18. This reflected wave is measured to measure the absorption of the sample material. Therefore, the reflected wave is affected by transmission to the sample material (water or aqueous solution) 18. Also, as in the second embodiment, when using a surface modification portion by Mg F ion plating, the light beam is bent in the traveling direction.
  • the refractive index profile shows the refractive index change along ray 16 when magnesium fluoride is used as the first optical material and quartz and sapphire are used as the second optical material. It also shows the change in refractive index when a surface modification part is provided by ion plating of an optical material of magnesium fluoride.
  • FIG. 20 shows the configuration of a deep ultraviolet spectroscopic trace component concentration meter (measurement wavelength: 160 to 210 nm) using any of the optical probes described above (total reflection attenuation optical probe).
  • An optical probe 102 is provided in contact with the sample material 18 in the sample passage 100. Ensure that sample material is introduced into the cell and that the optical probe faces the sample material in the cell. Alternatively, without using a cell, for example, a wall surface of a pipe for introducing a spraying path may be used as a probe.
  • Light generated from an ultraviolet light source (for example, a deuterium lamp) 104 passes through a grating mirror 106, which is a monochromator, is reflected by the mirror 108, and enters the optical probe 102.
  • an ultraviolet light source for example, a deuterium lamp
  • the incident angle to the optical probe 102 is set appropriately.
  • the reflected light from the optical probe 102 is reflected by the mirror 110 and then enters the ultraviolet light sensor 112.
  • nitrogen gas is introduced into the above-mentioned optical system.
  • the air is replaced with argon gas or the air itself is evacuated to vacuum, a method can be used.
  • the spectrum detected by the ultraviolet light sensor 112 is processed by the signal processing unit 114, and the absorbance is calculated based on the measurement data.
  • a calibration curve can be created by a known multivariate analysis for absorbance at multiple wavelengths. To measure the water spectrum at 160 nm, the cell length needs to be about lOOnm.
  • the above-mentioned optical probe measures various liquids, gases, and solid samples that have large absorption in the far ultraviolet region in addition to water using the attenuated total reflection method. It can. For example, liquids such as isopropyl alcohol and gases such as oxygen can be measured.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A total-reflection attenuation optical probe for use in spectrophotometry in the far-ultraviolet region of a sample such as a trace of solute component dissolved in water. The optical probe comprises a first portion of a first optical material exhibiting a light transmission characteristic in the far-ultraviolet region and a second portion of a second optical material arranged in contact therewith. For example, the second optical material exhibits a higher refractive index in the far-ultraviolet region than in the first portion. The second portion is provided, on the side touching a sample, with a surface which totally reflects the light having an incident angle equal to or larger than the critical angle. Alternatively, the optical probe is composed of an optical material exhibiting a light transmission characteristic in the far-ultraviolet region and provided, on the side touching a sample, with a surface which totally reflects the light having an incident angle equal to or larger than a critical angle. The refractive index in the vicinity of the surface is higher in the far-ultraviolet region than in the other part.

