WO2006108769A1 - Gas-solid phase reaction - Google Patents

Gas-solid phase reaction Download PDF

Info

Publication number
WO2006108769A1
WO2006108769A1 PCT/EP2006/061238 EP2006061238W WO2006108769A1 WO 2006108769 A1 WO2006108769 A1 WO 2006108769A1 EP 2006061238 W EP2006061238 W EP 2006061238W WO 2006108769 A1 WO2006108769 A1 WO 2006108769A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
reactor
hydrogen
metal oxide
energy
Prior art date
Application number
PCT/EP2006/061238
Other languages
German (de)
French (fr)
Inventor
Martin Roeb
Christian Sattler
Peter-Michael Rietbrock
Ruth KÜSTER
Athanasios G. Konstandopoulos
Christos Agrafiotis
Lamark De Oliveira
Mark Schmitz
Original Assignee
Deutsches Zentrum für Luft- und Raumfahrt e. V.
Chemical Process Engineering Research Institute Center For Research And Technology-Hellas (Certh/Cperi)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102005017216A external-priority patent/DE102005017216A1/en
Application filed by Deutsches Zentrum für Luft- und Raumfahrt e. V., Chemical Process Engineering Research Institute Center For Research And Technology-Hellas (Certh/Cperi) filed Critical Deutsches Zentrum für Luft- und Raumfahrt e. V.
Priority to US11/918,359 priority Critical patent/US20090028783A1/en
Priority to CA2608085A priority patent/CA2608085C/en
Publication of WO2006108769A1 publication Critical patent/WO2006108769A1/en
Priority to US13/011,667 priority patent/US9492807B2/en
Priority to US15/286,066 priority patent/US20170021321A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/061Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of metal oxides with water
    • C01B3/063Cyclic methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/127Sunlight; Visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2485Monolithic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00038Processes in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to a method and a reactor for the quasi-continuous performance of a chemical reaction on a surface of a fixed reaction partner in a gas-solid phase reaction. More particularly, the invention relates to a thermal process and a reactor for continuously producing hydrogen from water vapor on a surface of a metal oxide in a gas-solid phase reaction.
  • JP 03205302 A describes the production of high-purity hydrogen by means of activated magnetite as a reactive catalyst.
  • JP 2001270701 A is hydrogen is prepared by reacting metallic zinc, magnetite and water are reacted at 600 0 C.
  • Reaction chamber system can be performed in which no solid has to be separated and runs quasi-continuously at the lowest possible temperatures.
  • Another object is to provide a solar powered reactor in which a product (especially hydrogen) is continuously produced although at least two process stages (eg, cleavage and regeneration) are necessarily sequential.
  • the object of the present invention is in particular to provide a corresponding process for the production of hydrogen, which can be carried out in particular in at least one single reaction chamber.
  • This object of the invention is achieved in a first embodiment by a method for quasi-continuous Carrying out a chemical reaction consisting of at least two sequential reversible steps, characterized in that at least two reaction chambers are operated in parallel, in each of which at least one reaction partner is fixed locally, wherein cyclically alternating reaction conditions in the reaction chambers.
  • Sequential steps in the sense of the invention are successive reaction steps of a chemical reaction in which the reaction products can be isolated.
  • Reversible steps in the sense of the invention are reaction steps in which the chemical equilibrium can be adjusted so that either the forward or the backward reaction preferably proceeds preferentially.
  • a chemical reaction within the meaning of the invention is in principle any chemical reaction in which one of the reactants is fixed and in which the energy is supplied as heat energy, light energy, nuclear energy or in the form of other electromagnetic radiation.
  • the process according to the invention is preferably used in the following reaction types listed by way of example:
  • Me is a metal atom
  • X is a halogen or pseudohalogen
  • subscripts n, m, x or y are integer positive numbers.
  • the different sequential reaction steps can have a different reaction time, for optimum utilization of the reaction chambers it is advantageously possible to differentiate a) the energy input in the reaction chambers for adjusting the reaction rate, b) adapt the mass flow of the reactants, and / or c) number the reaction chambers are adjusted according to the reaction times in which the reactions proceed correspondingly time-delayed.
  • FIG. 1 shows, as in the case of two reaction steps, in which the second reaction step lasts twice as long as the first reaction step, with three reaction chambers a quasi-continuous process according to the invention can be operated.
  • reaction steps of the chemical reaction are carried out sequentially in the same reaction chambers. Separation or isolation of intermediates can thus be omitted.
  • radiation-heated reactors are used as reaction chambers.
  • thermal reactions can be carried out with light energy.
  • any electromagnetic radiation can be used.
  • photoreactions can advantageously also take place when carrying out the process.
  • thermal reactions can also take place according to the invention, in particular photoassisted.
  • Photo assisted according to the invention means that the reaction product is formed reinforced by a photoreaction.
  • the cyclically alternating reaction conditions are preferably set by a cyclic change in the temperature of the reaction chambers, for example by varying the heat output.
  • the required temperature in the reaction chambers is varied by a cyclical change of the heating power, thus enabling a quasi-continuous product flow.
  • the different thermal control of the reactors allows, for example, the simultaneous reaction of the water splitting at a lower temperature and the regeneration at a higher temperature. The juxtaposition of these different batch processes thus ensures, for example, a quasi-continuous hydrogen production.
  • the process is carried out in several successive cycles quasi-continuous reproducible.
  • One cycle for example, takes a period of time in one area from 0.3 to 1.5 h, especially 0.3 to 1 h. Above all, this has economic advantages over a discontinuous process. However, depending on the reaction to be carried out, the cycles may also be considerably shorter or even longer.
  • the absorbed energy of the optical component is used to heat fluids.
  • These fluids can be, inter alia, reactants, auxiliaries or heat transfer media. With the preheating the fluids no longer need as much radiant power in the reactor space.
  • the optical component is a tube bundle, which is flowed through by the fluid.
  • the required temperature may preferably be generated by combustion of fossil energy and / or use of electrical energy, because common methods use these energy sources. Also advantageous is the generation of the required temperature by nuclear energy, since in nuclear reactions only about one third of the heat generated in the reactor can be used to generate electricity. The resulting (residual) heat can be used to generate the required temperature. On a large scale, no climate-damaging emissions of CO2 are produced here.
  • the energy input advantageously takes place by means of light energy and in particular by concentrated solar radiation, since this energy source is available in a particularly cost-effective manner and is suitable both for thermal and likewise for photoreactions.
  • the generation of the required temperature by means of light energy is advantageous because conventional power generation systems by burning fossil energy are not as resource efficient as the inventive method and light energy such as sunlight is available worldwide.
  • sunlight can radiate into the reaction chamber in order to generate the required temperature.
  • optical arrangements have particularly preferred forms such as solar tower systems, paraboloid concentrators, solar ovens, elliptical or spherical mirrors, or line focusing concentrators.
  • solar-thermochemical water splitting hydrogen can be produced as a possible energy carrier of the future without climate-damaging emission of carbon dioxide on an industrial scale.
  • the required radiation power is preferably achieved by a group of heliostats and the radiation power required for regeneration is achieved by another group of heliostats, the focus of the second group being switched to the individual reaction fields.
  • the heliostat data field is separated such that at least one group of heliostat covers the base load of necessary radiation power corresponding to the reaction step with the lowest energy requirement by "regular" the daily routine of the sun is tracked, and that at least one group of heliostats additional loads of necessary radiation power for reaction steps with higher energy requirements by the focus of this group is directed at certain intervals after each step of the reaction to another area of the radiation receiver.
  • two different reaction temperatures can be easily realized.
  • the reaction chambers can therefore preferably be variable relative to the optical arrangement in order to vary the heating power.
  • a change of the temperature with the same radiant power can take place uncomplicatedly.
  • optical components to reduce the Exposure.
  • optical components particularly suitable for this purpose are spatially displaceable or, with regard to their transparency, optical attenuators, diaphragms, deflecting mirrors or filters.
  • this can advantageously be achieved by varying the focus position as a result of a change in the orientation of mirrors or mirror fields, so-called heliostat fields. This is much easier to implement than the displacement of the usually very heavy reactor.
  • the temperatures used may also differ significantly.
  • the fixed reactant in both reaction chambers is advantageously selected from the group of metal hydrides, dyes, chemical compounds with redox properties, and complexing agents.
  • Chemical compounds with redox properties in the context of the invention are those compounds which can be reversibly oxidized and reduced.
  • these chemical compounds having redox properties are selected from the group of metal oxides, mixed metal oxides and / or doped metal oxides.
  • metal oxides have been found to be particularly advantageous since they are most versatile applicable and can be particularly easily fixed, for example, in contrast to metal hydrides.
  • Multivalent in the context of the invention is a metal oxide which has several oxidation states next to one another and in particular when the metal is present in an oxidation state greater than + 1, in particular greater than +2.
  • the metal oxides preferably comprise ferrites and / or zinc oxides and / or manganese oxides and / or ceric oxides and / or lanthanum oxides and / or other lanthanide oxides and / or oxides of the general formula Me x 2+ Zni- X 2+ Fe 2 O 4 , where Me x 2 + a bivalent metal ion selected from the group Mg, Ca, Mn, Fe, Co, Ni, Cu, Zn, Sr, Sn, Ba, Cd or Pb, and / or mixtures of these oxides or oxides of the general formula Me' ⁇ Me " i - x FeO, where Me 'and Me "are metal ions selected from the group consisting of Mg, Ca, Mn, Fe, Co, Ni, Cu, Zn, Sr, Sn, Ba, Cd, Pb or lanthanides, since these are particularly efficient at the hydrogen cleavage can be used, wherein x is a number in a range of 1 to 5,
  • the chemical compound having redox properties is used as a coating of a heat-resistant, particularly preferred ceramic support structure.
  • a Carrier structure the chemical compound with redox properties must be present only in a thin layer in the reaction chambers.
  • a support structure with a conical, hemispherical or paraboloidal shape, as this allows optimum utilization of scattered radiation from the radiation source in the reaction chamber.
  • At least one of the mobile reactants is advantageously selected from the group consisting of water, alcohols, carbon dioxide, hydrogen sulfide, nitrogen oxides,
  • Hydrocarbons, halogen or pseudohalides, ammonia and sulfur oxides are particularly advantageous because it is readily available and, especially in the gas phase, an easy-to-handle reactant.
  • the object underlying the invention is therefore achieved by a process for the production of hydrogen from water vapor on a surface of at least one chemical compound with redox properties, wherein in the first step, water vapor thermally cleaves by the addition of oxygen to the excited chemical compound with redox properties and releasing hydrogen and, in a second step, at a higher temperature than the first step, regenerating the chemical compound having redox properties and releasing bound oxygen.
  • the invention can thus relate to a method of thermally splitting water vapor in a multi-stage process by using concentrated radiation and consequently of generating solar hydrogen.
  • water vapor can be thermally split by concentrated sunlight, thereby generating hydrogen.
  • direct thermal splitting of water which takes place only at a few thousand degrees Celsius, is preferably produced here in a two stage cycle process at temperatures in a range from 800 0 C to 1200 0 C hydrogen from water vapor.
  • a metal oxide system which can split off oxygen from water molecules and reversibly integrate it into its crystal structure is circulated.
  • the hot steam flowing past the metal oxide is split by bonding the oxygen to the excited metal oxide grid at temperatures preferably in a range of 500 to 1000 ° C., in particular 550 to 850 ° C., and liberates hydrogen.
  • the oxygen previously introduced into the grid is released again and the metal oxide is regenerated or reduced again to the more energetic state.
  • These temperatures are preferably for ferrites or mixed iron oxides.
  • the reaction temperature can advantageously be in the range from 600 ° C. to 800 ° C. and the regeneration temperature in the range from 900 to 1200 ° C. All in all, water is split into its elements with the help of the metal oxide.
  • the metal oxides used are advantageously mixed oxides, particularly preferably zinc-doped ferrites.
  • An important innovation of the process is the advantageous combination of a ceramic carrier and absorber structure, which can be heated to high temperatures with concentrated solar radiation, with a redox system capable of reversibly splitting water, for example.
  • a redox system capable of reversibly splitting water, for example.
  • porous honeycomb structures which function as radiation absorbers, with ferrites coated.
  • the ceramic structure coated with metal oxide advantageously forms the core in a receiver reactor.
  • a concentrating solar system preferably a solar tower
  • the structure is brought by the incident concentrated solar radiation to the necessary temperature.
  • the reactions take place on the surface of the coated ceramic.
  • the reactor is preferably integrated into a small system for checking and optimizing the operating behavior during water splitting or regeneration.
  • This system preferably includes valves and mass flow controllers for supplying the required gases, a water vapor dosing system, pressure and temperature measuring systems, product gas treatment, as well as data acquisition and control.
  • the analysis of the concentrations of hydrogen produced or of released oxygen is preferably carried out by a mass spectrometer. For efficient use of the reactor, it is preferably required that continued operation to produce the product hydrogen may occur. Since two reactions are to be carried out with different conditions, a cyclic change of the reaction conditions or gases as well as the required energy (temperature) must take place.
  • the lower temperature range is easier to handle in terms of materials and processes, and considerably reduces the costs of the process.
  • the object underlying the invention is therefore preferably achieved by a process for the quasi-continuous production of hydrogen from water vapor on a surface of a metal oxide and subsequent regeneration of the surface.
  • the hydrogen synthesis by water splitting and in another reactor the regeneration of the metal oxide take place.
  • the regenerated reaction chamber can then absorb new reactants again.
  • hydrogen can be produced continuously and simply thermally compared to the prior art.
  • the object underlying the invention is achieved in a further embodiment by a thermal process for producing hydrogen from water vapor on a surface of a metal oxide in a gas-solid phase reaction, wherein in a reaction chamber in the first step, water vapor by the addition of oxygen to the excited metal oxide is thermally split, hydrogen is released and regenerated in a second step at a temperature higher than the first step, the metal oxide and bound oxygen is released, so that the metal oxide is available for further reactions.
  • the invention thus relates to a method of thermally splitting water vapor in a multi-stage process by using concentrated radiation and consequently to produce solar hydrogen.
  • the object underlying the invention is achieved by a photoreactor for carrying out the method according to the invention, characterized in that it has two reaction chambers.
  • the object underlying the invention is achieved by a radiation-heated reactor for carrying out the method according to the invention, characterized in that it has at least two reaction chambers.
  • This is preferably a reactor for the thermal production of hydrogen from water vapor on a surface in a gas-solid phase reaction with at least one connected tube, which allows a gas flow of educt gases into a reaction chamber and product gases out and a heat source, wherein metal oxide in a reaction chamber is provided as a reactant (or reactant).
  • the metal oxide is coated on a heat-resistant ceramic support structure.
  • This fixation has the advantage that the metal oxide is always available and can be optimally exposed in the reactor of the heat source. Fixing the metal oxide on the support structure does not require laborious recovery of the metal oxide via separation processes.
  • the heat required for the reactions can also be supplied from the support structure.
  • the ceramic support structure consists of a porous honeycomb structure, because porous ceramic honeycomb structures have been found to be particularly resistant to heat. Pores in the sense of this invention are the spaces provided by the honeycomb structure. This does not exclude that the material per se advantageously itself has a porosity in a range of 10 to 60%. The porosity is given by the weight ratio of the actual weight to the weight assuming the theoretical maximum density.
  • the ceramic support structure is conical, hemispherical or paraboloid-shaped in order to capture the radiation optimally on the metal oxide.
  • edge radiation can also be captured better.
  • the reaction chamber is advantageously equipped with a transparent window, since in this way the light source can be arranged outside the actual reactor.
  • reaction chamber run between the reaction chamber and energy source tubes that attenuate the flow of energy, as this allows a better control of the reaction is possible.
  • the tubes contain a fluid, as a result, the heat exchange can be adjusted individually.
  • the reactor is advantageously provided with a multi-way valve to allow the supply of the gaseous reactants.
  • the multi-way valve is designed so that the gaseous products can be removed separately.
  • the reactor is advantageously constructed modularly from at least two reaction chambers, since this makes it possible to implement the above-described quasi-continuous process particularly easily.
  • both reaction chambers are alternately supplied with steam or inert gas, in particular nitrogen, wherein the circuit is effected so that a time constant hydrogen production takes place.
  • the energy source used is a concentrating solar thermal system such as a solar tower system, a paraboloid concentrator, a solar furnace, an elliptical or spherical mirror or a line-focusing concentrator.
  • the required radiation power is achieved by a group of heliostats and the radiation power required for regeneration is achieved by another group of heliostats, the focus of the second group being switched to the individual reaction fields.
  • the inventive method of solar-thermochemical water splitting based on metal oxide for continuous hydrogen production can be carried out continuously with the aid of the design of a suitable receiver reactor described here.
  • Fig. 1 is a schematic representation of the timing of various reactions in different reaction chambers in the quasi-continuous process according to the invention.
  • 2 is a perspective schematic representation (vertical horizontal section) of the continuous reactor according to the invention.
  • Fig. 4 is an illustration of the heat-resistant four-way valve in the reactor.
  • FIG. 2 shows the receiver reactor, with the concentrated solar radiation falling from the right side onto the aperture with quartz windows (FIG. 1).
  • the power of the incident light can be adjusted by a shutter.
  • the receiver reactor is based on the already described compound of the metal oxide redox system with a carrier and absorber structure consisting of a ceramic monolith with a honeycomb structure (2).
  • the monolith is coated with the metal oxide and installed in a cylindrical housing (3).
  • the honeycomb structure enables the generation of high temperatures with low re-radiation losses in a directly absorbing receiver.
  • the reactor consists of a modular two-component system of permanently installed honeycomb absorbers. Two adjacent but separate reaction chambers form a minimal array of modules for the continuous production of hydrogen.
  • the square aperture (1) allows the formation of large and flexible receiver areas by juxtaposing individual modules.
  • a double tube is provided for preheating the supplied gases nitrogen and water vapor by recovering the heat of the product gas (4).
  • the operation of the Konti reactor is based on the simultaneous use of both modules. While in one of the reaction chambers water is split, the regeneration takes place in the other. After completion of the reactions, changing the gas supply, the regenerated module is switched to splitting and vice versa.
  • a prerequisite for this continuous operation and the production of hydrogen is the separate supply of nitrogen gas, which is used as a carrier gas or purge gas, as well as water vapor (6).
  • separate lines for the products of the cleavage on the one hand and for the oxygen-containing purge gas regeneration on the other hand necessary (7). This is made possible by four-way valves (5 or 5a), which are each switched after completion of a reaction step.
  • One of these valves (5) has to withstand high temperatures up to 600 ° C.
  • Fig. 4 shows the positions of this valve.
  • the two steps of the process are carried out in the same reactor at different temperature levels with different heat requirements.
  • the regeneration is endothermic and advantageously proceeds in a temperature range of 1100 to 1200 0 C.
  • the water vapor cleavage is slightly exothermic and takes place at 800 0 C. Therefore, some of the modules (regeneration) require a higher solar flux density than the second part for water splitting, which requires little energy to compensate for heat losses. Thus, a cyclic change in irradiance is required when the cycle is switched from regeneration to cleavage or vice versa.
  • For a change of the mirror focus between two identical focal points is provided by a suitable adjustment of the concentrating mirror of the solar system.
  • the periodic change in the irradiance is achieved by time-varying optical components, for example optical gratings as attenuators, deflecting mirrors or semitransparent mirrors. Such a component is movable and located in front of one of the two apertures. When changing the supplied gas whose position can be switched accordingly. Equally possible, but technically more complex is a temporal change in the receiver position between locations of different irradiation intensity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The invention relates to a method and a reactor for the quasi-continuous performance of a chemical reaction on the surface of a fixed co-reactant during a gas-solid phase reaction. The invention especially relates to a thermal method and a reactor for the continuous production of hydrogen from water vapour on the surface of a metal oxide during a gas-solid phase reaction.

