WO2006104204A1 - Display device and electronic device provided with same - Google Patents

Display device and electronic device provided with same Download PDF

Info

Publication number
WO2006104204A1
WO2006104204A1 PCT/JP2006/306521 JP2006306521W WO2006104204A1 WO 2006104204 A1 WO2006104204 A1 WO 2006104204A1 JP 2006306521 W JP2006306521 W JP 2006306521W WO 2006104204 A1 WO2006104204 A1 WO 2006104204A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
active matrix
insulating film
matrix substrate
optical sensor
Prior art date
Application number
PCT/JP2006/306521
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromi Katoh
Yoshihiro Izumi
Tomoyuki Nagai
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2006104204A1 publication Critical patent/WO2006104204A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0204Compact construction
    • G01J1/0209Monolithic
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13318Circuits comprising a photodetector

Definitions

  • the present invention relates to a flat panel type display device such as a liquid crystal display device or an EL (Electroluminescence) display device, and in particular, a display device including an environmental sensor such as an optical sensor for detecting the brightness of the surrounding environment.
  • a background art related to an electronic device provided with such a display device is a background art related to an electronic device provided with such a display device
  • Flat panel display devices typified by liquid crystal display devices have features such as thin and light weight and low power consumption, and are aimed at improving display performance such as colorization, high definition, and video compatibility. Due to advanced technology development, it is currently incorporated into a wide range of information devices, TV devices, and amusement devices such as mobile phones, PDAs, DVD players, mopile game devices, notebook PCs, PC monitors, and TVs.
  • an optical sensor which is a discrete component, is disposed in the vicinity of a display device, and based on the use environment illuminance detected by the optical sensor.
  • a method for automatically controlling the luminance of a display device is disclosed.
  • the brightness is adjusted automatically according to the brightness of the surrounding environment, such as increasing the display brightness in bright environments such as daytime and outdoors, and decreasing the display brightness in comparatively dark environments such as nighttime and indoors. Light).
  • the viewer of the display device does not feel dazzling in a dark environment, and visibility can be improved.
  • the display device can achieve lower power consumption and longer life compared to a usage method that always maintains high display brightness.
  • users do not have to worry about brightness adjustment (dimming) automatically based on detection information from the optical sensor!
  • a display system having an automatic light control function can cope with changes in the brightness of the usage environment. As a result, it is possible to achieve both good visibility and low power consumption.
  • mopile devices mobile phones, PDAs, mono-game devices, etc.
  • battery operation Is particularly useful.
  • Japanese Patent Application Laid-Open No. 2002-62856 discloses a structure in which an optical sensor, which is a discrete component, is incorporated in a display device.
  • FIG. 13 is an overall configuration diagram of a liquid crystal display device disclosed in Japanese Patent Laid-Open No. 2002-62856
  • FIG. 14 is a cross-sectional view of the photosensor mounting portion.
  • a substrate (active matrix substrate) 901 on which an active element such as a thin film transistor (TFT) is formed is bonded to a counter substrate 902 via a seal resin 925, and a liquid crystal layer is formed in the gap therebetween. 903 is sandwiched.
  • an optical sensor 907 which is a discrete component, is disposed in a peripheral portion of the active matrix substrate 901, that is, a peripheral region (frame region) where no counter substrate exists.
  • a region indicated by H in FIG. 14 is a region where the counter substrate 902 exists on the active matrix substrate 901 (display region H).
  • a backlight system 914 is provided on the side of the active matrix substrate 901 opposite to the side on which the counter substrate 902 is disposed.
  • the casing 915 is arranged so as to cover the side of the knocklight system 914 opposite to the side where the active matrix substrate 901 is arranged and the periphery of the peripheral region S.
  • An opening 916 is provided at a position facing the optical sensor 907 of the housing 915, and light incident on the optical sensor 907 has a function of entering from the opening 916.
  • the structure in which the optical sensor 907 is disposed in the peripheral region has the following characteristics. That is, when the display mode of the liquid crystal display device is a transmissive type or a semi-transmissive type, the force light sensor 907 that is required to include the backlight system 914 on the back surface of the active matrix substrate 901 is disposed in the peripheral region. Therefore, the light emitted from the backlight system 914 does not reach the optical sensor 907 directly. Thereby, it is possible to minimize malfunction of the optical sensor 907 caused by light emitted from the knock light system 914.
  • a force sensor 907 having a polarizing plate (not shown) attached to the front side of the counter substrate 902 is disposed in the peripheral region S. Incident external light is blocked by the polarizing plate on the counter substrate 902. It is possible to guide a sufficient amount of external light to the optical sensor. As a result, the optical sensor
  • a thin film transistor (TFT) using an amorphous Si film or a polycrystalline Si film is generally used as an active element used in an active matrix display device.
  • TFT thin film transistor
  • a polycrystalline Si film is mainly used.
  • a structure of a TFT including a polycrystalline Si film as a semiconductor layer formed in each pixel of the pixel array region (display region) will be described.
  • the TFT structure described here is called a “top gate structure” or “positive stagger structure”, and has a gate electrode on the upper layer of a semiconductor film (polycrystalline Si film) serving as a channel.
  • the TFT 500 includes a polycrystalline Si film 511 formed on a glass substrate 510, a gate insulating film 512 formed so as to cover the polycrystalline Si film, and a gate electrode 5 formed on the gate insulating film 512. 13 and a first interlayer insulating film 514 formed so as to cover the gate electrode 513.
  • First The source electrode 517 formed on the first interlayer insulating film 514 is electrically connected to the source region 511 c of the semiconductor film through a contact hole that penetrates the first interlayer insulating film 514 and the gate insulating film 512. ing.
  • the drain electrode 515 formed on the first interlayer insulating film 514 is electrically connected to the drain region 5 l ib of the semiconductor film through a contact hole that penetrates the first interlayer insulating film 514 and the gate insulating film 512. Connected. Further, a second interlayer insulating film 518 is formed so as to cover them.
  • the region of the semiconductor film facing the gate electrode 513 functions as the channel region 511a.
  • the regions other than the channel region 511a of the semiconductor film are highly doped with impurities, and function as the source region 511c and the drain region 51 lb.
  • LDD Lightly Doped Drain
  • impurities are lightly doped on the channel region side of the source region and the channel region side of the drain region in order to prevent deterioration of electrical characteristics due to hot carriers. A region is formed.
  • a pixel electrode 519 for supplying an electric signal to the driven display medium is formed on the second interlayer insulating film 518.
  • the pixel electrode 519 is electrically connected to the drain electrode 515 through a contact hole provided in the second interlayer insulating film 518.
  • the pixel electrode 519 generally requires flatness, and the second interlayer insulating film 518 existing below the pixel electrode 519 is required to function as a flat film. Therefore, it is preferable to use an organic film (thickness: 2 to 3 m) such as acrylic resin for the second interlayer insulating film.
  • the second interlayer insulating film 518 is required to have a patterning performance, and usually a photosensitive organic film is often used.
  • FIG. 16 is a diagram showing a cross-section of the element structure of the optical sensor 400 that satisfies these conditions.
  • a semiconductor film 411 constituting an optical sensor is formed on a glass substrate 410, and a doping region (p region 41 lc or n region 41 lb) of the semiconductor film 411 1S non-doping region (i region 41 la) However, it is formed not in the vertical direction (stacking direction) but in the horizontal direction (plane direction).
  • a structure having a PIN junction with respect to a formation surface, that is, in a lateral direction (plane direction) is called a lateral type PIN photodiode.
  • Each member constituting the optical sensor 400 is formed by substantially the same process as each member constituting the TFT of FIG.
  • an insulating film 412 formed of the same material as the gate insulating film 512 is formed on the upper layer of the semiconductor film 411, and the same material as that of the source electrode 517 is formed on the upper layer of the first interlayer insulating film 414.
  • the p-side electrode 417 formed by the same process, the same material as the drain electrode 515, and the n-side electrode 415 formed by the same process are formed.
  • a surface protective film 418 formed of the same material as the second interlayer insulating film 518 and the same process is formed.
  • the second interlayer insulating film 518 electrically insulates the interlayer between the TFT 500 formation layer and the pixel electrode 519 formation layer, and improves the flatness of the formation surface of the pixel electrode 519.
  • the surface protective film 418 of the active matrix substrate is used as the surface sensor film 418 and the electrodes connected to the optical sensor 400 It plays a protective role.
  • the second interlayer insulating film 518 is generally formed on the substantially entire surface over the display region force peripheral region also serving as the surface protective film 418.
  • Such an optical sensor 400 shown in FIG. 16 can be used in place of the optical sensor 907 (discrete component provided in the peripheral area) of the conventional display device shown in FIG.
  • the display device shown in FIG. 13 is incorporated into an electronic device, the number of components and the component mounting process can be reduced.
  • JP-A-6-188400 as another example of the structure of the optical sensor 400, a TFT having a bottom gate structure (inverted stagger structure) using an amorphous silicon film, a MIS (MetaHnsulator- There is a description that a photodiode having a (Semiconductor) type junction is formed monolithically on the same substrate.
  • the active matrix substrate constituting the display device is roughly divided into a display area (H) and a peripheral area (frame area) (S).
  • the latter peripheral area (S) Furthermore, the light shielding region (S1) shielded by the housing, and the non-light shielding region (S2) that is located in the opening provided in the housing (for example, corresponding to the hole 916 in FIG. 14) and receives external light.
  • the above-described optical sensor needs to receive external light, it is naturally necessary to be disposed in the non-shielding region (S2) on the active matrix substrate.
  • the second interlayer insulating film 518 (surface protective film 418) has been described in the previous stage that the display region H force is formed on substantially the entire surface over the peripheral region S.
  • the second interlayer insulating film 518 (surface Considering how external light (assumed to be used under outdoor sunlight) reaches the protective film 41 8), it is as follows.
  • Display region (H) Since a part of external light is absorbed by a polarizing plate (not shown) and a color filter provided on the counter substrate 902, the second interlayer isolation on the active matrix substrate 901 is absorbed.
  • the external light reaching the edge film 518 is limited to light in a specific wavelength region. In particular, since almost 100% of ultraviolet rays are absorbed by the polarizing plate and the color filter, no ultraviolet rays reach the second interlayer insulating film 518.
  • Light-shielding area (S1) All external light is shielded by housing 915. Of course, no ultraviolet rays reach the second interlayer insulating film 518 on the active matrix substrate 901.
  • Non-shielding region (S2) Since external light is directly incident, light of all wavelengths (including ultraviolet rays) included in the external light reaches the second interlayer insulating film on the active matrix substrate.
  • the second interlayer insulating film is formed of a photosensitive organic film such as acrylic resin, but the organic film used here can be patterned by ultraviolet exposure.
  • the material is designed so that it contains a photosensitive group that absorbs ultraviolet rays, and a polymer polymerization reaction or a decay reaction is likely to occur by ultraviolet exposure. For this reason, it has the characteristics that it absorbs ultraviolet rays and is easy to deteriorate compared to ordinary grease materials. ing. Thus, the organic film used here was not considered for resistance to ultraviolet rays.
  • the second interlayer insulating film 418 is not provided in the upper region of the photosensor shown in FIG. It is.
  • each electrode of the optical sensor and the wiring member of the peripheral circuit are exposed to the outside air, so that the performance of the optical sensor is deteriorated and the electrode is exposed to the outside air, so that it is oxidized.
  • the electrical characteristics may change.
  • the present invention provides a display device including an environmental sensor (for example, an optical sensor) formed in a peripheral region of an active matrix substrate, by protecting the environmental sensor without using the second interlayer insulating film, It is an object of the present invention to provide a display device in which the characteristics of environmental sensors hardly change over time and an electronic device using the display device.
  • an environmental sensor for example, an optical sensor
  • a display device has an active matrix substrate having a pixel array region in which a plurality of pixels are arrayed, and a pixel array region of the active matrix substrate. And a display medium disposed in a gap between the active matrix substrate and the counter substrate, a plurality of electrode wirings are provided in a pixel array region of the active matrix substrate.
  • Transparent material derconnection to the deterioration of the transparency due to the ultraviolet rays are irradiated occur difficulty than the interlayer insulating film
  • a protective film made of a new material made of a new material.
  • the protective film formed of a material that is less likely to cause deterioration in transparency due to ultraviolet irradiation than the interlayer insulating film is provided on the upper layer of the environmental sensor, Each electrode of the sensor and the wiring members of the peripheral circuit are not exposed to the outside air. Thereby, it is possible to provide a display device in which the characteristics of the environmental sensor hardly change over time.
  • the display device described above it is preferable that at least a part of the environmental sensor is manufactured by the same process as that of the active element. This is because the manufacturing process is simplified and costs can be reduced.
  • the environmental sensor is preferably formed monolithically on the main surface of the active matrix substrate.
  • the environmental sensor being “monolithically formed” on the active matrix substrate does not include that the environmental sensor is mounted on the active matrix substrate as a discrete component.
  • an environmental sensor is “monolithically formed” on an active matrix substrate means that a physical and Z or chemical process such as a film forming process or an etching process is performed directly on the active matrix substrate. It means that an environmental sensor is formed on the main surface of the active matrix substrate through the applied steps.
  • the environmental sensor may be mounted on a glass substrate of the active matrix substrate (Chip On Glass).
  • an environmental sensor may be mounted on the glass substrate of the active matrix substrate.
  • the height of the protective film in the normal direction of the active element formation surface in the active matrix substrate may be equal to or less than the total thickness of the counter substrate and the display medium. preferable. This is because it becomes easy to secure a clearance between the protective film and the housing when the display device is incorporated into the housing.
  • a recess is formed on the surface of the electrode portion of the environmental sensor. This is because when the material of the protective film enters the recess, the protective film can be brought into close contact with the environmental sensor, and the shielding effect of the outside air is improved.
  • the active element is a thin film transistor, and a gate insulating film of the active element and a second electrode are provided between the electrode part and the sensor part of the environmental sensor.
  • a gate insulating film of the active element and a second electrode are provided between the electrode part and the sensor part of the environmental sensor.
  • one interlayer insulating film extends, and the first interlayer insulating film around the environmental sensor has a hole at a location covered with the protective film. When the material of the protective film enters the hole, the protective film can be brought into close contact with the environmental sensor, and the effect of shielding outside air is improved.
  • wiring to an external device is connected to the peripheral region of the active matrix substrate, and the protective film extends from an upper layer of the environmental sensor to a connection portion of the wiring.
  • the protective film extends over the connection portion of the wiring, the mechanical strength of the wiring connection portion is increased, and a moistureproof and dustproof effect is also obtained. This improves the reliability of connections with external circuits.
  • the protective film serves as both the environmental sensor protective member and the wiring connection portion reinforcement member, the environmental sensor protection step and the wiring connection portion reinforcement step can be performed in the same step, thereby increasing the number of steps. Can be prevented.
  • the material of the protective film is a resin that does not contain a filler. This is because the transmittance of the protective film can be kept high by using a resin that does not contain a filler that causes light scattering. This is particularly preferable when the environmental sensor is an optical sensor.
  • the material of the protective film is a resin that cures at room temperature! This is because the firing process and UV curing process for curing the protective film can be omitted.
  • the protective film is an ultraviolet absorbing member.
  • the environmental sensor is an optical sensor, it is possible to control the display according to human visual characteristics by preventing light of wavelengths outside the human visible range from entering the sensor. It is.
  • the counter substrate extends above the environmental sensor, and the height of the protective film in the normal direction of the active element formation surface of the active matrix substrate is determined by the display medium. Or less. This is because the environmental sensor can be mechanically (physically) protected not only by the protective film but also by the counter substrate by extending the counter substrate above the environmental sensor.
  • a wall is formed in at least one direction around the environmental sensor by using a material common to the second interlayer insulating film provided between the active element and the pixel electrode. preferable. By providing this wall, the thickness of the protective film can be made uniform by suppressing the wide area of the protective film material during the formation of the protective film, resulting in variations in the thickness of the protective film. This is the power to prevent the sensing error caused.
  • an electronic apparatus includes the display device according to the present invention that is suitable for any of the above-described configurations, and the environmental sensor is an optical sensor, A control circuit is provided that controls display brightness in accordance with brightness information of external light detected by the optical sensor. For example, if the display device is provided with a backlight, the display luminance can be controlled by the control circuit controlling the luminance of the knock light. Further, when the display device is a self-luminous element, it can be realized by controlling the light emission luminance by the control circuit. In this way, by controlling the display brightness so as to have a necessary and sufficient brightness according to the ambient brightness, it is possible to provide an electronic device that reduces power consumption and realizes an easy-to-see display.
  • this electronic device can achieve both good visibility and low power consumption in response to changes in the brightness of the usage environment, there are many opportunities to take it outdoors and use it as a battery that requires battery drive. As particularly useful.
  • mobile devices are not intended to limit the application of the present invention, but include, for example, mobile phones, information terminals such as PDAs, mobile game devices, portable music players, digital cameras, There are video cameras.
  • the present invention since the upper layer of the environmental sensor is protected by the protective film, the sensor part of the environmental sensor is not easily affected by outside air. As a result, it is possible to realize an environmental sensor having a characteristic with good sensitivity and little change with time, and a display device and an electronic apparatus with excellent reliability can be realized.
  • FIG. 1 is a perspective view showing an overall configuration of a display device according to a first embodiment of the present invention.
  • FIG. 2 is a sectional view showing a state in which the display device according to the first embodiment is incorporated in a housing.
  • FIG. 3 is a cross-sectional view showing a structure per pixel of a pixel array region (display region) of the display device which is effective in the first embodiment.
  • FIG. 4 (a) is a cross-sectional view showing an example of the structure of the optical sensor portion of the display device that is helpful in the first embodiment.
  • FIG. 4 (b) is a cross-sectional view showing another example of the structure of the photosensor portion of the display device that is helpful in the first embodiment.
  • FIG. 5 is a schematic cross-sectional view for explaining the height of the optical sensor unit that is applied to the first embodiment.
  • FIG. 6 is a cross-sectional view showing an example of the structure of an optical sensor portion of a display device that is helpful in the second embodiment of the present invention.
  • FIG. 7 is a plan view showing a configuration of a display device according to a third embodiment of the present invention and a cross-sectional view taken along the line BB ′.
  • FIG. 8 is a perspective view showing an overall configuration of a display device according to a fourth embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of an example of an optical sensor unit according to a fourth embodiment.
  • FIG. 10 is a cross-sectional view of another example of an optical sensor unit that works according to the fourth embodiment.
  • FIG. 11 is a cross-sectional view showing an example of the structure of the photosensor portion of the display device according to the fifth embodiment of the present invention.
  • FIG. 12 is a block diagram showing a schematic configuration of an electronic apparatus according to a sixth embodiment of the present invention.
  • FIG. 13 is an overall configuration diagram of a conventional liquid crystal display device disclosed in Japanese Patent Laid-Open No. 2002-62856.
  • FIG. 14 is a cross-sectional view of an optical sensor mounting portion disclosed in Japanese Patent Laid-Open No. 2002-62856.
  • FIG. 15 is a cross-sectional structure diagram of a conventional TFT formed in a pixel array region of an active matrix substrate.
  • FIG. 16 is a sectional view of an element structure of a conventional photosensor.
  • a display device that works according to the first embodiment of the present invention will be described with reference to the drawings.
  • a liquid crystal display device is given as an example of a display device, but the present invention can also be applied to a display device other than the liquid crystal display device.
  • FIG. 1 is an overall configuration diagram of a display device 1 that works according to the present embodiment.
  • the display device 1 includes an active matrix substrate 2 in which a large number of pixels 5 are arranged in a matrix, and a counter substrate 3 disposed so as to face the active matrix substrate 2, and a display medium 4 in the gap therebetween.
  • the liquid crystal is sandwiched.
  • the active matrix substrate 2 and the counter substrate 3 are bonded together by a frame-shaped seal resin (not shown) along the outer periphery of the counter substrate 3.
  • Each pixel 5 of the active matrix substrate 2 is provided with a thin film transistor (TFT) 6 and a pixel electrode 7 for driving the display medium 4, and the counter substrate 3 has a counter electrode (not shown). And color filters (not shown) are formed.
  • TFT thin film transistor
  • pixel electrode 7 for driving the display medium 4
  • counter substrate 3 has a counter electrode (not shown).
  • color filters (not shown) are formed.
  • the active matrix substrate 2 has an area (pixel arrangement area) 8 in which the pixels 5 are arranged, and a peripheral area 9 close to the pixel arrangement area.
  • the counter substrate 3 covers the pixel array region 8 and is disposed so that a part of the peripheral region 9 is exposed.
  • an FPC 10 for connecting an external drive circuit to the display device is connected to the peripheral region 9 of the active matrix substrate. Further, in the peripheral region 9, an optical sensor 11 for detecting the brightness of external light is disposed as an environmental sensor.
  • the peripheral area 9 includes peripheral circuits (a driving circuit (not shown) for driving the TFT 6 in the pixel array area 8), a wiring (not shown) connected to the optical sensor 11 and the driving circuit, and a pixel array. Lead-out wiring (not shown) from area 8 is also provided.
  • the TFT 6 formed in the pixel array region 8 and the optical sensor 11 formed in the peripheral region 9 are monolithically formed on the same substrate by substantially the same process. That is, some constituent members of the optical sensor 11 are formed simultaneously with some constituent members of the TFT 6.
  • the display device 1 shown in FIG. 1 is incorporated into a housing 35 with an opening, similarly to the conventional display device shown in FIG.
  • the opening 37 of the housing 35 is provided at a predetermined position, and the outside light reaches the optical sensor 11 through the opening 37.
  • 39 is a circuit board. Note that when transmitted light is used as the display mode of the display device, the backlight system 12 needs to be provided on the back side of the active matrix substrate 2 in the housing 35.