Description

全反射減衰型光学プローブおよびそれを用いた遠紫外分光測定装置 技術分野  Total reflection attenuation type optical probe and far ultraviolet spectroscopic measurement apparatus using the same
[0001] 本発明は、遠紫外域での分光分析に関するものである。  [0001] The present invention relates to spectroscopic analysis in the far ultraviolet region.
背景技術  Background art
[0002] 近年水の純度やその性質の微弱な変化を精度よぐかつ、その水質を変化させるこ となく測定するという用途が増加している。たとえば半導体の製造プロセスは、その比 抵抗が理論限界値に近いレベルの純度を要求するに至っている。また、近年では、 その非常に純度の高い超純水に特定の機能を付加させた機能水なるものが利用さ れるようになってきている。  [0002] In recent years, there has been an increasing use of measuring slight changes in the purity and properties of water with high accuracy and without changing the water quality. For example, semiconductor manufacturing processes have demanded a level of purity whose resistivity is close to the theoretical limit. Moreover, in recent years, functional water, which is obtained by adding a specific function to ultrapure water with extremely high purity, has come to be used.
[0003] 水または水溶成分の識別 ·定量分析にお!/、て、分光分析は非常に有効な手段とし て多種多様に利用されている。その分光分析手法は、測定波長領域によって、紫外 可視分光、近赤外分光、赤外分光に大別される。  [0003] For the identification and quantitative analysis of water or water-soluble components, spectroscopic analysis is widely used as a very effective means. The spectroscopic analysis methods are roughly classified into ultraviolet-visible spectroscopy, near-infrared spectroscopy, and infrared spectroscopy depending on the measurement wavelength region.
[0004] ところで、本発明では、非常に吸収が大きい物質の吸収スペクトルを測定する方法 として、全反射減衰吸光(Attenuated Total Reflectance)法に着目するので、ここで、 従来の全反射減衰吸光法について説明する。全反射減衰吸光法によれば、光が光 学プローブの表面で全反射する際に形成される波長オーダーの光の浸みだし (エバ ネッセント波)による試料内での光吸収量を測定できるので、理論的に波長オーダー のセル長による透過スペクトルと類似の吸収スペクトルを得ることができる。特開昭 62 — 75230号公報には、光学プローブを応用した全反射減衰吸光法による濃厚溶液 類の測定方法が提案されて 、る。光学プローブの材質として合成石英やサファイア を用いた全反射減衰吸光法が種々に実現され、全反射減衰吸光法自体の測定感 度を高める方法も特開平 7— 12716号公報などに提案されている。  [0004] By the way, the present invention focuses on the attenuated total reflection (Attenuated Total Reflectance) method as a method for measuring the absorption spectrum of a substance having very large absorption. explain. The total reflection attenuation method can measure the amount of light absorbed in the sample by the soaking of light of the wavelength order (evanescent wave) that is formed when light is totally reflected on the surface of the optical probe. Theoretically, an absorption spectrum similar to the transmission spectrum due to the cell length in the wavelength order can be obtained. Japanese Patent Application Laid-Open No. 62-75230 proposes a method for measuring concentrated solutions by attenuated total reflection using an optical probe. Various methods of attenuated total reflection using synthetic quartz or sapphire as the material of the optical probe have been realized, and a method for increasing the measurement sensitivity of the attenuated total reflection itself has also been proposed in Japanese Patent Application Laid-Open No. 7-12716. .
[0005] 複数の光学材料力 なる全反射減衰吸光法用の光学プローブも提案されて 、る。 [0005] An optical probe for total reflection attenuation absorption method having a plurality of optical material forces has also been proposed.
米国特許第 5703366号公報に記載された光学分析用の光学系では、赤外線光学 系にお 、て、サンプル物質と接触する面で入射光を全反射するプローブを用いる。 ここで、単独の結晶部材からなるプローブの欠点 (耐食性、機械的性質、高価格など )を解消するため、第 1結晶部材と、第 1結晶部材に接する第 2結晶部材とからプロ一 ブを組み立てている。第 2結晶部材はサンプル物質に接触する面を備える。 2つの結 晶部材は、実質的に同じ屈折率をもつ。第 2結晶部材がダイヤモンドである場合、第 1結晶部材は、たとえばセレンィ匕亜鉛 (ZnSe)である。また、米国特許第 6907390B1 号公報に記載された可視域および赤外域での小型顕微鏡では、微小な面で全反射 減衰吸光を観測して、固体サンプルの測定の再現性を高める。ここで、入射光の全 反射を起こさせかつ試料と接触する微小な面を備える光学プローブとして、ダイヤモ ンドを用いる。さらに、ダイヤモンド結晶に光を案内する集光レンズとして ZnSe結晶を 用いる。 ZnSeは、ダイヤモンドと実質的に同じ屈折率を持つ光学材料である。なお、 特開 2001— 91710号公報に記載された全反射減衰吸光プローブでは、光吸収が 大きな第 2層(たとえば酸ィ匕亜鉛、二酸化錫)を、透明な第 1層(たとえばシリコン)と鏡 面接合することが提案されている。第 2層は、試料と接する層である。ここで、第 1層と して屈折率の大きな光学材料が用いられ、第 2層として屈折率の小さな光学材料が 用 、られて 、る。し力し実施例 1などにお 、て記載されて 、る端面角と入射角度では 、第 1層への入射光は第 1層と第 2層の界面で全反射され、第 2層の反対側に位置す るサンプルの中に入らない。この発明の考え方は不明である。なお、特開昭 64— 56 401号公報に記載された赤外線透過光学素子では、 SiO ZnSeなどの赤外線透過 The optical system for optical analysis described in US Pat. No. 5,703,366 uses a probe that totally reflects incident light at the surface in contact with the sample substance in the infrared optical system. Here, the disadvantages of probes made of a single crystal member (corrosion resistance, mechanical properties, high price, etc.) To solve this problem, the probe is assembled from the first crystal member and the second crystal member in contact with the first crystal member. The second crystal member has a surface that contacts the sample material. The two crystal members have substantially the same refractive index. When the second crystal member is diamond, the first crystal member is, for example, selenium zinc (ZnSe). In addition, in the small-sized microscope in the visible range and the infrared range described in US Pat. No. 6,907,390B1, the total reflection attenuation absorption is observed on a minute surface to improve the reproducibility of the measurement of the solid sample. Here, a diamond is used as an optical probe having a minute surface that causes total reflection of incident light and contacts the sample. Furthermore, a ZnSe crystal is used as a condensing lens that guides light to the diamond crystal. ZnSe is an optical material having substantially the same refractive index as diamond. In the total reflection attenuating probe described in Japanese Patent Laid-Open No. 2001-91710, a second layer (for example, zinc oxide, tin dioxide) having a large light absorption is replaced with a transparent first layer (for example, silicon) and a mirror. Surface bonding has been proposed. The second layer is a layer in contact with the sample. Here, an optical material having a high refractive index is used as the first layer, and an optical material having a low refractive index is used as the second layer. However, as described in Example 1, etc., the incident light on the first layer is totally reflected at the interface between the first layer and the second layer at the end face angle and the incident angle, and is opposite to the second layer. Do not enter the sample located on the side. The idea of this invention is unknown. In the infrared transmitting optical element described in JP-A-64-56401, an infrared transmitting optical device such as SiO 2 ZnSe is used.
2、  2,
材料力もなる光学素子の表面に、表面強度と耐湿性の改善のため、ダイヤモンド薄 膜またはダイヤモンド構造を含むカーボン (DLC)の薄膜 (たとえば 600nmの厚さ)を 形成する。光学素子の 1例は、全反射減衰吸光測定付属装置の多重反射プリズムで ある。実施例で用いられている DLC薄膜の光学的性質については、赤外域吸収ス ベクトルに影響を与えな力つたと記載されて 、る他は、摩耗試験や耐湿試験の結果 が記載されているのみである。すなわち、ダイヤモンド薄膜の作用効果としては機械 的性質と化学的性質のみが注目されて 、る。 A diamond thin film or a carbon (DLC) thin film containing a diamond structure (for example, a thickness of 600 nm) is formed on the surface of an optical element having a material strength in order to improve surface strength and moisture resistance. One example of an optical element is the multiple reflection prism of the total reflection attenuation absorption measurement accessory. Regarding the optical properties of the DLC thin film used in the examples, it was described that it had no influence on the infrared absorption spectrum, and the results of the abrasion test and moisture resistance test were only described. It is. That is, only the mechanical and chemical properties are attracting attention as the effect of the diamond thin film.
特許文献 1 :特開昭 62— 75230号公報 Patent Document 1: JP-A-62-75230
特許文献 2 :特開平 7— 12716号公報 Patent Document 2: JP-A-7-12716
特許文献 3:米国特許第 5703366号公報 Patent Document 3: US Pat. No. 5,703,366
特許文献 4:米国特許第 6907390B1号公報 特許文献 5:特開 2001— 91710号公報 Patent Document 4: US Patent No. 6907390B1 Patent Document 5: JP 2001-91710 A
特許文献 6:特開昭 64 - 56401号公報  Patent Document 6: JP-A-64-56401
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 近赤外に現れる水の吸収スペクトルは本来禁制遷移で吸収が弱ぐ水の中の極微 量の溶解成分の濃度が測定できない。そこで、近赤外スペクトルでは有意差が得ら れない極微量の溶解成分の濃度測定法が必要になっている。一方、水には 160nm 付近に大きな吸収ピークがある。したがって、遠紫外域で水や水溶液のスペクトルを 測定するには、水の吸収が分光測定での大きな障害となる。水以外の物質において も遠紫外域で大きな吸収がある場合は、同様に、その吸収が分光測定での障害とな る。なお、赤外域や可視域で使用可能な上述の従来の全反射減衰吸光測定法は、 遠紫外域では光学プローブがサンプル物質と接する平面で全反射を生じないため 利用できなかった。 [0007] The absorption spectrum of water appearing in the near infrared cannot measure the concentration of a very small amount of dissolved components in water that is inherently forbidden transition and weakly absorbed. Therefore, there is a need for a method for measuring the concentration of trace amounts of dissolved components that cannot be significantly different from the near-infrared spectrum. On the other hand, water has a large absorption peak around 160 nm. Therefore, water absorption is a major obstacle to spectroscopic measurement in order to measure water and aqueous solution spectra in the far ultraviolet region. If a substance other than water also has a large absorption in the far ultraviolet region, the absorption similarly becomes an obstacle to spectroscopic measurement. The above-mentioned conventional total reflection attenuation measurement method that can be used in the infrared region and the visible region cannot be used in the far ultraviolet region because the optical probe does not cause total reflection on the plane in contact with the sample material.
[0008] 発明の目的は、大きな吸収がある物質に対して遠紫外域での分光測定を容易に行 えるようにすることである。  [0008] An object of the invention is to make it possible to easily perform spectroscopic measurement in the far ultraviolet region for a substance having a large absorption.
課題を解決するための手段  Means for solving the problem