Description

Gas-Festphasenreaktion Gas-solid phase reaction
Die Erfindung betrifft ein Verfahren und einen Reaktor zur quasikontinuierlichen Durchführung einer chemischen Reaktion an einer Oberfläche eines fixierten Reaktionspartners in einer Gas-Festphasen- Reaktion. Die Erfindung betrifft im Besonderen ein thermisches Verfahren und einen Reaktor zur kontinuierlichen Herstellung von Wasserstoff aus Wasserdampf an einer Oberfläche eines Metalloxids in einer Gas-Festphasen-Reaktion.The invention relates to a method and a reactor for the quasi-continuous performance of a chemical reaction on a surface of a fixed reaction partner in a gas-solid phase reaction. More particularly, the invention relates to a thermal process and a reactor for continuously producing hydrogen from water vapor on a surface of a metal oxide in a gas-solid phase reaction.
Wasserstoff ist langfristig gesehen ein bedeutender Träger für eine nachhaltige Energieversorgung. Heute wird der größte Teil des Wasserstoffs aus fossilen Quellen hergestellt. Allerdings erfordern das begrenzte Vorhandensein dieser Quellen sowie die unerlässliche Reduktion der Treibhausgase (vorwiegend CO2) die Erschließung alternativer Ressourcen beziehungsweise Verfahren. Die Wasserspaltung mit Hilfe von Elektrolyse unter Einsatz von Solarstrom ist möglich, hat aber den Nachteil des enormen Einflusses der Solarstromkosten auf die H2-Herstellung. Die direkte Nutzung konzentrierter Solarstrahlung für die thermochemische Wasserspaltung vermeidet dies und hat einen höheren Wirkungsgrad. So können die Kosten der Wasserstoffproduktion gesenkt und langfristig eine großtechnische Herstellung ermöglicht werden. Zur thermischen Herstellung von Wasserstoff steht eine Reihe von Verfahren zur Verfügung.In the long term, hydrogen is an important carrier for a sustainable energy supply. Today, most of the hydrogen is produced from fossil sources. However, the limited presence of these sources and the essential reduction of greenhouse gases (mainly CO2) require the development of alternative resources or processes. The water splitting with the help of electrolysis using solar power is possible, but has the disadvantage of the enormous influence of solar power costs on the H 2 -Herstellung. The direct use of concentrated solar radiation for the thermochemical water splitting avoids this and has a higher efficiency. Thus, the costs of hydrogen production can be reduced and long-term large-scale production can be made possible. For the thermal production of hydrogen, a number of methods are available.
So wird in DE 44 10 915 Al Wasserstoff durch die Reaktion von Eisen mit Kohlensäure unter solarthermischer Energiezugabe gebildet. Das gebildete Eisenoxid wird mittels Kohlenmonoxid wieder reduziert und steht dem Prozess zur Verfügung.Thus, in DE 44 10 915 A1 hydrogen is formed by the reaction of iron with carbonic acid under solar thermal energy. The iron oxide formed is reduced again by means of carbon monoxide and is available to the process.
In DE 42 26 496 Al wird Wasserstoff in einem modifizierten kontinuierlichen Eisen-Wasserdampf-Prozess erzeugt, das hierbei entstehende Eisenoxid wird anschließend der Stahlerzeugung wieder zugeführt.In DE 42 26 496 Al hydrogen is produced in a modified continuous iron-steam process, the resulting iron oxide is then fed back into steel production.
JP 03205302 A beschreibt die Herstellung von hochreinem Wasserstoff mittels aktiviertem Magnetit als reaktivem Katalysator.JP 03205302 A describes the production of high-purity hydrogen by means of activated magnetite as a reactive catalyst.
In JP 2001270701 A wird Wasserstoff hergestellt, indem metallisches Zink, Magnetit und Wasser miteinander bei 6000C reagiert werden.In JP 2001270701 A is hydrogen is prepared by reacting metallic zinc, magnetite and water are reacted at 600 0 C.
M. Inoue et al. aus Solar Energy (2003) beschreibt die Herstellung von Wasserstoff mittels eines Wasser-ZnO-MnFe2SO4-System. Das entsprechende Ferritpulver des Typs Mex 2+Zni-X 2+ Fe2SO4 kann nach der Methode von S. Lorentzou et al. präsentiert auf der Konferenz Partec 2004 hergestellt werden.M. Inoue et al. from Solar Energy (2003) describes the production of hydrogen by means of a water-ZnO-MnFe 2 SO 4 system. The corresponding ferrite powder of the type Me x 2+ Zni- X 2+ Fe 2 SO 4 can be prepared by the method of S. Lorentzou et al. presented at the Partec 2004 conference.
060815wo, 31.03.2006 Nach einer Pressemitteilung des Deutschen Zentrums für Luft- und Raumfahrt vom 15.10.2004 wurde im Sonnenofen erstmals Wasserstoff durch solar-thermische Wasserspaltung erzeugt. Bei dem beschriebenen Verfahren wird der Wasserstoff diskontinuierlich erzeugt, indem der Wasserdampf über Metalloxid gespalten und das Metalloxid regeneriert wird.060815wo, 31.03.2006 According to a press release of the German Aerospace Center from October 15, 2004, hydrogen was generated by solar-thermal splitting of water in the solar furnace for the first time. In the process described, the hydrogen is generated discontinuously by cleaving the water vapor over metal oxide and regenerating the metal oxide.
DE 197 10 986 C2 beschreibt einen volumetrischen Strahlungsempfänger zur Wärmegewinnung aus konzentrierter Strahlung in dem ein Fluid unter Druck erhitzt wird, ohne dass in diesem Reaktor eine chemische Reaktion stattfindet.DE 197 10 986 C2 describes a volumetric radiation receiver for heat recovery from concentrated radiation in which a fluid is heated under pressure without a chemical reaction taking place in this reactor.
Aufgabe der vorliegenden Erfindung ist es also, ein Verfahren bereitzustellen, welches insbesondere in einemIt is therefore an object of the present invention to provide a process which, in particular in one
Reaktionskammersystem durchgeführt werden kann, bei dem kein Feststoff separiert werden muss und das bei möglichst niedrigen Temperaturen quasikontinuierlich abläuft. Weitere Aufgabe ist es, einen solarbetriebenen Reaktor bereitzustellen, in dem ein Produkt (insbesondere Wasserstoff) kontinuierlich hergestellt wird, obgleich mindestens zwei Prozessstufen (beispielsweise Spaltung und Regenerierung) notwendigerweise sequenziell ablaufen. Aufgabe der vorliegenden Erfindung ist es insbesondere, ein entsprechendes Verfahren zur Herstellung von Wasserstoff bereitzustellen, welches insbesondere in wenigstens einer einzigen Reaktionskammer durchgeführt werden kann.Reaction chamber system can be performed in which no solid has to be separated and runs quasi-continuously at the lowest possible temperatures. Another object is to provide a solar powered reactor in which a product (especially hydrogen) is continuously produced although at least two process stages (eg, cleavage and regeneration) are necessarily sequential. The object of the present invention is in particular to provide a corresponding process for the production of hydrogen, which can be carried out in particular in at least one single reaction chamber.
Diese der Erfindung zugrunde liegende Aufgabe wird gelöst in einer ersten Ausführungsform durch ein Verfahren zur quasikontinuierlichen Durchführung einer aus wenigstens zwei sequenziellen reversiblen Schritten bestehenden chemischen Reaktion, dadurch gekennzeichnet, dass man wenigstens zwei Reaktionskammern parallel betreibt, in denen jeweils wenigstens ein Reaktionspartner örtlich fixiert ist, wobei man zyklisch abwechselnde Reaktionsbedingungen in den Reaktionskammern einstellt.This object of the invention is achieved in a first embodiment by a method for quasi-continuous Carrying out a chemical reaction consisting of at least two sequential reversible steps, characterized in that at least two reaction chambers are operated in parallel, in each of which at least one reaction partner is fixed locally, wherein cyclically alternating reaction conditions in the reaction chambers.
Sequenzielle Schritte im Sinne der Erfindung sind aufeinander folgende Reaktionsschritte einer chemischen Reaktion, bei denen die Reaktionsprodukte isolierbar sind.Sequential steps in the sense of the invention are successive reaction steps of a chemical reaction in which the reaction products can be isolated.
Reversible Schritte im Sinne der Erfindung sind Reaktionsschritte, bei denen das chemische Gleichgewicht so eingestellt werden kann, dass wahlweise entweder die Hin- oder die Rückreaktion bevorzugt abläuft.Reversible steps in the sense of the invention are reaction steps in which the chemical equilibrium can be adjusted so that either the forward or the backward reaction preferably proceeds preferentially.
Eine chemische Reaktion im Sinne der Erfindung ist im Prinzip jede chemische Reaktion, bei der einer der Reaktionspartner fixiert wird und bei der die Energie als Wärmeenergie, Lichtenergie, Nuklearenergie oder in Form anderer elektromagnetischer Strahlung zugeführt wird. Vorzugsweise wird das erfindungsgemäße Verfahren bei folgenden exemplarisch aufgeführten Reaktionstypen eingesetzt: A chemical reaction within the meaning of the invention is in principle any chemical reaction in which one of the reactants is fixed and in which the energy is supplied as heat energy, light energy, nuclear energy or in the form of other electromagnetic radiation. The process according to the invention is preferably used in the following reaction types listed by way of example:
Figure imgf000007_0001
Figure imgf000007_0001
Hierbei steht Me für ein Metallatom, X für ein Halogen oder Pseudohalogen, tiefgestellte Indices n, m, x oder y für ganze positive Zahlen.Here, Me is a metal atom, X is a halogen or pseudohalogen, subscripts n, m, x or y are integer positive numbers.
Bei dem erfindungsgemäßen Verfahren läuft über den gesamten Reaktionszeitraum eines ersten sequenziellen Schrittes einer chemischen Reaktion in einer ersten Reaktionskammer hinweg in einer davon unterschiedlichen zweiten Reaktionskammer zu mindestens einem Zeitpunkt ein von dem ersten sequenziellen Reaktionsschritt unterschiedlicher zweiter sequenzieller Reaktionsschritt ab. Dadurch wird erreicht, dass zu jedem Zeitpunkt das Endprodukt durch das Verfahren bereitgestellt werden kann und die Reaktionskammern optimal ausgenutzt werden.In the method according to the invention runs over the entire reaction period of a first sequential step of a chemical reaction in a first reaction chamber away in a different second reaction chamber at least one time from the first sequential reaction step different second sequential reaction step. Thereby is achieved that at any time the end product can be provided by the process and the reaction chambers are optimally utilized.
Da die unterschiedlichen sequenziellen Reaktionsschritte eine unterschiedliche Reaktionszeit aufweisen können, kann für eine optimale Auslastung der Reaktionskammern vorteilhafterweise a) der Energieeintrag in den Reaktionskammern zur Anpassung der Reaktionsgeschwindigkeit unterschiedlich gestaltet werden, b) der Massenstrom der Reaktionspartner angepasst werden, und/oder c) die Anzahl der Reaktionskammern entsprechend den Reaktionszeiten angepasst werden, in denen die Reaktionen entsprechend zeitversetzt ablaufen.Since the different sequential reaction steps can have a different reaction time, for optimum utilization of the reaction chambers it is advantageously possible to differentiate a) the energy input in the reaction chambers for adjusting the reaction rate, b) adapt the mass flow of the reactants, and / or c) number the reaction chambers are adjusted according to the reaction times in which the reactions proceed correspondingly time-delayed.
Letztere Variante wird anhand der Fig. 1 näher veranschaulicht. Beispielhaft ist in Fig. 1 dargestellt, wie bei zwei Reaktionsschritten, bei denen der zweite Reaktionsschritt doppelt so lange dauert wie der erste Reaktionsschritt, mit drei Reaktionskammern ein erfindungsgemäßes, quasikontinuierliches Verfahren betrieben werden kann.The latter variant is illustrated in more detail with reference to FIG. 1. By way of example, FIG. 1 shows, as in the case of two reaction steps, in which the second reaction step lasts twice as long as the first reaction step, with three reaction chambers a quasi-continuous process according to the invention can be operated.