  • a knock light is not required.
  • optical sensor 11 since the above-described optical sensor 11 is intended to detect outside light, if the light of the knocklight system 12 is incident on the optical sensor 11, the optical sensor 11 malfunctions! S occurs. Therefore, a force that prevents the backlight system 12 from being arranged below the photosensor arrangement portion of the active matrix substrate 2 and a light shielding member such as aluminum tape (not shown) on the back surface of the photosensor arrangement portion of the active matrix substrate 2. )) Is necessary.
  • the above-described display device 1 of the present embodiment is applied to a display system with an automatic light control function that detects the illuminance of external light using the optical sensor 11 and automatically controls the display luminance in accordance with the detected illuminance.
  • a control circuit that controls the luminance of the backlight system 12 or the luminance signal of the display signal based on the brightness information of the external light output from the optical sensor 11 provided in the peripheral region 9 of the active matrix substrate 2. By providing this, it is possible to automatically control the display brightness of the display device 1.
  • This control circuit may be formed integrally with the display device 1 or may be formed separately from the display device 1.
  • Examples of the case where the display device 1 is integrally formed include a case where the active matrix substrate 2 is formed monolithically, or a control circuit formed separately from the active matrix substrate 2 to form a COG (Chip On Grass ) Method, etc., when mounted on the active matrix substrate 2.
  • a control circuit is formed separately from the active matrix substrate 2 and connected to the active matrix substrate 2 via an FPC or the like.
  • a control circuit is arranged in an electronic device including the device 1 and a control circuit force signal is transmitted to the active matrix substrate 2.
  • brightness adjustment is automatically performed to increase the display brightness in bright environments such as outdoors, and to decrease the display brightness in relatively low environments such as at night and in the room. When controlled to do so, it is possible to achieve low power consumption and long life of the display device.
  • FIG. 3 is a cross-sectional structure diagram of each pixel in the pixel array region (display region) 8 in the display device 1 of FIG.
  • a display medium (liquid crystal) 4 is sandwiched between the active matrix substrate 2 and the counter substrate 3.
  • a thin film transistor (TFT) 6 and a pixel electrode 7 for driving a display medium are formed.
  • the structure of the TFT 6 used here is called a “top gate structure” or “positive stagger structure”, and includes a gate electrode 16 on the upper layer of a semiconductor film (polycrystalline Si film) 13 to be a channel.
  • a top gate structure or “positive stagger structure”
  • the substrate side is described as the lower side
  • the direction in which the distance from the substrate to the layer is increased is described as the upper side.
  • a glass substrate can be mainly used.
  • non-alkali barium borosilicate glass or alumino borosilicate glass is used.
  • the TFT 6 uses a polycrystalline Si film 13 formed on the substrate 14 and a gate insulating film 15 formed so as to cover the polycrystalline Si film 13 (for example, an oxide silicon film or a silicon nitride film).
  • a gate electrode 16 formed on the gate insulating film 15 for example, Al, Mo, T, or an alloy thereof can be used
  • Interlayer insulating film 17 for example, a silicon oxide film or a silicon nitride film can be used).
  • a region facing the gate electrode 16 through the gate insulating film 15 functions as a channel region 13a.
  • the region other than the channel region of the polycrystalline Si film 13 is an n + layer doped with impurities at a high concentration, and functions as a source region 13b and a drain region 13c.
  • LDD Lightly Doped Drain
  • impurities are lightly doped on the channel region side of the source region 13b and the channel region side of the drain region 13c to prevent deterioration of electrical characteristics due to hot carriers. A region is formed.
  • a base coat film for example, a silicon oxide film or a silicon nitride film can be used
  • polycrystalline Si film 13 can be obtained by crystallizing a semiconductor film (amorphous Si film) having an amorphous structure by heat treatment such as laser annealing or RTA (Rapid Thermal Annealing).
  • a source electrode 18 (for example, Al, Mo, T, or an alloy thereof can be used) is formed on the first interlayer insulating film 17.
  • the source electrode 18 is electrically connected to the source region 13 b of the polycrystalline Si film 13 through a contact hole that penetrates the first interlayer insulating film 17 and the gate insulating film 15.
  • the drain electrode 19 (for example, Al, Mo, T, or an alloy thereof can be used) formed on the first interlayer insulating film 17 is connected to the first interlayer insulating film 17 and the gate insulating film 15. It is electrically connected to the drain region 13c of the polycrystalline Si film 13 through the penetrating contact hole.
  • a second interlayer insulating film 20 is further formed so as to cover the TFT 6 described above.
  • the second interlayer insulating film 20 is required to flatten the unevenness of the lower layer in addition to the insulating property between the layers, an organic film that can be formed by coating or printing is mainly used. Note that the second interlayer insulating film 20 is not formed in the peripheral region 9.
  • a pixel electrode 7 (for example, ITO (Indium-Tin-Oxide), IZO (Indium-Zinc-Oxide), Al, etc.) is formed on the second interlayer insulating film 20.
  • the pixel electrode 7 is electrically connected to the drain electrode 19 through a contact hole formed in the second interlayer insulating film 20.
  • the second interlayer insulating film 20 it is preferable to use a photosensitive organic insulating film, and a contact hole can be easily formed in the second interlayer insulating film 20 by mask exposure and development treatment.
  • Examples of such an organic insulating film having photosensitivity include acrylic, polyimide, BCB (Benzo-Cyclo-Butene), and the like.
  • 30 is a glass substrate which is a base substrate of the counter substrate 3
  • 31 is a color filter
  • 32 is a counter electrode formed on the entire surface of the counter substrate 3.
  • FIGS. 4 (a) and 4 (b) are cross-sectional structural views of the optical sensor 11 formed in the peripheral region 9.
  • FIG. 4 (a) and 4 (b) are cross-sectional structural views of the optical sensor 11 formed in the peripheral region 9.
  • the structure of the optical sensor 11 used here is called a “lateral structure photodiode”, and is a diode in which a semiconductor PIN junction is formed in the surface direction (lateral direction) of the substrate. Equipped with a card.
  • the optical sensor 11 shown in FIGS. 4 (a) and 4 (b) has a polycrystalline Si substrate on a glass substrate 14 (a substrate common to the substrate on which the TFT is formed) as a base substrate.
  • a PIN diode (sensor part) is formed by the film 21.
  • the polycrystalline Si film 21 of the optical sensor 11 is formed simultaneously with the same process as the polycrystalline Si film 13 of the TFT 6 in the pixel array region 8 (display region) (see FIG. 3). Therefore, the polycrystalline Si film 21 and the polycrystalline Si film 13 have the same film thickness.
  • the PIN junction is formed by a P + layer (region 21b) and an n + layer (region 21c) doped with impurities at a high concentration, and an i layer (region 21a) not doped with impurities.
  • a lightly doped P-layer or n layer can be used alone or in combination.
  • a gate insulating film 15 an oxide silicon film or a silicon nitride film can be used
  • a first interlayer insulating film 17 an oxide film
  • a silicon film or a silicon nitride film can be used).
  • the gate insulating film 15 and the first interlayer insulating film 17 of the TFT 6 in the pixel array region 8 extend to the peripheral region 9. Is.
  • the p-side electrode 33 (Al, Mo, T or their alloys can be used) formed on the first interlayer insulating film 17 includes the first interlayer insulating film 17 and the gate insulating film 15. It is electrically connected to the ⁇ + region 21b of the polycrystalline Si film 21 through a penetrating contact hole.
  • the n-side electrode 34 (Al, Mo, T or their alloys can be used) formed on the first interlayer insulating film 17 penetrates the first interlayer insulating film 17 and the gate insulating film 15. It is electrically connected to the ⁇ + region 21c of the polycrystalline Si film 21 through the contact hole.
  • the portions of the p-side electrode 33 and the n-side electrode 34 that are exposed on the surface of the first interlayer insulating film 17 are the electrode portions of the optical sensor 11.
  • the formation of contact holes to the first interlayer insulating film 17 and the gate insulating film 15 in the peripheral region 9 is the same as the formation of contact holes to the first interlayer insulating film 17 and the gate insulating film 15 in the pixel array region 8. It is performed simultaneously by the same process as forming.
  • the p-side electrode 33 and the n-side electrode 34 are formed simultaneously by the same process as the formation of the source electrode 18 and the drain electrode 19 of the TFT 6.
  • the above is the basic structure of the optical sensor 11.
  • the components of the optical sensor 11 are the same as those described above. It is almost the same as the constituent elements of TFT6 in the elementary array region, and the manufacturing process is also almost the same.
  • the active matrix substrate 2 has the TFT 6 in the pixel array region 8 and the optical sensor 11 in the peripheral region 9 formed monolithically.
  • the peripheral area 9 is connected to a peripheral circuit (a driving circuit (not shown) for driving the TFT 6 in the pixel array area 8), the optical sensor 11 and the driving circuit.
  • Wiring 36 (see FIG. 2) and lead wiring (not shown) from the pixel array region 8 are also formed.
  • the upper layer of the optical sensor 11, that is, the p-side electrode 33 and the n-side electrode 34 and the surface of the first interlayer insulating film 17 in the vicinity thereof are covered.
  • a protective film 24 is provided.
  • the thickness of the protective film 24 is at least about 3. O / z m, and is preferably about 5 to about L 00 m in order to sufficiently exert a blocking effect from outside air.
  • the protective film 24 used here only needs to have transparency in the wavelength range of light received by the optical sensor 11 and resistance to ultraviolet rays. Therefore, a wide range of materials can be applied as the protective film 24.
  • materials such as fluorine-based resin, silicone resin, epoxy resin, and acrylic resin can be used.
  • silicone potting materials manufactured by Toray Dow Co., Ltd. for example, SE1880
  • Aflex® registered trademark
  • Cytop registered trademark
  • a resin that does not contain a filler that causes light scattering In order to keep the transmittance of the protective film 24 high, it is preferable to use, as a material, a resin that does not contain a filler that causes light scattering. Considering simplification of the process of forming the protective film 24, it is preferable to employ a room temperature curing type resin that does not require a curing oven or a UV curing step.
  • a room temperature curable resin may be used among the above-described fluorine-based resins, silicone resins, epoxy resins, acrylic resins, and the like.
  • the protective film 24 is formed, for example, by bonding the active matrix substrate 2 and the counter substrate 3, injecting liquid crystal as the display medium 4, connecting the FPC 10, and then applying a resin to the portion of the optical sensor 11. It can be formed by applying (potting).
  • FIG. 4 (a) the force showing a form in which the protective film 24 covers the entire surface of the p-side electrode 33 and the n-side electrode 34 is not particularly necessary, as shown in FIG. 4 (b).
  • the protective film 24 may be formed so as to cover at least the position where light enters the optical sensor 11.
  • the configuration of FIG. 4 (a) has the advantage that the oxidation and corrosion of the p-side electrode 33 and the n-side electrode 34 can be prevented more reliably than the configuration of FIG. 4 (b).
  • recesses 33a and 34a are formed at the tops of the p-side electrode 33 and the n-side electrode 34, respectively.
  • the recesses 33a and 34a are formed, for example, by etching after the p-side electrode 33 and the n-side electrode 34 are patterned.
  • the concave portions 33a and 34a are formed on the tops of the p-side electrode 33 and the n-side electrode 34, thereby improving the adhesion between the tops of the p-side electrode 33 and the n-side electrode 34 and the protective film 24. To do.
  • FIG. 5 is a schematic cross-sectional view around the optical sensor 11.
  • illustration of electrodes of the optical sensor 11 is omitted.
  • the height X of the protective film 24 in the normal direction of the TFT formation surface of the active matrix substrate 2 is the thickness of the counter substrate 3 and the display medium 4 It is desirable that the total is Y or less. This facilitates ensuring a clearance between the protective film 24 and the housing 35 when the display device 1 is incorporated into the housing 35.
  • the display device has a configuration in which the optical sensor 11 is protected by the protective film 24 that is not protected by the second interlayer insulating film as in the related art. For this reason, in the past, it was necessary to design the optical sensor 11 with excessive specifications in anticipation of deterioration of the second interlayer insulating film due to ultraviolet rays (decrease in transmittance). Then, it becomes possible to optimally design the optical sensor 11 that does not need to worry about a decrease in the transmittance of the second interlayer insulating film 20. For this reason, the optical sensor 11 itself can be made smaller than before, and the peripheral area 9 in which the optical sensor 11 is arranged can be minimized to contribute to the narrow frame of the display device. Become. As a result, the entire display device can be reduced in size. [Second Embodiment]
  • FIG. 6 is a cross-sectional view showing the structure of the optical sensor 11 of the display device and its surroundings according to the second embodiment.
  • the display device according to the present embodiment is the same as the configuration described in the first embodiment, except that a hole is formed in the first interlayer insulating film 17 around the optical sensor 11. Therefore, the same components are denoted by the same reference numerals and description thereof is omitted.
  • a hole 17 a is formed in the first interlayer insulating film 17 around the optical sensor 11.
  • the hole 17a is formed in the vicinity of the optical sensor 11 and is covered with the protective film 24, and the protective film 24 enters into the hole 17a, thereby improving the adhesion of the protective film 24 (anchor Effect).
  • the hole 17a serves as a contact hole for the source electrode 18 and the drain electrode 19 of the TFT 6, and the p-side electrode 33 and the n-side electrode 34 of the photosensor 11, and the first interlayer insulating film 17 and the gate insulating film 15 In the step of forming, the contact holes are formed simultaneously. Therefore, there is an advantage that the manufacturing process does not increase to provide the holes 17a.
  • the number of holes 17a provided around the optical sensor 11 is arbitrary. Further, since the hole 17a is formed in order to obtain the anchor effect of the protective film 24, the diameter thereof is preferably formed to a size that allows the protective film 24 to easily enter according to the viscosity of the material of the protective film 24. In FIG. 6, the hole 17a penetrates only the first interlayer insulating film 17 and stops at the surface of the gate insulating film 15, but the depth of the hole 17a is arbitrary as long as a desired anchor effect is obtained. It is. That is, the hole 17a does not necessarily pass through the first interlayer insulating film 17. Alternatively, the hole 17a may reach the gate insulating film 15, or may be formed so as to penetrate both the first interlayer insulating film 17 and the gate insulating film 15.
  • the display device has a configuration in which the first interlayer insulating film 17 around the photosensor 11 is formed with the hole 17a for improving the adhesion of the protective film 24. .
  • the optical sensor 11 can more reliably protect the outside air force.
  • FIG. 7 shows a schematic plan view of a display device 40 that is useful for the third embodiment of the present invention, and its B-B.
  • FIG. The active matrix substrate 2 and the counter substrate 3 are bonded to each other by a seal resin, and the optical sensor 11 is formed in the peripheral region 9, which is the same as the display device 1 of each embodiment described above.
  • symbol is attached and the description is abbreviate
  • the FPC 10 is mounted in the peripheral region 9, and the protective film 24 that protects the upper layer of the optical sensor 11 that should reinforce the connection of the FPC 10 around the mounting portion of the FPC 10. It becomes an extended structure.
  • the active matrix substrate 2 and the counter substrate 3 are bonded together via a seal resin 25, and liquid crystal as the display medium 4 is injected from the injection port 27.
  • the resin is potted across the upper layer of the optical sensor 11 in the peripheral area 9 and the connection part of the FPC 10, so that the FPC 10 A protective film 24 extending to the connection portion is formed.
  • the protective film 24 extends over the connection portion of the FPC 10, the mechanical strength of the FPCIO® connection portion is increased, and a moistureproof and dustproof effect is also obtained. This improves the reliability of the connection between the FPC 10 and the external circuit. Furthermore, since the protective film 24 serves as both the protective member of the optical sensor 11 and the reinforcing member of the FPC 10, the protective process of the optical sensor 11 and the reinforcing process of the FPC 10 can be performed in the same process, which increases the number of steps. Can be prevented.
  • the protective film 24 is formed in the vicinity of the optical sensor 11 and the FPC 10 so as to fill the gap between the active matrix substrate 2 and the counter substrate 3! RU According to this configuration, for example, when the circuit portion of the optical sensor 11 is provided on the counter substrate 3, the wiring connecting the optical sensor 11 and the circuit portion can also be protected by the protective film 24.
  • FIG. 7 shows an example in which the optical sensor 11 is arranged near the center in the short side direction and the FPC 10 is arranged beside the optical sensor 11 in the peripheral region 9 of the display device 40.
  • the arrangement position and number of the optical sensors 11 and the arrangement position of the FPC 10 are not limited to the example shown in FIG.
  • a structure in which a plurality of optical sensors 11 are provided in the peripheral region 9 may be employed.
  • the connection portion of the FPC 10 and one or more optical sensors 11 that are relatively close to each other may be covered with the same protective film 24.
  • FIG. 8 is an overall configuration diagram of a display device 29 that works according to the fourth embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view of a portion of the peripheral region 9 where the optical sensor 11 is disposed. In FIG. 9, illustration of electrodes of the optical sensor 11 is omitted.
  • the counter substrate 3 is large enough to cover the photosensor 11 in the peripheral region 9, and the protective film 24 of the photosensor 11 has a gap between the active matrix substrate 2 and the counter substrate 3. It has a structure that exists in Note that the same reference numerals are given to the same components as those in the first to third embodiments, and the description thereof is omitted.
  • the mechanical strength of the protective film 24 as a protective layer of the optical sensor 11, such as generation of surface scratches, may be a problem.
  • the protective substrate 24 can be mechanically (physically) protected by the structure in which the counter substrate 3 extends to the upper layer of the optical sensor 11 and the protective film 24. It becomes.
  • the protective film 24 as a protective layer of the optical sensor 11 is A structure that does not touch outside air can be realized except for, and the influence of moisture from outside air can be further reduced. Also in FIG. 10, the illustration of the electrodes of the optical sensor 11 is omitted. In addition, since an air layer having a low refractive index is not interposed between the optical sensor 11 and the counter substrate 3, light reflection loss at the interface between the air layer and the protective film 24 is reduced, and the SZN of the optical sensor 11 is improved. It will be pretty to let you.
  • FIG. 11 is a cross-sectional view showing the structure of the optical sensor 11 of the display device and its periphery according to the fifth embodiment of the present invention.
  • the display device according to this embodiment includes an optical sensor 11. Except that a wall is formed by using the second interlayer insulating film 20 in the periphery of the substrate, and is the same as the configuration described in each of the above-described embodiments. Therefore, the description is omitted.
  • a wall 20a formed of a material common to the second interlayer insulating film 20 of the TFT 6 is provided around the optical sensor 11,
  • the in the example of FIG. 11, a wall 20a is formed in two directions in the vicinity of the optical sensor 11, and a protective film 24 is formed between the walls.
  • the thickness of the protective film 24 can be made uniform by suppressing the spread area of the material of the protective film 24.
  • the wall 20a is simultaneously formed by the same process as the second interlayer insulating film 20 (see FIG. 3) of the TFT 6. For this reason, the height of the wall 20a (the length of the active matrix substrate 2 in the normal direction of the substrate surface) is about 1 to 3 ⁇ m, which is the same as that of the second interlayer insulating film 20 of the TFT6.
  • the thickness of the wall 20a (the length in the direction parallel to the substrate surface of the active matrix substrate 2) is arbitrary.
  • FIG. 11 shows an example in which walls are formed in two directions in the vicinity of the optical sensor 11.
  • the second interlayer insulating film 20 is provided only on the side opposite to the seal resin 25.
  • a wall may be formed, and a protective film 24 may be formed between the wall and the seal resin 25. That is, it is only necessary to form a wall made of the second interlayer insulating film 20 in at least one direction in the vicinity of the optical sensor 11.
  • a wall may be formed by the second interlayer insulating film 20 so as to completely surround the outer periphery of the optical sensor 11!
  • the wall 20a in at least one direction in the vicinity of the optical sensor 11, when the protective film 24 is formed, the spread area of the material of the protective film 24 can be suppressed, and the protective film There is an advantage that the thickness of 24 can be made uniform. Thereby, the transmittance of the light incident on each part of the optical sensor 11 can be made uniform.
  • TFT 6 and the optical sensor 11 are formed using a polycrystalline Si film, but both may be formed of an amorphous Si film.
  • TFTs with a top gate structure forward stagger structure
  • TFTs with a bottom gate structure reverse stagger structure
  • MIM Metal Insulator- Metal
  • the optical sensor may be a photodiode having a Schottky junction or an MIS type junction that is not limited to using a PIN junction.
  • a TFT having a bottom gate structure (reverse stagger structure) using an amorphous Si film and a photodiode having an MIS junction are formed monolithically on the same substrate is disclosed in, for example, Japanese Patent Laid-Open No. 6-188400 Since it is publicly known, detailed description is omitted here.
  • the optical sensor is shown as an example in which the optical sensor is monolithically formed on the same substrate by substantially the same process as TFT 6, and the optical sensor is formed on the glass substrate of the active matrix substrate.
  • An implemented configuration may be used.
  • the present invention can be widely applied to flat panel display devices, and can be applied to various display devices such as EL display devices and electrophoretic display devices in addition to liquid crystal display devices. It is out.
  • a temperature sensor, a humidity sensor, a knocklight color sensor instead of the force sensor described for the display device in which the optical sensor is formed in the peripheral region 9 as a representative of the environmental sensor.
  • brightness sensors can be used as environmental sensors, and similar effects can be obtained.
  • FIG. 12 shows a schematic configuration of an electronic device according to an embodiment of the present invention.
  • the electronic device 60 that is useful in the present embodiment includes the brightness information of the external light detected by the display device 1 according to the first embodiment and the light sensor 11 of the display device 1. Accordingly, a control circuit 61 that controls the display brightness of the display device 1 is provided.
  • the functional blocks in the display device 1 and the electronic device 60 are simplified!
  • the control circuit 61 may have a function of controlling any operation of the electronic device 60 in addition to controlling the display brightness. Further, the electronic device 60 may have arbitrary functional blocks other than those shown in FIG.
  • the control circuit 61 adjusts the luminance of the backlight system 12 according to the brightness information (sensor output) of the external light detected by the optical sensor 11, thereby adjusting the display luminance of the display device 1. Control. Since display device 1 is a liquid crystal display device, the display luminance can be adjusted by controlling the luminance of the backlight. However, when a self-luminous element such as an EL element is used as the display device, the control circuit 61 is configured to control the light emission luminance of the self-light-emitting element.
  • the configuration using the display device 1 according to the first embodiment has been exemplified.
  • the display device that works well with the second to fifth embodiments and these modifications is used.
  • the electronic equipment that was used is also within the scope of the present invention.
  • the electronic device of the present embodiment can achieve both good visibility and low power consumption in response to changes in the brightness of the usage environment, so it is often used as a mopile device that needs to be taken outside and needs battery drive. It is particularly useful.
  • the application of the present invention is not limited to these.
  • information terminals such as mobile phones, PDAs, mopile game equipment, portable music players, digital cameras, video There are cameras.
  • control circuit 61 for controlling the display luminance of the display device is provided outside the display device, but the control circuit is provided as a part of the display device. It is good also as the structure comprised.
  • the present invention can be applied to a flat panel display device including an environmental sensor and an electronic device including the same.

Abstract

A display device wherein an environmental sensor (for instance, light sensor) is formed in a peripheral region of an active matrix substrate and the characteristics of the environmental sensor is not easily changed with time. The display device is provided with the active matrix substrate; a facing substrate arranged to face a pixel arrangement region of the active matrix substrate; and a display medium arranged in a space between the active matrix substrate and the facing substrate. A peripheral region of the pixel arrangement region on the active matrix substrate is provided with the environmental sensor (11) wherein at least a partial constituting member is manufactured by a same process as that of a constituting member of the active element. On an upper layer of the environmental sensor (11), a protection film (24) is formed of a transparent material whose transparency is not easily deteriorated by ultraviolet irradiation compared with an interlayer insulating film.

Description

明 細 書  Specification
表示装置およびこれを備えた電子機器  Display device and electronic apparatus equipped with the same
技術分野  Technical field
[0001] 本発明は、液晶表示装置や EL (Electroluminescence)表示装置などのフラットパネ ル型の表示装置に関し、特に、周囲環境の明るさを検出する光センサ等の環境セン サを備えた表示装置に関する。また、このような表示装置を備えた電子機器に関する 背景技術  TECHNICAL FIELD [0001] The present invention relates to a flat panel type display device such as a liquid crystal display device or an EL (Electroluminescence) display device, and in particular, a display device including an environmental sensor such as an optical sensor for detecting the brightness of the surrounding environment. About. In addition, a background art related to an electronic device provided with such a display device
[0002] 液晶表示装置に代表されるフラットパネル型の表示装置は、薄型軽量、低消費電 力といった特徴を有し、さらに、カラー化、高精細化、動画対応といった表示性能の 向上に向けた技術開発が進んでいることから、現在では、携帯電話、 PDA, DVDプ レイヤー、モパイルゲーム機器、ノート PC、 PCモニター、 TV等、幅広い情報機器、 T V機器、アミューズメント機器に組み込まれている。  [0002] Flat panel display devices typified by liquid crystal display devices have features such as thin and light weight and low power consumption, and are aimed at improving display performance such as colorization, high definition, and video compatibility. Due to advanced technology development, it is currently incorporated into a wide range of information devices, TV devices, and amusement devices such as mobile phones, PDAs, DVD players, mopile game devices, notebook PCs, PC monitors, and TVs.
[0003] このような背景の中、表示装置の更なる視認性向上や低消費電力化を目的として、 使用環境、特に外光の明るさに応じて表示装置の輝度を自動的に制御する自動調 光機能付きの表示システムが提案されて 、る。  [0003] In such a background, for the purpose of further improving the visibility of the display device and reducing the power consumption, an automatic control for automatically controlling the brightness of the display device according to the use environment, particularly the brightness of the external light. A display system with dimming function has been proposed.
[0004] 例えば、特開平 4 174819号公報ゃ特開平 5— 241512号公報では、表示装置 の近傍にディスクリート部品である光センサを配設し、該光センサで検知した使用環 境照度を基に、表示装置の輝度を自動的に制御する方法が開示されている。この結 果、昼間や屋外など明るい環境下では表示輝度を高くし、夜間や室内など比較暗い 環境下では表示輝度を下げるといったように、周囲環境の明るさに応じて自動的に 輝度調整 (調光)を行うことができる。この場合、表示装置の観察者が暗い環境下で 画面をまぶしく感じることがなくなり、視認性の向上を図ることができる。また、使用環 境の明 Z暗にかかわらず、表示輝度を常に高く保つ使用方法に比べると、表示装置 の低消費電力化や長寿命化を実現することができる。さらに、光センサの検知情報を 基に自動的に輝度調整 (調光)を行うために、使用者の手を煩わせることもな!、。  [0004] For example, in JP-A-4 174819 and JP-A-5-241512, an optical sensor, which is a discrete component, is disposed in the vicinity of a display device, and based on the use environment illuminance detected by the optical sensor. A method for automatically controlling the luminance of a display device is disclosed. As a result, the brightness is adjusted automatically according to the brightness of the surrounding environment, such as increasing the display brightness in bright environments such as daytime and outdoors, and decreasing the display brightness in comparatively dark environments such as nighttime and indoors. Light). In this case, the viewer of the display device does not feel dazzling in a dark environment, and visibility can be improved. In addition, regardless of whether the environment is bright or dark, the display device can achieve lower power consumption and longer life compared to a usage method that always maintains high display brightness. In addition, users do not have to worry about brightness adjustment (dimming) automatically based on detection information from the optical sensor!
[0005] このように、自動調光機能を備えた表示システムは、使用環境の明るさの変化に対 して良好な視認性と低消費電力化を両立することができることから、屋外に持ち出し て使用する機会が多くバッテリー駆動を必要とするモパイル機器 (携帯電話、 PDA、 モノくィルゲーム機器等)に対して特に有用である。 [0005] Thus, a display system having an automatic light control function can cope with changes in the brightness of the usage environment. As a result, it is possible to achieve both good visibility and low power consumption. For mopile devices (mobile phones, PDAs, mono-game devices, etc.) that are often used outdoors and require battery operation. Is particularly useful.
[0006] 一方、特開 2002— 62856号公報には、ディスクリート部品である光センサを、表示 装置内に組み込む構造が開示されている。図 13は、特開 2002— 62856号公報に 開示されている液晶表示装置の全体構成図であり、図 14は、その光センサ実装部の 断面図である。 [0006] On the other hand, Japanese Patent Application Laid-Open No. 2002-62856 discloses a structure in which an optical sensor, which is a discrete component, is incorporated in a display device. FIG. 13 is an overall configuration diagram of a liquid crystal display device disclosed in Japanese Patent Laid-Open No. 2002-62856, and FIG. 14 is a cross-sectional view of the photosensor mounting portion.
[0007] この液晶表示装置は、薄膜トランジスタ (TFT)などのアクティブ素子が形成される 基板 (アクティブマトリクス基板) 901と対向基板 902とがシール榭脂 925を介して貼り 合わされ、両者の間隙に液晶層 903が挟持された構造となっている。ここで、ァクティ ブマトリクス基板 901の周辺部、すなわち対向基板が存在しない周辺領域 (額縁領域 )に、ディスクリート部品である光センサ 907が配設されている。なお、図 14において Hで示した領域は、アクティブマトリクス基板 901上に対向基板 902が存在する領域( 表示領域 H)である。また、アクティブマトリクス基板 901の対向基板 902配置側とは 相対する側にはバックライトシステム 914が設けられる。そして、ノ ックライトシステム 9 14のアクティブマトリクス基板 901配置側とは相対する側と、周辺領域 Sの周囲とを覆 うように、筐体 915が配置される。筐体 915の光センサ 907と対向する位置には、開 孔部 916が設けられ、光センサ 907への光は開孔部 916から入射する仕^ &みになつ ている。  [0007] In this liquid crystal display device, a substrate (active matrix substrate) 901 on which an active element such as a thin film transistor (TFT) is formed is bonded to a counter substrate 902 via a seal resin 925, and a liquid crystal layer is formed in the gap therebetween. 903 is sandwiched. Here, an optical sensor 907, which is a discrete component, is disposed in a peripheral portion of the active matrix substrate 901, that is, a peripheral region (frame region) where no counter substrate exists. Note that a region indicated by H in FIG. 14 is a region where the counter substrate 902 exists on the active matrix substrate 901 (display region H). Further, a backlight system 914 is provided on the side of the active matrix substrate 901 opposite to the side on which the counter substrate 902 is disposed. The casing 915 is arranged so as to cover the side of the knocklight system 914 opposite to the side where the active matrix substrate 901 is arranged and the periphery of the peripheral region S. An opening 916 is provided at a position facing the optical sensor 907 of the housing 915, and light incident on the optical sensor 907 has a function of entering from the opening 916.
[0008] このように、光センサ 907を上記周辺領域に配設する構造は、以下の特徴を備えて いる。すなわち、液晶表示装置の表示モードが透過型や半透過型の場合には、ァク ティブマトリクス基板 901の裏面にバックライトシステム 914を備える必要がある力 光 センサ 907が上記の周辺領域に配設されているので、該バックライトシステム 914か ら発せられる光が直接光センサ 907に到達することがない。これにより、ノ ックライトシ ステム 914から発せられる光に起因する光センサ 907の誤動作を最小限に留めるこ とが可能である。また、通常の液晶表示装置では、対向基板 902の表側には偏光板 (図示せず)が貼られている力 光センサ 907が上記の周辺領域 Sに配設されている ので、光センサ 907に入射する外光が対向基板 902上の偏光板によって遮られるこ とが無ぐ十分な光量の外光を光センサに導くことが可能である。この結果、光センサ[0008] Thus, the structure in which the optical sensor 907 is disposed in the peripheral region has the following characteristics. That is, when the display mode of the liquid crystal display device is a transmissive type or a semi-transmissive type, the force light sensor 907 that is required to include the backlight system 914 on the back surface of the active matrix substrate 901 is disposed in the peripheral region. Therefore, the light emitted from the backlight system 914 does not reach the optical sensor 907 directly. Thereby, it is possible to minimize malfunction of the optical sensor 907 caused by light emitted from the knock light system 914. Further, in a normal liquid crystal display device, a force sensor 907 having a polarizing plate (not shown) attached to the front side of the counter substrate 902 is disposed in the peripheral region S. Incident external light is blocked by the polarizing plate on the counter substrate 902. It is possible to guide a sufficient amount of external light to the optical sensor. As a result, the optical sensor
907は、高い SZNを得ることが可能である。 907 can obtain high SZN.
[0009] さらに、近年、表示装置の製造技術が急速に進展し、従来はディスクリート部品とし て表示装置の周辺部に実装していた ICチップや各種回路素子を、表示装置の構成 回路 '素子の形成時に、表示装置内(具体的には表示装置を構成するガラス基板上 )に同一プロセスでモノリシックに形成する技術が確立されてきている。  [0009] Further, in recent years, the manufacturing technology of display devices has rapidly progressed, and an IC chip or various circuit elements that have been conventionally mounted as discrete components on the periphery of the display device can be used as a component circuit of the display device. At the time of formation, a technique for monolithically forming the display device (specifically, on a glass substrate constituting the display device) by the same process has been established.
[0010] 例えば、特開 2002— 175026号公報では、基板上に表示領域部を形成する際、 表示領域部の周辺の領域に、垂直駆動回路、水平駆動回路、電圧変換回路、タイミ ング発生回路、光センサ回路などを、同一プロセスでモノリシックに形成する例が開 示されている。このようなディスクリート部品の表示装置内へのモノリシック形成は、部 品点数や部品実装プロセスの削減を可能にし、表示装置を組み込んだ電子機器の 小型化とコストダウンを実現することができる。もちろん、上述した表示装置の輝度調 節 (調光)に用いる光センサや、光センサ用の専用回路 (光量検出回路)などを、表 示装置内にモノリシックに形成することも可能である。また、上記の特開 2002— 628 56号公報においても、ディスクリート部品の光センサの代わりに、表示装置の構成基 板上に周辺回路と光センサを同一プロセスでモノリシックに形成する実施形態が開 示されている。  [0010] For example, in Japanese Patent Application Laid-Open No. 2002-175026, when a display area portion is formed on a substrate, a vertical drive circuit, a horizontal drive circuit, a voltage conversion circuit, and a timing generation circuit are formed around the display area portion. An example in which an optical sensor circuit and the like are formed monolithically by the same process is disclosed. Such monolithic formation of discrete components in a display device enables reduction of the number of components and component mounting process, and can achieve downsizing and cost reduction of an electronic device incorporating the display device. Of course, it is possible to monolithically form the optical sensor used for the luminance adjustment (dimming) of the display device described above, a dedicated circuit for the optical sensor (light amount detection circuit), and the like in the display device. Also in the above-mentioned Japanese Patent Application Laid-Open No. 2002-62856, an embodiment is disclosed in which a peripheral circuit and an optical sensor are formed monolithically by the same process on a constituent substrate of a display device instead of an optical sensor of a discrete part. Has been.
[0011] ところで、アクティブマトリクス型の表示装置に使用されるアクティブ素子としては、 非晶質 Si膜や多結晶 Si膜を用いた薄膜トランジスタ (TFT)が一般的である。上述の ようにアクティブ素子と各種回路素子を同一基板上にモノリシックに形成する場合は 、主として多結晶 Si膜を利用した TFTが用いられる。  Incidentally, as an active element used in an active matrix display device, a thin film transistor (TFT) using an amorphous Si film or a polycrystalline Si film is generally used. As described above, when an active element and various circuit elements are formed monolithically on the same substrate, a TFT using a polycrystalline Si film is mainly used.
[0012] そこで、図 15を参照しながら、画素配列領域 (表示領域)の各画素に形成される、 多結晶 Si膜を半導体層として備える TFTの構造を説明する。ここで説明する TFTの 構造は、「トップゲート構造」、または「正スタガ構造」と呼ばれるもので、チャネルとな る半導体膜 (多結晶 Si膜)の上層にゲート電極を備えるものである。  [0012] Therefore, with reference to FIG. 15, a structure of a TFT including a polycrystalline Si film as a semiconductor layer formed in each pixel of the pixel array region (display region) will be described. The TFT structure described here is called a “top gate structure” or “positive stagger structure”, and has a gate electrode on the upper layer of a semiconductor film (polycrystalline Si film) serving as a channel.
[0013] TFT500は、ガラス基板 510上に形成された多結晶 Si膜 511と、多結晶 Si膜を覆う ように形成されたゲート絶縁膜 512と、ゲート絶縁膜 512上に形成されたゲート電極 5 13と、ゲート電極 513を覆うように形成された第 1層間絶縁膜 514とを有している。第 1層間絶縁膜 514上に形成されているソース電極 517は、第 1層間絶縁膜 514およ びゲート絶縁膜 512を貫通するコンタクトホールを介して半導体膜のソース領域 511 cに電気的に接続されている。同様に、第 1層間絶縁膜 514上に形成されているドレ イン電極 515は、第 1層間絶縁膜 514およびゲート絶縁膜 512を貫通するコンタクト ホールを介して半導体膜のドレイン領域 5 l ibに電気的に接続されている。さらに、こ れらを覆うように第 2層間絶縁膜 518が形成されている。 The TFT 500 includes a polycrystalline Si film 511 formed on a glass substrate 510, a gate insulating film 512 formed so as to cover the polycrystalline Si film, and a gate electrode 5 formed on the gate insulating film 512. 13 and a first interlayer insulating film 514 formed so as to cover the gate electrode 513. First The source electrode 517 formed on the first interlayer insulating film 514 is electrically connected to the source region 511 c of the semiconductor film through a contact hole that penetrates the first interlayer insulating film 514 and the gate insulating film 512. ing. Similarly, the drain electrode 515 formed on the first interlayer insulating film 514 is electrically connected to the drain region 5 l ib of the semiconductor film through a contact hole that penetrates the first interlayer insulating film 514 and the gate insulating film 512. Connected. Further, a second interlayer insulating film 518 is formed so as to cover them.
[0014] このような構造において、ゲート電極 513と対向する半導体膜の領域がチャネル領 域 511aとして機能する。また、半導体膜のチャネル領域 511a以外の領域は、不純 物が高濃度にドープされており、ソース領域 511cおよびドレイン領域 51 lbとして機 能する。なお、ここでは図示しないが、ホットキャリアによる電気特性の劣化を防ぐた めに、ソース領域のチャネル領域側およびドレイン領域のチャネル領域側に、不純物 が低濃度にドープされた LDD (Lightly Doped Drain)領域が形成されている。  [0014] In such a structure, the region of the semiconductor film facing the gate electrode 513 functions as the channel region 511a. The regions other than the channel region 511a of the semiconductor film are highly doped with impurities, and function as the source region 511c and the drain region 51 lb. Although not shown here, LDD (Lightly Doped Drain) in which impurities are lightly doped on the channel region side of the source region and the channel region side of the drain region in order to prevent deterioration of electrical characteristics due to hot carriers. A region is formed.
[0015] さらに、第 2層間絶縁膜 518の上層には、駆動される表示媒体に電気信号を供給 するための画素電極 519が形成される。画素電極 519は、第 2層間絶縁膜 518に設 けられたコンタクトホールを介して、ドレイン電極 515に電気的に接続される。この画 素電極 519は、一般に平坦性が求められることが多ぐ画素電極 519の下層に存在 する第 2層間絶縁膜 518は平坦ィ匕膜としての機能が要求される。このため第 2層間絶 縁膜には、アクリル榭脂などの有機膜 (厚み 2〜3 m)を用いることが好ましい。また 、 TFT500におけるコンタクトホールの形成や、周辺領域での電極取り出しのために 、第 2層間絶縁膜 518はパターユング性能が求められ、通常、感光性を有する有機 膜を用いることが多い。  Furthermore, a pixel electrode 519 for supplying an electric signal to the driven display medium is formed on the second interlayer insulating film 518. The pixel electrode 519 is electrically connected to the drain electrode 515 through a contact hole provided in the second interlayer insulating film 518. The pixel electrode 519 generally requires flatness, and the second interlayer insulating film 518 existing below the pixel electrode 519 is required to function as a flat film. Therefore, it is preferable to use an organic film (thickness: 2 to 3 m) such as acrylic resin for the second interlayer insulating film. Further, in order to form a contact hole in the TFT 500 and to take out an electrode in the peripheral region, the second interlayer insulating film 518 is required to have a patterning performance, and usually a photosensitive organic film is often used.
[0016] 一方、表示領域に上述の構造を有する TFTを備えた表示装置にお 、て、外光の 明るさを検知するための光センサを、表示装置の周辺領域にモノリシック形成しようと した場合、製造プロセスの増加を最小限に抑えようとすると、光センサの素子構造が 限定されること〖こなる。  [0016] On the other hand, in a display device including a TFT having the above-described structure in the display region, when an optical sensor for detecting the brightness of external light is to be monolithically formed in the peripheral region of the display device In order to minimize the increase in the manufacturing process, the element structure of the optical sensor is limited.
[0017] 図 16は、これら条件を満たす光センサ 400の素子構造断面を示す図である。ガラ ス基板 410上に、光センサを構成する半導体膜 411が形成され、該半導体膜 411の ドーピング領域 (p領域 41 lc又は n領域 41 lb) 1S ノンドーピング領域 (i領域 41 la) に対して縦方向(積層方向)ではなく横方向(面方向)に形成される。一般に、形成面 に対してすなわち横方向(面方向)に PIN接合を有する構造は、ラテラル構造の PIN 型光ダイオードと呼ばれて 、る。 FIG. 16 is a diagram showing a cross-section of the element structure of the optical sensor 400 that satisfies these conditions. A semiconductor film 411 constituting an optical sensor is formed on a glass substrate 410, and a doping region (p region 41 lc or n region 41 lb) of the semiconductor film 411 1S non-doping region (i region 41 la) However, it is formed not in the vertical direction (stacking direction) but in the horizontal direction (plane direction). In general, a structure having a PIN junction with respect to a formation surface, that is, in a lateral direction (plane direction) is called a lateral type PIN photodiode.
[0018] また、光センサ 400を構成する各部材は、図 15の TFTを構成する各部材と、ほぼ 同じプロセスで形成されている。例えば、半導体膜 411の上層には、ゲート絶縁膜 5 12と同材料'同プロセスで形成される絶縁膜 412が形成され、第 1層間絶縁膜 414 の上層には、ソース電極 517と同材料 '同プロセスで形成される p側電極 417と、ドレ イン電極 515と同材料 .同プロセスで形成される n側電極 415が形成される。  [0018] Each member constituting the optical sensor 400 is formed by substantially the same process as each member constituting the TFT of FIG. For example, an insulating film 412 formed of the same material as the gate insulating film 512 is formed on the upper layer of the semiconductor film 411, and the same material as that of the source electrode 517 is formed on the upper layer of the first interlayer insulating film 414. The p-side electrode 417 formed by the same process, the same material as the drain electrode 515, and the n-side electrode 415 formed by the same process are formed.
[0019] さらにその上層には、第 2層間絶縁膜 518と同材料 '同プロセスで形成される表面 保護膜 418が形成される。この場合、第 2層間絶縁膜 518は、画素配列領域 (表示 領域)においては、 TFT500形成層と画素電極 519形成層の層間を電気的に絶縁 するとともに、画素電極 519の形成面の平坦性を向上させる役割を果たし、画素配列 領域外 (表示領域外)の周辺領域 (額縁領域)では、アクティブマトリクス基板の表面 保護膜 418として光センサ 400や光センサ 400に接続される電極を外気カゝら保護す る役割を果たす。このように、第 2層間絶縁膜 518は、表面保護膜 418を兼ねて、表 示領域力 周辺領域に亘つて略全面に形成されることが一般的である。  Further, on the upper layer, a surface protective film 418 formed of the same material as the second interlayer insulating film 518 and the same process is formed. In this case, in the pixel array region (display region), the second interlayer insulating film 518 electrically insulates the interlayer between the TFT 500 formation layer and the pixel electrode 519 formation layer, and improves the flatness of the formation surface of the pixel electrode 519. In the peripheral area (frame area) outside the pixel array area (outside the display area), the surface protective film 418 of the active matrix substrate is used as the surface sensor film 418 and the electrodes connected to the optical sensor 400 It plays a protective role. As described above, the second interlayer insulating film 518 is generally formed on the substantially entire surface over the display region force peripheral region also serving as the surface protective film 418.
[0020] このような図 16に示した光センサ 400は、図 13に示した従来の表示装置の光セン サ 907 (周辺領域に設けられたディスクリート部品)の代わりに使用することができ、か つ、図 13に示した表示装置を電子機器に組み込む際に、部品点数の削減や部品実 装プロセスの削減を可能にする。  Such an optical sensor 400 shown in FIG. 16 can be used in place of the optical sensor 907 (discrete component provided in the peripheral area) of the conventional display device shown in FIG. In addition, when the display device shown in FIG. 13 is incorporated into an electronic device, the number of components and the component mounting process can be reduced.
[0021] なお、特開平 6— 188400号公報には、光センサ 400の構造の他の例として、非結 晶 Si膜を用いたボトムゲート構造(逆スタガ構造)の TFTと、 MIS (MetaHnsulator-S emiconductor)型接合を有する光ダイオードを同一基板上にモノリシックに形成したも のが記載されている。  [0021] In addition, in JP-A-6-188400, as another example of the structure of the optical sensor 400, a TFT having a bottom gate structure (inverted stagger structure) using an amorphous silicon film, a MIS (MetaHnsulator- There is a description that a photodiode having a (Semiconductor) type junction is formed monolithically on the same substrate.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0022] し力しながら、上述した図 16に示す光センサを、アクティブマトリクス基板上の周辺 領域に形成して表示装置を実現しょうとすると、以下の問題が生じることが明らかにな つた o [0022] However, if the display device is realized by forming the above-described optical sensor shown in FIG. 16 in the peripheral region on the active matrix substrate, it is clear that the following problems occur. I
[0023] 表示装置を構成するアクティブマトリクス基板は、図 14に示すように、表示領域 (H) と周辺領域 (額縁領域) (S)に大別されるが、後者の周辺領域 (S)は、さらに筐体で 遮光された遮光領域 (S1)と、筐体に設けられた開孔部(例えば図 14の開孔 916に 相当)に位置し外光の入射を受ける非遮光領域 (S2)に分けることができる。上述し た光センサは、外光を受光する必要があることから、当然、アクティブマトリクス基板上 の非遮光領域 (S2)に配置される必要がある。  As shown in FIG. 14, the active matrix substrate constituting the display device is roughly divided into a display area (H) and a peripheral area (frame area) (S). The latter peripheral area (S) Furthermore, the light shielding region (S1) shielded by the housing, and the non-light shielding region (S2) that is located in the opening provided in the housing (for example, corresponding to the hole 916 in FIG. 14) and receives external light. Can be divided into Since the above-described optical sensor needs to receive external light, it is naturally necessary to be disposed in the non-shielding region (S2) on the active matrix substrate.
[0024] 第 2層間絶縁膜 518 (表面保護膜 418)は、表示領域 H力も周辺領域 Sに亘つて略 全面に形成される旨を前段で説明したが、この第 2層間絶縁膜 518 (表面保護膜 41 8)に対し、外光 (屋外太陽光下での使用を想定)が如何に到達するかについて考え てみると、以下のようになる。  [0024] The second interlayer insulating film 518 (surface protective film 418) has been described in the previous stage that the display region H force is formed on substantially the entire surface over the peripheral region S. The second interlayer insulating film 518 (surface Considering how external light (assumed to be used under outdoor sunlight) reaches the protective film 41 8), it is as follows.
[0025] 表示領域 (H) :対向基板 902に備えられた偏光板(図示せず)やカラーフィルタに よって、外光の一部が吸収されるため、アクティブマトリクス基板 901上の第 2層間絶 縁膜 518に到達する外光は、特定の波長領域の光に限定される。特に偏光板やカラ 一フィルタで紫外線は略 100%吸収されるために、第 2層間絶縁膜 518に到達する 紫外線は皆無である。  [0025] Display region (H): Since a part of external light is absorbed by a polarizing plate (not shown) and a color filter provided on the counter substrate 902, the second interlayer isolation on the active matrix substrate 901 is absorbed. The external light reaching the edge film 518 is limited to light in a specific wavelength region. In particular, since almost 100% of ultraviolet rays are absorbed by the polarizing plate and the color filter, no ultraviolet rays reach the second interlayer insulating film 518.
[0026] 遮光領域 (S1):筐体 915によって外光が全て遮光される。もちろん、アクティブマト リクス基板 901上の第 2層間絶縁膜 518に到達する紫外線は皆無である。  Light-shielding area (S1): All external light is shielded by housing 915. Of course, no ultraviolet rays reach the second interlayer insulating film 518 on the active matrix substrate 901.
[0027] 非遮光領域 (S2):外光が直接入射するため、アクティブマトリクス基板上の第 2層 間絶縁膜に、外光に含まれる全波長の光 (紫外線含む)が到達する。  Non-shielding region (S2): Since external light is directly incident, light of all wavelengths (including ultraviolet rays) included in the external light reaches the second interlayer insulating film on the active matrix substrate.
[0028] つまり、表示装置を屋外で使用する場合を考えると、太陽光に含まれる紫外線は、 周辺領域の非遮光領域 (S2)のみにおいて、アクティブマトリクス基板上の第 2層間 絶縁膜に到達し得ることになる。  In other words, considering the case where the display device is used outdoors, ultraviolet rays contained in sunlight reach the second interlayer insulating film on the active matrix substrate only in the non-light-shielding region (S2) in the peripheral region. Will get.
[0029] 前述したように、第 2層間絶縁膜は、アクリル榭脂などの感光性を有する有機膜によ つて形成されているが、ここで用いる有機膜は、紫外線露光によってパターユングで きるように紫外線を吸収する感光基を含有しており、かつ、紫外線露光によって高分 子の重合反応や崩壊反応が生じやすいように材料設計されている。このため、通常 の榭脂材料に比べて紫外線を吸収しやすぐかつ劣化しやすいといった特性を備え ている。このように、ここで用いる有機膜は、紫外線に対する耐性は考慮されていな かった。 [0029] As described above, the second interlayer insulating film is formed of a photosensitive organic film such as acrylic resin, but the organic film used here can be patterned by ultraviolet exposure. The material is designed so that it contains a photosensitive group that absorbs ultraviolet rays, and a polymer polymerization reaction or a decay reaction is likely to occur by ultraviolet exposure. For this reason, it has the characteristics that it absorbs ultraviolet rays and is easy to deteriorate compared to ordinary grease materials. ing. Thus, the organic film used here was not considered for resistance to ultraviolet rays.
[0030] そこで、非遮光領域 (S2)に位置する第 2層間絶縁膜の耐光試験を実施してみると 、長期間の紫外線照射によって膜が劣化する現象、すなわち当初透明であった膜が 茶褐色化又は白濁化する現象が生じ、さらには、剥がれが生じる場合があることが判 明した。さらに、この結果、第 2層間絶縁膜の透明性が損なわれ、その下に位置する 光センサに到達する外光が減少して、光センサの感度不良および特性の経時変化 をもたらすことが判明した。  [0030] Thus, when the light resistance test of the second interlayer insulating film located in the non-light-shielding region (S2) is performed, the phenomenon that the film deteriorates due to long-term ultraviolet irradiation, that is, the film that was initially transparent is brownish It has been found that the phenomenon of turbidity or white turbidity occurs, and that peeling may occur. Furthermore, as a result, it has been found that the transparency of the second interlayer insulating film is impaired, and the external light reaching the optical sensor located thereunder is reduced, resulting in poor sensitivity of the optical sensor and changes in characteristics over time. .
[0031] 一方、紫外線による第 2層間絶縁膜の劣化の影響を排除するために、図 16に示し た光センサの上部領域には第 2層間絶縁膜 418を設けない構成とすることも考えら れる。しかし、この構成では、光センサの各電極および周辺回路の配線部材等が外 気にさらされることになるため、光センサの性能が劣化したり、電極が外気にむき出し になるので酸ィ匕して電気特性が変化したりしてしまうおそれがある。  On the other hand, in order to eliminate the influence of the deterioration of the second interlayer insulating film due to ultraviolet rays, it may be considered that the second interlayer insulating film 418 is not provided in the upper region of the photosensor shown in FIG. It is. However, in this configuration, each electrode of the optical sensor and the wiring member of the peripheral circuit are exposed to the outside air, so that the performance of the optical sensor is deteriorated and the electrode is exposed to the outside air, so that it is oxidized. The electrical characteristics may change.
[0032] そこで本発明は、アクティブマトリクス基板の周辺領域に形成された環境センサ (例 えば光センサ)を備えた表示装置において、第 2層間絶縁膜を用いずに環境センサ を保護することにより、環境センサの特性の経時変化が生じにくい表示装置と、この 表示装置を利用した電子機器とを提供することを目的とする。  Therefore, the present invention provides a display device including an environmental sensor (for example, an optical sensor) formed in a peripheral region of an active matrix substrate, by protecting the environmental sensor without using the second interlayer insulating film, It is an object of the present invention to provide a display device in which the characteristics of environmental sensors hardly change over time and an electronic device using the display device.
課題を解決するための手段  Means for solving the problem
[0033] 上記の目的を達成するために、本発明にかかる表示装置は、複数の画素が配列さ れた画素配列領域を有するアクティブマトリクス基板と、前記アクティブマトリクス基板 の画素配列領域に対向するように配設される対向基板と、前記アクティブマトリクス基 板と前記対向基板の間隙に配設される表示媒体とを備えた表示装置において、前記 アクティブマトリクス基板の画素配列領域には、複数の電極配線と、複数のアクティブ 素子と、前記複数の電極配線および複数のアクティブ素子の上層に設けられた層間 絶縁膜と、この層間絶縁膜上に形成された複数の画素電極とが配設されており、前 記アクティブマトリクス基板における前記画素配列領域の周囲に存在する周辺領域 に配設される環境センサと、前記環境センサの上層に形成される透明性の材料であ つて、紫外線が照射されることによる透明性の劣化が前記層間絶縁膜よりも起こりにく い材料により形成される保護膜とを備えたことを特徴とする。 In order to achieve the above object, a display device according to the present invention has an active matrix substrate having a pixel array region in which a plurality of pixels are arrayed, and a pixel array region of the active matrix substrate. And a display medium disposed in a gap between the active matrix substrate and the counter substrate, a plurality of electrode wirings are provided in a pixel array region of the active matrix substrate. A plurality of active elements, an interlayer insulating film provided in an upper layer of the plurality of electrode wirings and the plurality of active elements, and a plurality of pixel electrodes formed on the interlayer insulating film, An environmental sensor disposed in a peripheral area around the pixel array area in the active matrix substrate, and formed in an upper layer of the environmental sensor Transparent material der connexion to the deterioration of the transparency due to the ultraviolet rays are irradiated occur difficulty than the interlayer insulating film And a protective film made of a new material.
[0034] この構成によれば、環境センサの上層に、紫外線が照射されることによる透明性の 劣化が前記層間絶縁膜よりも起こりにくい材料により形成される保護膜が設けられた ことにより、光センサの各電極および周辺回路の配線部材等が外気にさらされずに 済む。これにより、環境センサの特性の経時変化が生じにくい表示装置を提供できる 。なお、上記の表示装置において、前記環境センサは、少なくとも一部の構成部材が 前記アクティブ素子の構成部材と同一プロセスで製造されることが好ま 、。製造プ 口セスが簡略ィ匕され、コストを削減できるからである。  [0034] According to this configuration, since the protective film formed of a material that is less likely to cause deterioration in transparency due to ultraviolet irradiation than the interlayer insulating film is provided on the upper layer of the environmental sensor, Each electrode of the sensor and the wiring members of the peripheral circuit are not exposed to the outside air. Thereby, it is possible to provide a display device in which the characteristics of the environmental sensor hardly change over time. In the display device described above, it is preferable that at least a part of the environmental sensor is manufactured by the same process as that of the active element. This is because the manufacturing process is simplified and costs can be reduced.
[0035] 上記の表示装置において、前記環境センサは、前記アクティブマトリクス基板の主 面上にモノリシックに形成されることが好ましい。なお、ここで、環境センサがァクティ ブマトリクス基板に「モノリシックに形成される」とは、環境センサがディスクリート部品と してアクティブマトリクス基板に実装されることは含まない。より具体的には、アクティブ マトリクス基板に環境センサが「モノリシックに形成される」とは、成膜処理やエツチン グ処理等の物理的及び Z又は化学的プロセスが当該アクティブマトリクス基板に対し て直接に施される工程を経て、当該アクティブマトリクス基板の主面上に環境センサ が形成されることを意味する。  [0035] In the above display device, the environmental sensor is preferably formed monolithically on the main surface of the active matrix substrate. Here, the environmental sensor being “monolithically formed” on the active matrix substrate does not include that the environmental sensor is mounted on the active matrix substrate as a discrete component. More specifically, an environmental sensor is “monolithically formed” on an active matrix substrate means that a physical and Z or chemical process such as a film forming process or an etching process is performed directly on the active matrix substrate. It means that an environmental sensor is formed on the main surface of the active matrix substrate through the applied steps.
[0036] また、上記の表示装置において、前記環境センサは、前記アクティブマトリクス基板 のガラス基板上に(Chip On Glass)実装されていても良い。すなわち、アクティブマト リクス基板のガラス基板上に環境センサが搭載されて 、ても良 、。  [0036] In the above display device, the environmental sensor may be mounted on a glass substrate of the active matrix substrate (Chip On Glass). In other words, an environmental sensor may be mounted on the glass substrate of the active matrix substrate.
[0037] 上記の表示装置において、前記アクティブマトリクス基板におけるアクティブ素子形 成面の法線方向における前記保護膜の高さが、前記対向基板と前記表示媒体との 厚さの合計以下であることが好ましい。表示装置を筐体に組み込む際に、保護膜と 筐体との間のクリアランスを確保することが容易になるからである。  [0037] In the above display device, the height of the protective film in the normal direction of the active element formation surface in the active matrix substrate may be equal to or less than the total thickness of the counter substrate and the display medium. preferable. This is because it becomes easy to secure a clearance between the protective film and the housing when the display device is incorporated into the housing.
[0038] 上記の表示装置において、前記環境センサの電極部の表面に凹部が形成された ことが好ましい。この凹部に保護膜の材料が入り込むことにより、保護膜を環境センサ により密着させることができ、外気の遮蔽効果が向上するからである。  [0038] In the above display device, it is preferable that a recess is formed on the surface of the electrode portion of the environmental sensor. This is because when the material of the protective film enters the recess, the protective film can be brought into close contact with the environmental sensor, and the shielding effect of the outside air is improved.
[0039] 上記の表示装置において、前記アクティブ素子が薄膜トランジスタであり、前記環 境センサの電極部とセンサ部との間に、前記アクティブ素子のゲート絶縁膜および第 1層間絶縁膜が延在し、前記環境センサの周辺の第 1層間絶縁膜が、前記保護膜で 覆われる箇所に孔を有する構成が好ましい。この孔に保護膜の材料が入り込むこと により、保護膜を環境センサにより密着させることができ、外気の遮蔽効果が向上す るカゝらである。 [0039] In the above display device, the active element is a thin film transistor, and a gate insulating film of the active element and a second electrode are provided between the electrode part and the sensor part of the environmental sensor. Preferably, one interlayer insulating film extends, and the first interlayer insulating film around the environmental sensor has a hole at a location covered with the protective film. When the material of the protective film enters the hole, the protective film can be brought into close contact with the environmental sensor, and the effect of shielding outside air is improved.
[0040] 上記の表示装置において、前記アクティブマトリクス基板における前記周辺領域に 外部装置への配線が接続され、前記保護膜が、前記環境センサの上層から前記配 線の接続部まで延在したことが好ましい。保護膜が配線の接続部に亘つて延在する ことにより、配線接続部の機械的強度が高まると共に、防湿'防塵効果も得られる。こ れにより、外部回路との接続の信頼性が向上する。さらに、保護膜が環境センサの保 護部材と配線接続部の補強部材とを兼ねることにより、環境センサの保護工程と配線 接続部の補強工程とを同一工程で行うことができ、工数の増加を防ぐことができる。  [0040] In the above display device, wiring to an external device is connected to the peripheral region of the active matrix substrate, and the protective film extends from an upper layer of the environmental sensor to a connection portion of the wiring. preferable. Since the protective film extends over the connection portion of the wiring, the mechanical strength of the wiring connection portion is increased, and a moistureproof and dustproof effect is also obtained. This improves the reliability of connections with external circuits. Furthermore, since the protective film serves as both the environmental sensor protective member and the wiring connection portion reinforcement member, the environmental sensor protection step and the wiring connection portion reinforcement step can be performed in the same step, thereby increasing the number of steps. Can be prevented.
[0041] 上記の表示装置にお!、て、前記保護膜の材料が、フィラーを含有しな 、榭脂であ ることが好ましい。光散乱要因となるフィラーを含有しない榭脂を用いることにより、保 護膜の透過率を高く保てるからである。これは特に、環境センサが光センサである場 合に好ましい。  [0041] In the above display device, it is preferable that the material of the protective film is a resin that does not contain a filler. This is because the transmittance of the protective film can be kept high by using a resin that does not contain a filler that causes light scattering. This is particularly preferable when the environmental sensor is an optical sensor.
[0042] 上記の表示装置にお!ヽて、前記保護膜の材料が、常温で硬化する榭脂であること が好まし!/ヽ。保護膜を硬化させるための焼成工程や UV硬化工程等を省略できるか らである。  [0042] In the above display device, it is preferable that the material of the protective film is a resin that cures at room temperature! This is because the firing process and UV curing process for curing the protective film can be omitted.
[0043] 上記の表示装置にお!、て、前記保護膜が紫外線吸収部材であることが好ま 、。  [0043] In the above display device, it is preferable that the protective film is an ultraviolet absorbing member.
環境センサへの紫外線入射を抑止することにより、センサ特性の経時劣化を抑制で きるからである。また、特に、環境センサが光センサである場合は、人間の可視領域 以外の波長の光がセンサへ入射することを抑止することにより、人間の視覚特性に応 じた表示制御が可能となるからである。  This is because the deterioration of sensor characteristics over time can be suppressed by preventing the ultraviolet light from entering the environmental sensor. In particular, when the environmental sensor is an optical sensor, it is possible to control the display according to human visual characteristics by preventing light of wavelengths outside the human visible range from entering the sensor. It is.
[0044] 上記の表示装置において、前記対向基板が、前記環境センサの上方まで延設され 、前記アクティブマトリクス基板におけるアクティブ素子形成面の法線方向における前 記保護膜の高さが、前記表示媒体の厚さ以下であることが好ましい。対向基板を環 境センサの上方まで延設することにより、前記保護膜だけでなく対向基板によっても 、環境センサを機械的 (物理的)に保護できるからである。 [0045] 上記の表示装置において、前記アクティブ素子と前記画素電極との間に設けられ た第 2層間絶縁膜と共通の材料により、前記環境センサ周囲の少なくとも一方向に壁 が形成されたことが好ましい。この壁を設けたことにより、保護膜の形成時に、保護膜 材料の広力 Sり面積を抑制することによって保護膜の厚さを均一化することができ、保 護膜の厚さのばらつきに起因するセンシング誤差が防止される力 である。 [0044] In the above display device, the counter substrate extends above the environmental sensor, and the height of the protective film in the normal direction of the active element formation surface of the active matrix substrate is determined by the display medium. Or less. This is because the environmental sensor can be mechanically (physically) protected not only by the protective film but also by the counter substrate by extending the counter substrate above the environmental sensor. [0045] In the above display device, a wall is formed in at least one direction around the environmental sensor by using a material common to the second interlayer insulating film provided between the active element and the pixel electrode. preferable. By providing this wall, the thickness of the protective film can be made uniform by suppressing the wide area of the protective film material during the formation of the protective film, resulting in variations in the thickness of the protective film. This is the power to prevent the sensing error caused.
[0046] また、上記の目的を達成するために、本発明にかかる電子機器は、上述したいず れかの構成に力かる本発明の表示装置を備え、前記環境センサが光センサであり、 前記光センサによって検出された外光の明るさ情報に応じて表示輝度を制御する制 御回路を備えたことを特徴とする。表示輝度の制御は、例えばバックライトを備えた表 示装置であれば、前記制御回路がノ ックライトの輝度を制御することにより実現できる 。また、表示装置が自発光素子の場合は、前記制御回路が発光輝度を制御すること により実現できる。このように、周囲の明るさに応じて必要十分な輝度になるよう表示 輝度を制御することにより、消費電力を低減し、かつ、見易い表示を実現する電子機 器を提供できる。なお、この電子機器は、使用環境の明るさの変化に対して良好な視 認性と低消費電力化を両立できることから、屋外に持ち出して使用する機会が多くバ ッテリー駆動を必要とするモパイル機器として特に有用である。なお、このようなモバ ィル機器としては、本発明の用途をこれらに限定するものではないが、例えば、携帯 電話、 PDA等の情報端末、モパイルゲーム機器、携帯型音楽プレイヤー、デジタル カメラ、ビデオカメラ等がある。 [0046] In order to achieve the above object, an electronic apparatus according to the present invention includes the display device according to the present invention that is suitable for any of the above-described configurations, and the environmental sensor is an optical sensor, A control circuit is provided that controls display brightness in accordance with brightness information of external light detected by the optical sensor. For example, if the display device is provided with a backlight, the display luminance can be controlled by the control circuit controlling the luminance of the knock light. Further, when the display device is a self-luminous element, it can be realized by controlling the light emission luminance by the control circuit. In this way, by controlling the display brightness so as to have a necessary and sufficient brightness according to the ambient brightness, it is possible to provide an electronic device that reduces power consumption and realizes an easy-to-see display. Since this electronic device can achieve both good visibility and low power consumption in response to changes in the brightness of the usage environment, there are many opportunities to take it outdoors and use it as a battery that requires battery drive. As particularly useful. Note that such mobile devices are not intended to limit the application of the present invention, but include, for example, mobile phones, information terminals such as PDAs, mobile game devices, portable music players, digital cameras, There are video cameras.
発明の効果  The invention's effect
[0047] 本発明によれば、環境センサの上層が保護膜で保護されているので、環境センサ のセンサ部が外気の影響を受けにくい。この結果、感度が良ぐ特性の経時変化の 小さ 、環境センサを実現することができ、信頼性の優れた表示装置および電子機器 を実現できる。  [0047] According to the present invention, since the upper layer of the environmental sensor is protected by the protective film, the sensor part of the environmental sensor is not easily affected by outside air. As a result, it is possible to realize an environmental sensor having a characteristic with good sensitivity and little change with time, and a display device and an electronic apparatus with excellent reliability can be realized.
図面の簡単な説明  Brief Description of Drawings
[0048] [図 1]図 1は、本発明の第 1の実施形態にかかる表示装置の全体構成を示す斜視図 である。  FIG. 1 is a perspective view showing an overall configuration of a display device according to a first embodiment of the present invention.
[図 2]図 2は、第 1の実施形態にかかる表示装置を筐体に組み込んだ状態を示す断 面図である。 [FIG. 2] FIG. 2 is a sectional view showing a state in which the display device according to the first embodiment is incorporated in a housing. FIG.
圆 3]図 3は、第 1の実施形態に力かる表示装置の画素配列領域 (表示領域)の画素 当たりの構造を示す断面図である。 [3] FIG. 3 is a cross-sectional view showing a structure per pixel of a pixel array region (display region) of the display device which is effective in the first embodiment.
圆 4]図 4 (a)は、第 1の実施形態に力かる表示装置の光センサ部の構造の一例を示 す断面図である。図 4 (b)は、第 1の実施形態に力かる表示装置の光センサ部の構造 の他の例を示す断面図である。 [4] FIG. 4 (a) is a cross-sectional view showing an example of the structure of the optical sensor portion of the display device that is helpful in the first embodiment. FIG. 4 (b) is a cross-sectional view showing another example of the structure of the photosensor portion of the display device that is helpful in the first embodiment.
圆 5]図 5は、第 1の実施形態に力かる光センサ部の高さについて説明する断面模式 図である。 [5] FIG. 5 is a schematic cross-sectional view for explaining the height of the optical sensor unit that is applied to the first embodiment.
[図 6]図 6は、本発明の第 2の実施形態に力かる表示装置の光センサ部の構造の一 例を示す断面図である。  FIG. 6 is a cross-sectional view showing an example of the structure of an optical sensor portion of a display device that is helpful in the second embodiment of the present invention.
[図 7]図 7は、本発明の第 3の実施形態にかかる表示装置の構成を示す平面図と、 B B'線における断面図である。  FIG. 7 is a plan view showing a configuration of a display device according to a third embodiment of the present invention and a cross-sectional view taken along the line BB ′.
[図 8]図 8は、本発明の第 4の実施形態にかかる表示装置の全体構成を示す斜視図 である。  FIG. 8 is a perspective view showing an overall configuration of a display device according to a fourth embodiment of the present invention.
[図 9]図 9は、第 4の実施形態にかかる光センサ部の一例の断面図である。  FIG. 9 is a cross-sectional view of an example of an optical sensor unit according to a fourth embodiment.
[図 10]図 10は、第 4の実施形態に力かる光センサ部の他の例の断面図である。 FIG. 10 is a cross-sectional view of another example of an optical sensor unit that works according to the fourth embodiment.
[図 11]図 11は、本発明の第 5の実施形態に力かる表示装置の光センサ部の構造の 一例を示す断面図である。 [FIG. 11] FIG. 11 is a cross-sectional view showing an example of the structure of the photosensor portion of the display device according to the fifth embodiment of the present invention.
[図 12]図 12は、本発明の第 6の実施形態にカゝかる電子機器の概略構成を示すブロッ ク図である。  FIG. 12 is a block diagram showing a schematic configuration of an electronic apparatus according to a sixth embodiment of the present invention.
[図 13]図 13は、特開 2002— 62856号公報に開示されている従来の液晶表示装置 の全体構成図である。  FIG. 13 is an overall configuration diagram of a conventional liquid crystal display device disclosed in Japanese Patent Laid-Open No. 2002-62856.
[図 14]図 14は、特開 2002— 62856号公報に開示されている光センサ実装部の断 面図である。  FIG. 14 is a cross-sectional view of an optical sensor mounting portion disclosed in Japanese Patent Laid-Open No. 2002-62856.
[図 15]図 15は、アクティブマトリクス基板の画素配列領域に形成される従来の TFTの 断面構造図である。  FIG. 15 is a cross-sectional structure diagram of a conventional TFT formed in a pixel array region of an active matrix substrate.
[図 16]図 16は、従来の光センサの素子構造断面図である。  FIG. 16 is a sectional view of an element structure of a conventional photosensor.
発明を実施するための最良の形態 [0049] [第 1の実施形態] BEST MODE FOR CARRYING OUT THE INVENTION [0049] [First embodiment]
以下、図面を参照しながら、本発明の第 1の実施形態に力かる表示装置について 説明する。なお、本実施形態では、表示装置の一例として液晶表示装置をあげるが 、本発明は液晶表示装置以外の表示装置にも適用可能である。  In the following, a display device that works according to the first embodiment of the present invention will be described with reference to the drawings. In this embodiment, a liquid crystal display device is given as an example of a display device, but the present invention can also be applied to a display device other than the liquid crystal display device.
[0050] 図 1は、本実施形態に力かる表示装置 1の全体構成図である。この表示装置 1は、 多数の画素 5がマトリクス状に配列されたアクティブマトリクス基板 2と、これに対向す るように配置される対向基板 3を備えており、さらに両者の間隙には表示媒体 4である 液晶が挟持された構造をなしている。アクティブマトリクス基板 2と対向基板 3は、対向 基板 3の外周に沿った枠状のシール榭脂(図示せず)によって接着されて!ヽる。  [0050] FIG. 1 is an overall configuration diagram of a display device 1 that works according to the present embodiment. The display device 1 includes an active matrix substrate 2 in which a large number of pixels 5 are arranged in a matrix, and a counter substrate 3 disposed so as to face the active matrix substrate 2, and a display medium 4 in the gap therebetween. The liquid crystal is sandwiched. The active matrix substrate 2 and the counter substrate 3 are bonded together by a frame-shaped seal resin (not shown) along the outer periphery of the counter substrate 3.
[0051] アクティブマトリクス基板 2の各画素 5には、表示媒体 4を駆動するための薄膜トラン ジスタ (TFT) 6や画素電極 7が形成されており、対向基板 3には、対向電極(図示せ ず)やカラーフィルタ(図示せず)が形成されて ヽる。  Each pixel 5 of the active matrix substrate 2 is provided with a thin film transistor (TFT) 6 and a pixel electrode 7 for driving the display medium 4, and the counter substrate 3 has a counter electrode (not shown). And color filters (not shown) are formed.
[0052] アクティブマトリクス基板 2は、画素 5が配列された領域 (画素配列領域) 8と、画素 配列領域に近接する周辺領域 9を有する。対向基板 3は画素配列領域 8を覆い、周 辺領域 9の一部が露出するように配設されて 、る。  The active matrix substrate 2 has an area (pixel arrangement area) 8 in which the pixels 5 are arranged, and a peripheral area 9 close to the pixel arrangement area. The counter substrate 3 covers the pixel array region 8 and is disposed so that a part of the peripheral region 9 is exposed.
[0053] また、アクティブマトリクス基板の周辺領域 9には、この表示装置に外部の駆動回路 を接続するための FPC10が接続されている。さらに、周辺領域 9には、環境センサと して、外光の明るさを検出するための光センサ 11が配設されている。また、周辺領域 9には、周辺回路 (画素配列領域 8の TFT6を駆動するための駆動回路(図示せず) 、光センサ 11や上記駆動回路に接続される配線(図示せず)、画素配列領域 8から の引き出し配線 (図示せず)など)も配設されて ヽる。  [0053] Further, an FPC 10 for connecting an external drive circuit to the display device is connected to the peripheral region 9 of the active matrix substrate. Further, in the peripheral region 9, an optical sensor 11 for detecting the brightness of external light is disposed as an environmental sensor. The peripheral area 9 includes peripheral circuits (a driving circuit (not shown) for driving the TFT 6 in the pixel array area 8), a wiring (not shown) connected to the optical sensor 11 and the driving circuit, and a pixel array. Lead-out wiring (not shown) from area 8 is also provided.
[0054] 画素配列領域 8に形成される TFT6と周辺領域 9に形成される光センサ 11とは、同 一基板上に、ほぼ同一のプロセスによってモノリシックに形成されている。つまり、光 センサ 11の一部の構成部材は、 TFT6の一部の構成部材と同時に形成される。  The TFT 6 formed in the pixel array region 8 and the optical sensor 11 formed in the peripheral region 9 are monolithically formed on the same substrate by substantially the same process. That is, some constituent members of the optical sensor 11 are formed simultaneously with some constituent members of the TFT 6.
[0055] そして、図 1に示す表示装置 1は、図 2に示すように、従来例の図 14に示した表示 装置と同様に、開孔付き筐体 35に組み込まれる。筐体 35の開孔部 37は所定の位置 に設けられており、その開孔部 37を介して外光が光センサ 11に到達する仕組みに なっている。なお、図 2における 39は回路基板である。 [0056] なお、表示装置の表示モードとして、透過光を利用する場合には、筐体 35内のァク ティブマトリクス基板 2の裏面側にバックライトシステム 12を備える必要がある。もちろ ん、外光の反射を利用する反射表示モードを利用した液晶を使用する場合や、表示 媒体として ELなどの自発光素子を用いる場合には、ノ ックライトは不要である。 Then, as shown in FIG. 2, the display device 1 shown in FIG. 1 is incorporated into a housing 35 with an opening, similarly to the conventional display device shown in FIG. The opening 37 of the housing 35 is provided at a predetermined position, and the outside light reaches the optical sensor 11 through the opening 37. In FIG. 2, 39 is a circuit board. Note that when transmitted light is used as the display mode of the display device, the backlight system 12 needs to be provided on the back side of the active matrix substrate 2 in the housing 35. Of course, when using a liquid crystal that uses a reflective display mode that uses reflection of external light, or when using a self-luminous element such as EL as the display medium, a knock light is not required.
[0057] また、上述の光センサ 11は、外光を検知することを目的としているため、ノ ックライト システム 12の光が光センサ 11に入射すると、光センサ 11が誤動作すると!/、つた問題 力 S生じる。したがって、アクティブマトリクス基板 2の光センサ配設部の下側にバックラ イトシステム 12が配置されないようにする力、アクティブマトリクス基板 2の光センサ配 設部の裏面にアルミテープなどの遮光部材(図示せず)を具備するといつた配慮が必 要である。  [0057] In addition, since the above-described optical sensor 11 is intended to detect outside light, if the light of the knocklight system 12 is incident on the optical sensor 11, the optical sensor 11 malfunctions! S occurs. Therefore, a force that prevents the backlight system 12 from being arranged below the photosensor arrangement portion of the active matrix substrate 2 and a light shielding member such as aluminum tape (not shown) on the back surface of the photosensor arrangement portion of the active matrix substrate 2. )) Is necessary.
[0058] 上述した本実施形態の表示装置 1は、光センサ 11を用いて外光の照度を検出し、 それに合わせて表示輝度を自動的に制御する自動調光機能付きの表示システムに 適用することができる。つまり、上記アクティブマトリクス基板 2の周辺領域 9に設けら れた光センサ 11が出力する外光の明るさ情報を基に、バックライトシステム 12の輝度 、又は表示信号の輝度信号を制御する制御回路を備えておくことで、表示装置 1の 表示輝度を自動的に制御することが可能になる。  The above-described display device 1 of the present embodiment is applied to a display system with an automatic light control function that detects the illuminance of external light using the optical sensor 11 and automatically controls the display luminance in accordance with the detected illuminance. be able to. That is, a control circuit that controls the luminance of the backlight system 12 or the luminance signal of the display signal based on the brightness information of the external light output from the optical sensor 11 provided in the peripheral region 9 of the active matrix substrate 2. By providing this, it is possible to automatically control the display brightness of the display device 1.
[0059] この制御回路は、表示装置 1と一体的に形成されていても、表示装置 1と別体に形 成されていても良い。表示装置 1と一体的に形成されている場合の例としては、ァク ティブマトリクス基板 2内にモノリシックに形成する場合や、アクティブマトリクス基板 2 とは別に制御回路を形成して COG (Chip On Grass)方式等によりアクティブマトリクス 基板 2上に搭載する場合が挙げられる。また、表示装置 1と別体に形成されている場 合の例としては、アクティブマトリクス基板 2とは別に制御回路を形成して FPC等を介 してアクティブマトリクス基板 2に接続する場合や、表示装置 1を備える電子機器に制 御回路を配置し、アクティブマトリクス基板 2に制御回路力 信号を送信する場合が 挙げられる。  This control circuit may be formed integrally with the display device 1 or may be formed separately from the display device 1. Examples of the case where the display device 1 is integrally formed include a case where the active matrix substrate 2 is formed monolithically, or a control circuit formed separately from the active matrix substrate 2 to form a COG (Chip On Grass ) Method, etc., when mounted on the active matrix substrate 2. In addition, as an example when it is formed separately from the display device 1, a control circuit is formed separately from the active matrix substrate 2 and connected to the active matrix substrate 2 via an FPC or the like. There is a case where a control circuit is arranged in an electronic device including the device 1 and a control circuit force signal is transmitted to the active matrix substrate 2.
[0060] この制御回路を用いて、屋外など明るい環境下では表示輝度を高くし、夜間や室 内など比較的喑 、環境下では表示輝度を下げるように輝度調整 (調光)を自動的に 行うように制御させると、表示装置の低消費電力化や長寿命化を実現することができ る。 [0060] Using this control circuit, brightness adjustment (dimming) is automatically performed to increase the display brightness in bright environments such as outdoors, and to decrease the display brightness in relatively low environments such as at night and in the room. When controlled to do so, it is possible to achieve low power consumption and long life of the display device. The
[0061] 次に、本実施形態の表示装置 1の詳細な構造について、図 1、図 3、図 4を用いて 説明する。図 3は、図 1の表示装置 1における画素配列領域 (表示領域) 8の画素当 たりの断面構造図である。アクティブマトリクス基板 2と対向基板 3の間隙に表示媒体 ( 液晶) 4が挟持されている。アクティブマトリクス基板 2には、表示媒体を駆動するため の薄膜トランジスタ (TFT) 6や画素電極 7が形成されて 、る。  Next, the detailed structure of the display device 1 of the present embodiment will be described with reference to FIG. 1, FIG. 3, and FIG. FIG. 3 is a cross-sectional structure diagram of each pixel in the pixel array region (display region) 8 in the display device 1 of FIG. A display medium (liquid crystal) 4 is sandwiched between the active matrix substrate 2 and the counter substrate 3. On the active matrix substrate 2, a thin film transistor (TFT) 6 and a pixel electrode 7 for driving a display medium are formed.
[0062] 以下、図 1および図 3を参照しながら、本実施形態で用いる多結晶 Si膜を用いた T FT6と、この TFT6を含む画素 5の構造について説明する。ここで使用する TFT6の 構造は、「トップゲート構造」または「正スタガ構造」と呼ばれるもので、チャネルとなる 半導体膜 (多結晶 Si膜) 13の上層にゲート電極 16を備えるものである。なお、このよ うに、基板に対して複数の層を積層する場合に、基板側を下側とし、基板から層まで の距離が離れる方向を上側として記載して 、る。  Hereinafter, with reference to FIG. 1 and FIG. 3, the TFT 6 using the polycrystalline Si film used in this embodiment and the structure of the pixel 5 including the TFT 6 will be described. The structure of the TFT 6 used here is called a “top gate structure” or “positive stagger structure”, and includes a gate electrode 16 on the upper layer of a semiconductor film (polycrystalline Si film) 13 to be a channel. In this way, when a plurality of layers are stacked on the substrate, the substrate side is described as the lower side, and the direction in which the distance from the substrate to the layer is increased is described as the upper side.
[0063] ベース基材となる基板 14には、主にガラス基板が使用でき、例えば無アルカリのバ リウムホウケィ酸ガラス、またはアルミノホウケィ酸ガラスなどが使用される。 TFT6は、 基板 14上に形成された多結晶 Si膜 13と、多結晶 Si膜 13を覆うように形成されたゲ ート絶縁膜 15 (例えば、酸ィ匕シリコン膜ゃ窒化シリコン膜などが使用できる)と、ゲート 絶縁膜 15上に形成されたゲート電極 16 (例えば、 Al、 Mo、 Tほたはそれらの合金な どが使用できる)と、ゲート電極 16を覆うように形成された第 1層間絶縁膜 17 (例えば 、酸ィ匕シリコン膜ゃ窒化シリコン膜が使用できる)とを有している。  [0063] As the substrate 14 serving as the base substrate, a glass substrate can be mainly used. For example, non-alkali barium borosilicate glass or alumino borosilicate glass is used. The TFT 6 uses a polycrystalline Si film 13 formed on the substrate 14 and a gate insulating film 15 formed so as to cover the polycrystalline Si film 13 (for example, an oxide silicon film or a silicon nitride film). A gate electrode 16 formed on the gate insulating film 15 (for example, Al, Mo, T, or an alloy thereof can be used) and a first electrode formed so as to cover the gate electrode 16. Interlayer insulating film 17 (for example, a silicon oxide film or a silicon nitride film can be used).
[0064] ここで、多結晶 Si膜 13において、ゲート絶縁膜 15を介してゲート電極 16と対向す る領域は、チャネル領域 13aとして機能する。また、多結晶 Si膜 13のチャネル領域以 外の領域は、不純物が高濃度にドープされた n+層であり、ソース領域 13bおよびドレ イン領域 13cとして機能する。また、ここでは図示しないが、ホットキャリアによる電気 特性の劣化を防ぐために、ソース領域 13bのチャネル領域側およびドレイン領域 13c のチャネル領域側に、不純物が低濃度にドープされた LDD (Lightly Doped Drain) 領域が形成されている。  Here, in the polycrystalline Si film 13, a region facing the gate electrode 16 through the gate insulating film 15 functions as a channel region 13a. The region other than the channel region of the polycrystalline Si film 13 is an n + layer doped with impurities at a high concentration, and functions as a source region 13b and a drain region 13c. Although not shown here, LDD (Lightly Doped Drain) in which impurities are lightly doped on the channel region side of the source region 13b and the channel region side of the drain region 13c to prevent deterioration of electrical characteristics due to hot carriers. A region is formed.
[0065] なお、ガラス基板 14の表面(多結晶 Si膜 13の下)に、ベースコート膜 (例えば、酸 化シリコン膜ゃ窒化シリコン膜などが使用できる)を備えても良い。また、多結晶 Si膜 13は、非晶質構造を有する半導体膜 (非結晶 Si膜)を、レーザーァニールや RTA(R apid Thermal Annealing)などの熱処理により結晶化することで得ることができる。 Note that a base coat film (for example, a silicon oxide film or a silicon nitride film can be used) may be provided on the surface of the glass substrate 14 (under the polycrystalline Si film 13). Also polycrystalline Si film 13 can be obtained by crystallizing a semiconductor film (amorphous Si film) having an amorphous structure by heat treatment such as laser annealing or RTA (Rapid Thermal Annealing).
[0066] 第 1層間絶縁膜 17上にはソース電極 18 (例えば、 Al、 Mo、 Tほたはそれらの合金 が使用できる)が形成されている。ソース電極 18は、第 1層間絶縁膜 17およびゲート 絶縁膜 15を貫通するコンタクトホールを介して、多結晶 Si膜 13のソース領域 13bに 電気的に接続されている。同様に、第 1層間絶縁膜 17上に形成されているドレイン 電極 19 (例えば、 Al、 Mo、 Tほたはそれらの合金が使用できる)は、第 1層間絶縁膜 17およびゲート絶縁膜 15を貫通するコンタクトホールを介して、多結晶 Si膜 13のド レイン領域 13cに電気的に接続されて!、る。  A source electrode 18 (for example, Al, Mo, T, or an alloy thereof can be used) is formed on the first interlayer insulating film 17. The source electrode 18 is electrically connected to the source region 13 b of the polycrystalline Si film 13 through a contact hole that penetrates the first interlayer insulating film 17 and the gate insulating film 15. Similarly, the drain electrode 19 (for example, Al, Mo, T, or an alloy thereof can be used) formed on the first interlayer insulating film 17 is connected to the first interlayer insulating film 17 and the gate insulating film 15. It is electrically connected to the drain region 13c of the polycrystalline Si film 13 through the penetrating contact hole.
[0067] 以上が、ここで使用する TFT6の基本的な構造である。そして、画素配列領域 (表 示領域) 8においては、上述の TFT6を覆うように、さらに第 2層間絶縁膜 20が形成さ れている。ここで、第 2層間絶縁膜 20は、層間の絶縁性に加えて下層の凹凸を平坦 化する役割が要求されるので、塗布や印刷によって形成が可能な有機膜が主に使 用される。なお、第 2層間絶縁膜 20は、周辺領域 9には形成されない。  The above is the basic structure of the TFT 6 used here. In the pixel array region (display region) 8, a second interlayer insulating film 20 is further formed so as to cover the TFT 6 described above. Here, since the second interlayer insulating film 20 is required to flatten the unevenness of the lower layer in addition to the insulating property between the layers, an organic film that can be formed by coating or printing is mainly used. Note that the second interlayer insulating film 20 is not formed in the peripheral region 9.
[0068] さらに、第 2層間絶縁膜 20の上層には、画素電極 7 (例えば、 ITO (Indium- Tin-Oxi de)、 IZO (Indium-Zinc-Oxide)、 Alなど)が形成される。画素電極 7は、第 2層間絶縁 膜 20に形成されたコンタクトホールを介して、ドレイン電極 19に電気的に接続されて いる。第 2層間絶縁膜 20としては、感光性を有する有機絶縁膜を用いることが好まし ぐマスク露光と現像処理によって、第 2層間絶縁膜 20に簡便にコンタクトホールを形 成することができる。このように感光性を有する有機絶縁膜としては、例えば、アクリル 、ポリイミド、 BCB (Benzo-Cyclo-Butene)などがあげられる。  Further, a pixel electrode 7 (for example, ITO (Indium-Tin-Oxide), IZO (Indium-Zinc-Oxide), Al, etc.) is formed on the second interlayer insulating film 20. The pixel electrode 7 is electrically connected to the drain electrode 19 through a contact hole formed in the second interlayer insulating film 20. As the second interlayer insulating film 20, it is preferable to use a photosensitive organic insulating film, and a contact hole can be easily formed in the second interlayer insulating film 20 by mask exposure and development treatment. Examples of such an organic insulating film having photosensitivity include acrylic, polyimide, BCB (Benzo-Cyclo-Butene), and the like.
[0069] なお、図 3において、 30は対向基板 3のベース基板であるガラス基板であり、 31は カラーフィルタであり、 32は対向基板 3の全面に形成された対向電極である。  In FIG. 3, 30 is a glass substrate which is a base substrate of the counter substrate 3, 31 is a color filter, and 32 is a counter electrode formed on the entire surface of the counter substrate 3.
[0070] 図 4 (a)および図 4 (b)は、周辺領域 9に形成されている光センサ 11の断面構造図 である。  FIGS. 4 (a) and 4 (b) are cross-sectional structural views of the optical sensor 11 formed in the peripheral region 9. FIG.
[0071] 以下、図 4 (a)および図 4 (b)を参照しながら、光センサ 11の構造の一例について 説明する。ここで使用する光センサ 11の構造は、「ラテラル構造の光ダイオード」と呼 ばれるものであり、半導体の PIN接合が基板の面方向(横方向)に形成されたダイォ ードを備える。 Hereinafter, an example of the structure of the optical sensor 11 will be described with reference to FIGS. 4 (a) and 4 (b). The structure of the optical sensor 11 used here is called a “lateral structure photodiode”, and is a diode in which a semiconductor PIN junction is formed in the surface direction (lateral direction) of the substrate. Equipped with a card.
[0072] 図 4 (a)および図 4 (b)に示す光センサ 11は、ベース基材となるガラス基板 14 (上述 の TFTが形成されている基板と共通の基板)上に、多結晶 Si膜 21による PINダイォ ード (センサ部)が形成されている。この光センサ 11の多結晶 Si膜 21は、画素配列領 域 8 (表示領域)の TFT6の多結晶 Si膜 13 (図 3参照)と同一プロセスで同時に形成さ れるものである。従って、多結晶 Si膜 21と多結晶 Si膜 13は、同じ膜厚を有する。 PIN 接合は、不純物が高濃度にドープされた P+層(領域 21b)と n+層(領域 21c)、及び不 純物がドープされない i層(領域 21a)によって形成されている。なお、 i層の代わりに、 低濃度にドープされた P—層や n層を単独、又は併設して用いることも可能である。  [0072] The optical sensor 11 shown in FIGS. 4 (a) and 4 (b) has a polycrystalline Si substrate on a glass substrate 14 (a substrate common to the substrate on which the TFT is formed) as a base substrate. A PIN diode (sensor part) is formed by the film 21. The polycrystalline Si film 21 of the optical sensor 11 is formed simultaneously with the same process as the polycrystalline Si film 13 of the TFT 6 in the pixel array region 8 (display region) (see FIG. 3). Therefore, the polycrystalline Si film 21 and the polycrystalline Si film 13 have the same film thickness. The PIN junction is formed by a P + layer (region 21b) and an n + layer (region 21c) doped with impurities at a high concentration, and an i layer (region 21a) not doped with impurities. Instead of the i layer, a lightly doped P-layer or n layer can be used alone or in combination.
[0073] さらに、 PIN接合を有する多結晶 Si膜 21を覆うように、ゲート絶縁膜 15 (酸ィ匕シリコ ン膜ゃ窒化シリコン膜などが使用できる)と第 1層間絶縁膜 17 (酸ィ匕シリコン膜ゃ窒 化シリコン膜が使用できる)が形成される。図 4に示すゲート絶縁膜 15および第 1層 間絶縁膜 17は、画素配列領域 8における TFT6のゲート絶縁膜 15および第 1層間 絶縁膜 17 (図 3参照)が、周辺領域 9まで延在したものである。  [0073] Furthermore, a gate insulating film 15 (an oxide silicon film or a silicon nitride film can be used) and a first interlayer insulating film 17 (an oxide film) are formed so as to cover the polycrystalline Si film 21 having a PIN junction. A silicon film or a silicon nitride film can be used). In the gate insulating film 15 and the first interlayer insulating film 17 shown in FIG. 4, the gate insulating film 15 and the first interlayer insulating film 17 of the TFT 6 in the pixel array region 8 (see FIG. 3) extend to the peripheral region 9. Is.
[0074] 第 1層間絶縁膜 17上に形成されている p側電極 33 (Al、 Mo、 Tほたはそれらの合 金が使用できる)は、第 1層間絶縁膜 17およびゲート絶縁膜 15を貫通するコンタクト ホールを介して多結晶 Si膜 21の ρ+領域 21bに電気的に接続されている。同様に、第 1層間絶縁膜 17上に形成されている n側電極 34 (Al、 Mo、 Tほたはそれらの合金が 使用できる)は、第 1層間絶縁膜 17およびゲート絶縁膜 15を貫通するコンタクトホー ルを介して多結晶 Si膜 21の η+領域 21cに電気的に接続されている。 p側電極 33およ び n側電極 34において第 1層間絶縁膜 17の表面に露出している部分が、光センサ 1 1の電極部である。  [0074] The p-side electrode 33 (Al, Mo, T or their alloys can be used) formed on the first interlayer insulating film 17 includes the first interlayer insulating film 17 and the gate insulating film 15. It is electrically connected to the ρ + region 21b of the polycrystalline Si film 21 through a penetrating contact hole. Similarly, the n-side electrode 34 (Al, Mo, T or their alloys can be used) formed on the first interlayer insulating film 17 penetrates the first interlayer insulating film 17 and the gate insulating film 15. It is electrically connected to the η + region 21c of the polycrystalline Si film 21 through the contact hole. The portions of the p-side electrode 33 and the n-side electrode 34 that are exposed on the surface of the first interlayer insulating film 17 are the electrode portions of the optical sensor 11.
[0075] なお、周辺領域 9における第 1層間絶縁膜 17およびゲート絶縁膜 15へのコンタクト ホールの形成は、画素配列領域 8における第 1層間絶縁膜 17およびゲート絶縁膜 1 5へのコンタクトホールの形成と同一プロセスにより同時に行われる。また、 p側電極 3 3および n側電極 34の形成は、 TFT6のソース電極 18およびドレイン電極 19の形成 と同一プロセスにより同時に行われる。  It should be noted that the formation of contact holes to the first interlayer insulating film 17 and the gate insulating film 15 in the peripheral region 9 is the same as the formation of contact holes to the first interlayer insulating film 17 and the gate insulating film 15 in the pixel array region 8. It is performed simultaneously by the same process as forming. The p-side electrode 33 and the n-side electrode 34 are formed simultaneously by the same process as the formation of the source electrode 18 and the drain electrode 19 of the TFT 6.
[0076] 以上が、基本的な光センサ 11の構造である。光センサ 11の構成部材は、前述の画 素配列領域の TFT6の構成部材とほぼ同じであり、製造プロセスもほぼ共通である。 このように、アクティブマトリクス基板 2は、画素配列領域 8の TFT6と周辺領域 9の光 センサ 11がモノリシックに形成されて!、る。 The above is the basic structure of the optical sensor 11. The components of the optical sensor 11 are the same as those described above. It is almost the same as the constituent elements of TFT6 in the elementary array region, and the manufacturing process is also almost the same. As described above, the active matrix substrate 2 has the TFT 6 in the pixel array region 8 and the optical sensor 11 in the peripheral region 9 formed monolithically.
[0077] なお、周辺領域 9には、光センサ 11の他に、周辺回路(画素配列領域 8の TFT6を 駆動するための駆動回路(図示せず)、光センサ 11や駆動回路に接続される配線 3 6 (図 2参照)、画素配列領域 8からの引き出し配線(図示せず)など)も形成されてい る。 In addition to the optical sensor 11, the peripheral area 9 is connected to a peripheral circuit (a driving circuit (not shown) for driving the TFT 6 in the pixel array area 8), the optical sensor 11 and the driving circuit. Wiring 36 (see FIG. 2) and lead wiring (not shown) from the pixel array region 8 are also formed.
[0078] そして、図 4 (a)に示すように、光センサ 11の上層、すなわち、 p側電極 33および n 側電極 34とそれらの近傍の第 1層間絶縁膜 17の表面とを覆うように、保護膜 24が設 けられている。保護膜 24の厚さは、少なくとも 3. O /z m程度であり、外気からの遮断 効果を十分に奏するためには、 5〜: L 00 m程度であることが好ましい。  Then, as shown in FIG. 4 (a), the upper layer of the optical sensor 11, that is, the p-side electrode 33 and the n-side electrode 34 and the surface of the first interlayer insulating film 17 in the vicinity thereof are covered. A protective film 24 is provided. The thickness of the protective film 24 is at least about 3. O / z m, and is preferably about 5 to about L 00 m in order to sufficiently exert a blocking effect from outside air.
[0079] ここで用いられる保護膜 24は、光センサ 11が受光する光の波長域に対する透明性 と、紫外線に対する耐性を有していれば良い。したがって、保護膜 24としては幅広い 材料を適用することが可能である。例えば、フッ素系榭脂、シリコーン榭脂、エポキシ 榭脂、アクリル榭脂などの材料を使用することが可能である。具体的には、東レダウコ 一-ング社製のシリコーンポッティング材 (例えば SE1880など)、旭硝子社製のァフ レックス (登録商標)、サイトップ (登録商標)、三菱レーヨン社製のアタリプレン (登録 商標)などが使用できる。  [0079] The protective film 24 used here only needs to have transparency in the wavelength range of light received by the optical sensor 11 and resistance to ultraviolet rays. Therefore, a wide range of materials can be applied as the protective film 24. For example, materials such as fluorine-based resin, silicone resin, epoxy resin, and acrylic resin can be used. Specifically, silicone potting materials manufactured by Toray Dow Co., Ltd. (for example, SE1880), Aflex® (registered trademark) manufactured by Asahi Glass Co., Cytop (registered trademark), Atariprene manufactured by Mitsubishi Rayon (registered trademark) ) Etc. can be used.
[0080] なお、保護膜 24の透過率を高く保っためには、光散乱要因となるフィラーを含まな い榭脂を材料として採用することが好ましい。また、保護膜 24形成のプロセスの簡略 化を考慮すると、硬化用のオーブンや UV硬化の工程を必要としな 、常温硬化型の 榭脂を採用することが好ましい。例えば、上述したフッ素系榭脂、シリコーン榭脂、ェ ポキシ榭脂、アクリル榭脂などのうち常温硬化型の樹脂が挙げられる。上記した東レ ダウコーユング社製のシリコーンポッティング材 (例えば SE1880など)、旭硝子社製 のァフレックス (登録商標)、サイトップ (登録商標)、三菱レーヨン社製のアタリプレン( 登録商標)は、いずれも常温硬化型の特性を有している。また、保護膜 24として、外 光に含有される紫外線の透過率を少なくとも 50%未満、好ましくは 10%未満に減衰 する紫外線吸収部材を用いることも好まし 、。 [0081] また、保護膜 24は、例えば、アクティブマトリクス基板 2と対向基板 3とを貼り合わせ 、表示媒体 4としての液晶を注入し、 FPC10を接続した後に、光センサ 11の部分に 榭脂を塗布 (ポッティング)すること〖こより形成できる。 [0080] In order to keep the transmittance of the protective film 24 high, it is preferable to use, as a material, a resin that does not contain a filler that causes light scattering. Considering simplification of the process of forming the protective film 24, it is preferable to employ a room temperature curing type resin that does not require a curing oven or a UV curing step. For example, a room temperature curable resin may be used among the above-described fluorine-based resins, silicone resins, epoxy resins, acrylic resins, and the like. The above-mentioned silicone potting materials manufactured by Toray Dow Coung (such as SE1880), Aflex (registered trademark), Cytop (registered trademark) manufactured by Asahi Glass Co., Ltd. Has the characteristics of the mold. It is also preferable to use an ultraviolet absorbing member that attenuates the transmittance of ultraviolet rays contained in the external light to at least less than 50%, preferably less than 10%, as the protective film 24. In addition, the protective film 24 is formed, for example, by bonding the active matrix substrate 2 and the counter substrate 3, injecting liquid crystal as the display medium 4, connecting the FPC 10, and then applying a resin to the portion of the optical sensor 11. It can be formed by applying (potting).
[0082] なお、図 4 (a)では、保護膜 24が p側電極 33および n側電極 34の全面を覆うような 形態を示した力 特にその必要はなぐ図 4 (b)に示すように例えば光センサ 11に対 して光が入射する位置を少なくとも覆うように、保護膜 24を形成しても良い。ただし、 図 4 (a)の形態は、図 4 (b)の形態に比べて、 p側電極 33および n側電極 34の酸化や 腐食をより確実に防止できると 、う利点がある。  [0082] In FIG. 4 (a), the force showing a form in which the protective film 24 covers the entire surface of the p-side electrode 33 and the n-side electrode 34 is not particularly necessary, as shown in FIG. 4 (b). For example, the protective film 24 may be formed so as to cover at least the position where light enters the optical sensor 11. However, the configuration of FIG. 4 (a) has the advantage that the oxidation and corrosion of the p-side electrode 33 and the n-side electrode 34 can be prevented more reliably than the configuration of FIG. 4 (b).
[0083] また、図 4 (a)および (b)に示すように、 p側電極 33および n側電極 34の頭頂部には 凹部 33a, 34aがそれぞれ形成されている。凹部 33a, 34aは、 p側電極 33および n 側電極 34のパターユング後、例えばエッチング処理により形成される。このように p側 電極 33および n側電極 34の頭頂部に凹部 33a, 34aが形成されていることにより、 p 側電極 33および n側電極 34の頭頂部と保護膜 24との密着性が向上する。  Further, as shown in FIGS. 4 (a) and 4 (b), recesses 33a and 34a are formed at the tops of the p-side electrode 33 and the n-side electrode 34, respectively. The recesses 33a and 34a are formed, for example, by etching after the p-side electrode 33 and the n-side electrode 34 are patterned. As described above, the concave portions 33a and 34a are formed on the tops of the p-side electrode 33 and the n-side electrode 34, thereby improving the adhesion between the tops of the p-side electrode 33 and the n-side electrode 34 and the protective film 24. To do.
[0084] また、図 5は、光センサ 11周辺の断面模式図である。なお、図 5では、光センサ 11 の電極等の図示を省略している。図 5に示すように、アクティブマトリクス基板 2の TF T形成面の法線方向(図 5中に示す矢印方向)における保護膜 24の高さ Xは、対向 基板 3と表示媒体 4の厚さの合計 Y以下であることが望ましい。これにより、表示装置 1を筐体 35に組み込む際に、保護膜 24と筐体 35との間のクリアランスを確保すること が容易になる。  FIG. 5 is a schematic cross-sectional view around the optical sensor 11. In FIG. 5, illustration of electrodes of the optical sensor 11 is omitted. As shown in FIG. 5, the height X of the protective film 24 in the normal direction of the TFT formation surface of the active matrix substrate 2 (the arrow direction shown in FIG. 5) is the thickness of the counter substrate 3 and the display medium 4 It is desirable that the total is Y or less. This facilitates ensuring a clearance between the protective film 24 and the housing 35 when the display device 1 is incorporated into the housing 35.
[0085] 以上のように、本実施形態にかかる表示装置は、従来のように第 2層間絶縁膜で光 センサ 11を保護するのではなぐ保護膜 24で光センサ 11を保護する構成である。こ のため、従来は、紫外線による第 2層間絶縁膜の劣化 (透過率の低下)を見越して、 光センサ 11を過剰スペックで設計しておく必要があった力 本実施形態に力かる構 成では第 2層間絶縁膜 20の透過率の低下を懸念する必要がなぐ光センサ 11を最 適設計することが可能になる。このため、光センサ 11自身を従来よりも小さくすること が可能になり、光センサ 11が配置される周辺領域 9を最小限に小さくでき、表示装置 の狭額縁ィ匕に寄与することが可能になる。この結果、表示装置全体を小型化すること が可能である。 [第 2の実施形態] As described above, the display device according to the present embodiment has a configuration in which the optical sensor 11 is protected by the protective film 24 that is not protected by the second interlayer insulating film as in the related art. For this reason, in the past, it was necessary to design the optical sensor 11 with excessive specifications in anticipation of deterioration of the second interlayer insulating film due to ultraviolet rays (decrease in transmittance). Then, it becomes possible to optimally design the optical sensor 11 that does not need to worry about a decrease in the transmittance of the second interlayer insulating film 20. For this reason, the optical sensor 11 itself can be made smaller than before, and the peripheral area 9 in which the optical sensor 11 is arranged can be minimized to contribute to the narrow frame of the display device. Become. As a result, the entire display device can be reduced in size. [Second Embodiment]
図 6は、第 2の実施形態に力かる表示装置の光センサ 11およびその周辺の構造を 示す断面図である。なお、本実施形態にかかる表示装置は、光センサ 11の周辺の 第 1層間絶縁膜 17に孔が形成されている点を除いては、第 1の実施形態において説 明した構成と同様であるため、同一の構成については同一の符号を付して説明を省 略する。  FIG. 6 is a cross-sectional view showing the structure of the optical sensor 11 of the display device and its surroundings according to the second embodiment. The display device according to the present embodiment is the same as the configuration described in the first embodiment, except that a hole is formed in the first interlayer insulating film 17 around the optical sensor 11. Therefore, the same components are denoted by the same reference numerals and description thereof is omitted.
[0086] 図 6に示すように、本実施形態にかかる表示装置では、光センサ 11の周辺の第 1層 間絶縁膜 17に孔 17aが形成されている。孔 17aは、光センサ 11の近傍であって、保 護膜 24によって覆われる箇所に形成され、保護膜 24がその中に入り込むことによつ て、保護膜 24の密着性を高める効果 (アンカー効果)を有する。  As shown in FIG. 6, in the display device according to the present embodiment, a hole 17 a is formed in the first interlayer insulating film 17 around the optical sensor 11. The hole 17a is formed in the vicinity of the optical sensor 11 and is covered with the protective film 24, and the protective film 24 enters into the hole 17a, thereby improving the adhesion of the protective film 24 (anchor Effect).
[0087] 孔 17aは、 TFT6のソース電極 18およびドレイン電極 19、並びに、光センサ 11の p 側電極 33および n側電極 34用のコンタクトホールを、第 1層間絶縁膜 17およびゲー ト絶縁膜 15に形成する工程において、これらのコンタクトホールと同時に形成される 。従って、孔 17aを設けるために製造プロセスが増加することはないという利点がある  [0087] The hole 17a serves as a contact hole for the source electrode 18 and the drain electrode 19 of the TFT 6, and the p-side electrode 33 and the n-side electrode 34 of the photosensor 11, and the first interlayer insulating film 17 and the gate insulating film 15 In the step of forming, the contact holes are formed simultaneously. Therefore, there is an advantage that the manufacturing process does not increase to provide the holes 17a.
[0088] 光センサ 11の周囲に設けられる孔 17aの個数は任意である。また、孔 17aは、保護 膜 24のアンカー効果を得るために形成されるので、その径は、保護膜 24の材料の 粘度に応じて、保護膜 24が入り込み易いサイズに形成することが好ましい。なお、図 6では、孔 17aは、第 1層間絶縁膜 17のみを貫通し、ゲート絶縁膜 15の表面で止ま つているが、孔 17aの深さは、所望のアンカー効果が得られる程度において任意であ る。すなわち、孔 17aは、第 1層間絶縁膜 17を必ずしも貫通しなくても良い。あるいは 、孔 17aは、ゲート絶縁膜 15にまで達しても良いし、第 1層間絶縁膜 17とゲート絶縁 膜 15との両方を貫通するように形成しても良 、。 [0088] The number of holes 17a provided around the optical sensor 11 is arbitrary. Further, since the hole 17a is formed in order to obtain the anchor effect of the protective film 24, the diameter thereof is preferably formed to a size that allows the protective film 24 to easily enter according to the viscosity of the material of the protective film 24. In FIG. 6, the hole 17a penetrates only the first interlayer insulating film 17 and stops at the surface of the gate insulating film 15, but the depth of the hole 17a is arbitrary as long as a desired anchor effect is obtained. It is. That is, the hole 17a does not necessarily pass through the first interlayer insulating film 17. Alternatively, the hole 17a may reach the gate insulating film 15, or may be formed so as to penetrate both the first interlayer insulating film 17 and the gate insulating film 15.
[0089] 以上のとおり、本実施形態にかかる表示装置は、光センサ 11の周囲の第 1層間絶 縁膜 17に、保護膜 24の密着性を高めるための孔 17aが形成された構成である。これ により、光センサ 11を、より確実に外気力も保護することができる。  As described above, the display device according to the present embodiment has a configuration in which the first interlayer insulating film 17 around the photosensor 11 is formed with the hole 17a for improving the adhesion of the protective film 24. . As a result, the optical sensor 11 can more reliably protect the outside air force.
[第 3の実施形態]  [Third embodiment]
図 7は、本発明の第 3の実施形態に力かる表示装置 40の概略平面図と、その B— B '線断面図である。アクティブマトリクス基板 2と対向基板 3がシール榭脂によって貼り 合わされており、周辺領域 9に光センサ 11が形成されている点は、前述した各実施 形態の表示装置 1と同じである。なお、前述した各実施形態と同一の構成について は、同一の符号を付記し、その説明を省略する。 FIG. 7 shows a schematic plan view of a display device 40 that is useful for the third embodiment of the present invention, and its B-B. FIG. The active matrix substrate 2 and the counter substrate 3 are bonded to each other by a seal resin, and the optical sensor 11 is formed in the peripheral region 9, which is the same as the display device 1 of each embodiment described above. In addition, about the same structure as each embodiment mentioned above, the same code | symbol is attached and the description is abbreviate | omitted.
[0090] ここで、表示装置 40は、周辺領域 9に FPC10が実装されており、その FPC10の実 装部周辺に、 FPC10の接続を補強すベぐ光センサ 11の上層を保護する保護膜 24 が延在した構造となって 、る。  Here, in the display device 40, the FPC 10 is mounted in the peripheral region 9, and the protective film 24 that protects the upper layer of the optical sensor 11 that should reinforce the connection of the FPC 10 around the mounting portion of the FPC 10. It becomes an extended structure.
[0091] 表示装置 40では、図 7に示すように、アクティブマトリクス基板 2と対向基板 3とをシ 一ル榭脂 25を介して貼り合わせ、注入口 27から表示媒体 4としての液晶を注入し、 周辺領域 9に設けられている端子に FPC10を接続した後、周辺領域 9の光センサ 11 の上層と FPC10の接続部とに亘つて榭脂をポッティングすることにより、光センサ 11 の上層から FPC10の接続部まで延在する保護膜 24を形成する。  In the display device 40, as shown in FIG. 7, the active matrix substrate 2 and the counter substrate 3 are bonded together via a seal resin 25, and liquid crystal as the display medium 4 is injected from the injection port 27. After connecting the FPC 10 to the terminal provided in the peripheral area 9, the resin is potted across the upper layer of the optical sensor 11 in the peripheral area 9 and the connection part of the FPC 10, so that the FPC 10 A protective film 24 extending to the connection portion is formed.
[0092] このように、保護膜 24が FPC10の接続部に亘つて延在することにより、 FPCIO© 接続部の機械的強度が高まると共に、防湿'防塵効果も得られる。これにより、 FPC1 0と外部回路との接続の信頼性が向上する。さらに、保護膜 24が光センサ 11の保護 部材と FPC 10の補強部材とを兼ねることにより、光センサ 11の保護工程と FPC 10の 補強工程とを同一工程で行うことができ、工数の増加を防ぐことができる。  As described above, since the protective film 24 extends over the connection portion of the FPC 10, the mechanical strength of the FPCIO® connection portion is increased, and a moistureproof and dustproof effect is also obtained. This improves the reliability of the connection between the FPC 10 and the external circuit. Furthermore, since the protective film 24 serves as both the protective member of the optical sensor 11 and the reinforcing member of the FPC 10, the protective process of the optical sensor 11 and the reinforcing process of the FPC 10 can be performed in the same process, which increases the number of steps. Can be prevented.
[0093] さらに、図 7に示した例では、保護膜 24が、光センサ 11および FPC10の近傍にお V、て、アクティブマトリクス基板 2と対向基板 3との隙間を埋めるように形成されて!、る。 この構成によれば、例えば、対向基板 3に光センサ 11の回路部が設けられている場 合、光センサ 11とこの回路部とを接続する配線も、保護膜 24によって保護することが できるという利点がある。  Furthermore, in the example shown in FIG. 7, the protective film 24 is formed in the vicinity of the optical sensor 11 and the FPC 10 so as to fill the gap between the active matrix substrate 2 and the counter substrate 3! RU According to this configuration, for example, when the circuit portion of the optical sensor 11 is provided on the counter substrate 3, the wiring connecting the optical sensor 11 and the circuit portion can also be protected by the protective film 24. There are advantages.
[0094] なお、図 7では、表示装置 40の周辺領域 9において、短辺方向中央部付近に光セ ンサ 11が配置され、 FPC10が光センサ 11の横に配置された例を示した。しかし、光 センサ 11の配置位置および個数、並びに FPC10の配置位置は、図 7に示した例に 限定されない。例えば、光センサ 11を、周辺領域 9に複数個備えた構造としても良い 。その場合、 FPC10の接続部と、それに比較的距離が近い 1個ないし複数個の光セ ンサ 11とを、同一の保護膜 24で覆う構造とすれば良い。 [第 4の実施形態] FIG. 7 shows an example in which the optical sensor 11 is arranged near the center in the short side direction and the FPC 10 is arranged beside the optical sensor 11 in the peripheral region 9 of the display device 40. However, the arrangement position and number of the optical sensors 11 and the arrangement position of the FPC 10 are not limited to the example shown in FIG. For example, a structure in which a plurality of optical sensors 11 are provided in the peripheral region 9 may be employed. In that case, the connection portion of the FPC 10 and one or more optical sensors 11 that are relatively close to each other may be covered with the same protective film 24. [Fourth embodiment]
図 8は、本発明の第 4の実施形態に力かる表示装置 29の全体構成図である。また、 図 9は、その周辺領域 9のうち光センサ 11が配置されている部分の断面模式図であ る。なお、図 9では、光センサ 11の電極等の図示を省略している。本実施形態では、 対向基板 3が周辺領域 9の光センサ 11を覆うのに十分な大きさとなっており、かつ、 光センサ 11の保護膜 24が、アクティブマトリクス基板 2と対向基板 3との隙間に存在 する構造となっている。なお、第 1の実施形態から第 3の実施形態と同一に構成に対 しては、同一の符号を付記して説明を省略する。  FIG. 8 is an overall configuration diagram of a display device 29 that works according to the fourth embodiment of the present invention. FIG. 9 is a schematic cross-sectional view of a portion of the peripheral region 9 where the optical sensor 11 is disposed. In FIG. 9, illustration of electrodes of the optical sensor 11 is omitted. In the present embodiment, the counter substrate 3 is large enough to cover the photosensor 11 in the peripheral region 9, and the protective film 24 of the photosensor 11 has a gap between the active matrix substrate 2 and the counter substrate 3. It has a structure that exists in Note that the same reference numerals are given to the same components as those in the first to third embodiments, and the description thereof is omitted.
[0095] 通常、保護膜 24に硬度の小さい榭脂材料を用いる場合には、表面傷の発生など、 光センサ 11の保護層としての保護膜 24の機械的強度が問題となる場合がある。しか し、図 8に示したように、光センサ 11および保護膜 24の上層まで対向基板 3が延在 する構造とすることにより、保護膜 24の機械的 (物理的)保護を行うことが可能となる。  [0095] Normally, when a resin material with low hardness is used for the protective film 24, the mechanical strength of the protective film 24 as a protective layer of the optical sensor 11, such as generation of surface scratches, may be a problem. However, as shown in FIG. 8, the protective substrate 24 can be mechanically (physically) protected by the structure in which the counter substrate 3 extends to the upper layer of the optical sensor 11 and the protective film 24. It becomes.
[0096] なおこのとき、対向基板 3の周辺領域 9を覆う部分には、光センサ 11への外光の進 入を妨げないように、偏光板やカラーフィルタを形成しないことが望ましい。また、バッ クライトシステム 12は、図 8に示したように、光センサ 11の直下に位置しないよう配慮 する必要がある。あるいは、ノ ックライトシステムが光センサ 11の真下に位置する場 合は、アクティブマトリクス基板 2の光センサ 11の配設部の裏面に遮光部材 (アルミテ ープなど)を設ければ良い。  [0096] At this time, it is desirable not to form a polarizing plate or a color filter in a portion covering the peripheral region 9 of the counter substrate 3 so as not to prevent the outside light from entering the optical sensor 11. Further, as shown in FIG. 8, it is necessary to consider that the backlight system 12 is not located directly under the optical sensor 11. Alternatively, when the knocklight system is located directly below the optical sensor 11, a light shielding member (such as an aluminum tape) may be provided on the back surface of the active matrix substrate 2 where the optical sensor 11 is disposed.
[0097] さらに、図 10に示すように、光センサ 11と対向基板 3との間隙を、保護膜 24で完全 に充填するようにすると、光センサ 11の保護層としての保護膜 24が、側面を除き外 気に触れない構造を実現することができ、外気の湿気などの影響を更に軽減すること ができる。なお、図 10においても、光センサ 11の電極等の図示を省略している。また 、光センサ 11と対向基板 3との間に屈折率が小さい空気層が介在しないため、空気 層と保護膜 24との界面における光の反射ロスが小さくなり、光センサ 11の SZNを向 上させることち可會となる。  Furthermore, as shown in FIG. 10, when the gap between the optical sensor 11 and the counter substrate 3 is completely filled with the protective film 24, the protective film 24 as a protective layer of the optical sensor 11 is A structure that does not touch outside air can be realized except for, and the influence of moisture from outside air can be further reduced. Also in FIG. 10, the illustration of the electrodes of the optical sensor 11 is omitted. In addition, since an air layer having a low refractive index is not interposed between the optical sensor 11 and the counter substrate 3, light reflection loss at the interface between the air layer and the protective film 24 is reduced, and the SZN of the optical sensor 11 is improved. It will be pretty to let you.
[第 5の実施形態]  [Fifth embodiment]
図 11は、本発明の第 5の実施形態に力かる表示装置の光センサ 11およびその周 辺の構造を示す断面図である。なお、本実施形態にかかる表示装置は、光センサ 11 の周辺に第 2層間絶縁膜 20を利用して壁が形成されている点を除いては、前述した 各実施形態において説明した構成と同様であるため、同一の構成については同一 の符号を付して説明を省略する。 FIG. 11 is a cross-sectional view showing the structure of the optical sensor 11 of the display device and its periphery according to the fifth embodiment of the present invention. The display device according to this embodiment includes an optical sensor 11. Except that a wall is formed by using the second interlayer insulating film 20 in the periphery of the substrate, and is the same as the configuration described in each of the above-described embodiments. Therefore, the description is omitted.
[0098] 図 11に示すように、本実施形態にかかる表示装置では、光センサ 11の周辺に、 T FT6の第 2層間絶縁膜 20と共通の材料で形成された壁 20aが設けられて 、る。図 1 1の例では、光センサ 11の近傍において二方向に壁 20aが形成され、保護膜 24が それらの壁の間に形成されている。これにより、保護膜 24の形成時に、保護膜 24の 材料の広がり面積を抑制することによって、保護膜 24の厚さを均一化することができ る。 As shown in FIG. 11, in the display device according to the present embodiment, a wall 20a formed of a material common to the second interlayer insulating film 20 of the TFT 6 is provided around the optical sensor 11, The In the example of FIG. 11, a wall 20a is formed in two directions in the vicinity of the optical sensor 11, and a protective film 24 is formed between the walls. Thus, when the protective film 24 is formed, the thickness of the protective film 24 can be made uniform by suppressing the spread area of the material of the protective film 24.
[0099] 壁 20aは、 TFT6の第 2層間絶縁膜 20 (図 3参照)と同一プロセスで同時に形成さ れる。このため、壁 20aの高さ(アクティブマトリクス基板 2の基板面法線方向における 長さ)は、 TFT6の第 2層間絶縁膜 20と同じぐほぼ 1〜3 μ mである。なお、壁 20aの 厚さ(アクティブマトリクス基板 2の基板面に平行な方向における長さ)は任意である。  The wall 20a is simultaneously formed by the same process as the second interlayer insulating film 20 (see FIG. 3) of the TFT 6. For this reason, the height of the wall 20a (the length of the active matrix substrate 2 in the normal direction of the substrate surface) is about 1 to 3 μm, which is the same as that of the second interlayer insulating film 20 of the TFT6. The thickness of the wall 20a (the length in the direction parallel to the substrate surface of the active matrix substrate 2) is arbitrary.
[0100] なお、図 11では、光センサ 11の近傍において二方向に壁が形成された例を示した 力 光センサ 11においてシール榭脂 25と反対側にのみ、第 2層間絶縁膜 20によつ て壁を形成し、この壁とシール榭脂 25との間に保護膜 24を形成しても良い。すなわ ち、光センサ 11の近傍の少なくとも一方向に、第 2層間絶縁膜 20による壁を形成す れば良いこととなる。また、光センサ 11の外周を完全に取り囲むように、第 2層間絶縁 膜 20によって壁を形成しても良!、。  FIG. 11 shows an example in which walls are formed in two directions in the vicinity of the optical sensor 11. In the optical sensor 11, the second interlayer insulating film 20 is provided only on the side opposite to the seal resin 25. A wall may be formed, and a protective film 24 may be formed between the wall and the seal resin 25. That is, it is only necessary to form a wall made of the second interlayer insulating film 20 in at least one direction in the vicinity of the optical sensor 11. In addition, a wall may be formed by the second interlayer insulating film 20 so as to completely surround the outer periphery of the optical sensor 11!
[0101] このように、光センサ 11の近傍において少なくとも一方向に壁 20aを形成することに より、保護膜 24の形成時に、保護膜 24の材料の広がり面積を抑制することができ、 保護膜 24の厚みを均一化できるという利点がある。これにより、光センサ 11の各部へ 入射する光の透過率を均一化できる。  [0101] Thus, by forming the wall 20a in at least one direction in the vicinity of the optical sensor 11, when the protective film 24 is formed, the spread area of the material of the protective film 24 can be suppressed, and the protective film There is an advantage that the thickness of 24 can be made uniform. Thereby, the transmittance of the light incident on each part of the optical sensor 11 can be made uniform.
[0102] 以上、本発明についての第 1〜第 5の実施形態を記載したが、これらの実施形態は 、本発明を限定するものではなぐ発明の範囲内で種々の変更が可能である。  [0102] The first to fifth embodiments of the present invention have been described above. However, these embodiments can be variously modified within the scope of the invention which is not intended to limit the present invention.
[0103] 例えば、上述の実施形態では、多結晶 Si膜を用いて TFT6と光センサ 11を形成し た例を示したが、両者を非結晶 Si膜で形成することも可能である。また、トップゲート 構造 (正スタガ構造)の TFTに限らず、ボトムゲート構造 (逆スタガ構造)の TFTを用 いても構わない。また、 TFT6の代わりに、 MIM (Meta卜 Insulator- Metal)などの他の アクティブ素子を使用することも可能である。 For example, in the above-described embodiment, an example in which the TFT 6 and the optical sensor 11 are formed using a polycrystalline Si film is shown, but both may be formed of an amorphous Si film. Also, not only TFTs with a top gate structure (forward stagger structure) but also TFTs with a bottom gate structure (reverse stagger structure) are used. It does not matter. It is also possible to use other active elements such as MIM (Meta Insulator- Metal) instead of TFT6.
[0104] さらに、光センサは、 PIN接合を利用したものだけでなぐショットキー接合や MIS 型接合を有する光ダイオードを利用することもできる。例えば、非結晶 Si膜を用いた ボトムゲート構造 (逆スタガ構造)の TFTと、 MIS型接合を有する光ダイオードを同一 基板上にモノリシックに形成する例は、例えば特開平 6— 188400号公報に開示され ているとおり公知であるため、ここでは詳細な説明は省略する。 [0104] Furthermore, the optical sensor may be a photodiode having a Schottky junction or an MIS type junction that is not limited to using a PIN junction. For example, an example in which a TFT having a bottom gate structure (reverse stagger structure) using an amorphous Si film and a photodiode having an MIS junction are formed monolithically on the same substrate is disclosed in, for example, Japanese Patent Laid-Open No. 6-188400 Since it is publicly known, detailed description is omitted here.
[0105] また、上記の説明では、光センサが、 TFT6とほぼ同一のプロセスによって同一基 板上にモノリシックに形成されている例を示した力 光センサがアクティブマトリクス基 板のガラス基板上に COG実装された構成であっても良い。 [0105] In the above description, the optical sensor is shown as an example in which the optical sensor is monolithically formed on the same substrate by substantially the same process as TFT 6, and the optical sensor is formed on the glass substrate of the active matrix substrate. An implemented configuration may be used.
[0106] なお、本発明は、フラットパネル型表示装置に広く適用することができ、液晶表示装 置に以外にも、 EL表示装置、電気泳動表示装置などの各種表示装置などに適用す ることがでさる。 Note that the present invention can be widely applied to flat panel display devices, and can be applied to various display devices such as EL display devices and electrophoretic display devices in addition to liquid crystal display devices. It is out.
[0107] また、上述の各実施形態では、環境センサの代表として光センサを周辺領域 9に形 成した表示装置について説明した力 光センサの代わりに、温度センサ、湿度センサ 、ノックライトの色センサや明るさセンサなどを環境センサとして採用することができ、 同様の効果が得られる。  Further, in each of the above-described embodiments, a temperature sensor, a humidity sensor, a knocklight color sensor instead of the force sensor described for the display device in which the optical sensor is formed in the peripheral region 9 as a representative of the environmental sensor. And brightness sensors can be used as environmental sensors, and similar effects can be obtained.
[第 6の実施形態]  [Sixth embodiment]
本発明の一実施形態にカゝかる電子機器の概略構成を図 12に示す。図 12に示すよ うに、本実施形態に力かる電子機器 60は、第 1の実施形態にかかる表示装置 1と、こ の表示装置 1の光センサ 11によって検出された外光の明るさ情報に応じて、表示装 置 1の表示輝度を制御する制御回路 61とを備えている。なお、図 12では、表示装置 1および電子機器 60における機能ブロックの図示を簡略化して!/、る。制御回路 61は 、表示輝度の制御以外に、電子機器 60の任意の動作を制御する機能を有していて も良い。また、電子機器 60は、その用途等に応じて、図 12に示した以外の任意の機 能ブロックを有し得る。  FIG. 12 shows a schematic configuration of an electronic device according to an embodiment of the present invention. As shown in FIG. 12, the electronic device 60 that is useful in the present embodiment includes the brightness information of the external light detected by the display device 1 according to the first embodiment and the light sensor 11 of the display device 1. Accordingly, a control circuit 61 that controls the display brightness of the display device 1 is provided. In FIG. 12, the functional blocks in the display device 1 and the electronic device 60 are simplified! The control circuit 61 may have a function of controlling any operation of the electronic device 60 in addition to controlling the display brightness. Further, the electronic device 60 may have arbitrary functional blocks other than those shown in FIG.
[0108] 制御回路 61は、光センサ 11によって検出された外光の明るさ情報 (センサ出力)に 応じてバックライトシステム 12の輝度を調整することにより、表示装置 1の表示輝度を 制御する。なお、表示装置 1は液晶表示装置であるためバックライトの輝度を制御す ることによって表示輝度の調整が可能であるが、 EL素子等の自発光素子を表示装 置として用いる場合は、制御回路 61は、自発光素子の発光輝度を制御するよう構成 される。 [0108] The control circuit 61 adjusts the luminance of the backlight system 12 according to the brightness information (sensor output) of the external light detected by the optical sensor 11, thereby adjusting the display luminance of the display device 1. Control. Since display device 1 is a liquid crystal display device, the display luminance can be adjusted by controlling the luminance of the backlight. However, when a self-luminous element such as an EL element is used as the display device, the control circuit 61 is configured to control the light emission luminance of the self-light-emitting element.
[0109] また、本実施形態では、第 1の実施形態にかかる表示装置 1を用いた構成を例示し たが、第 2〜第 5の実施形態ならびにこれらの変形例に力かる表示装置を用いた電 子機器も、本発明の範囲内である。  [0109] In the present embodiment, the configuration using the display device 1 according to the first embodiment has been exemplified. However, the display device that works well with the second to fifth embodiments and these modifications is used. The electronic equipment that was used is also within the scope of the present invention.
[0110] 以上のように、周囲の明るさに応じて必要十分な輝度になるよう表示輝度を制御す ることにより、消費電力を低減し、かつ、見易い表示を実現する電子機器を提供でき る。本実施形態の電子機器は、使用環境の明るさの変化に対して良好な視認性と低 消費電力化を両立できることから、屋外に持ち出して使用する機会が多くバッテリー 駆動を必要とするモパイル機器として特に有用である。このようなモパイル機器の具 体例としては、本発明の用途をこれらに限定するものではないが、例えば、携帯電話 、 PDA等の情報端末、モパイルゲーム機器、携帯型音楽プレイヤー、デジタルカメラ 、ビデオカメラ等がある。  [0110] As described above, it is possible to provide an electronic device that reduces power consumption and realizes an easy-to-view display by controlling the display brightness so that it becomes necessary and sufficient brightness according to the ambient brightness. . The electronic device of the present embodiment can achieve both good visibility and low power consumption in response to changes in the brightness of the usage environment, so it is often used as a mopile device that needs to be taken outside and needs battery drive. It is particularly useful. As specific examples of such mopile equipment, the application of the present invention is not limited to these. For example, information terminals such as mobile phones, PDAs, mopile game equipment, portable music players, digital cameras, video There are cameras.
[0111] なお、本実施形態では、表示装置の表示輝度を制御するための制御回路 61が表 示装置の外部に設けられた構成を例示したが、制御回路が表示装置の一部として設 けられた構成としても良い。  [0111] In the present embodiment, the configuration in which the control circuit 61 for controlling the display luminance of the display device is provided outside the display device is illustrated, but the control circuit is provided as a part of the display device. It is good also as the structure comprised.
産業上の利用可能性  Industrial applicability
[0112] 本発明は、環境センサを備えたフラットパネル型表示装置およびこれを備えた電子 機器に適用可能である。 The present invention can be applied to a flat panel display device including an environmental sensor and an electronic device including the same.

Claims

請求の範囲 The scope of the claims
[1] 複数の画素が配列された画素配列領域を有するアクティブマトリクス基板と、  [1] an active matrix substrate having a pixel array region in which a plurality of pixels are arrayed;
前記アクティブマトリクス基板の画素配列領域に対向するように配設される対向基 板と、  A counter substrate disposed to face a pixel array region of the active matrix substrate;
前記アクティブマトリクス基板と前記対向基板の間隙に配設される表示媒体とを備 えた表示装置において、  In a display device comprising a display medium disposed in a gap between the active matrix substrate and the counter substrate,
前記アクティブマトリクス基板の画素配列領域には、複数の電極配線と、複数のァク ティブ素子と、前記複数の電極配線および複数のアクティブ素子の上層に設けられ た層間絶縁膜と、この層間絶縁膜上に形成された複数の画素電極とが配設されてお り、  In the pixel array region of the active matrix substrate, a plurality of electrode wirings, a plurality of active elements, an interlayer insulating film provided above the plurality of electrode wirings and the plurality of active elements, and the interlayer insulating film A plurality of pixel electrodes formed thereon,
前記アクティブマトリクス基板における前記画素配列領域の周囲に存在する周辺領 域に配設される環境センサと、  An environmental sensor disposed in a peripheral region existing around the pixel array region in the active matrix substrate;
前記環境センサの上層に形成される透明性の材料であって、紫外線が照射される ことによる透明性の劣化が前記層間絶縁膜よりも起こりにくい材料により形成される保 護膜とを備えたことを特徴とする表示装置。  And a protective film formed of a material that is formed on the environmental sensor and that is less susceptible to deterioration of transparency due to ultraviolet irradiation than the interlayer insulating film. A display device.
[2] 前記環境センサは、少なくとも一部の構成部材が前記アクティブ素子の構成部材と 同一プロセスで製造された、請求項 1に記載の表示装置。  2. The display device according to claim 1, wherein at least a part of the environmental sensor is manufactured by the same process as that of the active element.
[3] 前記環境センサは、前記アクティブマトリクス基板の主面上にモノリシックに形成さ れた、請求項 1に記載の表示装置。 [3] The display device according to claim 1, wherein the environmental sensor is monolithically formed on a main surface of the active matrix substrate.
[4] 前記環境センサは、前記アクティブマトリクス基板のガラス基板上に COG実装され た、請求項 1に記載の表示装置。 [4] The display device according to claim 1, wherein the environmental sensor is COG-mounted on a glass substrate of the active matrix substrate.
[5] 前記アクティブマトリクス基板におけるアクティブ素子形成面の法線方向における前 記保護膜の高さが、前記対向基板と前記表示媒体との厚さの合計以下である、請求 項 1に記載の表示装置。 [5] The display according to claim 1, wherein the height of the protective film in the normal direction of the active element formation surface of the active matrix substrate is equal to or less than a total thickness of the counter substrate and the display medium. apparatus.
[6] 前記環境センサの電極部の表面に凹部が形成された、請求項 1に記載の表示装 置。 6. The display device according to claim 1, wherein a concave portion is formed on a surface of the electrode portion of the environmental sensor.
[7] 前記アクティブ素子が薄膜トランジスタであり、  [7] The active element is a thin film transistor,
前記環境センサの電極部とセンサ部との間に、前記アクティブ素子のゲート絶縁膜 および第 1層間絶縁膜が延在し、 Between the electrode part of the environmental sensor and the sensor part, the gate insulating film of the active element And the first interlayer insulating film extends,
前記環境センサの周辺の第 1層間絶縁膜が、前記保護膜で覆われる箇所に孔を 有する、請求項 1に記載の表示装置。  2. The display device according to claim 1, wherein the first interlayer insulating film around the environmental sensor has a hole at a portion covered with the protective film.
[8] 前記アクティブマトリクス基板における前記周辺領域に外部装置への配線が接続さ れ、前記保護膜が、前記環境センサの上層から前記配線の接続部まで延在した、請 求項 1に記載の表示装置。 [8] The wiring according to claim 1, wherein wiring to an external device is connected to the peripheral region of the active matrix substrate, and the protective film extends from an upper layer of the environmental sensor to a connection portion of the wiring. Display device.
[9] 前記保護膜の材料が、フィラーを含有しな 、榭脂である、請求項 1に記載の表示装 置。 [9] The display device according to claim 1, wherein the material of the protective film is a resin that does not contain a filler.
[10] 前記保護膜の材料が、常温で硬化する榭脂である、請求項 1に記載の表示装置。  10. The display device according to claim 1, wherein the material of the protective film is a resin that cures at room temperature.
[11] 前記保護膜が紫外線吸収部材である、請求項 1に記載の表示装置。 11. The display device according to claim 1, wherein the protective film is an ultraviolet absorbing member.
[12] 前記対向基板が、前記環境センサの上方まで延設され、 [12] The counter substrate extends to above the environmental sensor,
前記アクティブマトリクス基板におけるアクティブ素子形成面の法線方向における前 記保護膜の高さが、前記表示媒体の厚さ以下である、請求項 1に記載の表示装置。  2. The display device according to claim 1, wherein a height of the protective film in a normal direction of an active element formation surface in the active matrix substrate is equal to or less than a thickness of the display medium.
[13] 前記アクティブ素子と前記画素電極との間に設けられた第 2層間絶縁膜と共通の材 料により、前記環境センサ周囲の少なくとも一方向に壁が形成された、請求項 1に記 載の表示装置。 13. The wall according to claim 1, wherein a wall is formed in at least one direction around the environmental sensor by a material common to a second interlayer insulating film provided between the active element and the pixel electrode. Display device.
[14] 請求項 1〜13のいずれか一項に記載の表示装置を備えた電子機器であって、 前記環境センサが光センサであり、  [14] An electronic device comprising the display device according to any one of claims 1 to 13, wherein the environmental sensor is an optical sensor,
前記光センサによって検出された外光の明るさ情報に応じて表示輝度を制御する 制御回路を備えたことを特徴とする電子機器。  An electronic apparatus comprising: a control circuit that controls display luminance according to brightness information of external light detected by the optical sensor.
PCT/JP2006/306521 2005-03-29 2006-03-29 Display device and electronic device provided with same WO2006104204A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-095318 2005-03-29
JP2005095318 2005-03-29

Publications (1)

Publication Number Publication Date
WO2006104204A1 true WO2006104204A1 (en) 2006-10-05

Family

ID=37053458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306521 WO2006104204A1 (en) 2005-03-29 2006-03-29 Display device and electronic device provided with same

Country Status (1)

Country Link
WO (1) WO2006104204A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143216A1 (en) 2007-05-18 2008-11-27 Sharp Kabushiki Kaisha Display device
WO2008143211A1 (en) 2007-05-18 2008-11-27 Sharp Kabushiki Kaisha Display device
WO2008143213A1 (en) 2007-05-18 2008-11-27 Sharp Kabushiki Kaisha Display device
JP2009059854A (en) * 2007-08-31 2009-03-19 Epson Imaging Devices Corp Light-receiving device, electro-optical device including light-receiving device, and electronic equipment
EP2081081A1 (en) * 2006-10-11 2009-07-22 Sharp Kabushiki Kaisha Liquid crystal display
WO2009093746A1 (en) * 2008-01-22 2009-07-30 Sharp Kabushiki Kaisha Spectrally compensating a light sensor
CN115268130A (en) * 2022-07-28 2022-11-01 龙岩学院 Laboratory quantum dot light-emitting equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195262A (en) * 1997-09-20 1999-04-09 Semiconductor Energy Lab Co Ltd Integral type liquid crystal display panel having image sensor function
JP2002062856A (en) * 2000-06-06 2002-02-28 Semiconductor Energy Lab Co Ltd Display device and manufacturing method therefor
JP2004078160A (en) * 2002-06-17 2004-03-11 Fuji Photo Film Co Ltd Image display device
JP2005010228A (en) * 2003-06-16 2005-01-13 Toshiba Matsushita Display Technology Co Ltd Liquid crystal display device and method for manufacturing same
JP2005019353A (en) * 2003-06-30 2005-01-20 Sanyo Electric Co Ltd El display device and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195262A (en) * 1997-09-20 1999-04-09 Semiconductor Energy Lab Co Ltd Integral type liquid crystal display panel having image sensor function
JP2002062856A (en) * 2000-06-06 2002-02-28 Semiconductor Energy Lab Co Ltd Display device and manufacturing method therefor
JP2004078160A (en) * 2002-06-17 2004-03-11 Fuji Photo Film Co Ltd Image display device
JP2005010228A (en) * 2003-06-16 2005-01-13 Toshiba Matsushita Display Technology Co Ltd Liquid crystal display device and method for manufacturing same
JP2005019353A (en) * 2003-06-30 2005-01-20 Sanyo Electric Co Ltd El display device and its manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2081081A1 (en) * 2006-10-11 2009-07-22 Sharp Kabushiki Kaisha Liquid crystal display
US8013955B2 (en) 2006-10-11 2011-09-06 Sharp Kabushiki Kaisha Liquid crystal display with opening in reflective electrode
EP2081081A4 (en) * 2006-10-11 2009-11-04 Sharp Kk Liquid crystal display
US8309901B2 (en) 2007-05-18 2012-11-13 Sharp Kabushiki Kaisha Display device adjusting luminance of display based at least on detections by ambient light sensors
WO2008143213A1 (en) 2007-05-18 2008-11-27 Sharp Kabushiki Kaisha Display device
WO2008143211A1 (en) 2007-05-18 2008-11-27 Sharp Kabushiki Kaisha Display device
WO2008143216A1 (en) 2007-05-18 2008-11-27 Sharp Kabushiki Kaisha Display device
US8368676B2 (en) 2007-05-18 2013-02-05 Sharp Kabushiki Kaisha Display device with light shield
JP2009059854A (en) * 2007-08-31 2009-03-19 Epson Imaging Devices Corp Light-receiving device, electro-optical device including light-receiving device, and electronic equipment
WO2009093746A1 (en) * 2008-01-22 2009-07-30 Sharp Kabushiki Kaisha Spectrally compensating a light sensor
JP2011510264A (en) * 2008-01-22 2011-03-31 シャープ株式会社 Spectrally compensated light sensor
CN115268130A (en) * 2022-07-28 2022-11-01 龙岩学院 Laboratory quantum dot light-emitting equipment
CN115268130B (en) * 2022-07-28 2023-06-02 龙岩学院 Laboratory quantum dot light emitting device

Similar Documents

Publication Publication Date Title
US8085256B2 (en) Electronic device
JP4621734B2 (en) Display device and electronic apparatus equipped with the same
WO2006104212A1 (en) Active matrix substrate, and display device and electronic device provided with such active matrix substrate
US20090128529A1 (en) Display Device and Electronic Device
KR100722570B1 (en) Image reading apparatus, the image reading system equipped with the image reading apparatus
EP1164641B1 (en) Light emitting module and method of driving the same, and optical sensor
CN106935626B (en) Display panel and display device comprising same
US8432510B2 (en) Liquid crystal display device and light detector having first and second TFT ambient light photo-sensors alternatively arranged on the same row
WO2006104204A1 (en) Display device and electronic device provided with same
KR20160095300A (en) Organic light-emitting device
KR20170136053A (en) Display device
US20210366996A1 (en) Display panel and electronic device
US20230125368A1 (en) Array substrate and display panel
JP2010056303A (en) Optical sensor, and liquid crystal display using the same
KR20190135535A (en) Display device
CN113544855B (en) Display panel and display device
JP4370957B2 (en) Image reading device
JP2007304519A (en) Liquid crystal display device
JP2007304520A (en) Color liquid crystal display
CN112180633A (en) Display module and display device
WO2006118166A1 (en) Display device and electronic device provided with same
JP5132126B2 (en) Liquid crystal display
WO2006104210A1 (en) Active matrix substrate, display device and electronic device
KR20180077940A (en) Borderless display device
CN111025628A (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP