WO2006106943A1 - Power assist control device and method of regulating the same - Google Patents

Power assist control device and method of regulating the same Download PDF

Info

Publication number
WO2006106943A1
WO2006106943A1 PCT/JP2006/306887 JP2006306887W WO2006106943A1 WO 2006106943 A1 WO2006106943 A1 WO 2006106943A1 JP 2006306887 W JP2006306887 W JP 2006306887W WO 2006106943 A1 WO2006106943 A1 WO 2006106943A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
rotation angle
control
object holding
power assist
Prior art date
Application number
PCT/JP2006/306887
Other languages
French (fr)
Japanese (ja)
Inventor
Junichiro Iwaki
Toji Nakazawa
Original Assignee
Thk Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk Co., Ltd. filed Critical Thk Co., Ltd.
Publication of WO2006106943A1 publication Critical patent/WO2006106943A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D15/00Control of mechanical force or stress; Control of mechanical pressure
    • G05D15/01Control of mechanical force or stress; Control of mechanical pressure characterised by the use of electric means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5007Control means thereof computer controlled

Definitions

  • the present invention relates to a power assist control device and an adjustment method thereof, and more particularly, to a device requiring power assist control, such as a reduction device used when reducing a lower limb of a patient such as a femoral fracture. And suitable.
  • reduction treatment is performed to treat this.
  • a person who performs reduction treatment such as a doctor or a reduction teacher, performs various operations such as stretching, bending, or twisting the patient's leg or the like with their own power.
  • a considerable amount of force is required, which imposes heavy labor on doctors and reduction workers.
  • a reduction device is used to solve such a problem.
  • power assist control is performed to assist the force in the direction in which the force is applied. That is, the power assist control in the fracture reduction device drives the motor in a direction to assist (assist) the force (power) when a person applies the force.
  • a crus support, a foot support member and the like for fixing the foot side from the ankle are provided in contact with each other.
  • the leg is reduced by moving or rotating the lower leg support.
  • Patent Document 1 JP 2004-348699 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-252600
  • Patent Document 3 Japanese Patent No. 3188953
  • an object of the present invention is to prevent the driving means of the power assist device from being driven erroneously even when the operator is not touching at all, that is, in a so-called free state. It is an object of the present invention to provide a power assist control device capable of suppressing operation and an adjustment method thereof.
  • the first invention of the present invention provides:
  • An object holding means configured to hold an object and rotatable about a predetermined axis
  • Force measuring means configured to be able to measure force acting on the object holding means, drive means for applying force to the object holding means,
  • a control means configured to control the driving means and to communicate information data between the force measuring means and the driving means
  • Rotation angle output means for outputting the rotation angle of the object holding means
  • the control means generates a force vector having the same magnitude as the gravitational force acting on the object holding means in a direction opposite to the direction of gravity applied to the object holding means measured by the force measuring means. By doing so, the measured value by the force measuring means is almost zero,
  • Rotation angle output means force When the output rotation angle data is supplied to the control means, it is configured to rotate the direction of the force vector by the same angle as the rotation angle based on the rotation angle data.
  • the second invention of the present invention is:
  • An object holding means configured to hold the object and rotatable about a predetermined axis; and a force measuring means configured to measure a force acting on the object holding means;
  • a driving means for applying a force to the object holding means;
  • a control means configured to control the driving means and to communicate information data between the force measuring means and the driving means; and
  • a method of adjusting a reduction device having a rotation angle output means for outputting the rotation angle of the means
  • the control means generates a force vector having the same magnitude as the gravitational force acting on the object holding means in a direction opposite to the direction of gravity applied to the object holding means measured by the force measuring means.
  • the measured value by the force measuring means is set to almost zero
  • the rotation angle data output from the rotation angle output means is supplied to the control means, and the control means outputs only the same angle as the rotation angle based on the rotation angle data.
  • the present invention is preferably applied to a reduction device, but is not necessarily limited to a medical device such as a reduction device. It can be applied to any device that is configured to assist the force applied by detecting force. In addition, the present invention can be applied to a power assist control device used for force assistance in production lines in various manufacturing factories such as home appliances, vehicles, and large panels.
  • the driving means of the power assist control device can be used when the operator is not touching the object to which force is applied, that is, in a so-called free state. It can be prevented from moving, and malfunctions can be suppressed.
  • FIG. 1 shows a reduction section according to this embodiment.
  • the reduction device according to this embodiment includes a reduction unit called a reduction robot and a control unit that controls the reduction unit.
  • the reduction section according to this embodiment is used to perform reduction treatment on the lower limb K1 of the patient K, and includes a support base 50 that supports at least the lower body of the patient K whose lower limb K1 is to be reduced.
  • Fig. 2 shows the six axes that are the moving directions of the reduction device with respect to patient K.
  • a linearly formed swing arm 52 is attached to the support base 50 so as to be swingable in a substantially horizontal plane.
  • the swing arm 52 is driven, that is, swinged manually by a doctor or a reduction surgeon, or by arm drive means (not shown) (the drive source is “motor 120” shown in FIG. 3).
  • arm drive means the drive source is “motor 120” shown in FIG. 3.
  • this arm driving means automatically swings the swing arm 52, the positioning bolt 52A is replaced with an electromagnetic chuck (not shown) and the swing arm 52 is automatically positioned and released. It is preferable.
  • a support plate 56 is fixed to the free end of the swing arm 52.
  • the support plate 56 is provided with a stopper 56B for stopping and fixing the swing arm 52 at an arbitrary position.
  • the stopper 56B when the swinging operation of the swinging arm 52 is automatically performed by the arm driving means, the swinging arm 52 is changed to a device that can automatically fix and release the swinging arm 52.
  • a crus support 58 for supporting the crus K2 of the patient K is disposed immediately above the swing arm 52.
  • the swing arm 52 is for swinging the crus support 58 in a substantially horizontal plane.
  • the reduction unit 5 includes a first movable table 61 for moving, that is, rotating the crus support 58 around a substantially horizontal axis 60, and the first movable table 61. And a motor 62 as first driving means for rotationally driving.
  • the reduction section 5 includes a third movable table 64 for moving the crus support 58 in a substantially vertical direction, third drive means 65 for driving the third movable table 64, and a crus support.
  • the swing arm 52, the first movable table 61, the second movable table 67, the third movable table 64, and the crus support 58 described above are attached to the support 50 in stages.
  • the swing arm 52, the third movable table 64, the second movable table 67, the first movable table 61, and the crus support 58 are attached in stages, and the final stage is the first stage.
  • a crus support 58 is attached to the movable table 61.
  • the mounting order of the swing arm 52 and the movable tables 61, 67, 64 can be changed as appropriate.
  • the swing arm 52 described above allows the lower limb K1 of the patient K shown in FIGS. 1 and 2 to move left and right (in the direction of the arrow X), that is, swing, and the lower leg support 58 is attached to the patient. It is used to position K according to the left foot or right / left displacement of K.
  • the first movable table 61 is used to cause the lower limb K1 of the patient K to perform a twisting operation (in the direction of arrow R in FIG. 2).
  • the second movable table 67 is used to cause the lower limb K1 to move back and forth (in the direction of the arrow Y), that is, to extend and contract.
  • the third movable table 64 is used to cause the lower limb K1 to move up and down (in the direction of arrow Z).
  • the first movable table 61 is formed in a disc shape and is attached to an output shaft (described later) of the motor 62.
  • the crus support 58 is connected to the first movable table 61 via a universal joint 72 and a relay plate 73 in order.
  • the universal joint 72 interposed between the crus support 58 and the first movable table 61 is configured to be rotatable about a substantially horizontal axis, and is rotatable about a substantially vertical axis. It is configured.
  • a circular seat is formed at the front end of the relay plate 73, and the lower end of the universal joint 72 is fitted. The rear end of the relay plate 73 is fitted to the first movable table 61.
  • the lower leg support 58 is moved in a substantially vertical direction, that is, the upper leg K1 is moved upward.
  • the configuration of the third movable table 64 and the third driving means 65 for performing the downward (arrow Z direction) moving operation will be described.
  • a guide member 75 is erected on a support plate 56 attached to the free end of the swing arm 52.
  • a third movable table 64 is attached to the guide member 75 so as to be movable vertically (in the direction of arrow Z).
  • an intermediate member 76 is attached to the guide member 75 so as to be movable up and down
  • an elevating member 77 is attached to the intermediate member 76 so as to be movable up and down.
  • the third movable table 64 is mounted on the upper end of the elevating member 77.
  • the intermediate member 76 moves up and down by operating the motor 83.
  • the third movable table 64 moves up and down and the crus support 58 is moved.
  • the third movable table 64 and the crus support 58 are swingable along the left and right (arrow X direction) with respect to the lifting member 77.
  • the lower leg support 58 is moved in a substantially horizontal direction, that is, the patient's lower limb K1 is moved back and forth.
  • the second movable table 67 and the second drive means 68 for performing the movement in the (arrow Y direction), that is, the expansion / contraction operation will be described.
  • the second driving means 68 is a linear driving device force and includes an inner block (not shown).
  • the second movable table 67 is fastened to the upper surface of the inner block with a bolt.
  • the third movable table 67 fastened to the inner block moves by the motor 97 operating. Therefore, the crus support 58 can be moved along the substantially horizontal direction.
  • the joint member 72A provided in the universal joint 72 is movable around a substantially horizontal axis, that is, is rotatable.
  • the joint member 72A is configured to rotate the joint member 72A around its rotation center axis.
  • a hollow motor 102 as a driving means is incorporated.
  • the second joint member 72B, which forms the universal joint 72 together with the joint member 72A is movable around a substantially vertical axis, that is, is configured to be rotatable.
  • a hollow motor 104 is incorporated as a fifth driving means for rotating around the axis.
  • the crus support 58 can be moved in the direction indicated by the arrow Q (see FIG. 2). That is, the patient ’s The ankle K4 can be bent back and forth.
  • the crus support 58 moves in the direction indicated by the arrow ⁇ , thereby allowing the patient's ankle heel 4 to swing left and right. .
  • the crus support 58 is configured as a table having a size that can hold the foot heel 3 of the patient's heel and the lower side of the heel 2 of the heel.
  • the lower leg support 58 is provided with a sole support member 110 provided at the end of the lower leg support 58 and a band as a fixing means for fixing the patient's lower leg 2 to support the sole of the patient's leg. 111 is provided.
  • the total weight of the sole member 110, the band 111 and the crus support 58 is about 3 kg.
  • the force sensor 114 described below is subjected to gravity (end-efta weight) corresponding to the mass of the force sensor 114. Therefore, the gravity canceling process is executed and the detection amount of 6 axes is set to almost zero in the free state!
  • the swing arm 52 is configured to be manually extendable and retractable.
  • the expansion and contraction of the swing arm 52 is not limited to the manual method but can be performed automatically.
  • it can be realized by a ball screw mechanism and an arm expansion / contraction means including a drive mechanism such as a motor for operating the ball screw mechanism.
  • FIG. 3 shows a control unit according to an embodiment of the present invention.
  • the control unit is configured to detect a force applied to the lower limb K1 when the lower limb K1 is powered variously, and the control unit 113 controls the entire system.
  • control unit 113 is connected to the motor 120 included in the arm driving means described above via the driver 118, and the respective motors 62, 97, 83, 102, as the first to fifth driving means. 104 power connected.
  • the control unit 113 includes a CPU (Central Processing Unit), ROM and R It has an information processing unit composed of a memory such as an AM, an auxiliary storage unit, and the like.
  • the control unit 113 configured as described above is configured to store an application based on a real-time OS.
  • control unit 113 Based on the real-time OS in the control unit 113, various tasks such as user tasks and real-time tasks are combined to control the reduction unit 5 by, for example, a 1 kHz control loop in order to ensure real-time performance. Various processes are performed. Further, the control unit 113 is supplied with force measurement value force data from the force sensor 114.
  • the reduction unit 5 having the above-described configuration will be described.
  • the lower body is placed on the support base 50 while the patient K is in a supine position, and the upper body is appropriately placed on a table (not shown). ) And so on.
  • the lower leg K2 and the foot K3 of the patient K are placed on the lower leg support 58, and the lower leg K2 is fixed with the band 111.
  • the operation box 117 is appropriately operated in accordance with the content to be reduced, and the swing arm 52, the first to third movable tables 61, 67, 64, or the joint member 7 2A of the universal joint 72, Drive 72B. That is, as shown in FIG. 2, when the lower limb K1 is moved in the left-right (arrow X) direction, the swing arm 52 is swung in the X direction.
  • each of the motors 120 a remotely operable operations box 117 by operating force such as a doctor s, 83, 62, 104, 102, 97 force ⁇ is actuated, Yotsute thereto
  • the lower arm K1 of the patient K was configured to be movable in an appropriate direction by driving the swing arm 52 and the like.
  • the above-described force sensor 114 is a force received by an operator such as a doctor, for example, in each of six axis directions (arrow X, Y, Z, P, Q, and R directions). Each assist target force can be detected.
  • the measured value by the force sensor 114 is supplied as numerical data to the control unit 113 as a control unit.
  • the force sensor 114 includes a seat formed on the joint member provided in the universal joint 72 and a seat formed on the back surface of the foot sole member 110 of the crus support 58. It is interposed between part 110A.
  • each motor causes the lower limb K1 to move to a desired state
  • the doctor's own power causes the lower limb K1 to move.
  • a switch is provided for switching the control of the reduction device when it is intended to move to an optimal situation for reduction treatment.
  • the control of the control unit 113 is changed according to this switching.
  • the control unit 113 drives the motor corresponding to the direction in a direction in which the force applied by a doctor or the like is reduced, and stops the motor when the force detected by the force sensor 114 becomes zero.
  • Such power assist control drive will be specifically described below.
  • a doctor or the like When the force held by the foot K3 is detected by the force sensor 114, the force or speed to be output is calculated by non-linear calculation, and PID control is performed on the output force or speed information data. It is a drive system that is executed and moves to an arbitrary position and orientation by performing feedback.
  • a foot switch 121 shown in FIG. 3 is stepped on by a doctor or the like to start the power assist operation.
  • the control unit 113 sets the origin of the force target force of the force sensor 114 at the moment of stepping, that is, as the detection reference, and is set to the origin of the target force after this point. Changes are measured. That is, the first gravity canceling process is executed at the moment when the foot switch 121 is first stepped on. Further, in this embodiment, even when rotated along the direction of the arrow R, gravity cancellation is always executed.
  • the assist target force can be detected, and the influence of the weight of the affected foot can be eliminated.
  • the true origin of the so-called force sensor 114 at which the measured value of the force sensor 114 is ⁇ ( ⁇ ) is stored in the control unit 113. Then, a force is applied to the foot 3 by a human power by a doctor or the like within a range necessary for reduction treatment. At the stage where human power is applied by this doctor or the like, the measurement value by the force sensor 114 changes significantly.
  • the assist target force the magnitude of human power by the doctor or the like, that is, "the force applied to the toe 3" is set.