[0009] 本発明に係る第 1の全反射減衰型光学プローブは、遠紫外域で光透過特性を有 する第 1の光学材料力 なる第 1部分と、この第 1部分に接する界面とサンプル物質 と接する平面とを備え、前記第 1部分の屈折率より高い屈折率を有する第 2の光学材 料力もなる第 2部分とからなる。第 1部分と第 2部分の間の界面は、第 1部分を透過し た光線が第 2部分に入って、第 2部分の前記サンプル物質と接する平面に臨界角以 上の入射角で入射可能な形状を備える。サンプル物質の屈折率が第 2の光学材料 の屈折率より小さければ、サンプル物質と接する平面で全反射が生じる。  [0009] A first total reflection attenuation optical probe according to the present invention includes a first portion having a first optical material force having light transmission characteristics in a far ultraviolet region, an interface in contact with the first portion, and a sample substance. And a second portion that also has a second optical material power having a refractive index higher than that of the first portion. At the interface between the first part and the second part, the light that has passed through the first part enters the second part and can enter the plane of the second part that contacts the sample material at an angle of incidence greater than the critical angle. With a unique shape. If the refractive index of the sample material is smaller than that of the second optical material, total reflection occurs on the plane in contact with the sample material.
[0010] 第 1の全反射減衰型光学プローブにおいて、たとえば、前記第 2部分の前記サンプ ル物質と接する平面と前記第 1部分と第 2部分の間の界面とが互いに平行である。ま た、第 1の全反射減衰型光学プローブにおいて、たとえば、前記界面は半円状であ る。また、第 1の全反射減衰型光学プローブにおいて、たとえば、前記第 2部分の前 記平面と前記界面とが互いに垂直である。好ましくは、さらに、遠紫外域で光透過特 性を有する第 3の光学材料力もなる第 3部分を備え、この第 3部分は、前記第 2部分 に関して、前記第 1部分とは反対の側に位置される。 [0010] In the first total reflection attenuation optical probe, for example, a plane of the second portion in contact with the sample material and an interface between the first portion and the second portion are parallel to each other. In the first total internal reflection attenuation optical probe, for example, the interface is semicircular. In the first total reflection attenuation optical probe, for example, the plane of the second portion and the interface are perpendicular to each other. Preferably, further, light transmission characteristics in the far ultraviolet region. And a third portion that also has a third optical material force having a property, and the third portion is located on the opposite side of the second portion with respect to the second portion.
[0011] 第 1の全反射減衰型光学プローブにおいて、好ましくは、前記第 1の光学材料は、 フッ化マグネシウム、フッ化リチウム、フッ化カルシウムおよびフッ化バリウムのいずれ かであり、前記の第 2光学材料が、合成石英、水晶、サファイア、セレン化亜鉛および ダイヤモンドの!/、ずれかである。  In the first total reflection attenuating optical probe, preferably, the first optical material is any one of magnesium fluoride, lithium fluoride, calcium fluoride, and barium fluoride, The optical material is synthetic silica, quartz, sapphire, zinc selenide, and diamond!
[0012] 第 1の全反射減衰型光学プローブにおいて、好ましくは、前記第 1部分と第 2部分 の間の界面は、前記第 1部分を透過した光が前記第 2部分に垂直に入射可能であり 、かつ、前記面力 全反射された光が前記第 2部分力 前記第 1部分に入る際に垂 直に入射可能な形状を備える。  In the first total reflection attenuating optical probe, preferably, the interface between the first part and the second part is such that light transmitted through the first part can enter the second part perpendicularly. Yes, and has a shape that allows the light that is totally reflected by the surface force to be incident vertically when entering the first portion.
[0013] 本発明に係る第 2の全反射減衰型光学プローブは、遠紫外域で光透過特性を有 する光学材料からなり、少なくとも一部において屈折率が連続的に変化する。このプ ローブは、サンプル物質と接する側に、臨界角以上の入射角の光を全反射する平面 を有し、前記の平面の一部を含む第 1の部分での遠紫外域での屈折率がその他の 部分より高い。前記光学材料は、たとえば、フッ化マグネシウムであり、前記の屈折率 が連続的に変化する部分はイオンプレーティングにより形成されたものである。  [0013] The second total reflection attenuating optical probe according to the present invention is made of an optical material having light transmission characteristics in the far ultraviolet region, and the refractive index continuously changes at least partially. This probe has a plane that totally reflects light having an incident angle greater than the critical angle on the side in contact with the sample substance, and the refractive index in the far ultraviolet region in the first portion including a part of the plane. Is higher than the rest. The optical material is, for example, magnesium fluoride, and the portion where the refractive index continuously changes is formed by ion plating.
[0014] 好ましくは、第 1または第 2の全反射減衰型光学プローブは、水と接する側の面に、 測定波長より十分薄い厚さのコーティング層(たとえば石英または水晶の薄膜)を備 える。  [0014] Preferably, the first or second total reflection attenuating optical probe includes a coating layer (for example, a quartz or quartz thin film) having a thickness sufficiently thinner than a measurement wavelength on a surface in contact with water.
[0015] 本発明に係る遠紫外分光測定装置は、水または水溶液に接面して配置される前記 の!、ずれかの全反射減衰型光学プローブと、全反射減衰型光学プローブに遠紫外 光を照射する光源と、全反射減衰型光学プローブ力 の全反射光を検出する受光 素子と、光源から受光素子までの光路において、遠紫外光を分光する分光素子とを 備える。  [0015] The far-ultraviolet spectroscopic measurement device according to the present invention includes a far-total ultraviolet light beam that is disposed in contact with water or an aqueous solution. A light source for irradiating light, a light receiving element for detecting the total reflection light of the total reflection attenuation type optical probe force, and a spectroscopic element for dispersing far ultraviolet light in the optical path from the light source to the light receiving element.
発明の効果  The invention's effect
[0016] 本発明では、吸光度の大きな物質に対して遠紫外域での分光測定を可能にした。  In the present invention, it is possible to perform spectroscopic measurement in the far ultraviolet region for a substance having a large absorbance.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]HC1水溶液の遠紫外スペクトルの図 [図 2]HC1の濃度を予測する検量線モデルの相関性を示すグラフ [0017] [Fig.1] Far ultraviolet spectrum of HC1 aqueous solution [Figure 2] Graph showing the correlation of the calibration curve model for predicting the concentration of HC1
[図 3]—般的な反射減衰吸収光学プローブの構成を示す図  [Fig.3] Diagram showing the configuration of a general reflection-absorption optical probe.
[図 4]2層構造の光学プローブの構成を示す図  [Fig.4] Diagram showing the configuration of a two-layer optical probe
[図 5]表面改質を行った場合の光学プローブの構成を示す図  [Figure 5] Diagram showing the configuration of the optical probe when surface modification is performed
[図 6]図 4の光学プローブの変形例の図  [Fig. 6] Diagram of a variation of the optical probe in Fig. 4.
[図 7]縦型 3層構造の光学プローブの構成を示す図  [Fig. 7] Diagram showing the configuration of an optical probe with a vertical three-layer structure
[図 8]図 7の光学プローブの変形例の構成を示す図  FIG. 8 is a diagram showing a configuration of a modification of the optical probe in FIG.
[図 9]図 7の光学プローブの別の変形例の構成を示す図  FIG. 9 is a diagram showing the configuration of another modification of the optical probe in FIG.
[図 10]半円 2層構造の光学プローブの構成を示す図  [Figure 10] Diagram showing the configuration of an optical probe with a semicircular two-layer structure
[図 11]遠紫外域における各光学材料の屈折率の波長依存性を示すグラフ  FIG. 11 is a graph showing the wavelength dependence of the refractive index of each optical material in the far ultraviolet region.
[図 12]合成石英を用 Vヽる光学プローブによる吸光度の入射角依存性を示すグラフ [Figure 12] Graph showing the dependence of the absorbance on the incident angle with an optical probe using synthetic quartz V
[図 13]合成石英を用いる光学プローブによるエバネッセント波の潜り込み深さを示す グラフ [Figure 13] Graph showing the depth of evanescent wave penetration by an optical probe using synthetic quartz
[図 14]合成石英を用いる光学プローブによる吸光度の溶質濃度による変化を示すグ ラフ  [Fig.14] Graph showing changes in absorbance due to solute concentration with an optical probe using synthetic quartz
[図 15]サファイアを用いる光学プローブによる吸光度の溶質濃度による変化を示すグ ラフ  [Fig.15] Graph showing the change in absorbance due to solute concentration with an optical probe using sapphire
[図 16]イオンプレーティングによって表面改質された光学プローブによる吸光度の溶 質濃度による変化を示すグラフ  FIG. 16 is a graph showing the change in absorbance due to solute concentration with an optical probe whose surface is modified by ion plating.
[図 17]光学プローブに異なる厚さの石英薄膜をコーティングした場合の純水の吸光 度を示すグラフ  [Fig. 17] Graph showing the absorbance of pure water when optical probes are coated with quartz thin films of different thicknesses
[図 18]光学プローブに石英薄膜をコーティングした場合の異なる濃度の溶液の吸光 度を示すグラフ  [Figure 18] Graph showing the absorbance of solutions with different concentrations when an optical probe is coated with a quartz thin film
[図 19]現実的な光学プローブ配置と屈折率プロファイルの図  [Figure 19] Realistic optical probe arrangement and refractive index profile
[図 20]遠紫外分光応用微量成分濃度計のブロック図 [Fig.20] Block diagram of trace concentration meter applied to far ultraviolet spectroscopy
符号の説明 Explanation of symbols
10 第 1部分、 12 界面、 14 第 2部分、 18 サンプル物質、 20 サ ンプルと接する面、 22 コーティング層、 40 高屈折率光学材質層、 42 第 1保持材、 44 第 2保持材、 46 サンプル物質、 48 サンプルと接する面 、 52 界面、 54 界面、 100 サンプル通路、 102 光学プローブ、 1 04 紫外光源、 106 グレーティングミラー、 112 紫外光センサ、 114 信 号処理部。 10 1st part, 12 interface, 14 2nd part, 18 sample material, 20 contact surface, 22 coating layer, 40 high refractive index optical material layer, 42 1st holding material, 44 2nd holding material, 46 sample substance, 48 sample contact surface, 52 interface, 54 interface, 100 sample path, 102 optical probe, 104 UV light source, 106 grating mirror, 112 UV sensor, 114 Signal processor.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、添付の図面を参照して発明の実施の形態を説明する。 Hereinafter, embodiments of the invention will be described with reference to the accompanying drawings.