Bei dem erfindungsgemäßen Verfahren werden vorzugsweise alle reversiblen Reaktionsschritte der chemischen Reaktion in denselben Reaktionskammern sequenziell durchgeführt. Eine Separierung oder Isolierung von Zwischenprodukten kann somit entfallen. Vorteilhafterweise setzt man beim erfindungsgemäßen Verfahren als Reaktionskammern strahlungsbeheizte Reaktoren ein. Dadurch können mit Lichtenergie thermische Reaktionen durchgeführt werden. Als Strahlung kann jedwede elektromagnetische Strahlung eingesetzt werden. Erfindungsgemäß können vorteilhafterweise bei der Durchführung des Verfahrens auch Photoreaktionen stattfinden. Prinzipiell thermische Reaktionen können erfindungsgemäß auch insbesondere photoassistiert ablaufen. Photoassistiert im Sinne der Erfindung heißt, dass das Reaktionsprodukt durch eine Photoreaktion verstärkt gebildet wird.In the method according to the invention, preferably all reversible reaction steps of the chemical reaction are carried out sequentially in the same reaction chambers. Separation or isolation of intermediates can thus be omitted. Advantageously, in the process according to the invention, radiation-heated reactors are used as reaction chambers. As a result, thermal reactions can be carried out with light energy. As radiation, any electromagnetic radiation can be used. According to the invention, photoreactions can advantageously also take place when carrying out the process. In principle, thermal reactions can also take place according to the invention, in particular photoassisted. Photo assisted according to the invention means that the reaction product is formed reinforced by a photoreaction.
Man stellt die zyklisch abwechselnden Reaktionsbedingungen vorzugsweise durch einen zyklischen Wechsel der Temperatur der Reaktionskammern beispielsweise durch Variation der Heizleistung ein.The cyclically alternating reaction conditions are preferably set by a cyclic change in the temperature of the reaction chambers, for example by varying the heat output.
Besonders bevorzugt wird die erforderliche Temperatur in den Reaktionskammern durch einen zyklischen Wechsel der Heizleistung variiert, womit ein quasikontinuierlicher Produktstrom ermöglicht wird. Die unterschiedliche thermische Ansteuerung der Reaktoren ermöglicht beispielsweise die gleichzeitige Reaktion der Wasserspaltung bei niedrigerer Temperatur und die Regeneration bei höherer Temperatur. Die Aneinanderreihung dieser verschiedenen Batch- Prozesse gewährleistet somit beispielsweise eine quasikontinuierliche Wasserstoffproduktion.Particularly preferably, the required temperature in the reaction chambers is varied by a cyclical change of the heating power, thus enabling a quasi-continuous product flow. The different thermal control of the reactors allows, for example, the simultaneous reaction of the water splitting at a lower temperature and the regeneration at a higher temperature. The juxtaposition of these different batch processes thus ensures, for example, a quasi-continuous hydrogen production.
Vorteilhafterweise wird das Verfahren in mehreren aufeinanderfolgenden Zyklen quasikontinuierlich reproduzierbar durchgeführt. Ein Zyklus dauert dabei beispielsweise eine Zeitspanne in einem Bereich von 0,3 bis 1,5 h, insbesondere 0,3 bis 1 h. Dies hat gegenüber einem diskontinuierlichen Verfahren vor allem ökonomische Vorteile. Die Zyklen können dabei jedoch je nach durchzuführender Reaktion aber auch wesentlich kürzer oder auch länger sein.Advantageously, the process is carried out in several successive cycles quasi-continuous reproducible. One cycle, for example, takes a period of time in one area from 0.3 to 1.5 h, especially 0.3 to 1 h. Above all, this has economic advantages over a discontinuous process. However, depending on the reaction to be carried out, the cycles may also be considerably shorter or even longer.
Weiterhin bevorzugt wird in diesem Verfahren entsprechend des unterschiedlichen Energiebedarfs der beteiligten, sequenziell durchzuführenden Reaktionen ein zyklischer Wechsel der Temperatur des fixierten Reaktionspartners (beispielsweise des Metalloxids) durch Variation der Heizleistung eingestellt, weil beispielsweise zuerst die Spaltung und anschließend die Regeneration stattfinden soll.Further preference is given in this method according to the different energy requirements of the reactions to be carried out sequentially, a cyclic change in the temperature of the fixed reactant (for example, the metal oxide) adjusted by varying the heat output, for example, first the cleavage and then the regeneration should take place.
Vorteilhaft ist es, wenn die absorbierte Energie des optischen Bauteils (bevorzugt ein Abschwächer) zur Erwärmung von Fluiden genutzt wird. Diese Fluide können unter anderem Reaktionspartner, Hilfsstoffe oder Wärmeträgermedien sein. Mit der Vorwärmung benötigen die Fluide nicht mehr so viel Strahlungsleistung im Reaktorraum. Hierbei ist es besonders bevorzugt, wenn das optische Bauteil ein Rohrbündel ist, das vom Fluid durchflössen ist.It is advantageous if the absorbed energy of the optical component (preferably an attenuator) is used to heat fluids. These fluids can be, inter alia, reactants, auxiliaries or heat transfer media. With the preheating the fluids no longer need as much radiant power in the reactor space. It is particularly preferred if the optical component is a tube bundle, which is flowed through by the fluid.
Bevorzugt setzt man beim erfindungsgemäßen Verfahren fossile Energie, elektrische Energie, Lichtenergie und/oder Nuklearenergie ein.In the process according to the invention, preference is given to using fossil energy, electrical energy, light energy and / or nuclear energy.
Bevorzugt kann hierbei die erforderliche Temperatur durch Verbrennung fossiler Energie und/oder Nutzung elektrischer Energie erzeugt werden, weil gängige Verfahren diese Energiequellen nutzen. Vorteilhaft ist auch die Erzeugung der erforderlichen Temperatur durch Nuklearenergie, da bei Nuklearreaktionen nur etwa ein Drittel der im Reaktor erzeugten Wärme sich zur Stromerzeugung nutzen lässt. Die entstandene (Rest-)wärme kann zur Erzeugung der erforderlichen Temperatur genutzt werden. Hierbei entstehen im großtechnischen Maßstab keine klimaschädlichen Emissionen von CO2.In this case, the required temperature may preferably be generated by combustion of fossil energy and / or use of electrical energy, because common methods use these energy sources. Also advantageous is the generation of the required temperature by nuclear energy, since in nuclear reactions only about one third of the heat generated in the reactor can be used to generate electricity. The resulting (residual) heat can be used to generate the required temperature. On a large scale, no climate-damaging emissions of CO2 are produced here.
Vorteilhafterweise findet der Energieeintrag jedoch durch Lichtenergie und insbesondere durch konzentrierte Sonnenstrahlung statt, da diese Energiequelle besonders kostengünstig verfügbar ist und sowohl für thermische als auch gleichermaßen für Photoreaktionen geeignet ist.However, the energy input advantageously takes place by means of light energy and in particular by concentrated solar radiation, since this energy source is available in a particularly cost-effective manner and is suitable both for thermal and likewise for photoreactions.
Die Erzeugung der erforderlichen Temperatur mittels Lichtenergie ist von Vorteil, weil konventionelle Energieerzeugungssysteme durch Verbrennung von fossiler Energie nicht so ressourcenschonend wie das erfindungsgemäße Verfahren sind und Lichtenergie wie Sonnenlicht weltweit zur Verfügung steht.The generation of the required temperature by means of light energy is advantageous because conventional power generation systems by burning fossil energy are not as resource efficient as the inventive method and light energy such as sunlight is available worldwide.
Vorzugsweise kann mit Hilfe optischer Anordnungen Sonnenlicht in die Reaktionskammer einstrahlen um die erforderliche Temperatur zu erzeugen. Diese optischen Anordnungen haben besonders bevorzugte Erscheinungsformen wie Solarturm Systeme, Paraboloid-Konzentratoren, Sonnenöfen, elliptische oder sphärische Spiegel oder linienfokussierende Konzentratoren. Mittels solar-thermochemischer Wasserspaltung kann Wasserstoff dadurch als ein möglicher Energieträger der Zukunft ohne klimaschädliche Emission von Kohlendioxid in großtechnischem Maßstab erzeugt werden. Die erforderliche Strahlungsleistung wird bevorzugt durch eine Gruppe von Heliostaten erreicht und die zur Regeneration erforderliche Strahlungsleistung durch eine weitere Gruppe von Heliostaten erreicht, wobei der Fokus der zweiten Gruppe auf die einzelnen Reaktionsfelder umgestellt wird. Hierbei wird das Heliostatenfeld derart separiert, dass mindestens eine Gruppe von Heliostaten die Grundlast an notwendiger Strahlungsleistung entsprechend dem Reaktionsschritt mit dem geringsten Energiebedarf deckt, indem sie "regulär" dem Tagesgang der Sonne nachgeführt wird, und dass mindestens eine Gruppe von Heliostaten Zusatzlasten an notwendiger Strahlungsleistung für Reaktionsschritte mit höherem Energiebedarf deckt, indem der Fokus dieser Gruppe in bestimmten Zeitabständen jeweils nach Beendigung des jeweiligen Reaktionsschritts auf einen anderen Bereich des Strahlungsempfängers gelenkt wird. Dadurch können leicht zwei unterschiedliche Reaktionstemperaturen realisiert werden.Preferably, with the aid of optical arrangements, sunlight can radiate into the reaction chamber in order to generate the required temperature. These optical arrangements have particularly preferred forms such as solar tower systems, paraboloid concentrators, solar ovens, elliptical or spherical mirrors, or line focusing concentrators. By means of solar-thermochemical water splitting, hydrogen can be produced as a possible energy carrier of the future without climate-damaging emission of carbon dioxide on an industrial scale. The required radiation power is preferably achieved by a group of heliostats and the radiation power required for regeneration is achieved by another group of heliostats, the focus of the second group being switched to the individual reaction fields. Here, the heliostat data field is separated such that at least one group of heliostat covers the base load of necessary radiation power corresponding to the reaction step with the lowest energy requirement by "regular" the daily routine of the sun is tracked, and that at least one group of heliostats additional loads of necessary radiation power for reaction steps with higher energy requirements by the focus of this group is directed at certain intervals after each step of the reaction to another area of the radiation receiver. As a result, two different reaction temperatures can be easily realized.
Vorteilhafterweise verschiebt man die Reaktionskammern relativ zur Strahlungsquelle um die Heizleistung zu variieren. Hiermit kann eine Veränderung der Temperatur bei gleicher Strahlungsleistung unkompliziert stattfinden. Die Reaktionskammern können also vorzugsweise relativ zur optischen Anordnung veränderbar sein um die Heizleistung zu variieren. Hiermit kann eine Veränderung der Temperatur bei gleicher Strahlungsleistung unkompliziert stattfinden.Advantageously, one shifts the reaction chambers relative to the radiation source to vary the heating power. Hereby a change of the temperature with the same radiant power can take place uncomplicatedly. The reaction chambers can therefore preferably be variable relative to the optical arrangement in order to vary the heating power. Hereby a change of the temperature with the same radiant power can take place uncomplicatedly.
Zur Variation der solarthermischen Heizleistung eignet sich vorteilhafterweise das Verwenden optischer Bauteile zur Reduktion der Einstrahlung. Hierzu eignen sich besonders bevorzugt durch räumlich verschiebbare oder hinsichtlich ihrer Transparenz variable optische Abschwächer, Blenden, Umlenkspiegel oder Filter.To vary the solar thermal heating power is advantageously the use of optical components to reduce the Exposure. Particularly suitable for this purpose are spatially displaceable or, with regard to their transparency, optical attenuators, diaphragms, deflecting mirrors or filters.
Dies kann unter anderem vorteilhafterweise durch Variation der Fokusposition infolge einer Veränderung der Ausrichtung von Spiegeln oder Spiegelfeldern, so genannter Heliostatfelder erreicht werden. Dies ist wesentlich leichter zu realisieren als die Verschiebung des meist sehr schweren Reaktors.Among other things, this can advantageously be achieved by varying the focus position as a result of a change in the orientation of mirrors or mirror fields, so-called heliostat fields. This is much easier to implement than the displacement of the usually very heavy reactor.
Bevorzugt stellt man in einer ersten Reaktionskammer eine Temperatur im Bereich von 500 0C bis 1000 0C, insbesondere bis 900 und in einer zweiten Reaktionskammer eine Temperatur in einem Bereich von 1000 0C bis 1400 0C ein, um beispielsweise so bei einer besonders niedrigen Temperatur die Wasserstofferzeugung in einer ersten Reaktionskammer und gleichzeitig die Regeneration in einer zweiten Reaktionskammer bei höherer Temperatur durchzuführen. Je nach durchzuführender Reaktion können die eingesetzten Temperaturen aber auch wesentlich davon abweichen.Preferably, in a first reaction chamber, a temperature in the range of 500 0 C to 1000 0 C, in particular up to 900 and in a second reaction chamber, a temperature in a range of 1000 0 C to 1400 0 C, for example so at a particularly low Temperature to carry out the hydrogen production in a first reaction chamber and at the same time the regeneration in a second reaction chamber at a higher temperature. Depending on the reaction to be carried out, however, the temperatures used may also differ significantly.