  • the control unit 113 supplies a signal to the driver 118 in order to cause the driving force corresponding to the assist target force to be applied to the toe 3, and the difference between the detection standard and this "force applied to the toe 3"
  • the required motor force S of the motors 62, 83, 97, 102, 104, 120 is moved in the decreasing direction. As a result, a predetermined driving force is applied to the foot 3.
  • the control unit 113 also stores the true origin of the force sensor 114. Therefore, the “force applied to the toe 3” is detected from the true origin, the value measured by the force sensor 114, and the magnitude of the “force applied to the toe 3” set as described above. Is possible. That is, it is possible to detect “the force applied to the foot K3” and “the force applied to the foot K3” by one force sensor 114 that measures the force. Then, with a force applied to the foot K3 by a doctor or the like, the assisting force is applied to the foot K3 by the motor required for power assist control driving among the motors 62, 83, 97, 102, 104, and 120 which are driving means. Acted.
  • the measured value of the force sensor 114 increases.
  • the slope of the measured value of the force sensor 114 at this time can be changed according to the status of reduction treatment or the setting by the doctor, etc. The speed can be obtained as needed.
  • the measurement value of the force sensor 114 increases, the difference between the detection standard and the measurement value of the force sensor 114, that is, the assist target force decreases as a whole.
  • the driving force applied to the foot K3 also decreases. If the assist target force continues to decrease and the driving force applied to the foot K3 decreases, the measurement value by the force sensor 114 approaches the detection standard. In response to this, the driving force acting on the foot K3 approaches 0 and heads for stopping.
  • a specification is adopted in which a doctor or the like releases the foot switch 121 to release the driving force and stop the assist operation. That is, when an operator such as a doctor feels an abnormality, the drive can be stopped immediately.
  • FIG. 4 shows a control system for executing this power assist control
  • FIG. 5 shows an assist force (assistant for the assist target force input by an operator such as a doctor in the power assist control according to this embodiment.
  • FIG. 6 shows a control system for executing power assist control according to the prior art described in Japanese Patent Laid-Open No. 2004-348699.
  • assist force is output.
  • the force output that explains the example may be a speed signal.
  • a signal that determines the normal speed is supplied, so the following assist force is output for the assist.
  • a speed is a signal that determines the normal speed
  • control executed in the following description is executed by the information processing unit in the controller unit described above based on the control program. Various parts are driven based on the control signal from the information processing unit and the signal of each component of the reduction device. In the following description, in order to facilitate understanding of this control, it will be described as a part of each process.
  • the assist applied to the object As shown in FIG. 6, in the power assist control according to the prior art, as shown in the straight line graph in FIG. 5 (the graph of “prior art” in FIG. 5), the assist applied to the object.
  • the target force that is, the force X held on the foot support member 110 and the band 111 of the reduction portion 5 when the human reduces the fracture, that is, the constant in the reduction portion 5 with respect to the patient's foot (affected foot).
  • Power assist so that the assist force (C'X) multiplied by C is further applied, or the speed is proportional to the assist target force X captured by the sole member 110 or the band 1 11 Control was taking place.
  • the present inventor has considered power assistance control suitable for human sense and sensitivity. According to this consideration, the force to be assisted by the operator, such as a practitioner, is detected by the force sensor 114 as the force detection means (force applied to the object). If the force input is large and the force input is large, control that increases the speed at low acceleration is desirable.
  • the increase rate of the force Y (or speed) driven by the power assist control is increased.
  • the force is too large, decrease the increase rate of the force Y (or speed) driven by the power assist control.
  • signal noise is first removed from the assist target force data input from the force sensor 114 via the low-pass filter 401 (LPF401). Is done. Thereafter, correction for the gravity cancel is performed on the input data by the vector generation processing unit 404 in the end effector heavy direction and the vector generation processing unit 404 in the affected foot weight direction.
  • This corrected assist target force is input to the data force nonlinearization processing unit 402. As a result, the delinearization process is executed on the assist target force data.
  • Examples of functions used in the nonlinearity arithmetic processing unit 402 include a logarithmic function and a (1Zn) degree function.
  • functions used in the nonlinearity arithmetic processing unit 402 include a logarithmic function and a (1Zn) degree function.
  • This graph has been confirmed by the inventor to be a preferable nonlinearity function for the reduction device.
  • various functions can be used in addition to the (lZn) degree function and the logarithmic function.
  • a calculation process 602 is performed by multiplying a measured value measured by the force sensor 601 by a coefficient G, From the integration process 604, motor 605, and encoder 606, power assist control was performed in an open loop.
  • the output shaft speed does not converge quickly with respect to the user's force command”, and this was a problem.
  • Proportional control is a control that adjusts the manipulated variable in proportion to the magnitude of the deviation (Proportional).
  • Integral control is a control that adjusts the manipulated variable proportional to the integral of deviation. This I-control can remove the steady-state deviation that remains with respect to the target value and disturbance when only proportional control is performed on the control target with self-average.
  • the differential control is an operation for adjusting an operation amount proportional to the differential of the deviation (Derivative). This D control can improve the control characteristics by reflecting the trend of deviation increase / decrease in determining the manipulated variable.
  • the position data, speed data, and rotation angle data output from the encoder 423 are subjected to second-order differentiation processing in the differentiation processing units 415 and 416, and PID is obtained as acceleration region information. Supplied to the control processing unit.
  • the assist force information, Z or speed information, and Z or acceleration information output from the non-linearization processing unit 402 are output from the encoder 423 and second-order differentiated to become acceleration region information.
  • the position information is subtracted and supplied to the PID control processing unit.
  • This information is first subjected to integration processing 417 and constant multiplication processing 41 4 in the PID control processing section, and then supplied to the above-described proportional control section 412, integration control section 411, and differentiation control section 413, respectively. The After various controls are executed in these parts, they are added together and output.
  • This output is supplied to the integration processing unit 422, subjected to first-order integration, and supplied to the motor 421 as speed range information and displacement information.
  • the drive is controlled based on this information, and the drive of each motor in the reduction unit 5 of the reduction device is controlled.
  • the drive information of the motor 421 is also supplied to the encoder 423.
  • the PID control not only the PID control in the speed range but also the PID control in the acceleration range is executed. This makes it possible to shorten the time required to converge to the target speed and displacement.
  • PID control in the speed range and acceleration range for the assist force it becomes possible to quickly converge the output shaft speed to a predetermined speed and displacement, and to stabilize the behavior.
  • FIG. 7 shows a gravity canceling method in the reduction device according to one embodiment of the present invention
  • FIG. 9 shows the prior art
  • FIG. 8 shows a flowchart of the sequence of the gravity canceling method according to this embodiment.
  • the force sensor 601 is provided in contact with a crus support 58, a foot support member 110, etc. (see FIG. 1) as object holding means for fixing the foot side from the ankle. .
  • the leg is reduced by moving or rotating the crus support 58.
  • the crus support 58 is rotated around the longitudinal axis (in the direction of arrow R in FIG. 2), the crus support 58 is not touched at all, that is, in a so-called free state. Even then, a phenomenon occurred in which the motor of the reduction device was driven, the power assist worked, and the crus support 58 moved.
  • the present inventor diligently investigated the cause. According to the observation of the present inventor, it was confirmed that when the crus support was rotated, the power assist worked in the rotated direction. As a result, the present inventor has come to recall that the reason why the crus support 58 moves is the virtual force for gravity cancellation at the start.
  • the force sensor 114 measures six-axis forces (see FIG. 2). Of these, gravity affects the vertical direction. In this case, the direction along the gravity direction of the six axes becomes a problem.
  • the lower leg support When gravity acts on the base 58 or the sole member 110, the V force that is supported by the gravity is not measured as an "external force (assist target force)" that is applied by a human.
  • so-called “gravity cancellation” is performed in which the gravitational force is calculated and the applied force is set to 0 in the calculation.
  • a virtual force for gravity canceling is set in the direction opposite to the direction of gravity.
  • the sole member 110, the band 111, and the lower leg are used as the object holding means for holding the lower leg K3 and the foot K4 as the object.
  • a device provided with a support base 58 and a force sensor 114 as force measuring means configured to be able to measure the force acting on the lower leg support base 58 is employed.
  • the motor 421 shown in FIG. 4 (motors 62, 97, 83, 102, 104, 120 in FIG. ) Is provided.
  • the motor 421 is controlled, and the control unit 113 configured to be able to communicate information data between the force sensor 114 and the motor 421, the foot support member 110 and the lower leg support
  • An encoder 423 is provided as a rotation angle output means for outputting the rotation angle of the table 58.
  • control unit 113 causes a force having the same magnitude as the gravity in the direction opposite to the direction of gravity applied to the crus support 58 and the foot support member 110 measured by the force sensor 114.
  • a vector is virtually generated, and the value measured by the force sensor 114 is set to almost zero.
  • the rotation angle data output from the encoder 423 is supplied to the control unit 113. Based on the rotation angle data, the direction of the generated force vector is rotated by the same angle as the rotation angle.
  • the rotation angle data (rotation angle 0) output from encoder 423 is supplied to end effector heavy direction vector generation processing section 404. And this end effector heavy direction vector generation processing unit 404 uses the end angle according to the rotation angle. An effector heavy direction vector is generated.
  • the affected foot weight direction vector generation processing unit 403 generates the affected foot weight direction vector based on the data of the end effector heavy direction vector.
  • a virtual force vector is set and generated in the direction opposite to the direction of gravity at this stage.
  • gravity cancellation processing is executed for the force sensor 114, and the measured value is almost the same. It is said.
  • step ST1 when the power of the reduction device is turned on (step ST1), the process proceeds to step ST2 to read the end effector weight.
  • step ST2 the reading process of step ST2 can be omitted by preliminarily registering the size of the end-effector weight in a predetermined storage unit of the control unit 113.
  • step ST4 the affected foot is placed on the crus support 58 for actual treatment, and the foot support member 11 is placed. The ankle is fixed by 0 or band 111. Thereafter, in step ST5, the weight of the affected foot (affected foot weight) is measured.
  • a gravity canceling process for executing power assist control in the reduction device is performed. That is, after reading each quantity from the 6-axis encoder described above in step ST6, a vector of end effector weights is generated in step ST7, and a vector of affected foot weights is generated in step ST8. Thereby, as described above, necessary vector information for the gravity cancellation process in the first stage is supplied to the control unit 113.
  • step ST9 when a practitioner such as a doctor actually applies a force to the crus support 58 using his / her hand, the process proceeds to step ST10, and the operator is The vector (force vector) of the force applied from the arm, the force of the end-effector and the force of the affected foot is measured. Thereafter, the process proceeds to step ST11, where the operation force (assist target force) is calculated.
  • the operating force (assist target force) is
  • the gravity canceling process is executed by subtracting the end effector weight vector and the affected foot weight vector from the force vector.
  • the force (operating force) applied by the practitioner to the lower leg support 58 or the like is extracted.
  • the external force force by the practitioner is input, and the 6-axis motor 120, 83, 62, 104, 102, 97 force based on the graph shown in FIG. 5 described above. You are moved to Ma. Thereby, power assist control is executed.
  • the patient K is small, large, adult, child, or any other physique. This can be dealt with by appropriately extending and retracting the swinging arm 52. Further, for example, by having an arm expansion / contraction means for extending / contracting the swing arm 52, the swing arm 52 can be automatically expanded / contracted, and human power can be minimized. Also, for example, the swing arm 52 causes the lower limb K1 to move left and right, the first movable table 61 causes the lower limb K1 to twist, and the second movable table 67 performs the telescopic motion to the lower limb K1. The third movable table 64 causes the lower limb K1 to move up and down. Such a configuration is suitable for allowing a doctor or the like to perform reduction treatment on his own.
  • the moving table 64 and the crus support 58 can be attached in stages in a predetermined order, for example, the order described in this embodiment, in which case each part is independent and assembled separately.
  • the configuration can be simplified.
  • each action to be performed on the lower limb K1 and the ankle K4 can be performed independently, but two or more kinds of actions can be performed simultaneously. For example, by simultaneously driving the swing arm 52 and the joint members 72A and 72B, it is possible to cause the ankle K4 to perform a forward / backward bending operation while causing the lower limb K1 to move left and right.
  • leg support member 58 is provided on the crus support 58 so as to contact the sole of the patient K, when the leg K1 is extended and retracted, or the ankle K4 is bent forward and backward. When swinging left and right, force can be applied to the entire sole of patient K, thereby preventing unnecessary pain on patient K.
  • FIG. 1 is a perspective view showing a reduction portion in a reduction device according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining an operation that can be performed on a patient's lower limb by the reduction unit in the reduction device according to the embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a controller of a reduction device according to an embodiment of the present invention.
  • FIG. 4 is a control block diagram showing a control system for executing power assist control according to one embodiment of the present invention.
  • FIG. 5 is a graph showing a conversion operation force with respect to an input of force by an operator in the power assist control device according to one embodiment of the present invention and the related art.
  • FIG. 6 is a control block diagram showing a control system for executing power assist control according to the prior art.
  • FIG. 7 is a schematic diagram for explaining a gravity canceling method according to an embodiment of the present invention.
  • FIG. 8 is a flowchart showing an example of a sequence of gravity cancellation processing in the reduction device according to the embodiment of the present invention.
  • FIG. 9 is a schematic diagram for explaining problems of the gravity cancellation method according to the prior art. Explanation of symbols

Landscapes

  • Health & Medical Sciences (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • Rehabilitation Tools (AREA)

Abstract

A power assist control device where drive by a drive means of a power assist device in a free state where an operator is not in contact with an object to be power assisted is prevented and a malfunction is suppressed. A device having a foot sole lining member (110)(including a lower thigh support base) for holding a lower thigh and a foot and a force sensor for measuring force is adopted as a resetting device. A motor for applying force to the foot sole lining member (110), a control unit for controlling the motor, and an encoder (423) for outputting the angle of rotation of the foot sole lining member (110) are provided in the power assist control device. A force vector acting in the direction opposite the direction of gravity, which acts on the foot sole lining member (110) and is measured by the force sensor, and having the same magnitude as the gravity is imaginarily created, and this makes a force value measured by the force sensor almost zero. Rotation angle data outputted from the encoder (423) is fed to the control unit and the orientation of the force vector created is rotated by the same angle as the angle of the rotation.