近赤外域に現れる水の吸収スペクトルは本来禁制遷移で吸収が弱ぐ極微量の溶 解成分の濃度が測定できない。そこで、発明者は、遠紫外スペクトルに着目して研究 したところ、純粋な水は遠紫外域の 160nm付近に非常に大きなシャープな吸収ピー クを有し、そのシャープな吸収の裾部分の変化を測定することにより、水溶液中に水 和する極微量の溶解成分の濃度が測定できることを見出した。つまり、水自身は 160 nm付近の吸収ピークから 200nm付近の吸収ボトムまでに非常に急峻な吸収スぺク トルの減少を示し、かつ、この吸収バンドのピーク位置やバンド幅が極微量の溶質成 分の水和によっても変化する。そのため、その吸収ピークのわずかな波長シフトは、 そのシャープな吸収の傾斜部分では非常に高感度に捉えられ、水溶液中の極微量 成分の濃度測定に利用できる。(これについては特願 2004— 023877号の明細書 に記載している。)すなわち、水の吸収ピークの裾部分のスペクトルを測定し、複数波 長での吸光度の多変量解析により検量線を作成することにより、極微量の溶解成分 を測定できた。たとえば、図 1は、 0〜20ppmの範囲内の 11の濃度(1、 2、 3、 4、 5、 6、 8、 10、 12、 16、 20ppm)の HC1水溶液の遠紫外スペクトルを示し、図 2は、 HC1 の濃度を予測する検量線モデルの相関性を示す。モデルの相関係数 Rと標準偏差 σは、 0.9987と 0.18ppmであった。少なくとも lOOppmまで微量の HC1が高精度で 定量測定できることが分力つた。本測定例での水溶液中の HC1の検出限界は 0.5pp mであった。  The absorption spectrum of water that appears in the near-infrared region cannot measure the concentration of trace components that are inherently forbidden transitions and weakly absorbed. Therefore, the inventor conducted research focusing on the far ultraviolet spectrum, and pure water has a very large sharp absorption peak near 160 nm in the far ultraviolet region, and changes in the bottom of the sharp absorption. By measuring, it was found that the concentration of a very small amount of dissolved component hydrated in an aqueous solution can be measured. In other words, water itself shows a very steep decrease in absorption spectrum from the absorption peak near 160 nm to the absorption bottom near 200 nm, and the peak position and bandwidth of this absorption band are very small. It also changes with hydration of the minute. Therefore, a slight wavelength shift of the absorption peak can be detected with very high sensitivity in the sharp absorption slope, and can be used for measuring the concentration of trace components in an aqueous solution. (This is described in the specification of Japanese Patent Application No. 2004-023877.) In other words, the spectrum of the bottom of the absorption peak of water is measured, and a calibration curve is created by multivariate analysis of absorbance at multiple wavelengths. By doing so, a very small amount of dissolved components could be measured. For example, Figure 1 shows the far-ultraviolet spectrum of an HC1 aqueous solution with 11 concentrations (1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20 ppm) in the range of 0-20 ppm. 2 shows the correlation of the calibration curve model that predicts the concentration of HC1. The model correlation coefficient R and standard deviation σ were 0.9987 and 0.18 ppm. It was possible to measure a very small amount of HC1 at least up to lOOppm with high accuracy. The detection limit of HC1 in the aqueous solution in this measurement example was 0.5 ppm.
[0020] 上述の水及び水溶液の測定例において、測定波長は 180〜210nmにある水の吸 収バンドの裾部分に限定したものであった。それは、水の 160nm付近にピークを持 つ吸収バンドの吸光係数が非常に大きぐ 180nm以下の測定波長の透過スペクトル を得るためには測定のセル長を数百 nmにまで薄くする必要があり、実現が困難と考 えられたためである。しかし、さらに高感度な成分分析を実施するためには、よりスぺ タトル吸収の変化が大きく現れる 160ηπ!〜 180nmの強大な吸収傾斜部分を測定す る必要がある。 In the above-described measurement examples of water and aqueous solution, the measurement wavelength was limited to the bottom portion of the water absorption band at 180 to 210 nm. The absorption cell with a peak near 160 nm of water has a very large extinction coefficient. To obtain a transmission spectrum with a measurement wavelength of 180 nm or less, the measurement cell length must be reduced to several hundred nm. It is difficult to realize This is because of However, in order to carry out more sensitive component analysis, the change in spectrum absorption appears to be more significant 160 ηπ! It is necessary to measure the strong absorption slope of ~ 180nm.
[0021] ところで、遠紫外域に存在する水の吸収ピーク付近(160nm)で水や水溶液のスぺ タトルを測るには、セル長を lOOnm程度に短くする必要がある力 これは困難である 。そこで、発明者は、非常に吸収が大きい物質の吸収スペクトルを測定する方法とし て知られている全反射減衰吸光法 (ATR法)に着目した。従来の遠紫外分光法によ る水溶液中の溶解成分濃度測定方法は、すべて溶質の吸収バンドから特定物質の 濃度を測定するものであって、溶媒である水のスペクトル変化力 溶質の濃度を測定 するものではな力つた。しかし、以下に説明する全反射減衰吸光法を用いた光学プ ローブ (以下では全反射減衰光学プローブという)及び遠紫外分光測定装置により、 溶媒である水のスペクトル変化力 溶質の濃度を測定する上述の方法を、その測定 波長域を 160ηπ!〜 180nmへ拡張することによって高感度化できる。  [0021] By the way, in order to measure the spectrum of water or an aqueous solution in the vicinity of the absorption peak of water (160 nm) existing in the far ultraviolet region, it is difficult to reduce the cell length to about lOOnm. Therefore, the inventor has focused on the total reflection attenuation absorption method (ATR method), which is known as a method for measuring the absorption spectrum of a substance having very large absorption. All conventional methods for measuring the concentration of dissolved components in aqueous solutions using far-ultraviolet spectroscopy measure the concentration of a specific substance from the absorption band of the solute. There was no power to do. However, the spectral change force of the solvent, water, is measured by the optical probe using the total reflection attenuation absorption method described below (hereinafter referred to as the total reflection attenuation optical probe) and the far ultraviolet spectrometer. The measurement wavelength range is 160ηπ! High sensitivity can be achieved by extending to ~ 180nm.
[0022] まず、全反射減衰吸光法について説明すると、図 3に示すように、屈折率がより高 V、媒体 14 (たとえば合成石英)と屈折率がより低 、媒体 (測定対象のサンプル物質) 18 (たとえば水)の間の界面に、屈折率がより高い媒体側 14力も光線 16が当たると、 入射角 Θが臨界角より大きな場合には光線は全反射される。しかし、この際に、光線 16は、屈折率がより低い媒体 18にも波長オーダーの一定の距離潜り込み、界面方 向に進み、その後、反射される。この屈折率がより低い媒体 18に潜り込む光線をェ バネッセント波という。エバネッセント波の電界強度は反射点で最大であり、界面方向 と界面に鉛直な方向に向力つてすぐに減衰する。なお、図 3の面 20の上側にエバネ ッセント波の界面に鉛直な方向での電界強度の変化を図式的に示している力 エバ ネッセント波の電場強度が lZeまで減衰する距離を潜り込み深さ (penetration depth )という。力かる方法によれば、光が全反射する際に形成される波長オーダーの光の 潜り込み (エバネッセント波)に対する光の吸収を反射光から測定できる。この光の潜 り込み深さが通常の透過スペクトルの光路長に対応するので、理論的に波長オーダ 一のセル長による透過スペクトルと類似の吸収スペクトルを得ることができる。  First, the total reflection attenuation absorption method will be described. As shown in FIG. 3, the refractive index is higher V, the medium 14 (for example, synthetic quartz) and the refractive index are lower, and the medium (sample material to be measured). When the medium 16 force with higher refractive index hits the interface between 18 (for example, water), the ray 16 is totally reflected if the incident angle Θ is larger than the critical angle. However, at this time, the light beam 16 enters a medium 18 having a lower refractive index into the wavelength order by a certain distance, travels toward the interface, and is then reflected. The light rays that enter the medium 18 having a lower refractive index are called evanescent waves. The electric field strength of the evanescent wave is maximum at the reflection point, and decays as soon as it is directed in the direction of the interface and the direction perpendicular to the interface. It should be noted that the force evanescent wave electric field strength is shown schematically in the direction perpendicular to the interface of the evanescent wave above the surface 20 in Fig. 3. penetration depth). According to the powerful method, the absorption of light with respect to the subduction (evanescent wave) of the wavelength order formed when the light is totally reflected can be measured from the reflected light. Since the penetration depth of this light corresponds to the optical path length of a normal transmission spectrum, an absorption spectrum similar to the transmission spectrum by the cell length of the wavelength order can be obtained theoretically.
[0023] 全反射減衰吸光法に適応できる光学プローブ (全反射減衰光学プローブ)が必要 とする要件は、以下の 2つである。 [0023] An optical probe (total reflection attenuating optical probe) that can be adapted to attenuated total reflection is required The following two requirements are:
(1)光学プローブの材質の屈折率がサンプル物質の屈折率よりも大きいこと。  (1) The refractive index of the material of the optical probe is larger than the refractive index of the sample substance.
(2)光学プローブの材質の光透過率が測定波長領域で十分に高 ヽ (透明である)こ と。  (2) The optical transmittance of the optical probe material is sufficiently high (transparent) in the measurement wavelength region.
しかし、水の屈折率は遠紫外域では波長が短くなるにつれて著しく増加するため、全 反射減衰光学プローブとしての全反射条件を満たす透過材料がない。このため、測 定波長領域を 200nmまたはせ!/ヽぜ ヽ 190nm以上に限定する光学プローブしか実 用化されていない。すなわち、水の 160nm付近のピーク波長まで測定できる光学プ ローブを用いた全反射減衰吸光法の例は、背景技術で説明した従来の全反射減衰 光学プローブを含め、報告されていな力つた。発明者は、いくつかの光学材料に特 定の配置条件を課すことで、 180nmより短 、波長域で水などの全反射減衰吸光が 測定可能であることを発見し、力かる光学プローブを利用して水溶液中の極微量な 溶解成分濃度の測定、水質の微妙な変化などを定量測定できる分光測定装置を提 供する。この光学プローブや分光測定装置は、一般的に、水以外の遠紫外域で吸 収が大きい物質に対しても、同様に全反射減衰吸光法を用いて分光測定ができる。  However, since the refractive index of water increases remarkably as the wavelength becomes shorter in the far ultraviolet region, there is no transmission material that satisfies the total reflection condition as a total reflection attenuation optical probe. For this reason, only an optical probe that limits the measurement wavelength region to 200 nm or less! In other words, examples of the attenuated total reflection method using an optical probe that can measure water up to a peak wavelength near 160 nm, including the conventional attenuated total reflection optical probe described in the background art, have not been reported. The inventor discovered that total reflection attenuation absorption of water and the like can be measured in a wavelength range shorter than 180 nm by imposing specific arrangement conditions on some optical materials, and a powerful optical probe is used. In addition, we provide a spectroscopic measurement device that can measure very small amounts of dissolved components in aqueous solutions and quantitatively measure subtle changes in water quality. In general, the optical probe and the spectroscopic measurement apparatus can also perform spectroscopic measurement using the attenuated total reflection method even for substances having large absorption in the far ultraviolet region other than water.
[0024] 全反射減衰光学プローブは、たとえば第 1部分と第 2部分の組み合わせ力 なる。  [0024] The total reflection attenuating optical probe has, for example, a combined force of the first part and the second part.
第 1部分は、遠紫外域で光透過特性を有する第 1の光学材料からなる。また、第 2部 分は、第 1部分に接する界面とサンプル物質と接する平面とを備え、遠紫外域におい て試料の屈折率より高い屈折率を有する第 2の光学材料力 なる。第 2の光学材料 は、第 1の光学材料より高い屈折率をもつ。第 2の光学材料は、一般に第 1の光学材 料より透過率が低ぐ第 2の光学材料のみでは光学プローブを構成できない。光線は 、第 1部分に入射し、第 1部分を透過し、第 1部分と第 2部分の間の界面で屈折して 第 2部分に入って、前記の平面で全反射する。この界面は、光線が前記平面に臨界 角以上の入射角で入射可能な形状を備える。このとき光線の一部はエバネッセント 波としてサンプルを透過した後反射する。  The first portion is made of a first optical material having light transmission characteristics in the far ultraviolet region. The second part is a second optical material force having an interface in contact with the first part and a plane in contact with the sample substance, and having a refractive index higher than the refractive index of the sample in the far ultraviolet region. The second optical material has a higher refractive index than the first optical material. The second optical material generally cannot constitute an optical probe only with the second optical material having a lower transmittance than the first optical material. The light ray enters the first part, passes through the first part, is refracted at the interface between the first part and the second part, enters the second part, and is totally reflected by the plane. This interface has a shape that allows light rays to enter the plane at an incident angle greater than the critical angle. At this time, a part of the light beam is reflected as an evanescent wave after passing through the sample.