Der fixierte Reaktionspartner in beiden Reaktionskammern ist vorteilhafterweise ausgewählt aus der Gruppe der Metallhydride, Farbstoffe, chemischen Verbindungen mit Redoxeigenschaften, und Komplexbildner. Chemische Verbindungen mit Redoxeigenschaften im Sinne der Erfindung sind solche Verbindungen, die reversibel oxidiert und reduziert werden können. Vorteilhafterweise sind diese chemischen Verbindungen mit Redoxeigenschaften ausgewählt aus der Gruppe der Metalloxide, gemischten Metalloxide und/oder dotierten Metalloxide. Von diesen Reaktionspartnern haben sich Metalloxide als besonders vorteilhaft herausgestellt, da sie am vielseitigsten anwendbar sind und sich beispielsweise im Unterschied zu Metallhydriden besonders einfach fixieren lassen.The fixed reactant in both reaction chambers is advantageously selected from the group of metal hydrides, dyes, chemical compounds with redox properties, and complexing agents. Chemical compounds with redox properties in the context of the invention are those compounds which can be reversibly oxidized and reduced. Advantageously, these chemical compounds having redox properties are selected from the group of metal oxides, mixed metal oxides and / or doped metal oxides. Of these reactants, metal oxides have been found to be particularly advantageous since they are most versatile applicable and can be particularly easily fixed, for example, in contrast to metal hydrides.
Besonders bevorzugt setzt man als fixierten Reaktionspartner ein multivalentes Metalloxid ein, da sich dieses besonders leicht zu fixieren und zu regenerieren ist. Multivalent im Sinne der Erfindung ist ein Metalloxid, das mehrere Oxidationsstufen nebeneinander aufweist und insbesondere dann, wenn das Metall in einer Oxidationsstufe größer als + 1, insbesondere größer als +2 vorliegt.Particular preference is given to using a multivalent metal oxide as the fixed reaction partner, since this is particularly easy to fix and to regenerate. Multivalent in the context of the invention is a metal oxide which has several oxidation states next to one another and in particular when the metal is present in an oxidation state greater than + 1, in particular greater than +2.
Vorzugsweise umfassen die Metalloxide Ferrite und/oder Zinkoxide und/oder Manganoxide und/oder Ceroxide und /oder Lanthanoxide und oder andere Lanthanid-Oxide und/oder Oxide der generellen Formel Mex 2+Zni-X 2+Fe2θ4, wobei Mex 2+ ein zweiwertiges Metallion ausgewählt aus der Gruppe Mg, Ca, Mn, Fe, Co, Ni, Cu, Zn, Sr, Sn, Ba, Cd oder Pb ist, und/oder Mischungen dieser Oxide oder Oxide der generellen Formel Me'χMe"i-xFeO, wobei Me' und Me" Metallionen ausgewählt aus der Gruppe Mg, Ca, Mn, Fe, Co, Ni, Cu, Zn, Sr, Sn, Ba, Cd, Pb oder Lanthanide sind, da diese besonders effizient bei der Wasserstoffspaltung einsetzbar sind, wobei x eine Zahl in einem Bereich von 1 bis 5, insbesondere 2 bis 3 ist.The metal oxides preferably comprise ferrites and / or zinc oxides and / or manganese oxides and / or ceric oxides and / or lanthanum oxides and / or other lanthanide oxides and / or oxides of the general formula Me x 2+ Zni- X 2+ Fe 2 O 4 , where Me x 2 + a bivalent metal ion selected from the group Mg, Ca, Mn, Fe, Co, Ni, Cu, Zn, Sr, Sn, Ba, Cd or Pb, and / or mixtures of these oxides or oxides of the general formula Me'χMe " i - x FeO, where Me 'and Me "are metal ions selected from the group consisting of Mg, Ca, Mn, Fe, Co, Ni, Cu, Zn, Sr, Sn, Ba, Cd, Pb or lanthanides, since these are particularly efficient at the hydrogen cleavage can be used, wherein x is a number in a range of 1 to 5, in particular 2 to 3.
Vorteilhafterweise setzt man die chemische Verbindung mit Redoxeigenschaften als Beschichtung einer hitzebeständigen besonders bevorzugt keramischen Trägerstruktur ein. Durch den Einsatz einer Trägerstruktur muss die chemische Verbindung mit Redoxeigenschaften nur in einer dünnen Schicht in den Reaktionskammern vorliegen.Advantageously, the chemical compound having redox properties is used as a coating of a heat-resistant, particularly preferred ceramic support structure. By using a Carrier structure, the chemical compound with redox properties must be present only in a thin layer in the reaction chambers.
Man setzt bevorzugt eine Trägerstruktur mit konus-, halbkugel- oder paraboloidförmiger Form ein, da hierdurch Streustrahlung der Strahlungsquelle in der Reaktionskammer optimal genutzt werden kann.It is preferable to use a support structure with a conical, hemispherical or paraboloidal shape, as this allows optimum utilization of scattered radiation from the radiation source in the reaction chamber.
Neben den fixierten Reaktionspartnern werden auch mobile Reaktionspartner eingesetzt.In addition to the fixed reaction partners, mobile reaction partners are also used.
Im erfindungsgemäßen Verfahren ist wenigstens einer der mobilen Reaktionspartner vorteilhafterweise ausgewählt aus der Gruppe Wasser, Alkohole, Kohlendioxid, Schwefelwasserstoff, Stickoxide,In the process according to the invention, at least one of the mobile reactants is advantageously selected from the group consisting of water, alcohols, carbon dioxide, hydrogen sulfide, nitrogen oxides,
Kohlenwasserstoffe, Halogen- oder Pseudohalogenwasserstoffe, Ammoniak und Schwefeloxide. Von diesen mobilen Reaktionspartnern hat sich Wasser als besonders vorteilhaft herausgestellt, da es leicht verfügbar und vor allem in der Gasphase ein leicht zu handhabender Reaktionspartner ist.Hydrocarbons, halogen or pseudohalides, ammonia and sulfur oxides. Of these mobile reactants, water has been found to be particularly advantageous because it is readily available and, especially in the gas phase, an easy-to-handle reactant.
Vorteilhafterweise ist weiterhin mindestens einer, besonders bevorzugt sind alle mobilen Reaktionspartner im erfindungsgemäßen Verfahren gasförmig. Dadurch kann (können) dieser (diese) Reaktionspartner besonders leicht den Reaktionskammern zugeführt werden. Ausserdem ist vorzugsweise mindestens eines, besonders bevorzugt sind alle mobilen Reaktionsprodukte gasförmig, da diese ebenso einfach aus den Reaktionskammern wieder abgeführt werden können. Vorteilhafterweise wird die der Erfindung zu Grunde liegende Aufgabe daher gelöst durch ein Verfahren zur Herstellung von Wasserstoff aus Wasserdampf an einer Oberfläche wenigstens einer chemische Verbindung mit Redoxeigenschaften, wobei man im ersten Schritt Wasserdampf durch die Anlagerung von Sauerstoff an die angeregte chemische Verbindung mit Redoxeigenschaften thermisch spaltet und Wasserstoff freisetzt und in einem zweiten Schritt bei einer gegenüber dem ersten Schritt höheren Temperatur die chemische Verbindung mit Redoxeigenschaften regeneriert und gebundenen Sauerstoff freisetzt.Advantageously, at least one, more preferably all mobile reactants in the process according to the invention are gaseous. As a result, these reactants can be fed to the reaction chambers particularly easily. In addition, preferably at least one, more preferably all mobile reaction products are gaseous, since these can just as easily be removed from the reaction chambers again. Advantageously, the object underlying the invention is therefore achieved by a process for the production of hydrogen from water vapor on a surface of at least one chemical compound with redox properties, wherein in the first step, water vapor thermally cleaves by the addition of oxygen to the excited chemical compound with redox properties and releasing hydrogen and, in a second step, at a higher temperature than the first step, regenerating the chemical compound having redox properties and releasing bound oxygen.
Die Erfindung kann also ein Verfahren betreffen, Wasserdampf in einem mehrstufigen Prozess durch Nutzung konzentrierter Strahlung thermisch zu spalten und demzufolge solaren Wasserstoff zu erzeugen.The invention can thus relate to a method of thermally splitting water vapor in a multi-stage process by using concentrated radiation and consequently of generating solar hydrogen.
Mit dem erfindungsgemäßen Verfahren kann Wasserdampf durch konzentriertes Sonnenlicht thermisch gespalten und dadurch Wasserstoff erzeugt werden. Dies bildet die Grundlage zur Entwicklung des erfindungsgemäßen Verfahrens, mit dem Wasserstoff solarthermisch erzeugt werden kann. Im Gegensatz zur direkten thermischen Wasserspaltung, die erst bei einigen Tausend Grad Celsius erfolgt, wird hier in einem zweistufigen Kreisprozess vorzugsweise bei Temperaturen in einem Bereich von 8000C bis 12000C Wasserstoff aus Wasserdampf erzeugt. Im Kreis geführt wird beispielsweise ein Metalloxid-System, das Sauerstoff aus Wassermolekülen abspalten und reversibel in seine Kristallstruktur einbinden kann. Reaktion 1 : Spaltung Meθred + H2O → MeO0x + H2 With the method according to the invention, water vapor can be thermally split by concentrated sunlight, thereby generating hydrogen. This forms the basis for the development of the process according to the invention, with which hydrogen can be generated by solar thermal means. In contrast to the direct thermal splitting of water, which takes place only at a few thousand degrees Celsius, is preferably produced here in a two stage cycle process at temperatures in a range from 800 0 C to 1200 0 C hydrogen from water vapor. For example, a metal oxide system which can split off oxygen from water molecules and reversibly integrate it into its crystal structure is circulated. Reaction 1: Cleavage Meθ re d + H 2 O → MeO 0x + H 2
Reaktion 2: Regenerierung MeO0x → Meθred + O2 Reaction 2: Regeneration MeO 0x → Meθ re d + O 2
Es werden vorzugsweise Metalloxide (MeO) mit unterschiedlicher Dotierung eingesetzt, die zyklisch oxidiert und reduziert werden. Im ersten Schritt wird der am Metalloxid vorbeiströmende heiße Wasserdampf durch Bindung des Sauerstoffs an das angeregte Metalloxidgitter bei Temperaturen vorzugsweise in einem Bereich von 500 bis 1000 0C, insbesondere 550 bis 850 0C gespalten und Wasserstoff freigesetzt. Im zweiten Schritt wird bei Temperaturen vorzugsweise in einem Bereich von 1000 bis 1400 0C, insbesondere 1050 bis 1350 0C der zuvor in das Gitter eingebaute Sauerstoff wieder abgegeben und das Metalloxid regeneriert beziehungsweise wieder in den energiereicheren Zustand reduziert. Diese Temperaturen gelten bevorzugt für Ferrite oder Eisenmischoxide. Besonders bevorzugt kann die Reaktionstemperatur vorteilhafterweise in einem Bereich von 600 0C bis 800 0C und die Regenerationstemperatur in einem Bereich von 900 bis 1200 0C liegen. Insgesamt wird also mit Hilfe des Metalloxids Wasser in seine Elemente gespalten. Die verwendeten Metalloxide sind vorteilhafterweise Mischoxide, besonders bevorzugt mit Zink dotierte Ferrite.It is preferable to use metal oxides (MeO) with different doping, which are cyclically oxidized and reduced. In the first step, the hot steam flowing past the metal oxide is split by bonding the oxygen to the excited metal oxide grid at temperatures preferably in a range of 500 to 1000 ° C., in particular 550 to 850 ° C., and liberates hydrogen. In the second step, at temperatures preferably in a range from 1000 to 1400 0 C, in particular 1050 to 1350 0 C, the oxygen previously introduced into the grid is released again and the metal oxide is regenerated or reduced again to the more energetic state. These temperatures are preferably for ferrites or mixed iron oxides. Particularly preferably, the reaction temperature can advantageously be in the range from 600 ° C. to 800 ° C. and the regeneration temperature in the range from 900 to 1200 ° C. All in all, water is split into its elements with the help of the metal oxide. The metal oxides used are advantageously mixed oxides, particularly preferably zinc-doped ferrites.