Description

明 細 書  Specification
パワーアシスト制御装置およびその調整方法  Power assist control device and adjustment method thereof
技術分野  Technical field
[0001] この発明は、パワーアシスト制御装置およびその調整方法に関し、特に、大腿部骨 折などの患者の下肢を整復治療する際に用いられる整復装置などのパワーアシスト 制御を要する装置に適用して好適なものである。  TECHNICAL FIELD [0001] The present invention relates to a power assist control device and an adjustment method thereof, and more particularly, to a device requiring power assist control, such as a reduction device used when reducing a lower limb of a patient such as a femoral fracture. And suitable.
背景技術  Background art
[0002] 一般に、人が骨折や脱臼をした場合に、これを治療するために整復治療が行われ る。そして、整復治療を行う場合には、医師や整復師などの整復治療を行う者が、自 らの力で患者の脚などに伸縮、曲げ、あるいは捻りなど各種の動作を行わせていた。 しかしながら、患者の脚などに各種の動作を行なわせるためには、相当大きな力が必 要であり、医師や整復師などに重労働を強いることになる。  In general, when a person has a fracture or dislocation, reduction treatment is performed to treat this. When performing reduction treatment, a person who performs reduction treatment, such as a doctor or a reduction teacher, performs various operations such as stretching, bending, or twisting the patient's leg or the like with their own power. However, in order to perform various movements on the patient's legs, etc., a considerable amount of force is required, which imposes heavy labor on doctors and reduction workers.
[0003] そこで、このような問題を解決するために、整復装置が用いられる。この整復装置に おいては、力が加えられた方向に力をアシストする、パワーアシスト制御が行われる。 すなわち、骨折整復装置におけるパワーアシスト制御は、人間が力を加えた場合に、 その力(パワー)を支援 (アシスト)する方向にモータを駆動させる。  [0003] Therefore, a reduction device is used to solve such a problem. In this reduction device, power assist control is performed to assist the force in the direction in which the force is applied. That is, the power assist control in the fracture reduction device drives the motor in a direction to assist (assist) the force (power) when a person applies the force.
[0004] 従来技術においては、 1つの力センサを備えるのみで 2つの力を計測可能にすると ともに、外部力ものカを検知して力を補助するように駆動系を駆動させるために、フッ トスイッチを踏んだ瞬間の、力センサの値をアシスト対象力の原点 (検知基準)とし、 その後の力の変化を、力センサにより測定し、アシスト原点との差を求めて、アシスト 対象力を検出する構成が採用されている。  [0004] In the prior art, it is possible to measure two forces with only one force sensor, and to detect the external force and drive the drive system to assist the force. The force sensor value at the moment when the switch is pressed is used as the origin of the assist target force (detection standard), and the subsequent force change is measured by the force sensor, and the difference from the assist origin is obtained to detect the assist target force. The structure to be adopted is adopted.
[0005] そして、足首より足側を固定するための下腿支持台や足裏当て部材などが接触さ れて設けられている。整復手術においては、この下腿支持台を移動させたり回転させ たりすることによって、足の整復が行われる。  [0005] A crus support, a foot support member and the like for fixing the foot side from the ankle are provided in contact with each other. In the reduction operation, the leg is reduced by moving or rotating the lower leg support.
[0006] ところが、この下腿支持台に対し、操作者も全く手を触れていない状態、いわゆるフ リー状態の時であっても、整復装置のパワーアシストが働き、下腿支持台(およびそ の付属物)が動 ヽてしまう t ヽぅ現象が生じた。 特許文献 1:特開 2004— 348699号公報 [0006] However, even when the operator does not touch the crus support base at all, the so-called free state, the power assist of the reduction device works, and the crus support base (and its attachment) T) phenomenon that the object is moving. Patent Document 1: JP 2004-348699 A
特許文献 2:特開 2003 - 252600号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-252600
特許文献 3 :特許第 3188953号公報  Patent Document 3: Japanese Patent No. 3188953
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] このように、整復装置などのパワーアシスト制御装置がフリー状態の時であっても、 対象物を支持する部分にパワーアシストが働き、この部分が動 、てしまう可能性があ つた o [0007] In this way, even when a power assist control device such as a reduction device is in a free state, there is a possibility that the power assist will act on the part that supports the object and this part will move.
[0008] したがって、この発明の目的は、操作者も全く手を触れていない状態、いわゆるフリ 一の状態の時であっても、パワーアシスト装置の駆動手段が駆動するのを防止して、 誤作動を抑制することができるパワーアシスト制御装置およびその調整方法を提供 することにある。  [0008] Therefore, an object of the present invention is to prevent the driving means of the power assist device from being driven erroneously even when the operator is not touching at all, that is, in a so-called free state. It is an object of the present invention to provide a power assist control device capable of suppressing operation and an adjustment method thereof.
課題を解決するための手段  Means for solving the problem
[0009] 上記目的を達成するために、この発明の第 1の発明は、 In order to achieve the above object, the first invention of the present invention provides:
対象物を保持可能に構成されているとともに、所定の軸の周りに回転可能に構成さ れた対象物保持手段と、  An object holding means configured to hold an object and rotatable about a predetermined axis;
対象物保持手段に作用する力を計測可能に構成された力計測手段と、 対象物保持手段に対して力を作用させる駆動手段と、  Force measuring means configured to be able to measure force acting on the object holding means, drive means for applying force to the object holding means,
駆動手段を制御するとともに、力計測手段および駆動手段との間で情報データを 通信可能に構成された制御手段と、  A control means configured to control the driving means and to communicate information data between the force measuring means and the driving means;
対象物保持手段の回転角度を出力する回転角度出力手段とを有し、  Rotation angle output means for outputting the rotation angle of the object holding means,
制御手段により、力計測手段により計測される対象物保持手段にかかる重力の向 きとは反対側の向きに、対象物保持手段に力かる重力の大きさと同じ大きさの力べク トルを生成することによって、力計測手段による計測値がほぼ 0とされ、  The control means generates a force vector having the same magnitude as the gravitational force acting on the object holding means in a direction opposite to the direction of gravity applied to the object holding means measured by the force measuring means. By doing so, the measured value by the force measuring means is almost zero,
回転角度出力手段力 出力された回転角度データが制御手段に供給された段階 で、回転角度データに基づいて、回転角度と同じ角度だけ、力ベクトルの向きを回転 させるように構成されている  Rotation angle output means force When the output rotation angle data is supplied to the control means, it is configured to rotate the direction of the force vector by the same angle as the rotation angle based on the rotation angle data.
ことを特徴とするパワーアシスト制御装置である。 [0010] この発明の第 2の発明は、 This is a power assist control device. [0010] The second invention of the present invention is:
対象物を保持可能に構成されているとともに、所定の軸の周りに回転可能に構成さ れた対象物保持手段と、対象物保持手段に作用する力を計測可能に構成された力 計測手段と、対象物保持手段に対して力を作用させる駆動手段と、駆動手段を制御 するとともに、力計測手段および駆動手段との間で情報データを通信可能に構成さ れた制御手段と、対象物保持手段の回転角度を出力する回転角度出力手段とを有 する整復装置の調整方法であって、  An object holding means configured to hold the object and rotatable about a predetermined axis; and a force measuring means configured to measure a force acting on the object holding means; A driving means for applying a force to the object holding means; a control means configured to control the driving means and to communicate information data between the force measuring means and the driving means; and A method of adjusting a reduction device having a rotation angle output means for outputting the rotation angle of the means,
制御手段により、力計測手段により計測される対象物保持手段にかかる重力の向 きとは反対側の向きに、対象物保持手段に力かる重力の大きさと同じ大きさの力べク トルを生成して力計測手段による計測値をほぼ 0とし、回転角度出力手段から出力さ れた回転角度データを制御手段に供給して、制御手段により回転角度データに基づ いて、回転角度と同じ角度だけ力ベクトルの向きを回転させるようにした  The control means generates a force vector having the same magnitude as the gravitational force acting on the object holding means in a direction opposite to the direction of gravity applied to the object holding means measured by the force measuring means. As a result, the measured value by the force measuring means is set to almost zero, the rotation angle data output from the rotation angle output means is supplied to the control means, and the control means outputs only the same angle as the rotation angle based on the rotation angle data. Rotate force vector direction
ことを特徴とするパワーアシスト制御装置の調整方法である。  This is a method for adjusting a power assist control device.
[0011] この発明は、好適には整復装置に適用されるが、必ずしも整復装置などの医療用 ノ ヮ一アシスト装置に限定されるものではなぐ土木作業の際に利用される土木機器 など、外部力ものカを検知することによって作用させる力を補助するように構成された 、あらゆる装置に適用することが可能である。また、この発明は、例えば、家電、車両 、大型パネルなどの各種の製造工場における製造ラインにおける力補助に用いられ るパワーアシスト制御装置に適用することが可能である。  [0011] The present invention is preferably applied to a reduction device, but is not necessarily limited to a medical device such as a reduction device. It can be applied to any device that is configured to assist the force applied by detecting force. In addition, the present invention can be applied to a power assist control device used for force assistance in production lines in various manufacturing factories such as home appliances, vehicles, and large panels.
発明の効果  The invention's effect
[0012] この発明によるパワーアシスト制御装置およびその調整方法によれば、操作者が力 を加える対象物に対して触れていない状態、いわゆるフリーの状態時において、パヮ 一アシスト制御装置の駆動手段が動き出すのを防止することができ、誤作動を抑制 することができる。  [0012] According to the power assist control device and the adjustment method thereof according to the present invention, the driving means of the power assist control device can be used when the operator is not touching the object to which force is applied, that is, in a so-called free state. It can be prevented from moving, and malfunctions can be suppressed.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 次に、以上の発明の一実施形態について図面を参照しながら説明する。なお、以 下の一実施形態の全図においては、同一または対応する部分には同一の符号を付 す。 [0014] まず、この発明の一実施形態によるパワーアシスト制御装置の一例としての整復装 置について説明する。図 1に、この一実施形態による整復部を示す。なお、この一実 施形態による整復装置は、いわゆる整復ロボットと称される整復部と、この整復部の 制御を行うコントロール部とから構成される。 Next, an embodiment of the above invention will be described with reference to the drawings. In all the drawings of one embodiment below, the same or corresponding parts are denoted by the same reference numerals. First, a reduction device as an example of a power assist control device according to an embodiment of the present invention will be described. FIG. 1 shows a reduction section according to this embodiment. The reduction device according to this embodiment includes a reduction unit called a reduction robot and a control unit that controls the reduction unit.
[0015] (整復部)  [0015] (Reduction part)
図 1に示すように、この一実施形態による整復部は、患者 Kの下肢 K1に整復治療 を施すものであり、下肢 K1を整復すべき患者 Kの少なくとも下半身を支える支持台 5 0を備えている。また、図 2に患者 Kに対する整復装置の可動方向である 6軸を示す。  As shown in FIG. 1, the reduction section according to this embodiment is used to perform reduction treatment on the lower limb K1 of the patient K, and includes a support base 50 that supports at least the lower body of the patient K whose lower limb K1 is to be reduced. Yes. Fig. 2 shows the six axes that are the moving directions of the reduction device with respect to patient K.
[0016] 図 1に示すように、支持台 50には、直線的に形成された揺動アーム 52が略水平面 内において揺動自在に取り付けられている。揺動アーム 52の駆動、すなわち揺動は 、医師または整復師による手動操作、または図示省略したアーム駆動手段 (なお、駆 動源は、図 3に示す「モータ 120」)によって行われる。このアーム駆動手段により摇 動アーム 52の揺動動作を自動的に行わせる場合には、位置決めボルト 52Aを電磁 チャック(図示せず)などに換え、揺動アーム 52の位置決めおよびその解除も自動化 することが好ましい。  As shown in FIG. 1, a linearly formed swing arm 52 is attached to the support base 50 so as to be swingable in a substantially horizontal plane. The swing arm 52 is driven, that is, swinged manually by a doctor or a reduction surgeon, or by arm drive means (not shown) (the drive source is “motor 120” shown in FIG. 3). When this arm driving means automatically swings the swing arm 52, the positioning bolt 52A is replaced with an electromagnetic chuck (not shown) and the swing arm 52 is automatically positioned and released. It is preferable.
[0017] 揺動アーム 52の自由端部には、支持プレート 56が固着されている。この支持プレ ート 56には、揺動アーム 52を任意の位置で停止、固定するためのストッパ 56Bが設 けられている。ストッパ 56Bについては、アーム駆動手段により揺動アーム 52の揺動 動作を自動的に行わせる場合には、揺動アーム 52の固定およびその解除を自動的 に行い得る機材に変える。揺動アーム 52の直上に、患者 Kの下腿 K2を支持する下 腿支持台 58が配設されている。揺動アーム 52は、この下腿支持台 58を略水平面内 で揺動させるためのものである。  A support plate 56 is fixed to the free end of the swing arm 52. The support plate 56 is provided with a stopper 56B for stopping and fixing the swing arm 52 at an arbitrary position. For the stopper 56B, when the swinging operation of the swinging arm 52 is automatically performed by the arm driving means, the swinging arm 52 is changed to a device that can automatically fix and release the swinging arm 52. A crus support 58 for supporting the crus K2 of the patient K is disposed immediately above the swing arm 52. The swing arm 52 is for swinging the crus support 58 in a substantially horizontal plane.
[0018] また、この一実施形態による整復部 5は、下腿支持台 58をほぼ水平な軸線 60の周 りに移動、すなわち回転させるための第 1可動テーブル 61と、この第 1可動テーブル 61を回転駆動する第 1駆動手段としてのモータ 62とを備えている。  [0018] In addition, the reduction unit 5 according to the embodiment includes a first movable table 61 for moving, that is, rotating the crus support 58 around a substantially horizontal axis 60, and the first movable table 61. And a motor 62 as first driving means for rotationally driving.
[0019] また、整復部 5は、下腿支持台 58を略垂直方向に移動させるための第 3可動テー ブル 64と、この第 3可動テーブル 64を駆動する第 3駆動手段 65と、下腿支持台 58を 略水平方向に移動させるための第 2可動テーブル 67と、この第 2可動テーブル 67を 駆動する第 2駆動手段 68とを有して 、る。 [0019] The reduction section 5 includes a third movable table 64 for moving the crus support 58 in a substantially vertical direction, third drive means 65 for driving the third movable table 64, and a crus support. The second movable table 67 for moving the 58 in a substantially horizontal direction, and the second movable table 67 And second driving means 68 for driving.
[0020] 上述した揺動アーム 52、第 1可動テーブル 61、第 2可動テーブル 67、第 3可動テ 一ブル 64および下腿支持台 58は、段階的に支持台 50に取り付けられている。この 一実施形態においては、揺動アーム 52、第 3可動テーブル 64、第 2可動テーブル 6 7、第 1可動テーブル 61および下腿支持台 58の順序で段階的に取り付けられ、その 最終段である第 1可動テーブル 61に下腿支持台 58が取り付けられている。なお、揺 動アーム 52および各可動テーブル 61, 67, 64の取り付け順序は適宜変更可能であ る。 [0020] The swing arm 52, the first movable table 61, the second movable table 67, the third movable table 64, and the crus support 58 described above are attached to the support 50 in stages. In this embodiment, the swing arm 52, the third movable table 64, the second movable table 67, the first movable table 61, and the crus support 58 are attached in stages, and the final stage is the first stage. 1 A crus support 58 is attached to the movable table 61. The mounting order of the swing arm 52 and the movable tables 61, 67, 64 can be changed as appropriate.
[0021] 上述した揺動アーム 52は、図 1および図 2に示す患者 Kの下肢 K1に左右(矢印 X 方向)移動動作、すなわち揺動動作を行なわせるため、また、下腿支持台 58を患者 Kの左足、右足の!/、ずれかに対応させて位置させるために用いられる。  [0021] The swing arm 52 described above allows the lower limb K1 of the patient K shown in FIGS. 1 and 2 to move left and right (in the direction of the arrow X), that is, swing, and the lower leg support 58 is attached to the patient. It is used to position K according to the left foot or right / left displacement of K.