[0025] 第 1の実施形態の 2層構造光学プローブは、図 4に示すように、保持材 10と、その 1 面 12に密着した高屈折率光学材質層 14とからなる。高屈折率光学材質層 14の厚 みは、測定波長より充分長ぐ数 m程度以上が好ましい。また、一般的に遠紫外線 透過率が低!、ので数 mm程度まで厚く出来な ヽ。サンプル物質よりも大き!/、屈折率 をもつ高屈折率光学材質層 14は、サンプル物質 18に接する面 20を備え、この面 20 で全反射を可能とする。面 20は、界面 12とほぼ平行であることが好ましいが、必ずし も平行でなくてもよい。保持材 10は、フッ化マグネシウム、フッ化リチウム、フッ化バリ ゥムなどの光学材料力もなる。保持材 10の形状はこの例では三角プリズムであるが、 これに限られない。保持材 10に入射した光線 16は、保持材 10を透過し、界面 12で 屈折して高屈折率材料層 14に入る。高屈折率光学材質層 14を透過した光線 16は 、面 20に臨界角以上の入射角で入射し、全反射される。反射された光は、界面 12で 屈折して保持材 10に入り、保持材 10を透過して、外に出て行く。この反射光を測定 してサンプル物質 18の吸光度を測定する。 As shown in FIG. 4, the two-layer structure optical probe of the first embodiment includes a holding material 10 and a high refractive index optical material layer 14 in close contact with the first surface 12 thereof. The thickness of the high refractive index optical material layer 14 is preferably about several meters, which is sufficiently longer than the measurement wavelength. Also generally far ultraviolet Because the transmittance is low! The high refractive index optical material layer 14 having a refractive index larger than that of the sample material is provided with a surface 20 in contact with the sample material 18, and the surface 20 enables total reflection. The surface 20 is preferably substantially parallel to the interface 12, but it need not be parallel. The holding material 10 also has an optical material force such as magnesium fluoride, lithium fluoride, and barium fluoride. The shape of the holding member 10 is a triangular prism in this example, but is not limited thereto. The light beam 16 incident on the holding material 10 passes through the holding material 10, is refracted at the interface 12, and enters the high refractive index material layer 14. The light beam 16 transmitted through the high refractive index optical material layer 14 is incident on the surface 20 at an incident angle greater than the critical angle and is totally reflected. The reflected light is refracted at the interface 12 and enters the holding material 10, passes through the holding material 10, and goes out. The reflected light is measured, and the absorbance of the sample substance 18 is measured.
第 1の実施形態である 2層構造光学プローブについてさらに説明する。サンプル物 質である水と接する第 2の光学材料 14は、その屈折率力 l60nm付近の遠紫外域に 至る波長域において、水の屈折率よりも大きな屈折率を有する必要がある。この要件 を満たす材質として、例えば石英 (または水晶)とサファイアがあげられる。石英とサフ アイァの 160nm付近の遠紫外域における透過率は lmmの厚さにおいて 50%以下 である。しかし、第 2の光学材料が数百; z m以下と十分に薄い厚みである場合、その 透過率は 160nm付近でも 90%以上となるため、全反射減衰プローブとして機能で きる。また、フッ化マグネシウム(図 10参照)、フッ化リチウム、フッ化バリウムなどの光 学材質は、真空紫外領域まで石英よりも屈折率は低ぐかつ、厚さが数 mm以上であ つても、光透過率は損なわれない。したがって、たとえば 150nm以上の紫外域で第 2 の光学材料より屈折率が小さぐかつ十分な透過特性を有するこれら光学材料をプ ローブの保持材 10とし、その上に第 2の光学材料が全反射プローブとして機能し得 る以上の厚み(たとえば 160〜250nmの波長域に対して 1 m以上)の薄膜 14を形 成する 2層構造とする。例えば、保持材 10としてフッ化マグネシウムを、第 2の光学材 質層としてサファイアを用い、サンプル物質が水である場合の各物質屈折率は、 160 nm付近の遠紫外域において、それぞれ約 1. 5、約 2. 2、約 1. 6である。これにより、 160nm付近の水及び水溶液の全反射減衰吸光度の測定が可能となる光学プロ一 ブを実現できる。この光学プローブを用いて、水溶液中の微量成分濃度などの測定 が可能な装置を提供できる。 The two-layer structure optical probe according to the first embodiment will be further described. The second optical material 14 in contact with water as the sample material needs to have a refractive index larger than the refractive index of water in the wavelength region reaching the far ultraviolet region near its refractive power of 60 nm. Examples of materials that satisfy this requirement are quartz (or quartz) and sapphire. The transmittance of quartz and sapphire in the far ultraviolet region near 160 nm is less than 50% at lmm thickness. However, if the second optical material has a sufficiently thin thickness of several hundreds of zm or less, the transmittance is 90% or more even near 160 nm, so that it can function as a total reflection attenuation probe. In addition, optical materials such as magnesium fluoride (see Fig. 10), lithium fluoride, and barium fluoride have a refractive index lower than that of quartz up to the vacuum ultraviolet region and have a thickness of several millimeters or more. The light transmittance is not impaired. Therefore, for example, in the ultraviolet region of 150 nm or more, these optical materials having a refractive index smaller than that of the second optical material and having sufficient transmission characteristics are used as the probe holding material 10, and the second optical material is totally reflected on the optical material. A two-layer structure that forms a thin film 14 that is thicker than it can function as a probe (for example, 1 m or more for a wavelength range of 160 to 250 nm) is used. For example, when magnesium fluoride is used as the holding material 10 and sapphire is used as the second optical material layer, and the sample material is water, the refractive index of each material is about 1 in the far ultraviolet region near 160 nm. 5, about 2.2 and about 1.6. This makes it possible to realize an optical probe that can measure the attenuated total reflection of water and aqueous solutions near 160 nm. Using this optical probe, measurement of trace component concentrations in aqueous solution Can be provided.
[0027] したがって、上述の 2層構造の光学プローブは、測定対象の遠紫外域 (たとえば 15 Onmより長い遠紫外波長の領域)で光透過特性を有する第 1の光学材料の第 1部分 (保持材) 10と、界面 12で第 1部分 10と接する第 2の光学材料の第 2部分 (薄膜) 14と からなる。ここで、第 2の光学材料は、遠紫外域でサンプル物質および第 1の光学材 料より高い屈折率を有し、かつ、第 2部分 14は、測定波長より十分長い厚みを有し、 また、サンプル物質 18と接する側に、臨界角以上の入射角の光を全反射する面 20 を有する。  [0027] Therefore, the optical probe having the two-layer structure described above has the first portion (holding) of the first optical material having light transmission characteristics in the far ultraviolet region to be measured (for example, the far ultraviolet wavelength region longer than 15 Onm). Material) 10 and a second portion (thin film) 14 of the second optical material in contact with the first portion 10 at the interface 12. Here, the second optical material has a higher refractive index than the sample substance and the first optical material in the far ultraviolet region, and the second portion 14 has a thickness sufficiently longer than the measurement wavelength. On the side in contact with the sample material 18, a surface 20 that totally reflects light having an incident angle greater than the critical angle is provided.
[0028] 第 2の実施形態の光学プローブでは、図 5に示すように、遠紫外域で光透過特性を 有する光学材料 (フッ化マグネシウムなど)力もなる光学プローブ 14'において、少な くとも一部において屈折率が連続的に変化する。ここで、サンプル物質 18に接する 表面 20の近傍を改質して、たとえば図 16の右上に示すように、屈折率を連続的に増 カロさせる。表面近傍の屈折率は、他の部分での屈折率より高ぐ最終的に平面 20で はサンプル物質 18の屈折率よりも高くなる。この図の例では、光は円弧または楕円 軌道を描いて表面に達する。表面改質のため、たとえばイオンプレーティングを用い る。たとえばフッ化マグネシウム、フッ化リチウム、フッ化カルシウム、フッ化バリウムな どの真空紫外透過光学材質の表面に 100KWV程度のエネルギーでアルミニウム、 マグネシウム、アルゴン、ナトリウムなどの金属イオンをイオンプレーティングで分布さ せる。これにより埋め込まれた不純物濃度が連続的に変化して、屈折率が連続的に 変化される。このようにイオンプレーティングなどにより表面改質部を形成することによ り、たとえば 180nm〜150nmの屈折率を作為的に増加できる。この波長域の屈折 率を、サンプル物質 18と接する平面 20においてサンプル物質 18の屈折率よりも高 い屈折率に改質することで、全反射減衰吸光法用の光学プローブを形成できる。  In the optical probe of the second embodiment, as shown in FIG. 5, at least a part of the optical probe 14 ′ having an optical material (magnesium fluoride, etc.) having light transmission characteristics in the far ultraviolet region is also present. The refractive index changes continuously. Here, the vicinity of the surface 20 in contact with the sample substance 18 is modified so that the refractive index is continuously increased as shown in the upper right of FIG. The refractive index in the vicinity of the surface is higher than the refractive index in other portions, and finally higher in the plane 20 than the refractive index of the sample material 18. In the example in this figure, the light reaches the surface in a circular arc or elliptical orbit. For surface modification, for example, ion plating is used. For example, metal ions such as aluminum, magnesium, argon, and sodium are distributed by ion plating on the surface of a vacuum ultraviolet transmission optical material such as magnesium fluoride, lithium fluoride, calcium fluoride, and barium fluoride with an energy of about 100 KWV. . As a result, the embedded impurity concentration continuously changes and the refractive index continuously changes. Thus, by forming the surface modification portion by ion plating or the like, for example, the refractive index of 180 nm to 150 nm can be increased intentionally. By modifying the refractive index in this wavelength region to a refractive index higher than the refractive index of the sample substance 18 on the plane 20 in contact with the sample substance 18, an optical probe for total reflection attenuation absorption method can be formed.
[0029] 次に、第 3の実施形態である石英コーティング型光学プローブについて説明する。  [0029] Next, a quartz-coated optical probe according to a third embodiment will be described.