Eine wichtige Innovation des Verfahrens ist die vorteilhafte Kombination einer keramischen Träger- und Absorberstruktur, die mit konzentrierter Sonnenstrahlung auf hohe Temperaturen erhitzt werden kann, mit einem Redoxsystem, das in der Lage ist, beispielsweise Wasser reversibel zu spalten. Dazu werden vorzugsweise poröse Wabenstrukturen, die als Strahlungsabsorber fungieren, mit Ferriten beschichtet. Dies beinhaltet Vorteile gegenüber vergleichbaren Verfahren, da hier der komplette Prozess in einem einzigen Konverter durchgeführt werden kann. Somit müssen keine Feststoffe im Kreis geführt werden und durch die Bindung des Sauerstoffs an das Metalloxid reduziert sich die Produktseparierung auf eine Gastrennung. Zudem ermöglicht es dieses System, den Wasserspaltungsprozess bei deutlich niedrigeren, materialtechnisch beherrschbaren Temperaturen ablaufen zu lassen. Vorzugsweise wird das Metalloxid zurückgewonnen, so dass lediglich Wasser verbraucht wird. All diese technischen Vorteile eröffnen auch ökonomische Vorteile gegenüber anderen Verfahren zur Wasserstoffgewinnung.An important innovation of the process is the advantageous combination of a ceramic carrier and absorber structure, which can be heated to high temperatures with concentrated solar radiation, with a redox system capable of reversibly splitting water, for example. For this purpose, preferably porous honeycomb structures, which function as radiation absorbers, with ferrites coated. This includes advantages over comparable methods, since the complete process can be carried out in a single converter. Thus, solids do not need to be recycled, and the binding of oxygen to the metal oxide reduces product separation to gas separation. In addition, this system makes it possible to run the water splitting process at significantly lower temperatures that can be controlled by materials technology. Preferably, the metal oxide is recovered, so that only water is consumed. All of these technical advantages also provide economic advantages over other methods of hydrogen production.
Die mit Metalloxid beschichtete keramische Struktur bildet vorteilhafterweise das Kernstück in einem Receiver- Reaktor. Durch Ankopplung an eine konzentrierende Solaranlage (vorzugsweise einen Solarturm) wird die Struktur durch die einfallende konzentrierte Sonnenstrahlung auf die dafür notwendige Temperatur gebracht. Die Reaktionen finden auf der Oberfläche der beschichteten Keramik statt. Der Reaktor ist vorzugsweise in eine Kleinanlage zur Überprüfung und Optimierung des Betriebsverhaltens während der Wasserspaltung beziehungsweise Regeneration integriert. Diese Anlage umfasst vorzugsweise Armaturen und Massenstromregler zur Zufuhr der benötigten Gase, ein Wasserdampfdosiersystem, Messsysteme für Druck und Temperatur, Produktgasbehandlung, sowie die Datenerfassung und Steuerung. Die Analyse der Konzentrationen an produziertem Wasserstoff beziehungsweise an freigesetztem Sauerstoff erfolgt vorzugsweise durch ein Massenspektrometer. Für eine effiziente Nutzung des Reaktors ist es vorzugsweise erforderlich, dass ein andauernder Betrieb zur Erzeugung des Produktes Wasserstoff stattfinden kann. Da zwei Reaktionen mit unterschiedlichen Bedingungen durchzuführen sind, muss ein zyklischer Wechsel der Reaktionsbedingungen beziehungsweise Gase sowie der benötigten Energie (Temperatur) erfolgen.The ceramic structure coated with metal oxide advantageously forms the core in a receiver reactor. By coupling to a concentrating solar system (preferably a solar tower), the structure is brought by the incident concentrated solar radiation to the necessary temperature. The reactions take place on the surface of the coated ceramic. The reactor is preferably integrated into a small system for checking and optimizing the operating behavior during water splitting or regeneration. This system preferably includes valves and mass flow controllers for supplying the required gases, a water vapor dosing system, pressure and temperature measuring systems, product gas treatment, as well as data acquisition and control. The analysis of the concentrations of hydrogen produced or of released oxygen is preferably carried out by a mass spectrometer. For efficient use of the reactor, it is preferably required that continued operation to produce the product hydrogen may occur. Since two reactions are to be carried out with different conditions, a cyclic change of the reaction conditions or gases as well as the required energy (temperature) must take place.
Vorzugsweise wird der Wasserdampf bei einer Temperatur im Bereich von 500 0C bis 10000C, insbesondere bis 900 0C, ganz besonders bevorzugt von 550 bis 850 0C gespalten und das Metalloxid bei einer Temperatur in einem Bereich von 1000 0C bis 1400 0C, insbesondere von 1050 bis 1350 0C regeneriert. Bei einstufiger thermischer Wasserspaltung mussten bislang Temperaturen von einigen tausend Grad, mindestens jedoch 20000C eingesetzt werden. Der niedrigere Temperaturbereich ist materialtechnisch und verfahrenstechnisch leichter handhabbar und reduziert die Kosten für das Verfahren erheblich.Preferably, the water vapor at a temperature in the range of 500 0 C to 1000 0 C, in particular to 900 0 C, most preferably split from 550 to 850 0 C and the metal oxide at a temperature in a range of 1000 0 C to 1400 0 C, in particular regenerated from 1050 to 1350 0 C. In one-step thermal splitting of water temperatures of a few thousand degrees, but at least 2000 0 C had to be used. The lower temperature range is easier to handle in terms of materials and processes, and considerably reduces the costs of the process.
Bevorzugt wird die der Erfindung zugrunde liegende Aufgabe daher gelöst durch ein Verfahren zur quasikontinuierlichen Herstellung von Wasserstoff aus Wasserdampf an einer Oberfläche eines Metalloxids und anschließender Regeneration der Oberfläche.The object underlying the invention is therefore preferably achieved by a process for the quasi-continuous production of hydrogen from water vapor on a surface of a metal oxide and subsequent regeneration of the surface.
Es ist zur quasikontinuierlichen Herstellung von Wasserstoff aus Wasserdampf an einer Oberfläche eines Metalloxids und anschließender Regeneration der Oberfläche von Vorteil, wenn eine quasikontinuierliche Synthese in mindestens zwei Reaktionskammern durchführt, wodurch Wasserdampf zu Wasserstoff umgesetzt werden kann und zeitgleich eine weitere Reaktionskammer regeneriert werden kann, um gleich anschließend wieder Wasserdampf zu Wasserstoff umzusetzen. Durch dieses quasikontinuierliche Verfahren kann der thermische Herstellungsprozess von Wasserstoff erheblich vereinfacht werden.It is advantageous for the quasi-continuous production of hydrogen from water vapor on one surface of a metal oxide and subsequent surface regeneration when performing a quasi-continuous synthesis in at least two reaction chambers, whereby water vapor can be converted to hydrogen and at the same time a further reaction chamber can be regenerated in order to immediately convert water vapor back into hydrogen. This quasicontinuierliche process, the thermal production process of hydrogen can be significantly simplified.
So kann vorteilhafterweise im erfindungsgemäßen Verfahren in einem Reaktor die Wasserstoffsynthese durch Wasserspaltung und in einem weiteren Reaktor die Regeneration des Metalloxids stattfinden. Im darauffolgenden Zyklus kann dann die regenerierte Reaktionskammer wieder neue Reaktionspartner aufnehmen. So kann Wasserstoff im Vergleich zum Stand der Technik kontinuierlich und einfach thermisch erzeugt werden.Thus, advantageously, in the process according to the invention in one reactor, the hydrogen synthesis by water splitting and in another reactor, the regeneration of the metal oxide take place. In the next cycle, the regenerated reaction chamber can then absorb new reactants again. Thus, hydrogen can be produced continuously and simply thermally compared to the prior art.
Die der Erfindung zugrunde liegende Aufgabe wird gelöst in einer weiteren Ausführungsform durch ein thermisches Verfahren zur Herstellung von Wasserstoff aus Wasserdampf an einer Oberfläche eines Metalloxids in einer Gas-Festphasen-Reaktion, wobei in einer Reaktionskammer im ersten Schritt Wasserdampf durch die Anlagerung von Sauerstoff an das angeregte Metalloxid thermisch gespalten, Wasserstoff freigesetzt wird und in einem zweiten Schritt bei einer gegenüber dem ersten Schritt höheren Temperatur das Metalloxid regeneriert und gebundener Sauerstoff freigesetzt wird, so dass das Metalloxid für weitere Reaktionen zur Verfügung steht.The object underlying the invention is achieved in a further embodiment by a thermal process for producing hydrogen from water vapor on a surface of a metal oxide in a gas-solid phase reaction, wherein in a reaction chamber in the first step, water vapor by the addition of oxygen to the excited metal oxide is thermally split, hydrogen is released and regenerated in a second step at a temperature higher than the first step, the metal oxide and bound oxygen is released, so that the metal oxide is available for further reactions.
Die Erfindung betrifft also ein Verfahren, Wasserdampf in einem mehrstufigen Prozess durch Nutzung konzentrierter Strahlung thermisch zu spalten und demzufolge solaren Wasserstoff zu erzeugen. In einer weiteren Ausführungsform wird die der Erfindung zu Grunde liegende Aufgabe gelöst durch einen Photoreaktor zur Durchführung des erfindungsgemäßen Verfahrens, dadurch gekennzeichnet, dass dieser zwei Reaktionskammern aufweist.The invention thus relates to a method of thermally splitting water vapor in a multi-stage process by using concentrated radiation and consequently to produce solar hydrogen. In a further embodiment, the object underlying the invention is achieved by a photoreactor for carrying out the method according to the invention, characterized in that it has two reaction chambers.
In einer wiederum weiteren Ausführungsform wird die der Erfindung zu Grunde liegende Aufgabe gelöst durch einen strahlungsbeheizten Reaktor zur Durchführung des erfindungsgemäßen Verfahrens, dadurch gekennzeichnet, dass dieser mindestens zwei Reaktionskammern aufweist.In yet another embodiment, the object underlying the invention is achieved by a radiation-heated reactor for carrying out the method according to the invention, characterized in that it has at least two reaction chambers.
Dies ist bevorzugt ein Reaktor zur thermischen Herstellung von Wasserstoff aus Wasserdampf an einer Oberfläche in einer Gas- Festphasen-Reaktion mit mindestens einem angeschlossenen Rohr, das einen Gasstrom von Eduktgasen in eine Reaktionskammer hinein und Produktgasen heraus ermöglicht und einer Wärmequelle, wobei in einer Reaktionskammer Metalloxid als Reaktionspartner (beziehungsweise Reaktand) vorgesehen ist.This is preferably a reactor for the thermal production of hydrogen from water vapor on a surface in a gas-solid phase reaction with at least one connected tube, which allows a gas flow of educt gases into a reaction chamber and product gases out and a heat source, wherein metal oxide in a reaction chamber is provided as a reactant (or reactant).
Vorzugsweise ist im Reaktor das Metalloxid auf einer hitzebeständigen keramischen Trägerstruktur beschichtet. Diese Fixierung hat den Vorteil, dass das Metalloxid immer zur Verfügung steht und so optimal im Reaktor der Wärmequelle ausgesetzt werden kann. Durch die Fixierung des Metalloxids auf der Trägerstruktur muss das Metalloxid nicht mühsam über Trennverfahren zurückgewonnen werden. Vorteilhafterweise kann die für die Reaktionen notwendige Wärme auch aus der Trägerstruktur heraus zugeführt werden. Besonders bevorzugt besteht die keramische Trägerstruktur aus einer porösen Wabenstruktur, weil poröse keramische Wabenstrukturen sich als besonders hitzebeständig herausgestellt haben. Poren im Sinne dieser Erfindung sind die durch die Wabenstruktur gegebenen Zwischenräume. Dies schließt nicht aus, dass das Material an sich vorteilhafterweise selbst eine Porosität in einem Bereich von 10 bis 60 % aufweist. Die Porosität ergibt sich aus der Gewichtsverhältnis des tatsächlichen Gewichts zu dem Gewicht unter Annahme der theoretischen maximalen Dichte.Preferably, in the reactor, the metal oxide is coated on a heat-resistant ceramic support structure. This fixation has the advantage that the metal oxide is always available and can be optimally exposed in the reactor of the heat source. Fixing the metal oxide on the support structure does not require laborious recovery of the metal oxide via separation processes. Advantageously, the heat required for the reactions can also be supplied from the support structure. Particularly preferably, the ceramic support structure consists of a porous honeycomb structure, because porous ceramic honeycomb structures have been found to be particularly resistant to heat. Pores in the sense of this invention are the spaces provided by the honeycomb structure. This does not exclude that the material per se advantageously itself has a porosity in a range of 10 to 60%. The porosity is given by the weight ratio of the actual weight to the weight assuming the theoretical maximum density.
Vorteilhafterweise ist die keramische Trägerstruktur konus-, halbkugel- oder paraboloidförmig aufgebaut, um die Strahlung optimal auf das Metalloxid einzufangen. Hierdurch kann im Unterschied zu bekannten Formen (beispielsweise Zylinderform) auch Randstrahlung besser eingefangen werden.Advantageously, the ceramic support structure is conical, hemispherical or paraboloid-shaped in order to capture the radiation optimally on the metal oxide. As a result, in contrast to known shapes (for example, cylindrical shape), edge radiation can also be captured better.
Die Reaktionskammer ist vorteilhafterweise mit einem transparenten Fenster ausgestattet, da hierdurch die Lichtquelle außerhalb des eigentlichen Reaktors angeordnet werden kann.The reaction chamber is advantageously equipped with a transparent window, since in this way the light source can be arranged outside the actual reactor.
Vorteilhafterweise verlaufen zwischen Reaktionskammer und Energiequelle Rohre, die den Energiefluss abschwächen, da hierdurch eine bessere Kontrolle der Reaktion ermöglicht wird.Advantageously, run between the reaction chamber and energy source tubes that attenuate the flow of energy, as this allows a better control of the reaction is possible.
Vorzugsweise enthalten die Rohre ein Fluid, da hierdurch der Wärmeaustausch individuell abgestimmt werden kann. Der Reaktor ist vorteilhafterweise mit einem Mehr-Wege-Ventil versehen, um die Zufuhr der gasförmigen Edukte zu ermöglichen.Preferably, the tubes contain a fluid, as a result, the heat exchange can be adjusted individually. The reactor is advantageously provided with a multi-way valve to allow the supply of the gaseous reactants.
Vorzugsweise ist das Mehr-Wege-Ventil so gestaltet, dass die gasförmigen Produkte getrennt abgeführt werden können.Preferably, the multi-way valve is designed so that the gaseous products can be removed separately.
Der Reaktor ist vorteilhafterweise modular aus mindestens zwei Reaktionskammern aufgebaut, da hierdurch das oben beschriebene quasi-kontinuierliche Verfahren besonders leicht implementiert werden kann.The reactor is advantageously constructed modularly from at least two reaction chambers, since this makes it possible to implement the above-described quasi-continuous process particularly easily.
Hierbei werden vorzugsweise beide Reaktionskammern abwechselnd mit Wasserdampf oder Inertgas, insbesondere Stickstoff versorgt, wobei die Schaltung so erfolgt, dass eine zeitlich konstante Wasserstoffherstellung erfolgt.In this case, preferably both reaction chambers are alternately supplied with steam or inert gas, in particular nitrogen, wherein the circuit is effected so that a time constant hydrogen production takes place.
Vorzugsweise sind die Metalloxide Ferrite und/oder Zinkoxide und/oder Manganoxide und/oder Lanthanoxide und/oder Oxide der generellen Formel Mex 2+Zni-x 2+Fe2O4, wobei Mex 2+ ein zweiwertiges Metallion ausgewählt aus der Gruppe Mg, Ca, Mn, Fe, Co, Ni, Cu, Zn, Sr, Sn, Ba, Cd, Pb oder Lanthanide ist, und/oder Mischungen dieser Oxide, da diese besonders effizient bei der Wasserstoffspaltung einsetzbar sind, wobei x eine Zahl in einem Bereich von 1 bis 5, insbesondere 2 bis 3 ist. Vorteilhafterweise wird als Energiequelle ein konzentrierendes solarthermisches System wie ein Solarturmsystem, ein Paraboloid- Konzentrator, ein Sonnenofen, ein elliptischer oder sphärischer Spiegel oder ein linienfokussierender Konzentrator eingesetzt.Preferably, the metal oxides ferrites and / or zinc oxides and / or manganese oxides and / or lanthanum oxides and / or oxides of the general formula Me x 2+ Zni- x 2+ Fe2O 4 , where Me x 2+ is a divalent metal ion selected from the group Mg, Ca, Mn, Fe, Co, Ni, Cu, Zn, Sr, Sn, Ba, Cd, Pb or lanthanides, and / or mixtures of these oxides, since these are particularly efficient for hydrogen splitting, where x is a number in one Range is 1 to 5, in particular 2 to 3. Advantageously, the energy source used is a concentrating solar thermal system such as a solar tower system, a paraboloid concentrator, a solar furnace, an elliptical or spherical mirror or a line-focusing concentrator.
Vorzugsweise wird die erforderliche Strahlungsleistung durch eine Gruppe von Heliostaten erreicht und die zur Regeneration erforderliche Strahlungsleistung durch eine weitere Gruppe von Heliostaten erreicht, wobei der Fokus der zweiten Gruppe auf die einzelnen Reaktionsfelder umgestellt wird.Preferably, the required radiation power is achieved by a group of heliostats and the radiation power required for regeneration is achieved by another group of heliostats, the focus of the second group being switched to the individual reaction fields.
Im Folgenden wird anhand von Figuren ein Ausführungsbeispiel - der Konti-Reaktor - der Erfindung näher erläutert. Dieses Ausführungsbeispiel ist nicht dahingehend zu verstehen, dass dadurch der Schutzbereich der Erfindung darauf eingeschränkt wird.An embodiment - the continuous reactor - of the invention will be explained in more detail below with reference to figures. This embodiment is not to be understood as limiting the scope of the invention thereto.
Das erfindungsgemäße Verfahren der solar-thermochemischen Wasserspaltung auf Metalloxid-Basis zur kontinuierlichen Wasserstofferzeugung kann mit Hilfe des hier beschriebenen Designs eines geeigneten Receiver- Reaktors kontinuierlich durchgeführt werden.The inventive method of solar-thermochemical water splitting based on metal oxide for continuous hydrogen production can be carried out continuously with the aid of the design of a suitable receiver reactor described here.
Es zeigen:Show it:
Fig. 1 eine schematische Darstellung des Zeitablaufs verschiedener Reaktionen in verschiedenen Reaktionskammern im erfindungsgemäßen quasikontinuierlichen Verfahren. Fig. 2 eine perspektivische schematische Darstellung (vertikalhorizontaler Schnitt) des Konti-Reaktors nach der Erfindung,Fig. 1 is a schematic representation of the timing of various reactions in different reaction chambers in the quasi-continuous process according to the invention. 2 is a perspective schematic representation (vertical horizontal section) of the continuous reactor according to the invention,
Fig. 3 einen horizontalen Schnitt durch den Reaktor,3 shows a horizontal section through the reactor,
Fig. 4 eine Darstellung des hitzebeständigen Vier-Wege-Ventils im Reaktor.Fig. 4 is an illustration of the heat-resistant four-way valve in the reactor.
Fig. 2 zeigt den Receiver-Reaktor, wobei von der rechten Seite die konzentrierte Sonnenstrahlung auf die Apertur mit Quarz- Fenstern fällt (1). Die Leistung des einfallenden Lichts kann durch eine Blende eingestellt werden. Der Receiver-Reaktor basiert auf der schon beschriebenen Verbindung des Metalloxid-Redoxsystems mit einer Träger- und Absorberstruktur, die aus einem keramischen Monolithen mit wabenartiger Struktur besteht (2). Der Monolith ist mit dem Metalloxid beschichtet und in einem zylindrischen Gehäuse eingebaut (3). Die Wabenstruktur ermöglicht in einem direkt absorbierenden Receiver die Erzeugung hoher Temperaturen bei geringen Rückstrahlungsverlusten. Der Reaktor besteht aus einem modularen Zwei-Komponenten-System fest installierter wabenartiger Absorber. Zwei benachbarte, aber getrennte Reaktionskammern bilden eine minimale Anordnung von Modulen für die kontinuierliche Produktion von Wasserstoff. Die quadratische Apertur (1) erlaubt die Bildung großer und flexibler Receiver-Areale durch Aneinanderreihung einzelner Module. Ein Doppelrohr ist zum Vorheizen der zugeführten Gase Stickstoff und Wasserdampf durch Zurückgewinnung der Wärme des Produktgases vorgesehen (4).FIG. 2 shows the receiver reactor, with the concentrated solar radiation falling from the right side onto the aperture with quartz windows (FIG. 1). The power of the incident light can be adjusted by a shutter. The receiver reactor is based on the already described compound of the metal oxide redox system with a carrier and absorber structure consisting of a ceramic monolith with a honeycomb structure (2). The monolith is coated with the metal oxide and installed in a cylindrical housing (3). The honeycomb structure enables the generation of high temperatures with low re-radiation losses in a directly absorbing receiver. The reactor consists of a modular two-component system of permanently installed honeycomb absorbers. Two adjacent but separate reaction chambers form a minimal array of modules for the continuous production of hydrogen. The square aperture (1) allows the formation of large and flexible receiver areas by juxtaposing individual modules. A double tube is provided for preheating the supplied gases nitrogen and water vapor by recovering the heat of the product gas (4).
Der Betrieb des Konti-Reaktors beruht auf der gleichzeitigen Nutzung beider Module. Während in einer der Reaktionskammern Wasser gespalten wird, findet in der anderen die Regenerierung statt. Nach Beendigung der Reaktionen wird durch Wechsel der Gaszufuhr das regenerierte Modul umgeschaltet zur Spaltung und umgekehrt. Voraussetzung für diesen kontinuierlichen Betrieb und die Wasserstofferzeugung ist die getrennte Zuleitung von Stickstoffgas, das als Trägergas beziehungsweise Spülgas eingesetzt wird, sowie Wasserdampf (6). Außerdem sind gesonderte Leitungen für die Produkte der Spaltung einerseits und für das sauerstoffhaltige Spülgas der Regeneration andererseits notwendig (7). Dies wird durch Vier- Wege-Ventile (5 beziehungsweise 5a) ermöglicht, die jeweils nach Beendigung eines Reaktionsschrittes umgeschaltet werden. Eines dieser Ventile (5) muss hohen Temperaturen bis zu 6000C standhalten. Fig. 4 zeigt die Stellungen dieses Ventils.The operation of the Konti reactor is based on the simultaneous use of both modules. While in one of the reaction chambers water is split, the regeneration takes place in the other. After completion of the reactions, changing the gas supply, the regenerated module is switched to splitting and vice versa. A prerequisite for this continuous operation and the production of hydrogen is the separate supply of nitrogen gas, which is used as a carrier gas or purge gas, as well as water vapor (6). In addition, separate lines for the products of the cleavage on the one hand and for the oxygen-containing purge gas regeneration on the other hand necessary (7). This is made possible by four-way valves (5 or 5a), which are each switched after completion of a reaction step. One of these valves (5) has to withstand high temperatures up to 600 ° C. Fig. 4 shows the positions of this valve.
Die beiden Schritte des Prozesses werden im selben Reaktor auf verschiedenen Temperaturniveaus mit unterschiedlichem Wärmebedarf durchgeführt. Die Regenerierung ist endotherm und verläuft vorteilhafterweise in einem Temperaturbereich von 1100 bis 12000C. Die Wasserdampfspaltung ist leicht exotherm und findet bei 8000C statt. Deshalb benötigt ein Teil der Module (Regeneration) eine höhere solare Flussdichte als der zweite Teil für die Wasserspaltung, die nur wenig Energie zur Kompensation von Wärmeverlusten beansprucht. Somit ist ein zyklischer Wechsel der Bestrahlungsstärke erforderlich, wenn der Zyklus von Regeneration zu Spaltung beziehungsweise umgekehrt umgeschaltet wird. Dafür ist ein Wechsel der Spiegelfokussierung zwischen zwei gleichen Brennpunkten durch eine geeignete Adjustierung der konzentrierenden Spiegel der Solaranlage vorgesehen. Die periodische Veränderung der Bestrahlungsstärke wird durch zeitlich veränderliche optische Bauteile erreicht, beispielsweise optische Gitter als Abschwächer, Umlenkspiegel oder halbdurchlässige Spiegel. Ein solches Bauteil ist beweglich und befindet sich vor einer der beiden Aperturen. Bei einem Wechsel des zugeführten Gases kann dessen Position entsprechend umgeschaltet werden. Ebenso möglich, aber technisch aufwändiger ist eine zeitliche Veränderung der Receiverposition zwischen Orten unterschiedlicher Einstrahlungsintensität. The two steps of the process are carried out in the same reactor at different temperature levels with different heat requirements. The regeneration is endothermic and advantageously proceeds in a temperature range of 1100 to 1200 0 C. The water vapor cleavage is slightly exothermic and takes place at 800 0 C. Therefore, some of the modules (regeneration) require a higher solar flux density than the second part for water splitting, which requires little energy to compensate for heat losses. Thus, a cyclic change in irradiance is required when the cycle is switched from regeneration to cleavage or vice versa. For a change of the mirror focus between two identical focal points is provided by a suitable adjustment of the concentrating mirror of the solar system. The periodic change in the irradiance is achieved by time-varying optical components, for example optical gratings as attenuators, deflecting mirrors or semitransparent mirrors. Such a component is movable and located in front of one of the two apertures. When changing the supplied gas whose position can be switched accordingly. Equally possible, but technically more complex is a temporal change in the receiver position between locations of different irradiation intensity.

Claims

Patentansprüche claims
1. Verfahren zur quasikontinuierlichen Durchführung einer aus wenigstens zwei sequenziellen reversiblen Schritten bestehenden chemischen Reaktion, dadurch gekennzeichnet, dass man wenigstens zwei Reaktionskammern parallel betreibt, in denen jeweils wenigstens ein Reaktionspartner örtlich fixiert ist, wobei man zyklisch abwechselnde Reaktionsbedingungen in den Reaktionskammern einstellt.1. A process for the quasi-continuous carrying out of at least two sequential reversible steps existing chemical reaction, characterized in that at least two reaction chambers operated in parallel, in each of which at least one reactant is fixed locally, wherein cyclically alternating reaction conditions in the reaction chambers.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass man als Reaktionskammern strahlungsbeheizte Reaktoren einsetzt.2. The method according to claim 1, characterized in that one uses reaction chambers as radiant-heated reactors.
3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass man die zyklisch abwechselnden Reaktionsbedingungen durch einen zyklischen Wechsel der Temperatur der Reaktionskammern insbesondere durch Variation der Heizleistung einstellt.3. The method according to claim 1 or 2, characterized in that adjusting the cyclically alternating reaction conditions by a cyclic change in the temperature of the reaction chambers in particular by varying the heating power.
4. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, dass man die Reaktionskammern relativ zur Strahlungsquelle verschiebt.4. The method according to claim 3, characterized in that one shifts the reaction chambers relative to the radiation source.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man in einer ersten Reaktionskammer eine Temperatur im Bereich von 500 0C bis 1000 0C, insbesondere bis 900 0C und in einer zweiten Reaktionskammer eine Temperatur in einem Bereich von 1000 0C bis 1400 0C einstellt. 5. The method according to any one of claims 1 to 4, characterized in that in a first reaction chamber, a temperature in the range of 500 0 C to 1000 0 C, in particular to 900 0 C and in a second reaction chamber, a temperature in a range of 1000 0 C to 1400 0 C sets.
6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man fossile Energie, elektrische Energie, Lichtenergie und/oder Nuklearenergie einsetzt.6. The method according to any one of claims 1 to 5, characterized in that one uses fossil energy, electrical energy, light energy and / or nuclear energy.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man als fixierten Reaktionspartner eine chemische Verbindung mit Redoxeigenschaften einsetzt.7. The method according to any one of claims 1 to 6, characterized in that one uses as a fixed reaction partner, a chemical compound with redox properties.
8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass man die chemische Verbindung mit Redoxeigenschaften als Beschichtung einer hitzebeständigen keramischen Trägerstruktur einsetzt.8. The method according to claim 7, characterized in that one uses the chemical compound with redox properties as a coating of a heat-resistant ceramic support structure.
9. Verfahren gemäß Anspruch 7 oder 8, dadurch gekennzeichnet, dass man eine Trägerstruktur mit konus-, halbkugel-, zylinder- oder paraboloidförmiger Form einsetzt.9. The method according to claim 7 or 8, characterized in that one uses a support structure with conical, hemispherical, cylindrical or paraboloidal shape.
10. Verfahren gemäß einem der Ansprüche 1 bis 9 zur Herstellung von Wasserstoff aus Wasserdampf an einer Oberfläche wenigstens chemischen Verbindung mit Redoxeigenschaften, wobei man im ersten Schritt Wasserdampf durch die Anlagerung von Sauerstoff an die chemische Verbindung mit Redoxeigenschaften thermisch spaltet und Wasserstoff freisetzt und in einem zweiten Schritt bei einer gegenüber dem ersten Schritt höheren Temperatur die chemische Verbindung mit Redoxeigenschaften regeneriert und gebundenen Sauerstoff freisetzt. 10. The method according to any one of claims 1 to 9 for the production of hydrogen from water vapor on a surface at least chemical compound having redox properties, wherein in the first step, water vapor by the addition of oxygen to the chemical compound with redox properties thermally cleaves and releases hydrogen and in a second step, at a higher temperature than the first step, regenerates the chemical compound having redox properties and releases bound oxygen.
11. Verfahren gemäß einem der Ansprüche 1 bis 10 zur quasikontinuierlichen Herstellung von Wasserstoff aus Wasserdampf an einer Oberfläche eines Metalloxids und anschließender Regeneration der Oberfläche.11. The method according to any one of claims 1 to 10 for the quasi-continuous production of hydrogen from water vapor on a surface of a metal oxide and subsequent regeneration of the surface.
12. Thermisches Verfahren zur Herstellung von Wasserstoff aus Wasserdampf an einer Oberfläche wenigstens eines Metalloxids in einer Gas-Festphasen-Reaktion, wobei in einer Reaktionskammer im ersten Schritt Wasserdampf durch die Anlagerung von Sauerstoff an das angeregte Metalloxid thermisch gespalten, Wasserstoff freigesetzt wird und in einem zweiten Schritt bei einer gegenüber dem ersten Schritt höheren Temperatur das Metalloxid regeneriert und gebundener Sauerstoff freigesetzt wird, so dass das Metalloxid für weitere Reaktionen zur Verfügung steht.12. A thermal process for the production of hydrogen from water vapor on a surface of at least one metal oxide in a gas-solid phase reaction, wherein in a reaction chamber in the first step, steam is thermally cleaved by the addition of oxygen to the excited metal oxide, hydrogen is released and in a second step, at a higher temperature than the first step, the metal oxide is regenerated and bound oxygen is released so that the metal oxide is available for further reactions.
13. Verfahren nach Anspruch 12, wobei man Wasserdampf bei einer Temperatur im Bereich von 5000C bis 10000C, insbesondere 550 bis 850 0C spaltet und das Metalloxid bei einer Temperatur von 10000C bis 14000C, insbesondere 1050 bis 1350 0C regeneriert.13. The method of claim 12, wherein water vapor at a temperature in the range of 500 0 C to 1000 0 C, in particular 550 to 850 0 C cleaves and the metal oxide at a temperature of 1000 0 C to 1400 0 C, in particular 1050 to 1350 0 C regenerated.
14. Verfahren nach Anspruch 12 oder 13, wobei man entsprechend dem unterschiedlichen Energiebedarf der beteiligten, sequenziell durchzuführenden Reaktionen einen zyklischen Wechsel der Temperatur des Metalloxids durch Variation der Heizleistung einstellt. 14. The method of claim 12 or 13, wherein one adjusts a cyclic change in the temperature of the metal oxide by varying the heating power according to the different energy requirements of the participating reactions to be carried out sequentially.
15. Verfahren nach einem der Ansprüche 12 bis 14, wobei man durch Verbrennung fossiler Energie und/oder Nutzung elektrischer Energie die erforderliche Temperatur erzeugt.15. The method according to any one of claims 12 to 14, wherein the required temperature is generated by combustion of fossil energy and / or use of electrical energy.
16. Verfahren nach einem der Ansprüche 12 bis 15, wobei man durch Lichtenergie die erforderliche Temperatur erzeugt.16. The method according to any one of claims 12 to 15, wherein the required temperature is generated by light energy.
17. Verfahren nach einem der Ansprüche 12 bis 16, wobei man Sonnenlicht mit Hilfe optischer Anordnungen die erforderliche Temperatur in die Reaktionskammer einstrahlt.17. The method according to any one of claims 12 to 16, wherein sunlight is irradiated by means of optical arrangements, the required temperature in the reaction chamber.
18. Verfahren nach Anspruch 16 oder 17, wobei die man die Reaktionskammer relativ zur Strahlungsquelle verschiebt, um die Heizleistung zu variieren.18. The method of claim 16 or 17, wherein the shifts the reaction chamber relative to the radiation source to vary the heating power.
19. Verfahren nach einem der Ansprüche 16 bis 18, wobei man die Reaktionskammer relativ zur optischen Anordnung ortsverändert, um die Heizleistung zu variieren.19. The method according to any one of claims 16 to 18, wherein one modifies the reaction chamber relative to the optical arrangement in order to vary the heating power.
20. Verfahren nach einem der Ansprüche 12 bis 19, wobei man optische Bauteile verwendet, die die Einstrahlung reduzieren und dadurch die solarthermische Heizleistung variiert.20. The method according to any one of claims 12 to 19, wherein one uses optical components which reduce the irradiation and thereby varies the solar thermal heating power.
21. Verfahren nach Anspruch 20, wobei man die absorbierte Energie des optischen Bauteils zur Erwärmung von Fluiden nutzt. 21. The method of claim 20, wherein one uses the absorbed energy of the optical component for heating fluids.
22. Thermisches Verfahren zur quasikontinuierlichen Herstellung von Wasserstoff aus Wasserdampf an einer Oberfläche eines Metalloxids und anschließender Regeneration der Oberfläche nach den vorherigen Ansprüchen, wobei man die Herstellung von Wasserstoff in mindestens zwei Reaktionskammern durchführt.22. A thermal process for the quasi-continuous production of hydrogen from water vapor on a surface of a metal oxide and subsequent regeneration of the surface according to the preceding claims, wherein the preparation of hydrogen is carried out in at least two reaction chambers.
23. Verfahren nach Anspruch 22, wobei man die erforderliche Temperatur in den Reaktionskammern durch einen zyklischen Wechsel der Heizleistung variiert und somit einen quasikontinuierlichen Produktstrom ermöglicht.23. The method of claim 22, wherein the required temperature in the reaction chambers is varied by a cyclical change of the heating power and thus allows a quasi-continuous product flow.
24. Photoreaktor zur Durchführung des Verfahrens gemäß einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass dieser zwei Reaktionskammern aufweist.24. photoreactor for carrying out the method according to any one of claims 1 to 11, characterized in that it comprises two reaction chambers.
25. Reaktor zur thermischen Herstellung von Wasserstoff aus Wasserdampf an einer Oberfläche in einer gas-festphasigen Reaktion mit mindestens einem angeschlossenen Rohr, das einen Gasstrom von Eduktgasen in eine Reaktionskammer hinein und Produktgasen heraus ermöglicht und einer Wärmequelle, wobei die Reaktionskammer wenigstens ein Metalloxid als Reaktand umfasst.25. A reactor for the thermal production of hydrogen from water vapor on a surface in a gas-solid phase reaction with at least one connected tube, which allows a gas flow of educt gases into a reaction chamber and product gases out and a heat source, wherein the reaction chamber at least one metal oxide as a reactant includes.
26. Reaktor nach Anspruch 25, wobei das Metalloxid auf einer hitzebeständigen keramischen Trägerstruktur beschichtet ist. 26. Reactor according to claim 25, wherein the metal oxide is coated on a heat-resistant ceramic support structure.
27. Reaktor nach Anspruch 26, wobei die Trägerstruktur eine poröse Wabenstruktur beinhaltet.27. The reactor of claim 26, wherein the support structure includes a porous honeycomb structure.
28. Reaktor nach einem der Ansprüche 25 bis 27, wobei die Metalloxide Eisenmischoxide umfassen.28. A reactor according to any one of claims 25 to 27, wherein the metal oxides comprise iron mixed oxides.
29. Reaktor nach einem der Ansprüche 25 bis 28, wobei die Metalloxide Ferrite, Zinkoxide, Lanthanoxide ,Ceroxide, Lantanoidoxide und/oder Manganoxide umfassen.29. Reactor according to one of claims 25 to 28, wherein the metal oxides include ferrites, zinc oxides, lanthanum oxides, cerium oxides, lanthanide oxides and / or manganese oxides.
30. Reaktor nach einem der Ansprüche 25 bis 29, wobei die Metalloxide der generellen Formel Mex 2+ZnI-X2+Fe2O4 entsprechen , wobei Mex 2+ ein zweiwertiges Metallion ausgewählt aus der Gruppe Mg, Ca, Mn, Fe, Co, Ni, Cu, Zn, Sr, Sn, Ba, Cd, Pb oder Lanthanide ist.30. Reactor according to one of claims 25 to 29, wherein the metal oxides of the general formula Me x 2+ ZnI-X 2+ Fe 2 O 4 correspond, wherein Me x 2+ a divalent metal ion selected from the group Mg, Ca, Mn, Fe, Co, Ni, Cu, Zn, Sr, Sn, Ba, Cd, Pb or lanthanides.
31. Reaktor nach einem Ansprüche 25 bis 30, wobei Metalloxide Mischungen der Metalloxide umfassen.31. A reactor according to any one of claims 25 to 30, wherein metal oxides comprise mixtures of the metal oxides.
32. Reaktor nach einem der Ansprüche 25 bis 31, wobei die Reaktionskammer ein transparentes Fenster enthält.32. The reactor of any one of claims 25 to 31, wherein the reaction chamber contains a transparent window.
33. Reaktor nach einem der Ansprüche 25 bis 32, wobei zwischen Reaktionskammer und Energiequelle Rohre verlaufen, die den Energiefluss abschwächen. 33. A reactor according to any one of claims 25 to 32, wherein between the reaction chamber and energy source run tubes that attenuate the flow of energy.
34. Reaktor nach Ansprüche 33, wobei die Rohre ein Fluid enthalten.34. The reactor of claim 33, wherein the tubes contain a fluid.
35. Reaktor nach einem der Ansprüche 25 bis 34, umfassend ein Mehr- Wege-Ventil zur Zufuhr der gasförmigen Edukte.35. A reactor according to any one of claims 25 to 34, comprising a multi-way valve for supplying the gaseous educts.
36. Reaktor nach einem der Ansprüche 25 bis 35, umfassend ein Mehr- Wege-Ventil zur Trennung der gasförmigen Produkte.36. A reactor according to any one of claims 25 to 35, comprising a multi-way valve for separating the gaseous products.
37. Reaktor nach einem der Ansprüche 25 bis 36, wobei der Reaktor modular aus mindestens zwei Reaktionskammern aufgebaut ist.37. Reactor according to one of claims 25 to 36, wherein the reactor is modularly constructed from at least two reaction chambers.
38. Reaktor nach einem der Ansprüche 25 bis 37, umfassend ein Mehr- Wege-Ventil, womit die Reaktionskammern abwechselnd mit Wasserdampf oder Stickstoff versorgt werden und eine Schaltung, die eine zeitlich konstante Wasserstoffherstellung ermöglicht.38. Reactor according to one of claims 25 to 37, comprising a multi-way valve, whereby the reaction chambers are alternately supplied with steam or nitrogen and a circuit which allows a time-constant hydrogen production.
39. Reaktor nach einem der Ansprüche 25 bis 38, umfassend als Energiequelle konzentrierende solarthermische Systeme, insbesondere Solarturmsysteme, Paraboloid-Konzentratoren, Sonnenöfen, elliptische oder sphärische Spiegel oder linienfokussierende Konzentratoren.39. Reactor according to one of claims 25 to 38, comprising as an energy source concentrating solar thermal systems, in particular solar tower systems, paraboloid concentrators, solar ovens, elliptical or spherical mirrors or line-focusing concentrators.
40. Reaktor nach Anspruch 39, umfassend eine erste Gruppe von Heliostaten zur Erreichung der Strahlungsleistung und eine zweite Gruppe von Heliostaten zur Regeneration der erforderlichen Strahlungsleistung, wobei der Fokus der zweiten Gruppe der Heliostaten auf einzelne Reaktionsfelder umstellbar ist. 40. The reactor of claim 39, comprising a first group of heliostats to achieve the radiation power and a second group of heliostats for regeneration of the required radiant power, wherein the focus of the second group of heliostats is switchable to individual reaction fields.
PCT/EP2006/061238 2005-04-14 2006-03-31 Gas-solid phase reaction WO2006108769A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/918,359 US20090028783A1 (en) 2005-04-14 2006-03-31 Gas/solid phase reaction
CA2608085A CA2608085C (en) 2005-04-14 2006-03-31 Gas-solid phase reaction
US13/011,667 US9492807B2 (en) 2005-04-14 2011-01-21 Gas/solid phase reaction
US15/286,066 US20170021321A1 (en) 2005-04-14 2016-10-05 Gas-solid reactor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102005017216A DE102005017216A1 (en) 2005-04-14 2005-04-14 Thermal hydrogen production in a gas-solid phase reaction
DE102005017216.4 2005-04-14
EP05106614.0A EP1712517B1 (en) 2005-04-14 2005-07-19 Gas-solid phase reaction
EP05106614.0 2005-07-19

Publications (1)

Publication Number Publication Date
WO2006108769A1 true WO2006108769A1 (en) 2006-10-19

Family

ID=36636469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/061238 WO2006108769A1 (en) 2005-04-14 2006-03-31 Gas-solid phase reaction

Country Status (2)

Country Link
CA (1) CA2608085C (en)
WO (1) WO2006108769A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009141549A1 (en) * 2008-05-20 2009-11-26 Commissariat A L'energie Atomique System for the autonomous generation of hydrogen for an on-board system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR926020A (en) * 1942-02-27 1947-09-19 Standard Oil Dev Co Hydrogen production
DE2649164A1 (en) * 1975-11-04 1977-05-12 Comp Generale Electricite METHOD FOR GENERATING HYDROGEN FROM WATER
US6291686B1 (en) * 1997-10-01 2001-09-18 Imperial Chemical Industries Plc Exothermic process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR926020A (en) * 1942-02-27 1947-09-19 Standard Oil Dev Co Hydrogen production
DE2649164A1 (en) * 1975-11-04 1977-05-12 Comp Generale Electricite METHOD FOR GENERATING HYDROGEN FROM WATER
US6291686B1 (en) * 1997-10-01 2001-09-18 Imperial Chemical Industries Plc Exothermic process

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AGRAFIOTIS ET AL: "Solar water splitting for hydrogen production with monolithic reactors", SOLAR ENERGY, PERGAMON PRESS. OXFORD, GB, vol. 79, no. 4, October 2005 (2005-10-01), pages 409 - 421, XP005082271, ISSN: 0038-092X *
KODAMA T ET AL: "Thermochemical hydrogen production by a redox system of ZrO2-supported Co(II)-ferrite", SOLAR ENERGY, PERGAMON PRESS. OXFORD, GB, vol. 78, no. 5, May 2005 (2005-05-01), pages 623 - 631, XP004852079, ISSN: 0038-092X *
TAMAURA Y ET AL: "Oxygen-releasing step of ZnFe2O4/(ZnO+Fe3O4)-system in air using concentrated solar energy for solar hydrogen production", SOLAR ENERGY, PERGAMON PRESS. OXFORD, GB, vol. 78, no. 5, May 2005 (2005-05-01), pages 616 - 622, XP004852078, ISSN: 0038-092X *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009141549A1 (en) * 2008-05-20 2009-11-26 Commissariat A L'energie Atomique System for the autonomous generation of hydrogen for an on-board system
FR2931471A1 (en) * 2008-05-20 2009-11-27 Commissariat Energie Atomique AUTONOMOUS HYDROGEN PRODUCTION SYSTEM FOR AN ONBOARD SYSTEM
CN102036910A (en) * 2008-05-20 2011-04-27 原子能与替代能源委员会 System for the autonomous generation of hydrogen for an on-board system
CN102036910B (en) * 2008-05-20 2013-12-18 原子能与替代能源委员会 System for autonomous generation of hydrogen for on-board system

Also Published As

Publication number Publication date
CA2608085A1 (en) 2006-10-19
CA2608085C (en) 2015-02-03

Similar Documents

Publication Publication Date Title
EP1712517B1 (en) Gas-solid phase reaction
Sattler et al. Solar hydrogen production via sulphur based thermochemical water-splitting
DE102010053902B4 (en) Process for the continuous performance of solar heated chemical reactions and solar chemical reactor with solar radiation receiver
CN105056955B (en) A kind of carrier of oxygen reformed for chemical cycle dry gas and its preparation method and application
DE102013211249A1 (en) Stepwise thermochemical storage of solar heat by redox materials
CN104445060B (en) Comprehensive utilization method for high-temperature energy
DE112011102702B4 (en) Method and apparatus for producing hydrogen
Roeb et al. Solar thermal water splitting
DE102012103703A1 (en) Solar thermal / combined cycle hybrid power plant and solar reformer for use therein
WO2020048556A1 (en) Hydrogen reactor and regenerative chemical method
Roeb et al. Thermo-chemical production of hydrogen from water by metal oxides fixed on ceramic substrates
DE102005024172B4 (en) Method and device for carrying out chemical reactions
WO2006108769A1 (en) Gas-solid phase reaction
Bhosale et al. Thermodynamic exergy analysis of dysprosium oxide-based solar thermochemical water-splitting cycle
Ehrensberger et al. Production of carbon from carbon dioxide with iron oxides and high-temperature solar energy
DE102014213987B4 (en) Solar ammonia production
US20170021321A1 (en) Gas-solid reactor
Wang Solar thermochemical fuel generation
DE102018217772B3 (en) Solar system and method for solar operation of an endothermic reaction of a thermochemical reaction material
DE4329643C2 (en) Receiver for concentrated solar radiation
DE102015217683A1 (en) Reactor with particulate heat transfer medium
DE102015209962A1 (en) Particle particles Vibratory heat exchanger
DE3439176A1 (en) Process and reactor for carrying out an endothermic reaction
DE10051563A1 (en) Process for the production of hydrogen from hydrocarbon
Neumann et al. Double-focus configuration at DLR solar Furnace for operating a continuous reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2608085

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 11918359

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06725484

Country of ref document: EP

Kind code of ref document: A1