[0022] また、第 1可動テーブル 61は、患者 Kの下肢 K1に捻り(図 2中矢印 R方向)動作を 行わせるために用いられる。また、第 2可動テーブル 67は、下肢 K1に前後(矢印 Y 方向)への移動動作、すなわち伸縮動作を行わせるために用いられる。また、第 3可 動テーブル 64は、下肢 K1に上下 (矢印 Z方向)移動動作を行なわせるために用いら れる。  [0022] The first movable table 61 is used to cause the lower limb K1 of the patient K to perform a twisting operation (in the direction of arrow R in FIG. 2). The second movable table 67 is used to cause the lower limb K1 to move back and forth (in the direction of the arrow Y), that is, to extend and contract. The third movable table 64 is used to cause the lower limb K1 to move up and down (in the direction of arrow Z).
[0023] 次に、上述したそれぞれの構成要素について説明する。まず、下腿支持台 58を略 水平な軸線 60の周りに移動させる、すなわち患者の下肢 K1に捻り(矢印 R方向)動 作を行なわせるための第 1可動テーブル 61およびモータ 62 (第 1駆動手段)につい て説明する。  Next, each component described above will be described. First, the first movable table 61 and the motor 62 (first driving means) for moving the crus support 58 around a substantially horizontal axis 60, that is, for causing the patient's lower limb K1 to perform twisting (in the direction of arrow R). ) Is explained.
[0024] 図 1に示すように、第 1可動テーブル 61は円盤状に形成され、モータ 62の出力軸( 後述)に装着されている。下腿支持台 58は、この第 1可動テーブル 61に対して自在 継手 72および中継プレート 73を順次介して連結されている。下腿支持台 58と第 1可 動テーブル 61との間に介装された自在継手 72は、略水平な軸線の周りに回転自在 に構成されているとともに、略垂直な軸線の周りに回転自在に構成されている。また、 中継プレート 73の前端部に円形の座が形成され、自在継手 72の下端が嵌着されて いる。中継プレート 73の後端は、第 1可動テーブル 61に嵌着されている。  As shown in FIG. 1, the first movable table 61 is formed in a disc shape and is attached to an output shaft (described later) of the motor 62. The crus support 58 is connected to the first movable table 61 via a universal joint 72 and a relay plate 73 in order. The universal joint 72 interposed between the crus support 58 and the first movable table 61 is configured to be rotatable about a substantially horizontal axis, and is rotatable about a substantially vertical axis. It is configured. A circular seat is formed at the front end of the relay plate 73, and the lower end of the universal joint 72 is fitted. The rear end of the relay plate 73 is fitted to the first movable table 61.
[0025] 次に、下腿支持台 58を略垂直方向に移動させる、すなわち、患者の下肢 K1に上 下 (矢印 Z方向)移動動作を行なわせるための第 3可動テーブル 64および第 3駆動 手段 65の構成について説明する。 [0025] Next, the lower leg support 58 is moved in a substantially vertical direction, that is, the upper leg K1 is moved upward. The configuration of the third movable table 64 and the third driving means 65 for performing the downward (arrow Z direction) moving operation will be described.
[0026] 図 1に示すように、揺動アーム 52の自由端部に装着された支持プレート 56上には 、ガイド部材 75が立設されている。このガイド部材 75に、第 3可動テーブル 64が上下 (矢印 Z方向)において移動自在に取り付けられている。具体的に、ガイド部材 75に 中間部材 76が上下動自在に取り付けられており、この中間部材 76に対して昇降部 材 77が上下動自在に取り付けられている。第 3可動テーブル 64は、この昇降部材 7 7の上端部に搭載されている。  As shown in FIG. 1, a guide member 75 is erected on a support plate 56 attached to the free end of the swing arm 52. A third movable table 64 is attached to the guide member 75 so as to be movable vertically (in the direction of arrow Z). Specifically, an intermediate member 76 is attached to the guide member 75 so as to be movable up and down, and an elevating member 77 is attached to the intermediate member 76 so as to be movable up and down. The third movable table 64 is mounted on the upper end of the elevating member 77.
[0027] この第 3駆動手段 65においては、モータ 83を作動させることによって中間部材 76 が上下動する。これにより、第 3可動テーブル 64が上下動し、下腿支持台 58の移動 力 される。なお、第 3可動テーブル 64および下腿支持台 58は、昇降部材 77に対し て左右 (矢印 X方向)に沿って揺動可能である。  In the third driving means 65, the intermediate member 76 moves up and down by operating the motor 83. As a result, the third movable table 64 moves up and down and the crus support 58 is moved. The third movable table 64 and the crus support 58 are swingable along the left and right (arrow X direction) with respect to the lifting member 77.
[0028] 次に、下腿支持台 58を略水平方向に移動させる、すなわち患者の下肢 K1を前後  [0028] Next, the lower leg support 58 is moved in a substantially horizontal direction, that is, the patient's lower limb K1 is moved back and forth.
(矢印 Y方向)に移動させる動作、すなわち伸縮動作を行なわせるための第 2可動テ 一ブル 67および第 2駆動手段 68について説明する。  The second movable table 67 and the second drive means 68 for performing the movement in the (arrow Y direction), that is, the expansion / contraction operation will be described.
[0029] この第 2駆動手段 68は、直線駆動装置力 なり、インナブロック(図示せず)を備え ている。また、第 2可動テーブル 67は、このインナブロックの上面にボルトにて締結さ れている。このように構成された第 2駆動手段 68においては、モータ 97が作動するこ とによって、インナブロックに締結されている第 3可動テーブル 67が移動する。よって 、下腿支持台 58を略水平方向に沿って移動可能となる。  [0029] The second driving means 68 is a linear driving device force and includes an inner block (not shown). The second movable table 67 is fastened to the upper surface of the inner block with a bolt. In the second drive means 68 configured as described above, the third movable table 67 fastened to the inner block moves by the motor 97 operating. Therefore, the crus support 58 can be moved along the substantially horizontal direction.
[0030] また、自在継手 72に設けられた、略水平な軸線の周りに移動自在、すなわち回転 自在に構成された継手部材 72Aには、継手部材 72Aをその回転中心軸線周りに回 転させる第 4駆動手段としての中空モータ 102が内蔵されている。また、継手部材 72 Aとともに自在継手 72を構成する、ほぼ垂直な軸線の周りに移動自在、すなわち回 転自在に構成された第 2継手部材 72Bには、この第 2継手部材 72Bをその回転中心 軸線の周りに回転させる第 5駆動手段としての中空モータ 104が内蔵されている。  [0030] In addition, the joint member 72A provided in the universal joint 72 is movable around a substantially horizontal axis, that is, is rotatable. The joint member 72A is configured to rotate the joint member 72A around its rotation center axis. 4 A hollow motor 102 as a driving means is incorporated. In addition, the second joint member 72B, which forms the universal joint 72 together with the joint member 72A, is movable around a substantially vertical axis, that is, is configured to be rotatable. A hollow motor 104 is incorporated as a fifth driving means for rotating around the axis.
[0031] このような構成において、中空モータ 102を作動させることによって、下腿支持台 5 8を、矢印 Q (図 2参照)の示す方向に移動させることが可能となる。すなわち、患者の 足首 K4に対して前後への曲げ動作を行わせることができる。また、他の中空モータ 1 04を作動させると、下腿支持台 58が矢印 Ρで示す方向に移動し、これによつて、患 者の足首 Κ4に対して左右の振り動作を行なわせることができる。 In such a configuration, by operating the hollow motor 102, the crus support 58 can be moved in the direction indicated by the arrow Q (see FIG. 2). That is, the patient ’s The ankle K4 can be bent back and forth. In addition, when the other hollow motor 104 is operated, the crus support 58 moves in the direction indicated by the arrow 、, thereby allowing the patient's ankle heel 4 to swing left and right. .
[0032] また、図 1に示すように、下腿支持台 58は、患者 Κの足 Κ3と、下腿 Κ2の下部側を 載せて保持可能な大きさのテーブル状に構成されている。この下腿支持台 58には、 患者 Κの足裏を当てるために、下腿支持台 58の端部に設けられた足裏当て部材 11 0、および患者 Κの下腿 Κ2を固定する固定手段としてのバンド 111が設けられて 、る 。なお、これらの足裏当て部材 110、バンド 111および下腿支持台 58の質量は合計 で約 3kg程度である。そのため、足 K3が載せられていない状態かつ操作者が触れ ていない状態(以下、フリー状態)であっても、後述する力センサ 114には、これらの 質量に応じた重力(エンドェフエクタ重)がかかるので、重力キャンセル処理が実行さ れ、フリー状態で 6軸の検知量がほぼ 0になるように設定されて!、る。  In addition, as shown in FIG. 1, the crus support 58 is configured as a table having a size that can hold the foot heel 3 of the patient's heel and the lower side of the heel 2 of the heel. The lower leg support 58 is provided with a sole support member 110 provided at the end of the lower leg support 58 and a band as a fixing means for fixing the patient's lower leg 2 to support the sole of the patient's leg. 111 is provided. The total weight of the sole member 110, the band 111 and the crus support 58 is about 3 kg. Therefore, even when the foot K3 is not placed and the operator is not touching (hereinafter referred to as the free state), the force sensor 114 described below is subjected to gravity (end-efta weight) corresponding to the mass of the force sensor 114. Therefore, the gravity canceling process is executed and the detection amount of 6 axes is set to almost zero in the free state!
[0033] また、揺動アーム 52は、手動で伸縮可能に構成されている。なお、揺動アーム 52 の伸縮は、手動方式に限定するものではなぐ自動ィ匕も可能である。例えば、ボール ねじ機構と、このボールねじ機構を作動させるモータなどの駆動機構とからなるァー ム伸縮手段とから実現可能である。  [0033] The swing arm 52 is configured to be manually extendable and retractable. The expansion and contraction of the swing arm 52 is not limited to the manual method but can be performed automatically. For example, it can be realized by a ball screw mechanism and an arm expansion / contraction means including a drive mechanism such as a motor for operating the ball screw mechanism.
[0034] (コントロール部)  [0034] (Control part)
次に、整復部 5を制御する、この一実施形態によるコントロール部について説明す る。図 3に、この発明の一実施形態によるコントロール部を示す。  Next, a control unit according to this embodiment for controlling the reduction unit 5 will be described. FIG. 3 shows a control unit according to an embodiment of the present invention.
[0035] 図 3に示すように、この一実施形態によるコントロール部は、システム全体をコント口 ールするコントロールユニット 113、下肢 K1を種々動力したときに下肢 K1に加わる力 を検出可能に構成された単体の力センサ 114、この力センサ 114によって検出され た力を表示する力表示部 115と、持ち運び移動可能なオペレーションボックス 117と オンオフのスィッチとしてのフットスィッチ 121を備えている。  [0035] As shown in FIG. 3, the control unit according to this embodiment is configured to detect a force applied to the lower limb K1 when the lower limb K1 is powered variously, and the control unit 113 controls the entire system. A single force sensor 114, a force display unit 115 for displaying the force detected by the force sensor 114, a portable operation box 117, and a foot switch 121 as an on / off switch.
[0036] また、コントロールユニット 113には、ドライバ 118を介して、上述したアーム駆動手 段が含むモータ 120、および第 1〜第 5駆動手段としての、それぞれのモータ 62, 97 , 83, 102, 104力接続されている。  [0036] Further, the control unit 113 is connected to the motor 120 included in the arm driving means described above via the driver 118, and the respective motors 62, 97, 83, 102, as the first to fifth driving means. 104 power connected.
[0037] また、このコントロールユニット 113は、 CPU (中央演算処理装置)と ROMおよび R AMなどのメモリとからなる情報処理部、および補助記憶部などを有して構成されて いる。そして、このように構成されたコントロールユニット 113は、リアルタイム OSをべ ースにしたアプリケーションが格納されて構成されている。 [0037] The control unit 113 includes a CPU (Central Processing Unit), ROM and R It has an information processing unit composed of a memory such as an AM, an auxiliary storage unit, and the like. The control unit 113 configured as described above is configured to store an application based on a real-time OS.
[0038] また、このコントロールユニット 113におけるリアルタイム OSをベースとして、実時間 性を確保するために、ユーザタスクやリアルタイムタスクなどの各種タスクが組み合わ されて、例えば 1kHzの制御ループによって整復部 5を制御する種々の処理が行わ れている。また、このコントロールユニット 113には、力センサ 114による力の計測値 力 データにより供給される。  [0038] Based on the real-time OS in the control unit 113, various tasks such as user tasks and real-time tasks are combined to control the reduction unit 5 by, for example, a 1 kHz control loop in order to ensure real-time performance. Various processes are performed. Further, the control unit 113 is supplied with force measurement value force data from the force sensor 114.
[0039] 次に、上述した構成の整復部 5の作用について説明する。図 1に示すように、患者 Kの下肢 K1に整復治療を施す場合には、患者 Kを仰臥させた状態で、下半身を支 持台 50上に載置させ、上半身を適宜テーブル(図示せず)などで支える。そして、患 者 Kの下腿 K2および足 K3を下腿支持台 58に載置させ、バンド 111で下腿 K2を固 定する。  Next, the operation of the reduction unit 5 having the above-described configuration will be described. As shown in FIG. 1, when applying reduction treatment to the lower limb K1 of the patient K, the lower body is placed on the support base 50 while the patient K is in a supine position, and the upper body is appropriately placed on a table (not shown). ) And so on. Then, the lower leg K2 and the foot K3 of the patient K are placed on the lower leg support 58, and the lower leg K2 is fixed with the band 111.
[0040] 次に、整復治療すべき内容に応じてオペレーションボックス 117を適宜操作し、揺 動アーム 52、第 1〜第 3可動テーブル 61、 67、 64、または自在継手 72の継手部材 7 2A、 72Bを駆動する。すなわち、図 2に示すように、下肢 K1を左右 (矢印 X)方向に 動かす場合には、揺動アーム 52を X方向に揺動させる。  [0040] Next, the operation box 117 is appropriately operated in accordance with the content to be reduced, and the swing arm 52, the first to third movable tables 61, 67, 64, or the joint member 7 2A of the universal joint 72, Drive 72B. That is, as shown in FIG. 2, when the lower limb K1 is moved in the left-right (arrow X) direction, the swing arm 52 is swung in the X direction.
[0041] 下肢 K1に捻り(矢印 R方向)を行わせる場合には、第 1可動テーブル 61を回転させ る。下肢 K1を上下方向(矢印 Z方向)に動かす場合には、第 3可動テーブル 64を上 下に駆動する。また、下肢 K1を前後方向(矢印 Y方向)に伸縮させる場合には、第 2 可動テーブル 67を前後に駆動する。  [0041] When the lower limb K1 is twisted (arrow R direction), the first movable table 61 is rotated. To move the lower limb K1 in the vertical direction (arrow Z direction), the third movable table 64 is driven up and down. In addition, when the lower limb K1 is expanded and contracted in the front-rear direction (arrow Y direction), the second movable table 67 is driven back and forth.
[0042] さらに、足首 K4を左右に振る(矢印 P方向)場合には自在継手 72の下側の第 2継 手部材 72Bを同方向に回転駆動する。また、足首 K4を前後に曲げる (矢印 Q方向) 場合には、 自在継手 72の上側の継手部材 72Aを同方向に回転駆動する。  [0042] Further, when the ankle K4 is swung left and right (in the direction of arrow P), the second joint member 72B on the lower side of the universal joint 72 is rotationally driven in the same direction. When the ankle K4 is bent back and forth (in the direction of arrow Q), the joint member 72A on the upper side of the universal joint 72 is rotationally driven in the same direction.
[0043] さて、以上の説明においては、遠隔操作可能なオペレーションボックス 117を医師 など力 s操作することでそれぞれのモータ 120, 83, 62, 104, 102, 97力 ^作動され、 これによつて揺動アーム 52などが駆動されて患者 Kの下肢 K1が適宜の方向に移動 可能に構成されていた。 [0044] し力しながら、一方で、医師などが自らの力によって下肢 K1を動かし、整復治療を 施すのに最適な状況にし、その状況を装置に認識させる必要がある。この場合、医 師などが患者 Kの下肢 K1を動かそうとしても、それぞれのモータを含む駆動系による 保持力が妨げとなる。そこで、次のような構成が採用されている。 [0043] Now, in the above description, each of the motors 120 a remotely operable operations box 117 by operating force such as a doctor s, 83, 62, 104, 102, 97 force ^ is actuated, Yotsute thereto The lower arm K1 of the patient K was configured to be movable in an appropriate direction by driving the swing arm 52 and the like. [0044] On the other hand, it is necessary for a doctor or the like to move the lower limb K1 by his / her own power to make the situation optimal for performing reduction treatment, and to make the apparatus recognize the situation. In this case, even if a doctor or the like tries to move the lower limb K1 of the patient K, the holding force by the drive system including each motor is obstructed. Therefore, the following configuration is adopted.
[0045] すなわち、上述の力センサ 114は、たとえば医師などの操作者によってカ卩えられる 力である、 6軸の各方向(矢印 X, Y, Z, P, Qおよび Rの各方向)におけるそれぞれ のアシスト対象力を検知可能に構成されている。そして、この力センサ 114による計 測値は、数値データとして、制御部としてのコントロールユニット 113に供給される。  [0045] That is, the above-described force sensor 114 is a force received by an operator such as a doctor, for example, in each of six axis directions (arrow X, Y, Z, P, Q, and R directions). Each assist target force can be detected. The measured value by the force sensor 114 is supplied as numerical data to the control unit 113 as a control unit.
[0046] この力センサ 114は、図 1に示すように、自在継手 72が具備する継手部材に形成さ れた座部と、下腿支持台 58の足裏当て部材 110の背面に形成された座部 110Aと の間に介装されている。  As shown in FIG. 1, the force sensor 114 includes a seat formed on the joint member provided in the universal joint 72 and a seat formed on the back surface of the foot sole member 110 of the crus support 58. It is interposed between part 110A.
[0047] 一方、図 3に示すオペレーションボックス 117には、それぞれのモータの作動によつ て下肢 K1を所望の状況になるように動かそうとする場合と、医師自らの力によって下 肢 K1を整復治療に最適な状況になるように動かそうとする場合とで、当該整復装置 の制御を切り替えるためのスィッチが設けられている。コントロールユニット 113は、こ の切り替えに応じて、制御が変えられる。  [0047] On the other hand, in the operation box 117 shown in FIG. 3, the operation of each motor causes the lower limb K1 to move to a desired state, and the doctor's own power causes the lower limb K1 to move. A switch is provided for switching the control of the reduction device when it is intended to move to an optimal situation for reduction treatment. The control of the control unit 113 is changed according to this switching.
[0048] (パワーアシスト動作)  [0048] (Power assist operation)
それぞれのモータの作動によって下肢 K1を所望の状況になるように動かそうとする 場合には、上述したように制御し、医師自らの力によって下肢 K1を整復治療に最適 な状況になるように動かそうとすべく切り替えられた場合には、次のように制御される  When attempting to move the lower limb K1 to the desired situation by the operation of each motor, control as described above, and move the lower limb K1 to the optimum situation for reduction treatment by the doctor's own power. When switched to do so, it is controlled as follows:
[0049] すなわち、医師などが下肢 K1を任意の方向に動かそうとすると、力センサ 114に、 その方向の力が作用し、この力センサ 114力 その力の方向を検知する。このとき、コ ントロールユニット 113は、その方向に対応するモータを、医師などにより加えられる 力が減ずる方向に駆動し、力センサ 114が検知する力がゼロとなった時点でモータ を停止する。このようなパワーアシスト制御駆動について、以下に具体的に説明する That is, when a doctor or the like tries to move the lower limb K1 in an arbitrary direction, a force in that direction acts on the force sensor 114, and the force sensor 114 detects the direction of the force. At this time, the control unit 113 drives the motor corresponding to the direction in a direction in which the force applied by a doctor or the like is reduced, and stops the motor when the force detected by the force sensor 114 becomes zero. Such power assist control drive will be specifically described below.
[0050] この一実施形態によるパワーアシスト駆動方式においては、医師などにより患者の 足 K3にカ卩えられた力が力センサ 114によって検出されると、非線形演算により、出力 すべき力または速度が計算され、この出力された力または速度の情報データに対し て、 PID制御が実行され、フィードバックを行うことによって、任意の位置姿勢に動作 させる駆動方式である。 [0050] In the power assist drive system according to this embodiment, a doctor or the like When the force held by the foot K3 is detected by the force sensor 114, the force or speed to be output is calculated by non-linear calculation, and PID control is performed on the output force or speed information data. It is a drive system that is executed and moves to an arbitrary position and orientation by performing feedback.
[0051] そこで、この一実施形態においては、整復装置に設けられた、 1つの力センサ 114 により、パワーアシスト制御の開始時点で検知される検知基準と、力センサ 114の計 測値との差、すなわちアシスト対象力を抽出するようにする。  Therefore, in this embodiment, the difference between the detection reference detected at the start of power assist control by the single force sensor 114 provided in the reduction device and the measured value of the force sensor 114. That is, the assist target force is extracted.
[0052] すなわち、まず、パワーアシスト動作を開始するために、医師などにより図 3に示す フットスィッチ 121が踏まれる。このとき、コントロールユニット 113により、踏んだ瞬間 の時点における力センサ 114の値力 アシスト対象力の原点、すなわち検知基準とし て設定されるとともに、このアシスト対象力の原点に対して、この時点以降の変化が測 定される。すなわち、最初にフットスィッチ 121を踏んだ瞬間に、最初の重力キャンセ ル処理が実行される。また、この一実施形態においては、矢印 R方向に沿って回転さ れた場合においても、常時重力キャンセルが実行させる。  That is, first, a foot switch 121 shown in FIG. 3 is stepped on by a doctor or the like to start the power assist operation. At this time, the control unit 113 sets the origin of the force target force of the force sensor 114 at the moment of stepping, that is, as the detection reference, and is set to the origin of the target force after this point. Changes are measured. That is, the first gravity canceling process is executed at the moment when the foot switch 121 is first stepped on. Further, in this embodiment, even when rotated along the direction of the arrow R, gravity cancellation is always executed.
[0053] これにより、アシスト対象力の検出が可能となるとともに、患足の自重の影響も排除 することができる。なお、力センサ 114の計測値が Ο (Ν)となる、いわゆる力センサ 11 4の真の原点は、コントロールユニット 113において記憶されている。そして、整復治 療に必要な範囲で、医師などにより人力で足 Κ3に対して力が作用される。この医師 などによる人力が加えられた段階で、力センサ 114による計測値が大幅に変化する。  [0053] Thereby, the assist target force can be detected, and the influence of the weight of the affected foot can be eliminated. The true origin of the so-called force sensor 114 at which the measured value of the force sensor 114 is Ο (Ν) is stored in the control unit 113. Then, a force is applied to the foot 3 by a human power by a doctor or the like within a range necessary for reduction treatment. At the stage where human power is applied by this doctor or the like, the measurement value by the force sensor 114 changes significantly.
[0054] この時点においては、アシスト対象力として、この医師などによる人力の大きさ、す なわち「足 Κ3にカ卩えた力」が設定される。そして、コントロールユニット 113により、こ のアシスト対象力に応じた駆動力を足 Κ3に作用させるために、ドライバ 118に信号 が供給され、検知基準とこの「足 Κ3に加えた力」との差が減少する方向に、モータ 62 , 83, 97, 102, 104, 120のうちの必要なモータ力 S馬区動される。これにより、所定の 駆動力が足 Κ3に作用される。  [0054] At this time, as the assist target force, the magnitude of human power by the doctor or the like, that is, "the force applied to the toe 3" is set. The control unit 113 supplies a signal to the driver 118 in order to cause the driving force corresponding to the assist target force to be applied to the toe 3, and the difference between the detection standard and this "force applied to the toe 3" The required motor force S of the motors 62, 83, 97, 102, 104, 120 is moved in the decreasing direction. As a result, a predetermined driving force is applied to the foot 3.
[0055] また、上述したように、コントロールユニット 113には、力センサ 114の真の原点も記 憶されている。そのため、この真の原点と、力センサ 114による計測値と、上述のよう に設定された「足 Κ3に加えた力」の大きさとから、「足 Κ3にかかっている力」の検出 が可能となる。すなわち、力を測定する 1つの力センサ 114によって、「足 K3にかか つている力」と「足 K3に加えた力」とを検出することが可能となる。そして、医師などが 足 K3に力を加えた状態で、駆動手段であるモータ 62, 83, 97, 102, 104, 120の うちのパワーアシスト制御駆動に必要なモータにより、足 K3に補助力が作用される。 As described above, the control unit 113 also stores the true origin of the force sensor 114. Therefore, the “force applied to the toe 3” is detected from the true origin, the value measured by the force sensor 114, and the magnitude of the “force applied to the toe 3” set as described above. Is possible. That is, it is possible to detect “the force applied to the foot K3” and “the force applied to the foot K3” by one force sensor 114 that measures the force. Then, with a force applied to the foot K3 by a doctor or the like, the assisting force is applied to the foot K3 by the motor required for power assist control driving among the motors 62, 83, 97, 102, 104, and 120 which are driving means. Acted.
[0056] 続けて、医師などにより足 K3に力が加えられた状態で、「足 K3にかかっている力」 が増加する場合、力センサ 114の計測値が増加していく。なお、このときの力センサ 1 14の計測値の傾きは、整復治療の状況や、医師などによる設定に応じて、変更する ことが可能であり、力を加える速度を所望の速度にすることによって、必要に応じた速 度を得ることができる。そして、力センサ 114の計測値の増加に応じて、検知基準と 力センサ 114における計測値との差、すなわちアシスト対象力が全体として減少して いく。そして、このアシスト対象力の減少に伴って、足 K3に作用される駆動力も減少 される。続けて、アシスト対象力が減少し続けて、足 K3に作用される駆動力が減少す ると、力センサ 114による計測値が検知基準に近づいてくる。これに応じて、足 K3に 作用する駆動力が 0に近づき、停止する方向に向かう。  [0056] Subsequently, when the "force applied to the foot K3" increases in a state where force is applied to the foot K3 by a doctor or the like, the measured value of the force sensor 114 increases. Note that the slope of the measured value of the force sensor 114 at this time can be changed according to the status of reduction treatment or the setting by the doctor, etc. The speed can be obtained as needed. Then, as the measurement value of the force sensor 114 increases, the difference between the detection standard and the measurement value of the force sensor 114, that is, the assist target force decreases as a whole. As the assist target force decreases, the driving force applied to the foot K3 also decreases. If the assist target force continues to decrease and the driving force applied to the foot K3 decreases, the measurement value by the force sensor 114 approaches the detection standard. In response to this, the driving force acting on the foot K3 approaches 0 and heads for stopping.
[0057] また、「足 K3にかかっている力」の増加量と、「足 K3にカ卩えた力」が釣り合った場合 、すなわち、力センサ 114の計測値が、アシスト原点 (検知基準)に到達した段階で、 アシスト対象力は O (N)となり、これにより、足 K3に作用する駆動力が 0となり、アシス ト動作が停止する。なお、アシスト動作が停止した後であっても、フットスィッチ 121を 踏み直すことによって、再び上述のアシスト動作を継続することが可能である。  [0057] Also, when the amount of increase in the "force applied to the foot K3" is balanced with the "force applied to the foot K3", that is, the measured value of the force sensor 114 becomes the assist origin (detection standard). At this stage, the assist target force becomes O (N), and as a result, the driving force acting on the foot K3 becomes 0, and the assist operation stops. Even after the assist operation stops, the above-described assist operation can be continued again by stepping on the foot switch 121 again.
[0058] また、この一実施形態においては、医師などがフットスィッチ 121を離して、駆動力 を解放し、アシスト動作を停止する仕様が採用されている。すなわち、医師などの操 作者が異常を感じた場合には、即座に駆動を停止可能に構成されている。  In this embodiment, a specification is adopted in which a doctor or the like releases the foot switch 121 to release the driving force and stop the assist operation. That is, when an operator such as a doctor feels an abnormality, the drive can be stopped immediately.
[0059] 次に、以上のように動作する、この一実施形態によるパワーアシスト制御の詳細に ついて説明する。図 4に、このパワーアシスト制御を実行するための制御系を示し、 図 5に、この一実施形態によるパワーアシスト制御の、医者などの操作者によるアシス ト対象力の入力に対する、アシスト力(補助力)の関係のグラフを示す。また、図 6に、 特開 2004— 348699号公報に記載された従来技術によるパワーアシスト制御を実 行するための制御系を示す。なお、以下の説明においては、アシスト力が出力される 例について説明する力 出力は速度であってもよぐモータなどへの指示信号として は、通常速度を決定する信号が供給されることが多いので、以下のアシスト力をァシ スト用に出力される速度としてもょ 、。 Next, the details of the power assist control according to this embodiment that operates as described above will be described. FIG. 4 shows a control system for executing this power assist control, and FIG. 5 shows an assist force (assistant for the assist target force input by an operator such as a doctor in the power assist control according to this embodiment. A graph of the relationship of force). FIG. 6 shows a control system for executing power assist control according to the prior art described in Japanese Patent Laid-Open No. 2004-348699. In the following description, assist force is output. As an instruction signal to the motor, etc., the force output that explains the example may be a speed signal. Usually, a signal that determines the normal speed is supplied, so the following assist force is output for the assist. Also, as a speed.
[0060] なお、以下の説明にお!/、て実行される制御は、制御プログラムに基づ!/、て、上述し たコントローラ部における情報処理部により実行される。そして、この情報処理部から の制御信号と、整復装置の各部力 の信号に基づいて、種々の部位が駆動される。 以下の説明においては、この制御の理解を容易にするために、各処理の部位として 説明する。  It should be noted that the control executed in the following description is executed by the information processing unit in the controller unit described above based on the control program. Various parts are driven based on the control signal from the information processing unit and the signal of each component of the reduction device. In the following description, in order to facilitate understanding of this control, it will be described as a part of each process.
[0061] まず、図 6に示すように、従来技術によるパワーアシスト制御においては、図 5中の 直線グラフ(図 5中、「従来技術」のグラフ)に示すように、対象物に加えられるアシスト 対象力、すなわち人間が骨折の整復の際に、整復部 5の足裏当て部材 110やバンド 111にカ卩えた力 X、すなわち患者の足(患足)に対して、整復部 5において、定数 Cを 乗じた補助力(C'X)がさらに作用させるように、または、足裏当て部材 110やバンド 1 11にカ卩えられたアシスト対象力 Xに比例した速度となるように、パワーアシスト制御が 行われていた。  First, as shown in FIG. 6, in the power assist control according to the prior art, as shown in the straight line graph in FIG. 5 (the graph of “prior art” in FIG. 5), the assist applied to the object. The target force, that is, the force X held on the foot support member 110 and the band 111 of the reduction portion 5 when the human reduces the fracture, that is, the constant in the reduction portion 5 with respect to the patient's foot (affected foot). Power assist so that the assist force (C'X) multiplied by C is further applied, or the speed is proportional to the assist target force X captured by the sole member 110 or the band 1 11 Control was taking place.
[0062] ところが、このようなパワーアシスト制御においては、どうしても操作者が不快に感じ るという問題があった。そこで、本発明者は、人間の感覚、感性に適合するパワーァ シスト制御を考察した。この考察によると、カ検知手段としての力センサ 114により検 知される、施術者などの操作者によるアシスト対象力の入力(対象物に加えられる力) 力 S小さい場合には、高加速度で速度を増加させ、フォース入力が大きい場合には、 低加速度で速度を増加させる制御が望まし 、。  However, in such power assist control, there is a problem that the operator feels uncomfortable by all means. Therefore, the present inventor has considered power assistance control suitable for human sense and sensitivity. According to this consideration, the force to be assisted by the operator, such as a practitioner, is detected by the force sensor 114 as the force detection means (force applied to the object). If the force input is large and the force input is large, control that increases the speed at low acceleration is desirable.
[0063] すなわち、人間が対象物である患足に加えたアシスト対象力 Xにおいて、アシスト 対象力 Xが小さな力の時には、パワーアシスト制御により駆動される力 Y (または速度 )の増加率を大きぐ大きな力の時には、パワーアシスト制御により駆動される力 Y (ま たは速度)の増加率を小さくする。このような条件を満足する所定の関数 f (X)は、図 5における曲線グラフに示すように、「原点を通り(f (O) =0)、増加関数で、かつァシ スト対象力 Xで微分した導関数 Γ (Χ)が減少関数になるような関数」、より好適には、「 原点を通り (f (O) =0)、単調増加関数、かつアシスト対象力 Xで微分した導関数 Γ ( X)が減少関数になるような関数」である。 [0063] That is, when the assist target force X applied to the affected foot, which is a human subject, is small, the increase rate of the force Y (or speed) driven by the power assist control is increased. When the force is too large, decrease the increase rate of the force Y (or speed) driven by the power assist control. As shown in the curve graph in FIG. 5, the predetermined function f (X) satisfying such a condition is expressed as “through the origin (f (O) = 0), an increasing function, and the assistance target force X `` A function in which the derivative Γ (Χ) differentiated at '' Function Γ ( A function such that X) becomes a decreasing function.
[0064] そこで、この一実施形態においては、図 4に示すように力センサ 114からの入力さ れるアシスト対象力のデータに対し、まず、ローパスフィルタ 401 (LPF401)を介して 、信号ノイズが除去される。その後、この入力データに対して、エンドェフエクタ重方 向のベクトル生成処理部 404と患足重方向のベクトル生成処理部 404とにより重力キ ヤンセルのための補正が行われる。この補正後のアシスト対象力のデータ力 非線形 化演算処理部 402に入力される。これにより、アシスト対象力のデータに対して、非 線形化処理が実行される。  Therefore, in this embodiment, as shown in FIG. 4, signal noise is first removed from the assist target force data input from the force sensor 114 via the low-pass filter 401 (LPF401). Is done. Thereafter, correction for the gravity cancel is performed on the input data by the vector generation processing unit 404 in the end effector heavy direction and the vector generation processing unit 404 in the affected foot weight direction. This corrected assist target force is input to the data force nonlinearization processing unit 402. As a result, the delinearization process is executed on the assist target force data.
[0065] 非線形ィ匕演算処理部 402において用いられる関数の例としては、対数関数や(1Z n)次関数などを挙げることができる。なお、図 5における曲線グラフは、  [0065] Examples of functions used in the nonlinearity arithmetic processing unit 402 include a logarithmic function and a (1Zn) degree function. In addition, the curve graph in FIG.
[0066] [数 1]  [0066] [Equation 1]
Figure imgf000015_0001
Figure imgf000015_0001
のグラフであり、本発明者により整復装置にとって好ましい非線形ィ匕関数であると確 認されたものである。なお、整復装置以外では、(lZn)次関数や対数関数以外にも 、種々の関数を利用することが可能である。例えば、三角関数の一部(単調増加部分 かつ、その導関数が単調減少する部分)を利用することも可能である。 This graph has been confirmed by the inventor to be a preferable nonlinearity function for the reduction device. Besides the reduction device, various functions can be used in addition to the (lZn) degree function and the logarithmic function. For example, it is possible to use a part of a trigonometric function (a monotonically increasing portion and a portion where the derivative monotonically decreases).
[0067] (PID制御)  [0067] (PID control)
また、図 6に示すように、特開 2004— 348699号公報に記載された従来技術にお いて、力センサ 601により計測された測定値に対して、係数 Gを掛ける演算処理 602 が行われ、積分処理 604、モータ 605、エンコーダ 606〖こより、オープンループでパ ヮーアシスト制御を行っていた。この場合、本発明者が鋭意実験を行って得た知見に よれば、「ユーザの力指令に対し、出力軸速度がすばやく収束しない」ということがわ かり、この点が問題であった。  In addition, as shown in FIG. 6, in the conventional technique described in Japanese Patent Application Laid-Open No. 2004-348699, a calculation process 602 is performed by multiplying a measured value measured by the force sensor 601 by a coefficient G, From the integration process 604, motor 605, and encoder 606, power assist control was performed in an open loop. In this case, according to the knowledge obtained by the inventor's earnest experiment, it was found that “the output shaft speed does not converge quickly with respect to the user's force command”, and this was a problem.
[0068] そこで、この一実施形態においては、図 4に示すように、上述した整復装置の操作 者により加えられる力の抽出処理および非線形化処理を実行する操作制御部に加 え、速度域および加速度域における比例 ·積分 ·微分制御 (PID制御)処理部が設け られる。以下に、この一実施形態による整復装置に採用されるフィードバック制御によ る PID制御について説明する。 Therefore, in this embodiment, as shown in FIG. 4, the operation of the reduction device described above is performed. In addition to the operation control unit that executes the extraction process and non-linearization process of the force applied by the user, a proportional / integral / derivative control (PID control) processing unit in the velocity and acceleration ranges is provided. Hereinafter, PID control by feedback control employed in the reduction device according to this embodiment will be described.
[0069] 比例制御(P制御)は、偏差の大きさに比例 (Proportional)して操作量を調整する制 御である。また、積分制御 (I制御)は、偏差の積分に比例 (Integral)した操作量を調整 する制御である。この I制御は、自己平均性をもつ制御対象に比例制御のみを行った ときに目標値や外乱に対して残る定常偏差を除去することができる。また、微分制御 (D制御)は、偏差の微分 (Derivative)に比例した操作量を調整する動作である。この D制御は、偏差の増減の動向を操作量の決定に反映し、制御特性の改善を図ること ができる。 [0069] Proportional control (P control) is a control that adjusts the manipulated variable in proportion to the magnitude of the deviation (Proportional). Integral control (I control) is a control that adjusts the manipulated variable proportional to the integral of deviation. This I-control can remove the steady-state deviation that remains with respect to the target value and disturbance when only proportional control is performed on the control target with self-average. The differential control (D control) is an operation for adjusting an operation amount proportional to the differential of the deviation (Derivative). This D control can improve the control characteristics by reflecting the trend of deviation increase / decrease in determining the manipulated variable.
[0070] この一実施形態においては、エンコーダ 423から出力された位置データ、速度デ ータ、回転角度データが、微分処理部 415, 416において 2階微分処理され、加速 度域の情報として、 PID制御処理部に供給される。そして、非線形化演算処理部 40 2から出力されたアシスト力情報、および Zまたは速度情報、および Zまたは加速度 情報に対して、エンコーダ 423から出力され、 2階微分されて加速度域の情報となつ た位置情報が減算されて、 PID制御処理部に供給される。  [0070] In this embodiment, the position data, speed data, and rotation angle data output from the encoder 423 are subjected to second-order differentiation processing in the differentiation processing units 415 and 416, and PID is obtained as acceleration region information. Supplied to the control processing unit. The assist force information, Z or speed information, and Z or acceleration information output from the non-linearization processing unit 402 are output from the encoder 423 and second-order differentiated to become acceleration region information. The position information is subtracted and supplied to the PID control processing unit.
[0071] この情報は、 PID制御処理部において、まず、積分処理 417および定数倍処理 41 4が施された後、それぞれ上述した比例制御部 412、積分制御部 411、微分制御部 413に供給される。これらの部分で各種制御が実行された後、互いに加算され、出力 される。  [0071] This information is first subjected to integration processing 417 and constant multiplication processing 41 4 in the PID control processing section, and then supplied to the above-described proportional control section 412, integration control section 411, and differentiation control section 413, respectively. The After various controls are executed in these parts, they are added together and output.
[0072] この出力は、積分処理部 422に供給されて、 1階積分され、速度域の情報や、変位 の情報としてモータ 421に供給される。モータ 421においては、この情報に基づいて 駆動が制御され、整復装置の整復部 5における各モータの駆動が制御される。なお、 このモータ 421の駆動情報はエンコーダ 423にも供給される。  [0072] This output is supplied to the integration processing unit 422, subjected to first-order integration, and supplied to the motor 421 as speed range information and displacement information. In the motor 421, the drive is controlled based on this information, and the drive of each motor in the reduction unit 5 of the reduction device is controlled. The drive information of the motor 421 is also supplied to the encoder 423.
[0073] このように、この一実施形態による PID制御においては、速度域における PID制御 のみならず、加速度域における PID制御を実行する。これによつて、目標とする速度 、変位に収束するまでに要する時間を短縮することが可能となる。 [0074] すなわち、アシスト力に対して、速度域および加速度域における PID制御を実行す ることにより、出力軸速度を、すばやく所定の速度や変位に収束させて、挙動を安定 させることが可能となり、所定の速度や変位に収束する場合の振動を抑制することが できる。 Thus, in the PID control according to this embodiment, not only the PID control in the speed range but also the PID control in the acceleration range is executed. This makes it possible to shorten the time required to converge to the target speed and displacement. In other words, by executing PID control in the speed range and acceleration range for the assist force, it becomes possible to quickly converge the output shaft speed to a predetermined speed and displacement, and to stabilize the behavior. In addition, it is possible to suppress vibrations when converging to a predetermined speed or displacement.
[0075] (重力キャンセル方法)  [0075] (Gravity cancellation method)
次に、この発明の一実施形態によるパワーアシスト制御装置の調整方法である、重 力キャンセル方法について説明する。図 7に、この発明の一実施形態による整復装 置における重力キャンセル方法を示し、図 9に、従来技術を示す。また、図 8に、この 一実施形態による重力キャンセル方法のシーケンスのフローチャートを示す。  Next, a heavy weight canceling method, which is an adjustment method for the power assist control device according to the embodiment of the present invention, will be described. FIG. 7 shows a gravity canceling method in the reduction device according to one embodiment of the present invention, and FIG. 9 shows the prior art. FIG. 8 shows a flowchart of the sequence of the gravity canceling method according to this embodiment.
[0076] すなわち、特開 2004— 348699号公報に記載された従来技術による整復装置に おいては、前後上下左右の 3方向と、前後方向、上下方向および左右方向を中心と した 3回転方向との 6軸の力を測定することができる力センサ 601 (図 6参照)を備え ている。  That is, in the reduction device according to the prior art described in Japanese Patent Application Laid-Open No. 2004-348699, three directions of front and rear, up and down, left and right, and three rotation directions centering on the front and rear direction, the up and down direction, and the left and right direction It is equipped with a force sensor 601 (see Fig. 6) that can measure the 6-axis force.
[0077] この力センサ 601には、足首より足側を固定するための、対象物保持手段としての 下腿支持台 58や足裏当て部材 110など(図 1参照)が接触されて設けられている。整 復手術においては、この下腿支持台 58を移動させたり回転させたりすることによって 、足の整復が行われる。  [0077] The force sensor 601 is provided in contact with a crus support 58, a foot support member 110, etc. (see FIG. 1) as object holding means for fixing the foot side from the ankle. . In the reduction operation, the leg is reduced by moving or rotating the crus support 58.
[0078] ところが、この下腿支持台 58を、前後方向の軸の周り(図 2中、矢印 R方向)で回転 させると、下腿支持台 58に全く手を触れていない状態、いわゆるフリーの状態であつ ても、整復装置のモータが駆動して、パワーアシストが働き、下腿支持台 58が動いて しまうという現象が生じた。  However, when the crus support 58 is rotated around the longitudinal axis (in the direction of arrow R in FIG. 2), the crus support 58 is not touched at all, that is, in a so-called free state. Even then, a phenomenon occurred in which the motor of the reduction device was driven, the power assist worked, and the crus support 58 moved.
[0079] そこで、本発明者は、この原因について鋭意検討を行った。本発明者の観察による と、下腿支持台を回転させると、回転させた向きにパワーアシストが働くことが確認さ れた。これにより、本発明者は、この下腿支持台 58が動く理由が、スタート時における 重力キャンセル用の仮想の力にあることを想起するに至った。  [0079] Therefore, the present inventor diligently investigated the cause. According to the observation of the present inventor, it was confirmed that when the crus support was rotated, the power assist worked in the rotated direction. As a result, the present inventor has come to recall that the reason why the crus support 58 moves is the virtual force for gravity cancellation at the start.
[0080] すなわち、骨折整復装置においては、力センサ 114により 6軸の力(図 2参照)が測 定される。これらのうちの上下方向に関しては、重力の影響が存在する。この際、 6軸 のうちの重力方向に沿った方向が問題となる。この点、図 9に示すように、下腿支持 台 58や足裏当て部材 110に重力が作用している時に、この重力によってカ卩えられて V、る力を、人間により加えられて 、る「外力(アシスト対象力)」として計測しな 、ように するために、この重力分を計算して、加えられている力を計算上 0とする、いわゆる「 重力キャンセル」が実行される。具体的には、重力の向きとは反対側の向きに重力キ ヤンセル用の仮想の力が設定される。 That is, in the fracture reduction device, the force sensor 114 measures six-axis forces (see FIG. 2). Of these, gravity affects the vertical direction. In this case, the direction along the gravity direction of the six axes becomes a problem. In this regard, as shown in Figure 9, the lower leg support When gravity acts on the base 58 or the sole member 110, the V force that is supported by the gravity is not measured as an "external force (assist target force)" that is applied by a human. In order to achieve this, so-called “gravity cancellation” is performed in which the gravitational force is calculated and the applied force is set to 0 in the calculation. Specifically, a virtual force for gravity canceling is set in the direction opposite to the direction of gravity.
[0081] そこで、この一実施形態においては、図 7に示すように、下腿支持台 58を前後方向 に沿った軸の周りに回転させた場合においても、整復装置における下腿支持台 58 の回転角度のデータをフィードバックして、常に重力方向の力をキャンセルする補正 を実行するように構成する。  Therefore, in this embodiment, as shown in FIG. 7, even when the crus support 58 is rotated around an axis along the front-rear direction, the rotation angle of the crus support 58 in the reduction device The data is fed back and the correction is always executed to cancel the force in the direction of gravity.
[0082] 具体的に、この一実施形態による重力キャンセル方法においては、整復装置として 、対象物としての下腿 K3および足 K4を保持する対象物保持手段としての足裏当て 部材 110、バンド 111および下腿支持台 58と、これらの下腿支持台 58に作用する力 を計測可能に構成された力計測手段としての力センサ 114とが設けられた装置が採 用される。そして、下腿支持台 58に力を作用させる駆動手段として、 6軸方向に駆動 可會とするために、図 4に示すモータ 421 (図 2中、モータ 62, 97, 83, 102, 104, 120)が設けられる。また、整復装置においては、これらのモータ 421を制御するとと もに、力センサ 114およびモータ 421との間で情報データを通信可能に構成された コントロールユニット 113と、足裏当て部材 110や下腿支持台 58の回転角度を出力 する回転角度出力手段としてのエンコーダ 423が設けられる。  [0082] Specifically, in the gravity canceling method according to this embodiment, as a reduction device, the sole member 110, the band 111, and the lower leg are used as the object holding means for holding the lower leg K3 and the foot K4 as the object. A device provided with a support base 58 and a force sensor 114 as force measuring means configured to be able to measure the force acting on the lower leg support base 58 is employed. As a driving means for applying a force to the crus support 58, the motor 421 shown in FIG. 4 (motors 62, 97, 83, 102, 104, 120 in FIG. ) Is provided. In the reduction device, the motor 421 is controlled, and the control unit 113 configured to be able to communicate information data between the force sensor 114 and the motor 421, the foot support member 110 and the lower leg support An encoder 423 is provided as a rotation angle output means for outputting the rotation angle of the table 58.
[0083] また、コントロールユニット 113により、力センサ 114によって計測される下腿支持台 58および足裏当て部材 110にかかる重力の向きとは反対側の向きに、重力の大きさ と同じ大きさの力ベクトルを仮想的に生成して、力センサ 114による計測値をほぼ 0と する。そして、エンコーダ 423から出力される回転角度データは、コントロールユニット 113に供給される。そして、この回転角度データに基づいて、回転角度と同じ角度だ け、生成される力ベクトルの向きが回転させる。  [0083] In addition, the control unit 113 causes a force having the same magnitude as the gravity in the direction opposite to the direction of gravity applied to the crus support 58 and the foot support member 110 measured by the force sensor 114. A vector is virtually generated, and the value measured by the force sensor 114 is set to almost zero. The rotation angle data output from the encoder 423 is supplied to the control unit 113. Based on the rotation angle data, the direction of the generated force vector is rotated by the same angle as the rotation angle.
[0084] すなわち、図 4に示すように、エンコーダ 423から出力された回転角度データ(回転 角度 0 )が、エンドェフエクタ重方向ベクトル生成処理部 404に供給される。そして、 このエンドェフエクタ重方向ベクトル生成処理部 404により、回転角度に応じたエンド エフヱクタ重方向ベクトルが生成される。 That is, as shown in FIG. 4, the rotation angle data (rotation angle 0) output from encoder 423 is supplied to end effector heavy direction vector generation processing section 404. And this end effector heavy direction vector generation processing unit 404 uses the end angle according to the rotation angle. An effector heavy direction vector is generated.
[0085] そして、このエンドエフヱクタ重方向ベクトルのデータに基づき、患足重方向べタト ル生成処理部 403において、患足重方向ベクトルが生成される。この患足重方向の ベクトルが生成されると、この段階における重力の向きとは反対の向きに仮想の力べ タトルが設定され生成される。これにより、力センサ 114に対して重力キャンセル処理 が実行され、計測値がほぼ。とされる。  Then, the affected foot weight direction vector generation processing unit 403 generates the affected foot weight direction vector based on the data of the end effector heavy direction vector. When the vector in the direction of the affected foot is generated, a virtual force vector is set and generated in the direction opposite to the direction of gravity at this stage. As a result, gravity cancellation processing is executed for the force sensor 114, and the measured value is almost the same. It is said.
[0086] このように構成することにより、下腿支持台 58および足裏当て部材 110を前後方向 の軸の周り(図 2中、矢印 R方向)に回転させた場合に、常時重力方向に対して反対 方向に重力キャンセル用の仮想の力を設定することができ、常時重力キャンセル処 理を実行可能となるので、フリーの状態でパワーアシスト制御が働くことを回避するこ とがでさる。  [0086] With this configuration, when the crus support 58 and the foot support member 110 are rotated around the axis in the front-rear direction (in the direction indicated by the arrow R in FIG. 2), the gravitational direction is always maintained. Since a virtual force for gravity cancellation can be set in the opposite direction and the gravity cancellation process can be executed at all times, it is possible to avoid the power assist control from working in a free state.
[0087] 次に、このような重力キャンセルの具体的なシーケンスの一例について説明する。  Next, an example of a specific sequence of such gravity cancellation will be described.
[0088] すなわち、図 8に示すように、まず、整復装置の電源が投入される (ステップ ST1)と 、ステップ ST2に移行して、エンドェフエクタ重の読み取りが行われる。なお、コント口 ールユニット 113の所定の記憶部にエンドェフエクタ重の大きさをあら力じめ登録して おくことにより、ステップ ST2の読み取り処理を省略することも可能である。  That is, as shown in FIG. 8, first, when the power of the reduction device is turned on (step ST1), the process proceeds to step ST2 to read the end effector weight. Note that the reading process of step ST2 can be omitted by preliminarily registering the size of the end-effector weight in a predetermined storage unit of the control unit 113.
[0089] 次に、ステップ ST3に移行して、整復装置の初期化が実行された後、ステップ ST4 において、実際の治療のために下腿支持台 58に患足が載せられ、足裏当て部材 11 0やバンド 111などにより、足首が固定される。その後、ステップ ST5において、患足 の重さ(患足重)が測定される。  Next, the process proceeds to step ST3 and initialization of the reduction device is performed. Then, in step ST4, the affected foot is placed on the crus support 58 for actual treatment, and the foot support member 11 is placed. The ankle is fixed by 0 or band 111. Thereafter, in step ST5, the weight of the affected foot (affected foot weight) is measured.
[0090] 以上の準備段階が終了すると、整復装置におけるパワーアシスト制御を実行するた めの重力キャンセル処理が行われる。すなわち、ステップ ST6において、上述した 6 軸のエンコーダから各数量を読みとつた後、ステップ ST7において、エンドェフエクタ 重のベクトルが生成され、ステップ ST8において患足重のベクトルが生成される。こ れによって、上述したように、最初の段階における重力キャンセル処理のための必要 なベクトル情報がコントロールユニット 113に供給される。  [0090] When the above preparation stage is completed, a gravity canceling process for executing power assist control in the reduction device is performed. That is, after reading each quantity from the 6-axis encoder described above in step ST6, a vector of end effector weights is generated in step ST7, and a vector of affected foot weights is generated in step ST8. Thereby, as described above, necessary vector information for the gravity cancellation process in the first stage is supplied to the control unit 113.
[0091] 次に、ステップ ST9において、実際に医者などの施術者が手を使って下腿支持台 58に力を作用させると、ステップ ST10に移行して、力センサ 114により、施術者が外 部から加えた力、エンドェフエクタ重および患足重の力の合計のベクトル(フォースべ タトル)が計測される。その後、ステップ ST11に移行して、操作力(アシスト対象力) が算出される。なお、操作力(アシスト対象力)は、 [0091] Next, in step ST9, when a practitioner such as a doctor actually applies a force to the crus support 58 using his / her hand, the process proceeds to step ST10, and the operator is The vector (force vector) of the force applied from the arm, the force of the end-effector and the force of the affected foot is measured. Thereafter, the process proceeds to step ST11, where the operation force (assist target force) is calculated. The operating force (assist target force) is
操作力 = (フォースベクトル) (エンドェフエクタ重ベクトル +患足重ベクトル) として計算される。  Calculated as Manipulation force = (Force vector) (Endofector heavy vector + Foot weight vector).
[0092] このように、フォースベクトルから、エンドェフエクタ重ベクトルおよび患足重ベクトル を減算することにより、重力キャンセル処理が実行される。これにより、施術者自身が 下腿支持台 58などに作用させた力 (操作力)が抽出される。その後、この重力キャン セル処理に基づいて、施術者による外部力 の力を入力として、上述した図 5に示す グラフに基づ 、て 6軸のモータ 120, 83, 62, 104, 102, 97力 ^馬区動される。これによ り、パワーアシスト制御が実行される。  In this way, the gravity canceling process is executed by subtracting the end effector weight vector and the affected foot weight vector from the force vector. As a result, the force (operating force) applied by the practitioner to the lower leg support 58 or the like is extracted. After that, based on this gravity canceling process, the external force force by the practitioner is input, and the 6-axis motor 120, 83, 62, 104, 102, 97 force based on the graph shown in FIG. 5 described above. You are moved to Ma. Thereby, power assist control is executed.
[0093] 以上のステップ ST6〜ステップ ST12が順次繰り返されて、整復装置を用いた施術 者による整復治療が実行される。  [0093] The above steps ST6 to ST12 are sequentially repeated, and reduction treatment by the practitioner using the reduction device is executed.
[0094] 以上、この発明の一実施形態について具体的に説明した力 この発明は、上述の 一実施形態に限定されるものではなぐこの発明の技術的思想に基づく各種の変形 が可能である。  [0094] The power specifically described with respect to the embodiment of the present invention. [0094] The present invention is not limited to the above-described embodiment, and various modifications based on the technical idea of the present invention are possible.
[0095] 例えば、上述の一実施形態において挙げた数値や数式はあくまでも例に過ぎず、 必要に応じてこれと異なる数値や数式を用いてもょ ヽ。  [0095] For example, the numerical values and mathematical expressions given in the above-described embodiment are merely examples, and different numerical values and mathematical expressions may be used as necessary.
[0096] また、例えば、揺動アーム 52を伸縮可能とすることにより、患者 Kが小柄である、大 柄である、また、大人である、子供であるなど、どのような体格であろうとも、揺動ァー ム 52を適宜伸縮させることで対応できる。また、例えば、揺動アーム 52を伸縮させる アーム伸縮手段を有することにより、揺動アーム 52の伸縮を自動的に行うことができ 、人力を必要最小限にすることができる。また、例えば、揺動アーム 52は、下肢 K1に 左右移動動作を行わせ、第 1可動テーブル 61は、下肢 K1に捻り動作を行なわせ、 第 2可動テーブル 67は、下肢 K1に伸縮動作を行なわせ、第 3可動テーブル 64は、 下肢 K1に上下移動動作を行なわせる。このような構成は、医師などに整復治療を自 在に行わせるに好適である。  [0096] Further, for example, by making the swing arm 52 extendable and retractable, the patient K is small, large, adult, child, or any other physique. This can be dealt with by appropriately extending and retracting the swinging arm 52. Further, for example, by having an arm expansion / contraction means for extending / contracting the swing arm 52, the swing arm 52 can be automatically expanded / contracted, and human power can be minimized. Also, for example, the swing arm 52 causes the lower limb K1 to move left and right, the first movable table 61 causes the lower limb K1 to twist, and the second movable table 67 performs the telescopic motion to the lower limb K1. The third movable table 64 causes the lower limb K1 to move up and down. Such a configuration is suitable for allowing a doctor or the like to perform reduction treatment on his own.
[0097] また、例えば、揺動アーム 52、第 1可動テーブル 61、第 2可動テーブル 67、第 3可 動テーブル 64および下腿支持台 58は、所定の順序、例えば、この一実施形態おい て記載した順序で段階的に取り付けることができ、この場合には、各部を独立させて 別々に組み立てる場合に比べて構成を簡略ィ匕することができる。 [0097] Further, for example, the swing arm 52, the first movable table 61, the second movable table 67, the third possible The moving table 64 and the crus support 58 can be attached in stages in a predetermined order, for example, the order described in this embodiment, in which case each part is independent and assembled separately. Thus, the configuration can be simplified.
[0098] また、例えば、下腿支持台 58には、患者 Kの下腿 K2を固定するための固定手段( バンド 111など)を設けたので、下腿支持台 58から患者 Kの脚に力を有効に伝達で きる。また、下肢 K1および足首 K4に行なわせる各動作は、それぞれ単独で行なわ せることができるが、 2種類以上の動作を同時に行なわせることもできる。例えば、摇 動アーム 52と継手部材 72A, 72Bを同時に駆動することにより、下肢 K1に左右移動 動作を行わせながら、足首 K4に前後の曲げ動作などを行わせることなどが可能にな る。 [0098] Further, for example, since the lower leg support 58 is provided with a fixing means (such as a band 111) for fixing the lower leg K2 of the patient K, force is effectively applied from the lower leg support 58 to the leg of the patient K. Can communicate. In addition, each action to be performed on the lower limb K1 and the ankle K4 can be performed independently, but two or more kinds of actions can be performed simultaneously. For example, by simultaneously driving the swing arm 52 and the joint members 72A and 72B, it is possible to cause the ankle K4 to perform a forward / backward bending operation while causing the lower limb K1 to move left and right.
[0099] また、下腿支持台 58には、患者 Kの足裏を当てる足裏当て部材 110を設けたので 、下肢 K1に前後の伸縮動作を行なわせるとき、または足首 K4に前後の曲げ動作や 左右への振り動作を行なわせるときに、患者 Kの足裏全体に力をカ卩えることができ、 これにより、患者 Kに無用な痛みを与えるのを防止することができる。  [0099] In addition, since the leg support member 58 is provided on the crus support 58 so as to contact the sole of the patient K, when the leg K1 is extended and retracted, or the ankle K4 is bent forward and backward. When swinging left and right, force can be applied to the entire sole of patient K, thereby preventing unnecessary pain on patient K.
[0100] また、上述した一実施形態においては、整復部 5の揺動アーム 52を揺動させるた めの駆動手段 (アーム駆動手段)を有する場合を示したが、この駆動手段は必ずしも 設ける必要はない。設けない場合は、人力によって揺動アーム 52を所望の位置に揺 動させ、位置決めする。  [0100] In the above-described embodiment, the case where the drive means (arm drive means) for swinging the swing arm 52 of the reduction section 5 is shown, but this drive means is not necessarily provided. There is no. If not provided, the swing arm 52 is swung to a desired position by human power and positioned.
[0101] また、上述の一実施形態においては、オペレーションボックス 117として、図 3に示 すように、外部にスィッチなどが突出した装置が用いられている力 このオペレーショ ンボックス 117として、図 3中に示されるような各種スィッチをタツチパネル上に表示し て、ボタンと同様の作用を行うことができる構成を採用することも可能である。なお、こ の場合であっても、非常時において、装置の稼動を停止するための非常停止ボタン などは、タツチパネル外の突出したボタン力も構成することが望ましい。  [0101] Further, in the above-described embodiment, as shown in FIG. 3, as the operation box 117, a force in which a device having an external switch or the like is used is used. It is also possible to adopt a configuration in which various switches as shown in Fig. 1 can be displayed on the touch panel to perform the same operation as a button. Even in this case, it is desirable that an emergency stop button for stopping the operation of the device in an emergency also constitutes a protruding button force outside the touch panel.
図面の簡単な説明  Brief Description of Drawings
[0102] [図 1]この発明の一実施形態による整復装置における整復部を示す斜視図である。  FIG. 1 is a perspective view showing a reduction portion in a reduction device according to an embodiment of the present invention.
[図 2]この発明の一実施形態による整復装置における整復部によって患者の下肢に 行わせることが可能な動作を説明するための図である。 [図 3]この発明の一実施形態による整復装置のコントローラを示す略線図である。 FIG. 2 is a view for explaining an operation that can be performed on a patient's lower limb by the reduction unit in the reduction device according to the embodiment of the present invention. FIG. 3 is a schematic diagram showing a controller of a reduction device according to an embodiment of the present invention.
[図 4]この発明の一実施形態によるパワーアシスト制御を実行する制御系を示す制御 ブロック図である。 FIG. 4 is a control block diagram showing a control system for executing power assist control according to one embodiment of the present invention.
[図 5]この発明の一実施形態および従来技術によるパワーアシスト制御装置における 操作者による力の入力に対する変換操作力を示すグラフである。  FIG. 5 is a graph showing a conversion operation force with respect to an input of force by an operator in the power assist control device according to one embodiment of the present invention and the related art.
[図 6]従来技術によるパワーアシスト制御を実行する制御系を示す制御ブロック図で ある。  FIG. 6 is a control block diagram showing a control system for executing power assist control according to the prior art.
[図 7]この発明の一実施形態による重力キャンセル方法を説明するための略線図で ある。  FIG. 7 is a schematic diagram for explaining a gravity canceling method according to an embodiment of the present invention.
[図 8]この発明の一実施形態による整復装置における重力キャンセル処理のシーケ ンスの一例を示すフローチャートである。  FIG. 8 is a flowchart showing an example of a sequence of gravity cancellation processing in the reduction device according to the embodiment of the present invention.
[図 9]従来技術による重力キャンセル方法の問題点を説明するための略線図である。 符号の説明  FIG. 9 is a schematic diagram for explaining problems of the gravity cancellation method according to the prior art. Explanation of symbols
5 整復部  5 Reduction section
50 支持台  50 Support base
52 揺動アーム  52 Swing arm
52A ボルト  52A bolt
56 支持プレート  56 Support plate
56B ストッパ  56B Stopper
58 下腿支持台  58 Lower leg support
60 軸線  60 axis
61, 64, 67 可動テーブル  61, 64, 67 Movable table
62, 83, 97, 102, 104, 120, 421, 605 モータ  62, 83, 97, 102, 104, 120, 421, 605 Motor
65 第 3駆動手段  65 Third drive means
68 第 2駆動手段  68 Second drive means
72 自在 ϋ手  72 Swivel
72Α, 72Β ϋ手咅附  72Α, 72Β ϋ 手 ϋ 付
73 中継プレート 75 ガイド部材 73 Relay plate 75 Guide member
76 中間部材  76 Intermediate parts
77 昇降部材  77 Lifting member
102, 104 中空モータ  102, 104 Hollow motor
110 足裏当て部材  110 Foot backing material
11 OA 座部  11 OA seat
111 バンド  111 bands
113 =1ントロールユニット  113 = 1 roll unit
114 力センサ  114 force sensor
115 力表示部  115 Force display
117 オペレーションボックス  117 Operation box
118 ドライバ  118 drivers
121 フットスィッチ 121 Footswitch
01 ローパスフィルタ 01 Low-pass filter
02 非線形化演算処理部 02 Nonlinearization processing unit
03 患足重方向ベクトル生成処理部 03 affected leg weight direction vector generation processing unit
04 エンドエフヱクタ重方向ベクトル生成処理部 11 積分制御部 04 End effector heavy direction vector generation processing unit 11 Integration control unit
12 比例制御部 12 Proportional control unit
13 微分制御部 13 Differential control unit
14 定数倍処理 14 Constant multiplication
15, 416 微分処理部 15, 416 Differential processing unit
22 積分処理部 22 Integration processing section
23, 606 エンコーダ  23, 606 encoder

Claims

請求の範囲 The scope of the claims
[1] 対象物を保持可能に構成されているとともに、所定の軸の周りに回転可能に構成さ れた対象物保持手段と、  [1] Object holding means configured to hold an object and configured to be rotatable about a predetermined axis;
上記対象物保持手段に作用する力を計測可能に構成された力計測手段と、 上記対象物保持手段に対して力を作用させる駆動手段と、  Force measuring means configured to be able to measure force acting on the object holding means, drive means for applying force to the object holding means,
上記駆動手段を制御するとともに、上記力計測手段および上記駆動手段との間で 情報データを通信可能に構成された制御手段と、  A control means configured to control the driving means and to be able to communicate information data between the force measuring means and the driving means;
上記対象物保持手段の回転角度を出力する回転角度出力手段とを有し、 上記制御手段により、上記力計測手段により計測される上記対象物保持手段にか 力る重力の向きとは反対側の向きに、上記対象物保持手段にかかる重力の大きさと 同じ大きさの力ベクトルを生成することによって、上記力計測手段による計測値がほ ぼ 0とされ、  Rotation angle output means for outputting the rotation angle of the object holding means, and the control means is opposite to the direction of gravity applied to the object holding means measured by the force measuring means. In the direction, by generating a force vector having the same magnitude as the gravitational force applied to the object holding means, the measured value by the force measuring means is almost zero,
上記回転角度出力手段力 出力された回転角度データが上記制御手段に供給さ れた段階で、上記回転角度データに基づいて、上記回転角度と同じ角度だけ、上記 力ベクトルの向きが回転されるように構成されて 、る  The rotation angle output means force When the output rotation angle data is supplied to the control means, the direction of the force vector is rotated by the same angle as the rotation angle based on the rotation angle data. Composed of
ことを特徴とするパワーアシスト制御装置。  A power assist control device characterized by that.
[2] 対象物を保持可能に構成されているとともに、所定の軸の周りに回転可能に構成さ れた対象物保持手段と、上記対象物保持手段に作用する力を計測可能に構成され た力計測手段と、上記対象物保持手段に対して力を作用させる駆動手段と、上記駆 動手段を制御するとともに、上記力計測手段および上記駆動手段との間で情報デー タを通信可能に構成された制御手段と、上記対象物保持手段の回転角度を出力す る回転角度出力手段とを有するパワーアシスト制御装置の調整方法であって、 上記制御手段により、上記力計測手段により計測される上記対象物保持手段にか 力る重力の向きとは反対側の向きに、上記対象物保持手段にかかる重力の大きさと 同じ大きさの力ベクトルを生成して上記力計測手段による計測値をほぼ 0とし、上記 回転角度出力手段から出力された回転角度データを上記制御手段に供給して、上 記制御手段により上記回転角度データに基づいて、上記回転角度と同じ角度だけ 上記力ベクトルの向きを回転させるようにした ことを特徴とするパワーアシスト制御装置の調整方法。 [2] It is configured to be able to hold an object, and is configured to be able to measure an object holding means configured to be rotatable around a predetermined axis and a force acting on the object holding means. The force measuring means, the driving means for applying a force to the object holding means, and the driving means are controlled, and information data can be communicated between the force measuring means and the driving means. And a rotation angle output means for outputting the rotation angle of the object holding means, wherein the control means measures the force measurement means by the force measurement means. A force vector having the same magnitude as the gravitational force applied to the object holding means is generated in a direction opposite to the direction of gravity applied to the object holding means, and the measured value by the force measuring means is substantially 0. And above The rotation angle data output from the rotation angle output means is supplied to the control means, and the direction of the force vector is rotated by the same angle as the rotation angle based on the rotation angle data by the control means. did A method for adjusting a power assist control device.
PCT/JP2006/306887 2005-03-31 2006-03-31 Power assist control device and method of regulating the same WO2006106943A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-101886 2005-03-31
JP2005101886A JP2008113672A (en) 2005-03-31 2005-03-31 Postural recovery apparatus and method of regulating the same

Publications (1)

Publication Number Publication Date
WO2006106943A1 true WO2006106943A1 (en) 2006-10-12

Family

ID=37073493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306887 WO2006106943A1 (en) 2005-03-31 2006-03-31 Power assist control device and method of regulating the same

Country Status (2)

Country Link
JP (1) JP2008113672A (en)
WO (1) WO2006106943A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08257975A (en) * 1995-03-23 1996-10-08 Agency Of Ind Science & Technol Force-control robot compensating force detection
JP2002052485A (en) * 2000-08-14 2002-02-19 Yaskawa Electric Corp Control device for robot
JP2004348699A (en) * 2003-05-22 2004-12-09 Mamoru Mitsuishi Device and method for power-assisted control and postural recovery apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08257975A (en) * 1995-03-23 1996-10-08 Agency Of Ind Science & Technol Force-control robot compensating force detection
JP2002052485A (en) * 2000-08-14 2002-02-19 Yaskawa Electric Corp Control device for robot
JP2004348699A (en) * 2003-05-22 2004-12-09 Mamoru Mitsuishi Device and method for power-assisted control and postural recovery apparatus

Also Published As

Publication number Publication date
JP2008113672A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
KR101276920B1 (en) Power assist control method, power assist controller and reposition device
KR101124858B1 (en) Power assist control device and method, and reposition device
US20210290471A1 (en) Locomotion assisting apparatus with integrated tilt sensor
US8690801B2 (en) Leg assist device
US10688001B2 (en) Standing motion assist system, method for controlling standing motion assist system, recording medium, and robot
JP5724312B2 (en) Rehabilitation assist device
EP3593779B1 (en) Assistance device
JPH10230489A (en) Force auxiliary device control and controller therewith
WO2006106943A1 (en) Power assist control device and method of regulating the same
JP2013090844A (en) Walking assist device and method for controlling the same
JP5359979B2 (en) Walking assist device
KR102228527B1 (en) Method and apparatus for controlling wearable robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06730835

Country of ref document: EP

Kind code of ref document: A1