第 1の光学プローブにおいて高屈折率光学材質層 14の光学材料がサファイアであ る場合、および第 2の光学プローブにお 、てイオンプレーティングによって表面改質 が行われている場合、サンプル物質が水であるとき、光学材料の一部がイオンィ匕し、 試料である水に溶出する可能性がある。これを防止するために、図 6に示すように、 サンプル物質と接する面 20の上にサンプル物質に溶出しな 、材料 (たとえば合成石 英ゃ水晶)で第 3の層を形成し、これをコーティング層 22とする。光学材料の屈折率 は石英 (水晶)の屈折率より大き!、ため、入射光は光学材料と石英 (水晶)のコーティ ング層 22の間の界面 20で全反射する。このときコーティング層 22が測定波長より十 分薄 、厚さ(数十 nm程度)であれば浸みだし光 (エバネッセント波)はサンプルに到 達するため、サンプルの吸光度の測定が可能となる。 When the optical material of the high refractive index optical material layer 14 is sapphire in the first optical probe, and when surface modification is performed by ion plating in the second optical probe, the sample substance is When it is water, some of the optical material may ionize and elute into the water sample. To prevent this, as shown in Figure 6, A third layer is formed of a material (for example, synthetic stone or quartz) on the surface 20 in contact with the sample substance, and does not elute into the sample substance. Since the refractive index of the optical material is larger than that of quartz (quartz), the incident light is totally reflected at the interface 20 between the optical material and the quartz (quartz) coating layer 22. At this time, if the coating layer 22 is sufficiently thinner than the measurement wavelength and has a thickness (about several tens of nm), the penetrating light (evanescent wave) reaches the sample, so that the absorbance of the sample can be measured.
[0030] 第 1の実施の形態の光学プローブでは、光線 16が高屈折率光学材質層 14との界 面 12に入射するとき、実際には入射角は 90° に近くなる。しかし、入射角が小さい ほうが光学プローブとして使いやすい。そこで、次に説明する第 4の実施の形態の光 学プローブでは、入射角を小さくするため、保持材と高屈折率光学材質層との位置 関係を異ならせる。具体的には、高屈折率光学材質層がサンプル物質に接触する 面と、高屈折率光学材質層が保持材に接触する界面とを、たとえば互いに垂直に位 置させる。 In the optical probe of the first embodiment, when the light beam 16 is incident on the interface 12 with the high refractive index optical material layer 14, the incident angle is actually close to 90 °. However, a smaller incident angle is easier to use as an optical probe. Therefore, in the optical probe of the fourth embodiment described below, the positional relationship between the holding material and the high refractive index optical material layer is made different in order to reduce the incident angle. Specifically, the surface where the high refractive index optical material layer is in contact with the sample substance and the interface where the high refractive index optical material layer is in contact with the holding material are positioned perpendicular to each other, for example.
[0031] 図 7は、第 4の実施の形態の縦型 3層構造の光学プローブを示す。この光学プロ一 ブは、長方形の高屈折率光学材質層 40とその両側に接する第 1保持材 42および第 2保持材 44からなる。サンプル物質 46は、サンプル物質 46よりも大きい屈折率をも つ高屈折率光学材質層 40の長手方向の端面 48に接する。高屈折率光学材質層 4 0の厚さは、数百 μ m以下であることが望ましいが lmm程度まではかろうじて実用で きる。第 1保持材 42に入射した光線 50は、第 1保持材 42と高屈折率光学材質層 40 との間の界面 52に入射して屈折され、次に、端面 48に臨界角以上の角度で入射し て全反射する。反射された光線は、高屈折率光学材質層 40と第 2保持材 44の間の 第 2の界面 54で屈折されて、第 2保持材 44から出ていく。この反射波を測定してサン プル物質 46の吸光度を測定する。第 1保持材 42の外形は、好ましくは、光線 50が外 部からほぼ垂直に入射するように設計する。高屈折率光学材質層 40と保持材 42, 4 4の光学材料として、第 1の実施形態と同様のものを用いる。  FIG. 7 shows an optical probe having a vertical three-layer structure according to the fourth embodiment. This optical probe includes a rectangular high refractive index optical material layer 40 and a first holding material 42 and a second holding material 44 which are in contact with both sides thereof. The sample material 46 is in contact with the end face 48 in the longitudinal direction of the high refractive index optical material layer 40 having a higher refractive index than the sample material 46. The thickness of the high-refractive index optical material layer 40 is preferably several hundred μm or less, but can be barely practical up to about lmm. The light beam 50 incident on the first holding material 42 enters the interface 52 between the first holding material 42 and the high refractive index optical material layer 40 and is refracted. Incident and totally reflected. The reflected light beam is refracted at the second interface 54 between the high refractive index optical material layer 40 and the second holding material 44 and exits from the second holding material 44. By measuring this reflected wave, the absorbance of the sample substance 46 is measured. The outer shape of the first holding member 42 is preferably designed so that the light beam 50 is incident substantially perpendicularly from the outside. As the optical material for the high refractive index optical material layer 40 and the holding materials 42 and 44, the same materials as those in the first embodiment are used.
[0032] 図 8は、第 4の実施の形態の光学プローブの変形例を示す。この光学プローブでは 、図 7に示された光学プローブとは異なり、第 2の保持材が省かれる。高屈折率光学 材質層 40の端面 48で反射された光線 50は、界面 54で空中に出射される。 [0033] 図 9は、第 4の実施の形態の光学プローブの別の変形例を示す。第 1保持材 42'と 第 2保持材 44'の外形 56、 58は半円状である。したがって、光線 50は、入射方向が 変わっても保持材 42'に対してほぼ垂直に入射可能になる。 FIG. 8 shows a modification of the optical probe of the fourth embodiment. In this optical probe, unlike the optical probe shown in FIG. 7, the second holding material is omitted. The light beam 50 reflected by the end surface 48 of the high refractive index optical material layer 40 is emitted into the air at the interface 54. FIG. 9 shows another modification of the optical probe of the fourth embodiment. The outer shapes 56 and 58 of the first holding material 42 'and the second holding material 44' are semicircular. Therefore, the light beam 50 can be incident substantially perpendicular to the holding material 42 'even if the incident direction is changed.
[0034] 図 10は、第 5の実施の形態の光学プローブを示す。高屈折率光学材質層 60は、 サンプル物質 62に接する端面 64を備える。高屈折率光学材質層 60のサンプル物 質 62と接しない側は、保持材 66と界面 68を介して接する。界面 68と保持材 66の外 形 70はいずれも半円状である。したがって、光線 50は、入射方向が変わっても保持 材 66と界面 68に対してほぼ垂直に入射可能になる。  FIG. 10 shows an optical probe according to the fifth embodiment. The high refractive index optical material layer 60 includes an end face 64 in contact with the sample material 62. The side of the high refractive index optical material layer 60 that does not contact the sample material 62 is in contact with the holding material 66 through the interface 68. Both the interface 68 and the outer shape 70 of the retaining material 66 are semicircular. Therefore, the light beam 50 can enter the holding member 66 and the interface 68 almost perpendicularly even if the incident direction changes.
[0035] なお、図 11には各種材料、すなわち、サファイア、合成石英または水晶(SiO )、フ  Note that FIG. 11 shows various materials, that is, sapphire, synthetic quartz, quartz (SiO 2), glass, and the like.
2 ッ化マグネシウムおよび水の屈折率の波長依存性が示されている。ここで、実線は計 算に用いるために作った適当な近似関数である。  Wavelength dependence of the refractive index of magnesium dioxide and water is shown. Here, the solid line is an appropriate approximation function created for use in calculations.
[0036] 以下に、いくつかの具体的な光学プローブについての計算結果を説明する。図 12 は、第 4の実施形態である縦型 3層構造光学プローブによって測定した、純水の吸光 度の入射角依存性の計算データである。ここで高屈折率光学材質層の光学材料に は石英 (水晶)を用いている。吸光度のピークは、入射角 Θ力 ½8° 力も増加するにつ れて減少していく。なお、高屈折率光学材質層が同じく石英 (水晶)であれば、第 1の 実施形態でも同様の結果となる。  Hereinafter, calculation results for some specific optical probes will be described. FIG. 12 shows the calculation data of the incident angle dependence of the absorbance of pure water measured by the vertical three-layer structure optical probe according to the fourth embodiment. Here, quartz (quartz) is used as the optical material of the high refractive index optical material layer. The absorbance peak decreases as the incident angle Θ force ½8 ° force increases. If the high refractive index optical material layer is also quartz (quartz), the same result is obtained in the first embodiment.
[0037] 図 13は、第 1の実施形態である 2層構造光学プローブ、あるいは第 4の実施形態で ある縦型 3層構造光学プローブにお ヽて、高屈折率光学材料として石英 (水晶)を用 いた場合の潜り込み深さの波長依存性を示す。入射角 Θ力 ½8° 力 増加するにつ れて潜り込み深さは減少していく。光学材料の分散によってエバネッセント波の潜り 込み深さが極大を取る波長がある。入射角 Θ力 ¾0° の場合、 160nm付近の波長で 、潜り込み深さは 50から lOOnmである。これが通常の光学セルにおける光路長に相 当する。  FIG. 13 shows quartz (quartz) as a high refractive index optical material in the two-layer structure optical probe according to the first embodiment or the vertical three-layer structure optical probe according to the fourth embodiment. The wavelength dependence of the penetration depth when using is shown. Incident angle Θ force ½8 ° force The depth of penetration decreases as the force increases. There is a wavelength at which the penetration depth of the evanescent wave is maximized due to dispersion of the optical material. At an incident angle of Θ force of ¾0 °, the penetration depth is 50 to lOOnm at a wavelength near 160 nm. This corresponds to the optical path length in a normal optical cell.
[0038] 図 14は、第 4の実施形態である縦型 3層構造光学プローブにおいて、高屈折率光 学材質層の光学材料として石英 (水晶)を用いた場合の溶質濃度の異なる水溶液の 吸光度のスペクトル (計算結果)である。入射角 Θは 70° とした。吸光度のピークは 溶質濃度が増加するにつれて減少する。なお、高屈折率光学材質層が同じく石英( 水晶)であれば、第 1の実施形態でも同様の結果となる。 FIG. 14 shows the absorbance of aqueous solutions having different solute concentrations when quartz (quartz) is used as the optical material of the high refractive index optical material layer in the vertical three-layer structure optical probe according to the fourth embodiment. This is the spectrum (calculation result). The incident angle Θ was 70 °. Absorbance peaks decrease with increasing solute concentration. The high refractive index optical material layer is also made of quartz ( Crystal), the same result is obtained in the first embodiment.
[0039] 図 15は、第 4の実施形態である縦型 3層構造光学プローブにおいて、高屈折率光 学材質層の光学材料としてサファイアを用いた場合の溶質濃度の異なる水溶液の吸 光度のスペクトル (計算結果)である。入射角 Θは 60° とした。吸光度のピークは溶 質濃度が増加するにつれて減少する。なお、高屈折率光学材質層が同じくサフアイ ァであれば、第 1の実施形態でも同様の結果となる。  FIG. 15 shows the absorbance spectra of aqueous solutions having different solute concentrations when sapphire is used as the optical material of the high refractive index optical material layer in the vertical three-layer structure optical probe according to the fourth embodiment. (Calculation result). The incident angle Θ was 60 °. The absorbance peak decreases as the solute concentration increases. If the high refractive index optical material layer is also a sapphire, the same result is obtained in the first embodiment.
[0040] 第 2の実施形態の光学プローブにおいて、光学材料であるフッ化マグネシウムの表 面改質を行った場合、屈折率が、図 16の右上側に示すように分布すると仮定すると 、光線は、円弧あるいは楕円の軌道を描いて表面に達する。図 16は、この構造の光 学プローブを用いて溶質濃度の異なる水溶液の吸光度を測定したデータ (計算結果 In the optical probe of the second embodiment, when the surface modification of magnesium fluoride, which is an optical material, is performed, assuming that the refractive index is distributed as shown in the upper right side of FIG. Draw a circular arc or elliptical trajectory to reach the surface. Figure 16 shows the data obtained by measuring the absorbance of aqueous solutions with different solute concentrations using an optical probe with this structure (calculation results).
)である。吸光度のピークは溶質濃度が増加するにつれて減少する。 ). The absorbance peak decreases as the solute concentration increases.
[0041] 図 17は、第 3の実施形態である石英コーティング型光学プローブを用いて、純水を 測定した場合の遠紫外域でのスペクトルである。第 2の光学材料としてはサファイアを 用いた。ここで、図 11に示したように 160nmに巨大な吸収ピークを持つ水の吸光度( Absorbance)を仮定し(lmm透過測定の場合)、石英コーティング膜の厚みが 0, 10 , 20, 30, 40, 50nmである場合のスペクトルを求めた。(なお、スペクトルは、サンプ ル物質と水の反射率の比を基に得られた。)その結果、石英薄膜が存在しても、エバ ネッセント波は、試料である水の層にまで到達することが分力つた。光学材料の分散 によってエバネッセント波の潜り込み深さが極大をとる波長があるため、水の吸収は、 見かけ上、長波長に現れる。この結果は第 4の実施形態に対して、試料と接する面に 石英コーティングを施した場合でも全く同じである。 FIG. 17 is a spectrum in the far ultraviolet region when pure water is measured using the quartz-coated optical probe according to the third embodiment. Sapphire was used as the second optical material. Here, as shown in FIG. 11, the absorbance of water having a huge absorption peak at 160 nm is assumed (in the case of lmm transmission measurement), and the thickness of the quartz coating film is 0, 10, 20, 30, 40 , The spectrum was obtained at 50 nm. (Note that the spectrum was obtained based on the ratio of the reflectance of the sample material to water.) As a result, even if a quartz thin film is present, the evanescent wave reaches the sample water layer. I was divided. Since there is a wavelength at which the penetration depth of the evanescent wave is maximized due to the dispersion of the optical material, the absorption of water appears at a long wavelength apparently. This result is completely the same as that of the fourth embodiment even when the quartz coating is applied to the surface in contact with the sample.
[0042] 図 18は、第 3の実施形態である石英コーティング型光学プローブを用いて、溶質濃 度の異なる水溶液を測定した場合の遠紫外域でのスペクトルである。第 2の光学材 料にはサファイアを用いた。図 18の上部に示したように、水溶液の吸光度が溶質濃 度の増加に伴い、吸収ピークが長波長にシフトすると仮定して、石英 (水晶)コーティ ング膜 (厚さ 20nm)がある場合と、石英 (水晶)コーティング膜がな!、場合にっ ヽて計 算した遠紫外スペクトルを示す。入射角はいずれも 60° である。コーティング膜があ る場合も遠紫外スペクトルには、溶質濃度の増加に伴う変化が現れることから、溶質 濃度の定量が可能であることが分かる。この結果は第 4の実施形態に対して、試料と 接する面に石英コーティングを施した場合でも全く同じである。 FIG. 18 is a spectrum in the far ultraviolet region when aqueous solutions having different solute concentrations are measured using the quartz-coated optical probe according to the third embodiment. Sapphire was used as the second optical material. As shown in the upper part of Fig. 18, assuming that the absorption peak of the aqueous solution shifts to a longer wavelength as the solute concentration increases, there is a quartz (quartz) coating film (thickness 20 nm). In this case, the far ultraviolet spectrum is calculated. The incident angles are both 60 °. Even in the presence of a coating film, changes in the far-ultraviolet spectrum appear as the solute concentration increases. It can be seen that the concentration can be quantified. This result is exactly the same as in the fourth embodiment even when the quartz coating is applied to the surface in contact with the sample.
[0043] 図 19は、第 78の実施形態の光学プローブの構成と屈折率プロファイルを示す。こ の光学プローブは、第 1の実施形態の光学プローブと同様に、遠紫外波長領域で光 透過特性を有する第 1の光学材料 (フッ化マグネシウム、フッ化リチウム、フッ化バリウ ムなど)の第 1部分 10'と、第 1部分 10'に接して配置される第 2の光学材料 (合成石 英、サファイアなど)の第 2部分 14'とからなる。第 2の光学材料は、遠紫外域で水より 高い屈折率を有する。第 1の実施形態の光学プローブと異なるのは、第 1部分 10'と 第 2部分 14'の界面 12'、 12"が、入射光、反射光の垂直入射を可能とする形状であ り、また、第 2部分 14'のサンプル物質 18との界面 20で臨界角以上の入射角の光を 全反射をすることである。また、第 2部分 14'の厚みは、十分な透過特性を有するよう に設定する。上述の垂直入射は、第 2部分 14'への入射の際の反射ロスを減らすた めである。さらに、屈折率ギャップの大きい界面 22、 22'には、無反射コーティングを 施す。第 2部分 14'にサファイアを用いる場合は、界面 12'、 12"にも無反射コーティ ングを施すことが望ましい。また、第 1部分 10'の面 22、 22'も垂直入射をする形状を 備える。全反射は、第 2部分 14'がサンプル物質 18に接する面で起こる。エバネッセ ント波は、第 2部分 14'とサンプル物質 18の界面の方向に進行する。この反射波を 測定してサンプル物質の吸収を測定する。したがって、反射波は、サンプル物質 (水 または水溶液) 18への透過の影響を受けている。また、第 2の実施形態のように、 Mg Fのイオンプレーティングによる表面改質部を用いる場合も、光線が進む方向に屈FIG. 19 shows the configuration and refractive index profile of the optical probe of the 78th embodiment. Similar to the optical probe of the first embodiment, this optical probe is a first optical material (magnesium fluoride, lithium fluoride, barium fluoride, etc.) having light transmission characteristics in the far ultraviolet wavelength region. It consists of a first part 10 'and a second part 14' of a second optical material (synthetic stone, sapphire, etc.) placed in contact with the first part 10 '. The second optical material has a higher refractive index than water in the far ultraviolet region. The difference from the optical probe of the first embodiment is that the interfaces 12 ′ and 12 ″ between the first portion 10 ′ and the second portion 14 ′ allow the vertical incidence of incident light and reflected light. In addition, the second portion 14 'is to totally reflect light having an incident angle greater than the critical angle at the interface 20 with the sample substance 18. Also, the thickness of the second portion 14' has sufficient transmission characteristics. The normal incidence described above is to reduce the reflection loss when entering the second portion 14 ', and an anti-reflection coating is applied to the interfaces 22 and 22' having a large refractive index gap. If sapphire is used for the second part 14 ', it is desirable to apply non-reflective coating to the interfaces 12' and 12 ". Further, the surfaces 22 and 22 'of the first portion 10' are also provided with a shape that makes normal incidence. Total reflection occurs at the surface where the second portion 14 ′ contacts the sample material 18. The evanescent wave travels in the direction of the interface between the second portion 14 ′ and the sample material 18. This reflected wave is measured to measure the absorption of the sample material. Therefore, the reflected wave is affected by transmission to the sample material (water or aqueous solution) 18. Also, as in the second embodiment, when using a surface modification portion by Mg F ion plating, the light beam is bent in the traveling direction.
2 2
折率勾配が存在するようにする。屈折率プロファイルの図では、第 1の光学材料とし てフッ化マグネシウムを用い、第 2の光学材料として石英およびサファイアを用いる場 合の光線 16に沿った屈折率変化を示す。また、フッ化マグネシウムの光学材料をィ オンプレーティングで表面改質部を設けた場合の屈折率変化も示す。  Make sure there is a gradient of curvature. The refractive index profile shows the refractive index change along ray 16 when magnesium fluoride is used as the first optical material and quartz and sapphire are used as the second optical material. It also shows the change in refractive index when a surface modification part is provided by ion plating of an optical material of magnesium fluoride.
[0044] 図 20は、上述のいずれかの光学プローブ (全反射減衰光学プローブ)を用いる遠 紫外分光応用微量成分濃度計 (測定波長 160〜210nm)の構成を示す。サンプル 通路 100のサンプル物質 18に接面して光学プローブ 102を設ける。サンプル物質を セルに導入するようにし、光学プローブをセル内のサンプル物質に面するようにして もよいし、また、セルを用いずに、たとえば散布路を導入する配管の壁面をプローブ としてもよい。紫外光源 (たとえば重水素ランプ) 104から発生された光は、単色分光 器であるグレーティングミラー 106をとおり、ミラー 108で反射されて、光学プローブ 1 02に入射する。光学プローブ 102への入射角は適当に設定する。光学プローブ 10 2からの反射光は、ミラー 110で反射された後、紫外光センサ 112に入射する。なお 、上述の光学系内には、光学系内から酸素ガスを排除するため、窒素ガスが導入さ れて ヽるが、アルゴンガスによる空気置換や空気自体を真空に排気すると ヽぅ方法も とれる。紫外光センサ 112で検出されたスペクトルは信号処理部 114で処理され、測 定データを基に吸光度が計算される。ここで、複数波長での吸光度に対する公知の 多変量解析により検量線を作成できる。 160nmで水のスペクトルを測るにはセル長 を lOOnm程度にする必要がある力 全反射減衰光学プローブを用いることにより、微 少なセル長が実現できるので、水の吸収ピークが高感度で測定できる。また、測定は リアルタイムで行える。また、測定用紫外光が作用するのはサンプル物質のプローブ 界面のごく一部であるため、実質的に紫外光照射によるサンプル変化を回避できる。 なお、当業者に容易に理解されるように、上述の光学プローブは、水の他にも、遠 紫外域で大きな吸収のある種々の液体、気体、固体の試料を全反射減衰吸光法で 測定できる。たとえば、イソプロピルアルコールなどの液体や、酸素などの気体が測 定できる。 FIG. 20 shows the configuration of a deep ultraviolet spectroscopic trace component concentration meter (measurement wavelength: 160 to 210 nm) using any of the optical probes described above (total reflection attenuation optical probe). An optical probe 102 is provided in contact with the sample material 18 in the sample passage 100. Ensure that sample material is introduced into the cell and that the optical probe faces the sample material in the cell. Alternatively, without using a cell, for example, a wall surface of a pipe for introducing a spraying path may be used as a probe. Light generated from an ultraviolet light source (for example, a deuterium lamp) 104 passes through a grating mirror 106, which is a monochromator, is reflected by the mirror 108, and enters the optical probe 102. The incident angle to the optical probe 102 is set appropriately. The reflected light from the optical probe 102 is reflected by the mirror 110 and then enters the ultraviolet light sensor 112. In addition, in order to exclude oxygen gas from the inside of the optical system, nitrogen gas is introduced into the above-mentioned optical system. However, when the air is replaced with argon gas or the air itself is evacuated to vacuum, a method can be used. . The spectrum detected by the ultraviolet light sensor 112 is processed by the signal processing unit 114, and the absorbance is calculated based on the measurement data. Here, a calibration curve can be created by a known multivariate analysis for absorbance at multiple wavelengths. To measure the water spectrum at 160 nm, the cell length needs to be about lOOnm. By using a total reflection attenuation optical probe, a very small cell length can be realized, so that the water absorption peak can be measured with high sensitivity. Measurements can be performed in real time. Moreover, since the measurement ultraviolet light acts on only a part of the probe interface of the sample substance, the sample change due to the ultraviolet light irradiation can be substantially avoided. As will be readily understood by those skilled in the art, the above-mentioned optical probe measures various liquids, gases, and solid samples that have large absorption in the far ultraviolet region in addition to water using the attenuated total reflection method. it can. For example, liquids such as isopropyl alcohol and gases such as oxygen can be measured.

Claims

請求の範囲 The scope of the claims
[1] 遠紫外域で光透過特性を有する第 1の光学材料カゝらなる第 1部分と、  [1] a first portion consisting of a first optical material having light transmission characteristics in the far ultraviolet region;
前記第 1部分に接する界面とサンプル物質と接する平面とを備え、遠紫外域にお いて前記第 1部分の屈折率より高い屈折率を有する第 2の光学材料からなる第 2部 分とからなり、  A second portion made of a second optical material having an interface in contact with the first portion and a plane in contact with the sample substance and having a refractive index higher than the refractive index of the first portion in the far ultraviolet region. ,
前記第 1部分と第 2部分の間の前記界面は、第 1部分を透過した光線が前記第 2部 分に入って、前記第 2部分の前記平面に臨界角以上の入射角で入射可能な形状を 備える、全反射減衰型光学プローブ。  The interface between the first part and the second part is such that light transmitted through the first part enters the second part and can enter the plane of the second part at an incident angle greater than a critical angle. Total reflection attenuating optical probe with shape.
[2] 前記第 2部分の前記平面と前記界面とが互いに平行であることを特徴とする請求項 1に記載の全反射減衰型光学プローブ。  [2] The total reflection attenuating optical probe according to [1], wherein the plane of the second portion and the interface are parallel to each other.
[3] 前記界面は半円状であることを特徴とする請求項 1に記載の全反射減衰型光学プ ローブ 0 [3] The interface attenuated total reflection optical probe according to claim 1, characterized in that the semicircular 0
[4] 前記第 2部分の前記平面と前記界面とが互いに垂直であることを特徴とする請求項 1に記載の全反射減衰型光学プローブ。  4. The total reflection attenuating optical probe according to claim 1, wherein the plane of the second portion and the interface are perpendicular to each other.
[5] さらに、遠紫外域で光透過特性を有する第 3の光学材料力 なる第 3部分を備え、 この第 3部分は、前記第 2部分に関して、前記第 1部分とは反対の側に位置されるこ とを特徴とする請求項 4に記載の全反射減衰型光学プローブ。  [5] Furthermore, a third portion having a third optical material force having light transmission characteristics in the far ultraviolet region is provided, and the third portion is located on the opposite side of the first portion with respect to the second portion. The total reflection attenuating optical probe according to claim 4, wherein
[6] 前記第 1の光学材料は、フッ化マグネシウム、フッ化リチウム、フッ化カルシウムおよ びフッ化バリウムのいずれかであり、前記第 2の光学材料が、合成石英、水晶、サファ ィァ、セレンィ匕亜鉛およびダイヤモンドの 、ずれかであることを特徴とする請求項 1〜 5の 、ずれかに記載の全反射減衰型光学プローブ。  [6] The first optical material is any of magnesium fluoride, lithium fluoride, calcium fluoride, and barium fluoride, and the second optical material is synthetic quartz, quartz, sapphire The total reflection attenuating optical probe according to any one of claims 1 to 5, which is any one of selenium-zinc and diamond.
[7] 前記第 1部分の光が入出射する面および前記第 1部分と前記第 2部分の間の界面 の中の少なくとも 1つの面に反射防止コーティング層を備えたことを特徴とする請求 項 1〜6のいずれかに記載の全反射減衰型光学プローブ。  [7] The antireflection coating layer is provided on at least one of the surface where the light of the first portion enters and exits and the interface between the first portion and the second portion. The total reflection attenuation optical probe according to any one of 1 to 6.
[8] 遠紫外域で光透過特性を有する光学材料力もなり、少なくとも一部において屈折 率が連続的に変化する全反射減衰型光学プローブであって、サンプル物質と接する 側に、臨界角以上の入射角の光を全反射する平面を有し、前記の平面の一部を含 む第 1の部分での遠紫外域での屈折率がその他の部分およびサンプル物質の屈折 率より高!ヽ全反射減衰型光学プローブ。 [8] A total reflection attenuating optical probe that also has optical transmission power in the far ultraviolet region and has a refractive index that continuously changes in at least a part of the probe. It has a plane that totally reflects light at an incident angle, and the refractive index in the far ultraviolet region of the first part including a part of the plane is the refractive index of the other parts and the sample material. Higher than rate! Total reflection attenuation optical probe.
[9] 前記光学材料は、フッ化マグネシウム、フッ化リチウム、フッ化カルシウムおよびフッ ィ匕バリウムのいずれかであり、前記の屈折率が連続的に変化する部分はイオンプレ 一ティングにより形成されたことを特徴とする請求項 8記載の全反射減衰型光学プロ ーブ。  [9] The optical material is any one of magnesium fluoride, lithium fluoride, calcium fluoride, and phybarium, and the portion where the refractive index continuously changes is formed by ion plating. 9. The attenuated total reflection optical probe according to claim 8.
[10] さらに、前記光学プローブのサンプル物質と接する面に、測定波長より十分薄い厚 さのコーティング層を備えることを特徴とする請求項 1〜9のいずれか〖こ記載の全反 射減衰型光学プローブ。  [10] The total reflection attenuation type according to any one of [1] to [9], further comprising a coating layer having a thickness sufficiently thinner than a measurement wavelength on a surface of the optical probe in contact with the sample substance. Optical probe.
[11] サンプル物質に接して配置される請求項 1〜10のいずれかに記載の全反射減衰 型光学プローブと、前記全反射減衰型光学プローブに遠紫外光を照射する光源と、 前記全反射減衰型光学プローブからの全反射光を検出する受光素子と、前記光源 から前記受光素子までの光路において、遠紫外光を分光する分光素子とを備えた遠 紫外分光測定装置。  [11] The total reflection attenuation optical probe according to any one of claims 1 to 10, which is disposed in contact with a sample substance, a light source that irradiates far ultraviolet light onto the total reflection attenuation optical probe, and the total reflection A far ultraviolet spectroscopic measurement apparatus comprising: a light receiving element that detects total reflected light from an attenuation type optical probe; and a spectral element that separates far ultraviolet light in an optical path from the light source to the light receiving element.
PCT/JP2006/305262 2005-04-11 2006-03-16 Total-reflection attenuation optical probe and far-ultraviolet spectrophotometer WO2006109408A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005113566 2005-04-11
JP2005-113566 2005-04-11

Publications (1)

Publication Number Publication Date
WO2006109408A1 true WO2006109408A1 (en) 2006-10-19

Family

ID=37086699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305262 WO2006109408A1 (en) 2005-04-11 2006-03-16 Total-reflection attenuation optical probe and far-ultraviolet spectrophotometer

Country Status (2)

Country Link
TW (1) TW200643398A (en)
WO (1) WO2006109408A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1970695A1 (en) * 2007-03-08 2008-09-17 Kurashiki Boseki Kabushiki Kaisha Attenuated total reflection probe and spectrometer therewith
EP1998163A1 (en) * 2006-03-16 2008-12-03 Kurashiki Boseki Kabushiki Kaisha Total reflection attenuation optical probe and aqueous solution spectrometric device
WO2009110463A1 (en) * 2008-03-04 2009-09-11 倉敷紡績株式会社 Total reflection attenuation type far-ultraviolet spectroscopy and concentration measurement device using the spectroscopy
CN105071216A (en) * 2015-09-10 2015-11-18 中国科学院理化技术研究所 Frequency-multiplication crystal coupler for improving output efficiency of short-wave deep ultraviolet laser

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282447A (en) * 1988-01-27 1989-11-14 Ortho Diagnostic Syst Inc Immunoassay system for internal total reflection scattered
JPH04320585A (en) * 1991-04-19 1992-11-11 Fujitsu Ltd Finger print sensor
JPH05332920A (en) * 1992-05-29 1993-12-17 Shimadzu Corp Method for infrared surface analysis
JPH09304269A (en) * 1996-05-15 1997-11-28 Jasco Corp Total reflection measuring apparatus
JP2003270131A (en) * 2002-03-19 2003-09-25 Matsushita Electric Ind Co Ltd Concentration measurement method for specific component
WO2003083458A2 (en) * 2002-04-03 2003-10-09 Johann Wolfgang Goethe-Universität Frankfurt am Main Infrared measuring device, especially for the spectrometry of aqueous systems, preferably multiple component systems
JP2004157031A (en) * 2002-11-07 2004-06-03 System Instruments Kk Light absorption spectroscopic microscope utilizing evanescent wave

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282447A (en) * 1988-01-27 1989-11-14 Ortho Diagnostic Syst Inc Immunoassay system for internal total reflection scattered
JPH04320585A (en) * 1991-04-19 1992-11-11 Fujitsu Ltd Finger print sensor
JPH05332920A (en) * 1992-05-29 1993-12-17 Shimadzu Corp Method for infrared surface analysis
JPH09304269A (en) * 1996-05-15 1997-11-28 Jasco Corp Total reflection measuring apparatus
JP2003270131A (en) * 2002-03-19 2003-09-25 Matsushita Electric Ind Co Ltd Concentration measurement method for specific component
WO2003083458A2 (en) * 2002-04-03 2003-10-09 Johann Wolfgang Goethe-Universität Frankfurt am Main Infrared measuring device, especially for the spectrometry of aqueous systems, preferably multiple component systems
JP2004157031A (en) * 2002-11-07 2004-06-03 System Instruments Kk Light absorption spectroscopic microscope utilizing evanescent wave

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1998163A1 (en) * 2006-03-16 2008-12-03 Kurashiki Boseki Kabushiki Kaisha Total reflection attenuation optical probe and aqueous solution spectrometric device
EP1998163A4 (en) * 2006-03-16 2010-12-15 Kurashiki Boseki Kk Total reflection attenuation optical probe and aqueous solution spectrometric device
US7978331B2 (en) 2006-03-16 2011-07-12 Kurashiki Boseki Kabushiki Kaisha Attenuated total reflection optical probe and apparatus therewith for spectroscopic measurement of aqueous solution
EP1970695A1 (en) * 2007-03-08 2008-09-17 Kurashiki Boseki Kabushiki Kaisha Attenuated total reflection probe and spectrometer therewith
US7791729B2 (en) 2007-03-08 2010-09-07 Kurashiki Boseki Kabushiki Kaisha Attenuated total reflection probe and spectrometer therewith
WO2009110463A1 (en) * 2008-03-04 2009-09-11 倉敷紡績株式会社 Total reflection attenuation type far-ultraviolet spectroscopy and concentration measurement device using the spectroscopy
JPWO2009110463A1 (en) * 2008-03-04 2011-07-14 倉敷紡績株式会社 Total reflection attenuation type far ultraviolet spectroscopy and concentration measuring apparatus using the same
US8390816B2 (en) 2008-03-04 2013-03-05 Kurashiki Boseki Kabushiki Kaisha Method for attenuated total reflection far ultraviolet spectroscopy and an apparatus for measuring concentrations therewith
CN101960292B (en) * 2008-03-04 2013-04-03 仓敷纺绩株式会社 Total reflection attenuation type far-ultraviolet spectroscopy and concentration measurement device using the spectroscopy
CN105071216A (en) * 2015-09-10 2015-11-18 中国科学院理化技术研究所 Frequency-multiplication crystal coupler for improving output efficiency of short-wave deep ultraviolet laser

Also Published As

Publication number Publication date
TW200643398A (en) 2006-12-16

Similar Documents

Publication Publication Date Title
JP5462892B2 (en) Total reflection attenuation optical probe and aqueous solution spectrometer using the same
JP4911606B2 (en) Total reflection attenuation optical probe and aqueous solution spectrometer using the same
US9285534B2 (en) Fiber-optic surface plasmon resonance sensor and sensing method using the same
US8564781B2 (en) SPR sensor
EP0570445B1 (en) Analytical device
US6330387B1 (en) Coupled plasmon-waveguide resonance spectroscopic device and method for measuring film properties in the ultraviolet and infrared spectral ranges
US8298495B2 (en) High sensitivity localized surface plasmon resonance sensor and sensor system using same
Ho et al. Application of white light-emitting diode to surface plasmon resonance sensors
CA2409486A1 (en) Coupled plasmon-waveguide resonance spectroscopic device
EP2331940B1 (en) Optical detection sysytem comprising an assembly with absorbing sensor layer
JP4958220B2 (en) Total reflection attenuation optical probe and aqueous solution spectrometer using the same
CN112461787B (en) Lithium niobate optical sensor and method based on Bloch surface wave
Oliveira et al. Surface plasmon resonance sensing characteristics of thin aluminum films in aqueous solution
US20110116094A1 (en) Method of Producing a Surface Plasmon Generator, a Surface Plasmon Generator and a Sensor Incorporating the Surface Plasmon Generator
WO2006109408A1 (en) Total-reflection attenuation optical probe and far-ultraviolet spectrophotometer
EP2857825A1 (en) Spr sensor cell and spr sensor
EP0620916A1 (en) Analytical device with light scattering
JP2004170095A (en) Waveguide structure, its manufacturing method, and surface plasmon resonance sensor and refractive index change measurement method using the waveguide structure
JP2004205415A (en) Photometric analysis measuring probe apparatus, solution concentration monitoring method and spectroscopic analysis apparatus
Verma et al. Surface plasmon resonance based multi-channel and multi-analyte fiber optic sensor
Homola et al. Fiber optic sensor for adsorption studies using surface plasmon resonance
Mehan et al. Surface plasmon resonance based refractive index sensor for liquids
JP2011112564A (en) Optical waveguide type biochemical sensor chip
EP4103929A1 (en) Method of analysis of refractive index with a polarisation- sensitive optical sensor and a sensor system comprising the optical sensor
JP2010117204A (en) Optical waveguide sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU